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Abstract. To defend against the rising threat of quantum computers,
NIST initiated their Post-Quantum Cryptography(PQC) standardiza-
tion process in 2016. During the PQC process, the security against side-
channel attacks has received much attention. Lattice-based schemes are
considered to be the most promising group to be standardized. Message
encoding in lattice-based schemes has been proven to be vulnerable to
side-channel attacks, and a first-order masked message encoder has been
presented. However, there is still a lack of security evaluation for the
first-order masked message encoder under different implementations. In
this paper, we analyzed the security of the first-order masked message
encoder of Kyber. We found although masked Kyber certainly is able to
defend against the previous side-channel attacks, there still exist some
exploitable leakages. With the help of the leakages, we proposed a deep
learning-based key recovery attack on message encoding of masked Ky-
ber. Our method can recover the original message from masked message
encoding and then enable a chosen-ciphertext attack to recover the se-
cret key. In our experiments, the whole secret key of masked Kyber768
was recovered with only 9 traces and the success rate of attack was close
to 100%.

Keywords: Side-channel attack · Lattice-based cryptography · Kyber ·
Masking · Deep learning

1 Introduction

With quantum computers, Shor’s algorithm [39] can break the cryptosystems
based on the classical computationally infeasible problems(e.g. RSA, ECC),
which are playing important roles in today’s communication, financial, IoT,
etc. In recent years, more and more progress on quantum computers has been
made by Google [6], USTC [43], IBM [23], etc. Updating cryptosystems with
new cryptography primitives against quantum computers becomes urgent. In
2016, the National Institute of Standards and Technology(NIST) initiated their
Post-Quantum Cryptography(PQC) standardization process, and received 69 al-
gorithms from all over the world. Now, the PQC process has reached the third
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round, 7 finalists will continue to be reviewed for consideration for standardiza-
tion at the conclusion of the third round, and NIST expects security in relation
to side-channel attacks can have a larger focus [4] in this round.

In the third round of the PQC process, 4 of the 7 finalists are constructed
from the lattice-based computationally infeasible problems, in which Kyber [10]
is viewed as one of the most promising Key Encapsulation Mechanism(KEM) [4].
Accordingly, many studies on side-channel security of lattice-based schemes have
been proposed over the years. In [34], Primas et al. proposed the first side-channel
attack on the number theory transform(NTT) of RLWE-based schemes. They
used a combination of template attack and belief propagation to achieve a single-
trace key recovery attack. Subsequently, this attack got improved by Pessl [33]
and Hamburg [19] et al. The correlation power analysis on polynomial multipli-
cation of secret key has been discussed in [28]. Besides the classical side-channel
attacks on key-dependent operation, the side-channel assisted chosen-ciphertext
attacks have attracted much attention. In these attacks, the side-channel infor-
mation is used as oracles to reveal some information about secret key, and these
oracles can be categorized as plaintext check oracle [14] [36] [41], message recov-
ery oracle [42] [35] and decryption failure oracle [18] [9]. To defend against side-
channel attacks, masking is an efficient method that is firstly proposed in [12].
In [31], Oder et al. proposed the first first-order masking for the CCA-secured
lattice-based schemes. Subsequently, improvements on masked binomial sam-
pler [38], and comparison [7] [13] [15] were proposed. Furthermore, first-order
and higher-order masked implementations of Kyber [11] [16] and Saber [8] [25]
have been achieved.

1.1 Related work

Message Recovery Attack on Message Encoding Due to the session key
between the two communicating parties derived from the input message, the key
can be deduced if the message is recovered. In [5], Amiet et al. proposed the
first side-channel message recovery attack on latticed-based schemes. in which
the message encoding of NewHope(a second-round algorithm in NIST’s PQC
process) was targeted. They employed simple power analysis(SPA) to recover the
message from NewHope with an compiler optimization flag ”-O0” and template
attack to recover the message from ”-O3” compilation result respectively. Next,
Sim et. al [40] implemented the message recovery attack on multiple lattice-based
schemes in different compilation optimization by clustering or neural network
algorithms.

Message Recovery based Chosen-Ciphertext Attack In 2020, Ravi et
al. [36] used electromagnetic leakage from error correct codes or FO-transform
as a plaintext check oracle, proposed a generic key recovery attack on lattice-
based KEMs. However, the plaintext check oracle can only distinguish one bit of
the message, and thereby only recover one secret coefficient every time. Hence,
recovering the whole secret key needs thousands of traces. After that, Xu et
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al. [42] used SPA on the message encoding to recover the whole message with only
a single trace. Based on the single-trace message recovery, they can recover the
whole secret key of Kyber512 3 with 8 traces, which is 7680 in [36]. Furthermore,
Ravi et al. [35] improved the ciphertext-chosen method in [42], reduced the
number of needed traces to 6.

Masked Message Encoding Since message encoding is vulnerable to side-
channel attacks, implementing secure message encoders is important in CCA-
secure lattice-based KEMs. In [31], Oder et al. firstly proposed a first-order
masked message encoder for NewHope KEM. In [20], Heinz et al. introduced
the masked encoder of [31] into their first-order masked Kyber implementation,
and it was also applied to Saber as introduced in [8]. In addition, converting
Boolean masking of the message to Arithmetic masking bit-wisely [11] is another
implementation of a secure masked message encoder, but it costs too much for
a first-order masking scheme.

High-order Attack on Masked Lattice-Based Schemes In [29], based on
the approach introduced in [27], Ngo et al. proposed a key recovery attack on the
message decoding in masked Saber [8]. They combined the side-channel leakage
when decoding two shares of one bit as input to training a neural network, which
can recover the original message bit with several traces. This attack not only
doesn’t need any profiling device but can improve accuracy by using more than
one trace without considering the randomness caused by re-masking. In [30],
Ngo et al. achieved a key recovery attack on masked and shuffled Saber by a
similar method.

To sum up, the message encoding in lattice-based schemes is vulnerable to
side-channel attacks. Accordingly, the masked encoder proposed in [31] is an
effective countermeasure to defend against side-channel attacks and has been
implemented in multiple masked implementations of lattice-based schemes. How-
ever, the security of masked encoder still lacks enough evaluation, a practical at-
tack on masked decoder has been proposed in [29]. Whether there are high-order
attacks that can threaten the masked encoder is still an open question.

1.2 Contributions

In this paper, we target the masked Kyber implementation in [20] and propose a
practical side-channel attack on its masked message encoding. Our contributions
can be summarized as follows:

– The proposed attack is the first practical attack on the masked message
encoding. Although the previous attacks [5] [40] [42] on the message encoding
without masking can be extended to analyze the masked encoding, it will

3 The Kyber512 they used here is the version from the second round of PQC process
with η1 equals 2. In the third round, the η1 of Kyber512 is increased to 3.
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be infeasible once the implementation of masked encoding is under the weak
leakage case of low Signal-Noise-Ratio(SNR), unevenness or masking (which
is common in actual implementations). On the contrary, the restrictions
above do not affect our attack performed successfully.

– The leakage model of our attack is more general. The single-bit leakage
model used in the previous attacks [5] [40] [42] may be broke by compilation
optimization. Our attack is based on a byte leakage model. Even though there
is no exploitable leakage to distinguish a single bit(i.e., the power trace is not
regular to distinguish the bit iteration), our model can still employ all the
leakage of bits in one byte to recover the message without precisely locating
the points in the trace.

– Our attack is validated on a Cortex-M4-based development board, and we
were able to achieve close to 100% accuracy in both message recovery and
key recovery for 1000 experiments.

The code and data used in this paper will be publicly available.

1.3 Organization

The remainder of this paper is organized as follows: We provide notations and
basic principles of related work in Section 2. In Section 3, we introduce our 2-
stage key recovery attack and show how we improve our attack with imperfect
message recovery. We use realistic experiments to validate our methodologies in
Section 4. Finally, we conclude this paper and future work in Section 5.

2 PRILIMINARIES

2.1 Notations

Let q be prime and Zq be the ring of integers modulo q. We define the ring of
polynomials Rq = Zq[X]/(Xn + 1) for some interger n and denote lower case
letters like v as polynomials over Rq. Similarly, Rk×1

q represents vectors with

k elements and Rk×l
q matrices of dimension k × l over Rq. The transpose of a

vector u or a matrix A are denoted by uT and AT , respectively. vi and u[i]
are denoted as the i-th coefficient in v and the i-th polynomial in vector u,
A[i][j] is denoted as the polynomials located in i-th row, j-th column of matrix
A. When we use NTT(a), we apply number theory transform(NTT) to each

polynomial in a. v̂ represents a polynomial in NTT-domain, û and Â represent
a vector and a matrix whose polynomials are in NTT-domin. Multiplication in
any ring is denoted by · operator whereas point-wise multiplication is denoted
by ◦ operator.

For x ∈ R, we write ⌊x⌉ to mean the closest interger to x. We use U to
denote the uniform distribution on Rq, whereas χη denotes a center binomial
distribution with support [−η...η]. Byte arrays of length z are denoted as Bz,
and by {0, 1}z, we denote the set of z bits. In our paper, we let m ∈ B32 , and
we denote m[i] as the i-th byte in m and mi as the i-th bit in m. In masked
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Table 1. Parameter sets of Kyber768

parameters n q k (η1, η2) (du, dv)

values 256 3329 3 (2, 2) (10, 4)

cases, 2 shares of m are denoted as m′ and m′′, this is also applied to m[i] and
mi.

2.2 Kyber

Kyber is one of the 7 finalists in the third round of the NIST’s PQC standard-
ization process [37]. In this paper, we use Kyber to showcase our attack. The
security of Kyber bases on the hardness of solving the learning-with-errors prob-
lem in module lattices(MLWE [26]). Kyber consists of a chosen-plaintext attack
secured public-key encryption(CPAPKE) and a chosen-ciphertext attack secured
key encapsulation mechanism(CCAKEM). CPAPKE consists of three parts: key
generation(Algorithm 1), encryption(Algorithm 2) and decryption(Algorithm 3).
FO-transformation [17] [21] is applied to CPAPKE to get CCAKEM, the core
part of CCAKEM is key decapsulation(Algorithm 4) based on a decryption and
re-encryption. The three parameter sets Kyber512, Kyber768 and Kyber1024
are claimed to the security of AES-128, AES-192 and AES-256 respectively. In
this paper, we focus on Kyber768, but our approaches can also be applied to
the other two sets. Parameters in Kyber768 are shown in Table 1. k = 3 means
secret key s has 3 polynomials, η1 = 2 means the coefficients in s belong to
{−2,−1, 0, 1, 2}.

Algorithm 1 CPAPKE.Gen

Output: Secret key sk
Output: Public key pk
1: d← B32

2: (seedA, r)← G(d)
3: Â← U(Rk×k

q , seedA)
4: (s, e)← χη1(R

k×1
q ; r)× χη1(R

k×1
q ; r)

5: ŝ← NTT(s), ê← NTT(e)
6: t̂← Â ◦ ŝ+ ê
7: sk ← ŝ, pk ← (t̂||seedA)
8: return (sk, pk),

2.3 Side-Channel Attack on Message Encoding

In Kyber’s algorithm specification [37], message encoding is considered as a spe-
cial form of Decompression, it is a mapping between a message and a polynomial
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Algorithm 2 CPAPKE.Enc

Input: Public key pk
Input: Message m ∈ B32

Input: Random coins r ∈ B32

Output: Ciphertext s
1: ÂT ← U(Rk×k

q , seedA)
2: r← χη1(Rk×1

q ; r)
3: e1 ← χη2(Rk×1

q ; r)
4: e2 ← χη2(Rq; r)
5: r̂←NTT(r)
6: u← NTT−1(ÂT ◦ r̂) + e1

7: v ← NTT−1(b̂T ◦ r̂) + e2+encode(m)
8: c1 ← Compress(u, du)
9: c2 ← Compress(v, dv)
10: return (c1||c2)

Algorithm 3 CPAPKE.Dec

Input: Ciphertext c/ ∗ c = (c1||c2) ∗ /
Input: Secret Key ŝ
Output: Message m
1: u← Decompress(c1, du)
2: v ← Decompress(c2, dv)
3: m← decode(v− NTT−1(NTT(u)◦ŝ))
4: return m

Algorithm 4 CCAKEM.Dec

Input: Ciphertext c/ ∗ c = (c1||c2) ∗ /
Input: Secret Key ŝ
Output: Session key K
1: m′ ← CPAPKE.Dec(̂s, c)
2: K̄′, r′ ← G(m′||H(pk))
3: c′ ← CPAPKE.Enc(pk,m′, r′)
4: if c = c′ then
5: return K ← KDF(K̄||′H(c))
6: else
7: return K ←KDF(z||H(c))
8: end if
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as shown in (1)
M : {0, 1}n → Rq (1)

Concretely, message encoding maps each bit of the message to the corresponding
coefficient in the polynomial as (2).

r[i] =

{
0 if mi = 0

⌊ q
2⌉ if mi = 1

(2)

In Kyber’s reference implementation [37], message encoder is implemented
as Listing 1.1.

1 void poly_frommsg(poly *r, const uint8_t msg [32]) {

2 size_t i, j;

3 int16_t mask;

4

5 for (i = 0; i < 32; i++) {

6 for (j = 0; j < 8; j++) {

7 // mask = 0xffff /0x0000

8 mask = -(int16 t)((msg[i] >> j) & 1);

9 r->coeffs [8 * i + j] = mask & (( KYBER_Q + 1) / 2)

;

10 }

11 }

12 }

Listing 1.1. Kyber’s reference message encoding

When a message bit is 0(or 1), the variable mask(not related to the mask-
ing introduced in Section 2.4) is 0x0000(0xffff), respectively. The difference
in hamming weight between the two possible values of mask is 16, which is a
strong power leakage in microcontroller. In [40], Sim et al. defined the variables
with strong hamming weight difference like mask here as determiner, we fol-
low this definition in this paper. Using mask as a determiner, the attacker is
able to distinguish whether a message bit in Kyber is 0 or 1 by observing power
traces or leveraging some simple extracted features in traces [5] [40].

2.4 Masked Encoder

Masking [12] is a widely used countermeasure against side-channel attacks. It
splits a secret intermediate value into multiple parts called shares and perform
all the operations on each of the shares individually. A first-order masking splits
any secret variable x into 2 shares x1 and x2, satisfying x = x1+x2 in Arithmetic
masking or x = x1 ⊕ x2 in Boolean masking.

First masked message encoder for lattice-based scheme is proposed in [31]
and applied to implementation of Kyber [20] and Saber [8]. Masked message
encoder in Kyber is shown in Algorithm 5. The main idea is to encode two
shares individually, then subtract round error correctly and securely. Our attack
targets the separate encoding part, corresponding to step 3, 4 in Algorithm 5.
The subtraction part is not the focus of this paper, so we won’t go into it here.
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Algorithm 5 Masked Kyber.Encode

Input: m′,m′′ / ∗m = m′ ⊕m′′ */
Output: A1, A2 / ∗A = A1 +A2, A = m ∗ q/2 */
1: a′, a′′ ← reshare(m′)
2: b′, b′′ ← reshare(m′′)
3: A1 = encode(m′)
4: A2 = encode(m′′)
5: A1 = A1 − (a′b′)− (a′b′′)− (a′′b′)− (a′′b′′)
6: return (A1, A2)

3 Methodologies

3.1 Analyzing mkm4

In [20], Heinz et al. presented the first open-source Cortex-M4 implementation
of masked Kyber: mkm4. In mkm4, the masked encoder presented in [31] (see
Section 2.4) is implemented and the core code of masked encoder is listed in
Listing 1.2, where the same operations as Listing 1.1 are applied to m′ and m′′

in sequence.

1 for (i = 0; i < KYBER_SYMBYTES; i++) {

2 for (j = 0; j < 8; j++) {

3 mask = -((msg->share[0].u8[i] >> j) & 1);

4 r->polys [0]. coeffs [8 * i + j] += (mask & (( KYBER_Q + 1)

/ 2));

5 }

6 }

7

8 for (i = 0; i < KYBER_SYMBYTES; i++) {

9 for (j = 0; j < 8; j++) {

10 mask = -((msg->share[1].u8[i] >> j) & 1);

11 r->polys [1]. coeffs [8 * i + j] += (mask & (( KYBER_Q + 1) /

2));

12 }

13 }

14 /*code about subtracting m_1*m_2 is omitted */

Listing 1.2. Masked encoder in mkm4

To evaluate its security, we intended to perform a SPA as in [5] at first. We
selected a message containing 32 0xff bytes and encapsulated it as ciphertext.
Then, we decapsulated the ciphertext in the device under attack and captured
the power consumption trace of decapsulation. We expected there are two sim-
ilar sets of 256 repeated peaks in the single trace, which indicates that the
leakages in Section 2.3 are still exploitable. However, as shown in Fig. 1, we
only found 32 peaks for each share(the upper one in Fig. 1) and didn’t find any
available leakage for SPA in each peak(the lower one in Fig. 1). To understand
this phenomenon, we obtained its assembly code from the optimized compila-
tion intermediate result. For simplicity, we omit unrelated code lines here. The
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Fig. 1. Power consumption of masking message encoding(top) and amplification of the
first peak(bottom)

related instructions for encoding one bit are shown in Listing 1.3. Since the code
segment for encoding one byte are too long, we will not show it here.

1 ldrh r7, [r2, #4]

2 mov r4 , #1665

3 // mask = -((msg ->share [0].u8[i] >>2) & 1)

4 sbfx lr, r3, #2, #1

5 // coeffs += (mask & (( KYBER_Q + 1) / 2))

6 and lr, r4, lr

7 add lr , r7

8 strh lr, [r2, #4]

Listing 1.3. simplified assembly code of encoding a message bit in mkm4

In step 7 of Algorithm 2, the encoded message is added to v , and v =
bT · r + e2. The simplified encoding process can be described as follows: the
coefficients of v are loaded into registers of the microcontroller at first, and then
the message will be encoded. Subsequently, the encoded results are added to
the coefficients of v and then the coefficients of v are stored back in memory
at the end. In previous works, there are usually the following assumptions: 1)
message is encoded bit-by-bit; 2) during encoding one bit, loading mask from
memory and storing mask to memory offer a strong and regular leakage about
the value of the bit. However, there is no exploitable bit leakage in our analysis.
By analyzing the assembly code of encoding one byte, we draw some reasons
for the phenomenon as follows:

– Low Signal-Noise-Ratio(SNR): The difference of power consumption be-
tween operations in registers and memory can reach 1000 times [32], which
means the only two message-dependent operations sbfx and and don’t cause
a strong leakage. When the encoded results are added to v, v is equivalent to
a random masking, and thereby storing the coefficients of v can’t leak useful
information about message.
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– Unevenness: Limited by register quantity, the microcontroller will process
different bits and coefficients irregularly, and power traces are not even dur-
ing encoding one byte. It is difficult to locate the points of encoding a specific
bit.

– Masking: In the masked case, the two shares m′ and m′′ are changed
every decapsulation, so we can’t use specific traces to search points-of-
interest(POI), build template as in [5] [40] or average multiple traces to
improve SNR like [42].

To sum up, the masked encoder with compilation optimization breaks the cor-
relation between message bits and power consumption efficiently. Natrually, the
corresponding implementation of masked Kyber can resistant the previous side-
channel attack on message encoding. However, we still found some exploitable
leakages during the masked encoding and proposed a more general 2-stage side-
channel attack to achieve key recovery. The following two subsections will intro-
duce our attack in detail.

3.2 Message Recovery on Masked Message Encoding

As mentioned above, if recovering the original message in the decapsulation of
masked Kyber, it is needed to recover m′ and m′′ with a single trace at first.
However, in our case, it is difficult to obtain the points of interest or labels of
templates due to the low SNR, unevenness and masking for the implementation
of masked Kyber. In [27], Maghrebi et al. have proven that joining the trace
points of each share to train a neural network can be used to recover the original
secret key of AES. Using this method, we can also train a model to directly
recover the original message without recovering m′ and m′′. Moreover, the deep
learning-based side-channel attack performs well in low SNR environments and
is therefore suitable for our scenario. In addition, we recover the message byte-
wisely in order to avoid the unevenness.

Concretely, we introduce the deep learning technology into the side-channel
attack on message encoding to achieve a feasible sing-trace attack. Benefiting
from the powerful ability of deep learning, in profiling phase, we can profile
the relation between m and power leakage from encoding m′ and m′′. We use
unmasked message byte m[i] as label and join power traces from encoding m′[i]
and m′′[i] as input of model. The method described here is similar to that in [29],
but they target the incremental storage leakage of Saber’s message decoding and
are based on a bit model. Hence, they need to build 8 models for 8 bits in one
byte, while we only need to train one model to recover all message bytes.

Without loss of generality, we use Multi-Layer Perception(MLP) as our pro-
filing algorithm, which is one of the simplest deep learning models. The MLP
structure we use here is shown in Table2. We use ReLu as activate the func-
tion of Dense layers and use softmax as activate function of the output layer,
respectively. We select cross entropy as the loss function and use adam as our
optimizer. In addition, to avoid overfitting, we add Dropout with a rate of 0.5
to drop 50% nodes of Dense layers during training.
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Table 2. MLP structure in message recovery attack, l = 190 in our case

Layer Type (Input, Output)shape Parameters

Batch Normalization 1 (2l, 2l) 2l*4
Dense1 (2l, 512) 195072

Batch Normalization 2 (512, 512) 2048
Dense2 (512, 256) 131328

Batch Normalization 3 (256, 256) 1024
Output (256, 256) 65792

Since we can generate the ciphertext from any chosen message and decapsu-
late it by the device under attack, the device under attack can be viewed to be
our profiling device without any extra profiling device.

The first step of the profiling phase is to collect some traces and the cor-
responding labels. For each trace capturing, we select random message m and
encapsulate it into ciphertext ct. Then, we send ct to the device under attack
and capture the traces during decapsulation. We store traces and denote m[i] as
labels, and with every decapsulation, we can get one trace and 32 byte-labels.

After capturing traces, we need to locate leakage points corresponding to
every m′[i] and m′′[i]. The message encoding is located near the end of the
decapsulation and searching from almost the end of the captured trace, we can
find two similar 32-segment repeating patterns. All we need is to measure their
length and divide them into 32 sub-traces corresponding to 32 bytes of m′ and
32 bytes of m′′ respectively. Joining every two sub-traces of m′[i] and m′′[i], we
set the joined sub-trace as input for our MLP model, the original message byte
will be the label during training. We call this phrase preprocessing, and after we
finish the trace preprocessing, we can train the neural network model NN .

Once we have finished model training, we get a trained model NN ∗. The
trained model has the ability to recover message byte value from power traces
captured from the device under attack, which runs a masked Kyber decapsula-
tion implementation. The whole message recovery process is shown in Algorithm
6

As the SNR is low, it is difficult to acquire a perfect model, there may be
some false positive cases during message recovery. In [29], they decapsulate one
ciphertext multiple times and get multiple recovered messages. For every message
bit, they use majority voting of multiple recovered messages to improve accuracy.
In our cases, 256 possible results exist, so majority voting doesn’t fit here. Since
the output of our MLP model is activated by the softmax function, we obtain a
weight vector from the output of the neural network, and we select the class with
the most weights as our recovery result. We observed that in case of incorrect
recoveries, although the correct results do not have the most weight, they are
ranked high. With a high accuracy of our model, we can average several result
vectors of d sub-traces to increase the ranking of correct candidates and decrease
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Algorithm 6 Message Recovery Attack

1: /*Profiling Stage*/
2: for i = 0 to N do
3: msg ← RandomBytes(32)
4: ct← Encaps(msg, pk)
5: Trace[i]← Capture(Decaps(ct, sk))
6: Label[i]← msg
7: end for
8: (X, y)← PreProcess(Trace, Label)
9: NN ∗ ← Train(NN , X, y)
10:
11: /* Attack Stage*/
12: malicious ct← construct()
13: Traceattack ← Decaps(maliciousct, sk)
14: X∗[32]← PreProcess(Traceattack)
15: for i = 0 to 32 do
16: msg[i]← argmax(NN ∗(X∗[i]))
17: end for

the ranking of incorrect candidates. In this way, we can achieve recovery accuracy
very close to 100%, we’ll show its efficiency in Section 4.

3.3 Key Recovery

We can simplify CPAPKE.Dec(Algorithm 2) asm = decode(v−su), where (u, v)
is ciphertext and s is secret key. That means the message can be seen as a linear
combination of ciphertext and secret key. In our attacker model, we can select a
message to construct ciphertext as we want, and if we construct some ciphertext
with a special structure, we can recover some information about the secret key.
In [42], Xu et al. treated it as a classification problem. They choose a fixed v
and search several intervals of u to perform a One-vs-Rest(OvR) classification,
only need 4 traces, they can recover one polynomial of s. The theoretical number
of traces required to achieve the N -categories classification problem is ⌈log2 N⌉,
which is 3 here. In [35], Ravi et al. reduced this number to 3 by random search
of (u, v), our key recovery attack refers to [35].

Following Ravi et al. [35], we used a random search and selected 3 ciphertext
pairs shown in Table 3. Specifically, when we target i-th polynomial in s, we
construct ciphertext as v =

∑256
j=1 kvx

j , and u[i] = ku where u[i] is the i-th
polynomials in u and other polynomials in u are 0. In this case, the message bit
mj = decode(kv − ku ∗ sj [i]), we can recovery s[i][j] by the recovered 3 mjs.

In [42], Xu et al. used 960 traces to achieve a 98% accuracy rate, only 502 of
512 coefficients are recovered correctly. They need to exhaustive search

(
10
512

)
∗

510/2 times to find the correct secret key. Our message recovery and average
method in Section 3.2 reduce this search space to be negligible, we will show the
details in Section 4.
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Table 3. malicious ciphertext pairs

Secret (ku, kv)
Coeffs (107, 2705) (624, 1873) (1252, 0)

−2 O O O
−1 O O X
0 O X O
1 O X X
2 X O O

aO refers to the case of mj = 0, X
refers to mj = 1

4 experiments

4.1 Setup

For our experiments, we targeted an STM32F303 microcontroller featuring an
ARM Cortex M4 core, which is the standard platform for evaluating embedded
software implementations of the schemes running in NIST’s PQC process [22].
The specific target board comes with the ChipWhisperer Lite [2], which is the
equipment we used for measurement. The measurements done with the Chip-
Whisperer Lite will be voltage measurements over a shunt-resistor placed be-
tween the target processor and its supply.

The target device was programmed with the mkm4 [20], which is the first
open-source masked Kyber implementation based on the famous post-quantum
cryptography test framework pqm4 [24]. We used Kyber768 parameter set where
η1 = 2 and k = 3. We compiled the implementation using arm-none-eabi-
gcc [1] with optimization flag ”-O3”.

4.2 Model Training

Capture Traces We set the STM32F3 microcontroller as a server and our
laptop as a client. Every time we selected a random message m and encapsulated
m with the public key into ciphertext ct on the client, then we sent ct to the
server through a serial port. During decapsulation, we captured power traces
and saved m[0]...m[31] as labels. Our capture configuration is shown in Fig. 2.

Traces Pre-Process In this stage, we first divided each trace into two sub-
traces, corresponding to the encoding of m′ and m′′. We named the first point of
the first sub-trace the start-point. In each sub-trace, which contains 32 repeated
segments, we spliced the i-th segments in each sub-trace and denote it as X[i],
respectively, we denoted m[i] as y[i]. In this way, we obtained 32 pairs of training
data like (X[i], y[i]) from each trace. In our experiments, we captured 1000 traces
for training.
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Fig. 2. Capture configuration

Fig. 3. Accuracy of validation set during train for different start-points, the labels in
upper left mean distance from original start-point

Model Training With a training set of 32,000 data, we aimed to train a sim-
ple but still efficient neural network model to identify the 256 possible values
of the message bytes encoded in masked Kyber. Following the structure and
hyperparameters stated in Section 3.2, we implemented an MLP model with
Keras(version 2.8.0) [3], a widely used deep learning API written in Python.
Since we had a trigger to enable trace capturing, we could precisely locate and
divide traces. When we trained the model, getting satisfying results was to be
expected. When training to 26-th epoch, the accuracy of the validation set had
exceeded 99%, and when the number of epochs reached 47, the accuracy reached
100%. However, our attack doesn’t rely on the trigger and exact division. To
verify it, we set multiple experiments with different start-points, and the results
are shown in Fig. 3. We found that the model achieves nearly 100% accuracy in
an interval of up to 80 points, while it takes only 190 points to encode one byte
on average.

4.3 key recovery

We used (ku, kv) in Table 3 to construct malicious ciphertext ct, and since k =
3, we needed to construct a total of 9 ciphertexts. We captured traces during
decapsulating the 9 ciphertexts, and recover their corresponding messages in
sequence. Following Table 3, we use the i-th bit of every three messages to
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Table 4. Comparison with previous related work

Target
Number of traces

Success Rate
Profiling Attack

Our work Masked Kyber 1000
3 ∗ k 99.97%
6 ∗ k 99.999%

[42] Kyber 800 480 ∗ k 98%

[29]a Masked Saber 1000 36 ∗ k 99.37%
aThey didn’t give a success rate, we calculated this result
based on their success rate on message recovery.

recover the i-th coefficient of polynomials of secret key s. We repeated our key
recovery experiment 1000 times. Finally, we found that there only were 239 error
coefficients in all 1000 ∗ 768 coefficients, which means we only got 0.239 error
coefficients in every key recovery. Our key recovery attack leaves a search space
of only

(
1

768

)
∗ 0.239 = 183.552, much smaller than the results in [42].

To further narrow the search space, we applied our average method here.
We captured 2000 traces and set d = 2, which means we averaged 2 output
vectors to recover one message byte. In this case, we got 4 error coefficients
during 1000 experiments. With the average method, to recover the secret key of
masked Kyber768, we just need 18 traces and 3.072 times brute-force search.

The comparison with previous related work is summarized in Table 4.

5 Conclusion

In this work, we analyzed the security of first-order masked message encoding
and found it could defend against the previous proposed side-channel attacks on
message encoding efficiently. However, exploitable leakage still exists, we intro-
duced deep learning into side-channel attacks on message encoding and built a
2-stage attack that can recover the secret key with only 9 traces. Our approach
combines information from two shares, and it is should be categorized as a high-
order attack. Therefore, we didn’t break the first-order security assumption, but
as a general countermeasure, the first-order masked message encoder doesn’t
offer enough side-channel security.

In [11], Bos et al. implemented an arbitrary-order but high-cost masked en-
coder with secure conversions between Boolean and Arithmetic masking. Whether
more cost leads to more security will be a meaningful topic that we will continue
to explore in the future.
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