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ABSTRACT

We present a new construction for secure logistic regression train-

ing, which enables two parties to train a model on private secret-

shared data. Our goal is to minimize online communication and

round complexity, while still allowing for an efficient offline phase.

As part of our construction we develop many building blocks of in-

dependent interest. These include a new approximation technique

for the sigmoid function, which results in a secure protocol with

better communication; secure spline evaluation and secure powers

computation protocols for fixed-point values; and a new compari-

son protocol that optimizes online communication. We also present

a new two-party protocol for generating keys for distributed point

functions (DPFs) over arithmetic sharing, where previous construc-

tions do this only for Boolean outputs. We implement our protocol

in an end-to-end system and benchmark its efficiency. We can se-

curely evaluate a sigmoid in 18 ms online time and 0.5 KB of online

communication. Our system can train a model over a database

with 70, 000 samples and 15 features with online communication of

208.09 MB and online time of 2.24 hours at the cost of 6.11c over

WAN. Our benchmarks demonstrate that we reduce online commu-

nication over state of the art by ≈ 10× for sigmoid and ≈ 38× for
logistic regression training.

1 INTRODUCTION

One of the most ubiquitous ways to understand and use large

amounts of data is to train models which capture the most signif-

icant general properties of the underlying data. In many settings

the dataset used for the model training is owned by different par-

ties that have agreed to cooperate and create a common model

across their datasets but do not want to share record level data.

Secure multi-party computation (MPC) [39, 73] enables distributed

processing of their joint data which guarantees that neither party

learns anything more about the data than its designated output.

We consider the setting of two party computation (2PC) for

secure logistic regression training where each party holds a crypto-

graphic share of the input data. Secure protocols in this setting can

be used to enable two parties to train a logistic regression model

on their joint data by first secret-sharing their inputs. But they also

enable processing of data where neither of the computation parties

owns the dataset and the receiver of the output may be a different

party, assuming the computation parties are not colluding. The

latter setting is relevant in scenarios where the dataset consists of

entries collected across a large number of users and no single party

could have access to the record-level data. In this scenario the data

stewardship is distributed across two parties which are in charge

of executing a secure computation protocol for the agreed upon

functionality. Apart from keeping the input data confidential from

any single entity, this model also restricts the data to a specific use

case, which the computing parties have to agree on in advance.

Outsourcing a secure computation to a set of non-colluding

servers has been applied in practice several times in the past. The

first practical application of MPC, which was used to run a sugar

beet auction in Denmark in 2009 [11], relied on three “virtual auc-

tioneers", Danisko, DKS and SIMAP, who had shares of the inputs of

all sellers and bidders and executed anMPC protocol for the auction.

A second example is a study that was run by the Estonian govern-

ment, to test whether students working during studies is correlated

with worse performance and dropouts [9]. This study needed to

join tax records with education records which are held by different

government entities and are not shared. To do this in a privacy

preserving manner they executed an MPC with three parties: the

Estonian Information System’s Authority, the Ministry of Finance

IT center, and the company Cybernetica. The two databases were

shared among the three parties who executed an MPC protocol

implementing the study methodology.

The two-server setting, which we focus on in this work, was

leveraged in the system Prio [24] which implements a distributed

private aggregation protocol where two non-colluding parties re-

ceive shares from individual user devices and compute an aggregate

histogram over these inputs. This system was later used by Mozilla

Firefox to collect browser telemetry [23] where the two aggrega-

tors were run by Mozilla and the Internet Security Research Group

(ISRG). The same design underlies the Private Analytics system

implemented by Google and Apple in their Exposure Notifications

system [5], where the aggregators are the National Cancer Institute

(NCI) at the National Institutes of Health (NIH), and ISRG.

An ongoing effort byGoogle Chrome, called Privacy Sandbox [43],

is developing privacy preserving measurement APIs to support ad-

vertising use cases after the deprecation of third party cookies. One

of these APIs, the Attribution API [42], considers a similar measure-

ment goal, which is to compute aggregate measurements across

attributed conversions from all users. Again, MPC with distributed

data stewardship can be used for this kind of measurement [46].

While the previous two examples show that privately aggregat-

ing user data into histograms is useful by itself, the functionality

needs for measurement systems go far beyond, and require more

complex model training. Here, communication between the two

computing parties quickly becomes the most expensive part of

the system. For example, while it may be beneficial for privacy to

place the two servers into data centers operated by different cloud

providers (e.g., AWS and Google Cloud in the case of ENPA[5]), this
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incurs egress charges for all traffic between the two servers, which

can be significantly higher than intra-cloud traffic costs. These

cloud network costs significantly outweigh computation costs in

most settings. Low online communication cost is therefore a crucial

design goal for practical secure training protocols.

Logistic Regression. Logistic regression is a tool used for many

modeling and measurement settings. It is often used for binary

classification and prediction in medical [14, 35], engineering [59],

and finance [3] applications. It was the functionality of choice in

Criteo’s challenge for effective use of some of the privacy preserving

APIs proposed by Chrome [38]. While not as powerful as Deep

Neural Networks (DNNs), it turns out to still be broadly useful for

important applications so we focus on it in this work.

Online-offline Computation Model. Our constructions consider

the online-offline computation model [34] which aims to minimize

the complexity of the protocol that is on the critical path of pro-

cessing inputs when they become available, by outsourcing some

of the computation into an input-independent offline phase which

can be executed at any time prior to the online stage. The main

metric that we optimize for in our constructions is communication

complexity which, as we discussed above, could be a major cost in

many cross platform two-party computation settings.

We consider two settings. The first one assumes a trusted of-

fline preprocessing that can be executed centrally. This is relevant

in scenarios where there is a party which can be trusted to hon-

estly compute the different types of correlated randomness such

as multiplication triples, function secret sharing (FSS) keys, and

others. For example, in some scenarios regulator parties might be

considered trusted for the purposes of this preprocessing. Another

way to think about trusted preprocessing is measurement settings

over large numbers of clients, where the offline phase is distributed

across the clients each of which evaluates a small amount of the

required preprocessing and submits the output together with its

data shares to the two computation servers.

The second setting that we address does not assume a trusted

party for the offline stage and proposes that the offline preprocess-

ing is also generated using secure computation between two compu-

tation parties. While it is well-known that MPC can be used to dis-

tribute any computation that a trusted party could perform [39, 73],

efficiency is a concern. We therefore investigate how to efficiently

perform the offline phase of our protocols using MPC, though with

a greater emphasis on keeping the online phase as cheap as possible.

Differentially Private Output In our scenario, the two computa-

tion parties may reveal the output logistic model to a designated

output receiver, or alternatively may hold the model shares and

later answer inference queries in a distributed manner. While we

are not aware of any attacks that use a logistic regression model to

recover the input database, the question of how much information

different models reveal about the data used for training is an active

research area. Making the output differentially private [31] is one

approach to guarantee that it cannot be used to extract individ-

ual records. Thus, we also consider differentially private logistic

regression training in our distributed protocol.

Our Contributions. New Secure Logistic Regression. We present

new constructions for two party secure logistic regression training

over a database that is cryptographically shared between the two

parties. Our constructions optimize the online communication cost

of existing approaches (≈ 38× reduction over MP-SPDZ [52]) while

maintaining accuracy close to plaintext training. We present two

different protocols: the first one optimizes solely for online commu-

nication, while the second one trades off some of the efficiency in

the online phase for supporting efficient distributed computation in

the offline phase. Both constructions can facilitate a differentially

private output model.

Accurate Secure Sigmoid. The core technical component in our lo-

gistic regression construction is a new protocol for secure sigmoid

evaluation on input that is shared between two parties. It uses a

new approximation approach for the sigmoid functionality which

achieves 10
−4

error using 20 fractional bits. The final protocol of-

fers improved communication cost for its online phase. This cost

is ≈ 10× smaller than the communication of the state-of-the-art

sigmoid construction of SiRnn [64] that uses 16-bit ring while our

construction uses 63-bit rings. It is also ≈ 31× better than the online
communication for sigmoid in MP-SPDZ [52]. A secure sigmoid

evaluation runs between 16 and 19ms in different network setting

and includes 0.5-1.18 KB of communication.

Communication Efficient Constant Round Secure Comparison.Amain

building block for our sigmoid construction is a new comparison

protocol for 𝑙-bit numbers which uses a new reduction to small

bit length comparison, a novel all-prefix AND sub-protocol along

with inner product that works in constant number of rounds for

online computation. It uses only three communication rounds in

total whereas the state-of-the-art SynCirc uses rounds logarithmic

in 𝑙 . The online communication for 128-bit numbers comparison is

only 522 bits and has an improvement of ≈ 1.3− 2.6× over SynCirc.

Secure comparison is a core building block in a broad range of

functionalities far beyond the scope of this paper, such as auctions,

database search, biometric authentication, combinatorial problems.

This construction may therefore be of independent interest. As a

concrete estimate of our improvement, our new secure comparison

protocol can be used to execute Batcher’s widely used sorting net-

work [6] in a semi-honest 2-party setting on a 10
4
sized array of 64

bit integers using just 13.69 MB of communication whereas prior

works such as SynCirc [61], CrypTFlow2 [65], Couteau16 [25] will

require 17.88 MB, 36.32 MB and 63.37 MB respectively.

New Techniques for (i)DPFs. The communication and round effi-

ciency of our constructions leverage (incremental) distributed point

functions ((i)DPFs) [13, 16] techniques inside our MPC protocols

in new ways. We present a new technique for computing the all-

prefix Boolean AND of 𝑛 secret shared bits using iDPFs, which

achieves the round efficiency of our new secure comparison proto-

col. We also present a new construction for two-party generation

of distributed point function (DPF) keys with arithmetically shared

output values, which is used for distributed offline preprocessing.

Efficient Constructions with Fixed-Point Inputs. The accuracy of our

computation relies on fixed-point representation of shared values.

We present new constructions for spline evaluation and secure pow-

ers computation with fixed point input representation. The latter is
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used for secure Taylor approximation where existing approaches

work only for integers.

Implementation and Evaluation. We present end-to-end implemen-

tation of our protocols, and to our knowledge we are the first

implementation that combines FSS-based and secret-sharing-based

techniques. We evaluate the costs of our protocols including mi-

crobenchmarks for our building blocks such as a new secure com-

parison and sigmoid evaluation, as well as an end-to-end evaluation

of secure logistic regression training. We can train a model over

cryptographically shared data of 4200 samples with 5000 features in

about 9min with 13MB of communication, which amounts to 0.40c

cost. We achieve accuracy close to the plaintext trained model (less

than 1% difference). We reduce online communication over state of

the art by ≈ 2× for comparison, ≈ 10× for sigmoid and ≈ 38× for
logistic regression training.

1.1 Our Approach

We outline the main ideas of our approach in this section and

present detailed related work discussion in Appendix D.

Secure Logistic Regression. (Section 3) Our construction uses

stochastic gradient descent (SGD), which is an iterative training

algorithm. Each iteration for the model update consists of matrix

operations and a sigmoid evaluation.

Secure Sigmoid Evaluation (Sections 4 and 5).We introduce a

new construction for secure sigmoid evaluation where the input

is shared between two parties. It leverages a new approximation

method for the sigmoid function that relies on three different ap-

proximation functions for different input intervals. In particular, for

the input interval [0, 1), we use spline approximation which splits

the interval in several pieces, each of which is approximated with

a linear function. For the interval between 1 and a configurable

threshold we use Taylor approximation. For large values above

the threshold we approximate the sigmoid value with 1. Negative

inputs are handled symmetrically.

To reduce communication of the online phase of our protocol we

rely on techniques from function secret sharing [16] which enable

non-interactive computation. In particular we use the multiple

interval containment (MIC) gate [15] to identify which interval the

input falls into in order to use the approximation function. We also

use the MIC gate within the spline approximation on the interval

[0, 1) to choose the right linear function.

Distributed Comparison Function (Appendix E) . MIC gates

leverage distributed comparison functions (DCFs) [15] which rely

on function secret sharing [17].We introduce a reduction fromDCFs

to incremental distributed point functions (iDPFs) [13], which is

conceptually simpler than the previous construction by [15].

Secure Powers Computation with Fixed-Point Representa-

tion (Section 5.2) A sigmoid is computed as 1/(1 + 𝑒−𝑥 ). Our
sigmoid approximation for values above 1 has two main compo-

nents: secure exponentiation for evaluation of 𝑟 = 𝑒−𝑥 followed by

a secure protocol for powers computation that enables the poly-

nomial evaluation for the Taylor series for 1/(1 + 𝑟 ). For the first
part we leverage secure exponentiation of Kelkar et al. [51]. For

the second part we present a new construction inspired by the

HoneyBadgerMPC secure powers protocol [56], which we extend

to work with fractional values in fixed-point representation.

Online-Offline Balanced Protocol (Section 6). The most costly

part of our offline computation is the generation of FSS keys, which

are needed for MIC gates. In the setting without trusted preprocess-

ing these keys need to be generated using two-party computation,

presenting significant costs challenging the offline phase feasibility.

Existing approaches either rely on general-purpose MPC, which is

expensive because of the need to securely evaluate a PRG, or they

use the Doerner-Shelat technique [29], which requires computa-

tion exponential in the input size. When applying the MIC gate to

spline approximation, this is not an issue because the inputs can

be made short by truncation, leveraging the fact that the input is a

fixed point number with absolute value ≤ 1. Nevertheless, in the

interval containment functionality, which identifies which type of

sigmoid approximation needs to be used, this is no longer the case.

This is because we do not have any simple way to reduce the input

size. Hence, we would need an FSS gate with a large input domain,

which would have extremely high offline computation.

Secure Comparison (Section 6.1). To overcome this challenge

we modify the protocol to use a secure comparison functionality

instead of MIC to determine the first level of input partitions. We

introduce a comparison construction with a highly communication-

efficient, constant round online phase while only having modest

computation complexity. It relies on a new reduction from 𝑛-bit

numbers comparison to comparison on single bits using function-

ality that computes the AND over the bits in all bit prefixes of a

number. We present a new non-interactive construction for the

latter functionality, where the input is split among two parties,

which uses iDPFs. The resulting protocol improves over the online

communication of Rathee et al.’s CrypTFlow2 [66] by ≈ 2.4× and
Couteau [25] by ≈ 4.1× for 64-bit inputs and appropriate parame-

ters. We reduce the number of communication rounds by similar

factors, i.e., from 6 and 12 rounds respectively to 3.

Secure comparison is a fundamental building block for higher-

level privacy-preserving applications. Couteau [25] presents an

extensive list of such applications including oblivious sorting, data-

base search constructions, private set intersection, oblivious RAM,

machine learning for applications such as classification, feature

extraction, and generating private recommendations.

Secure DPF Key Generation (Appendix F). In Appendix F, we

give a new 2-party protocol for generating DPF keys for arithmetic-

shared outputs using MPC. This is an important extension to [29],

who only handle Boolean-shared outputs. Our construction only

requires a single additional oblivious transfer in the offline phase,

independent of the size of the output shares.

2 PRELIMINARIES

Notation. Given a finite set 𝑆 , 𝑥 ← 𝑆 indicates that an element 𝑥

is sampled uniformly at random from 𝑆 . For any positive integer

𝑛, Z𝑛 denotes the set of integers modulo 𝑛. [𝑘] denotes the set of
integers {1, . . . , 𝑘}. We use 1{𝑏} to denote the indicator function

that outputs 1 when 𝑏 is true and 0 otherwise. 𝜆 indicates computa-

tional security parameter. For a vector v, v𝑖 ... 𝑗 denotes the vector
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with elements 𝑣𝑖 , . . . , 𝑣 𝑗 . Likewise, for a matrix 𝑀 , 𝑀𝑖 ... 𝑗 denotes

the matrix containing rows 𝑖 through 𝑗 from𝑀 .

Fixed-Point Representation. A fixed-point representation is pa-

rameterized by a tuple (R,𝑤, 𝑠, Fix) where R is a ring,𝑤 represents

the bitwidth, 𝑠 represents the scale (or the fractional bitwidth), and

Fix : R→ R is a function mapping 𝑥 ∈ R to its fixed-point repre-

sentation 𝑥 ∈ R. In this work, we will work over the ring Z𝐿 where

𝐿 = 2
𝑙
and 𝑠 ≤ 𝑤 < 𝑙 . Similar to previous works, we define our

mapping function Fix(𝑥) = ⌊𝑥 · 2𝑠 ⌋ mod 𝐿. In this mapping, all real

numbers having absolute value at most 2
𝑤−𝑠

have a corresponding

fixed-point representation in the ring. Specifically, non-negative

real numbers are mapped to [0, 2𝑤) whereas negative real numbers

are mapped to (𝐿−2
𝑤 , 𝐿) in their two’s complement representation.

Let R∗ = [0, 2𝑤) ∪ (𝐿 − 2
𝑤 , 𝐿) denote the part of the ring where

fixed-point numbers are represented. Note that two distinct real

values might have the same fixed point representation because of

the limited fractional bitwidth. We will use 𝑥 to denote the corre-

sponding real-value for a fixed-point value 𝑥 . We use R𝑚𝑖𝑛 and

R𝑚𝑎𝑥 to denote the maximum negative and maximum positive

values representable in R.
Secure Computation. Secure computation protocols enable func-

tionalities where parties can compute a function on their joint

private inputs in a way that guarantees only the output of the com-

putation is revealed. Our protocol constructions are in a two-party

setting and provide semi-honest security [39], i.e., the parties are

assumed to follow the prescribed protocol. We denote the two par-

ties by P0 and P1. The security in such a model is captured by the

standard real/ideal paradigm whereby the view of an adversary in

the real-world, that corrupts one of the parties (either P0 or P1), can

be efficiently simulated in the ideal world where parties interact

with an ideal functionality. A detailed description of the security

model can be found in Appendix L .

The protocol Π may be divided into an offline preprocessing

phase Π
offline

(independent of parties’ inputs) and an online phase

Π
online

that depends on parties’ inputs. In practical settings, Π
offline

may be performed by a trusted third party, or by the parties exe-

cuting an MPC protocol. However, Π
online

is always performed by

parties using MPC. Due to space constraints, we do not provide

formal proofs of security of our protocols. In the semi-honest model,

the security of our protocols follows directly from the security of

the underlying primitives.

Secret Sharing.We use J𝑥KR to denote an additive sharing of 𝑥 in

ring R. We drop the superscript R when it is clear from context. We

write J𝑥K = (J𝑥K0, J𝑥K1) to denote that P0 and P1 get shares J𝑥K0

and J𝑥K1 respectively, such that J𝑥K0 + J𝑥K1 = 𝑥 in R. An additive

sharing is random if J𝑥K0 and J𝑥K1 are uniformly distributed in

R subject to J𝑥K0 + J𝑥K1 = 𝑥 . When we discuss additive shares,

we generally mean random additive shares. Additive shares are

also called arithmetic shares. Analogously, we use ⟨𝑏⟩ to denote a

random XOR-sharing of a bit 𝑏 ∈ {0, 1}, consisting of bits ⟨𝑏⟩0 and

⟨𝑏⟩1) such that ⟨𝑏⟩0 ⊕ ⟨𝑏⟩1 = 𝑏.

Truncation. Suppose parties are holding additive-sharing of a

fixed-point value 𝑥 where the scale is 𝑠 bits. Then they can use

Ftruncate to reduce the scale to 𝑠 ′ bits where 0 ≤ 𝑠 ′ ≤ 𝑠 . An ef-

ficient instantiation of Ftruncate was described in SecureML [58]:

Suppose 𝑥0 and 𝑥1 are the shares of 𝑥 held by party P0 and P1

respectively. Then, to perform the truncate operation, both parties

can locally truncate the last 𝑠 − 𝑠 ′ bits of their individual shares to
get new shares 𝑥 ′

0
and 𝑥 ′

1
. Let 𝑥 ′ denote the true truncated value

of 𝑥 after truncating the last 𝑠 − 𝑠 ′ bits. SecureML [58] shows

that Recon(𝑥 ′
0
, 𝑥 ′

1
) ∈ {𝑥 ′ − 1, 𝑥 ′, 𝑥 ′ + 1}. In other words, this non-

interactive truncation protocol incurs a small error in the least

significant bit of the fractional part of the FXP value. For our pur-

poses, this error is tolerable as the FXP representation itself admits

an error in the least significant bit of the fractional part compared

to the actual real value.

2.1 Logistic Regression

Logistic regression is a probabilistic classifier and a supervised

learning algorithm [50]. The classification function 𝑓 takes an ob-

servation, which is a vector of features ®𝑥𝑖 , and outputs the class

𝑦 with highest likelihood. It leverages the sigmoid functionality

𝜎 (𝑧) = 1

1−𝑒−𝑧 to assign probability determining the class to an in-

put feature vector ®𝑥 , using the weight vector ®𝑤 and a bias term 𝑏,

which form the model. More specifically, 𝜎 (®(𝑥) · ®𝑤 +𝑏) outputs the
probability of mapping ®𝑥 to the class 1.

The learning process for logistic regression takes a set of labeled

training samples ( ®𝑥𝑖 , 𝑦𝑖 ) and aims to learn parameters ®𝑤 that make

the predictions 𝑦′
𝑖
as close as possible to the true labels 𝑦𝑖 . This is

done by minimizing the (regularized) cross-entropy loss function

LCE (𝑦,𝑦′) = −(𝑦 log𝑦′ + (1 − 𝑦) log 1 − 𝑦′) which measures the

distance between predicted and true value.

Stochastic gradient descent computes optimal weights w by

minimizing the average loss over the 𝑛 training samples:

w̃ = argminw
1

𝑛

𝑛∑︁
𝑖=1

LCE (𝑓 (xi,w), 𝑦𝑖 ).

This is done by computing the gradient gi ← ∇𝑤LCE (𝑓 (xi,w), 𝑦𝑖 )
of the loss function on a random batch of 𝐵 training points. The

model is then updated as w← w − 𝛼
𝐵

∑
𝑖∈[𝐵 ]

g𝑖 .

In the context of secure computation protocols wewill run a fixed

number of iterations to avoid leakage about the private samples

based on the time for convergence. The minibatch technique uses a

subset of the samples in each iteration rather than the whole batch.

In practice, the regularized cross-entropy loss is often used:

LCE (𝑦,𝑦′) = −(𝑦 log𝑦′ + (1 − 𝑦) log 1 − 𝑦′) − 𝜆
2

| |𝑤 | |2

The regularization parameter 𝜆 guides themodel towardsweights

with smaller magnitude, which reduces overfitting in practice.

2.2 Multiplication Triples

Let parties hold additive shares of 𝑥,𝑦 ∈ R. Then they can use

functionality FMult to get additive shares of 𝑧 ∈ R such that 𝑧 = 𝑥 ·𝑦.
In the pre-processing model, FMult can be efficiently realized by

generating Beaver triples in the offline phase, and then consuming

them in the online phase. This incurs online communication of 2

ring elements per-party.

For multiplying an 𝑛 ×𝑚 matrix X with another𝑚 × 𝑘 matrix Y,
there is a special matrix multiplication protocol based on matrix
Beaver triples which incurs an online communication of 2(𝑛𝑚+𝑚𝑘)
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per party. We will use FmatMult to abstractly represent a functional-

ity which enables multiplication of two additively shared matrices.

For multiplying a 𝑛 ×𝑚 matrix X with a sequence of matrices

{Yi}𝑖∈[𝑛] where Yi has dimension 𝑚 × 𝑘𝑖 , there exists another

optimization based on correlated matrix Beaver triples and incurs

an online communication of 2(𝑛𝑚 +𝑚∑
𝑖 𝑘𝑖 ) per party. We will use

FcorrMatMult to represent this functionality.

These functionalities can be extended to real numbers repre-

sented in fixed-point format by adding an additional truncation

protocol at the end, where 𝑠 least significant bits are truncated

from the result in order to adjust the fractional scale. We use the

non-interactive SecureML truncation [58] described in Section 2.

2.3 Two Party Computation Functionalities

Multiplexer Following [65], we will use FMUX to denote a multi-

plexer functionality. Suppose parties hold arithmetic shares of 𝑥

and Boolean sharing of a selection bit 𝑏. Then they can use FMUX
to get an arithmetic sharing of 𝑥 if 𝑏 = 1, and arithmetic sharing

of 0 otherwise. A protocol for FMUX can be realized using 2 simul-

taneous OTs. In some scenarios, a variant of FMUX, denoted by

FMUX2, might be more useful. It takes arithmetic shares of 𝑥0 and

𝑥1, along with Boolean sharing of a selection bit 𝑏, and outputs a

fresh sharing of 𝑥0 if 𝑏 = 0, and a fresh sharing of 𝑥1 otherwise. A

protocol for FMUX2 can be realized using a single call to FMUX as

follows: Parties locally compute a sharing of 𝑥1 − 𝑥0, invoke FMUX
on it with the sharing of 𝑏, and finally locally add the sharing of 𝑥0

to their output from FMUX.

2.4 Function Secret Sharing

We use Boyle et al.’s definition of function secret sharing (FSS) [16].

A 2-party FSS is an algorithm that efficiently splits a function 𝑓

into two additive shares 𝑓0 and 𝑓1. These shares must satisfy the

following two properties: (1) 𝑓𝑖 hides 𝑓 and (2) 𝑓0 (𝑥) + 𝑓1 (𝑥) = 𝑓 (𝑥)
for every input 𝑥 . Output reconstruction in (2) is additive. Formally:

Definition 2.1. A 2-party FSS scheme is a pair of algorithms

(Gen, Eval) such that:

• Gen(1𝜆 , 𝑓 ), where 𝑓 is a description of a function 𝑓 , outputs

a pair of keys (𝑘0, 𝑘1). 𝑓 explicitly includes the input group

description G𝑖𝑛 and the output group description G𝑜𝑢𝑡 .
• Eval(𝑏, 𝑘𝑏 , 𝑥 ), given party index𝑏, a key 𝑘𝑏 defining 𝑓𝑏 : G𝑖𝑛 →
G𝑜𝑢𝑡 outputs 𝑓𝑏 (𝑥) ∈ G𝑜𝑢𝑡 .

Distributed point function (DPF) [16] is an FSS for a point func-

tion that evaluates non-zero on a single point. A DPF allows a

compressed 2-party secret-sharing of a point function. Incremen-

tal distributed point functions (iDPFs) [13] are a generalization of

DPFs which allow compressed sharing of a binary tree with 2
𝑛

leaves and a unique special path from root to leaf, i.e., there is a

single non-zero path in the tree, ending at leaf 𝛼 , whose nodes

have non-zero values 𝛽1, . . . , 𝛽𝑛 . More specifically, iDPF allows a

2-party secret-sharing of an all-prefix point function 𝑓𝛼, ¯𝛽 , where

𝛼 ∈ {0, 1}𝑛, ¯𝛽 = ((G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛)), and for each 𝑙 ∈ [𝑛]:

𝑓𝛼, ¯𝛽 :

⋃
𝑙 ∈[𝑛]

{0, 1}𝑙 →
⋃
𝑙 ∈[𝑛]

G𝑙 , and

𝑓𝛼, ¯𝛽 (𝑥1, . . . , 𝑥𝑙 ) =
{
𝛽𝑙 if (𝑥1, . . . , 𝑥𝑙 ) = (𝛼1, . . . , 𝛼𝑙 )
0 otherwise

Distributed Comparison Function (DCF) is an FSS scheme for a

function 𝑓 <
𝛼,𝛽

, which outputs 𝛽 if 𝑥 < 𝛼 and 0 otherwise.

Secure Computation via FSS. Boyle et. al. [15, 18] showed that

the FSS paradigm can be used to efficiently evaluate some function

families in 2PC in the preprocessing model, where Gen and Eval
correspond to the offline and online phase, respectively.

Functions can be computed on secret-shared inputs and outputs

using FSS gates together with a single round of communication.

Functions supported include FEQ , FCMP and FMIC for securely

computing equality, comparison andmultiple-interval-containment

respectively. The equality and comparison functionalities are self-

explanatory. For FMIC, parties know a series of 𝑘 public intervals,

and the output of FMIC (𝑥) is a 𝑘-element secret-shared vector

which is 1 in a position when 𝑥 lies in the interval, and 0 other-

wise. We note that we can accommodate either Boolean-shared or

arithmetic-shared outputs. Due to lack of space, we present formal

definitions and details for these functionalities in Appendix A, B.

3 SECURE LOGISTIC REGRESSION

We aim to develop concretely-efficient secure two-party computa-

tion protocols for logistic regression training, focusing on online

communication and rounds of interaction. The setting is as follows:

There are two parties (servers), each holding a share of private

dataset𝑋 , consisting of 𝑛 examples (rows) and 𝑘 features (columns),

and a sharing of the vector of 𝑛 labels y. They wish to train a logistic
regression modelw and end up with a sharing ofw. The two parties

are non-colluding and semi-honest. In this setting, the security of

a protocol Π is formally captured via the real-ideal paradigm as

mentioned in Section 2 and detailed in Appendix L.

Like previous works [58, 70], we leverage arithmetic secret-

sharing (see Section 2) and train the model w with stochastic gra-

dient descent (SGD). Our protocol is described in Algorithm 1. It

makes heavy use of correlated matrix-vector multiplication using

Beaver triples, and crucially depends on an implementation of the

sigmoid function in MPC.

Our novel contributions lie in the construction of the sigmoid

protocol FSigmoid using a mix of MPC primitives including DCFs,

DPFs, Taylor approximation, and efficient secure exponentiation.

4 SECURE SIGMOID

The key challenge of computing a single step of SGD is evaluating

real-valued sigmoid function. It requires computing (1) exponentia-

tion of a public base to a secret exponent as well as (2) division by

a secret divisor:

𝑆 (𝑥) = 1

1 + 𝑒−𝑥

Division is sometimes approximated via Goldschmidt’s [40]

method, which is expensive. Alternatively, exponentiation can be

approximated by decomposing the exponent into bits [26], which

is costly, or via low-degree polynomials [4], which is inaccurate.

In this section, we present our sigmoid functionality (Algo-

rithm 2) which is actually the sigmoid approximation we achieve.
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Algorithm 1: Logistic Regression Protocol

Public inputs: Number of iterations𝑇 , dataset dimensions 𝑛,𝑘 ,

batch size 𝐵, learning rate 𝛼 , regularization parameter 𝜆.

Private inputs: Secret-shared dataset J𝑋 K ∈ 𝑅𝑛×𝑘
and labels

JyK ∈ 𝑅𝑛
.

1 Let Jw0K be the initial secret-shared model with arbitrary weights.

2 for 𝑡 = 1 to𝑇 :

3 for 𝑏 = 1 to ⌊𝑛/𝐵⌋ :
4 𝑖 ← (𝑏 − 1) · 𝐵 + 1

5 𝑗 ← min(𝑛,𝑏 · 𝐵)
6 J𝑋𝐵K← J𝑋𝑖 ... 𝑗 K
7 JuK← FcorrMatMult

(
J𝑋𝐵K, Jwt−1K

)
8 JsK← FSigmoid (JuK)
9 JdK← JsK − Jy𝑖 ... 𝑗 K

10 JgK← FcorrMatMult
(
J𝑋𝐵

⊤K, JdK
)

11 JwtK← Jwt−1K − (𝛼/𝐵) · (JgK + 𝜆 · Jwt−1K)
12 return JwTK.

We describe how we securely implement this approximate func-

tionality, pointing to Section 5.1 and Section 5.2 for detail on how

we implement the more complex components of our functionality.

4.1 Sigmoid Approximation

The sigmoid function is ’symmetric’ around the𝑦-axis. More specif-

ically, 𝑆 (𝑥) + 𝑆 (−𝑥) = 1 for all 𝑥 ∈ R. This implies we can focus

on evaluating 𝑆 (𝑥) and then compute 𝑆 (−𝑥) = 1 − 𝑆 (𝑥) locally. For
𝑥 ≥ 0, we need to compute both division and exponentiation in

MPC. First, we show how we bypass directly computing division.

Note that
1

1+𝑒−𝑥 is in the form
1

1+𝑟 . Hence, we can apply 𝑑-degree
Taylor series approximation:

1

1 + 𝑟 = 1 − 𝑟 + 𝑟2 − 𝑟3 + . . . + 𝑟𝑑

This approximation requires to compute additions and powers of

𝑟 . As a result, it can be expressed as an arithmetic circuit, and thus

is MPC-friendly. While addition is a virtually free local operation,

computing powers is an expensive interactive operation.We present

a concretely efficient protocol for computing powers in Section 5.2

based on the protocol of [56]. Our protocol computes all powers of
𝑟 (irrespective of the degree) in only 2 communication rounds.

However, this approximation works well only when 𝑟 ≪ 1. We

therefore use this approximation only on the interval [0, 1

𝑒 ]. As
𝑟 = 𝑒−𝑥 , we use this technique when 𝑥 ≥ 1. In order to compute 𝑒−𝑥 ,
we use the 1-round exponentiation technique of [51]. We note that

the exponentiation protocol from [51] assumes a known (arbitrary)

bound on how negative the exponent can be. So in order to comply

with that assumption, we do not use this exponentiation protocol

if the exponent is too negative. Rather, we just set the sigmoid

output directly to 1. We fix the bound as 𝑙𝑓 /log
2
(𝑒), i.e. whenever

𝑥 ≥ 𝑙𝑓 /log
2
(𝑒), we set the sigmoid output to 1. This bound can

be justified by observing that for any 𝑥 ≥ 𝑙𝑓 /log
2
(𝑒), 𝑒−𝑥 < 2

−𝑙𝑓
.

Hence the fixed point representation of the result of exponentiation

is exactly 0 in this case.

Now, it remains to explain howwe evaluate sigmoid for 𝑥 ∈ [0, 1).
We evaluate a spline defined piecewise by lines via the FSS spline

gate as explained in Section 5.1.
1

For security, neither party should learn which technique is used

to compute sigmoid (i.e. in which interval 𝑥 belongs). Thus, all

evaluations are run simultaneously. At the end, the right output is

obliviously selected and secret-shared between the parties.

Algorithm 2: Approximate Sigmoid

Parameters:

Let𝑚 be the number of lines defining a spline.

Let 𝑙𝑓 be the number of fractional bits.

Let 𝑑 be the degree of Taylor series approximation.

Private input:

Let 𝑥 ∈ 𝑅 be the sigmoid input.

Sigmoid(𝑥) :

1 if 𝑥 < 0 then

2 𝑆 ← 1 − Sigmoid(−𝑥) .
3 else

4 if 𝑥 < 1 then

5 𝑆 ← Spline(𝑚, [0, 1))
6 else

7 if 𝑥 log
2
(𝑒) ≥ 𝑙𝑓 then

8 𝑆 ← 1

9 else

10 𝑟 ← 𝑒−𝑥

11 𝑆 = 1

1+𝑟 ← 1 − 𝑟 + 𝑟 2 − . . . (−1)𝑑𝑟𝑑
12 return 𝑆

5 SECURE SIGMOIDWITH TRUSTED SETUP

In this section, we describe the details of our approach for securely
computing the sigmoid approximation described in Algorithm 2

with a focus on minimizing the online communication cost. The

setting is as follows: there are two parties (servers), each holding a

share of private input 𝑥 , and they wish to end up with a share of𝑢 :=

Sigmoid(𝑥) where Sigmoid is computed as defined in Algorithm 2.

The two parties are non-colluding and semi-honest. In this setting,

the security of a protocol Π is formally captured via the real-ideal

paradigm as mentioned in Section 2 and detailed in Appendix L.

In designing our protocol, we assume that the offline phase of

our protocol is part of a trusted setup phase
2
. In practical settings,

such a trusted setup can be performed by a trusted third party.

Another possibility, when the intermediate models are protected

by DP (see Algorithm 10 in Appendix G ), is to outsource the setup

phase to (semi-honest) clients. These clients may provide a portion

of the precomputed setup alongside the inputs they upload to the

1
One could imagine using only splines to approximate sigmoid on the entire (−∞,∞)
interval as has been done in prior works [58]. However, this would require a large

number of spline intervals and potentially higher degree splines for the approximation

to work well, thus increasing the cost of protocol. Therefore, in our heterogeneous

approach, we use the spline based approximation only for the smaller interval [−1, 1].
For the remaining interval, we use the new exponentiation combined with Taylor

series based approximation.

2
Regardless of how the trusted setup phase is actually realized, it is assumed that this

setup phase is performed by an entity which is not colluding with any party.
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two MPC parties. In case a trusted setup is infeasible, we discuss

how to perform the offline phase in MPC as well in Section 6.

Our sigmoid approximation will work by first using FMIC to de-

termine if the shares of the input 𝑥 lie in the range [0, 1), [1, 1

log
2
(𝑒) ),

[ 1

log
2
(𝑒) ,∞), or the negative equivalents of these ranges. FMIC

yields arithmetic shares of 1 if 𝑥 was in that range, and arithmetic

shares of 0 otherwise. In parallel, we compute the sigmoid approxi-

mations on each range using the tailored technique for that range

described above (spline-approximation, exponentiation-and-Taylor-

Approximation, or hardcoding), using the 𝑆 (−𝑥) = 1−𝑆 (𝑥) identity
for the negative intervals. We then compute a dot product of the out-

puts of FMIC with the outputs of the tailored sigmoid computations

to “select” the output of sigmoid on 𝑥 using the approximation

corresponding to the interval in which 𝑥 lies. This dot product

can be computed using standard Beaver multiplication [8]. In the

following sections we discuss how to build the tailored sigmoid

implementations for each interval.

5.1 Secure Spline Computation

A spline is a special function defined piecewise by polynomials.

Formally, a spline function 𝑆 : R → R on an interval [𝑎, 𝑏) is
specified as a partition of𝑚 intervals {𝑎𝑖 , 𝑏𝑖 }𝑖∈[𝑚] with a 𝑑 degree

polynomial 𝑝𝑖 defined for each of the intervals. The value of the

function 𝑆 on input 𝑥 ∈ [𝑎, 𝑏] is equal to 𝑝𝑖 (𝑥) where 𝑎 ≤ 𝑥 < 𝑏.

For our specific use-case of sigmoid approximation, we use degree 1

polynomials on𝑚 intervals. Note that such a polynomial𝑄 (𝑥) is of
the form𝑄 (𝑥) = 𝑎𝑥 +𝑏 where 𝑎, 𝑏 are publicly known values. Given

a secret-sharing of 𝑥 , parties can locally compute a sharing of𝑄 (𝑥).
Note that when computing 𝑄 over fixed-point input 𝑥 , we need to

perform a truncate operation on the product 𝑎𝑥 before adding it

to 𝑏. This can be performed using the non-interactive truncation

protocol described in Section 2.

For constructing a spline protocol, we will let the parties locally

evaluate degree 1 polynomials𝑄𝑖 defined for each of the𝑚 intervals.

Let ®𝑄 represent a length𝑚 vector containing the result of evaluating

𝑄𝑖 on 𝑥 for each of the𝑚 intervals. Now, parties can use MIC gate

described earlier to generate shares of a vector ®𝐵 = [𝑏1, 𝑏2, . . . , 𝑏𝑚]
where 𝑏𝑖 = 1{𝑝𝑖 ≤ 𝑥 ≤ 𝑞}. Finally, they can take a dot-product

between ®𝑄 and ®𝐵 to derive the actual spline result. Such a dot-

product can be securely implemented using a single call to FmatMult.

Thus, the total communication cost of securely evaluating a spline is

2+4𝑚 elements of communication. This can be performed in 2 online

rounds where the first round is used for MIC gate evaluation and the

second round is used for FmatMult. In Appendix J , we describe an

optimized protocol for performing the dot-product (for the specific

case of splines) which reduces the overall communication of spline

to just 6 elements of communication. Crucially, this optimization

makes the online communication cost of spline independent of the

number of intervals𝑚.

Note that in our Sigmoid Approximation described in Algorithm

2, we use spline only when the input is between [0, 1). This means

that the spline protocol only needs to be executed on the fractional

bits of the input. In other words, given a positive fixed point input

𝑥 , let 𝑦 = 𝑥 mod 2
𝑠
. It is easy to see that 𝑦 represents the fractional

bits of 𝑥 . In the secret-shared setting, parties can locally compute

J𝑦K := J𝑥K mod 2
𝑠
to derive a sharing of the fractional bits of 𝑥 in

the smaller ring R = Z2
𝑠 . Now parties can use (shares of) 𝑦 for

evaluating the MIC component of the spline protocol, thus reducing

the domain size of the MIC from 𝑙 bits to 𝑠 bits. This observation

will be needed later in Section 6. If we set the output domain of

MIC to be Z
2
𝑙 and compute the ®𝑄 over R = Z

2
𝑙 , we can ensure

that the final output of spline protocol is shared in R = Z
2
𝑙 to be

compatible for further computations.

5.2 Secure Powers Evaluation

To evaluate a Taylor series approximation inside MPC, we need a

procedure to securely compute a 𝑑-degree polynomial which, in

turn, requires computing the (secret-shares of) consecutive powers

{𝑥, 𝑥2, . . . , 𝑥𝑑 } for a (secret-shared) input 𝑥 . Naively, one could

invoke FMult repeatedly 𝑑 times in order to generate these powers.

However, this makes the communication-cost proportional to the

degree 𝑑 . In [56], the authors proposed a novel protocol to generate

all 𝑑 powers using a single element of online communication per

party, where the masked value 𝑥mask = 𝑥 − 𝑟 is revealed. The

protocol leverages a new type of offline pre-processing correlation

called “random powers”. In such a correlation, parties have a sharing

of {𝑟, 𝑟2, . . . , 𝑟𝑑 } for a uniformly random 𝑟 ∈ R. For a (secret-shared)
input 𝑥 in the online phase, the parties “consume” these special

correlations in order to generate a sharing of {𝑥, 𝑥2, . . . , 𝑥𝑑 }. The
main observation in the protocol is the following relationship:

J𝑥𝑖𝑟 𝑗 K = J𝑟 𝑖+𝑗 K + 𝑥mask

( 𝑖−1∑︁
𝑙=0

J𝑥𝑖−1−𝑙𝑟 𝑗+𝑙 K
)

(1)

The aforementioned protocol works only for integer inputs

(mapped to ring elements in the natural way) and it is unclear how

to directly extend it to inputs represented in fixed-point format. The

main challenge is that Equation 1 now needs to be evaluated over

real numbers instead of ring elements in order to get the correct

result. We observe that emulating the evaluation of Eq. 1 over reals

inside a ring requires the following: (i) Performing fixed point mul-

tiplications instead of ring multiplication (i.e. we need to perform a

truncation operation after every ring multiplication to adjust the

scale
3
), (ii) Ensuring that none of the intermediate values in the

computation wrap around the ring, since a multiplication wrap-

ping prior to truncation corrupts the share. While incorporating

the first condition into Eq. 1 might seem straightforward, it is less

obvious how to incorporate the second condition. The reason is

that the term 𝑟 𝑖+𝑗 will almost always wrap around the ring when 𝑟

is sampled from the fixed-point region of the ring. Note that this

wraparound is not an issue when evaluating Eq. 1 over integers.

We observe that in our specific use-case of sigmoid evaluation,

the input 𝑥 to the powers protocol is of the form 𝑒−𝑧 . As we have
already discussed that considering only 𝑧 ≥ 0 suffices for sigmoid

evaluation (due to its symmetric nature), this means that we can

assume that 𝑥 is always a real numbered value between (0, 1].
With this observation in place, we are able to incorporate condi-

tion (ii) mentioned earlier in the following way: Instead of sampling

𝑟 from the entire fixed-point region of the ring, we sample it only

3
A potential option is to perform all multiplications first (without truncations) and

only do truncations at the very end, but this approach would require the ring size to

be proportional to the degree 𝑑 (in order to accommodate the intermediate increase in

the scale), and hence will be inefficient.
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from the region representing real numbers between [0, 1). While

this ensures that the fixed point representations of powers of 𝑟 don’t

wrap around the ring, it creates another issue: Revealing the (fixed-

point representation of) masked value 𝑥mask is no longer secure.

The reason is that the distribution of the fixed-point representation

of 𝑥mask is no longer uniform over the ring.

To get around the above issue, we make the following obser-

vation: Although it is insecure to reveal 𝑥mask in its entirety, it is

fine to reveal the absolute fractional value of 𝑥mask, denoted by

𝑥fracMask, because this distribution is still uniform. Then the actual

value of 𝑥mask is either +𝑥fracMask if 𝑥 ≥ 𝑟 , and −𝑥fracMask other-

wise. We also observe that parties can locally compute a sharing of

bit 𝑡 = 1{𝑥 ≥ 𝑟 } as shown in Line 7 in Algorithm 3.

In the actual protocol, we invoke a fixed-point adapted version

of the powers protocol from [56] on both +𝑥fracMask and −𝑥fracMask.

Then parties can select the correct set of powers using a multiplexer

where the selection bit is set to 𝑡 . We describe our complete protocol

in Algorithm 3 where we use FMUX2 as a black-box.

When FMUX2 is replaced by an actual 2-round OT protocol, the

first round of OT can be parallelized with Line 2 by invoking FMUX2
on (𝑝𝑐

𝑖
, 𝑝1⊕𝑐

𝑖
, 𝑓 ) instead, thus making the selection bit of FMUX2

independent of the result of reconstruction on Line 2. Hence, the

overall protocol will require 2 online rounds. The per-party online

communication cost is 𝑠 bits for Line 2 and 1 + 2𝑘𝑙 when realizing

FMUX2 using OT as described earlier. Thus the total communication

happens to be 2(𝑠 + 1 + 2𝑘𝑙) bits.

5.3 Secure Polynomial Evaluation

Suppose parties hold a secret-sharing of (fixed-point representa-

tion of) a real value 𝑥 and would like to evaluate a polynomial

𝑄 (𝑥) = ∑𝑑
𝑖=1

𝑎𝑖𝑥
𝑖
, where the coefficient 𝑎𝑖 ∈ R are publicly known.

A straightforward way to do so is the following: Parties invoke

ΠfxpPowers to learn sharing of {𝑥, 𝑥2, . . . , 𝑥𝑘 }, and then perform

a local linear sum of the shares of 𝑥𝑖 weighted by coefficient 𝑎𝑖 .

Thus the overall procedure would require the same online commu-

nication cost as ΠfxpPowers. We observe that one could do better

by modifying ΠfxpPowers as follows: in Line 9, instead of invoking

FMUX2 for all 𝑖 ∈ [𝑘], parties can first locally compute a weighted

linear sum 𝑃0 =
∑𝑘
𝑖=0

𝑎𝑖𝑝
0

𝑖
and 𝑃1 =

∑𝑘
𝑖=0

𝑎𝑖𝑝
1

𝑖
, and then use a

single invocation of FMUX2 on inputs (𝑃0, 𝑃1, ⟨𝑡⟩). This reduces the
total communication cost of the protocol to only 2(𝑠 + 1 + 2𝑙) bits,
making it independent of the degree 𝑑 of the polynomial𝑄 . We refer

to this optimized protocol as ΠfxpPoly.

6 SECURE SIGMOIDWITH DISTRIBUTED

OFFLINE SETUP

In the previous section, we outlined a secure sigmoid construc-

tion which is highly communication efficient in the online phase

assuming parties have access to a trusted offline setup phase, possi-

bly using a trusted third party. However, in the real world, such a

trusted third party might not be always available or, in some cases,

even undesirable. In such scenarios, it becomes essential that the

two parties be able to securely emulate the trusted offline phase in

an efficient manner.

Looking back at our construction in the previous section, we

observe that the FSS preprocessing forms the bottleneck cost of

Algorithm 3: Fixed-point powers Protocol

ΠfxpPowers :

Input : J𝑥K, where 𝑥 ∈ [0, 2𝑠 ) and 𝑥 ∈ [0, 1)
Output : J𝑦K, J𝑦2K, . . . , J𝑦𝑘K, where 𝑦 = 𝑥

Precomputation: J𝑟̂K, J𝑟 2K, . . . , J𝑟𝑘K, where 𝑟 ∈ R and 𝑟 ← [0, 1)

1 J𝑥 − 𝑟K← J𝑥K − J𝑟K
2 𝑥fracMask := Recon(J𝑥 − 𝑟K𝑠 ) , where J𝑥 − 𝑟K𝑠 is the 𝑠 least

significant bits of J𝑥 − 𝑟K and Recon happens in the ring 𝑍2
𝑠 .

3 Let ⟨𝑐 ⟩ be a default sharing of bit 𝑐 denoting the public carry bit in

the most significant place during the above additive

reconstruction.

4 {𝑝0

𝑖
}𝑖∈[𝑘 ] ← ΠmaskPowers (𝑥0

fracMask) , where 𝑥
0

mask := 0
𝑙−𝑠 | |𝑥mask

5 {𝑝1

𝑖
}𝑖∈[𝑘 ] ← ΠmaskPowers (𝑥1

fracMask) , where 𝑥
1

mask := 1
𝑙−𝑠 | |𝑥mask

// The value of 𝑥 − 𝑟 is 𝑥0

fracMask if 𝑥 ≥ 𝑟 , else 𝑥1

fracMask.

6 Let 𝑓 denote the bit of J𝑥 − 𝑟K at location 𝑠 + 1 from LSB.

7 ⟨𝑡 ⟩ := ⟨𝑐 ⟩ ⊕ 𝑓

8 // 𝑑 = 0 if 𝑥 ≥ 𝑟 , and 1 otherwise

9 ∀𝑖 ∈ [𝑘 ] : res𝑖 ← FMUX2 (𝑝0

𝑖
, 𝑝1

𝑖
, ⟨𝑡 ⟩) .

// Parties use the 𝑡 bit to select the correct set of powers.

10 return res1, res2, . . . , res𝑘
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

// Local subprocedure invoked by each party P𝑖
ΠmaskPowers :

Input: 𝑥mask where 𝑥mask ∈ [0, 2𝑠 )
Output: J𝑦K, J𝑦2K, . . . , J𝑦𝑘K, where 𝑦 = �𝑥mask

1 𝐴← Initialize empty 2D array of dimension (𝑘 + 1) × (𝑘 + 1)
2 for 𝑖 = 0 to 𝑘 :

3 𝐴0,𝑖 ← J𝑟 𝑖K
4 for 𝑙 = 1 to 𝑘 :

// Compute all 𝐴𝑖,𝑗 where 𝑙 = 𝑖 + 𝑗
5 𝑠𝑢𝑚 ← 0

6 for 𝑖 = 1 to 𝑙 :
7 𝑗 ← 𝑙 − 𝑖
8 𝑠𝑢𝑚 += 𝐴𝑖−1, 𝑗

// Invariant : 𝑠𝑢𝑚 =
∑

𝑘<𝑖J �𝑦𝑖−1−𝑘𝑟 𝑗+𝑘K
9 𝐴𝑖,𝑗 ← J𝑟 𝑖+𝑗 K + FfxpMult (𝑥mask, 𝑠𝑢𝑚)

// Invariant: 𝐴𝑖,𝑗 will store J�𝑦𝑖𝑟 𝑗 K following Equation 1

10 return 𝐴1,0, 𝐴2,0, . . . , 𝐴𝑘,0

securely emulating the trusted offline phase in a 2PC setting. This

happens because the FSS key generation algorithm involves the us-

age of a PRG, and naively running the FSS key generation algorithm

inside 2PC will involve the cost of computing the PRG circuit (e.g.

AES) using 2PC. This will typically
4
blow up the communication

cost of the offline phase by at least linear in the size of PRG circuit.

In this section, we will discuss an alternative approach for com-

puting sigmoid which will enable a communication efficient offline

phase while adding a mild communication overhead in the online

phase. We do this by simply replacing the offline-expensive MIC

4
This is true for approaches like Garbled Circuit or standard GMW-style secret-sharing

based MPC. However, by assuming hardness of problems based on algebraic structures

with richer homomorphic properties (e.g. LWE, LPN etc), one can reduce the communi-

cation below the circuit size. Currently, these approaches however are computationally

much more inefficient than standard MPC approaches to be practical.
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gate (which is based on FSS) with a novel communication efficient

secure comparison protocol.

In the previous construction, we have used the FSS based FMIC
functionality at two different places. We use FMIC to determine if

the shares of input 𝑥 lie in the range [0, 1), [1, 1

log
2
(𝑒) ), [

1

log
2
(𝑒) ,∞),

or the negative equivalents of these ranges. Besides this, we also

use FMIC as a sub-protocol inside the secure spline functionality.

Our new construction will be nearly a drop-in replacement for the

first FMIC functionality based on FSS. As mentioned in Section 5.1,

the second spline only needs to operate on the fractional bits of

the input and thus can be instantiated on a much smaller domain

of 𝑠 bits. Thus, we retain the second FMIC as we can use [29] to

efficiently generate FSS keys in the distributed setting when 𝑠 ≤ 24.

However, one difference is that our construction returns XOR

Boolean shares rather than arithmetic shares of a Boolean value.

This means that rather than a Beaver-multiplication based dot-

product, we instead use FMUX on the outputs of comparison in

order to select the tailored sigmoid evaluation on the interval cor-

responding to input 𝑥 . The parties will use the output of our new

comparison as FMUX input to either retrieve shares of the sigmoid

evaluation on the interval, or shares of 0, and then add together

these shares across all intervals to select the sigmoid result.

6.1 Secure Comparison

Suppose party 𝑃0 and 𝑃1 have a private input 𝑥 and 𝑦 respectively.

The output of a secure comparison functionality, henceforth de-

noted as FCMP, is a boolean sharing of 1{𝑥 < 𝑦}, a bit indicating
the result of comparison, where 𝑥 and 𝑦 are bitstrings of length

𝑙 (interpreted as unsigned bit representation of positive integers).

Formally, F 𝑙
CMP (𝑥,𝑦) → (𝑏0, 𝑏1), where 𝑥,𝑦 ∈ {0, 1}𝑙 and 𝑏0, 𝑏1 is

a Boolean sharing of bit 𝑏 := 1{𝑥 < 𝑦}.
A common approach to computing secure comparison is divide-

and-conquer [25, 36, 65], which first splits the larger input strings

into smaller strings, performs comparisons on these smaller strings,

and then combines the results. However, these protocols have non-

constant number of rounds in the online phase due to a logarithmic

depth recursion tree. Cheetah [47] optimizes the offline communi-

cation of [65] using VOLE-style OT extension which is orthogonal

to our focus on online efficiency.

Another line of work based on function secret sharing (FSS)

[15] performs secure comparison using a distributed comparison

function (DCF). This technique allows an online optimal protocol for

secure comparison having 1 round and 1 element of communication

per party. However, the caveat of directly using FSS to perform

comparison is the expensive cost of running the FSS offline phase

in 2PC. While Doerner and Shelat [29] propose an elegant approach

for performing FSS offline phase, their technique is efficient only for

small domains (i.e. input bit lengths less than 20). This is because

it requires locally computing an exponential (in input bit length)

number of PRGs. There is at this moment no better concretely

communication-efficient technique in the literature for conducting

the FSS offline phase.

Another line of work originating from ABY [27] and its suc-

cessors ABY 2.0 [60] and SynCirc [61] solve secure comparison

by running a GMW-style MPC on a (variant of) Boolean adder

circuit. These techniques have round complexity proportional to

the depth of the circuit which is 𝑂 (log 𝑙) whereas our protocol is
constant round (at most 3). In Table 6, we compare the cost of our

protocol with SynCirc (the most optimized work in this direction).

Rabbit [57] solves the secure comparison problem in the dishonest

majority multiparty setting using Boolean adder circuit and other

techniques, has higher communication cost and 𝑂 (log 𝑙) rounds.
In our approach, we start by looking at the decomposition of

comparison problem for 𝑙-bit strings in terms of comparison and

equality operations on smaller sub-strings as described in Garay et

al. [36]. Formally, for 𝑥 = 𝑥1 | |𝑥2 and 𝑦 = 𝑦1 | |𝑦2, where 𝑥,𝑦 ∈ {0, 1}𝑙
are 𝑙-bit strings, the following relationship holds:

𝑥 < 𝑦 = (𝑥1 < 𝑦1) ⊕
(
(𝑥1 = 𝑦1) ∧ (𝑥2 < 𝑦2)

)
(2)

In general, we can extend the above decomposition to 𝑞 pieces in

the following way. Let 𝑥 = 𝑥1 | | . . . | |𝑥𝑞 and 𝑦 = 𝑦1 | | . . . | |𝑦𝑞 where

𝑥𝑖 , 𝑦𝑖 are𝑚-bit strings, 𝑞 = 𝑙
𝑚 (for ease of exposition, assume𝑚

divides 𝑙 ). Then, the following relationship holds:

𝑥 < 𝑦 = (𝑥1 < 𝑦1)

⊕
(
(𝑥1 = 𝑦1) ∧ (𝑥2 < 𝑦2)

)
⊕ . . .

⊕
(
(𝑥1 = 𝑦1) ∧ . . . ∧ (𝑥𝑞−1 = 𝑦𝑞−1) ∧ (𝑥𝑞 < 𝑦𝑞)

) (3)

Looking ahead, the reason for splitting 𝑙 length bit-string into

smaller sub-strings of length𝑚 bits is to leverage the power of FSS

gates for small input domains (e.g. 𝑚 = 16 bits) which have an

efficient offline phase. Assuming, 𝑙𝑖 = 𝑥𝑖
?

< 𝑦𝑖 and 𝑒𝑖 = 𝑥𝑖
?

= 𝑦𝑖 , we

can rewrite the above equivalence as:

𝑥 < 𝑦 = 𝑙1 ⊕ (𝑒1 ∧ 𝑙2) ⊕ . . . ⊕ (𝑒1 ∧ . . . ∧ 𝑒𝑞−1 ∧ 𝑙𝑞)
= ⟨1 𝑒1 𝑒1 ∧ 𝑒2 . . . 𝑒1 ∧ 𝑒2 ∧ 𝑒𝑞−1⟩·
⟨𝑙1 . . . 𝑙𝑞⟩

(4)

At a high-level, our protocol:

(1) Uses 𝑞 independent FSS comparison gates (based on DCF) for

𝑚 bit input and 1 bit output to compute 𝑙1, . . . , 𝑙𝑞 .

(2) Uses 𝑞 − 1 independent FSS equality gates (based on DPF) for

𝑚 bit input and 1 bit output to compute 𝑒1, . . . , 𝑒𝑞−1.

(3) Given 𝑒1, . . . , 𝑒𝑞−1, uses a single iDPF for 𝑞 − 1 bit input and 1

bit output in order to compute the all-prefix AND of 𝑒𝑖 values

i.e. 𝑒1, 𝑒1 ∧ 𝑒2, 𝑒1 ∧ 𝑒2 ∧ 𝑒3, etc.

(4) Finally, computes a dot product between two bit vectors, each

of length 𝑞, to get the final result.

Step 1 and Step 2 follow directly from FSS gates for comparison

and equality constructed in [15] and described in Appendix B . Step

4 can be performed in a standard way using bit Beaver triples. We

elaborate on Step 3, i.e. how to use the iDPF in order to compute the

all-prefix AND of 𝑒𝑖 values. We first observe: A single DPF can be

easily used to compute the Boolean AND of 𝑘 bits 𝑏1, . . . , 𝑏𝑘 . The

observation is that the AND of 𝑘 bits can be represented as a point

function in the following way:

AND(𝑏1, . . . , 𝑏𝑘 ) ≡ 𝑓 (𝑏) =
{

1 ; 𝑏 = 2
𝑘 − 1

0 ; otherwise

where 𝑏 = 𝑏1 | | . . . | |𝑏𝑘 .
Note that in our context, we want to compute the AND on 𝑒𝑖

values. A naive solution is to use 𝑞−1 independent DPFs to compute
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all the prefix AND values i.e. 𝑒1, 𝑒1 ∧ 𝑒2, 𝑒1 ∧ 𝑒2 ∧ 𝑒3 and so on.

However, since the ANDs are correlated and have an incremental

pattern, we can instead use a single iDPF to perform the above task

much more efficiently. Let’s consider the following point function:

𝑓 (𝑒) =
{

1 ; 𝑒 = 2
𝑞−1 − 1

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑒 = 𝑒1 | |𝑒2 | | . . . | |𝑒𝑞−1.

If we create an iDPF for this point function, and invoke it on the

input 𝑥 = 𝑒1 | | . . . | |𝑒𝑘 , we will get 1 as the output iff 𝑒1 | | . . . | |𝑒𝑘 is a 𝑘

length substring of 2
𝑞−1 −1. This will happen iff AND(𝑒1, . . . , 𝑒𝑘 ) =

1. Since an iDPF supports incremental evaluation by design, we can

evaluate a single iDPF on 𝑒1, . . . , 𝑒𝑘 for all 𝑘 ∈ [𝑞 − 1] and retrieve

the all prefix AND evaluation.

As mentioned in Section 2.4, using an FSS scheme for function 𝑓

in the context of MPC is done via the corresponding offset function

which works on the masked input value 𝑥 := 𝑥 + 𝑟𝑖𝑛 instead of the

actual private value 𝑥 . The input mask 𝑟𝑖𝑛 is defined in the offline

phase and is used to define the parameters for FSS key generation.

In [15, 18], the authors use this technique to create an equality check

gate and comparison gate via FSS schemes such as DPF and DCF

respectively. However, leveraging iDPF in order to create useful

MPC gates has been unexplored. In the preceding paragraph, we

outlined the way an iDPF can be leveraged for computing the all-

prefix AND of multiple bits. However, to use this idea in the context

of MPC, we need to operate on masked input and somehow encode

the mask inside the iDPF without affecting the correctness. Here

we observe that the typical way of masking via group addition i.e.

𝑥 := 𝑥 +𝑟𝑖𝑛 and then trying to set the special point 𝛼 = 2
𝑞−1−1+𝑟𝑖𝑛

does not work. This is because if 𝑥1 | | . . . | |𝑥𝑘 is a length 𝑘 prefix

of 2
𝑞−1 − 1, then it doesn’t imply that 𝑥1 | | . . . | |𝑥𝑘 is also a length

𝑘 prefix of 𝛼 . This means that instantiating a iDPF at 𝛼 and then

performing incremental evaluations on the masked input would not

lead to the correct prefix AND result. Our solution to this problem

is to use XOR masking instead of the usual group addition based

masking. Specifically, we define the masked input 𝑥 := 𝑥 ⊕ 𝑟𝑖𝑛 and

then instantiate an iDPF with the special point 𝛼 = (2𝑞−1 − 1) ⊕ 𝑟𝑖𝑛 .
It is easy to see that with this masking technique, the following

equivalence holds: 𝑥1 | | . . . | |𝑥𝑘 is a length 𝑘 prefix of 2
𝑞−1 − 1 iff

𝑥1 | | . . . | |𝑥𝑘 is a length 𝑘 prefix of 𝛼 . We describe the protocol

∏
CMP

formally in Figure 2

7 EXPERIMENTAL EVALUATION

Implementation Details. We implemented our constructions in

C++ and compiled our system with the Bazel build system [7]. We

used native C++ uint64_t for most operations. For FSS operations,

we used uint_128 from the Abseil library [41].

Experimental Setup.We ran our experiments on two compute-

optimized c2-standard-8 Google Cloud instances with 32 GB RAM

and Intel Xeon CPU at 3.1 GHz clock rate (except for experiments

run on the Criteo datasets, where we used compute-optimized

c2-standard-60 instances with 240 GB RAM and same CPU). Our

implementation runs on a single thread and uses a single core of

each instance. In the LAN setting, both instances were deployed

in the us-central1 region where the mean network latency was

0.15ms and the bandwidth was ≈ 2.1𝐺𝐵/𝑠 . In the WAN setting, one

instance was in us-central1 while the other was in us-west2. The

mean network latency was 46.20ms and the bandwidth ≈ 60𝑀𝐵/𝑠 .
All runtimes and communication are end-to-end totals and include

both the client and server costs, with all computation sequentialized

(i.e., server and client do not compute at the same time).

Cloud costs.We include the monetary cost of running our proto-

cols on the Google Cloud Platform (GCP), using the prices listed

on the GCP website. For computational cost, we use the CPU spot

price of $0.02 per-hour for pre-emptible virtual machines, and use

network cost of $0.08 per GB for egress to the internet. All prices

are in USD. This reflects batch computation with parties situated

in different cloud providers, as has been used in other works [48].

7.1 Sigmoid Experiments

Approximating the sigmoid function is the most challenging and

costly component of gradient descent. For that reason, we bench-

mark our sigmoid protocols separately. In this section, we refer to

our sigmoid protocol with trusted offline setup (Section 5) as v1 and

our sigmoid protocol with distributed offline setup (Section 6) as v2.

We show runtime, communication and monetary cost in Table 1,

for 10
2, 10

3, and 10
4
sigmoid inputs and the following parameters:

20 fractional bits, 31-bit width (integer and fractional), 63-bit ring

size, 10 spline intervals in [0, 1), and Taylor series of degree 10
5
.

The sigmoids are executed in a single batch.

Sigmoid Accuracy Our sigmoid approximation error as compared

to the Python floating point implementation of sigmoid ("true" sig-

moid) is at most on the order of 10
−4

when run on points uniformly

spaced on the interval [−20, 20] with 20 fractional bits.

Table 1: Comparison of the online cost of our sigmoids with

trusted (𝑣1) and distributed (𝑣2) offline setup to SiRnn and

MP-SPDZ’s accurate sigmoid implementation.

Technique

Time for # Instances (sec) Comm. per # Rounds USD Cost

10
2

10
3

10
4

Instance (KB) per 10
6
runs

LAN

Sigmoid v1 1.83 18.31 183.08 0.50 4 $0.140

Sigmoid v2 1.69 17.33 173.84 1.18 6 $0.186

MP-SPDZ 0.05 0.29 - 15.32 124 $1.170

Est. SiRnn 0.02 0.04 0.19 4.88 ≈100 $0.372

WAN

Sigmoid v1 2.10 19.07 185.20 0.50 4 $0.141

Sigmoid v2 2.16 18.79 176.80 1.18 6 $0.188

MP-SPDZ 7.12 9.02 - 15.32 124 $1.219

Est. SiRnn 4.60 4.62 4.77 4.88 ≈100 $0.375

Benchmark Comparisons. We compare to the most recent se-

cure sigmoid protocols in Table 1. We focus on accurate sigmoid

approximations as inaccurate approximations often result in worse

models than in standard logistic regression (see Section 7.2). Our

comparison includes SiRnn [64], whose sigmoid protocol strictly

improves over other state-of-the-art sigmoid approximations such

as MiniONN [55] and DeepSecure [68]. We also compare to the

sigmoid approximation presented in MP-SPDZ
6
[52].

5
We were not able to compile 10

4
sigmoid executions into the bytecode used by the

MP-SPDZ virtual machine as our device ran out of memory.

6
MP-SPDZ presents different sigmoid approximations. We focus our comparison on

their accurate sigmoid approximation, which directly computes exponentiation and

reciprocal in MPC.
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We retrieved the SiRnn values directly from [64] and extrapo-

lated the cost for our network settings
7
. For MP-SPDZ, we ran their

sigmoid implementation in the trusted dealer mode.

We observe a gain of ≈ 10× in communication efficiency over

SiRnn and ≈ 30× over MP-SPDZ. We also reduce the rounds for

sigmoid (≈ 25× over SiRnn and ≈ 31× over MP-SPDZ): Our v1

sigmoid requires 4 rounds while our v2 sigmoid requires 6 rounds,

while we estimate that SiRnn uses ≈ 100 communication rounds

(though the number of rounds is not discussed in SiRnn) while

MP-SPDZ uses 124 rounds. While our construction has higher com-

putation than SiRnn and MP-SPDZ, we have better monetary costs.

We decrease costs by ≈ 2.7× over SiRnn and by ≈ 8.4× over MP-

SPDZ on LAN. On a higher latency WAN, we decrease costs by

≈ 2.7× over SiRnn and by ≈ 8.6× over MP-SPDZ. SecFloat [62], a

concurrent work, does not explicitly provide a sigmoid protocol

but our estimate is that it will require 271 rounds and 47.5 KB of

communication (as it uses 187 rounds and 37.23 KB per exponentia-

tion and 84 rounds and 10.27 KB per division) whereas we use only

4/6 rounds 0.5KB/1.18KB of communication for v1/v2 respectively.

The improved sigmoid costs also impact inference, where the

cost is the sum of a single matrix-vector multiplication and a single

sigmoid evaluation. For example, inference on a single example of

10 features requires one-time communication of 1.25𝐾𝐵 (recall this

cost can be paid once as the model does not change) and 1.752𝐾𝐵

per each example. For 10
6
examples this amounts to 1.67𝐺𝐵 and

costs $0.13 assuming communication is the only cloud cost. For

comparison, using SiRnn’s sigmoid would cost $0.47.

We note that the increased running time of our protocol, as

indicated in Table 1, is due to the local computations involving FSS

which consists of AES calls. This gap can be reduced by optimizing

the current FSS code and possibly using multi-threading across

batches (which prior works appear to already do). In this work, our

focus was not solely on optimizing computation but primarily on

reducing communication and the round complexity.

Offline cost estimate. We now provide an analytical estimate

of the offline costs involved in our sigmoid protocol. For the v1

setting, we measure offline cost as the storage cost of preprocessing

material per party which consists of the following components:

• MIC gate: Requires a key size of (𝑙 · 𝜆 + 𝑙2 + 3𝑙 + 𝜆) + 2 · 𝑛𝐼 · 𝑙
bits where 𝑛𝐼 is the number of MIC intervals [15]. For 𝑙 = 63

and 𝑛𝐼 = 6, we get a key size of 1.6 KB.

• Exponentiation: Requires a correlation consisting of 2 field

elements of at most 𝑙 bits [51]. For 𝑙 = 63, the cost is 0.015 KB.

• Polynomial: Requires a correlation consiting of (shares of) 𝑑

incremental powers of a random ring element. For 𝑙 = 63, we

get a cost of 0.077 KB.

• Spline: Requires a MIC gate key for 10 intervals and 1 Beaver

triple. For 𝑙 = 63, we get a cost of 0.56 KB.

• Dot product: For performing dot product of two vectors of

length 6, we require 6 Beaver triples. For 𝑙 = 63, we get a cost

of 0.046 KB.

In the v1 sigmoid protocol, we use 1 MIC gate, 2 exponentiations,

2 polynomial calls, 2 spline calls and 1 Dot Product. This requires a

total storage cost of 2.95 KB per party.

7
Note that SiRnn does not have offline phase. The entire protocol cost is online.

For the v2 setting, the offline cost is measured by the total com-

munication cost needed to generate the required preprocessing

material in MPC. In the following, we assume that the amortized

cost of generating a Beaver triple for 𝑙 = 63 bit ring is 0.4375 KB [67]

and a bit Beaver triple is 0.0175 KB [65]. The v2 sigmoid protocol

consists of the following components:

• Mux : Requires 2 calls to Ideal OT in the online phase. For this,

it suffices to have 2 ROT correlations generated in the offline

phase, requiring 2𝜆 + 4𝑙 bits of communication. For 𝑙 = 63, the

communication cost is 0.062 KB.

• Exponentiation: The required correlation can be generated

using 2 Beaver multiplications which will cost 0.936 KB.

• Polynomial: The required correlation for 𝑑 = 10 degree poly-

onimal can be generated using 𝑑 = 10 Beaver multiplications

which will cost 4.68 KB.

• Spline: Requires an MIC gate key on domain size 𝑠 = 20 bits

for 10 intervals with output size of 𝑙 = 63 bits, and 1 Beaver

triple. Using the protocols described in Appendices B and F

for MIC key generation, the offline cost is 5.81 KB.

• MIC based on

∏
CMP: For 6 intervals, we need 12 invocations of∏

CMP and 6 invocations of FAND (perfomed using bit Beaver

triples). For 𝑙 = 63, this will cost 260.98 KB.

In the v2 sigmoid protocol, we invoke 1 MIC gate, 2 exponen-

tiations, 2 polynomial calls, 2 spline calls and 6 Mux calls. This

requires a total offline communication cost (across both parties)

of 284 KB per party. The offline computation cost is dominated

by FSS key generation which involves 2
𝑛
MPC calls to AES for

𝑛-bit FSS inputs. Based on the estimate of 360 million AES calls

per second (as reported in [15]), we decided what value of 𝑛 would

be reasonable/feasible. In the v2 sigmoid protocol, we invoke FSS

when computing the Spline MIC gate on 𝑠 bit inputs. Therefore,

setting 𝑠 = 20 enables an estimated offline computation time of 23

milliseconds per sigmoid.

7.2 Logistic Regression Experiments

We evaluated our logistic regression experiments on five datasets.

We do basic preprocessing on the datasets with the help of Scikit-

learn’s machine learning library (remove rows with missing fea-

tures, normalize features with Scikit-learn’s StandardScaler, shuf-
fle the rows, etc.). To facilitate testing, we split each dataset into a

training set (70%) and a testing set (30%). We present the training

parameters used in our experiments for each dataset in Table 2.

Table 2: Datasets we used for our experiments.

Titanic Arcene Gisette Criteo Uplift 1 Criteo Uplift 2

Training Size 500 70 4200 70000 70000

Testing Size 214 30 1800 30000 30000

Total Size 714 100 6000 100000 100000

# Features 6 10000 5000 15 15

Learning Rate 𝛼 1 0.1 1 1 1

Regularization 𝜆 0.0001 0.0001 0.1 0.0001 0.0001

Prediction Threshold 0.43 0.18 0.64 0.67 0.86

# Iterations 6 6 6 6 6

We used the following datasets:

• Titanic [33]. This dataset is used to predict which passengers

survived the Titanic shipwreck.
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• Arcene [45]. This dataset contains information from the Na-

tional Cancer Institute and the Eastern VirginiaMedical School.

It is used to determine whether a patient has cancer.

• Gisette [45]. This dataset distinguishes the digits 4 and 9.

• Criteo Uplift [28]. This dataset predicts whether a user targeted
by advertising purchases a product (i.e. converts). We used two

versions of this dataset. In Criteo Uplift 1, we used a random

subset of the original dataset. This dataset was highly imbal-

anced. From 10
5
data points, there were only 470 conversions.

In Criteo Uplift 2, we sampled the examples such that 10% of

the labels were positive. I.e., there were 10
4
positive labels.

Accuracy Evaluation. We compare accuracy of our 2PC proto-

cols against a plaintext Python floating-point implementation in

Table 4. We use the parameters from Table 2 and train for 6 it-

erations of logistic regression, which is enough for the plaintext

algorithm to converge. Our 2PC protocols are close to plaintext

logistic regression in all cases.

Performance Evaluation. We present our end-to-end runtime

and total communication costs in Table 5. All versions use the

parameters from Table 2, and run for 6 iterations. Our runtimes

and communication are totals for both parties. We observe that our

costs grow nearly linearly with the number of examples, but are

relatively independent of the number of features. This emphasizes

that sigmoid is a significant portion of our protocol costs.

Comparison to previous works. We first note that some key

works in the area have relatively coarse sigmoid approximations,

and we do not do a detailed comparison with these works. These

works include the piecewise approximations of SecureML (3 pieces)

[58] andMP-SPDZ (5 pieces) [52]. As a result of these coarse approx-

imations, SecureML and MP-SPDZ do not closely match plaintext

logistic regression: Running logistic regression in plaintext with

SecureML’s and MP-SPDZ’s sigmoid approximations on a subset

of the Criteo uplift dataset with 100, 000 examples and 470 posi-

tive examples (trained on 6 iterations over the full dataset, with
minibatches of 100 examples) yields 0 and ≈ 0.42 F1 score, respec-

tively, while Python plaintext (and training in plaintext with our

approximation) yields ≈ 0.48 (0.47 when run in MPC). ABY2.0 [60]

improves on the efficiency of SecureML’s logistic regression by

reducing the online runtime, but uses the same coarse sigmoid

approximation.

Note that even if we settled for the sigmoid approximation used

in SecureML and ABY2.0 (and similarly MP-SPDZ), our work would

still offer an improvement in online communication. This is because

their sigmoid approximation essentially reduces to secure compar-

isons and AND gates. Our improved comparison protocol (see in

Table 6) would reduce their training costs.

Turning to accurate logistic regression approximations, MP-

SPDZ [52] has one sigmoid approximation that results in compara-

ble accuracy to our protocol. We ran the online phase of MP-SPDZ

logistic regression on a dataset of 1000 examples and 10 features

and compared to our logistic regression implementation with v1

sigmoid. One iteration of MP-SPDZ communicates ≈ 18.8 MB while

our work requires ≈ 0.5 MB, a 38× improvement. On an ultra low-

latency LAN, our runtime is slower (≈ 0.3s for MP-SPDZ and 18.6s

for our technique) but we perform better on a higher latency WAN

(MP-SPDZ takes ≈ 25.3s while our technique takes 19.6s) due to

MP-SPDZ’s multi-round nature.

SiRnn [64] implements sigmoid, but not logistic regression, so

we limit ourselves to the sigmoid comparison in the Section 7.1.

7.3 Secure Comparison Experiments

We compare our secure comparison protocol

∏
CMP against Boyle

et al. [15]’s FSS comparison gate. In Appendix C, we provide an

analytical cost comparison with latest works.

Performance Comparison The FSS comparison gate of Boyle et al.

[15] presents the lowest known online communication for compar-

ison, but the offline phase is computationally infeasible for 64 bit

inputs. We show that with a relatively small increase to our costs

(2× online communication and a runtime increase from 0.364ms to

0.532ms on a LAN network and a batch of 1000 comparisons), we

can make the offline phase computationally feasible (see discussion

in Section 6.1). We present our experiments in Table 3.

Table 3: Comparison of our new

∏
CMP protocol to the FSS

protocol [15]on a batch of 1000 inputs.∏
CMP FSS Comparison [15]

LAN (sec) 0.532 0.364

WAN (sec) 0.671 0.410

Communication (KB) 29.55 15.63

Table 4: Accuracy comparison of our 2PC algorithms with

plaintext algorithm implemented in Python floating point.

Python Plaintext 2PC Approach V1 2PC Approach V2

Titanic Dataset

F1 Score 0.77551 0.77551 0.77551

Accuracy 0.79439 0.79439 0.79439

Arcene Dataset

F1 Score 0.76923 0.76923 0.76923

Accuracy 0.8 0.8 0.8

Gisette Dataset

F1 Score 0.96987 0.96540 0.96540

Accuracy 0.97056 0.96611 0.96611

Criteo Uplift 1 Dataset

F1 Score 0.47910 0.46336 0.46336

Accuracy 0.993 0.992 0.992

Criteo Uplift 2 Dataset

F1 Score 0.86367 0.86155 0.86155

Accuracy 0.971 0.970 0.970

8 CONCLUSION

We show that techniques from FSS can be combined with secret-

sharing MPC to get the best of both worlds. Specifically, we can

have reduced communication in the online phase while still having

an efficient offline phase. We demonstrate this idea by designing

a novel secure logistic regression training protocol with the best

known online communication (≈ 38× lower than MP-SPDZ) and a

secure sigmoid evaluation construction with ≈ 10× online commu-

nication reduction over state-of-the-art SiRnn. Along the way, we

developed many building blocks of independent interest.
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Table 5: Total costs of running our 2PC gradient descent for

6 iterations on 4 datasets with 20 fractional bits of precision.

2PC V1 2PC V2 2PC with DP V1 2PC with DP V2

Titanic Dataset (500 × 6)

Comm (MB) 1.49 3.38 1.49 3.38

LAN (sec) 55.34 54.29 55.07 53.46

WAN (sec) 58.7317 58.8215 58.4406 58.5171

LAN Cost (USD) 0.04c 0.06c 0.04c 0.06c

WAN Cost (USD) 0.04c 0.06c 0.04c 0.06c

Arcene Dataset (70 × 10000)

Comm (MB) 1.24 1.50 1.18 1.45

LAN (sec) 9.47 9.06 9.39 9.00

WAN (sec) 12.99 13.02 12.90 13.04

LAN Cost (USD) 0.015c 0.017c 0.014c 0.016c

WAN Cost (USD) 0.017c 0.019c 0.016c 0.019c

Gisette Dataset (4200 × 5000)

Comm (MB) 13.00 28.88 12.97 28.85

LAN (min) 8.67 8.56 8.59 8.49

WAN (min) 9.06 8.96 8.88 8.79

LAN Cost (USD) 0.39c 0.51c 0.39c 0.51c

WAN Cost (USD) 0.40c 0.52c 0.40c 0.52c

Criteo Uplift 1/2 Datasets (70000 × 15)

Comm (MB) 208.09 472.61 208.09 472.61

LAN (hr) 2.23 2.33 2.23 2.32

WAN (hr) 2.24 2.34 2.23 2.33

LAN Cost (USD) 6.09c 8.36c 6.09c 8.34c

WAN Cost (USD) 6.11c 8.37c 6.09c 8.36c
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A DEFINITIONS: IDPF, DCF, DDCF

Incremental Distributed Point Functions. Introduced by Boneh

et al. [13], incremental distributed point functions (iDPF) are a

generalization of the standard distributed point function (DPF). At

a high level, a DPF is a compressed pseudorandom 2-party secret-

sharing of a unit vector of length 2
𝑛
. More specifically, DPF allows

a compressed 2-party secret-sharing of a point function 𝑓𝛼,𝛽 where

𝛼 ∈ {0, 1}𝑛, 𝛽 ∈ F, and:

𝑓𝛼,𝛽 (𝑥) =
{
𝛽 if 𝑥 = 𝛼

0 otherwise

Such a secret sharing is represented by a pair of keys (𝑘0, 𝑘1)
where key 𝑘𝑏 is the share held by Party 𝑃𝑏 . Incremental DPFs (iDPF)

are a generalization of DPF which allow compressed sharing of a

binary tree with 2
𝑛
leaves and a unique special path from root to

leaf. I.e., there is a single non-zero path in the tree, ending at leaf

𝛼 , whose nodes have non-zero values 𝛽1, . . . , 𝛽𝑛 . More specifically,

iDPF allows a 2-party secret-sharing of an all-prefix point function
𝑓𝛼, ¯𝛽 , where 𝛼 ∈ {0, 1}𝑛, ¯𝛽 = ((G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛)), and for each

𝑙 ∈ [𝑛]:
𝑓𝛼, ¯𝛽 :

⋃
𝑙 ∈[𝑛]

{0, 1}𝑙 →
⋃
𝑙 ∈[𝑛]

G𝑙 , and

𝑓𝛼, ¯𝛽 (𝑥1, . . . , 𝑥𝑙 ) =
{
𝛽𝑙 if (𝑥1, . . . , 𝑥𝑙 ) = (𝛼1, . . . , 𝛼𝑙 )
0 otherwise
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Figure 1: Incremental DPF gives compact secret sharing of

values on the nodes of a binary tree with a single non-

zero path. In this example, 𝛼 = 101 and the values on the

path to the leaf at index 𝛼 are 𝛽1, 𝛽2, 𝛽3. All other nodes

are 0. This figure shows the reconstructed secret shares

Eval(0, 𝑘0, ·) ⊕Eval(1, 𝑘1, ·). The keys are generated as (𝑘0, 𝑘1) ←
Genidpf (𝛼, 𝛽1, 𝛽2, 𝛽3).

We sometimes allow an iDPF to be evaluated over the empty

prefix. We now present iDPF formally, see Figure 1 for more intu-

ition. We closely follow the definitions of Boneh et al. [13], with

one major difference being that we expose the EvalNext function
as part of our definition. We will use this in our reduction from

distributed comparison functions to iDPFs.

Definition A.1. A 2-party iDPF scheme is a tuple of three algo-

rithms (Genidpf , EvalNextidpf , EvalPrefixidpf) such that:

• Genidpf (1𝜆, (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛))) is a PPT key gener-
ation algorithm that given security parameter 1

𝜆
and a func-

tion description (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛)), outputs a pair
of keys and public parameters (𝑘0, 𝑘1, pp = (pp

1
, . . . , pp𝑛)).

Recall that 𝛼 ∈ {0, 1}𝑛 represents the index of the leaf

at the bottom of the non-zero path while 𝛽1 ∈ G1, . . . , 𝛽𝑛 ∈
G𝑛 correspond to the values on the nodes of the non-zero

path (apart from the root node). pp includes the public

values 𝜆, 𝑛, (G1, . . . ,G𝑛).
• EvalNextidpf (𝑏, st𝑙−1

𝑏
, pp𝑙 , 𝑥𝑙 ) is a polynomial time incre-

mental evaluation algorithm that given a party id 𝑏 ∈ {0, 1},
secret state st𝑙−1

𝑏
, public parameters pp𝑙 , and input evalu-

ation bit 𝑥𝑙 ∈ {0, 1}, outputs an updated state and output

share (st𝑙
𝑏
, 𝑦𝑙

𝑏
).

Intuitively, EvalNext represents the evaluation on some

partial value 𝑥 ∈ {0, 1}𝑙−1
and outputs a secret sharing 𝑦𝑙

𝑏
of the value on the 𝑥 | |𝑥𝑙 th node of the binary tree and an

updated state st𝑙
𝑏
.

• EvalPrefixidpf (𝑏, 𝑘𝑏 , pp, (𝑥1, . . . , 𝑥𝑙 )) is a polynomial time

prefix evaluation algorithm that given a party id 𝑏 ∈ {0, 1},
iDPF key 𝑘𝑏 , public parameters pp, and input prefix

(𝑥1, . . . , 𝑥𝑙 ) ∈ {0, 1}𝑙 , outputs an additive secret sharing of

the output value 𝑦𝑙
𝑏
.

Next, we present iDPF correctness and security.

Definition A.2. (Gen, EvalNext, EvalPrefix) from Definition A.1

is an iDPF scheme if it satisfies the following requirements:

• Correctness. For all 𝜆, 𝑛 ∈ N, 𝛼 ∈ {0, 1}𝑛 , abelian groups

and values
¯𝛽 = ((G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛)), level 𝑙 ∈ [𝑛], and

input prefix (𝑥1, . . . , 𝑥𝑙 ∈ {0, 1}𝑙 ), the following require-

ments hold:

– EvalNext: 𝑃𝑟 [𝑦𝑙
0
+ 𝑦𝑙

1
= 𝑓𝛼, ¯𝛽 (𝑥1, . . . , 𝑥𝑙 )] = 1, where

probability is taken over:

(𝑘0, 𝑘1, pp) ← Genidpf (1𝜆, (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛))),
And for each 𝑏 ∈ {0, 1}, 𝑦𝑙

𝑏
is:

(1) st0
𝑏
← 𝑘𝑏

(2) for 𝑗 = 1 to 𝑙 :

(3) (st𝑗
𝑏
, 𝑦

𝑗

𝑏
) ← EvalNextidpf (𝑏, st𝑗−1

𝑏
, pp𝑗 , 𝑥 𝑗 )

(4) return 𝑦𝑙
𝑏

– EvalPrefix: 𝑃𝑟 [𝑦𝑙
0
+ 𝑦𝑙

1
= 𝑓𝛼, ¯𝛽 (𝑥1, . . . , 𝑥𝑙 )] = 1, where

probability is taken over:

(𝑘0, 𝑘1, pp) ← Genidpf (1𝜆, (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛))),
And for each 𝑏 ∈ {0, 1}:
𝑦𝑙
𝑏
← EvalPrefixidpf (𝑏, 𝑘𝑏 , pp, (𝑥1, . . . , 𝑥𝑙 ))

• Security. For every 𝑏 ∈ {0, 1}, there is a PPT simulator

𝑆𝑖𝑚𝑏 , such that for every sequence ((𝛼, ¯𝛽)𝜆)𝜆∈N of poly-

nomial size all-prefix point functions and polynomial size

input sequence 𝑥𝜆 , the outputs of the Real and Ideal exper-
iments are computationally indistinguishable:

– Real𝜆 :
(𝑘0, 𝑘1, pp) ← Genidpf (1𝜆, (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛))),
Output (𝑘𝑏 , pp)

– Ideal𝜆 :
Output 𝑆𝑖𝑚𝑏 (1𝜆, (𝑛,G1, . . . ,G𝑛))

A naive approach to constructing iDPF would be to generate one

DPF key for each prefix length, i.e. a total of 𝑛 independent keys.

Then, evaluate 𝑥 ∈ {0, 1}𝑙 with the 𝑙th key. This solution would

yield key size quadratic in the input length 𝑛. [13] gives a more

direct construction with key size linear in 𝑛.

Theorem A.3 (Concrete cost of iDPF [13]). Given a PRG 𝐺 :

{0, 1}𝜆 → {0, 1}2𝜆+2, there exists a iDPF scheme with key-size 𝜆 +
(𝜆 + 2)𝑛 +∑𝑖∈[𝑛]𝑚𝑖 bits, where 𝑛 is the bit-length of 𝛼 and𝑚𝑖 is the
bit-length of 𝛽𝑖 . For𝑚′𝑖 = 1 + ⌈𝑚𝑖/𝜆⌉, the key generation algorithm
Gen invokes 𝐺 at most 2

∑
𝑖∈[𝑛]𝑚

′
𝑖
times and the algorithm Eval

invokes 𝐺 at most
∑
𝑖∈[ |𝑥 | ]𝑚

′
𝑖
times.

Distributed Comparison Function (DCF) A DCF is a central

building block of many FSS gates including interval containment,

spline, and comparison. It is a FSS scheme for a function 𝑓 <
𝛼,𝛽

, which

outputs 𝛽 if 𝑥 < 𝛼 and 0 otherwise. For a vector of size 2
𝑛
, the

current most efficient construction has a key size ≈ 𝑛(𝜆 + 𝑛) [15].
In this work, we introduce a new simple DCF construction by

black-box reducing it to iDPF. We believe this construction is of

independent interest and present it in Appendix E.

Dual Distributed Comparison Function (DDCF) DDCF is a

variant of DCF and a class of functions 𝑓𝛼,𝛽1,𝛽2
: {0, 1}𝑛 → G.

Parameterized by 𝛼, 𝛽1, 𝛽2, DDCF outputs 𝛽1 for 0 ≤ 𝑥 < 𝛼 and

𝛽2 for 𝑥 ≥ 𝛼 . DDCF can be constructed from DCF using 𝑓𝛼,𝛽1,𝛽2
=

𝛽2 + 𝑓 <𝛼,𝛽1−𝛽2

(𝑥).
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B FUNCTIONALITIES BASED ON FSS

We will now describe some of the functionalities which can be

realized efficiently with Function Secret Sharing. We note that gates

based on FSS operate onmasked inputs and producemasked outputs

(instead of standard secret-sharing MPC gates which operate on

input shares and produce output shares). Specifically, a masked

value 𝑥mask for a secret input 𝑥 is computed as 𝑥mask := 𝑥 + 𝑟 ,
where 𝑟 is a uniform random element from the same domain as

𝑥 . The mask 𝑟 is sampled during an offline phase and is used in

constructing the pre-processing material for FSS based gates. As

described in [15], we can easily convert from a masked value to a

secret-shared value by letting parties hold a secret-sharing of the

mask from the offline phase.

Equality Gate. Let 𝑥,𝑦 ∈ U𝑁 be inputs to the equality gate. The

output is a Boolean sharing 1{𝑥 = 𝑦}. More formally:

FEQ (𝑥,𝑦) → (𝑏0, 𝑏1)
where 𝑥,𝑦 ∈ U𝑁
and 𝑏0, 𝑏1 is a Boolean sharing of bit 𝑏 := 1{𝑥 = 𝑦}

Boyle et. al. [18] constructed an equality gate by making two

observations. First, 𝑥 = 𝑦 can be evaluated by zero-testing 𝑥 − 𝑦,
i.e. 1{𝑥 − 𝑦 = 0}. Second, equality test can be reduced to a single

DPF call. Recall that the inputs to FSS gates are masked. I.e., let

𝑥,𝑦 be the masked inputs and rin0 , r
in
1 their masks. Then, equality

holds when 𝑥 − rin0 = 𝑦 − rin1 , or equivalently, 𝑥 − 𝑦 = rin0 − r
in
1 . In

other words, we evaluate a DPF function that evaluates to 𝛽 = 1

when 𝛼 = rin0 − r
in
1 , 0 otherwise. We present the full construction in

Algorithm 4.

Algorithm 4: FSS Gate for FEQ
Input: P0, P1 hold 𝑥mask := 𝑥 + rin0 , where 𝑥mask ∈ G1, and

𝑦mask := 𝑦 + rin1 , where 𝑦 ∈ G2

Output: P0, P1 learn a uniform Boolean sharing 𝑏mask = 𝑏 ⊕ rout,
where 𝑏 := 1{𝑥 = 𝑦 }.

// Part I: Offline Phase.

Geneq𝑛 (1𝜆, rin0 , rin1 , rout) :
1 Let rin0 ∈ G1 and rin1 ∈ G2.

2 Let 𝛼 ← rin0 − rin1 , 𝛽 = 1.

3 𝑘′
0
, 𝑘′

1
← GenDPF (1𝜆, 𝛼, 𝛽)

4 Sample random additive shares rout0 , rout1 ← JroutK.
5 Let 𝑘𝑏 = 𝑘′

𝑏
| |routb .

6 return (𝑘0, 𝑘1)

// Part II: Online Phase.

Evaleq𝑛 (𝑏, 𝑘𝑏 , 𝑥mask, 𝑦mask) :
7 Parse 𝑘𝑏 = 𝑘′

𝑏
| |routb .

8 return EvalDPF (𝑏, 𝑘′
𝑏
, 𝑥mask − 𝑦mask) + routb

Comparison Gate Let 𝑥 ∈ U𝑁 , 𝑦 ∈ U𝑁 be inputs to the compari-

son gate. The output is a Boolean sharing 1{𝑥 < 𝑦}.
We present the comparison gate of Boyle et. al. [15] in Algorithm

5. This comparison gate requires a single invocation of DDCF, and

thus a single invocation of DCF. Note that we slightly modify the

protocol to make it syntactically compatible with our secure com-

parison. I.e., we (1) write the comparison for 𝑥 < 𝑦 rather than

[15]’s 𝑥 > 𝑦 and (2) the output group is U2 instead of U𝑁 .

Algorithm 5: FSS Gate for F𝑛
CMP

Input: P0, P1 hold 𝑥mask := 𝑥 + rin0 , where 𝑥mask ∈ G1, and

𝑦mask := 𝑦 + rin1 , where 𝑦 ∈ G2

Output: P0, P1 learn a uniform boolean sharing 𝑏mask = 𝑏 ⊕ rout,
where 𝑏 := 1{𝑥 < 𝑦 }.

// Part I: Offline Phase.

Gencmp
𝑛 (1𝜆, rin0 , rin1 , rout) :

1 Let 𝑦 = (2𝑛 − (rin0 − rin1 )) ∈ U𝑁 and 𝛼 (𝑛−1) = 𝑦 [0,𝑛−1) .

2 (𝑘 (𝑛−1)
0

, 𝑘
(𝑛−1)
1

) ← GenDDCF
𝑛−1

(
1
𝜆, 𝛼 (𝑛−1) , 𝛽1, 𝛽2,U2

)
, where

𝛽1 = 1 ⊕ 𝑦 [𝑛−1] , 𝛽2 = 𝑦 [𝑛−1] ∈ U2.

3 Sample random rout0 , rout1 ← U𝑁 s.t. rout0 ⊕ rout1 = rout.

4 For 𝑏 ∈ {0, 1}, let 𝑘𝑏 = 𝑘
(𝑛−1)
𝑏

| |routb .

5 return (𝑘0, 𝑘1)

// Part II: Online Phase.

Evalcmp
𝑛 (𝑏, 𝑘𝑏 , 𝑥mask, 𝑦mask) :

6 Parse 𝑘𝑏 = 𝑘
(𝑛−1)
𝑏

| |routb .

7 Set 𝑧 = (𝑥mask − 𝑦mask) ∈ U𝑁 .

8 Set𝑚
(𝑛−1)
𝑏

← EvalDDCF𝑛−1
(𝑏, 𝑘 (𝑛−1)

𝑏
, 𝑧 (𝑛−1) ) , where

𝑧 (𝑛−1) = 2
𝑛−1 − 𝑧 [0,𝑛−1) − 1.

9 return 𝑏 · 𝑧 [𝑛−1] +𝑚 (𝑛−1)
𝑏

− 2 · 𝑧 [𝑛−1] ·𝑚 (𝑛−1)
𝑏

+ routb

Multiple Interval Containment (MIC) gate. Boyle et. al. [15]
presented an FSS gate for the FMIC functionality. Such a function-

ality is parameterized by a set of𝑚 intervals {𝑝𝑖 , 𝑞𝑖 }𝑖∈[𝑚] where
𝑝𝑖 , 𝑞𝑖 ∈ U𝑁 . It takes as input a masked value 𝑥mask, and outputs a

sequence of bits {𝑏𝑖 } where 𝑏𝑖 = 1{𝑝𝑖 ≤ 𝑥 ≤ 𝑞𝑖 }.

C SECURE COMPARISON PROTOCOL

BENCHMARKS

In Table 6, we benchmark the offline and online communication

costs of our new comparison protocol

∏
CMP for different values

of 𝑙 (the bit length of the comparison inputs). We set 𝑚 = 16 as

the parameter in our secure comparison protocol. We compare

it against CrypTFlow2 [65] (where we set 𝑚 = 4 as used by the

authors
8
), SynCirc [61] and Couteau’s protocol [25]. Note that if

𝑙 ≤ 𝑚, then we set𝑚 = 𝑙 . Our offline costs exclude the cost of base

oblivious transfers. For SynCirc [61], we could not obtain values

for 𝑙 = 4, 8, 128 bits as the paper doesn’t report costs for these cases.

D RELATEDWORK

There is an extremely large number of works in the field of secure

learning, differing across several dimensions. These dimensions

include the type of model being computed (linear/logistic/poisson

regression, deep neural nets), the way data is distributed across par-

ties (secret-shared, vertically partitioned, horizontally partitioned,

federated), and the type of security provided (differentially pri-

vate with central or local DP, MPC with semi-honest, malicious

8
Higher values of𝑚 in CrypTFlow2 lead to an exponential increase in the online

communication cost.
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Figure 2: Constant round secure comparison protocol

∏
CMP for 𝑙 bit inputs.

security, honest majority, and so on) [2, 12, 19, 21, 32, 37, 51–

53, 58, 58, 60, 63, 64, 68, 71, 72].

We focus our discussion on the state-of-the-art works that best

match our setting and offer informative comparisons. Specifically,

we focus on works that compute logistic regression using secure

multi-party computation in the semi-honest setting, with data

secret-shared among the computing parties. We restrict ourselves

to works that have 2 or 3 servers only. The number of works in
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Algorithm 6: FSS Gate for FMIC

Input: P0, P1 hold 𝑥mask := 𝑥 + rin0 , where 𝑥mask ∈ G1, and

𝑦mask := 𝑦 + rin1 , where 𝑦 ∈ G2

Output: P0, P1 learn a uniform arithmetic sharing of

𝑏𝑖mask = 𝑏𝑖 + routi , where 𝑏𝑖 := 1{𝑝𝑖 ≤ 𝑥 ≤ 𝑞𝑖 }.

// Part I: Offline Phase.

Genmic
𝑛,𝑚,{𝑝𝑖 ,𝑞𝑖 }𝑖

(1𝜆, rin, {routi }𝑖∈[𝑚] ) :
1 Let 𝛾 = (𝑁 − 1) + rin

2 (𝑘 (𝑁−1)
0

, 𝑘
(𝑁−1)
1

) ← GenDCF𝑛 (1𝜆, 𝛾, 1,U𝑁 )
3 for 𝑖 = 1 to𝑚 :

4 Set 𝑞′
𝑖
= 𝑞𝑖 + 1, 𝛼

(𝑝 )
𝑖

= 𝑝𝑖 + rin, 𝛼 (𝑞)𝑖
= 𝑞𝑖 + rin,

𝛼
(𝑞′)
𝑖

= 𝑞𝑖 + 1 + rin.
5 Sample random 𝑧𝑖,0, 𝑧𝑖,1 ← U𝑁 such that:

𝑧𝑖,0 + 𝑧𝑖,1 = rout + 1{𝛼 (𝑝 )
𝑖

> 𝛼
(𝑞)
𝑖
} − 1{𝛼 (𝑝 )

𝑖
> 𝑝𝑖 } +

1{𝛼 (𝑞
′)

𝑖
> 𝑞′

𝑖
} + 1{𝛼 (𝑞)

𝑖
= 𝑁 − 1}

6 For 𝑏 ∈ {0, 1}, let 𝑘𝑏 = 𝑘
(𝑁−1)
𝑏

| | {𝑧𝑖,𝑏 }𝑖
7 return (𝑘0, 𝑘1)

// Part II: Online Phase.

Evalmic
𝑛,𝑚,,{𝑝𝑖 ,𝑞𝑖 }𝑖 (𝑏, 𝑘𝑏 , 𝑥mask) :

8 Parse 𝑘𝑏 = 𝑘
(𝑁−1)
𝑏

| | {𝑧𝑖,𝑏 }𝑖 .
9 for 𝑖 = 1 to𝑚 :

10 Set 𝑞′
𝑖
= 𝑞𝑖 + 1 mod 𝑁 .

11 Set 𝑥
(𝑝 )
𝑖

= 𝑥 + (𝑁 − 1 − 𝑝𝑖 ) and 𝑥 (𝑞
′)

𝑖
= 𝑥 + (𝑁 − 1 − 𝑞′

𝑖
) .

12 Set 𝑠
(𝑝 )
𝑖,𝑏
← EvalDCF𝑛 (𝑏, 𝑘 (𝑁−1)

𝑏
, 𝑥
(𝑝 )
𝑖
) .

13 Set 𝑠
(𝑞′)
𝑖,𝑏
← EvalDCF𝑛 (𝑏, 𝑘 (𝑁−1)

𝑏
, 𝑥
(𝑞′)
𝑖
) .

14 𝑦𝑖,𝑏 = 𝑏 · (1{𝑥mask > 𝑝𝑖 } − 1{𝑥mask > 𝑞′
𝑖
} − 𝑠 (𝑝 )

𝑖,𝑏
+ 𝑠 (𝑞

′)
𝑖,𝑏
+ 𝑧𝑖,𝑏 ) .

15 return {𝑦𝑖,𝑏 }𝑖

this setting is relatively manageable, and we group them into 3

categories in our discussion: those with a highly accurate sigmoid

approximation, those with a coarse sigmoid approximation, and

those based on homomorphic encryption.

For works with highly accurate sigmoid approximations, we

restrain our detailed comparison to 2 key works, MP-SPDZ [52]

and SiRnn [64], which are the state of the art in this area, to our

best understanding. Our key difference with both of these works

is our approach to sigmoid computation. MP-SPDZ takes the ap-

proach of computing exponentiation and division in MPC, which

results in a large number of rounds. SiRnn does essentially the

same, using novel protocols for each. They use a clever approach

of adjusting the fixed-point precision to reduce the costs, and intro-

duce a novel Lookup-Table based exponentiation together with a

novel adaptation of Goldschmidt’s division. However, both these

approaches end up taking a large number of rounds (≈ dozens)

because of the complexity of division and exponentiation in MPC.

Our key improvement is to achieve high accuracy with a constant

number of rounds and less communication using a combination

of FSS primitives and a customized sigmoid approach with differ-

ent approximations computed over different intervals. A detailed

experimental comparison can be found in Sections 7.1 and 7.2.

There are also works such as SecureML [58] and ABY2.0 [60]

which use a much coarser sigmoid approximation. As a result, both

works have worse accuracy on logistic regression. We are focused

on preserving accuracy of logistic regression, and so do not engage

in a detailed comparison with these works. We observe briefly that

these works rely mainly on AND gates and secure comparisons,

and since we propose an improved secure comparison approach,

replacing the secure comparisons in [58, 60] with those in our work

is likely to offer an improvement. This is discussed further with

concrete accuracy numbers in Section 7.2.

There are several works which leverage homomorphic encryp-

tion in order to compute Logistic Regression, for example [19] and

[21]. These works are interesting because they do not require in-

teraction between parties: one party performs the computation on

the entire encrypted dataset. However, this approach comes with

a large computational and communication overhead compared to

MPC-based approaches (where the communication means the size

of the initial encrypted datasets). We see this as a significantly dif-

ferent approach and setting, and so we do not perform a detailed

comparison with them in the evaluation section. This is consistent

with the approach taken by the MPC-based works we cite above.

Separately from logistic regression and sigmoid computation,

there are several related works focused on developing Function-

Secret-Sharing or adjacent primitives [15, 18, 60], and using them

for machine learning [69]. Our work is influenced by several of

these papers, and our techniques can be seen as building on theirs,

specifically by combining them with secret-sharing-MPC based

approaches.

Another of our key contributions is a new secure comparison.

This is rich area of research [15, 25, 27, 36, 60, 61, 65], since compar-

ison is critical for the nonlinear computations in machine learning

tasks. We go over the most relevant related works directly in Sec-

tion 6.1 where we present our new secure comparison protocol. We

explain how our approach differs from and builds on these works.

Finally, we discuss an important concurrent work, LLAMA [44],

which builds on SiRnn [64] by using FSS to reduce the cost of

comparisons in the online phase, similarly to us. Since the work is

concurrent, we do not provide a detailed comparison in the evalua-

tion section, but describe the key differences here. One difference

lies in the way LLAMA computes sigmoid. While we use a custom

approximation to the sigmoid function, LLAMA uses a single spline

gate that computes a degree-2 polynomial over each interval, using

enough intervals so as to to reduce their chosen accuracy metric

(ULP error) is small (≤ 4). They use the spline gate from [15], and

also run into its key limitation: this spline construction only works

on integer values, because the underlying polynomial evaluation

does not perform truncated multiplication needed for fixed point

values. The LLAMA authors get around this by assuming the ring is

large enough to accommodate untruncated multiplication, and then

perform a truncation in a single separate round. In contrast, our

work gives a new protocol for computing polynomials over secret-

shared fixed point numbers that implicitly handles truncation. In

this way, we can work with smaller rings, thereby gaining efficiency.

We note that our fix only works for fixed-point numbers that have

no integer part (i.e. have absolute value < 1), but this turns out to

be fine for our use: we only use polynomial approximations for a

fixed region of the input where this condition holds.
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Table 6: Concrete communication and round costs of our comparison protocol vs. prior works as functions of 𝑙 . The offline

costs exclude the costs of base OTs.

Our Approach (m = 16) CrypTFlow2 (𝑚 = 4) [65] SynCirc [61] Couteau16 [25]

𝑙 comm. rounds comm. rounds comm. rounds comm. rounds

Offline Phase

4 0.75 KB 80 rounds 0.03 KB 1 round - - 0.19 KB 2 rounds

8 1.51 KB 80 rounds 0.08 KB 1 round - - 0.44 KB 2 rounds

16 3.02 KB 80 rounds 0.19 KB 1 round 3.43 KB 1 round 1.02 KB 2 rounds

32 9.07 KB 80 rounds 0.43 KB 1 round 8.82 KB 1 round 1.85 KB 3 rounds

64 21.74 KB 80 rounds 0.93 KB 1 round 16.07 KB 1 round 3.83 KB 3 rounds

128 46.71 KB 80 rounds 1.95 KB 1 round - - 6.36 KB 3 rounds

Online Phase

4 8 bits 1 round 20 bits 2 rounds - - 30 bits 2 rounds

8 16 bits 1 round 60 bits 3 rounds - - 162 bits 6 rounds

16 32 bits 1 round 142 bits 4 rounds 84 bits 3 rounds 308 bits 6 rounds

32 100 bits 2 rounds 308 bits 5 rounds 178 bits 3 rounds 530 bits 12 rounds

64 242 bits 3 rounds 642 bits 6 rounds 316 bits 4 rounds 1120 bits 12 rounds

128 522 bits 3 rounds 1312 bits 7 rounds - - 2101 bits 12 rounds

E BLACK-BOX REDUCTION FROM DCF TO

IDPF

We now describe our reduction from DCFs to iDPFs. Our construc-

tion is based on the following intuition. Suppose the two parties

have shares J𝑣𝑛−1K of an (𝑛 − 1)-bit DCF 𝑓 <
𝛼1 ...𝛼𝑛−1,𝛽

evaluated at

the 𝑛 − 1-bit prefix 𝑥1, ..., 𝑥𝑛−1 of 𝑥 . They now want to get J𝑣𝑛K, i.e.,
shares of the output of the 𝑛-bit DCF 𝑓 <

𝛼,𝛽
on input 𝑥 . There are

four cases.

(1) 𝑥1, . . . , 𝑥𝑛−1 ≠ 𝛼1, . . . , 𝛼𝑛−1. Then no matter what 𝛼𝑛 and

𝑥𝑛 are, 𝑣𝑛 = 𝑣𝑛−1.

(2) 𝑥1, . . . , 𝑥𝑛−1 = 𝛼1, . . . , 𝛼𝑛−1, and 𝛼𝑛 = 0. Then no matter

what 𝑥𝑛 is, 𝑥 ≥ 𝛼 , and so 𝑣𝑛 = 𝑣𝑛−1 = 0.

(3) 𝑥1, . . . , 𝑥𝑛−1 = 𝛼1, . . . , 𝛼𝑛−1, and 𝛼𝑛 = 1, 𝑥𝑛 = 1. Then

𝑥 = 𝛼 and therefore 𝑣𝑛 = 𝑣𝑛−1 = 0.

(4) 𝑥1, . . . , 𝑥𝑛−1 = 𝛼1, . . . , 𝛼𝑛−1, and 𝛼𝑛 = 1, 𝑥𝑛 = 0. Then

𝑣𝑛−1 = 0, but 𝑣𝑛 = 𝛽 .

Observe that only in the last case, 𝑣𝑛 ≠ 𝑣𝑛−1, and more precisely,

𝑣𝑛 = 𝑣𝑛−1 + 𝛽 . Now if we can construct shares of a value 𝛿 , such

that 𝛿 = 0 in cases (1)–(3), and 𝛿 = 𝛽 in case (4), then 𝑣𝑛 = 𝑣𝑛−1 + 𝛿 ,
which allows us to recursively build a DCF for arbitrary 𝑛.

Our main observation is that we can use a𝑛−1-bit DPF, evaluated

on 𝑥1, . . . , 𝑥𝑛−1, to obtain shares of 𝛿 . Observe that in case (1), any

DPF will satisfy 𝛿 = 0. To distinguish between case (2) on one side,

and (3) and (4) on the other, we only need to look at 𝛼𝑛 , and set the

DPF value to be 0 when 𝛼𝑛 = 0, and 𝛽 otherwise. Finally, observe

that the distinction between (3) and (4) can be made at evaluation

time, since it only depends on 𝑥 . That is, we only use the DPF result

at all if 𝑥𝑛 = 0, and set 𝛿 = 0 otherwise.

Algorithm 7 shows our construction in detail. In addition to the

two DPF keys, the two parties obtain an additional secret-shared

value, which can be interpreted as the iDPF evaluation at the empty

prefix. It is used to initialize 𝑣1. For 𝑖 = 2, . . . , 𝑛, 𝑣𝑖 is then con-

structed from 𝑣𝑖 − 1 and 𝛿 = (1 − 𝑥) · 𝑦𝑖 , where 𝑦𝑖 is the iDPF

evaluation at level 𝑖 . Correctness follows by the above recursion

argument.

Theorem E.1 (Concrete cost of DCF using iDPF). Given a
PRG 𝐺 : {0, 1}𝜆 → {0, 1}2𝜆+2, there exists a DCF scheme with key-
size 𝑛(𝜆 +𝑚 + 2) − 2 bits, where 𝑛 is the bit-length of 𝛼 and𝑚 is the
bit-length of 𝛽 . For𝑚′ = 1+ ⌈𝑚/𝜆⌉, the key generation algorithmGen
invokes 𝐺 at most 2(𝑛 − 1)𝑚′ times and the algorithm Eval invokes
𝐺 at most (𝑛 − 1)𝑚′ times.

Proof E.1 (Efficiency). Note that in our reduction, 𝛽𝑖 at each
level of iDPF is either set to 𝛽 or 0. Therefore, for all 𝑖 ∈ [𝑛], |𝛽𝑖 | =
|𝛽 | =𝑚.

Following from Theorem A.3 and the fact that we can set the iDPF
domain size to be 𝑛 − 1 (instead of 𝑛), the key-size turns out to be
𝜆+(𝜆+2) (𝑛−1)+(𝑛−1)𝑚 bits. Since we require an additional sharing
of 𝛽1, the total DCF key size becomes 𝜆+ (𝜆+2) (𝑛−1) + (𝑛−1)𝑚+𝑚
bits which simplifies to 𝑛(𝑚 + 𝜆 + 2) − 2 bits.

The cost of GenDCF and EvalDCF algorithms can be computed
based on the underlying cost of GeniDPF and EvaliDPF algorithms.
Following from the Theorem A.3 and the fact that we can set the
domain size of iDPF to be 𝑛−1, the total PRG invocations inGeniDPF
(and hence in GenDCF) turns out to be 2(𝑛 − 1)𝑚′ where𝑚′ = 1 +
⌈𝑚/𝜆⌉. In EvalDCF, we perform an EvalNextiDPF at each of the 𝑛 − 1

prefixes of the input 𝑥 which will cost
∑

𝑗 ∈[2,𝑛]𝑚
′ = (𝑛 − 1)𝑚′ PRG

evaluations.

Comparison with original DCF construction. Boyle et al. [15] pre-
sented a direct construction of DCF by carefully modifying and

making non black-box changes to a prior DPF construction [17].

We provide a conceptually simpler DCF construction by making

black-box use of iDPFs (which have a richer structure than DPF).
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Algorithm 7: DCF to iDPF reduction

GenDCF𝑛 (1𝜆, 𝛼, 𝛽) :

1 Let 𝛼 = 𝛼1, . . . , 𝛼𝑛 ∈ {0, 1}𝑛 be the bit decomposition of 𝛼

2 Let {𝛽1, . . . , 𝛽𝑛 } be a sequence of values such that: 𝛽𝑖 := 𝛽 if

𝛼𝑖 = 1, and 0 otherwise.

3 (𝑘0, 𝑘1, pp) ← GeniDPF
𝑛−1
(𝛼, 𝛽2, . . . , 𝛽𝑛)

4 Choose random J𝛽1K0
, J𝛽1K1

such that J𝛽1K0 + J𝛽1K1 = 𝛽1.

5 return

(
(𝑘0, J𝛽1K0), (𝑘1, J𝛽1K1), pp

)
EvalDCF𝑛

(
𝑏, (𝑘𝑏 , J𝛽1K𝑏 ), pp, 𝑥

)
:

1 Let 𝑥 = 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}𝑛 be the bit decomposition of 𝑥

2 Let 𝑣1 = (1 − 𝑥1) · J𝛽1K𝑏 , st1 = 𝑘𝑏

3 for 𝑖 = 2 to 𝑛 :

4 (st𝑖 , 𝑦𝑖 ) ← EvalNextiDPF𝑛−1
(𝑏, st𝑖−1, 𝑘𝑏 , 𝑥1 . . . 𝑥𝑖−1)

5 𝑣𝑖 ← 𝑣𝑖−1 + (1 − 𝑥𝑖 ) · 𝑦𝑖
6 return 𝑣𝑛−1

As an added benefit, the key size of our DCF construction is smaller

than Boyle et al. [15] by 𝜆 +𝑚 + 2 bits. In terms of computation,

our construction doesn’t require any PRG evaluations at the first

bits, and so it saves𝑚′ = ⌊𝑚/𝜆⌋ PRG evaluations.

F EFFICIENT 2PC GENERATION OF FSS KEYS

As we have seen, our secure comparison protocol invokes FSS

primitives such as DPF, DCF and iDPF. Besides this, our secure

spline protocol invokes FMIC which in-turn relies on a DCF. In

order to implement the offline phase of our protocol, we also need

to generate keys for these FSS primitives efficiently in a 2PC setting.

Note that as described in Appendix E, DCF can be black-box reduced

to iDPF. Furthermore, DPF is just a special case of a iDPF. So it

suffices to design an efficient 2PC offline phase for generating iDPF

keys.

A straight-forward way to generate these keys in MPC is to

implement GeniDPF using a generic MPC compiler. This, however,

has the drawback of requiring PRG calls inside the MPC, making

this approach inefficient in practice. [29] present a construction

that does not require secure PRG evaluations. While, it comes at a

computation cost that is linear in the domain size (i.e., exponential

in the input size), and its round complexity is linear in the input

size, it is still efficient enough in our case, where the domain for

any single DCF is small.

However, the original Doerner-shelat construction is not suffi-

cient to obtain FSS keys that generate arithmetic shares for domains

larger than one bit. This is often the format required to compose

with other secret-sharing-based MPC protocols, which is also the

case for our construction. Specifically, this is needed when we in-

voke the MIC gate as part of our secure spline protocol.

While one option is to convert from Boolean to arithmetic shares

after the DPF evaluation in the online computation, this would re-

quire additional rounds of interaction and communication. In the

spirit of reducing online communication as far as possible without

sacrificing offline performance, we instead develop a new construc-

tion for generating DPF keys with arithmetic output shares directly.

Also note that while previous work [15] claims a construction

of Doerner-shelat for DCFs with arbitrary output groups, their

construction is missing a crucial step, namely the computation of 𝑡∗

in Step 10 of Fig. 9 of [15]. The main challenge for this construction

is the fact that in order to compute the value correction words

included in the DPF keys, the parties need to identify which one

of them holds share 1 and which one holds share 0 of the control

bit corresponding to the node on the evaluation path at every level.

There are 2
𝑙
nodes at level 𝑙 , and each party can locally evaluate its

shares for all nodes, but the parties do not know which node is on

the evaluation path.

So we need to implement this oblivious selection of the shares

of appropriate node whose index is shared between the two parties.

We leverage the following observation. The value of the control bit

is one only for nodes that lie on the evaluation path and is zero for

all other nodes. Since we have binary shares, this means that for

all nodes not on the evaluation path, the shares of the two parties

are equal. This means that if each party sums up its shares for the

control bits of all nodes in the last level, the resulting values will

differ by one and the party who has the larger value holds a share 1

of the control bit of the evaluation path node in the last level, while

the other party has share 0.

We can solve the problem by comparing the two sums of shares of

control bits at the last level, but in as we are trying to generate these

DPF keys in order to solve a comparison problem more efficiently,

so this is less satisfying. Our second observation is that since these

values differ just by one, it is sufficient to consider only their last

two bits to compute the comparison bit. This allows us to compute

𝑡∗ using a single AND-Gate.
We present the details our Doerner-shelat construction for iDPFs

with arbitrary output groups in Algorithm 8. The two parties hold

secret shares of 𝛼 and {𝛽𝑖 }𝑖∈[𝑛] , and would like to generate the

iDPF keys for 𝑓𝛼,{𝛽𝑖 }𝑖∈[𝑛] . In order to get a protocol for distributed

DCF key generation, observe that we only need to compute shares

𝛽1, . . . 𝛽𝑛 in Algorithm 7 given 𝛼1, . . . , 𝛼𝑛 and 𝛽 . As 𝛽𝑖 = 𝛼𝑖 · 𝛽 , this
reduces to 𝑛 parallel calls to FMUX. Finally, observe that in groups

where −𝑥 = 𝑥 (such as boolean sharing), J𝑊 0

𝐶𝑊
K = J𝑊 1

𝐶𝑊
K in Step

11, and so the last FMUX2 call can be saved in that case, making the

entire second MPC linear.

G ADDING DIFFERENTIAL PRIVACY

In this section, we discuss how our solution can also provide differ-

ential privacy for its output, which limits the leakage from the final

model about individual training samples. As we mentioned in the

introduction, our approach allows that the two computation parties

obtain cryptographic shares of the logistic regression parameters

which they use to jointly answer inference queries. So one option

for enabling differential privacy will be at that query level.

However, we consider here the case where the trained regression

model is released to a single party and the goal is to guarantee DP

for the model parameters. Since our training construction used SGD,

we will also use the DP-SGD approach introduced by Abadi et al. [1]

for general SGD ML training and the instantiation of Jayaraman et.

al. [49] for the setting of logistic regression presented in Algorithm

9. Jayaraman et. al. [49] provides a two party computation protocol

for secure training of logistic regression when the input data is
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Algorithm 8: Secure Distributed GeniDPF

Inputs: Each party holds additive shares of 𝛼 ∈ {0, 1}𝑛 (bitwise)

and {𝛽𝑖 }𝑖∈[𝑛] where 𝛽𝑖 ∈ G𝑖
Output: iDPF keys for 𝑓𝛼,{𝛽𝑖 }𝑖∈[𝑛]
Parameters: Let𝐺 : {0, 1}𝜆 → {0, 1}2(𝜆+1) and
Convert : {0, 1}𝜆 → {0, 1}𝜆+1 be PRGs.

Each party P𝑏 performs the following:

1 Sample 𝑠∅
𝑏
∈ {0, 1}𝜆 , set 𝑡 ∅

𝑏
= 𝑏.

2 for 𝑙 = 1 to 𝑛 :

3 For all 𝑤 ∈ {0, 1}𝑙−1
, compute 𝑠

𝑤,𝐿

𝑏
| |𝑡𝑤,𝐿

𝑏
| |𝑠𝑤,𝑅

𝑏
| |𝑡𝑤,𝑅

𝑏
= 𝐺 (𝑠𝑤

𝑏
) .

4 Compute

𝑠𝐿
𝑏
| |𝑡𝐿

𝑏
| |𝑠𝑅

𝑏
| |𝑡𝑅

𝑏
=
⊕

𝑤∈{0,1}𝑙−1 𝑠
𝑤,𝐿

𝑏
| |𝑡𝑤,𝐿

𝑏
| |𝑠𝑤,𝑅

𝑏
| |𝑡𝑤,𝑅

𝑏
.

5 Secure Computation:

- Inputs: Boolean sharing of 𝛼𝑙 , arithmetic sharing of

{𝑠𝐿
𝑏
, 𝑠𝑅
𝑏
, 𝑡𝐿
𝑏
, 𝑡𝑅
𝑏
}𝑏∈{0,1} .

- Compute:

J𝑠𝑅K← J𝑠𝑅
0
K ⊕ J𝑠𝑅

1
K

J𝑠𝐿K← J𝑠𝐿
0
K ⊕ J𝑠𝐿

1
K

J𝑠𝐶𝑊 K← FMUX2

(
J𝑠𝑅K, J𝑠𝐿K, J𝛼𝑙 K

)
J𝑡𝐿𝐶𝑊 K← J𝑡𝐿

0
K ⊕ J𝑡𝐿

1
K ⊕ J𝛼𝑙 K ⊕ J1K

J𝑡𝑅𝐶𝑊 K← J𝑡𝑅
0

K ⊕ J𝑡𝑅
1

K ⊕ J𝛼𝑙 K

- Output 𝑠𝐶𝑊 , 𝑡𝐿
𝐶𝑊

, 𝑡𝑅
𝐶𝑊

to both

6 For all 𝑤 ∈ {0, 1}𝑙−1
, set

𝑠
𝑤 | |0
𝑏
| |𝑠𝑤 | |1

𝑏
← (𝑠𝑤,𝐿

𝑏
| |𝑠𝑤,𝑅

𝑏
) ⊕ 𝑡𝑤

𝑏
· (𝑠𝐶𝑊 | |𝑠𝐶𝑊 )

7 For all 𝑤 ∈ {0, 1}𝑙−1
, set

𝑡
𝑤 | |0
𝑏
| |𝑡𝑤 | |1

𝑏
← (𝑡𝑤,𝐿

𝑏
| |𝑡𝑤,𝑅

𝑏
) ⊕ 𝑡𝑤

𝑏
· (𝑡𝐿

𝐶𝑊
| |𝑡𝑅

𝐶𝑊
)

8 For all 𝑤 ∈ {0, 1}𝑙 , set 𝑠𝑤
𝑏
| |𝑊 𝑤

𝑏
← Convert(𝑠𝑤

𝑏
)

9 Compute𝑊 𝑙
𝑏
← ∑

𝑤∈{0,1}𝑙
𝑊 𝑤

𝑏
.

10 Compute𝑇 𝑙
𝑏
← 𝑏 + (−1)𝑏 · ∑

𝑤∈{0,1}𝑙
𝑡𝑤
𝑏
.

Let 𝜏0

𝑏
and 𝜏1

𝑏
denote the two least significant bits of𝑇𝑏 .

11 Secure Computation:

- Inputs: Arithmetic sharing of 𝛽𝑙 , private inputs𝑊
𝑙
𝑏
, 𝜏0

𝑏
, 𝜏1

𝑏
for

Party P𝑏 .
- Compute:

J𝑡∗K← 1 ⊕ 𝜏1

0
⊕ 𝜏1

1
⊕ (𝜏0

0
· 𝜏0

1
)

J𝑊 0

𝐶𝑊 K← J𝛽𝑙 K −𝑊 𝑙
0
+𝑊 𝑙

1

J𝑊 1

𝐶𝑊 K← −J𝛽𝑙 K +𝑊 𝑙
0
−𝑊 𝑙

1

J𝑊𝐶𝑊 K← FMUX2

(
J𝑊 0

𝐶𝑊 K, J𝑊 1

𝐶𝑊 K, J𝑡∗K
)
.

- Output𝑊𝐶𝑊 to both

12 Set𝐶𝑊 𝑙 ← 𝑠𝐶𝑊 | |𝑡𝐿𝐶𝑊
| |𝑡𝑅

𝐶𝑊
| |𝑊𝐶𝑊

13 Output 𝑘𝑏 ← 𝑠∅
𝑏
| |𝐶𝑊 1 | | . . . | |𝐶𝑊 𝑛

horizontally partitioned between the two parties. We adapt their

framework to the setting where the input is fully secret-shared

between the two parties.

In Algorithm 10 we give the pseudocode for implementing the

DP-SGD algorithm in MPC. The MPC protocol is similar to the

non-DP algorithm in Algorithm 1, except in each iteration, the

computation parties make the gradient differentially private using

noise perturbation. We assume that this noise is generated in an

offline phase where computation parties get secret shares for noise

vectors. In the online phase, they add these shares of noise to the

gradient update. Techniques for two-party generation of DP noise

were presented by Dwork at al. [30] and Champion et al. [20].

If we only want to guarantee DP from the output of the secure

logistic regression training, then we can reveal the DP gradient

update to the two computation parties as shown in Algorithm 10.

This would enable some efficiency optimization replacing a secure

matrix multiplication with a plaintext matrix multiplication. While

this approach still provides DP for the output, it is not known

what is the exact privacy comparison between revealing only the

final DP output model and all intermediate DP gradient updates.

However, recent works [22, 74] show that keeping the DP-SGD

intermediate states hidden allows for faster convergence and spend-

ing less privacy budget for strongly convex loss functions for noisy

stochastic gradient descent. Our DP secure computation training

algorithm supports hiding these intermediate states at the same

online communication cost.

Algorithm 9: DP SGD

Public inputs: Number of iterations𝑇 , Dataset size 𝑛, Batch size 𝐵,

Lipschitz value𝐺 = 1, Smoothness value 𝐿 = 0.25, Learning rate

𝛼 = 1/𝐿, DP parameters 𝜖 and 𝛿

Private inputs: Dataset X, y having 𝑘 features

1 Let w0 be the initial model with arbitrary weights

2 for 𝑡 = 1 to𝑇 :

3 Compute gradient gt ← 1

𝐵
X𝑇
𝐵
× (Sigmoid(X𝐵 ×wt−1) − YB)

4 Perturb gradient g̃t ← gt + N(0, 𝜎2𝐼𝑝 ) where 𝜎2 =
8𝐺2𝑇 log(1/𝛿 )

𝑛2𝜖2

5 Update model wt ← wt−1 − 𝛼 · g̃t
6 return w𝑇

Jayaraman et. al. [49] also present an output-perturbation DP

technique for logistic regression, which adds noise only to the

final model, rather than at each level of gradient descent. We note

that our original protocol in Algorithm 1 can easily be modified

to use the output perturbation technique, by having both parties

collaboratively generate shares of the output perturbation noise

and add it to their respective shares of the output before revealing

them.

As noted in [49], adding the noise iteratively to the gradient

or directly to the output may have different impact on the accu-

racy of the final model depending on the setting, though adding

noise iteratively generally results in more accurate models. We are

able to support both options between Algorithms 1 (with output-

perturbation at the end of training) and Algorithm 10.

H ADDITIONAL FIGURES

In this section, we show plaintext sigmoid in Figure 3 and demon-

strate how our plaintext sigmoid approximation compares to the

plaintext approximation in SecureML and MP-SPDZ (piecewise

approximation of 5 pieces) in Figure 4. In Figure 5, we measure

the absolute error (defined w.r.t. plaintext python implementation

shown in Figure 3) for three different implementations: plaintext sig-

moid approximation in fixed point (top), 2PC sigmoid with trusted
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Algorithm 10: DP-SGD Logistic Regression Protocol

Public inputs: Number of iterations𝑇 , dataset dimensions 𝑛,𝑘 ,

batch size 𝐵, Lipschitz value𝐺 = 1, smoothness value 𝐿 = 0.25,

learning rate 𝛼 = 1/𝐿, DP parameters 𝜖 and 𝛿 , regularization

parameter 𝜆.

Private inputs: Secret-shared dataset J𝑋 K ∈ 𝑅𝑛×𝑘
and labels

JyK ∈ 𝑅𝑛
. Secret shares J𝑟𝑡 K ∈ 𝑅𝑘

of noise drawn from

N(0, 𝜎2𝐼𝑝 ) , for each 𝑡 ∈ [𝑇 ].

1 Let w0 be the initial model with arbitrary weights.

2 for 𝑡 = 1 to𝑇 :

3 for 𝑏 = 1 to ⌊𝑛/𝐵⌋ :
4 𝑖 ← (𝑏 − 1) · 𝐵 + 1

5 𝑗 ← min(𝑛,𝑏 · 𝐵)
6 J𝑋𝐵K← J𝑋𝑖 ... 𝑗 K
7 JuK← J𝑋𝐵K · wt−1
8 JsK← FSigmoid (u)
9 JdK← JsK − Jy𝑖 ... 𝑗 K

10 JgK← FmatMult
(
J𝑋𝐵

⊤K, JdK
)

11 JwtK← Jwt−1K − (𝛼/𝐵) · (JgK + 𝜆 · Jwt−1K) + J𝑟𝑡 K
12 wt ← Reconstruct(JwtK)
13 return wT.

Figure 3: Plaintext Sigmoid Function

Figure 4: Plaintext Comparison of V1 sigmoid to SecureML’s

and MP-SPDZ’s approximations.

offline setup (middle), and 2PC sigmoid with distributed offline

setup (bottom). We do this experiment for input values in the range

[−20, 20] at increments of 0.1.

Figure 5: Absolute difference error (×10
−5
) of our sigmoid

approximation in plaintext fixed point representation (top),

with trusted offline setup run in 2PC (middle), and with

distributed offline setup run in 2PC (bottom).

I BOTTLENECK COST OF SECURE LOGISTIC

REGRESSION

In each iteration of logistic regression, we perform sigmoid evalua-

tions proportional to the batch size along with 2 correlated matrix

multiplications (Line 7 and Line 10 in Algorithm 1). Assuming 𝑛

training examples, batch size 𝐵, number of epochs𝑇 , we first discuss

the cost associated with the correlated matrix multiplications.

In the online phase, there is a one-time cost of 2𝑛𝑘 elements of

communication (associated with the dataset 𝑋 ). Additionally, the

per iteration (inner loop) communication cost of multiplying 𝑋𝐵
with 𝑤𝑡−1 (Line 7 in Algorithm 1) is 2𝑘 elements, and the cost of
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multiplying 𝑋𝐵
⊤
with 𝑑 (Line 10 in Algorithm 1) is 2𝐵 elements.

Hence, we have a communication of 2𝑘 + 2𝐵 elements per iteration.

Since there are 𝑇 · ⌊𝑛/𝐵⌋ iterations, the total communication cost

of matrix multiplications for the entire logisitic regression training

comes out to be 2𝑛𝑘 +𝑇 · ⌊𝑛/𝐵⌋ (2𝑘 + 2𝐵) elements.

Note that the sigmoid is invoked on 𝐵 inputs per iteration (and

𝑛 per epoch). Therefore, the total online cost of sigmoid across 𝑇

epochs is𝑇 ·𝑛 · 𝑠 , where 𝑠 is the number of elements communicated

per sigmoid. Hence, sigmoid becomes a bottleneck whenever the

following condition is satisfied:

𝑇 · 𝑛 · 𝑠 > 2𝑛𝑘 +𝑇 · ( 2𝑘𝑛
𝐵
+ 2𝑛)

𝑠 > 2( 𝑘
𝑇
+ 𝑘
𝐵
+ 1)

The above condition is often true for large datasets and/or when

per sigmoid communication cost is high (which is true because of

its nonlinear nature).

Note that in terms of latency (round complexity), the sigmoid

computation dominates the matrix multiplication. This is because

each matrix multiplication only requires 1 round of communication

whereas accurate sigmoid approximation typically requires more

rounds (in our case it requires 4 rounds for trusted offline (dealer)

setting and 6 rounds for distributed (2PC) offline setting).

J OPTIMIZED DOT PRODUCT

We compute sigmoid on the [0, 1) interval by evaluating a spline

of one degree polynomials of the form 𝑎𝑖𝑥 + 𝑏𝑖 , where 𝑎𝑖 and 𝑏𝑖
are public coefficients. At a high level, we evaluate J𝑥K on each

interval 𝑖 and then select only the interval output where 𝑥 actually

belongs. More specifically, each party can evaluate the spline on

each interval with the same input J𝑥K to get J𝑎𝑖𝑥 + 𝑏𝑖K using local

operations. For 𝑛 intervals, 𝑃0, 𝑃1 hold:

J𝑎1𝑥 + 𝑏1K, . . . , J𝑎𝑛𝑥 + 𝑏𝑛K
We then use a FSS multi-interval containment gate to get a

sharing of one-hot encoded vector 𝑑 , with 1 only at the interval 𝑡

where the input belongs, 0 elsewhere. E.g., if 𝑥 belongs to interval

𝑡 = 3, 𝑃0 and 𝑃1 hold:

J𝑑K = J0, 0, 1, 0, . . . , 0K
Now we want to compute the dot product of these two vectors

to get a sharing of evaluating 𝑥 on the proper interval. Naively

multiplying the two vectors pairwise requires communicating 4𝑛

ring elements. We now show how to reduce the communication to

just 4 elements (i.e. independent of the number of intervals).

Note that 𝑎𝑖 and 𝑏𝑖 are public. Hence, 𝑃0 and 𝑃1 can locally

compute:

J𝑎𝑡 K← J𝑑1K𝑎1 + . . . + J𝑑𝑛K𝑎𝑛
J𝑏𝑡 K← J𝑑1K𝑏1 + . . . + J𝑑𝑛K𝑏𝑛

Now 𝑃0, 𝑃1 do a single Beaver triple multiplication and compute:

J𝑎𝑡𝑥 + 𝑏𝑡 K
Importantly, this single product requires communicating a total of

only 4 ring elements.

K FAILURE PROBABILITY

The non-interactive fixed point truncation protocol from [58] and

the single round exponentiation protocol from [51] are probabilis-

tic i.e. with some probability, that can be made arbitrary low by

increasing the ring size, the output of these protocols can be in-

correct. Since we use these two primitives as sub-protocols in our

logistic regression protocol, it also induces an error probability on

the overall training algorithm.

Each invocation of the non-interactive fixed point truncation

protocol [58] has an error probability of 𝑝trunc =
2
𝑤+1

2
𝑙 . We use this

as a subprotocol in every instance of fixed point multiplication to

adjust the scale. In each matrix multiplication, we truncate once

after the accumulation (i.e. for multiplying matrix𝑀1 with matrix

𝑀2, we do the usual Beaver multiplication without truncation to get

a matrix𝑀3, and then truncate each element of𝑀3 by appropriate

scale). This ensures (as pointed out in [58]) that the probability

of errors introduced due to truncation is low and the error union

bound scales proportional to |𝑀3 | (instead of being proportional to

|𝑀1 | · |𝑀2 | which would have been the case if we truncate before

accumulating).

With that, we first computing the number of truncations in

the logistic regression training due to matrix multiplications and

sigmoid-specific operations. The number of truncations performed

during the two matrix multiplications in logistic regression (line 7

and 10 in Algorithm 1) per iteration is 𝐵 +𝑘 , i.e. depends on the size

of the multiplication output. Recall that we evaluate sigmoid on 6

intervals. On two of these intervals, we perform independent Taylor

approximations computed using the secure polynomial protocol. In

each invocation of the polynomial protocol, we perform
𝑑2+𝑑

2
trun-

cations per input in the batch, where 𝑑 is the degree of the Taylor

approximation. In our experiments, we set 𝑑 = 10 which results in

a total of 110 · 𝐵 truncations. On two other intervals, we invoke an

independent instance of Secure Spline. In each spline invocation,

we have one truncation per spline interval. In our experiments, we

set the number of intervals to 10, which results in a total of 20 · 𝐵
truncations. Adding up the truncations from matrix multiplication,

Taylor series approximation and spline invocation, we get a total

of 131 · 𝐵 + 𝑘 truncations per iteration.

Additionally, each exponentiation protocol from [51] has a failure

probability 𝑝exp ≈ 2
𝑤+1

2
𝑙 . We invoke the exponentiation protocol

twice per input in the batch, hence a total of 2𝐵 exponentiations

per iteration.

Nowwe can bound the total failure probability of one iteration of

training by 2𝐵𝑝exp + (131𝐵+𝑘)𝑝trunc using union bound. Assuming

𝑡 is the total number of iterations in the training and plugging the

values of 𝑝exp and 𝑝trunc, we get a total failure probability bound

across all iterations as (133𝐵 + 𝑘) · 2
𝑤+1

2
𝑙 · 𝑡 . Compared to SecureML

[58], our failure probability only reduces the security by ≈ 7 bits

while providing a much more accurate training (due to our better

sigmoid approximation).

L SEMI-HONEST SECURE TWO PARTY

COMPUTATION

The following description of semi-honest two-party computation

is standard in the literature and has been taken from [54].
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Semi-honest adversary. The model that we consider in this work

is that of two-party computation in the presence of static semi-
honest adversaries. Such an adversary controls one of the parties

(statically, and so at the onset of the computation) and follows the

protocol specification exactly. However, it may try to learn more

information than allowed by looking at the transcript of messages

that it received and its internal state. A protocol that is secure in

the presence of semi-honest adversaries guarantees that there is no

inadvertent leakage of information. Semi-honest secure protocols

are often designed as the first step towards achieving the stronger

notions of malicious security.

Two-party computation (2PC).. A two-party protocol problem is

cast by specifying a possibly random process that maps pairs of

inputs to pairs of outputs (one for each party).We refer to such a pro-

cess as a functionality and denote it 𝑓 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ×
{0, 1}∗, where 𝑓 = (𝑓1, 𝑓2). That is, for every pair of inputs 𝑥,𝑦 ∈
{0, 1}∗, the output-pair is a random variable (𝑓1 (𝑥,𝑦), 𝑓2 (𝑥,𝑦)) rang-
ing over pairs of strings. The first party (with input 𝑥) wishes to

obtain 𝑓1 (𝑥,𝑦) and the second party (with input 𝑦) wishes to obtain

𝑓2 (𝑥,𝑦).

Privacy by Simulation. As expected, we wish to formalize the

idea that a protocol is secure if whatever can be computed by a party

participating in the protocol can be computed based on its input

and output only. This is formalized according to the simulation

paradigm by requiring the existence of a simulator who generates

the view of a party in the execution. However, since the parties

here have input and output, the simulator must be given a party’s

input and output in order to generate the view. Thus, security here

is formalized by saying that a party’s view in a protocol execution

be simulatable given its input and output. This formulation implies

that the parties learn nothing from the protocol execution beyond

what they can derive from their input and prescribed output.

One important point to note is that since the parties are semi-

honest, it is guaranteed that they use the actual inputs written on

their input tapes. This is important since it means that the output is

well defined, and not dependent on the adversary. Specifically, for

inputs 𝑥,𝑦, the output is defined to be 𝑓 (𝑥,𝑦), and so the simulator

can be given this value.

Definition of Security. We begin with the following notation:

• Let 𝑓 = (𝑓1, 𝑓2) be a probabilistic polynomial-time func-

tionality and let 𝜋 be a two-party protocol for computing

𝑓 . (Throughout, whenever we consider a functionality, we

always assume that it is polynomially-time computable.)

• The view of the 𝑖th party (𝑖 ∈ {1, 2}) during an execu-

tion of 𝜋 on (𝑥,𝑦) and security parameter 𝜆 is denoted by

view𝜋
𝑖
(𝑥,𝑦, 𝜆) and equals (𝑤, 𝑟𝑖 ;𝑚𝑖

1
, . . . ,𝑚𝑖

𝑡 ), where 𝑤 ∈
{𝑥,𝑦} (its input depending on the value of 𝑖), 𝑟𝑖 equals the

contents of the 𝑖th party’s internal random tape, and𝑚𝑖
𝑗

represents the 𝑗 th message that it received.

• The output of the 𝑖th party during an execution of 𝜋 on

(𝑥,𝑦) and security parameter 𝜆 is denoted by output𝜋
𝑖
(𝑥,𝑦, 𝜆)

and can be computed from its own view of the execution.

We denote the joint output of both parties by output𝜋 (𝑥,𝑦, 𝜆) =
(output𝜋

1
(𝑥,𝑦, 𝜆), output𝜋

2
(𝑥,𝑦, 𝜆)).

Definition L.1. Let 𝑓 = (𝑓1, 𝑓2) be a functionality. We say that a

protocol 𝜋 securely computes 𝑓 in the presence of static semi-honest

adversaries if there exist probabilistic polynomial-time algorithms

S1 and S2 such that{
(S1 (1𝜆, 𝑥, 𝑓1 (𝑥,𝑦)), 𝑓 (𝑥,𝑦))

}
𝑥,𝑦,𝜆

𝑐≡{
(view𝜋

1
(𝑥,𝑦, 𝜆), output𝜋 (𝑥,𝑦, 𝜆))

}
𝑥,𝑦,𝜆

, and {
(S2 (1𝜆, 𝑥, 𝑓2 (𝑥,𝑦)), 𝑓 (𝑥,𝑦))

}
𝑥,𝑦,𝜆

𝑐≡{
(view𝜋

2
(𝑥,𝑦, 𝜆), output𝜋 (𝑥,𝑦, 𝜆))

}
𝑥,𝑦,𝜆

where 𝑥,𝑦 ∈ {0, 1}∗ such that |𝑥 | = |𝑦 |, 𝜆 ∈ N, and
𝑐≡ denotes

computational indistinguishability of the ensembles for all large

enough values of 𝜆.

Secure Fixed-Point Computation. Let 𝑓 : R→ R be a real-valued

function. Examples of such 𝑓 include multiplication of two real-

valued numbers, computing a polynomial with real coefficients

on a real-valued number, sigmoid etc. Since it is not possible to

compute 𝑓 exactly with infinite precision, we instead compute it

over a fixed-point domain F. Specifically, we compute a different

function 𝑓 : F → F which computes an approximation of 𝑓 . Our

specific choice of F is described in Section 2 which is standard.

In the context of 2PC, we are interested in computing a function-

ality F
𝑓
which takes in secret shares of some fixed-point input 𝑥 ∈ F

and outputs a secret-sharing of 𝑓 (𝑥). In our paper, we describe pro-

tocols Π
𝑓
for securely computing such fixed-point functionalities

where the description of 𝑓 is sometimes implicit in the protocol

description. The approximate nature of 𝑓 w.r.t. to 𝑓 comes from

the fact that: 1) we are only allowed to perform operations on fixed

point values, 2) the intermediate computations in Π
𝑓
might have

some error. The latter case is true in our protocols (such as Secure

Powers, Secure Polynomial, Secure Sigmoid) as it relies on the non-

interactive approximate truncation protocol from prior work [58]
9

as a subprotocol.

Security proof (sketch). Our final protocol for secure logistic re-
gression invokes subprotocols for secure matrix multiplication and

secure sigmoid. The protocol for secure sigmoid in turn invokes ad-

ditional subprotocols such as secure spline, secure exponentiation,

secure polynomial evaluation and secure MIC (Multiple Interval

Containment). Let Π
𝑓
be a particular subprotocol where 𝑓 is the

approximate function that it is computing. For example, Π
𝑓
can be

our secure polynomial protocol from Section 5.3 where 𝑓 would

be the (implicit) approximate polynomial evaluation function. All

of our protocols are designed in the preprocessing model where

9
Although it is possible to use exact truncation protocols from the literature at the cost

of increased rounds of interaction, we made a choice to stick with the non-interactive

approximate truncation protocol [58] for efficiency reasons and the fact that this

approximation only introduces atmost 1 bit of error in the least significant bit of the

fractional part which can be offset by increasing the precision scale.
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the protocol Π depends on some correlated randomness available

from the offline phase. Let F
𝑓
denote a functionality which takes

as input secret shares of some fixed-point value 𝑥 ∈ F and outputs

a secret-sharing of 𝑓 (𝑥). Let F offline
𝑓

denote the setup functionality

which generates the preprocessing material required for securely

computing 𝑓 and sends it to the parties.

We can argue that Π
𝑓
securely computes F

𝑓
in the F offline

𝑓
hy-

brid model. We note that all of our subprotocols in this paper, ex-

cept for secure comparison, make use of the non-interactive secure

truncation protocol from SecureML[58] for performing fixed point

multiplication. Therefore, for proving security of such subprotocols,

we will abstract away the truncation protocol as an ideal function-

ality Ftruncate and prove security in a hybrid model where Ftruncate
is available in addition to F offline

𝑓
. The exact function implemented

by Ftruncate is implicit in the protocol description of SecureML[58].

For proving security, we need to construct a simulator S
𝑓
which

simulates the protocol in the ideal world. This needs to be done in

two steps - first, we need to simulate the preprocessing material,

and secondly, we need to simulate the online protocol interaction.

For subprotocols which are not based on FSS (such as secure matrix

multiplication, secure polynomial evaluation and secure exponen-

tiation), the preprocessing material can be simulated honestly by

having theS
𝑓
internally execute F offline

𝑓
and sending the adversary

its part of the preprocessing material. For simulating the preprocess-

ing material of FSS-based protocols (such as secure spline, secure

comparison, secure MIC), we can execute a simualtor SFSS for gen-

erating fake FSS keys. Such a simulator is already provided in prior

works for DPF [17], DCF [15] and iDPF [13] and its security relies

on the assumption of One Way Function (OWF). We note that in

all of our subprotocols, simulating the view of the adversary in the

online protocol is straightforward as parties only exchange uni-

formly random elements which can be perfectly simulated. In the

overall protocol for secure logistic regression, we can invoke the

simulator for all of the underlying subprotocols in order to simulate

the view of adversary. For technical reasons, as pointed out in [10],

a resharing step needs to be added in the end of secure logistic

regression protocol to upgrade from view-indistinguishability to

indistinguishability of the joint distribution of adversary’s view

and honest party’s output. Practically, this can be cheaply done by

having 𝑃0 and 𝑃1 locally sample a random value 𝑟0 and 𝑟1 respec-

tively from the domain of the weight vector, sending it across to the

other party, and then adding 𝑟0 + 𝑟1 locally to their output shares.

M SPLINE DETAILS

We approximate sigmoid on [0, 1) by splitting the interval into

𝑚 equally sized intervals. To do so, we define a series of 𝑚 + 1

points {𝛼𝑖 }𝑖∈[𝑚+1] where 𝛼1 = 0 < 𝛼2 < . . . < 𝛼𝑚 < 𝛼𝑚+1 =

1 and 𝛼𝑖+1 − 𝛼𝑖 = 1

𝑚 for all 𝑖 ∈ [𝑚]. Then we define 𝑚 linear

univariate polynomials whose coefficients w denote as {𝑎𝑖 , 𝑏𝑖 }𝑖∈[𝑚] .
The sigmoid approximation is then computed as follows:

Sigmoid(𝑥) =



𝑎1𝑥 + 𝑏1 𝛼1 ≤ 𝑥 < 𝛼2

𝑎2𝑥 + 𝑏2 𝛼2 ≤ 𝑥 < 𝛼3

. . .

𝑎𝑚−1𝑥 + 𝑏𝑚−1 𝛼𝑚−1 ≤ 𝑥 < 𝛼𝑚

𝑎𝑚𝑥 + 𝑏𝑚 𝛼𝑚 ≤ 𝑥 < 𝛼𝑚+1

The coefficient values for the 𝑖th interval are computed by inter-

polating a line between the coordinates (𝛼𝑖 , 𝜎 (𝛼𝑖 )) and (𝛼𝑖+1, 𝜎 (𝛼𝑖+1)),
where 𝜎 (·) denotes the exact sigmoid function. Table 7 describes the

specific values for the coefficients that were used in our experiments

for𝑚 = 10 intervals. Note that the values of the coefficients in Table

7 are the exact real number values which are converted into a fixed

point representation when performing the secure computation.

𝑖 𝑎𝑖 𝑏𝑖

1 0.24979187478940013 0.5

2 0.24854809833537939 0.5001243776454021

3 0.24608519499181072 0.5006169583141158

4 0.24245143300792976 0.5017070869092801

5 0.23771671089402596 0.5036009757548416

6 0.23196975023940808 0.5064744560821506

7 0.2253146594237077 0.5104675105715708

8 0.2178670895944635 0.5156808094520418

9 0.20975021497391394 0.5221743091484814

10 0.2010907600500101 0.5299678185799949

Table 7: Spline parameters for instantiating sigmoid approx-

imation

The value𝑚 = 10 was decided by evaluating the spline approxi-

mation for different values of𝑚 and checking the average ULP error

(defined w.r.t. a fixed fractional scale of 𝑠 = 20 bits), as used in [62],

for sigmoid inputs drawn uniformly at random in [0, 1). For𝑚 = 10,

we obtained an average ULP error of 46 which corresponds to an

absolute error of less than 0.00005. This seemed to be a reasonable

cutoff for the accuracy of logistic regression hence we made the

choice of 𝑚 = 10. Note that the online communication cost and

rounds of our secure sigmoid protocol is independent of𝑚.

As mentioned in Section 4.1, we use the spline-based approxima-

tion only on the interval [0, 1) (which automatically also provides

an approximation on (−1, 0] due to the symmetric nature of sig-

moid curve) and use exponentiation combined with Taylor-series

based approximation on the interval [1,∞) (and symmetrically on

(−∞,−1]). We chose this approach rather than using only splines

to approximate sigmoid on the entire (−∞,∞) interval, as has been
done in prior works [58], as it would require a large number of

spline intervals
10

and potentially higher degree splines for the

approximation to work well, thus increasing the cost of protocol.

10
As an estimate, our experiments indicated that performing a degree 1 spline-based

approximation of sigmoid on [−10, 10] will yield an average ULP error of 479434

(defined w.r.t. a fixed fractional scale of 𝑠 = 20 bits) even after using an enormous

𝑚 = 10
7
intervals. This corresponds to an average absolute error of 0.46 which is

quite large.
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In the v1 setting (i.e. secure sigmoid with trusted offline setup),

this increase in cost would be reflected in the amount of FSS pre-

processing material that parties need to store. Specifically, for𝑚

intervals and 𝑑 degree splines, the cost would be proportional to

𝑚𝑑 without accounting for fixed-point related issues [15].

In the v2 setting (i.e. secure sigmoid with distributed offline

setup), we would have to replace the DCF underlying FSS based

spline gate with𝑚 instances of a secure comparison protocol sup-

porting efficient offline phase for large bit-lengths (for e.g. our

protocol in Section 6.1). This is because the FSS based spline gate

would require a DCF key for 𝑙 bit inputs where 𝑙 is the bit-length

of the ring. However, generating such a key using 2PC is currently

practical for only small values of 𝑙 (such as 𝑙 ≤ 20). Note that we do

not run into this issue when doing the spline-based approximation

on [0, 1) as the underlying FSS is only invoked on the fractional

part of the input which can be cast into a smaller ring of 𝑠 bits

where 𝑠 represents the scale of fixed-point representation.
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