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Abstract. We provide the first constant-round construction of post-quantum non-malleable commit-
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When combined with existing work, our results yield the first constant-round quantum-secure mul-
tiparty computation for both classical and quantum functionalities in the plain model, under the poly-
nomial hardness of quantum fully-homomorphic encryption and quantum learning with errors.
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1 Introduction

Commitments are one of the central primitives in modern cryptography. They are two-party pro-
tocols that enable a sender (or committer) to commit to a message to a receiver. It is required that
an efficient receiver should learn nothing about the committed message until later the committer
chooses to open (or decommit to) it. However, this vanilla promise of “information hiding” does
not rule out the following mauling or man-in-the-middle (MIM) attack: An adversary M could
play the role of a receiver in one instance of the commitment (referred to as the left session),
while simultaneously playing as a committer in another (referred to as the right session). In this
situation, M can potentially make the value committed in the right session depend on the value
in the left session, in a malicious manner that is to her advantage. Notice that this is not breaking
the hiding property of the commitment scheme, as M could conduct the above attack without
explicitly learning the value committed in the left session.

To protect against such attacks, Dolev, Dwork, and Naor [DDN91] introduced the concept of
non-malleable commitments. Such commitments capture the MIM attack by requiring that in the
MIM execution, the joint distribution of M’s final output and the value committed in the right
session is computationally indistinguishable for any values committed by the honest committer in
the left session. Of course,M can always relay without any modifications the messages between the
left honest committer and the right honest receiver. This is handled by augmenting the commitment
scheme with a tag, and M is considered winning the MIM game only if she does not use the same
tag on both sides.4

Non-malleable commitments have found several applications in cryptography. They turn out to
be a critical ingredient in resolving the exact round complexity of secure multiparty computation
in the standard (plain) model [KOS03, PPV08, Wee10, Goy11, GMPP16, BGJ+18, CCG+19], as
well as protecting such protocols against concurrent attacks [Can00, Can01, CLOS02, Pas03, PS04,
MPR06, BDH+17, CLP20].

Since their introduction, the central question in this area has been the construction of constant-
round non-malleable commitments under the minimal assumption that one-way functions (OWFs)
exist. The original work [DDN91] presented a logarithmic-round construction assuming only OWFs.
The works of Barak [Bar02], and Pass and Rosen [PR05] succeeded in obtaining constant-round con-
structions under the (stronger but standard) assumption of (polynomially-hard) collision-resistant
hash functions; this assumption is inherited due to the use of non-black-box simulation techniques
[Bar01]. After a long line of follow-up works [PPV08, LPV08, LP09, Wee10], constant-round non-
malleable commitments assuming only OWFs were first constructed in independent and concur-
rent works of Goyal [Goy11] and Lin and Pass [LP11]. Since then, several constructions opti-
mizing various aspects of this primitive, such as the exact round complexity [Pas13, GRRV14,
GPR16, COSV17, LPS17, Khu17, KS17, BL18, GR19, Khu21] and black-box usage of primitives
[Wee10, Goy11, GLOV12], have been proposed, thus achieving an almost complete understanding
of this primitive in the classical setting where all parties, including the adversary, as well as the
communication are classical.

Unfortunately, the results in the classical setting do not usually translate to the quantum setting
where one or more parties may be quantum machines. Existing classical techniques often require
the ability to rewind and copy the adversaries’ code, both of which are not possible in the quantum
setting due to the no-cloning theorem [WZ82] and quantum state disturbance [FP96].

These issues, together with the fact that quantum computers might be possible one day, have
resulted in a significant push toward developing tools and techniques to reason about security in the

4 Copying the tag can be shown equivalent to copying the entire interaction assuming one-way functions.
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presence of quantum adversaries. Some examples include zero-knowledge [Wat06, BS20], signatures
[BZ13], pseudo-random functions [Zha12], secure computation [BCKM21b, ABG+21], and so on.

Post-Quantum Non-Malleable Commitments. A particularly appealing goal in this direction
is the construction of the so-called post-quantum secure protocols, where the honest parties and
their communication channels are entirely classical but the adversary is allowed to be a quantum
(polynomial-time) algorithm. Such protocols have the feature that even if the adversary somehow
gains early access to quantum computing capabilities, the honest parties are not required to catch
up to remain protected against it.

Agarwal, Bartusek, Goyal, Khurana, and Malavolta [ABG+21]—in their pursuit of constant-
round post-quantum secure multiparty computation—construct a constant-round post-quantum
non-malleable commitments w.r.t. the special case of synchronous schedules where, upon receiving
a message in the left session,M must respond with the corresponding message of the right session
immediately, in reach round of the protocol. They achieve this assuming super-polynomial quantum
hardness of the learning with errors (QLWE) problem.

In the general (i.e., asynchronous) setting, the first positive result was recently obtained by
Bitansky, Lin, and Shmueli [BLS22] who, in the post-quantum setting, construct a log∗(λ)-round
protocol assuming only post-quantum OWFs. They present a general compiler to convert any k-
round (ε-simulatable) post-quantum extractable commitment to kO(1) ·log∗(λ)-round post-quantum
non-malleable commitments, and then rely on the very recent work of Chia, Chung, Liang, and
Yamakawa [CCLY22] where such an extractable commitment protocol is constructed in constant
rounds from only post-quantum OWFs (see also [CCLY22, Section 1.2]). This brings us tantalizingly
close to constant rounds. However, the techniques in [BLS22] rely on scheduling and amplification
techniques, which inherently require non-constant rounds to support (the standard requirement of)
large tags or identities. It is unclear if these techniques can yield constant rounds.

The central question in this area thus still remains open:

Question 1: Do constant-round post-quantum non-malleable commitments, assuming only
post-quantum one-way functions, exist?

1.1 Challenge: Robust Simulatable Extraction

Toward answering Question 1, let us first discuss about the challenges.
As mentioned above, proving non-malleability of a commitment scheme requires one to show

that the joint distribution of the final state of the MIMM (denoted by stM) and the value commit-
ted in the right session (denoted by m̃) are computationally indistinguishable when the left-session
committed value changes from any m0 to any m1 6= m0. Typically, this is done by a careful de-
sign of a sequence of hybrids, where the left value is gradually changed from m0 to m1; And
non-malleability will then be established by showing that the joint distribution of (stM, m̃) is in-
distinguishable between each pair of adjacent hybrids. As in many other cryptographic proofs, one
usually needs to reduce the indistinguishability between adjacent hybrids to some computational
hardness assumptions. But this step is especially hard for non-malleability proofs due to the follow-
ing “inefficient testability” issue—The value m̃ is hidden in the transcript of the right interaction,
and no efficient machine could obtain it. Thus, the event that “the joint distribution of (stM, m̃)
changes” is not efficiently testable, thus forbidding an efficient reduction to the underlying hardness
assumptions.

The most common template to address the above issue is to (efficiently) extract the value m̃
from some “extractable gadget” (e.g., extractable commitments or proofs of knowledge) in the
right session. The hope is: if the extracted value, denoted by m̃′, is equal to m̃ with good-enough
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probability, then one can conduct the above reduction using (stM, m̃
′) in place of (stM, m̃). That

is, since the extraction of m̃′ is efficient, it saves the reduction from the aforementioned inefficient
testability issue.

To properly implement this template, it is crucial to maintain the following conditions (the
combination of which we call Robust Simulatable Extractability.)

– Extractability: One can extract the committed message m̃ in the right from some extractable
gadget;

– Simulatability: One can simulate M’s final (i.e., post-extraction) state while extracting m̃;

– Robustness: The extraction of m̃ (in the right session) does not harm the hiding property of the
left session (or some left-session gadget on whose hiding property the security reduction relies).

Roughly speaking, previous designs of non-malleable protocols (in the classical setting) can be
thought of as developing different (and better-and-better) techniques that enable the above robust
simulatable extractability.

However, robust simulatable extractability turns out to be hard to obtain in the post-quantum
setting. First, as mentioned earlier, special techniques are needed to perform simulation for quan-
tum adversaries due to the no-cloning theorem; Extracting a desired value while simultaneously
simulating the quantum adversaries’ internal state is even harder. Fortunately, the recent works
[CCLY22, LMS21] did provide a constant-round solution to simulatable extraction based solely on
post-quantum OWFs.

However, the picture becomes unclear when we additionally require robustness. Known simu-
latable extraction techniques treat the adversary as a single reversible operation (i.e., unitary) and
“rewind” it coherently. However, if the adversary talks in straight-line with the external left com-
mitter C (that cannot be rewound), those techniques seem inapplicable. Actually, this robustness
issue already appeared in the classical setting. But we would like to point out that the quantum
power of adversaries complicates it further: It is reasonable to expect that the extractor (to be
constructed) may need to “read” the messages exchanged between the MIM adversary M and the
left committer C. However, known quantum rewinding strategies need to treat the adversary as a
reversible operation. When we view (C,M) as a joint adversary to perform quantum rewinding, it
is unclear if the simulator can “read” (technically, measure) the messages exchanged between C and
M, because this may irreversibly collapse the internal quantum state of the joint (C,M) adversary.
Therefore, it is unclear if existing post-quantum rewinding techniques could be used in the MIM
setting when robustness is a concern. This indeed represents the major difficulty when one tries to
build constant-round post-quantum non-malleable commitments by quantizing the security proofs
of the classical ones (e.g., [Goy11, LP11, GLOV12, GRRV14, GPR16, COSV17, GR19]).

Existing Techniques. The two recent works mentioned earlier demonstrated possible solutions to
the robust simulatable extractability issue, if one is willing to make stronger hardness assumptions,
or does not insist on constant rounds:

– [BLS22] took a similar approach as in [DDN91]. Roughly, the idea is to introduce enough rewind-
ing opportunities for extraction (usually referred to as “slots”) in the construction such that there
is always a “free slot”, namely, a slot that does not interleave with any messages exchange between
M and the left committer C (who will become the external challenger of the hardness-providing
gadget in the security proof); Then, one can extract m̃ from this free slot using known post-
quantum rewinding strategies. This approach is unlikely to give a constant-round construction
(even in the classical setting). The constructions from [BLS22] require at least log∗(λ) rounds.
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– [ABG+21] took a similar approach as in [PW10, KS17], which essentially obtained robust simu-
latable extractability via complexity leveraging. At a high level, the idea is to hide the committed
value in some computationally hard gadget, whose hardness depends on the tag. This hard gad-
get is cleverly designed to admit the following strategy: In the MIM execution, because of the
asymmetry of the left and right tags (i.e., t 6= t̃), the reduction can extract m̃ by breaking the
right hard gadget via brute force in some slightly super-polynomial time T (λ); However, the MIM
adversary cannot break the left hard gadget in time poly

(
T (λ)

)
. Since the extraction in this tem-

plate is conducted via brute force, the robust simulatable extraction issue can be circumvented.
However, this approach is unlikely to work without super-polynomial hardness assumptions due
to the use of complexity leveraging.

1.2 Our Results

In this work, we answer Question 1 affirmatively by providing the first constant-round construction
of post-quantum non-malleable commitments assuming only post-quantum one-way functions.

As discussed above, major classical approaches to OWF-based constant-round non-malleable
commitments seem not to be “quantum-friendly.” Therefore, we first propose a new classical con-
struction whose security proof is quantum-friendly. That is, when designing the new protocol,
we restrict ourselves to techniques that avoid state-cloning and the above robust simulatable ex-
tractability issue. We find this result already interesting as it improves the diversity of the ap-
proaches known in the classical setting.

Next, we show that our new classical construction can be made quantum-secure once its building
blocks are replaced by their post-quantum counterparts. This is possible because our classical
construction is deliberately designed to be quantum-friendly.

Theorem 1 (Informal). Assuming the existence of post-quantum one-way functions, there exists
a constant-round construction of post-quantum non-malleable commitments.

Thm. 1 yields interesting corollaries w.r.t. multi-party computation (MPC) in the quantum era.
For classical functionalities, the recent work [ABG+21] presents the first post-quantum MPC in con-
stant rounds, from a mildly super-polynomial quantum hardness of Learning with Errors (QLWE)
assumption and a QLWE-based circular security assumption. They need the super-polynomial hard-
ness of QLWE (only) to build constant-round post-quantum non-malleable commitments, which
serve as a building block to their MPC. Plugging our non-malleable commitment into their frame-
work yields the following result:

Corollary 1 (Informal). Assuming (polynomial) QLWE and the QLWE-based circular security
assumption (as in [ABG+21]), there exists a constant-round construction of post-quantum MPC
for classical functionalities, i.e., an MPC protocol secure against QPT adversaries where honest
parties only need to perform classical computation.

For quantum functionalities, the recent work [BCKM21a] presents a constant-round quantum-
secure MPC for quantum functionalities in the CRS model, based on the hardness of QLWE. It is
easy to see that Corollary 1 provides a constant-round implementation for the CRS required by the
[BCKM21a] protocol. This observation leads to the first constant-round quantum-secure MPC for
quantum functionalities from polynomial hardness assumptions without any trusted setup.

Corollary 2 (Informal). Assuming (polynomial) QLWE and the QLWE-based circular security
assumption (as in [ABG+21]), there exists a constant-round construction of quantum-secure MPC
for quantum functionalities.
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2 Technical Overview

We will first present a construction 〈C,R〉OneSided
tg that is non-malleable in the classical setting with

the following restrictions:

– Small-Tag: It only supports tags from the polynomial-size space [n] := {1, . . . , n(λ)}, where
n(λ) is a polynomial on the security parameter λ;

– One-Sided: Its non-malleability holds only if, in the MIM game, the left-session tag t is smaller
than the right-session tag t̃.

– Synchronous: Its non-malleability holds only in the synchronous setting. This refers to the
setting where upon receiving a message in the right (resp. left) session, the MIM adversary
immediately responds with the corresponding message in the left (resp. right) session.

It is a common approach in the literature to first obtain a construction under the above conditions,
and then convert it to a full-fledged non-malleable commitment. While there exist standard tech-
niques that take care of the latter step, the former step (i.e., constructing 〈C,R〉OneSided

tg ) is typically
where difficulty lies.

In the classical setting, once we obtain 〈C,R〉OneSided
tg , we can apply known techniques to re-

move the One-Sided restriction, yielding a small-tag, synchronous protocol, which we denote
as 〈C,R〉synctg . Then, known compilers (e.g., [Wee10]) can be used to remove the Small-Tag and
Synchronous restrictions at one stroke. This leads to a full-fledged non-malleable commitment
〈C,R〉asyncTG in the classical setting.

We emphasize that all the above protocols are non-malleable only in the classical setting. How-
ever, they are designed deliberately using quantum-friendly techniques, which makes it possible to
quantize their security proofs. We elaborate on that in the sequel.

Post-Quantum Tag Amplification. Recall that our eventual goal is to achieve post-quantum
non-malleability. The use of quantum-friendly techniques will allow us to prove post-quantum non-
malleability of 〈C,R〉OneSided

tg . Also, the aforementioned (classical) conversion from 〈C,R〉OneSided
tg to

〈C,R〉synctg extends naturally to the post-quantum setting as well. However, the classical compiler
from 〈C,R〉synctg to 〈C,R〉asyncTG seems not to extend to the post-quantum setting.

This has already been observed in [BLS22]. The authors of [BLS22] addressed this issue by con-
structing a new tag amplifier that converts a small-tag, asynchronous post-quantum non-malleable
commitment to a large-tag (i.e, t ∈ [2λ]), asynchronous post-quantum non-malleable commitment.
But it is worth noting that this tag amplifier requires the small-tag protocol to be asynchronously
secure; This is in contrast to the aforementioned classical compiler, which handles asynchronicity
and tag-size amplification at one stroke.

To overcome this problem, we will first show that our post-quantum version of 〈C,R〉synctg can be
modified to achieve non-malleability in the asynchronous setting, yielding a protocol 〈C,R〉asynctg,PQ,
which is exactly a small-tag, asynchronously non-malleable commitment in the post-quantum set-
ting. Now, the [BLS22] tag amplifier can be applied to 〈C,R〉asynctg,PQ, leading to the full-fledged

post-quantum non-malleable commitment 〈C,R〉asyncTG,PQ we want.

Organization of Technical Overview. In Sec. 2.1 and 2.2, we overview the main idea behind
our construction of 〈C,R〉OneSided

tg in the classical setting. This is the most technically involved part
where the main difficulty lies.

As mentioned earlier, protocol 〈C,R〉OneSided
tg is designed using only quantum-friendly techniques.

Thus, the proof of its non-malleability extends to the post-quantum setting once we replace its
building blocks by their post-quantum counterparts. (We provide a high-level explanation for that
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on Page 12.) We then show how this can be done in Sec. 2.3, where we obtain the one-sided,
small-tag, synchronous, post-quantum non-malleable commitment 〈C,R〉OneSided

tg,PQ .

Finally, we provide in Sec. 2.4 a brief overview on how to convert 〈C,R〉OneSided
tg,PQ to the full-fledged

post-quantum non-malleable commitment 〈C,R〉asyncTG,PQ, achieving our eventual goal.

2.1 Small-Tag, One-Sided, Synchronous, Classical Setting: Construction

Our construction of 〈C,R〉OneSided
tg is easy to describe. It supports tags from the space [n(λ)], where

n(λ) is any (fixed) polynomial on the security parameter λ.

To proceed with a tag t ∈ [n], we first ask the committer C to commit to m using a statistically
binding scheme com = Com(m; r) (e.g., Naor’s commitment). Then, the receiver R sends a non-
interactive hard puzzle that has exactly t distinct solutions; R also gives a witness-indistinguishable
proof of knowledge5 (referred to as WIPoK-1) to prove that he knows one of the t solutions.
Finally, C is required to prove using another WIPoK (referred to as WIPoK-2) that he knows
either the value committed in com or one solution to R’s hard puzzle.

We depict this construction (in the MIM setting) in Fig. 1, where the “hard puzzle” is im-
plemented with the problem of “finding one of the preimages of the t OWF images {yi}i∈[t]”.
Throughout this overview, we assume that the OWF f is injective (otherwise, this “hard puzzle”
may have more than t solutions). But this is only to ease the presentation—We will describe in
Sec. 4.8 a simple trick to remove this injectivity requirement.

The main intuition underlying this construction is best illustrated by the proof of its non-
malleability, which we show next in Sec. 2.2.

witness

Step-1:

Step-2:

Step-3:

, OR , OR

witness

Fig. 1: Man-in-the-Middle Execution of 〈C,R〉OneSided
tg

5 Indeed, a WI argument of knowledge suffices (see Sec. 2.3).
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2.2 Proving Non-Malleability

Instead of giving out the security proof directly, we start with a naive attempt that will fail. It will
reveal the main difficulty in the proof of non-malleability and how our design addresses it.

The First Attempt. In the MIM execution shown in Fig. 1, imagine that we invoke the knowledge
extractor6 for the right WIPoK-2 to extract a witness w′. It is easy to see that the only possible
values for w′ is (m̃, r̃) or (1, x̃1), because they are the only information that M could potentially
possess assuming it cannot break the one-wayness of the OWF f̃ in the right Step-3. Furthermore,
we know for sure that w′ can only be (m̃, r̃) because of the WI property of the right WIPoK-1 and
the following (standard) argument: Imagine that we switch to (2, x̃2) as the witness to finish the
right WIPoK-1. By the WI property of the right WIPoK-1, we know that the distribution of the
extracted w′ cannot change (up to negligible probability). That is, if w′ could take the value (1, x̃1)
before we switch to (2, x̃2) in the right WIPoK-1, it would keep taking the value (1, x̃1) when we
are using (2, x̃2) in the right WIPoK-1. But this cannot happen as it breaks the one-wayness of f̃
on the image ỹ1 using a standard reduction—Consider an external challenger for the one-wayness
of f̃ ; The challenger sends us a challenge y∗; We run the game shown in Fig. 1, while using y∗ in
place of ỹ1 and using (2, x̃2) as the witness to perform the right WIPoK-1. If we finally extract
w′ = (1, x1), we find a preimage for y∗.

With the above observation, we hope to prove non-malleability in the following way: We change
the left committed value from m0 to m1, while extracting the right committed value w′ = (m̃, r̃)
using the knowledge extractor for the right WIPoK-2. If M really makes m̃ depend on the left
committed value, then the reduction can detect this change by checking the extracted w′. This
breaks the hiding property7 of the left execution when the left committed value changes from m0

to m1. However, this naive idea will not work: When we invoke the knowledge extractor for the right
WIPoK-2, M also rewinds the left WIPoK-2. So, the left interaction is not “in straight-line”
anymore. Thus, we could not build the reduction to the hiding property of the left interaction.

Reduction to Naor’s Commitment? Though the above attempt does not work, it inspires the
following thoughts: What if we reduce non-malleability to the hiding property of Naor’s commitment
in the left Step-1 and Step-2? There is at least some hope as the left Naor’s commitment is not
interleaved with the right WIPoK-2 (recall that we are in the synchronous setting). That is, we can
generate the Step-1 and Step-2 messages in the left interaction by forwarding messages between
M and an (external) challenger for the hiding property of Naor’s commitment; Meanwhile, we
extract w′ = (m̃, r̃) from the right WIPoK-2 as before. Then, if M makes the value m̃ depend
on the value committed in the first two steps in the left, we win the hiding game by checking the
extracted w′.

To implement this idea, we first need to make the interaction happening after the left Step-2
independent of m; Otherwise, the above reduction will not work—Because the left Naor’s commit-
ment is now coming from an external challenger so that the reduction does not posses the value
m anymore, which is required to finish the remaining steps (in particular, the left WIPoK-2)
of the left interaction. To address this issue, we consider an intermediate execution G1 shown in
Fig. 2a—The only difference (shown in red) between G1 and the real MIM game (Fig. 1) is that
G1 uses the knowledge extractor WE in the left WIPoK-1, and uses the extracted witness (j, xj)

6 We remark that there exist different definitions for Proofs of Knowledge. Throughout this paper, we use Lindell’s
formalism called Witness Extended Emulation [Lin03]. This definition ensures the existence of a knowledge extractor
WE such that for any P ∗ that convinces V with probability p, WEP

∗
will extract a valid witness with probability

≥ p− negl(λ). See Sec. 3.5 for more details.
7 It is easy to see that our construction, in the stand-alone setting, is a computationally hiding commitment.
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Step-1:

Step-2:

Step-3:

, OR , OR
witness

witness

(Compared with the real MIM execution)

(a)

Step-1:

Step-2:

…

…
…

witness

Step-3:

(b)

Fig. 2: Machines G1 and K1

as the witness to go through the left WIPoK-2. In this way, the interaction after the left Step-2
does not depend on m anymore. However, this introduces new problems: We can no longer make
use of the WI property of the right WIPoK-1 as before, because this WE needs to rewind the
left WIPoK-1, resulting in rewindings of the right WIPoK-1 as well (since we are in the Syn-
chronous setting). Thus, we can no longer argue that the extracted w′ must be (m̃, r̃) as in The
First Attempt part.

Actually, there is a deeper reason why this naive attempt is bound to fail in establishing w′ =
(m̃, r̃). When we run WE for the left WIPoK-1, M could also learn the witness (1, x̃1) used by
R in the right WIPoK-1. When we switch the witness from (m, r) to the extracted (j, xj) in the
left WIPoK-2, nothing stops M from switching her witness from (m̃, r̃) to (1, x̃1). Therefore, we
can no longer argue that the extracted w′ must be (m̃, r̃). We emphasize that the WI property
of the left WIPoK-2 does not help in ruling out this possibility—WI does not protect against
a man-in-the-middle adversary who is trying to make the right WIPoK instance depend on the
left WIPoK instance. Instead, this is a “non-malleability” type of requirement rather than (plain)
witness indistinguishability. In that sense, the above argument did not really address the issue of
non-malleability; Rather, it simply “pushed” the non-malleability requirement to the WIPoK used
in the final WIPoK-2 stage.

Thus, new ideas seem necessary to enforce non-malleability. This leads us to the real virtue of our
design—In the sequel, we will demonstrate that the t-solution hard puzzle introduces “asymmetry”
between the right and the left sessions as t < t̃; This will allow us to perform a pigeon-hole-style
argument, which can be used to address the heart of the non-malleability problem.

A Pigeon-Hole Argument. To address the above issue, we consider another hybrid K1 shown in
Fig. 2b. Hybrid K1 is similar to G1 but it does not rewind the left WIPoK-1 for witness extraction
(we will explain shortly which witness K1 will use to perform the left WIPoK-2).

We first make a crucial observation: There are t̃ preimages {x̃1, . . . , x̃t̃} that R could potentially
use as the witness to perform the right WIPoK-1. In contrast, there are at most t preimages
{x1, . . . , xt} that M could potentially use as the witness to perform the left WIPoK-1. Since the
WIPoK-1 stage itself is not “non-malleable”, it is possible thatM’s witness used there depends on
R’s witness used in the right WIPoK-1.8 For example, if R uses x̃1 to perform the right WIPoK-
1, M may use, say, x3 in the left WIPoK-1; If R instead uses x̃2, M may switch to x5 in the left
WIPoK-1.

8 Again, standard witness-indistinguishability does not rule out such dependency.
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Now, recall that t ≤ t̃ − 1 (because we have the One-Sided condition). It then follows from
the pigeon-hole principle that there must exist a distinct pair x̃i, x̃j ∈ {x̃1, . . . , x̃t̃} and an xk ∈
{x1, . . . , xt} such that (x̃i, x̃j , xk) form the following correspondence: No matter R uses x̃i or x̃j in
the right WIPoK-1, M always uses (the same) xk in the left WIPoK-1.

If we assume that K1 somehow “magically” knows this pigeon-hole tuple (x̃i, x̃j , xk), then we
can prove w′ = m̃ using the following argument. Consider two scenarios:

1. When R uses x̃i in the right WIPoK-1 and C (or K1) uses xk in the left WIPoK-2, we can
prove that the extracted w′ can only take the values of m̃ or x̃i. Intuitively, this is because m̃
and x̃i are the only witnesses that M could potentially use for the right WIPoK-2, assuming
it cannot break the one-wayness of the right OWF f̃ . We suppress the full proof in this informal
discussion, as we will show a formal (and slightly different) argument in the next subsection.

2. When R uses x̃j in the right WIPoK-1 and C uses (the same) xk in the left WIPoK-2, we
can prove that the extracted w′ can only take the values of m̃ or x̃j . This follows from a similar
argument as in the above bullet.

Next, observe that K1 does not rewind the WIPoK-1 stage. By the witness indistinguishability
of the right WIPoK-1, it follows that the witness used byM in the right WIPoK-2 cannot change
when R switches between x̃i and x̃j in the right WIPoK-1 (otherwise, we can invoke the knowledge
extractor of the right WIPoK-2 to extract the used witness to detect this change). This, together
with the above two bullets, implies that the extracted w′ can only take the value m̃ if R uses x̃i (or
x̃j) in the right WIPoK-1. Notice that in this argument, we do not rely on the “non-malleability”
(or even WI) of the final WIPoK-2 stage, because in both scenarios described above, C uses the
same xk in the left WIPoK-2.

Although the above reasoning looks promising, it suffers from the following obstacles:

1. In the above, we assumed that K1 “magically” knows the pigeon-hole tuple (x̃i, x̃j , xk). However,
it is unclear how K1 could (efficiently) learn this tuple. Note that K1 cannot try to learn xk by
rewinding (i.e., running the knowledge extractor for) the left WIPoK-1; Otherwise, we will be
back to hybrid G1 and cannot rely on the WI property of the right WIPoK-1 (as we did in the
previous paragraph).

2. The above pigeon-hole correspondence is not accurate. In fact, it is possible thatM changes the
distributions (instead of concrete values, as in the previous discussion) of the witness used in
the left WIPoK-1. For example, when R uses x̃1 in the right WIPoK-1,M samples a witness
for the left WIPoK-1 uniformly at random from {x1, . . . , xt}; While R switches to x̃2,M may
decide to sample a witness according to the Gaussian distribution instead. In this case, even with
unbounded computational power, it is unclear how to identify (or define) the tuple (x̃i, x̃j , xk).

Nevertheless, this hybrid K1 divulges the usefulness of the t-solution hard puzzle. It provides
an approach to argue w′ = m̃, thus having a potential to help us establish non-malleability. In the
following, we show our main technical lemma which overcomes the above two obstacles, allowing
us to formalize the above argument properly.

The Main Technical Lemma. Let us summarize what we have so far. We described two hybrids:
Hybrid G1 seems to help us reduce non-malleability to the computational-hiding property of the left
Naor’s commitment. But it actually pushes the non-malleability requirement to the final WIPoK-2
stage (or more technically, we are not able to prove that the extracted w′ is equal to the right-side
committed value m̃). In contrast, hybrid K1 does not suffer from this issue. It instead relies on a
pigeon-hole-style argument, which employs the structure of the t-solution hard puzzle to enforce
non-malleability. However, to formalize this argument, one has to (i) figure out how K1 can learn
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the pigeon-hole tuple (Obstacle 1), and (ii) perform the pigeon-hole argument in a “distributional”
manner (Obstacle 2).

In the following, we present our main technical lemma. This lemma can be understood as a
combination of G1 and K1—In its proof, we will define analogs of these two hybrids (i.e., the
{Gi}i∈[t̃] and {K̂i}i∈[t̃] in Fig. 3) and “jump between” them to take advantage of both hybrids, while
performing the pigeon-hole argument in a “distributional” fashion.

Step-1:

Step-2:

Step-3:

, OR , OR
witness

witness

(a)

witness

Step-1:

Step-2:

, OR , OR
witness

Brute-forcing:

random

(b)

Fig. 3: Machines Gi and K̂i (Difference is highlighted in red color)

First, we define machines Gi for each i ∈ [t̃] (as shown in Fig. 3a). Machine Gi for i 6= 1
behaves identically to the G1 described earlier (Fig. 2a), except that Gi uses (i, x̃i) as the witness
when performing the right WIPoK-1. Again, we define the extracted witness w′ to be the witness
extracted by running the knowledge extractor for the right WIPoK-2 in Gi. Then, we show the
main technical lemma, which we will use to establish non-malleability later.

Lemma 1 (Informal Version of Lem. 9). Assume that in the real MIM execution,M convinces
the honest right receiver R with some noticeable probability p(λ). Then, there exists some i ∈ [t̃] such
that the extracted witness w′ in Gi must be a valid opening (m̃, r̃) for c̃om with another noticeable
probability p′(λ).

Proof of Lem. 1. We prove Lem. 1 by contradiction. In the following, we assume for contradiction
that for all i ∈ [t̃], the extracted w′ contains a valid opening to c̃om with at most non-noticeable
probability. (For simplicity, we ignore the difference between “non-noticeable” and “negligible” and
use the term “negligible” in place of “non-noticeable” in this proof.)

First, we claim that in game Gi (for any i ∈ [t̃]), R must also be convinced with probability
p± negl(λ). This claim follows from the PoK property of the left WIPoK-1 and the WI property
of the right WIPoK-1 and the left WIPoK-2. Since this proof is rather standard, we do not
elaborate on it in this overview. More details can be found in Sec. 4.5.

Next, we observe that in Gi, the extracted witness w′ can only take the values (m̃, r̃) or (i, x̃i);
Otherwise, we break the one-wayness of the right OWF f̃ (this follows from the same argument we
made earlier). However, our assumption (for contradiction) says that in each Gi, w′ 6= (m̃, r̃) except
for with negligible probability. Therefore, we obtain the following inequality:

∀i ∈ [t̃],
∣∣Pr
[
w′ = (i, x̃i) in Gi

]
− p
∣∣ ≤ negl(λ). (1)
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Next, we define {K̂i}i∈[t̃] (shown in Fig. 3b)9. For each i ∈ [t̃], K̂i behaves identically as Gi
except that K̂i does not invoke the knowledge extractor for the left WIPoK-1; Instead, it obtains
all the preimages {xi}i∈[t] for {yi}i∈[t] in the left Step-3 by brute force; It then picks a random

index s
$←− [t] and uses preimage (s, xs) as the witness to conduct the left WIPoK-2. First, observe

that if the (s, xs) picked by K̂i hits the (j, xj) extracted from the left WIPoK-1 in Gi (see Fig. 3a),

then the games K̂i and Gi are identical (modulo that K̂i is inefficient). Since K̂i picks s uniformly
at random from [t], we know that K̂i will be identical to Gi with probability ≥ 1/t. It then follows
from Inequality (1) that

∀i ∈ [t̃], Pr
[
w′ = (i, x̃i) in K̂i

]
≥ 1

t
· p− negl(λ). (2)

Next, observe that in K̂i, WIPoK-1 is not rewound anymore. Therefore, by the (non-uniform,
to compensate for the brute-forcing step) WI property of the right WIPoK-1, it follows that

∀i ∈ [t̃],

∣∣∣∣Pr
[
w′ = (i, x̃i) in K̂i

]
− Pr

[
w′ = (i, x̃i) in K̂1

]∣∣∣∣ ≤ negl(λ). (3)

Combining Inequalities (2) and (3), we have

∀i ∈ [t̃], Pr
[
w′ = (i, x̃i) in K̂1

]
≥ 1

t
· p− negl(λ). (4)

Inequality (4) implies the following

Pr
[
w′ is a valid witness in K̂1

]
≥ t̃ · 1

t
· p− negl(λ) ≥ p+

p

t
− negl(λ), (5)

where “w′ is a valid witness” refers to the event that w′ = (m̃, r̃) ∨w′ = (1, x̃1) ∨ . . . ∨w′ = (t̃, x̃t̃),
and the last “≥” follows from the requirement that t < t̃ (i.e., we are in the One-Sided setting).

On the other hand, we claim that

Pr
[
w′ is a valid witness in K̂1

]
≤ p+ negl(λ). (6)

This can be seen by comparing K̂1 with the real MIM execution shown in Fig. 1: Recall that p is the
probability of R being convinced in the real MIM execution. The only difference between K̂1 and the
real MIM execution is the witness used in the left WIPoK-2. By the (non-uniform) WI property
of the left WIPoK-2, we know that R must be convinced in K̂1 with probability ≤ p + negl(λ).
Then, by the proof of knowledge property, we must extract a valid witness in the right WIPoK-2
in K̂1 with probability upper-bounded by p+ negl(λ) as well (this is exactly Inequality (6)).

Observe that Inequality (6) contradicts Inequality (5) because p/t is non-negligible. This gives
us the desired contradiction, thus finishing the proof of Lem. 1.

Completing the Proof of Non-Malleability. With Lem. 1, non-malleability can be reduced to
the computational-hiding property of Naor’s commitment as follows. Assuming thatM breaks the
non-malleability of our scheme w.r.t. a distinguisher D, we construct an adversary Ahiding against
the computational-hiding property of Naor’s commitment as follows:

9 For readers trying to find a correspondence between this technical overview and its main-body counterpart (i.e.,

Sec. 4), we would like to point out that the K̂i defined here does not match any machine in Sec. 4. In the current

overview, K̂i actually serves the functionality of several machines defined in Sec. 4.5 to 4.7. But K̂i is most similar
to the K′′i on Page 40 (and depicted in Fig. 9b), which is essentially K̂i but additionally runs a knowledge extractor
for the right WIPoK-2.
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– Main-Thread Simulation: Ahiding runs G1 where it embeds the instance of the hiding game
of Naor’s commitment in the left Step-1 and Step-2, and finishes other steps just as G1. If
R rejects, it sets m̃ := ⊥. (Notice that at the end of this step, M will give an output that is
computationally indistinguishable with the one from the real MIM execution. This is due to the
similarity between G1 and the real MIM execution.)

– Rewinding: Unless R rejects in the above, Ahiding repeats the following N (to be specified later)
times to extract the message m̃ committed in the right session:

• It rewinds M to the point right after the completion of Step-2.

• It picks a random index i
$←− [t̃], and finishes the execution in the same manner as Gi (depicted

in Fig. 3a).

• Extract a witness w̃ from the right WIPoK-2 of the simulated execution.

• If w̃ = (m̃, r̃) is a valid opening to c̃om, it breaks the loop. Otherwise, it continues.

If it fails to extract m̃ within N trials, it aborts and outputs a random guess.

– Decision: It runs the distinguisher D on M’s final output at the end of the Main-Thread
Simulation step and m̃, and outputs whatever D outputs.

It is easy to see that the above reduction works unless it fails to extract m̃. We show that the failure
probability can be made an arbitrarily small noticeable ε(λ) if we take sufficiently large N = poly(λ)
depending on ε. We call the snapshot (including the transcript and M’s internal state) at the end
of Step-2 of the main thread a prefix. For each prefix pref, let ppref be the probability that the right
receiver accepts in G1 starting from pref. Then, Lem. 1 ensures that10 for any fixed prefix pref such

that ppref ≥ ε(λ), if we run Gi for random i
$←− [t̃] and extract w̃ from the right WIPoK-2 (as is done

in each repetition described in the above Rewinding step), then we will extract w̃ = (m̃, r̃) with
at least another noticeable probability ε′(λ) (More accurately, it should be the ε′(λ) guaranteed
by Lem. 1 divided by t̃ as we pick an i randomly from [t̃]. But this does not affect the argument
here as t̃ is bounded by a polynomial on λ—recall that we are in the Small-Tag setting.) Now, we
consider the following two cases:

– The Case of ppref ≥ ε(λ): In this case, if we set N = Ω(ε′(λ)−1 · λ), the reduction algorithm fails

with at most a negligible probability (i.e., (1− ε′(λ))Ω(ε′(λ)−1·λ)).

– The Case of ppref < ε(λ): In this case, the right R rejects in the main-thread except for a proba-

bility upper-bounded by ε(λ). Thus, the reduction fails with probability at most ε(λ).

Overall, the reduction algorithm works with an additive loss of ε(λ). Since we have the freedom
to set ε(λ) to an arbitrarily small noticeable function, the reduction from non-malleability to the
computational hiding of Naor’s commitment can be done properly. We omit further details.

Why Our Proof Is “Quantum-Friendly”. Before going on, let us explain why the above proof
of non-malleability in the classical setting could extend to the post-quantum setting. At a high-level,
our security proof enjoys the following properties:

10 Strictly speaking, there are two minor differences from Lem. 1. First, we are considering experiments for each
fixed pref whereas Lem. 1 considers the whole experiment. This is not an issue since the proof of Lem. 1 does not
touch messages before Step-3 and thus works for any fixed pref. Another difference is that we define ppref w.r.t.
G1 whereas p is defined w.r.t. the real MIM experiment in Lem. 1. This is not an issue since G1 is computationally
indistinguishable from the real MIM experiment.
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– The rewinding-extraction procedure described on Page 12 never goes to touch the left Naor’s
commitment, which is the “hiding gadget” that provides computational hardness for the re-
duction. This property saves us from the robust simulatable extractability issue described in
Sec. 1.1.

– Moreover, this extraction procedure is to first perform the “main-thread” execution as hybrid G1;
If this main thread is accepted, then it starts N “rewinding threads” for extraction. This structure
is very similar to the classical extractor for the canonical three-round extractable commitments
in [PW09]. Thus, it allows us to invoke (a generalization of) the quantum simulatable-extraction
lemma from [CCLY22] (developed originally to quantize the [PW09] extractable commitments)
to quantize the our proof of non-malleability. More details are provided in Sec. 2.3.

In contrast, no previous constructions of (classical) constant-round non-malleable commitments
achieved the above two properties simultaneously. This is why it is hard to quantize their security
proofs even with the [CCLY22] lemma in hand.

On the Necessity of N Rewindings. Given that Lem. 1 already guarantees a noticeable proba-
bility p′(λ) for successful extraction, one may wonder why we need to perform N rewindings in the
above reduction to the computational hiding of Naor’s commitment. That is, machine Ahiding seems
to work as desired even if we set N = 1—If it extracts m̃, then the reduction is done; Otherwise,
simply ask the reduction to guess at random in the Naor’s hiding game. At the first glance, this
seems to give a 1

2 + p′(λ) advantage, which is sufficient for the security reduction.

Though this strategy looks appealing due to its simplicity, it does not work. To explain the
reason, we need to refer to Lem. 9 on page Page 31 (i.e., the formal version of Lem. 1). The
explanation (provided below) is rather technical and orthogonal to the current discussion. The
reader may feel free to skip it and continue at Sec. 2.3 directly.

Notice that Lem. 9 refers to the prefix pref of the MIM execution, which consists of the first
two rounds of the protocol. In particular, pref includes the left Naor’s commitment from the hiding
challenger. Lem. 9 says that for any noticeable probability ε, if a pref leads to an accepting MIM
execution with probability greater than ε, then the extraction succeeds with a probability lower-
bounded by ε′/t̃, a value polynomially related to (but smaller than) ε.

At a high level, Lem. 9 is not directly applicable in our reduction because there may be a
correlation betweenM’s view and the success of extraction. That is, conditioned on the success of
extraction, the joint distribution ofM’s view and the extracted right value may be distinguishable
from those in the real MIM experiment. Consider the following distinguishing example: there are
two prefixes pref1 and pref2 that lead to an accepting execution with the same probability ε, and
they appear with the same probability in the real experiment. Suppose that the extraction success
probability is ε′/t̃ for pref1, but ε (> ε′/t̃) for pref2. Then, if we run the reduction with Lem. 9
directly, the distinguisher may get to see pref2 much more often than pref1 (conditioned on successful
extraction). But they should happen with the same probability in the real experiment.

The N rewindings in our construction essentially “amplify” Lem. 9 to the following stronger
version: For any noticeable ε, ifM convinces R with probability greater than ε, then the extraction
succeeds with overwhelming probability (i.e., 1 − negl(λ)). This effectively ensures the following:
Conditioned on a prefix that leads to acceptance with probability greater than ε and that R is
indeed convinced, the joint distribution of M’s view and the extracted m̃ are negligibly close to
their distribution in the real MIM execution. (Other cases are easy to handle: If R is not convinced,
we simply use ⊥ as the extracted value; Also, by an averaging argument, no more than ε fraction
of prefixes can lead to acceptance with probability < ε.) Thus, our strategy eventually makes the
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joint distribution from simulation to be ε-close to the real one. Since we have the freedom to pick
any noticeable ε, our reduction can achieve a non-negligible advantage in Naor’s hiding game.

We refer the reader to Sec. 4.4 for a formal treatment of this issue.

2.3 Small-Tag, One-Sided, Synchronous, Post-Quantum Setting

Next, we explain how to make the 〈C,R〉OneSided
tg described in Sec. 2.1 non-malleable in the post-

quantum setting.
For that, we simply instantiate 〈C,R〉OneSided

tg with post-quantum building blocks. (We denote

this post-quantum version by 〈C,R〉OneSided
tg,PQ .) Here, we have to be careful about what security

notion we should require for WIPoK. In the security proof in the classical setting, we often extract
a witness from WIPoK while continuing the rest of the experiment. For this to work, we implicitly
require the knowledge extractor to have a simulation property [HSS11, LN11], i.e., it can simulate
the prover’s internal state as in a real execution, while performing the extraction task. While this
is almost trivial in the classical setting, it becomes hard in the post-quantum setting due to the no-
cloning theorem. In particular, constant-round constructions for such “simulatable” post-quantum
WIPoKs are not known from (polynomially-hard) post-quantum OWFs.11

Fortunately, a recent work [CCLY22] shows that a constant-round construction from post-
quantum OWFs is possible if we (i) relax the PoK to argument of knowledge (AoK), which only
requires extractability against (quantum) polynomial-time adversaries, and (ii) relax the simulation
requirement to the ε-close simulation property, where an (arbitrarily small) noticeable simulation
error is allowed. Next, we show that such a ε-simulatable WIAoK suffices for our purpose. First,
the relaxation from PoK to AoK is totally fine since we only apply the knowledge extractors for
polynomial-time adversaries (possibly with non-uniform advice). Second, a noticeable error coming
from extraction does not affect the proof of non-malleability if we take the noticeable error to be
much smaller than the assumed MIM adversary’s advantage. Thus, we ignore the noticeable errors,
and assume that the error is negligible in the rest of this overview.

By using such a post-quantum WIAoK (as well as the post-quantum version of Naor’s commit-
ment Com and a post-quantum injective OWF f), we can see that the main technical part of the
security proof in the classical setting (the proof of Lem. 1) can be migrated to the post-quantum
setting almost immediately.

The only non-trivial issue is how to complete the reduction to the computational hiding of
Naor’s commitment, assuming (a post-quantum analog of) Lem. 1. In the classical setting, we rely
on a rewinding argument that is not applicable anymore whenM is a quantum machine (again, due
to the no-cloning theorem). Thus, we use a different argument here—We observe that the following
lemma, which is a generalization of [CCLY22, Lemma 4], suffices for this step.

Lemma 2 (Extract-and-Simulate Lemma (Informal)). Let G and K be QPT algorithms that
satisfy the following:12

1. K takes 1λ and a quantum state ρ as input and outputs some unique s∗ or otherwise ⊥.

2. For any noticeable function γ(λ), there exists a noticeable function δ(λ) such that for any
polynomial-size quantum state ρ, if

Pr
[
b = > : (b, ρout)← G(1λ, ρ)

]
≥ γ(λ),

11 A recent work by Lombardi, Ma, and Spooner [LMS21] gave such WIPoKs from super-polynomial hardness of
post-quantum OWFs.

12 In the formal version of this lemma (Lem. 20), G and K additionally take 1γ
−1

as input so that they can run
extractors with simulation errors depending on γ. We ignore this in this overview since we assume negligibly-close
simulation for simplicity.
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then

Pr
[
K(1λ, ρ) = s∗

]
≥ δ(λ).

Then, there exists a QPT algorithm SE such that for any polynomial-size quantum state ρ and
noticeable function ε = ε(λ),

{SE(1λ, 1ε
−1
, ρ)}λ

s
≈ε {(ρout, Γb(s∗)) : (b, ρout)← G(1λ, ρ)}λ (7)

where

Γb(s
∗) :=

{
s∗ if b = >
⊥ otherwise

.

The above lemma is a generalization of [CCLY22, Lemma 4] and can be proven in a similar
manner.13 We will explain the main intuition for this proof at the end of this subsection.

Assuming a post-quantum analog of Lem. 1, we can complete the reduction to the computational
hiding of Naor’s commitment by using Lem. 2 as follows: We let ρ be the state of the experiment
G1 (as defined in Fig. 3a, Sec. 2.1) right after finishing Step-2; Let G be the experiment that runs
the rest of G1 starting from the state ρ;14 At the end, G outputs the final state of M as ρout, and
outputs the final decision of the right receiver R as b. We define K as follows:

– Upon receiving a state ρ, simulate Gi for i
$←− [t̃].

– Extract a witness w̃ from the right WIPoK-2 of the simulated execution.

– If w̃ = (m̃, r̃) is a valid opening to c̃om, output m̃. Otherwise, output ⊥.

It is worth noting that K corresponds to the repeated steps in the rewinding argument in Sec. 2.1.
By construction, it is clear that K outputs m̃ whenever it does not output ⊥ (for an overwhelming
fraction of β̃ by the statistical binding property of Naor’s commitment). Therefore, it satisfies
Property 1 in Lem. 2 with s∗ := m̃ (for each fixed prefix). (We stress that we set s∗ = m̃ instead
of s∗ = (m̃, r̃) for ensuring the uniqueness of s∗ by the statistical binding property of Naor’s
commitment.) Moreover, noting that G1 is computationally indistinguishable from the real MIM
experiment, Lem. 1 implies that K also satisfies Property 2 in Lem. 2. Thus, there exists a machine
SE that satisfies Eq. (7) for s∗ = m̃. Using this SE , we can construct an adversary Ahiding against
the computational-hiding property of Naor’s commitment as follows.

Assuming that M breaks the non-malleability of our scheme w.r.t. a distinguisher D, we con-
struct an adversary Ahiding against the computational-hiding property of Naor’s commitment as
follows.

– Prefix Generation: Ahiding runs the real MIM experiment15 for an adversary M until Step-
2 finishes, where it embeds the instance of the hiding game of Naor’s commitment in the left
Step-2 while simulating other steps of the left C and the right R honestly. Let ρ be the state of
the experiment at this point.

– Extract-and-Simulate: It runs SE(1λ, 1ε
−1
, ρ) to extract m̃∗ while simulating the output ρout

of the experiment G1. We remark that it succeeds in extracting m̃∗ whenever R accepts in the
simulated experiment except for probability ε.

13 Indeed, such a generalized version was mentioned in the technical overview of [CCLY22].
14 Similar to the classical setting in Sec. 2.1, we stipulate that ρ does not include the left committer C’s internal state

STC at the end of Step-2 (otherwise, we cannot reduce non-malleability to the hiding of the left commitment).
This requirement is valid as the remaining steps of G1, which will be executed by G, do not depend on STC .

15 Remark that the real MIM experiment and G1 are identical until Step-2.
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– Decision: It runs the distinguisher D on ρout and m̃, and outputs whatever D outputs.

By Lem. 2, the (ρout, m̃) given to D is indistinguishable from that in G1 (up to an error ε), which
in turn is indistinguishable from that of the real MIM experiment. Since we have the freedom to
set ε to any arbitrarily small noticeable function, this completes the reduction.

Proof Idea of Lem. 2. We assume that ρ is a pure state w.l.o.g., and denote it by |ψ〉. By a
similar usage of Jordan’s lemma as in [CCY21, CCLY22], for any noticeable function δ(λ), we can
decompose |ψ〉 as |ψ〉 = |ψ<δ〉+ |ψ≥δ〉 such that

Pr
[
K(1λ, |ψ<δ〉) = s∗

]
< δ(λ) (8)

and

Pr
[
K(1λ, |ψ≥δ〉) = s∗

]
≥ δ(λ). (9)

By the contraposition of Property 2 of Lem. 2 and Eq. (8), it holds that

Pr
[
b = > : (b, ρout)← G(1λ, |ψ<δ〉)

]
< γ(λ),

where γ(λ) is a noticeable function that can be made arbitrarily small by taking sufficiently small
δ(λ). That is, G simply “rejects” (i.e., outputs b = ⊥) except for a small probability γ(λ), in which
case Γb(s

∗) = ⊥. The simulation of this case is easy because we do not need to extract s∗ except
for probability γ(λ), which can be made arbitrarily small. This shows Lem. 2 for the case where
|ψ〉 only has |ψ<δ〉 component.

On the other hand, by Eq. (9), we can extract s∗ from |ψ≥δ〉 with an overwhelming probability
if we can repeat K(1λ, |ψ≥δ〉) for Θ(δ(λ)−1λ) times. Though such a repetition is not possible in
general, the way of defining |ψ≥δ〉 (as explained in [CCLY22]) enables us to do so. As a result,
we can extract s∗ from |ψ≥δ〉 almost without disturbing the state by the Almost-as-Good-as-New
lemma [Aar05, Lemma 2.2] (a.k.a. the gentle measurement lemma), which shows Lem. 2 for the
case where |ψ〉 only has |ψ≥δ〉 component.

In the above, we separately analyze |ψ<δ〉 and |ψ≥δ〉. In fact, we can see from the way we define
them that they do not interfere with each other during the above described extraction procedure.
As a result, the case of a superposition of |ψ<δ〉 and |ψ≥δ〉 can be reduced to the above two cases.

See Lem. 20 for the formal statement of the lemma and Appx. A for the full proof.

2.4 Full-Fledged Post-Quantum Non-Malleable Commitments

To make 〈C,R〉OneSided
tg,PQ a full-fledged post-quantum non-malleable commitments, we need to re-

move the one-side, small-tag, and synchronous restrictions. Due to space constraints, we will only
briefly describe how to do that in this overview. We will provide more detailed overviews in the
corresponding sections in the main body.

Removing the One-Sided Restriction. Notice that the non-malleability proof of 〈C,R〉OneSided
tg

(and 〈C,R〉OneSided
tg,PQ ) makes use of the one-sided condition in both Step-3 and WIPoK-1. Let us

refer to these two steps as a Slot. As demonstrated in Sec. 2.1 , it is the asymmetry condition t < t̃
for this Slot that allows us to argue that the extracted w′ must contain the right committed value
m̃ with good-enough probability.

We can use the following (standard) approach to remove the one-sided restriction. We simply
repeat the Slot twice, sequentially. The first repetition, referred to as Slot-A, is identical to the
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original Slot; In particular, both parties use the tag t. The second repetition, referred to as Slot-B,
will instead use (n− t) as the tag.

Now, in a MIM execution, if t < t̃, we can perform the same non-malleable proof as in Sec. 2.1
(and Sec. 2.3) with Slot-A playing the role of Slot. Otherwise (i.e., t > t̃), it must hold that
(n− t) < (n− t̃); In this case, we can perform the non-malleable proof again, with Slot-B playing
the role of Slot. (Note that by the definition of non-malleability, we do not need to consider the
case t = t̃.)

Handling Asynchronous Schedules. First, we observe that the proof strategy used in Sec. 2.1,
which is for the synchronous setting, relies crucially on the following three conditions:

1. Both Step-1 and Step-2 in both the left and right sessions should finish before Step-3 in either
of the two sessions starts. This is because our security proof considers each fixed prefix, which
is the state right after the end of Step-2 (and before the start of Step-3).

2. The right WIPoK-2 should not be interleaved with the left WIPoK-1. This is because Gi
rewinds the left WIPoK-1; Meanwhile, we need to rewind the right WIPoK-2 to extract m̃.
We do not want these two parts to rewind each other recursively.

3. The left Step-3 should happen before the right WIPoK-2. This is because in machine K̂i,
brute-forcing is performed for the left Step-3; At the same time, we need to rely on the WI
property of the right WIPoK-2 to argue the similarity among all the K̂i’s for different i ∈ [t̃]
(i.e., Inequality (3)).

To prove non-malleability in the asynchronous setting, our strategy is to introduce more gadgets
into the protocol that enforce the above three conditions. As long as these conditions are satisfied,
we can then rely on essentially the same proof of non-malleability as in the synchronous case.

For example, to enforce the third condition above, we can add an extractable commitment
ExtCom between Step-3 and WIPoK-1, where C commits to m again (and additionally proves
in WIPoK-2 that he did it as required). Then, in the MIM execution, if the left Step-3 happens
after (the first message of) the right WIPoK-2, then the right ExtCom must happen before the left
Step-3. In this case, we can extract m̃ from the right ExtCom to finish the proof of non-malleability,
instead of performing the same proof as in Sec. 2.1. We will use similar ideas to enforce all the
conditions mentioned above.

Of course, in the real proof, we need to do the above argument for the two slot-version described
above in the Removing the One-Sided Restriction part. Moreover, whenever we add one more
gadget, cautions are needed to resolve new problems that it may cause by interacting with the
“already-introduced” gadgets in some undesirable way. We will elaborate on this in Sec. 6, where
we also provide a more detailed overview (in Sec. 6.1).

Tag Amplification. After the above two steps, we have already obtained a small-tag, asynchronous
post-quantum non-malleable commitment 〈C,R〉asynctg,PQ. As mentioned earlier, now we can apply

the [BLS22] tag amplifier. Here is one more caveat—The tag amplifier requires 〈C,R〉asynctg,PQ to
additionally satisfy a condition called robust extractability, which means that the extractability holds
even if the cheating committer interacts with an external bounded-round machine that cannot be
rewound. We show that our 〈C,R〉asynctg,PQ already satisfies it, thanks to the added instances of ExtCom
(which was introduced to handle asynchronous schedules originally). Thus, we can apply their tag
amplifier to our 〈C,R〉asynctg,PQ protocol to obtain the final full-fledged post-quantum non-malleable
commitment scheme.
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2.5 Organization

In Sec. 3, we present necessary notations and preliminaries.
In Sec. 4, we show the small-tag, one-sided, synchronous non-malleable commitment 〈C,R〉OneSided

tg

in the classical setting.
In Sec. 5, we remove the one-sided restriction, obtaining the small-tag, synchronous non-

malleable commitment 〈C,R〉synctg (still in the classical setting).
In Sec. 6, we show how to handle asynchronous schedules in the classical setting. This leads

to the small-tag, synchronous non-malleable commitment 〈C,R〉asynctg . As mentioned earlier, the
way we handle asynchronous schedules is quantum-friendly. We could have done this part directly
for the quantum version of 〈C,R〉synctg ; But we find that it conveys our ideas better to first show
the techniques in the classical setting, because it can avoid confusing the reader with quantum
phenomena that are orthogonal to the discussion of asynchronous schedules. Once one understands
our techniques for asynchronous schedules in the classical setting, it is easy to see why it extends
to the post-quantum setting.

In Sec. 7, we show a post-quantum extract-and-simulate lemma, which plays an important role
later when we quantize our classical proof of non-malleability.

In Sec. 8, we describe the full-fledged post-quantum non-malleable commitment. To do that,
we first show in Sec. 8.1 how to quantize the non-malleable proof of 〈C,R〉OneSided

tg . This gives its

post-quantum analog 〈C,R〉OneSided
tg,PQ (i.e., a small-tag, one-sided, synchronous, post-quantum non-

malleable commitment). Next, we describe in Sec. 8.2 how to remove the one-sided and synchronous
restrictions from 〈C,R〉OneSided

tg,PQ , to obtain the protocol 〈C,R〉asynctg,PQ; This step mimics the techniques

we used in the classical setting converting 〈C,R〉OneSided
tg to 〈C,R〉asynctg . Finally, in Sec. 8.3, we

obtain the final full-fledged post-quantum non-malleable commitment by applying the [BLS22] tag
amplifier to 〈C,R〉asynctg,PQ.

In Sec. 9, we show the application of our post-quantum commitments to post-quantum MPC.

3 Preliminaries

3.1 Basic Notations

Let λ ∈ N denote security parameter. For a positive integer n, let [n] denote the set {1, 2, ..., n}.
For a finite set X , x← X means that x is uniformly chosen from X .

A function f : N → [0, 1] is said to be negligible if for all polynomial p and sufficiently large
λ ∈ N, we have f(λ) < 1/p(λ); it is said to be overwhelming if 1 − f is negligible, and said to be
noticeable if there is a polynomial p such that f(λ) ≥ 1/p(λ) for sufficiently large λ ∈ N. We denote
by poly an unspecified polynomial and by negl an unspecified negligible function.

Honest (classical) parties are modeled as interactive Turing machines (ITMs). We use PPT and
QPT to denote (classical) probabilistic polynomial time and quantum polynomial time, respectively.
For a classical probabilistic or quantum algorithm A, y ← A(x) means that A is run on input x and
outputs y. An adversary (or malicious party) is modeled as a non-uniform PPT (or QPT in the case
of post-quantum security) algorithm. When we consider a non-uniform QPT adversary, we often
specify it by a sequence of polynomial-size quantum circuits with quantum advice {Aλ, ρλ}λ∈N. In
an execution with the security parameter λ, A runs Aλ taking ρλ as the advice. For simplicity, we
often omit the index λ and just write A(ρ) to mean a non-uniform QPT algorithm specified by
{Aλ, ρλ}λ∈N.

For an NP language L and a true statement in this language x ∈ L, we use RL(x) (R stands
for “relation”) to denote the set of all witnesses for x. We will refer to the OR-composition of NP
languages, which are defined in Def. 1.
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Definition 1 (OR-Composition of NP Languages). Let L1 and L2 be two NP languages.
The OR-composition of them (dubbed L1 ∨ L2) is the new NP language defined as follows:

L1 ∨ L2 := {(x1, x2) | x1 ∈ L1 ∨ x2 ∈ L2}.

Notations for Indistinguishability. We may consider random variables over bit strings or over
quantum states. This will be clear from the context. We use the same notations for classical and
quantum computational indistinguishability, but there should be no fear of confusion; It means
computational indistinguishability against PPT (resp. QPT) distinguishers whenever we consider
classical (resp. post-quantum) security. For ensembles of random variables X = {Xi}λ∈N,i∈Iλ and

Y = {Yi}λ∈N,i∈Iλ over the same set of indices I =
⋃
λ∈N Iλ and a function δ, we use X

c
≈δ Y to

mean that for any non-uniform PPT (resp. QPT) algorithm A, there exists a negligible function
negl(·) such that for all λ ∈ N, i ∈ Iλ, we have

|Pr[A(Xi)]− Pr[A(Yi)]| ≤ δ(λ) + negl(λ).

We say that X and Y are δ-computationally indistinguishable if the above holds. In particular,
when the above holds for δ = 0, we say that X and Y are computationally indistinguishable, and

simply write X
c
≈ Y.

Similarly, we use X
s
≈δ Y to mean that for any unbounded time algorithm A, there exists a

negligible function negl(·) such that for all λ ∈ N, i ∈ Iλ, we have

|Pr[A(Xi)]− Pr[A(Yi)]| ≤ δ(λ) + negl(λ).

In particular, when the above hold for δ = 0, we say that X and Y are statistically indistinguishable,

and simply write X
s
≈ Y. Moreover, we write X ≡ Y to mean that Xi and Yi are distributed

identically for all i ∈ I.
When we consider an ensemble X that is only indexed by λ (i.e., Iλ = {λ}), we write X = {Xλ}λ

for simplicity.

3.2 Commitment Schemes

We define (classically-secure and post-quantum) commitments. The following definitions are based
on those in [CCLY22].

Definition 2 (Commitment). A commitment scheme is a pair of PPT ITMs 〈C,R〉 that satis-
fies the following. Let m ∈ {0, 1}`(λ) (where `(·) is some polynomial) is a message that C wants to
commit to. The protocol consists of the following stages:

– Commit Stage: C(m) and R interact with each other to generate a transcript τ , a decommit-
ment decom as C’s private output, and a decision value bcom ∈ {>,⊥} as R’s private output.
We denote this execution by (τ, decom, bcom)← 〈C(m), R〉(1λ).

– Decommit Stage: C sends the committed message m and the decommitment decom to R, and
R outputs decision bdec ∈ {>,⊥}. We denote this execution by bdec ← Verify(τ,m, decom).16

W.l.o.g., we assume that whenever R rejects at the end of the commit stage (i.e., bcom = ⊥), R
will reject at the end of decommit stage (i.e., bdec = ⊥). (Note that w.l.o.g., one can think that
bcom is included in τ , because we can always modify the protocol to ask R to send bcom as the
last-round message of the commit stage.)

16 We assume that there is no state information for R kept from the commit stage.
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The scheme satisfies the following completeness requirement:

1. Completeness. For any polynomial ` : N→ N and any m ∈ {0, 1}`(λ), it holds that

Pr

[
bcom = bdec = > :

(τ, decom, bcom)← 〈C(m), R〉(1λ)
bdec ← Verify(com,m, decom)

]
= 1.

Definition 3 (Computationally Hiding). A commitment scheme 〈C,R〉 is computationally
hiding if for any non-uniform PPT receiver R∗ and any polynomial ` : N→ N, the following holds:{

OUTR∗〈C(m0), R∗〉(1λ)
}
λ∈N, m0,m1∈{0,1}`(λ)

c
≈
{
OUTR∗〈C(m1), R∗〉(1λ)

}
λ∈N, m0,m1∈{0,1}`(λ) ,

where OUTR∗〈C(mb), R
∗〉(1λ) (b ∈ {0, 1}) denotes the output of R∗ at the end of the commit stage.

We say that 〈C,R〉 is post-quantum computationally hiding if the above holds for all non-
uniform QPT R∗.

Definition 4 (Statistically Binding). A commitment scheme 〈C,R〉 is statistically binding if
for any unbounded-time committer C∗, the following holds:

Pr

[
∃ m0,m1, decom0, decom1, s.t. m0 6= m1 ∧
Verify(τ,m0, decom0) = Verify(τ,m1, decom1) = > : (τ, decom, bcom)← 〈C∗, R〉(1λ)

]
= negl(λ).

Definition 5 (Committed Values). For a commitment scheme 〈C,R〉, we define the value
function as follows:

val(τ) :=

{
m if ∃ unique m s.t. ∃ decom,Verify(τ,m, decom) = 1

⊥ otherwise
,

where τ and decom are defined in the commit stage in Def. 2.

3.3 Non-Malleable Commitments

Classically Non-Malleable Commitments. We first define non-malleable commitments in the
classical setting. This definition follows the formalization in [LPV08, GPR16]. We consider a man-
in-the-middle adversary M interacting with a committer C in the left, and a receiver R in the
right. We denote the relevant entities used in the right interaction as the “tilde’d” version of the
corresponding entities on the left. In particular, suppose that C commits to m in the left interaction,
and M commits to m̃ on the right, i.e., we set m̃ = val(τ̃) where τ̃ is the transcript of the right
session. Let mimM〈C,R〉(λ,m, z) denote the random variable that is the pair (OUTM, m̃), consisting

ofM’s output as well as the value committed to byM on the right (assuming C commits to m on
the left), where z isM’s non-uniform advice. We use a tag-based (or “identity-based”) specification,
and ensure thatM uses a distinct tag t̃ on the right from the tag t it uses on the left. This is done
by stipulating that mimM〈C,R〉(λ,m, z) outputs a special value ⊥tag when M uses the same tag in
both the left and right executions. The reasoning is that this corresponds to the uninteresting case
when M is simply acting as a channel, forwarding messages from C on the left to R on the right
and vice versa.

Definition 6 (Classical Non-Malleable Commitments). A commitment scheme 〈C,R〉 is
said to be (classically) non-malleable if for every (non-uniform) PPT man-in-the-middle adversary
M and every polynomial ` : N→ N, it holds that{

mimM〈C,R〉(λ,m0, z)
}
λ∈N,m0,m1∈{0,1}`(λ),z∈{0,1}∗

c
≈
{
mimM〈C,R〉(λ,m1, z)

}
λ∈N,m0,m1∈{0,1}`(λ),z∈{0,1}∗ .
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Post-Quantum Non-Malleable Commitments. In the post-quantum setting, non-malleability
can be defined similarly, except that the man-in-the-middle adversary can be QPT, instead of being
PPT. (In particular, the final output of the adversary could be a quantum state.) To avoid using
confusing notations, we put an over-line on top of the variable mim in the post-quantum setting.

Definition 7 (Post-Quantum Non-Malleable Commitments). A commitment scheme 〈C,R〉
is said to be post-quantumly non-malleable if for every (non-uniform) QPT man-in-the-middle ad-
versary M = {Mλ, ρλ}λ∈N and every polynomial ` : N→ N, it holds that{

mim
Mλ

〈C,R〉(λ,m0, ρλ)
}
λ∈N,m0,m1∈{0,1}`(λ)

c
≈
{
mim

Mλ

〈C,R〉(λ,m1, ρλ)
}
λ∈N,m0,m1∈{0,1}`(λ) .

where “
c
≈” refers to computational indistinguishability against QPT distinguishers.

Remark 1 (On Entangled Auxiliary Information.). The above definition does not consider entan-
glement between M’s auxiliary input and distinguisher’s auxiliary input. However, [BLS22, Claim
3.1] shows that the above definition implies the version that considers such entanglement.

Synchronous Adversaries: This notion refers to man-in-the-middle adversaries who upon receiv-
ing a message in the left (reps. right) session, immediately respond with the corresponding message
in the right (resp. left) session. An adversary is said to be asynchronous if it is not synchronous.

3.4 Extractable Commitments

Classically Extractable Commitments. A commitment scheme is extractable if there exists
an efficient extractor such that, the committed value can be extracted. We present the definition
in Def. 8, which is taken from [PW09]. Constant-round constructions of (classically) extractable
commitments are known from OWFs [PW09].

Definition 8 (Classically Extractable Commitments). A commitment ExtCom = 〈C,R〉 is
extractable if there exists an expected polynomial-time probabilistic oracle machine (the extractor)
E that given oracle access to any PPT cheating committer C∗ outputs a pair (τ, σ∗) such that:

– Simulation: τ is identically distributed to the view of C∗ at the end of interacting with an honest
receiver R in commitment phase.

– Extraction: the probability that τ is accepting and σ∗ = ⊥ is negligible.

– Binding: if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value other than σ∗.

Post-Quantum (Robust) Extractable Commitments. We define the post-quantum analog of
extractable commitments. In the post-quantum setting, we often need an extractor that (almost)
does not disturb the (potentially malicious) committer’s state during the extraction. However, it is
not known that such a post-quantum extractable commitments exist from (polynomially hard) post-
quantum OWFs.17 Fortunately, a recent work [CCLY22] showed that a constant-round construction
from post-quantum OWFs is possible if we relax the extractability to allow an (arbitrarily small)
noticeable simulation error. The following definitions are taken from [BLS22] with some notational
adaptations.

17 A recent work of [LMS21] gave a constant-round construction of such extractable commitments from super-
polynomial hardness of post-quantum OWFs.
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Let 〈C,R〉 be a (possibly tag-based) commitment scheme. A sequential committed-value ora-
cle O∞[〈C,R〉] acts as follows in interaction with a committer C∗: it interacts with C∗ in many
sequential sessions; in each session,

– it participates with C∗ in the commit phase of 〈C,R〉 as the honest receiver R (using a tag chosen
adaptively by C∗), obtaining a transcript τ , and

– if C∗ is non-aborting in the commit phase and sends request break, it returns val(τ).

The single-session oracle O1[〈C,R〉] is similar to O∞[〈C,R〉], except that it interacts with the
adversary in a single session. When the commitment scheme is clear from the context, we write
O∞ (or O1) for simplicity.

Then, the definition of post-quantum ε-simulatable commitment is given below.

Definition 9 (Post-Quantum ε-Simulatable Extractable Commitment). A commitment
scheme 〈C,R〉 is said to be a post-quantum ε-simulatable extractable commitment if it satisfies
the following in addition to post-quantum computational hiding and statistical binding. There ex-
ists a QPT algorithm SE such that for any noticeable ε(λ) and any non-uniform QPT committer
{C∗λ, ρλ}λ∈N, {

SE(1λ, 1ε
−1
, C∗λ, ρλ)

}
λ∈N

c
≈ε
{
C∗λ

O∞(ρλ)
}
λ∈N,

where “
c
≈ε” refers to ε-close computational indistinguishability against QPT distinguishers.

Lemma 3 ([CCLY22, Lemma 10]). Assuming the existence of post-quantum OWFs, there exist
constant-round post-quantum ε-simulatable extractable commitments.

Remark 2. The ε-simulatable extractability as defined in Def. 9 is called post-quantum strong ε-
simulatable extractability in [CCLY22]. Though their definition looks different from Def. 9, they
are actually equivalent—First, it is easy to see that Def. 9 is equivalent to a modified version of
Def. 9 where we give O1 instead of O∞. Second, [BLS22, Lemma 3.2] shows that the O1 and O∞

versions of Def. 9 are equivalent.

We also define the robust version of the above definition following [BLS22]. Roughly speaking,
r-robust ε-simulatable extractability means that the ε-simulatable extractability holds even if the
adversary interacts with an external r-round interactive machine that cannot be rewound by the
extractor. The formal definition is given below.

Definition 10 (Post-Quantum r-Robust ε-Simulatable Extractable Commitment). A
commitment scheme 〈C,R〉 is said to be a post-quantum r-robust ε-simulatable extractable com-
mitment if it satisfies the following in addition to post-quantum computational hiding and statistical
binding. There exists a QPT algorithm SE such that for any noticeable ε(λ), non-uniform QPT
committer {C∗λ, ρλ}λ∈N, and r-round interactive machine B,{
OUTSE〈B(1λ, z),SE(1λ, 1ε

−1
, C∗λ, ρλ)〉

}
λ∈N,z∈{0,1}∗

c
≈ε
{
OUTC∗λ〈B(1λ, z), C∗λ

O∞(ρλ)〉
}
λ∈N,z∈{0,1}∗

where “
c
≈ε” refers to ε-close computational indistinguishability against QPT distinguishers.

3.5 Witness-Indistinguishable Proofs of Knowledge

Classically Witness-Indistinguishable Proofs of Knowledge. First, we provide a definition
from [Gol01, Lin03].
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Definition 11 (Proofs of Knowledge [Gol01, Lin03]). Let L be an NP language and κ :
N→ [0, 1]. We say that a pair of PPT ITMs 〈P, V 〉 is an interactive proof of knowledge for L with
knowledge error κ if the following two conditions hold:

1. Completeness. For every true statement x ∈ L and every witness w ∈ RL(x), it holds that

Pr[OUTV 〈P (w), V 〉(x) = >] = 1.

2. Validity (with error κ). There exists a polynomial q(·) and a probabilistic oracle machine K
such that for every P ∗, and every x, z, r ∈ {0, 1}∗, machine K satisfies the following condition:

Denote by p(x, z, r) the probability that V (x) accepts when interacting with the prover
specified by P ∗(x, z; r). If p(x, z, r) > κ(|x|), then, on input x and with oracle access to
oracle P ∗(x, z; r), K outputs a solution w ∈ RL(x) within an expected number of steps

bounded by q(|x|)
p(x,z,r)−κ(|x|) .

We present an alternative formalism of knowledge soundness called witness-extended emulation
due to Lindell [Lin03]. This formalism turns out to be more suitable for our application.

Definition 12 (PoK via Witness-Extended Emulation [Lin03]). Let L be an NP language
and κ : N → [0, 1]. We say that a pair of ITMs 〈P, V 〉 is an interactive proof of knowledge for L
with witness-extended emulation if it satisfies the same completeness requirement as in Def. 11, and
the following requirement: There exists an expected PPT oracle machine WE, called the emulation-
extractor, such that for any machine P ∗ the following conditions hold

1. {(ST′P ∗ , b′) : (ST′P ∗ , b
′, w′)←WEP ∗(x,z;r)(x)}λ,x,z,r ≡ {(STP ∗ , b) : (STP ∗ , b)← 〈P ∗(x, z; r), V (x)〉}λ,x,z,r,

where in the RHS above, STP ∗ and b denote the state of P ∗ and output of V respectively, at the
end of the execution 〈P ∗(x, z; r), V (x)〉.

2. Pr
[
b′ = 1 ∧ w′ /∈ RL(x) : (ST′P ∗ , b

′, w′)←WEP ∗(x,z;r)(x)
]

= negl(|x|).

The following lemma connects Def. 12 with Def. 11.

Lemma 4 ([Lin03, Lemma 3.1]). Let 〈P, V 〉 be a proof of knowledge for L ∈ NP with negligible
knowledge error. Then, 〈P, V 〉 is also a proof of knowledge for L with witness-extended emulation.

Next, we define witness indistinguishable proof of knowledge:

Definition 13 (WIPoKs). A witness-indistinguishable proof of knowledge for an NP language
L is a proof of knowledge for L with witness extended emulation (as per Def. 12) which additionally
satisfies the following property

– Witness-Indistinguishability. For any non-uniform PPT machine V ∗, we have

{OUTV ∗〈P (w0), V ∗〉(x)}λ,x,w0,w1

c
≈ {OUTV ∗〈P (w1), V ∗〉(x)}λ,x,w0,w1 ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w0, w1 ∈ RL(x).

It is well-known that constant-round witness-indistinguishable proofs of knowledge (as per
Def. 13) can be built from one-way functions.

Post-Quantum Witness-Indistinguishable Arguments of Knowledge We define a post-
quantum analog of the WIPoKs described in Def. 13. A natural way to do so is to just replace all
adversaries with any QPT algorithms. More precisely, we require that the witness indistinguishabil-
ity holds against QPT distinguishers and that the knowledge extractor extracts a witness without

23



disturbing the prover’s state. However, a constant-round construction for such WIPoKs is not
known based on (polynomially hard) post-quantum OWFs.18 Fortunately, a recent work [CCLY22]
showed that a constant-round construction from post-quantum OWFs is possible if we relax the
proof of knowledge via witness-extended emulation to argument of knowledge via witness-extended
ε-close emulation, where a cheating prover is limited to QPT and a (arbitrarily small) noticeable
simulation error is allowed. A formal definition of such post-quantum WIAoKs is given below.

Definition 14 (Post-Quantum WIAoK with ε-Close Emulation). Let L be an NP lan-
guage. We say that a pair of PPT ITMs 〈P, V 〉 is a post-quantum witness-distinguishable arguments
of knowledge with ε-close emulation for L if the following three conditions hold:

1. Completeness. For every (x,w) ∈ L, it holds that

Pr[OUTV 〈P (w), V 〉(x) = >] = 1.

2. AoK via Witness-Extended ε-Close Emulation. There exists a QPT oracle machine WE,
called the witness-extended emulator, such that for any non-uniform QPT machine {P ∗λ , ρλ}λ∈N
the following conditions hold: for any noticeable function ε(·) (referred to as the error parameter),

(a) {(ST′P∗ , b′) : (ST′P∗ , b
′, w′)←WE(1ε

−1
, P ∗λ , ρλ, x)}λ,x

c
≈ε {(STP∗ , b) : (STP ∗ , b)← 〈P ∗λ (ρλ), V (x)〉}λ,x

where λ ∈ N, x ∈ {0, 1}λ, and “
c
≈ε” refers to ε-computational indistinguishability against

QPT distinguishers;

(b) Pr
[
b′ = 1 ∧ w′ /∈ RL(x) : (ST′P∗ , b

′, w′)←WE(1ε
−1
, P ∗λ , ρλ, x)

]
= 0,19

where (STP ∗ , b)← 〈P ∗λ (ρ∗λ), V (x)〉 means that STP ∗ is the final state of P ∗λ and b is the decision
output by V .

3. Witness-Indistinguishability. For any non-uniform QPT machine {V ∗λ , ρλ}λ∈N, we have

{OUTV ∗λ 〈P (w0), V ∗λ (ρλ)〉(x)}λ,x,w0,w1

c
≈ {OUTV ∗λ 〈P (w1), V ∗λ (ρλ)〉(x)}λ,x,w0,w1 ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w0, w1 ∈ RL(x), and “
c
≈” refers to computational indistinguisha-

bility against QPT distinguishers.

The work of [CCLY22] gives a constant-round construction of post-quantum ε-zero-knowledge
arguments of knowledge from post-quantum OWFs. Since ε-zero-knowledge implies witness indis-
tinguishability, we have the following lemma.

Lemma 5 ([CCLY22, Corollary 2]). Assuming the existence of post-quantum OWFs, there exist
constant-round post-quantum witness-indistinguishable arguments of knowledge as per Def. 14.

4 Small-Tag, One-Sided, Synchronous, Classical Setting

In this section, we show the small-tag, one-sided, synchronous non-malleable commitment scheme
〈C,R〉OneSided

tg in the classical setting. Though our final goal is to construct post-quantum non-
malleable commitments, we give a classically-secure construction here since the security proof for
its post-quantum version 〈C,R〉OneSided

tg,PQ (in Appx. B) is very similar to that in the classical case
except for one step where we rely on the extract-and-simulate lemma (Lem. 20).

18 A recent work of [LMS21] gave such WIPoKs from super-polynomial hardness of post-quantum OWFs.
19 We can assume the probability is 0 instead of negl(|x|) without loss of generality. If the probability is negl(|x|), we

can modify WE to output b′ = 0 whenever w′ /∈ RL(x). This only negligibly affects the distribution in the LHS of

Condition 2a, which can be absorbed into
c
≈ε.
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4.1 Construction of 〈C,R〉OneSided
tg

An intuitive explanation of this construction is already provided in Sec. 2.1. We now present the
formal description in Prot. 1. This construction is based on the following building blocks:

– An injective OWF f ; To convey the main idea better, we first present the construction assuming
the existence of injective OWFs. We explain how to relax the assumption to the existence to any
OWFs in Sec. 4.8.

– Naor’s commitment; We use β to denote the first message for Naor’s commitment, and Comβ(m; r)
to denote the second message where a string m is committed using randomness r.

– A witness-indistinguishable proof of knowledge WIPoK.

Protocol 1: Small-Tag One-Sided Synchronous NMCom 〈C,R〉OneSided
tg

The tag space is defined to be [n] where n is a polynomial on λ. Let t ∈ [n] be the tag for the
following interaction. Let m be the message to be committed to.

Commit Stage:

1. Receiver R samples and sends the first message β for Naor’s commitment;

2. Committer C commits to m using the second message of Naor’s commitment. Formally, C
samples a random tape r and sends com = Comβ(m; r);

3. R computes {yi = f(xi)}i∈[t] with xi
$←− {0, 1}λ for each i ∈ [t]. R sends Y = (y1, . . . , yt) to C;

4. (WIPoK-1.)a R and C execute an instance of WIPoK where R proves to C that he “knows”
the pre-image of some yi contained in Y (defined in Step 3). Formally, R proves that Y ∈ Ltf ,
where

Ltf := {(y1, . . . , yt) | ∃(i, xi) s.t. i ∈ [t] ∧ yi = f(xi)}. (10)

Note that R uses (1, x1) as the witness when executing this WIPoK.

5. (WIPoK-2.) C and R execute an instance of WIPoK where C proves to R that he “knows”
either the message committed in com (defined in Step 2), or the pre-image of some yi contained
in Y (defined in Step 3). Formally, C proves that (com, Y ) ∈ Lβ ∨ Ltf , where Lβ ∨ Ltf denotes

the OR-composed language (as per Def. 1), Ltf was defined in Language (10) and

Lβ := {com | ∃(m, r) s.t. com = Comβ(m; r)}. (11)

Note that C uses the (m, r) defined in Step 2 as the witness when executing this WIPoK.

Decommit Stage: C sends (m, r). R accepts if com = Comβ(m; r), and rejects otherwise.

a We assume that the first round of this step goes to the opposite direction to Step 3. This is true for typical
WIPoK constructions. See Rmk. 3 for more details.

Remark 3 (Inserting an ACK round if necessary). In Prot. 1, we emphasize that Step 3 and the
first message of Step 4 should be separated, i.e., they cannot be combined into one round even if the
first message of Step 4 happens to go from R to C as well, which may be possible depending on the
choice of WIPoK protocols instantiating Step 4. In that case, one can simply insert a dummy round
right after Step 3, where C sends an “ACK” symbol to acknowledge the reception of Step 3; Only
then will R starts the execution of Step 4. This is necessary because some steps in our security
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proof need to non-uniformly fix the execution up to the closing of Step 3, and make use of the
(non-uniform) WI property of Step 4.

Security. Completeness is straightforward from the description of Prot. 1. The statistical binding
property follows from that of Naor’s commitment. Computational-hiding property of any non-
malleable commitment scheme follows directly from its non-malleability. So, we only need to prove
the non-malleability of our protocol, which is established by the following theorem.

Theorem 2. The commitment scheme 〈C,R〉OneSided
tg in Prot. 1 is non-malleable against one-sided

synchronous PPT adversaries with tag space [n], with n being any polynomial on λ.

We prove Thm. 2 in subsequent subsections.

Structure of the Proof of Thm. 2. Since the proof of Thm. 2 is lengthy, we provide a road map here.
We prove Thm. 2 in Sec. 4.2 to 4.7. In each subsection, we introduce a lemma or claim whose proof
is deferred to the next subsection. Specifically,

– In the rest of Sec. 4.2, we prove Thm. 2 assuming that Lem. 6 is correct.

– In Sec. 4.3, we prove Lem. 6 assuming that Lem. 7 is correct.

– In Sec. 4.4, we prove Lem. 7 assuming that Lem. 9 is correct.

– In Sec. 4.5, we prove Lem. 9 assuming that Lem. 10 is correct.

– In Sec. 4.6, we prove Lem. 10 assuming that Claim 10 is correct.

– In Sec. 4.7, we prove Claim 10.

Putting everything together, we complete the proof of Thm. 2.

Remark 4. We remark that the proof of Lem. 7 is the only step that cannot be directly translated to
the post-quantum setting. Looking ahead, the post-quantum counterpart of this step (i.e., Lem. 29)
will make use of a new post-quantum extract-and-simulate lemma, which we state and prove in Sec. 7.

Moreover, we provide a moderately-detailed summary of this proof in Sec. 4.9, with the hope
to further elucidate the logic flow behind the proof of Thm. 2. It is recommended that the reader
start reading Sec. 4.9 after he/she has read Sec. 4.2 to 4.8 (at least once), because Sec. 4.9 uses
several notations defined in preceding subsections.

4.2 Proving Non-Malleability (Proof of Thm. 2)

In the rest of this section, we write 〈C,R〉 to mean 〈C,R〉OneSided
tg for notational simplicity. To prove

Thm. 2, let us first define the game that captures the man-in-the-middle execution corresponding
to mimM〈C,R〉(λ,m, z) w.r.t. the 〈C,R〉 defined in Prot. 1.

Game HM(λ,m, z): This is the man-in-the-middle execution of the commit stage of the 〈C,R〉
defined in Prot. 1, where the left committer commits to m and M’s non-uniform advice is z. The
output of this game consists of the following three parts:

1. OUTM: this is the output of M at the end of this game;

2. τ̃ : this is defined to be τ̃ := (β̃, c̃om), where β̃ and c̃om are the Step 1 and Step 2 messages
exchanged between M and the honest receiver R (i.e., in the right session);

3. b ∈ {>,⊥}: this is the output of the honest receiver R, indicating if the man-in-the-middle’s
commitment (i.e., the right session) is accepted (b = >) or not (b = ⊥).
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Notation. For any (OUTM, τ̃ , b) in the support of HM(λ,m, z), the following valb(τ̃) defines the
value committed in the man-in-the-middle’s commitment (i.e., the right session):

valb(τ̃) :=

{
val(τ̃) b = >
⊥ b = ⊥

, (12)

where val(τ̃) denote the value statistically-bound in Steps 1 and 2 of the right session. (Recall
that these two steps constitute a Naor’s commitment.) Also, throughout this paper, we assume for
simplicity that Naor’s commitment is perfectly binding (instead of only statistically binding). This
assumption only suppresses an additive error of negligible amount in relevant lemmas, which will
not affect any of our results.

By definition, it is easy to see that:{
mimM〈C,R〉(λ,m, z)

} i.d.
==

{(
OUTM, valb(τ̃)

)
: (OUTM, τ̃ , b)← HM(λ,m, z)

}
, (13)

where both ensembles are indexed by λ ∈ N, m ∈ {0, 1}`(λ), and z ∈ {0, 1}∗.
Therefore, to prove that Prot. 1 satisfies Def. 6, it suffices to show the following:{(

OUT0
M, valb0(τ̃0)

)
: (OUT0

M, τ̃
0, b0)← HM(λ,m0, z)

}
c
≈
{(

OUT1
M, valb1(τ̃1)

)
: (OUT1

M, τ̃
1, b1)← HM(λ,m1, z)

}
, (14)

where both ensembles are indexed by λ ∈ N, (m0,m1) ∈ {0, 1}`(λ) × {0, 1}`(λ), and z ∈ {0, 1}∗.

Proof by Contradiction. Our high-level strategy is proof by contradiction. We assume for con-
tradiction that there are a (possibly non-uniform) PPT machine D and a function δ(λ) = 1/poly(λ)
such that for infinitely many λ ∈ N,∣∣∣∣Pr

[
D
(
1λ,OUT0

M, valb0(τ̃0)
)

= 1
]
− Pr

[
D
(
1λ,OUT1

M, valb1(τ̃1)
)

= 1
]∣∣∣∣ ≥ 3 · δ(λ), (15)

where the first probability is taken over the random procedure (OUT0
M, τ̃

0, b0) ← HM(λ,m0, z)
and the second probability is taken over the random procedure (OUT1

M, τ̃
1, b1)← HM(λ,m1, z).

We then show the following lemma:

Lemma 6. There exists a hybrid G such that for any PPT M and the δ(λ) defined above, the
following holds

1.
{

(OUT0,Val0) : (OUT0,Val0)← GM(λ,m0, z)
} c
≈
{

(OUT1,Val1) : (OUT1,Val1)← GM(λ,m1, z)
}

,

where both ensembles are indexed by λ ∈ N, (m0,m1) ∈ {0, 1}`(λ) × {0, 1}`(λ), and z ∈ {0, 1}∗.

2.
{

(OUTG,ValG) : (OUTG,ValG)← GM(λ,m, z)
} c
≈δ(λ)

{(
OUTH , valbH (τ̃H)

)
: (OUTH , τ̃H , bH)← HM(λ,m, z)

}
,

where both ensembles are indexed by λ ∈ N, m ∈ {0, 1}`(λ), and z ∈ {0, 1}∗.

It is easy to see that if Lem. 6 is true, it contradicts our assumption in Inequality (15). Thus, it
will finish the proof of non-malleability. Indeed, this lemma is the most technically involved part.
We prove it in Sec. 4.3.

4.3 Proof of Lem. 6

First, we provide a new but equivalent interpretation of the game HM(λ,m, z) in Algo. 4.1,. (We
also provide a picture in Fig. 4a to illustrate it.)
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Algorithm 4.1: Re-interpretation of Game HM(λ,m, z)

Game HM(λ,m, z) can be split into the following stages:

1. Prefix Generation: First, execute Steps 1 and 2 of the man-in-the-middle game of Prot. 1.
That is, it plays as the left honest committer committing to m and the right honest receiver,
with M(1λ, z) being the man-in-the-middle adversary.

Notation: Let stM denote the state of M at the end of Step 2; Let stC (resp. stR) denote the
state of the honest committer (resp. receiver) at the end of Step 2; Let τ̃ = (β̃, c̃om)a and
τ = (β, com). In terms of notation, we denote the execution of this stage by

(stM, stC , stR, τ, τ̃)← HMpre(λ,m, z). (16)

We will call the tuple (stM, stC , stR, τ, τ̃) the prefix and denote it by pref. It is worth noting that
this pref contains all the information such that a PPT machine can “complete” the remaining
execution of HM(λ,m, z) starting from pref.

2. The Remainder: Next, it simply resumes from where the Prefix Generation stage stops,
to finish the remaining steps of the man-in-the-middle execution HM(λ,m, z).

Notation: We introduce the following notations to describe this stage. Define a PPT machine
A that takes as input (stM, τ̃); Machine A is supposed to run the residual strategy of M
starting from stM. Also, define a PPT machine B that takes as input (stC , stR, τ̃); Machine B
is supposed to run the residual strategies of the honest committer C and receiver R, starting
from stC and stR respectivelyb. With the above notations, we can denote the execution of the
remaining steps of HM(λ,m, z) by

(OUTA, b)← 〈A(stM),B(stC , stR)〉(1λ, τ̃), (17)

where OUTA is the output of A, and b ∈ {⊥,>} is the output of the honest receiver R (in the
right), indicating if the man-in-the-middle’s commitment (i.e., the right session) is accepted
(b = >) or not (b = ⊥). (We remark that OUTA is nothing but the man-in-the-middle M’s
final output.)

3. Output: It outputs the tuple (OUTA, τ̃ , b).

a Recall that β̃ and c̃om are the Steps 1 and 2 messages in the right session; They constitute an execution
of Naor’s commitment.

b Note that it is actually redundant to give τ̃ as common input to these parties—It can be included in stM
and stR. We choose to make τ̃ explicit for notational convenience.

We claim the following lemma regarding Algo. 4.1.

Lemma 7. Let HMpre(λ,m, z), A, B be as defined in Algo. 4.1. There exists a PPT machine SE
(the simulation-extractor) such that for any (stM, stC , stR, τ, τ̃) in the support of HMpre(λ,m, z), any
noticeable ε(λ), it holds that{

(OUTSE ,ValSE) : (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃)

}
λ∈N

c
≈ε(λ)

{(
OUTA, valb(τ̃)

)
: (OUTA, b)← 〈A(stM),B(stC , stR)〉(1λ, τ̃)

}
λ∈N

Remark 5. The third output bSE of SE is redundant in the above lemma. We include it in the
output of SE for convenience in the proof of this lemma in Sec. 4.4.
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Lem. 7 is the main technical lemma for the current proof of Lem. 6. We present its proof in
Sec. 4.4. In the following, we finish the proof of Lem. 6 assuming that Lem. 7 is true.

Now, we are ready to present the description of G as required by Lem. 6.

Algorithm 4.2: Hybrid GM(λ,m, z)

This hybrid proceeds as follows:

1. Prefix Generation: This stage is identical to Stage 1 of HM(λ,m, z). Formally, it executes

(stM, stC , stR, τ, τ̃)← HMpre(λ,m, z),

where HMpre(λ,m, z) is defined in Stage 1 of Algo. 4.1.

2. The Remainder: Define A in the same way as in Stage 2 of HM(λ,m, z). With this A and
the (stM, stR, τ, τ̃) from the previous stage, GM(λ,m, z) invokes the SE prescribed in Lem. 7.
Formally, it executes the following procedure:

(OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1δ
−1
, stR, τ, τ̃),

where the δ is the statistical distance that we want to show for Property 2 of Lem. 6.

Remark 6. We emphasize that in this stage, GM(λ,m, z) does not make use of stC .

3. Output: It outputs (OUTSE ,ValSE).
a

a Note that bSE is not included in the output of G. Indeed, bSE is not important for the current machine

GM(λ,m, z). We choose to include it in the output of SEA(stM)(1λ, 1δ
−1

, stR, τ̃) only for notational conve-
nience when we define/prove properties about SE itself.

Proving Property 1 of Lem. 6. Observe that hybrid GM(λ,m, z) is an efficient machine because
both HMpre(λ,m, z) and SEA(stM)(1λ, 1δ

−1
, stR, τ, τ̃) are efficient. Moreover, it does not rewind Steps 1

and 2 of the man-in-the-middle execution, and SEA(stM)(1λ, 1δ
−1
, stR, τ, τ̃) does not need to know

stC . Therefore, Property 1 of Lem. 6 follows immediately from the computational-hiding property
of the left Naor’s commitment (i.e., Steps 1 and 2 in the left session).

Proving Property 2 of Lem. 6. First, observe that the distribution of the prefix (stM, stC , stR, τ, τ̃)
is identical in GM(λ,m, z) and HM(λ,m, z). For each fixed prefix, Lem. 7 implies that GM(λ,m, z)
and HM(λ,m, z) are δ(λ)-computationally indistinguishable where we remark that GM(λ,m, z)
runs SE with the second input 1δ

−1
. This immediately implies Property 2 of Lem. 6.

4.4 Proof of Lem. 7

Now, we prove Lem. 7 by constructing the required machine SE . Our machine SE (for Lem. 7) will
make use of two machines: (1) a G1 that simulates the main-thread, and (2) an extractor K that
extracts the value committed in τ̃ . Thus, in the following, we will first define these two machines,
and then present the description of SE in Algo. 4.3.

First, we describe a machine G1 that simulates the real execution without using stC .

Machine G1: (Illustrated in Fig. 4b) For any prefix pref, G1(stM, stR, τ, τ̃) behaves identically to
Stage 2 of HM(λ,m, z) shown in Algo. 4.1 (and depicted in Fig. 4a), except for the following
difference: Instead of executing the left WIPoK-1 honestly, it uses the witness-extended emulator
WE (as per Def. 12) of the left WIPoK-1 to extract a witness, and
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Fig. 4: Machines HM and G1 (Difference is highlighted in red color)

– If the left committer accepts the left WIPoK-1 and the extracted witness is valid (i.e., it is a
(j, xj) pair such that yj = f(xj) for some j ∈ [t]), G1 uses (j, xj) to finish the left WIPoK-2.
Similarly to HM(λ,m, z), G1 eventually outputsM’s final state and the right receiver’s decision
bit b;

– If the left committer accepts the left WIPoK-1 but the extracted witness is invalid, it aborts
immediately and outputs (⊥,⊥).

– If the left committer rejects the left WIPoK-1, it runs the rest of execution of HM(λ,m, z) to
output M’s final state and the right receiver’s decision bit b. Note that it does not need to run
the left WIPoK-2 in this case since the left committer aborts after the left WIPoK-1.

We denote the above procedure by (OUT, b) ← G1(stM, stR, τ, τ̃). It is worth noting that G1 does
not need to know stC .

Remark 7 (Precise Meaning of Extraction). In the above description of G1, we say that “it uses
the witness-extended emulator of the left WIPoK-1 to extract a witness”. More accurately, this
means the following: We consider a cheating prover against the left WIPoK-1 that takes as advice
the states of M and the right receiver right before the start of the left WIPoK-1, interacts with
the left committer by simulating M and the right receiver, and outputs the states of M and the
right receiver at the end of the left WIPoK-1. Machine G1 runs the witness-extended emulator of
the left WIPoK-1 (as per Def. 12) w.r.t. the this cheating prover to simulate the states ofM and
the right receiver right at the end of the left WIPoK-1, the decision bit of the left WIPoK-1 of
the left committer, while extracting a (candidate of) witness of Ltf . We will use similar convention
many times throughout this paper.

Next, we prove a lemma that shows that G1 simulates the real MIM execution.

Lemma 8. For the HMpre(λ,m, z), A, and B defined in Algo. 4.1, for any pref = (stM, stC , stR, τ, τ̃)

in the support of HMpre(λ,m, z), it holds that{(
OUT, b

)
: (OUT, b)← G1(stM, stR, τ, τ̃)

}
λ∈N

c
≈
{(

OUTA, b
)

: (OUTA, b)← 〈A(stM),B(stC , stR)〉(1λ, τ̃)
}
λ∈N.

Proof. We first define a hybrid machine G′1 below.
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Fig. 5: Machine G′1 (Difference with G1 is highlighted in red color)

Machine G′1: (Illustrated in Fig. 5) For any prefix pref, G′1(stM, stR, τ, τ̃) behaves identically to
G1(stM, stR, τ, τ̃) except that it uses (m, r) as the witness in the left WIPoK-2 even if it succeeds
in extracting a valid witness from the left WIPoK-1.

By the WI property of the left WIPoK-2, it holds that{(
OUT, b

)
: (OUT, b)← G1(stM, stR, τ, τ̃)

}
λ∈N

c
≈
{(

OUT, b
)

: (OUT, b)← G′1(stM, stR, τ, τ̃)
}
λ∈N

. (18)

Note that the only difference between G′1(stM, stR, τ, τ̃) and 〈A(stM),B(stC , stR)〉(1λ, τ̃) is that
the former runs the witness-extended emulator of the left WIPoK-1 (but does not use the extracted
witness at all). Thus, by the PoK property of the left WIPoK-1, it holds that{(

OUT, b
)

: (OUT, b)← G′1(stM, stR, τ, τ̃)
}
λ∈N

c
≈
{(

OUTA, b
)

: (OUTA, b)← 〈A(stM),B(stC , stR)〉(1λ, τ̃)
}
λ∈N

. (19)

By combining Eq. (18) and (19), we obtain Lem. 8.

Next, we define the probability of R being convinced in the execution of G1. This value plays
an important role later in our proof.

Definition 15. For any pref = (stM, stC , stR, τ, τ̃) in the support of HMpre(λ,m, z), we define the

following value pSimpref :

pSimpref := Pr[b = > : (OUT, b)← G1(stM, stR, τ, τ̃)].

Next, we show a technical lemma that gives an extractor K without the simulation property.

Lemma 9. Let HMpre(λ,m, z), A, and B be as defined in Algo. 4.1. There exists an expected PPT

machine K such that for any pref = (stM, stC , stR, τ, τ̃) in the support of HMpre(λ,m, z) and any
noticeable ε(λ), the following holds:

1. (Syntax.) K takes as input (1λ, stR, τ, τ̃) and makes oracle access to A(stM). It outputs a value
ValK ∈ {0, 1}`(λ) ∪ {⊥} such that ValK = val(τ̃) whenever ValK 6= ⊥. (Also see Rmk. 8 for an
intuitive explanation.)
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2. If pSimpref ≥ ε(λ), then it holds that

Pr
[
ValK = val(τ̃) : ValK ← KA(stM)(1λ, stR, τ, τ̃)

]
≥ ε′(λ)

t̃
,

where ε′(λ) := ε(λ)
10t2

.

Remark 8 (On the Output of K). The output ValK is expected to be the value committed in τ̃ ,
i.e., val(τ̃). If ValK = ⊥, it indicates that K did not extract the correct val(τ̃). We explicitly include
⊥ in the range of K for the following purpose: Looking ahead, the simulation-extractor SE that we
are going to build will invoke K for several times, until the value val(τ̃) is extracted. However, SE
cannot tell if the extracted value is indeed val(τ̃). Thus, the case ValK = ⊥ serves as an indicator,
telling SE if the extraction by K succeeds (more accurately, fails).

As a vigilant reader may have already realized, there is an alternative formalism: simply ask K
to output both val(τ) and the decommitment information so that SE can test by itself whether K’s
extraction is successful. We remark that this approach does work for the current proof in classical
setting. However, it may not extend when we prove post-quantum non-malleability. In short, that
is because to make this proof work in the quantum setting, our technique requires that the valid
output of K should be unique; Only in this way can we ask K to “forget” other information, such
that the extraction procedure can be “un-computed” to rewindM back without much disturbance
to its initial state. (This point will become clearer in the proof of Lem. 20.) However, if we include
the decommitment information in the output of K, then the valid output may not be unique, even
if the commitment scheme is perfect-binding—There could exists different ways to decommit to the
unique committed value.

To make the proof consistent in both classical and quantum settings, we choose the current
formalism in Property 1.

We will prove Lem. 9 in Sec. 4.5. In the rest of this subsection, we finish the proof of Lem. 7
assuming Lem. 9 is true.

We present the description of SE (for Lem. 7) in Algo. 4.3.

Algorithm 4.3: Simulation-Extractor SEA(stM)(1λ, 1ε
−1

, stR, τ, τ̃)

Let HMpre(λ,m, z), A, and B be as defined in Algo. 4.1. Let ε(λ) be a noticeable function. For

(stM, stC , stR, τ, τ̃) in the support of HMpre(λ,m, z), machine SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃) proceeds

as follows:

1. Main-Thread Simulation. It first uses the machine G1 to simulate Stage 2 of HM(λ,m, z).
That is, it computes (OUT, b)← G1(stM, stR, τ, τ̃). It sets OUTSE := OUT and bSE := b. Then,

– if bSE = ⊥, it sets ValSE := ⊥ and jumps directly to Stage 4;

– otherwise, it goes to the next step.

2. Rewinding: SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃) then loops the following procedure for t̃

ε′(λ) · λ times,

where ε′(λ) := ε(λ)
10t2

:

– Execute ValK ← KA(stM)(1λ, stR, τ, τ̃), where K is provided by Lem. 9. If ValK 6= ⊥,a set
ValSE := ValK and jump to Stage 4; Otherwise, go to the next loop.

3. It sets ValSE = ⊥. (Note that if this stage is reached, it means that the number of the loop

in the previous stage reached its upper bound t̃
ε′(λ) · λ, but K did not extract the message

committed in τ̃ yet.)
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4. Output: it outputs (OUTSE ,ValSE , bSE).

a Note that by Property 1 in Lem. 9, this means ValK = val(τ̃).

We first prove that the simulated main-thread is computationally indistinguishable from the
real one.

Claim 3. Let HMpre(λ,m, z), A, B be as defined in Algo. 4.1. For any (stM, stC , stR, τ, τ̃) in the

support of HMpre(λ,m, z) and any noticeable ε(λ), it holds that{(
OUTSE , valbSE (τ̃)

)
: (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε

−1
, stR, τ, τ̃)

}
λ∈N

c
≈
{(

OUTA, valb(τ̃)
)

: (OUTA, b)← 〈A(stM),B(stC , stR)〉(1λ, τ̃)
}
λ∈N. (20)

Proof. Since we consider each fixed prefix, we can efficiently compute valbSE (τ̃) and valb(τ̃) from
bSE and b, respectively, by using val(τ̃) as a non-uniform advice20. Then, it suffices to prove{(

OUTSE , bSE
)

: (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃)

}
λ∈N

c
≈
{(

OUTA, b
)

: (OUTA, b)← 〈A(stM),B(stC , stR)〉(1λ, τ̃)
}
λ∈N.

Since SE just runs G1 in the main thread, the above follows directly from Lem. 8.

Given Claim 3, to prove Lem. 7, it suffices to show the following inequality:

Pr
[
ValSE 6= valbSE (τ̃) : (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε

−1
, stR, τ, τ̃)

]
≤ ε(λ) +negl(λ). (21)

To prove Inequality (21), let us first define two events:

– Event E≤ε:
21 This is the event that the prefix (stM, stC , stR, τ, τ̃) lead to an accepting execution

of SE with probability at most ε. Formally, it denotes the event that pref = (stM, stC , stR, τ, τ̃)
satisfies the following inequality:

Pr
[
bSE = > : (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε

−1
, stR, τ, τ̃)

]
≤ ε(λ).

Remark 9. We emphasize that the above probability (on the LHS) is exactly the pSimpref defined in
Def. 15, because SE obtains bSE by running G1 (see Stage 1 of Algo. 4.3).

– Event Eacc: This is the event that bSE = > at the end of the execution of SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃).

Namely, it means that the honest receiver R accepts in the execution simulated by SE . (The sub-
script “acc” stands for “accept”).

We first show that the the probability of (Eacc ∧ E≤ε) is upper-bounded by ε(λ).

Claim 4. It holds that

Pr
[
Eacc ∧ E≤ε : (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε

−1
, stR, τ, τ̃)

]
≤ ε(λ).

20 Note that this is possible because both the LHS and the RHS of Eq. (20) use the same fixed τ̃ , which does
not depend on the randomness of the ensembles.

21 We remark that this event actually does not depend on the random procedure SEA(stM)(1λ, 1ε
−1

, stR, τ, τ̃).
It is only about the property of the prefix (stM, stC , stR, τ, τ̃) given as input to machine SE .
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Proof. This is an immediate result of the definitions of these two events. In more details,

Pr[Eacc ∧ E≤ε] = Pr[Eacc | E≤ε] · Pr[E≤ε] ≤ Pr[Eacc | E≤ε] · 1 = ε(λ) · 1, (22)

where all the probabilities are taken over (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃).

Next, we upper-bound the LHS of Inequality (21) by ε(λ)+Pr[ValSE 6= valbSE (τ̃) | Eacc ∧ ¬E≤ε]:

Claim 5. It holds that

Pr[ValSE 6= valbSE (τ̃)] ≤ ε(λ) + Pr[ValSE 6= valbSE (τ̃) | Eacc ∧ ¬E≤ε],

where both probabilities are taken over (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃).

Proof. All the probabilities below are taken over (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃):

Pr[ValSE 6= valbSE (τ̃)] = Pr[ValSE 6= valbSE (τ̃) ∧ Eacc] + Pr[ValSE 6= valbSE (τ̃) ∧ ¬Eacc]

= Pr[ValSE 6= valbSE (τ̃) ∧ Eacc] (23)

= Pr[ValSE 6= valbSE (τ̃) ∧ Eacc ∧ E≤ε] + Pr[ValSE 6= valbSE (τ̃) ∧ Eacc ∧ ¬E≤ε]
≤ Pr[Eacc ∧ E≤ε] + Pr[ValSE 6= valbSE (τ̃) ∧ Eacc ∧ ¬E≤ε]
≤ ε(λ) + Pr[ValSE 6= valbSE (τ̃) ∧ Eacc ∧ ¬E≤ε] (24)

≤ ε(λ) + Pr[ValSE 6= valbSE (τ̃) | Eacc ∧ ¬E≤ε],

where Eq. (23) follows from the fact that if bSE = ⊥ then ValSE = valbSE (τ̃) = ⊥, and Inequality (24)
follows from Claim 4.

Recall that our goal is to establish Inequality (21). Due to Claim 5, it now suffices to show

Pr[ValSE 6= valbSE (τ̃) | Eacc ∧ ¬E≤ε] = negl(λ), (25)

where the probability is taken over (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃).

Proof of Eq. (25). Given Eacc (i.e., bSE = >), we know that SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃) must have

entered Stage 2 to execute the machine KA(stM)(1λ, stR, τ, τ̃) for at most t̃
ε′(λ) · λ times, with early

termination only if the event ValK = val(τ̃) happens (recall that valbSE (τ̃) = val(τ̃) when bSE = >).
Given ¬E≤ε (thus, pSimpref > ε(λ), see Rmk. 9), it follows from Property 2 in Lem. 9 that each

time K is invoked, it outputs ValK = val(τ̃) with probability ≥ ε′(λ)/t̃.
Therefore, we have

Pr[ValSE 6= valbSE (τ̃) | Eacc ∧ ¬E≤ε] =

(
1− ε′(λ)

t̃

) t̃
ε′(λ) ·λ

= 2−O(λ) = negl(λ),

where the probability is taken over (OUTSE ,ValSE , bSE)← SEA(stM)(1λ, 1ε
−1
, stR, τ, τ̃).

This finishes the proof of Eq. (25).

This eventually finishes the proof of Lem. 7 (modulo the proof of Lem. 9, which we present in
Sec. 4.5 ).
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4.5 Extractor K (Proof of Lem. 9)

Machine Gi (i ∈ [t̃]): (Illustrated in Fig. 6.) Recall that we have already defined the ma-
chine G1(stM, stR, τ, τ̃) on Page 29. Now, for i ∈ [t̃] \ {1}, Gi(stM, stR, τ, τ̃) behaves identically
to G1(stM, stR, τ, τ̃) except that it uses (i, x̃i) as the witness in the right WIPoK-1.

Claim 6. ∀i ∈ [t̃], Pr[b = > : (OUT, b)← Gi(stM, stR, τ, τ̃)] ≥ pSimpref − negl(λ).

Proof. We define hybrid machines G′i and G′′i as follows.

Machine G′i (i ∈ [t̃]): (Illustrated in Fig. 7a.) Recall that we have already defined the ma-
chine G′1(stM, stR, τ, τ̃) on Page 31. Now, for i ∈ [t̃] \ {1}, G′i(stM, stR, τ, τ̃) behaves identically
to G′1(stM, stR, τ, τ̃) except that it uses (i, x̃i) as the witness in the right WIPoK-1.

Machine G′′i (i ∈ [t̃]): (Illustrated in Fig. 7b) For any prefix pref, G′′i (stM, stR, τ, τ̃) behaves
identically to G′i(stM, stR, τ, τ̃) except that it honestly runs the left WIPoK-1, instead of run-
ning the witness-extended emulator WE . In other words, G′′i (stM, stR, τ, τ̃) behaves identically to
〈A(stM),B(stC , stR)〉(1λ, τ̃) except that it uses (i, x̃i) as the witness in the right WIPoK-1. In
particular, G′′i (stM, stR, τ, τ̃) is identical to 〈A(stM),B(stC , stR)〉(1λ, τ̃).

Then, Claim 6 follows from the following sequence of inequalities.

– By the WI property of the left WIPoK-2 and the definition of pSimpref (Def. 15), it holds that:

Pr
[
b = > : (OUT, b)← G′1(stM, stR, τ, τ̃)

]
≥ pSimpref − negl(λ).

– By the PoK property (per Def. 12) of the left WIPoK-1 and the above inequality, it holds that:

Pr
[
b = > : (OUT, b)← G′′1 (stM, stR, τ, τ̃)

]
≥ pSimpref − negl(λ).

– By the WI property of the right WIPoK-1 and the above inequality, it holds that:

∀i ∈ [t̃], Pr
[
b = > : (OUT, b)← G′′i (stM, stR, τ, τ̃)

]
≥ pSimpref − negl(λ).

– By the PoK property of the left WIPoK-1 and the above inequality, it holds that:

∀i ∈ [t̃], Pr
[
b = > : (OUT, b)← G′i(stM, stR, τ, τ̃)

]
≥ pSimpref − negl(λ).

– By the WI property of the left WIPoK-2 and the above inequality, it holds that:

∀i ∈ [t̃], Pr[b = > : (OUT, b)← Gi(stM, stR, τ, τ̃)] ≥ pSimpref − negl(λ).

This finishes the proof of Claim 6.

Machine Ki (i ∈ [t̃]): (Illustrated in Fig. 8a.) For a prefix pref, Ki(stM, stR, τ, τ̃) behaves iden-
tically to the Gi(stM, stR, τ, τ̃) depicted in Fig. 6, except for the following difference. Machine
Ki(stM, stR, τ, τ̃) uses the witness-extended emulator WE (as per Def. 12) to finish the right
WIPoK-2, instead of playing the role of the honest receiver.

Ki’s Output: Let w′ denote the third output of the witness-extended emulator WE (see Def. 12),

which is supposed to be the witness used byM in the right WIPoK-2 (for the statement (c̃om, Ỹ )

w.r.t. the language L
β̃
∨ Lt̃

f̃
). Depending on the value of w′, we define a value Val ∈ {0, 1}`(λ) ∪

{⊥
Ỹ
,⊥invalid} as follows:
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Fig. 7: Machines G′i and G′′i (Difference is highlighted in red color)
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Fig. 8: Machines Ki and K (Difference is highlighted in red color)

1. If w′ is a valid witness for (c̃om, Ỹ ) ∈ L
β̃
∨ Lt̃

f̃
, then there are tow sub-cases:
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(a) w′ is a valid witness for c̃om ∈ L
β̃
. In this case22, w′ consists of the value val(τ̃), i.e., the

value committed in τ̃ = (β̃, c̃om), and the randomness r̃. We set Val := val(τ̃). Importantly,
notice that we do not include the randomness r̃ in Val (as explained in Rmk. 8.).

(b) w′ is a valid witness for Ỹ ∈ Lt̃
f̃
: In this case, we set Val := ⊥

Ỹ
.

2. Otherwise, set Val := ⊥invalid.

The output of Ki is defined to be the above Val. Notice that this is in contrast to all previous
machines, for which the output is defined to be the man-in-the-middleM’s output and the honest
receiver’s decision bit. We emphasize that such a Val satisfies the syntax requirement in Property 1
of Lem. 9. In particular, Val = val(τ̃) whenever Val 6= ⊥.23

Claim 7. ∀i ∈ [t̃], Pr[Val 6= ⊥invalid : Val← Ki(stM, stR, τ, τ̃)] ≥ pSimpref − negl(λ).

Proof. This claim follows immediately from Claim 6 and the PoK property (as per Def. 12) of the
right WIPoK-2.

Finally, we are ready to define the extractor K as required by Lem. 9. Intuitively, K can be
conceived as an average-case version of {Ki}i∈[t̃]:

Extractor K: (Illustrated in Fig. 8b.) For a prefix pref, K(stM, stR, τ, τ̃) samples uniformly at ran-

dom an index i
$←− [t̃], executes Ki(stM, stR, τ, τ̃), and outputs whatever Ki(stM, stR, τ, τ̃) outputs.

Remark 10 (On the Notation of K). It is worth noting that in the above, we write machine K as
K(stM, stR, τ, τ̃), while it was written in Lem. 9 as KA(stM)(1λ, stR, τ, τ̃). This is only a cosmetic
difference.

Next, we show that the extractor K satisfies the requirements in Lem. 9.

Running Time of K. Observe that for each i ∈ [t̃], Ki(stM, stR, τ, τ̃) differs from the real man-
in-the-middle game only in the following places:

– (i, x̃i) is used in the right WIPoK-1;

– the witness-extended emulator WE is used in the right WIPoK-2 and the left WIPoK-1;

– the left WIPoK-2 is done using the (j, xj) extracted by WE from the left WIPoK-1.

Since the witness-extended emulator WE (as per Def. 12) runs in expected PPT, so does Ki. Thus,
K is expected PPT.

Proving Property 1 of Lem. 9. It is straightforward to see that the K defined above satisfies the
syntax requirement in Lem. 9 (see also Rmk. 10). In particular, we have ValK = val(τ̃) whenever
ValK 6= ⊥, because this is true for each Ki by definition (see the paragraph for “Ki’s Output” on
Page 35).

22 Technically, we should argue that Ki is able to detect if this case is happening. This is easy to do as we
explicitly give τ̃ as an input to Ki—Upon obtaining w′, it can just re-execute Naor’s commitment by itself
to see if w′ is consistent with τ̃ .

23 Note that here we defined two types of abortion: ⊥Ỹ and ⊥invalid, while Property 1 of Lem. 9 only allows
a single abortion symbol ⊥. We remark that this is only a cosmetic difference—It can be made consistent
using the following rules: ⊥ = ⊥Ỹ and ⊥ = ⊥invalid (i.e., Val 6= ⊥ ⇔ (Val 6= ⊥Ỹ ∧ Val 6= ⊥invalid)).

37



Proving Property 2 of Lem. 9. First, recall that Property 2 requires us to show that for any
pref in the support of HMpre(λ,m, z) , if pSimpref ≥ ε(λ), then it holds that

Pr[ValK = val(τ̃) : ValK ← K(stM, stR, τ, τ̃)] ≥ ε′(λ)

t̃
. (26)

Also recall that K(stM, stR, τ, τ̃) is defined to execute the machine Ki(stM, stR, τ, τ̃) with i uniformly
sampled from [t̃]. Therefore, Inequality (26) can be reduced to the following Lem. 10. We will prove
Lem. 10 in Sec. 4.6, which will eventually finish the current proof of Lem. 9.

Lemma 10. Let ε(λ) = 1
poly(λ) and ε′(λ) = ε(λ)

t2
. For any pref = (stM, stC , stR, τ, τ̃), if pSimpref ≥ ε(λ),

then there exists an i ∈ [t̃] such that

Pr[Val = val(τ̃) : Val← Ki(stM, stR, τ, τ̃)] ≥ ε′(λ).

4.6 Proof of Lem. 10

Notation. We highly recommend reviewing the “Ki’s Output” part on Page 35 (in particular, the
meanings of Val, ⊥

Ỹ
, and ⊥invalid) before starting to read this subsection. Recall that Ki’s output

Val is determined by the w′ output by the witness-extended emulator of the right WIPoK-2. In
this subsection, we will need to refer to this w′, though it is not explicitly included as a part of Ki’s
output. Particularly, we will make use of the following notation: whenever we write an expression
of the form

Pr
[
Some Event Ew′ about w′ : Val← Ki(stM, stR, τ, τ̃)

]
,

it should be understood as the probability of Ew′ , where w′ refers to the w′ generated during the
random procedure Val← Ki(stM, stR, τ, τ̃), over which the probability is taken.

Using these notations, we can partition the event Val = ⊥
Ỹ

as the following mutually exclusive

events: w′ = (1, x̃1), . . ., w′ = (t̃, x̃t̃), where ỹi = f̃(x̃i) for each i ∈ [t̃]. Formally, we express this
relation by

Pr
[
Val = ⊥

Ỹ
: Val← Ki(stM, stR, τ, τ̃)

]
=

t̃∑
i=1

Pr
[
w′ = (i, x̃i) : Val← Ki(stM, stR, τ, τ̃)

]
(27)

With the above notations, we prove Lem. 10 in the following.

Proof for Lem. 10. We assume for contradiction that for some pref satisfying pSimpref ≥ ε(λ), it
holds that

∀i ∈ [t̃], Pr[Val = val(τ̃) : Val← Ki(stM, stR, τ, τ̃)] < ε′(λ). (28)

Claim 8. Under the assumption in Inequality (28), it holds that

∀i ∈ [t̃], Pr
[
w′ = (i, x̃i) : Val← Ki(stM, stR, τ, τ̃)

]
≥ pSimpref − ε′(λ)− negl(λ).

Proof. In this proof, all the probabilities are taken over the random procedure Val← Ki(stM, stR, τ, τ̃).
First, notice that

∀i ∈ [t̃], Pr[Val 6= ⊥invlid] = Pr[Val = val(τ̃)] + Pr
[
Val = ⊥

Ỹ

]
(by Eq. (27)) = Pr[Val = val(τ̃)] + Pr

[
w′ = (i, x̃i)

]
+

∑
j∈[t̃]\{i}

Pr
[
w′ = (j, x̃j)

]
. (29)
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Then, the following holds:

∀i ∈ [t̃], Pr[w′ = (i, x̃i)] = Pr[Val 6= ⊥invalid]− Pr[Val = val(τ̃)]−
( ∑
j∈[t̃]\{i}

Pr[w′ = (j, x̃j)]

)
(30)

≥ pSimpref − negl(λ)− Pr[Val = val(τ̃)]−
( ∑
j∈[t̃]\{i}

Pr[w′ = (j, x̃j)]

)
(31)

≥ pSimpref − negl(λ)− ε′(λ)−
( ∑
j∈[t̃]\{i}

Pr[w′ = (j, x̃j)]

)
, (32)

where Eq. (30) follows from Eq. (29), Inequality (31) follows from Claim 7, and Inequality (32)
follows from Inequality (28).

Now, to prove Claim 8, it suffices to show that

∀i ∈ [t̃], ∀j ∈ [t̃] \ {i}, Pr
[
w′ = (j, x̃j) : Val← Ki(stM, stR, τ, τ̃)

]
= negl(λ). (33)

This can be reduced via standard techniques to the one-wayness of the OWF f̃ in Step 3 of the
right execution. In more details, we assume for contradiction that there exist i∗, j∗ ∈ [t̃] such
that i∗ 6= j∗ and that the probability Pr

[
w′ = (j∗, x̃j∗) : Val← Ki∗(stM, stR, τ, τ̃)

]
is non-negligible,

where, by definition, x̃j∗ is the preimage of ỹj∗ under the right OWF f̃ . Then, we can build a
PPT adversary Aowf breaking one-wayness in the following way: Aowf obtains the challenge y∗

from the external one-wayness challenger; it then runs the machine Ki∗(pref) internally, for which
Aowf uses y∗ in place of ỹj∗ when executing Step 3 in the right. Note that the internal execution
of Ki∗(pref) is identically to the real execution of Ki∗ , thus the extracted w′ = (j∗, x̃j∗) must satisfy

f̃(x̃j∗) = ỹ∗j (= y∗) with non-negligible probability, breaking one-wayness.
This finishes the proof of Claim 8.

Machine K′i (i ∈ [t̃]): (Illustrated in Fig. 9a.) For a prefix pref, K′i(stM, stR, τ, τ̃) proceeds as follows:

1. It first finishes Step 3 of the man-in-the-middle execution in the same way as Ki(stM, stR, τ, τ̃).
In particular, it will see in the left execution the values Y = (y1, . . . , yt) sent from M;

2. It then recovers (x1, . . . , xt) by brute-force: Namely, for each i ∈ [t], it inverts the OWF f to find
xi s.t. f(xi) = yi. It is possible that there exist some “bad” yi’s that are not in the range of f .
For such bad i’s, it sets xi = ⊥. If all the xi’s are bad, K′i(stM, stR, τ, τ̃) halts and outputs Fail;

3. If this step is reached, we know that (x1, . . . , xt) cannot be all-⊥. K′i(stM, stR, τ, τ̃) then picks an
(s, xs) uniformly at random from the good (i.e. non-⊥) xi’s.

4. Then, K′i(stM, stR, τ, τ̃) continues to finish the execution in the same way as Ki(stM, stR, τ, τ̃),
except that it uses (s, xs) as the witness when executing the left WIPoK-2.

It is worth noting that the (j, xj) extracted by the witness-extended emulator for the left WIPoK-1

(inherited from Ki(pref)) is not used any more in K′i(stM, stR, τ, τ̃).
Obviously, if the (s, xs) picked by K′i(stM, stR, τ, τ̃) is equal to the (j, xj) extracted in Ki(stM, stR, τ, τ̃)

from its left WIPoK-1, then K′i(stM, stR, τ, τ̃) and Ki(stM, stR, τ, τ̃) are identical. Notice that this
step relies on the injectivity of f (see Rmk. 11). Since K′i(stM, stR, τ, τ̃) samples (s, xs) uniformly
from all the good (i, xi)’s, it must hold with probability at least 1/t that (s, xs) = (j, xj). Therefore,
the following must hold:

∀i ∈ [t̃], Pr[w′ = (i, x̃i) : Val← K′
i(stM, stR, τ, τ̃)] ≥ 1

t
·Pr[w′ = (i, x̃i) : Val← Ki(stM, stR, τ, τ̃)]. (34)
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witness

witness
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random
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Fig. 9: Machines K′i and K′′i (Difference is highlighted in red color)

Remark 11 (On Injectivity of the OWF). We emphasize that throughout the proof of non-malleability,

this is the only place where we rely on the injectivity of the OWF. In particular, we rely on the injectivity

of the f in the left session to ensure that there is a unique preimage for each {yi}i∈[t]. Thus, if both the

xs with s = j (sampled by K′i) and the extracted xj (in Ki) are a valid preimage for the same yj , then

the injectivity of f implies that xs = xj . We will show how to remove injectivity in Sec. 4.8.

Machine K′′i (i ∈ [t̃]): (Illustrated in Fig. 9b.) For a prefix pref, K′′i (stM, stR, τ, τ̃) behaves identically
to K′i(stM, stR, τ, τ̃) except that it plays as the honest committer in the left WIPoK-1, instead of
running the witness-extended emulator. Recall that starting from K′i, the witness (j, xj) extracted
by the witness-extended emulator from the left WIPoK-1 is not used any more; Thus, machine K′′i
does not need to perform this witness-extended emulation.

By the PoK property of the left WIPoK-1, it holds that

∀i ∈ [t̃],
∣∣Pr
[
w′ = (i, x̃i) : Val← K′′i (stM, stR, τ, τ̃)

]
−Pr

[
w′ = (i, x̃i) : Val← K′i(stM, stR, τ, τ̃)

]∣∣ ≤ negl(λ).

(35)

Next, by the (non-uniform, see Rmk. 12) WI property of the right WIPoK-1, it holds that

∀i ∈ [t̃],
∣∣Pr
[
w′ = (i, x̃i) : Val← K′′i (stM, stR, τ, τ̃)

]
−Pr

[
w′ = (i, x̃i) : Val← K′′1(stM, stR, τ, τ̃)

]∣∣ ≤ negl(λ).

(36)

Remark 12 (Power of Non-Uniform Reductions). Note that we can rely on the PoK and WI prop-

erties, although K′i and K′′i perform brute-force to recover (x1, ..., xt). This is because the brute-forcing

step is done before WIPoK-1 or WIPoK-2 starts; Thus, (x1, ..., xt) can be treated as a non-uniform

advice in the reductions. This non-uniform type of argument will be used again in this section later.

Then, we have the following claim:

Claim 9. ∀i ∈ [t̃], Pr[w′ = (i, x̃i) : Val← K′′1(stM, stR, τ, τ̃)] ≥ 1
t ·
(
pSimpref − ε

′(λ)
)
− negl(λ).
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Proof. This claim follows from Claim 8 and Inequalities (34) to (36). Formally, (in the following, we

omit the input (stM, stR, τ, τ̃) to Ki, K′i, and K′′i )

∀i ∈ [t̃], Pr
[
w′ = (i, x̃i) : Val← K′′1

]
≥ Pr

[
w′ = (i, x̃i) : Val← K′′i

]
− negl(λ) (37)

≥ Pr
[
w′ = (i, x̃i) : Val← K′i

]
− negl(λ) (38)

≥ 1

t
· Pr
[
w′ = (i, x̃i) : Val← Ki

]
− negl(λ) (39)

≥ 1

t
·
(
pSimpref − ε

′(λ)
)
− negl(λ), (40)

where Inequality (37) follows from Inequality (36), Inequality (38) follows from Inequality (35), Inequal-

ity (39) follows from Inequality (34), and Inequality (40) follows from Claim 8.

Now, we make the last claim which, together with Claim 9, leads to the desired contradiction.

Claim 10. Pr[Val 6= ⊥invalid : Val← K′′1(stM, stR, τ, τ̃)] ≤ pSimpref + negl(λ).

Deriving the Contradiction. Before proving Claim 10, we first show why Claims 9 and 10 are
contradictory (all the probabilities below are taken over Val← K′′1(stM, stR, τ, τ̃)):

Pr[Val 6= ⊥invalid] = Pr[Val = val(τ̃)] + Pr
[
Val = ⊥

Ỹ

]
= Pr[Val = val(τ̃)] +

t̃∑
i=1

Pr
[
w′ = (i, x̃i)

]
(41)

≥
t̃∑
i=1

Pr
[
w′ = (i, x̃i)

]
≥ t̃ · 1

t
·
(
pSimpref − ε

′(λ)
)
− negl(λ) (42)

≥ (1 +
1

t
) · (pSimpref − ε

′(λ))− negl(λ) (43)

= pSimpref +

(
pSimpref

t
− ε′(λ)− ε′(λ)

t

)
− negl(λ)

≥ pSimpref +
10t2 − t− 1

10t3
· ε(λ)− negl(λ), (44)

where Eq. (41) follows from Eq. (27), Inequality (42) follows from Claim 9, Inequality (43) follows
from the assumption that t̃ ≥ t+1, and Inequality (44) follows from the assumption that pSimpref ≥ ε(λ)

and our parameter setting ε′(λ) =
ε(λ)
10t2

.
Recall that t is the tag taking values from [n] with n being a polynomial of λ. Also recall that

ε(λ) is an inverse polynomial on λ. Therefore, Inequality (44) can be written as:

Pr
[
Val 6= ⊥invalid : Val← K′′1(pref)

]
≥ pSimpref +

1

poly(λ)
− negl(λ),

which contradicts Claim 10.
This eventually finishes the proof of Lem. 10 (modulo the proof of Claim 10, which we show in

Sec. 4.7).
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Fig. 10: Machines K∗∗1 and K∗1 (Difference is highlighted in red color)

4.7 Proof of Claim 10

We first define two extra machines K∗∗1 and K∗1.

Machine K∗∗1 : (Illustrated in Fig. 10a.) For a prefix pref, K∗∗1 (stM, stR, τ, τ̃) behaves identically
as K′′1(stM, stR, τ, τ̃) except that K∗∗1 (stM, stR, τ, τ̃) finishes the right WIPoK-2 using the honest
receiver’s algorithm, instead of using the witness-extended emulator.

K∗∗1 ’s Output. We define the output of K∗∗1 (stM, stR, τ, τ̃) to be the honest receiver’s decision b ∈
{>,⊥}. This is in contrast to previous hybrids K′i, K′′i , and Ki, whose output is defined to be the
value Val that depends on the value w′ extracted by the WE for the right WIPoK-2.

By the (non-uniform) PoK property (as per Def. 12) of the right WIPoK-2, it holds that∣∣Pr
[
Val 6= ⊥invalid : Val← K′′1(stM, stR, τ, τ̃)

]
− Pr[b = > : b← K∗∗1 (stM, stR, τ, τ̃)]

∣∣ ≤ negl(λ). (45)

Machine K∗1: (Illustrated in Fig. 10b.) For a prefix pref, K∗1(stM, stR, τ, τ̃) behaves identically as
K∗∗1 (stM, stR, τ, τ̃) except the following difference: K∗1(stM, stR, τ, τ̃) uses the witness-extended emu-
lator to extract a witness (j, xj) from the left WIPoK-1, and if xj is not a valid preimage for yj ,
K∗1 aborts.

By the (non-uniform) PoK property of the left WIPoK-1, it holds that∣∣Pr[b = > : b← K∗∗1 (stM, stR, τ, τ̃)]− Pr[b = > : b← K∗1(stM, stR, τ, τ̃)]
∣∣ ≤ negl(λ). (46)

Compare K∗1 with G1. Now, let us compare K∗1 with the G1 depicted in Fig. 6. They only differ
in the witness used in the left WIPoK-2 (and that G1 does not need to perform brute-forcing for
Y , as it does not use those preimages). Therefore, by the (non-uniform) WI property of the left
WIPoK-2, it holds that∣∣Pr[b = > : b← K∗1(stM, stR, τ, τ̃)]− Pr[b = > : (OUT, b)← G1(stM, stR, τ, τ̃)]

∣∣ ≤ negl(λ).

Also, recall (from Def. 15) that Pr[b = > : (OUT, b)← G1(stM, stR, τ, τ̃)] is exactly the definition of
pSimpref . Thus, the above implies:∣∣Pr[b = > : b← K∗1(stM, stR, τ, τ̃)]− pSimpref

∣∣ ≤ negl(λ). (47)

42



Therefore, the following holds:

Pr
[
Val 6= ⊥invalid : Val← K′′1(stM, stR, τ, τ̃)

]
≤ Pr[b = > : b← K∗∗1 (stM, stR, τ, τ̃)] + negl(λ) (48)

≤ Pr[b = > : b← K∗1(pref)] + negl(λ) (49)

≤ pSimpref + negl(λ), (50)

where Inequality (48) follows from Inequality (45), Inequality (49) follows from Inequality (46), and
Inequality (50) follows from Inequality (47).

This finishes the proof of Claim 10.

4.8 Replacing the Injective OWF with Any OWF

In this part, we show how to replace the injective OWF with any OWF in Prot. 1.
As mentioned in Rmk. 11, the injectivity is used only when we switch from Ki to K′i (on Page 39).

Let us first recall why injectivity is important there: K′i learns the preimages of each {yi}i∈[t] via
brute-forcing, while Ki learns a preimage xj of yj for some j ∈ [t] by extraction (from the left
WIPoK-1). Our goal there is to show that if K′i picks a random preimage, then it will hit the
(j, xj) extracted by Ki, except for a multiplicative 1/t loss on the probability (i.e., Inequality (34)).
If the OWF f is not injective, there is no guarantee that the (j, xj) extracted by Ki is really
contained in the set of all preimages learned by K′i via brute-forcing—Even if K′i guessed the index
j correctly, it could have brute-forced a x′j 6= xj (though it holds that yj = f(xj) = f(x′j)). In this
case, Inequality (34) may not hold anymore.

From the above discussion, it is clear that if we want to remove the requirement of injectivity,
we only need to find an alternative approach to ensure that the preimage extracted by Ki will fall
in the set of the preimages learned by K′i via brute-forcing. It turns out that this can be achieved
by the following simple modification to Steps 3 and 4 of Prot. 1:

– In Step 3, ask R to additionally commit (using a statistically-binding scheme) to the preimages
{xi}i∈[t] that it used to generate {yi}i∈[t]. Formally, we ask R to send the following messages in
Step 3:

Y = {yi = f(xi)}i∈[t], and {comi = Comβ′(xi; ri)}i∈[t],

where Comβ′ is Naor’s commitment with β′ being the first Naor’s message from C (which could
be sent in parallel with other messages in Step 2).

– In Step 4, ask R to additionally prove that the Y and {comi}i∈[t] are “consistent”. Formally,

instead of proving Y ∈ Ltf (defined in Language (10)), we ask R to prove (Y, {comi}i∈[t]) ∈ Ltf,β′
using the WIPoK, where

Ltf,β′ := {(y1, . . . , yt), (com1, . . . , comt) | ∃(i, xi, ri) s.t. i ∈ [t]∧ yi = f(xi)∧ comi = Comβ′(xi; ri)}. (51)

It is worth noting that we do not need to modify Step 5. In particular, C does not need to prove
that it knows one of the (xi, ri)’s used by R to generate {comi}i∈[t]; C still only needs to prove
(com, Y ) ∈ Lβ ∨ Ltf .

Now, instead of performing brute-force over {yi}i∈[t], K′i does that over {comi}i∈[t] to learn the
committed values, and then picks a random xs satisfying ys = f(xs) to use in the left WIPoK-2.24

It is easy to see that the statistical-binding property of Com ensures that Inequality (34) still holds
for an overwhelming fraction of β′.

24 Note that K′i (resp. Ki) will also learn the randomness used to generate the commitment via brute-forcing
(resp. via extraction from WIPoK-1). They simply ignore the randomness—indeed, both machines only
need to know a preimage (j, xj) to finish WIPoK-2; the corresponding randomness ri is irrelevant.
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Remark 13 (On One-Wayness). Technically, we also need to argue that the above modification does

not enable the man-in-the-middleM to invert the one-way function f̃ on Ỹ = {ỹi}i∈[t̃]. (Recall that the

one-wayness of f̃ is used (only) in the proof of Claim 8.) This is straightforward—Any OWF remains

one-way even if a commitment to its preimage is given.

4.9 Summarizing the Proof Strategy for Thm. 2

Since the proof of Thm. 2 is complicate, we summarize the logic flow in this subsection. We hope that
it will help the reader obtain a better understanding of the whole picture, without being disturbed
by details of secondary importance. But one could safely skip this subsection as it does not contain
new information. In particular, it will not affect the understanding of succeeding sections.

At a high level, the proof of Thm. 2 can be divided into the following five steps:

1. (Proof by Contradiction.) In the proof of Thm. 2, we first denoted the MIM execution by
HM(λ,m, z) (on Page 26). We then assumed for contradiction that a (potentially non-uniform)
PPT adversary can distinguish the outputs of HM(λ,m0, z) and HM(λ,m1, z) with advantage
3 · δ(λ), with δ(λ) being some polynomial (i.e., Inequality (15)). Next, we required the existence
of a machine GM (i.e., Lem. 6) such that

(a) the outputs of GM(λ,m0, z) and GM(λ,m1, z) are computationally indistinguishable, and

(b) GM(λ,mb, z) and HM(λ,mb, z) is (computationally) δ(λ)-close for both b = 0 and b = 1.

The existence of such a GM finished the proof of Thm. 2, because it contradicts the assumption
that there exists some PPT distinguisher that tells the difference between HM(λ,m0, z) and
HM(λ,m1, z) with advantage 3 · δ(λ). Thus, the remaining steps for the proof of Thm. 2 were
then devoted to constructing such a GM.

2. (Constructing GM.) To build the GM required in Step 1, we first broke HM into two stages—
the prefix part HMpre and the remainder 〈A,B〉 (i.e., Algo. 4.1). Here, we defined an important
variable called “prefix”:

– An execution of HMpre fixes the prefix pref, which contains the internal state stC , stM, stR of
the corresponding parties at the end of Step-2 in a MIM execution. Also, pref fixes the right
Naor’s commitment τ̃ . Also note that the committed value in the right execution was defined
to be valb(τ̃) (i.e., Eq. (12)).

Then, we constructed a simulation-extractor SEM (in Lem. 7) such that, when continuing from
any prefix pref (Importantly, SE cannot use the intermediate state stC for the committer; Other-
wise, we cannot show Property 1a by reducing it to the hiding property of Naor’s commitment),
SEM will ε-simulate the remainder execution 〈A,B〉, while also extracting the committed value
valb(τ̃) in the right execution.

With this SEM, it is easy to construct GM—GM simply runs HMpre to obtain the prefix, and
then runs SE to simulate the remainder execution and also extract valb(τ̃). Thus, the remaining
steps for the proof of Thm. 2 were then devoted to constructing such a SEM.

3. (Constructing SEM.) To construct SEM, we first built two machines:

(a) a simulator G1 (in Lem. 8) that can simulate the execution 〈A,B〉 without knowing C’s
internal states stC . This is to address the point that SEM is not allowed to use stC . Here,
we defined an important variable pSimpref , which denotes the probability that the honest R is
convinced in the execution simulated by G1.
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(b) an extractor K (in Lem. 9) such that for any prefix pref and noticeable ε(λ), if pSimpref ≥
ε(λ), then K can extract the value committed in τ̃ (contained in pref) with probability

polynomially related to ε(λ) (more accurately, the probability is ε′(λ)

t̃
where ε′(λ) :=

ε(λ)
10t2

).

With G1 and K, SEM can be constructed as follows: on input a pref, it first runs G1 to simulate
the main-tread execution of 〈A,B〉; If the honest receiver is not convinced in the main-thread,
SEM simply sets the committed value in the right execution as ⊥; Otherwise, SEM will extract
the value committed in τ̃ (denoted as val(τ̃)) by repeating K for polynomially many times

(more accurately, t̃
ε′(λ)

· λ times). As shown toward the end of Sec. 4.4, such a SEM satisfied

the requirements described in Step 2. Thus, the remaining steps for the proof of Thm. 2 were
then devoted to constructing the extractor K. (The construction and security of G1 is relatively
straightforward, so we do not repeat it in this summary.)

4. (Constructing K.) To construct K, we first defined a sequence of machines {Ki}i∈[t̃] as shown

in Fig. 8a. We then argued that there must exist an i ∈ [t̃] (called “the good i”) such that the
Val output by Ki must be val(τ) with probability ≥ ε′(λ). Then, machine K was defined to pick

a random i
$←− [t̃] and run machine Ki. Since such a K will hit the good i with probability 1/t̃, it

will successfully extract val(τ̃) with probability ε′(λ)

t̃
, satisfying the requirement in Step 3. Now,

to finish the proof of Thm. 2, the only thing left is to prove that {Ki}i∈[t̃] satisfies the above
requirement.

5. (Existence of Good Ki.) Informally, our current goal is to show the following (see Lem. 10 for
the precise statement):

∃i ∈ [t̃] s.t. Pr[Val = val(τ̃) : Val← Ki] ≥ ε′(λ).

We first assumed for contradiction that (i.e., Inequality (28)):

∀i ∈ [t̃], Pr[Val = val(τ̃) : Val← Ki] ≤ ε′(λ). (52)

We then derived the contradiction in the following way:

(a) We first showed that the Val output by Ki must be a valid witness with probability ≥
pSimpref − negl(λ) (i.e., Claim 7). Next, observe that in Ki, Val cannot be (j, x̃j) for some j 6= i;

Otherwise, it breaks the one-wayness of the right OWF f̃ . Thus, when Val is a valid witness
in Ki, it can only take the values val(τ̃) or (i, x̃i). This together with our assumption in
Inequality (52) implies that

∀i ∈ [t̃], Pr[Val = (i, x̃i) : Val← Ki] ≥ pSimpref − ε
′(λ)− negl(λ). (53)

(This is exactly Claim 8.)

(b) Next, we defined machine K′′i (see Fig. 9b), which differs from Ki in the following way: K′′i
does not rewind the left WIPoK-1. Instead, it extracts the preimages of the right {yi}i∈[t]

by brute force, and then picks a random preimage (s, xs) to use in the left WIPoK-2. Since
the (s, xs) guessed by K′′i will hit the one used by Ki, the following holds:

∀i ∈ [t̃], Pr
[
Val = (i, x̃i) : Val← K′′i

]
≥ 1

t
· Pr[Val = (i, x̃i) : Val← Ki]. (54)

(This is essentially Inequality (34)—Note that in Sec. 4.6, we also defined a machine K′i.
But it is only a tool that helps us eventually connect K′′i and Ki. So we ignore K′i in this
relatively high-level summary.)
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(c) Since in K′′i we do not rewind the left WIPoK-1 anymore, we can now rely on the WI
property of the right WIPoK-1 to connect all the {K′′i }i∈[t̃] to K′′1 . Namely, we have

∀i ∈ [t̃],
∣∣Pr
[
Val = (i, x̃i) : Val← K′′i

]
− Pr

[
Val = (i, x̃i) : Val← K′′1

]∣∣ ≤ negl(λ). (55)

(This is exactly Inequality (36).) We want to remark that in this step, we took advantage of
the synchronous schedule: in the synchronous setting, it is guaranteed that the brute-forcing
for {yi}i∈[n] happens before the right WIPoK-1; Otherwise, we will not be able to reduce
Inequality (55) to the WI property of the right WIPoK-1.

Now, by Inequalities (53) to (55), the following holds (this is exactly Claim 9)

∀i ∈ [t̃], Pr
[
Val = (i, x̃i) in K′′1

]
≥ 1

t
·
(
pSimpref − ε

′(λ)
)
− negl(λ). (56)

This implies

Pr
[
Val = (1, x̃1) ∨ . . . ∨ Val = (t̃, x̃t̃) : Val← K′′1(pref)

]
≥ t̃ · 1

t
·
(
pSimpref − ε

′(λ)
)

+ negl(λ)

(By our parameter setting. See Inequality (44)) ≥ pSimpref +
10t2 − t− 1

10t3
· ε(λ)− negl(λ)

On the other hand, Claim 10 implies that (we do not repeat the proof of Claim 10 here as it is
relatively straightforward)

Pr
[
Val = (1, x̃1) ∨ . . . ∨ Val = (t̃, x̃t̃) : Val← K′′1(pref)

]
≤ ppref + negl(λ)

This gives us the desired contradiction because 10t2−t−1
10t3

· ε(λ) is an (inverse) polynomial on λ.

5 Small-Tag, Synchronous, Classical Setting

In this section, we show how to make 〈C,R〉OneSided
tg (i.e., Prot. 1) secure without the “one-sided”

restriction. We emphasize that this section still focuses on the small-tag, synchronous setting against
classical (i.e., non-uniform PPT) adversaries.

5.1 High-Level Idea

Our proof for the non-malleability of 〈C,R〉OneSided
tg (shown in Prot. 1) works only if t < t̃. However,

this is not guaranteed in the real main-in-the-middle attack—the adversary can of course use a
smaller tag in the right session. Fortunately, this problem can be addressed by the so-called “two-
slot” technique proposed by Pass and Rosen [PR05]. The idea is to create a situation where no
matter how the man-in-the-middle M schedules the messages, there is always a “slot” for which
the “t < t̃” condition holds; As long as this is true, non-malleability can be proven using the same
technique as in Sec. 4.

To do that, first observe that the only place where Prot. 1 makes use of the tag t is Steps 3
and 4. Let us call these two messages a “Slot”. Our modification is to execute this Slot twice
sequentially, where

– for the first execution (referred to as Slot-A), we ask R to use tag t as in the original construction;

– for the second execution (referred to as Slot-B), we ask R to use n− t as the tag.
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We also modify the language instance proven by WIPoK-2 in the expected way—Now C needs
to prove that it “knows” the (m, r) tuple, or the preimage of one of the yi’s sent in Slot-A, or the
preimage of one of the yi’s sent in Slot-B.

By the above design, it is easy to see that one of the following case must happen for any
man-in-the-middle execution (note that we are still in the synchronous setting):

1. t = t̃: This is the trivial case that is already ruled out by the definition of non-malleability.

2. t < t̃: In this case, non-malleability follows by applying the argument in Sec. 4 to Slot-A. We
sometimes refer to this case by saying that Slot-A is the good slot.

3. t > t̃: In this case, it holds that (n − t) < (n − t̃). In other words, the tag for the left Slot-B is
smaller than the tag for the right Slot-B. Therefore, non-malleability follows by applying the
argument in Sec. 4 to Slot-B. We sometimes refer to this case by saying that Slot-B is the good
slot.

Therefore, the modified protocol is non-malleable without the “one-sided” restriction.

5.2 Construction of 〈C,R〉synctg

We refer to the construction described in Sec. 5.1 as 〈C,R〉synctg , and formally present it in Prot. 2.
This protocol makes use of the same building blocks as for Prot. 1, namely:

– An OWF f , (Note that we do not require injectivity any more, because Prot. 2 makes use of the
technique discussed in Sec. 4.8.)

– Naor’s commitment Com;

– A witness-indistinguishable proof of knowledge WIPoK (as per Def. 13).

We remark that we further optimize the “two-slot” approach from Sec. 5.1 by sending the first
message of Slot-A and the first message of Slot-B together.

Protocol 2: Small-Tag Synchronous NMCom 〈C,R〉synctg

The tag space is defined to be [n] where n is a polynomial on λ. Let t ∈ [n] be the tag for the
following interaction. Let m be the message to be committed to.

Commit Stage:

1. Receiver R samples and sends the first message β for Naor’s commitment.

2. Committer C commits to m using the second message of Naor’s commitment. C also sends a
β′ that will be used as the first Naor’s message for R to generate a commitment in next step.
Formally, C samples r and β′ and sends the tuple

(
com = Comβ(m; r), β′

)
.

Comment: The β′ is to address the injectivity issue as discussed in Sec. 4.8.

3. R performs the following computation:

(a) R computes {yAi = f(xAi )}i∈[t] with xAi
$←− {0, 1}λ for each i ∈ [t], and sets Y A :=

(yA1 , . . . , y
A
t ). R also computes {comA

i = Comβ′(x
A
i ; rAi )}i∈[t], where rAi is a random string

for each i ∈ [t].

(b) R computes {yBi = f(xBi )}i∈[n−t] with xBi
$←− {0, 1}λ for each i ∈ [n − t], and sets Y B :=

(yB1 , . . . , y
B
n−t). R also computes {comB

i = Comβ′(x
B
i ; rBi )}i∈[n−t], where rBi is a random

string for each i ∈ [n− t].

R sends the tuple
(
Y A, {comA

i = Comβ′(x
A
i ; rAi )}i∈[t], Y

B , {comB
i = Comβ′(x

B
i ; rBi )}i∈[n−t]

)
.
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Comment: Compared with Step 3 of Prot. 1, the current Step 3 has two differences: (1) R
additionally commits to the preimages of yi’s. This is to address the injectivity issue as discussed
in Sec. 4.8. (2) R sends two copies of the (Y, {comi}i) tuple, indexed by superscripts A and B

respectively. This is corresponding to the “two-slot” approach discussed in Sec. 5.1 (with the
first message of Slot-B being sent in parallel with the first message of Slot-A).

4. (WIPoK-1-A.) R and C execute an instance of WIPoK where R proves to C that he “knows” a
pre-image of some yAi contained in Y A, and yAi are consistent with comA

i (as defined in Step 3a).
Formally, R proves that (Y A, {comA

i }i∈[t]) ∈ Ltf,β′ , where

Ltf,β′ :=

{
(yA1 , . . . , y

A
t ), (comA

1 , . . . , com
A
t )

∣∣∣∣∣ ∃(i, xAi , rAi ) s.t.

i ∈ [t] ∧
yAi = f(xAi ) ∧
comA

i = Comβ′(x
A
i ; rAi )

}
. (57)

Note that R uses (1, xA1 , r
A
1 ) as the witness when executing this WIPoK.

5. (WIPoK-1-B.) R and C execute an instance of WIPoK where R proves to C that he “knows”
a pre-image of some yBi contained in Y B, and yBi are consistent with comB

i (as defined in
Step 3b). Formally, R proves that (Y B , {comB

i }i∈[n−t]) ∈ Ln−tf,β′ , where

Ln−tf,β′
:=

{
(yB1 , . . . , y

B
n−t), (com

B
1 , . . . , com

B
n−t)

∣∣∣∣∣ ∃(i, xBi , rBi ) s.t.

i ∈ [n− t] ∧
yBi = f(xBi ) ∧
comB

i = Comβ′(x
B
i ; rBi )

}
. (58)

Note that R uses (1, xB1 , r
B
1 ) as the witness when executing this WIPoK.

6. (WIPoK-2.) C and R execute an instance of WIPoK where C proves to R that he “knows”
the message committed in com (defined in Step 2), or a pre-image of some yAi contained in Y A

(defined in Step 3a), or a pre-image of some yBi contained in Y B (defined in Step 3b). Formally,
C proves that (com, Y A, Y B) ∈ Lβ ∨ Ltf ∨ L

n−t
f , where

Lβ := {com | ∃(m, r) s.t. com = Comβ(m; r)}, (59)

Ltf := {(yA1 , . . . , yAt ) | ∃(i, xAi ) s.t. i ∈ [t] ∧ yAi = f(xAi )}, (60)

Ln−tf
:= {(yB1 , . . . , yBn−t) | ∃(i, xBi ) s.t. i ∈ [n− t] ∧ yBi = f(xBi )}. (61)

Note that C uses the (m, r) defined in Step 2 as the witness when executing this WIPoK.

Comment: Compared with Step 5 of Prot. 1, we add Ln−tf as an additional OR part to the
language to be proven. This is corresponding to the new Slot-B as discussed in Sec. 5.1.

Decommit Stage: C sends (m, r). R accepts if com = Comβ(m; r), and rejects otherwise.

Security. Completeness is straightforward from the description of Prot. 2. The statistical binding
property follows from that of Naor’s commitment. Computational hiding of any commitment scheme
follows directly from non-malleability. So it remains for us to show that our commitment protocol
is non-malleable, which we establish by the following theorem.

Theorem 11. The commitment scheme 〈C,R〉synctg in Prot. 2 is non-malleable against synchronous
PPT adversaries with tag space [n], with n being any polynomial on λ.
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5.3 Proving Non-Malleability (Proof of Thm. 11)

Since we only consider synchronous adversaries in this section, we can assume that the adversary
declares t and t̃ at the beginning w.l.o.g. Thus, we can analyze the three cases of t = t̃, t < t̃, and
t > t̃ separately. Since the case of t = t̃ is already ruled out by the definition of non-malleability, we
prove non-malleability for the other two cases below.

5.3.1 The Case of t < t̃

The proof for this case is almost identical to the proof of Prot. 1 in Sec. 4. To avoid re-doing the
same work, we only focus on the places where modifications are needed. In the following, we assume
that the reader has already read and understood the proof in Sec. 4.

First, by repeating the similar arguments in Sec. 4.2 to 4.4, we can see that it suffices to
construct a machine K that satisfies similar properties as required in Lem. 9. Roughly speaking, K
is required to extract the committed message m̃ in the right session with a noticeable probability
if it is given a prefix that leads to acceptance with a noticeable probability.25 The construction of
K is identical to that in Sec. 4.5 except that it extracts a witness (j, xAj , r

A
j ) from WIPoK-1-A and

always uses the same witness (1, x̃B1 , r̃
B
1 ) for the right WIPoK-1-B. Specifically, K honestly runs the

man-in-the-middle experiment starting from the given prefix except for the following modifications:

1. Use the witness (i, x̃Ai , r̃
A
i ) for the right WIPoK-1-A for i

$←− [t̃];

2. Extract a witness (j, xAj , r
A
j ) from the left WIPoK-1-A;

3. Use the witness (j, xAj ) in the left WIPoK-2;

4. Extract a witness w̃ from the right WIPoK-2;

5. If w̃ is a valid witness (m̃, r̃) for c̃om ∈ L
β̃
, it outputs m̃. Otherwise, it outputs ⊥.

We stress again that K uses the same witness (1, x̃B1 , r̃
B
1 ) for the right WIPoK-1-B regardless of

the i sampled in Item 1.26 We also remark that K extracts a witness from the left WIPoK-1-A

but not from the left WIPoK-1-B.
The proof that the above K satisfies similar properties as in Lem. 9 is almost identical to that in

Sec. 4.5 to 4.7 in the one-sided setting. The only difference is the following. We define Ki similarly
to that in Sec. 4.5, i.e., it works similarly to K with the random i (in Item 1) being fixed. We need
to ensure that the witness w̃ extracted from the right WIPoK-2 by Ki cannot be a witness for
Slot-B, i.e., a witness for Y B ∈ Ln−tf with a non-negligible probability. This is needed in the proof
of a counterpart of Claim 8 in Sec. 4.6. It can be shown as follows:

– It is easy to see that w̃ = (j, x̃Bj ) for j 6= 1 with a negligible probability: Since Ki uses (1, x̃B1 , r̃
B
1 )

for the right WIPoK-1-B, extracting (j, x̃Bj , r̃
B
j ) for j 6= 1 directly breaks the one-wayness of f

or the computational hiding of Com.

– Suppose that w̃ = (1, x̃B1 ) with a non-negligible probability. The probability remains non-negligible
even if we replace the witness used in the right WIPoK-1-B with (2, x̃B2 , r̃

B
2 ) by the WI property

of the right WIPoK-1-B. Then, due to a similar reason to the above case, this also breaks the
one-wayness of f or the computational hiding of Com. It is worth mentioning that this step relies
on the fact that the left WIPoK-1-A and the right WIPoK-1-B do not interleave with each

25 Strictly speaking, the input of K is not a prefix, but a prefix without C’s state STC . We also remark that the
assumption is not that the prefix leads to R’s acceptance with a noticeable probability in the real experiment,
but in the simulated experiment defined similarly to G1 in Sec. 4.4.

26 Changing the witness for Slot-B to (i, x̃Bi , r̃
B
i ) by using the WI property also works, but that is redundant.
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other by the synchronicity assumption. (Otherwise we have to rewind the right WIPoK-1-B

when rewinding the left WIPoK-1-A, in which case we cannot rely on the WI property of the
right WIPoK-1-B.) This point will become relevant when dealing with asynchronous adversaries
in Sec. 6.

Except for the above, the rest of the proof follows from a straightforward adaptation of that in
Sec. 4.

5.3.2 The Case of t > t̃

In this case, we have n − t < n − t̃. Thus, we can simply do the same analysis as the case of t < t̃

with the roles of Slot-A and Slot-B being swapped.
By combining the analysis for the above cases, we obtain Thm. 11.

6 Small-Tag, Asynchronous, Classical Setting

In this section, we show how to make 〈C,R〉synctg (i.e., Prot. 2) secure against asynchronous ad-
versaries, to obtain the protocol 〈C,R〉asynctg . We emphasize that this section still focuses on the
small-tag setting against classical (i.e., non-uniform PPT) adversaries.

6.1 High-Level Idea

By a careful inspection, the proof of non-malleability of Prot. 2 (which is based on the proof of
non-malleability of Prot. 1) relies on the following assumptions about the schedule.

– The prefix of both the left and right sessions should be generated before moving forward. That
is, the left (resp. right) message of Step 2 is sent before the right (resp. left) message of Step 3 is
sent. This is necessary because we need to analyze the protocol for each fixed prefix pref in the
security proof for Prot. 2.

– The left message of Step 3 is sent before the right WIPoK-1-A starts. This is needed because
we rely on brute-force search to break hiding of comA

i or comB
i in an intermediate hybrid, where

we rely on (non-uniform) WI of the right WIPoK-1-A. This is possible only if we can do brute-
force before the right WIPoK-1-A starts so that the result of the brute-force can be treated as
a non-uniform advice in the reduction to WI. (See Rmk. 12.)

– The left (resp. right) WIPoK-1-A and the right (resp. left) WIPoK-1-B do not interleave with
each other. This is needed because we need to ensure that when rewinding the left WIPoK-1-A

(resp. WIPoK-1-B), we do not rewind the right WIPoK-1-B (resp. WIPoK-1-A) as explained
in Sec. 5.3.1.

– The left WIPoK-1-B finishes before the right WIPoK-2 starts. This is needed because we
rewind both of them simultaneously in the construction of the extractor K.27

To deal with a schedule that does not satisfy some of the above conditions, we need to modify the
protocol. Our modification is based on a combination of the following tricks.

1. Insert an extractable commitment to m by C between Steps X and X + 1. We also modify the
language for WIPoK-2 to ensure that the committed message in the extractable commitment is
the correct one. This gives us an opportunity to extract the right message m̃ without extracting

27 In fact, it is also fine that the left WIPoK-1-A starts after the right WIPoK-2 finishes, since they do not
interleave with each other in this case either.
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the left message m in the man-in-the-middle game if the right Step X + 1 starts before the left
Step X finishes.

2. Insert a WIPoK proving some “trapdoor statement” where R plays the role of the prover between
Steps X and X + 1. Here, the trapdoor is a witness for an NP language chosen by R. We also
modify the language for WIPoK-2 to allow C to use the trapdoor as a witness. Now, if the
left Step X + 1 starts before the right Step X finishes, then we can extract the left trapdoor
without extracting the right trapdoor in the man-in-the-middle game. Then, we can use the
extracted trapdoor as a witness for the left WIPoK-2. As a result, we can simulate the honest
committer in the left session without using the message m. This enables us to extract the right
message m̃ from the right WIPoK-2 without using the left message m, and eventually to prove
non-malleability.

3. Repeat Step X as many times as the total round complexity of all steps before Step X plus one.
By the pigeonhole principle, this ensures that there is at least one execution of the left (resp.
right) Step X that does not interleave with all steps before Step X in the right (resp. left). In
particular, when we rewind that execution, it does not affect the security of any primitive on
the other side.

6.2 Construction of 〈C,R〉asynctg

We present our construction in Prot. 3 where constants n5, ..., n9 are specified later. This protocol
makes use of the same building blocks as for Prot. 2 plus an extractable commitment, namely:

– An OWF f ,

– Naor’s commitment Com;

– A witness-indistinguishable proof of knowledge WIPoK (as per Def. 13);

– An extractable commitment ExtCom (as per Def. 8). We denote by VerifyExtCom the verification
algorithm of ExtCom in the decommit stage.

Protocol 3: Small-Tag Asynchronous NMCom 〈C,R〉asynctg

The tag space is defined to be [n] where n is a polynomial on λ. Let t ∈ [n] be the tag for the
following interaction. Let m be the message to be committed to.

Commit Stage:

1. Receiver R samples and sends the first message β for Naor’s commitment.

2. Committer C commits to m using the second message of Naor’s commitment. C also sends a
β′ that will be used as the first Naor’s message for R to generate a commitment in next step.
Formally, C samples r and β′ and sends the tuple

(
com = Comβ(m; r), β′

)
.

3. R and C do the following:

(a) (TrapGen.) R computes V0 = f(v0) and V1 = f(v1) with v0, v1
$←− {0, 1}λ and sends

(V0, V1) to C

(b) (WIPoK-Trap.) R and C execute an instance of WIPoK where R proves to C that he
“knows” a pre-image of V0 or V1. Formally, R proves that (V0, V1) ∈ LOR

f , where

LOR
f :=

{
(V0, V1)

∣∣ ∃v s.t. f(v) = V0 ∨ f(v) = V1

}
. (62)

Note that R uses v0 as the witness when executing this WIPoK.
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Comment: This step is inserted for Trick 2 in Sec. 6.1 where a witness for (V0, V1) ∈ LOR
f plays

the role of a “trapdoor”.

4. R performs the following computation:

(a) R computes {yAi = f(xAi )}i∈[t] with xAi
$←− {0, 1}λ for each i ∈ [t], and sets Y A :=

(yA1 , . . . , y
A
t ). R also computes {comA

i = Comβ′(x
A
i ; rAi )}i∈[t], where rAi is a random string

for each i ∈ [t].

(b) R computes {yBi = f(xBi )}i∈[n−t] with xBi
$←− {0, 1}λ for each i ∈ [n − t], and sets Y B :=

(yB1 , . . . , y
B
n−t). R also computes {comB

i = Comβ′(x
B
i ; rBi )}i∈[n−t], where rBi is a random

string for each i ∈ [n− t].

R sends the tuple
(
Y A, {comA

i = Comβ′(x
A
i ; rAi )}i∈[t], Y

B , {comB
i = Comβ′(x

B
i ; rBi )}i∈[n−t]

)
.

5. (ExtCom-1 × n5.) C and R sequentially execute n5 instances of ExtCom where C commits to
m. For i ∈ [n5], let τ1

i and decom1
i be the transcript and decommitment information (privately

obtained by C) of the i-th execution.

Comment: This step is inserted for Trick 1 and repeated for Trick 3 in Sec. 6.1.

6. (WIPoK-1-A × n6.) R and C sequentially execute n6 instances of WIPoK where R proves to
C that he “knows” a pre-image of some yAi contained in Y A, and yAi are consistent with comA

i

(as defined in Step 4a). Formally, R proves that (Y A, {comA
i }i∈[t]) ∈ Ltf,β′ , where

Ltf,β′ :=

{
(yA1 , . . . , y

A
t ), (comA

1 , . . . , com
A
t )

∣∣∣∣∣ ∃(i, xAi , rAi ) s.t.

i ∈ [t] ∧
yAi = f(xAi ) ∧
comA

i = Comβ′(x
A
i ; rAi )

}
. (63)

Note that R uses (1, xA1 , r
A
1 ) as the witness when executing this WIPoK.

Comment: This step is repeated for Trick 3 in Sec. 6.1.

7. (ExtCom-2 × n7.) C and R sequentially execute n7 instances of ExtCom where C commits to
m. Let τ2

i and decom2
i be the transcript and decommitment (privately obtained by C) of the

i-th execution.

Comment: This step is inserted for Trick 1 and repeated for Trick 3 in Sec. 6.1.

8. (WIPoK-1-B × n8.) R and C sequentially execute n8 instances of WIPoK where R proves to
C that he “knows” a pre-image of some yBi contained in Y B, and yBi are consistent with comB

i

(as defined in Step 4b). Formally, R proves that (Y B , {comB
i }i∈[n−t]) ∈ Ln−tf,β′ , where

Ln−tf,β′
:=

{
(yB1 , . . . , y

B
n−t), (com

B
1 , . . . , com

B
n−t)

∣∣∣∣∣ ∃(i, xBi , rBi ) s.t.

i ∈ [n− t] ∧
yBi = f(xBi ) ∧
comB

i = Comβ′(x
B
i ; rBi )

}
. (64)

Note that R uses (1, xB1 , r
B
1 ) as the witness when executing this WIPoK.

Comment: This step is repeated for Trick 3 in Sec. 6.1.

9. (ExtCom-3 × n9.) C and R sequentially execute n9 instances of ExtCom where C commits to
m. Let τ2

i and decom2
i be the transcript and decommitment (privately obtained by C) of the

i-th execution.

Comment: This step is inserted for Trick 1 and repeated for Trick 3 in Sec. 6.1.
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10. (WIPoK-2.) C and R execute an instance of WIPoK where C proves to R that he “knows” the
(same) message committed in com (defined in Step 2) and all commitments τ ci of ExtCom (in
Steps 5, 7 and 9), or a pre-image of some yAi contained in Y A (defined in Step 4a), or a pre-image
of some yBi contained in Y B (defined in Step 4b) or a preimage of either of V0 or V1 (defined
in Step 3a). Formally, C proves that (com, {τ ci }(c,i)∈J , Y A, Y B , V0, V1) ∈ Lβ ∨ Ltf ∨ L

n−t
f ∨ LOR

f ,
where J = ({1} × [n5]) ∪ ({2} × [n7]) ∪ ({3} × [n9]),

Lβ :=

{
(com, {τ ci }(c,i)∈J )

∣∣∣∣∣
∃(m, r, {decomc

i}(c,i)∈J ) s.t.

com = Comβ(m; r) ∧
∀ (c, i) ∈ J, VerifyExtCom(m, τ ci , decom

c
i ) = >

}
(65)

Ltf := {(yA1 , . . . , yAt ) | ∃(i, xAi ) s.t. i ∈ [t] ∧ yAi = f(xAi )}, (66)

Ln−tf
:= {(yB1 , . . . , yBn−t) | ∃(i, xBi ) s.t. i ∈ [n− t] ∧ yBi = f(xBi )}, (67)

and LOR
f is defined in Language (62). Note that C uses the (m, r, {decomc

i}(c,i)∈J ) defined in
Steps 2, 5, 7 and 9 as the witness when executing this WIPoK.

Comment: Compared with Step 6 of Prot. 2, we add LOR
f as an additional OR part to the

language to be proven for Trick 2 in Sec. 6.1. We also modify Lβ to prove that all commitments
τ ci of ExtCom commit to the same message as com for Trick 1 in Sec. 6.1.

Decommit Stage: C sends (m, r). R accepts if com = Comβ(m; r), and rejects otherwise.

Choice of ni. We recursively define n5, ..., n9 so that ni is larger than the total round complexity
of Steps 1 to i − 1. We also require that n5 is larger than the round complexities of WIPoK and
ExtCom. It is easy to see that we can set ni to be constant if both WIPoK and ExtCom have constant
rounds. In particular, Prot. 3 runs in constant rounds. We remark that the above choice of ni is for
simplifying the security analysis and we could significantly optimize the exact round complexity
with more careful analysis. But we choose not to press the issue further.

Notation. For c = 1, 2, 3, we refer to the i-th execution of ExtCom in ExtCom-c as ExtCom-c-i.
We also define WIPoK-1-A-i and WIPoK-1-B-i similarly.

Security. The completeness is easy to see. Statistical binding follows from that of Naor’s commit-
ment. We prove computational hiding below.28

Theorem 12. The commitment scheme 〈C,R〉asynctg in Prot. 3 is computationally hiding.

Proof. Let R∗ be a non-uniform PPT adversary against the computational hiding property of Prot. 3.

We consider the following sequence of hybrids.

– Hybrid HR∗
1 (λ,m): This is the real experiment that simulates the interaction between C(m) and R∗.

That is, it runs 〈C(m), R∗〉tg(1λ) and outputs the final output of R∗. We have to prove∣∣∣Pr
[
HR∗

1 (λ,m0) = 1
]
− Pr

[
HR∗

1 (λ,m1) = 1
]∣∣∣ = negl(λ). (68)

for all m0,m1.

28 Though computational hiding follows from non-malleability, we prove it here because we rely on the compu-
tational hiding in the proof of non-malleability.
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– Hybrid HR∗
2 (λ,m): This is identical to HR∗

1 (λ,m) except that it runs the emulation extractor

for WIPoK-1-A-1 to extract a witness (i, xAi , r
A
i ) for (Y A, {comA

i }i∈[t]) ∈ Ltf,β′ where Y A and

{comA
i }i∈[t]) are generated in Step 4a. We note that this experiment extracts (i, xAi , r

A
i ) but does not

use it. By the PoK property (as per Def. 12) of WIPoK-1-A-1, we have∣∣∣Pr
[
HR∗

1 (λ,m) = 1
]
− Pr

[
HR∗

2 (λ,m) = 1
]∣∣∣ = negl(λ) (69)

for all m.

– Hybrid HR∗
3 (λ,m): This is identical to HR∗

2 (λ,m) except that it uses (i, xAi , r
A
i ) extracted from

WIPoK-1-A-1 in WIPoK-2. By the WI property of WIPoK-2, we have∣∣∣Pr
[
HR∗

2 (λ,m) = 1
]
− Pr

[
HR∗

3 (λ,m) = 1
]∣∣∣ = negl(λ) (70)

for all m.

We observe that HR∗
3 (λ,mb) uses m only in the generation of com (in Step 2) and τ ci for (c, i) ∈ J

(in Steps 5, 7 and 9). Therefore, by the computational hiding property of Naor’s commitment and

ExtCom, we have ∣∣∣Pr
[
HR∗

3 (λ,m0) = 1
]
− Pr

[
HR∗

3 (λ,m1) = 1
]∣∣∣ = negl(λ) (71)

for all m0,m1. Combining Eq. (69) to (71), we obtain Eq. (68).

This completes the proof of Thm. 12.

We establish non-malleability by Thm. 13, whose proof will be presented in Sec. 6.4.

Theorem 13. The commitment scheme 〈C,R〉asynctg in Prot. 3 is non-malleable against asynchronous
PPT adversaries with tag space [n], with n being any polynomial on λ.

6.3 Adaptive Schedule vs. Predetermined Schedule

Before proving the non-malleability of Prot. 3, we prove a useful lemma that enable us to use
predetermined schedules when proving non-malleability. The following Lem. 11 should be attributed
to [BLS22, Lemma 5.1]: Although they only show this lemma for their specific construction, their
proof technique is general enough. Our proof of Lem. 11 is identical to theirs except for some
notational changes customized to our application.

Lemma 11 ([BLS22, Lemma 5.1]). Let S be the set of all possible schedules of a MIM adversary
against a commitment scheme 〈C,R〉. Let S1, ..., SN be efficiently recognizable subsets of S such that⋃
i∈[N ] Si = S for N = poly(λ). If for every i ∈ [N ], 〈C,R〉 is non-malleable against non-uniform

PPT MIM adversaries whose schedule belongs to Si, then it is also non-malleable against arbitrary
non-uniform PPT MIM adversaries.

Proof. We can assume that S1, ..., SN are disjoint w.l.o.g. (If they are not disjoint, we can define

S′1 := S1, S′i := Si \
(⋃

j∈[i−1] Sj

)
for i > 1 and consider disjoint sets S′1, ..., S

′
N .)

Given an arbitrary non-uniform PPT MIM M and non-uniform PPT distinguisher D that break

non-malleability for some values m0,m1 with advantage δ, we construct a new non-uniform PPT ad-

versary with a schedule that belongs to Si for a predetermined i ∈ [n], which breaks the scheme with

probability δ/N .
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Consider an adversary M′ that first samples uniformly at random i
$←− [N ]. M′ then runs M

to complete the MIM attack. If the transcript generated in the execution belongs to Si, M′ outputs

whatever M outputs, and otherwise outputs ⊥.

Since every execution must belong to exactly one of S1, ..., SN , M′ breaks non-malleability with

probability exactly δ/N (with respect to the same distinguisher D and m0,m1). Finally, by an averaging

argument, we fix the choice ofM′ for a schedule to be of some type Si that maximizes D’s distinguishing

advantage. We obtain a corresponding MIM with a schedule that belongs to Si for a predetermined

i ∈ [n] with at least the same advantage δ/N .

6.4 Proving Non-Malleability (Proof of Thm. 13)

For proving Thm. 13, we consider the following “bad” schedules:

– Bad 1: The right message of Step 4 is sent before the left message of Step 2 is sent.

– Bad 2: The left message of Step 4 is sent before the right message of Step 2 is sent.

– Bad 3: The right WIPoK-1-A starts before the left message of Step 4 is sent.

– Bad 4: The right WIPoK-1-B starts before the left WIPoK-1-A finishes.

– Bad 5: The right WIPoK-2 starts before the left WIPoK-1-B finishes.

In the above, when we say “WIPoK-XX starts”, this means that the first message of the first
execution of WIPoK in WIPoK-XX is sent. Similarly, when we say “WIPoK-XX finishes”, this
means that the final message of the final execution of WIPoK in WIPoK-XX is sent. We remark
that the above bad cases are not disjoint.

We first prove non-malleability in the case where the schedule does not suffer from any of them
(which we call a good schedule) in Sec. 6.5. Then, we prove it for the remaining schedules (which
we call bad schedules) in Sec. 6.6. We remark that we can analyze them separately due to Lem. 11.

6.5 Non-Malleability for Good Schedules

Based on the observations made in Sec. 6.1, we can show the non-malleability analogously to the
synchronous case if none of Bad 1-5 occurs.

Lemma 12. The commitment scheme 〈C,R〉asynctg in Prot. 3 is non-malleable against asynchronous
PPT adversaries whose schedule does not suffer from any of Bad 1-5.

Proof. Similarly to the proof of non-malleability of Prot. 2 in Sec. 5, we consider the three cases of

t = t̃, t < t̃, and t̃ < t separately where t and t̃ are the tags of the left and right sessions, respectively.

We remark that we can assume that the reduction algorithm knows which of them happens from the

beginning because of Lem. 11, even if the adversary adaptively determines the schedule.

Again, the case of t = t̃ is already ruled out by the definition of non-malleability. Next, we analyze

the remaining two cases in Sec. 6.5.1 and 6.5.2, which will eventually complete the proof of Lem. 12.

6.5.1 The Case of t < t̃.

For a PPT man-in-the-middle adversaryM with non-uniform advice z and a message m, we define
the prefix generation algorithm HMpre(λ,m, z) as follows similarly to that in Algo. 4.1: HMpre(λ,m, z)
runs the man-in-the-middle experiment mimM〈C,R〉asynctg

(λ,m, z) until M receives the left message of
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Step 2 and sends the right message of Step 2. Then, it outputs the prefix pref = (stM, stC , stR, τ, τ̃)

where stM, stC , stR are the states of M, C, and R at this point, respectively; And τ (reps. τ̃) is
Naor’s commitment in the right (resp. left) session generated in Steps 1 and 2. We denote by A(stM)

to mean the algorithm that works similarly to M from the point where the prefix is generated.
We remark that HMpre(λ,m, z) does not reach to Step 4 in either of the left or right session since we
assume that neither of Bad 1 or Bad 2 occurs.

We define a machine Gi similarly to that used in the proof of Lem. 9 (recall it from Fig. 6)
except that C commits to 0 instead of m in the left session. Formally, it works as follows:

Machine Gi: For a prefix pref = (stM, stC , stR, τ, τ̃), Gi(stM, stR, τ, τ̃) runs the rest of mimM〈C,R〉asynctg
(λ,m, z)

except for the following three differences:

1. C commits to 0 instead of m in the left ExtCom-{1,2,3}.

2. R uses (i, x̃Ai ) instead of (1, x̃A1 ) in the right WIPoK-1-A.

3. It chooses i∗ such that the left WIPoK-1-A-i∗ does not interleave with the right Step 1 to 5,
i.e., no message of the right Step 1 to 5 is sent during the execution of the left WIPoK-1-A-i∗.
Note that such i∗ exists by the pigeonhole principle, and we call the smallest such i∗ the good
index. Then, instead of executing the left WIPoK-1-A-i∗ honestly, it uses the witness-extended
emulator WE to extract a witness:

– If the left committer accepts the left WIPoK-1-A-i∗ and the extracted witness (j, xAj , r
A
j ) is

valid, Gi uses (j, xAj ) to finish the left WIPoK-2 and outputs M’s final state and the right
receiver’s decision bit b;

– If the left committer accepts the left WIPoK-1-A-i∗ but the extracted witness is invalid, it
aborts immediately and outputs (⊥,⊥);

– If the left committer rejects the left WIPoK-1-A-i∗, it runs the rest of man-in-the-middle
experiment to output M’s final state and the right receiver’s decision bit b. Note that it does
not need to run the left WIPoK-2 in this case since the left committer aborts after the left
WIPoK-1-A-i∗.

We let pSimpref be the probability that G1(stM, stR, τ, τ̃) returns b = >.

Remark 14. Strictly speaking, the above description of Gi is not well-defined since the good index

depends on the schedule, which is adaptively determined. However, since there are constant number of

possibilities for the good index, we only have to prove non-malleability assuming that the good index

is fixed at first by Lem. 11. A similar remark applies to later parts of the current proof. We will not

repeat it as it should be clear from context.

By repeating similar arguments as in Sec. 4.2 to 4.4, we can see that it suffices to prove the
following lemma, which is an analog of Lem. 9.

Lemma 13. There exists an expected PPT machine K such that for any pref = (stM, stC , stR, τ, τ̃)

in the support of HMpre(λ,m, z) and any noticeable ε(λ), the following holds:

1. (Syntax.) K takes as input (1λ, stR, τ, τ̃) and makes oracle access to A(stM). It output a value
ValK ∈ {0, 1}`(λ) ∪ {⊥} such that ValK = val(τ̃) whenever ValK 6= ⊥.

2. If pSimpref ≥ ε(λ), then it holds that

Pr
[
ValK = val(τ̃) : ValK ← KA(stM)(1λ, stR, τ, τ̃)

]
≥ ε′(λ)

t̃
,
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where ε′(λ) :=
ε(λ)
10t2

.

Proof of Lem. 13. We construct Ki and K similarly as in Sec. 5.3.1, which is in turn based on the

technique in Sec. 4.5.

Machine Ki (i ∈ [t̃]): On input (1λ, stR, τ, τ̃), it behaves identically to Gi(stM, stR, τ, τ̃) except for the

following difference. Machine KA(stM)
i (1λ, stR, τ, τ̃)) uses the witness-extended emulator WE to finish

the right WIPoK-2, instead of playing the role of the honest receiver. If it extracts a witness for

(c̃om, {τ̃ ci }(c,i)∈J ) ∈ L
β̃
, then it sets Val to be the first component m̃ of the witness (which is suppose

to be the committed message in τ̃) and outputs Val = m̃; Otherwise, it outputs ⊥.

Extractor K: On input (1λ, stR, τ, τ̃), it samples uniformly at random an index i
$←− [t̃], executes

KA(stM)
i (1λ, stR, τ, τ̃), and outputs whatever KA(stM)

i (1λ, stR, τ, τ̃) outputs.

We can show that K as described above satisfies Lem. 13 by similar analyses to those in Sec. 4.5

to 4.7 additionally relying on the computational hiding property of ExtCom along with the following

observations:

1. By our choice of the good index i∗, the witness-extended emulator for the left WIPoK-1-A-i∗ does

not rewind the right WIPoK-Trap. Thus, Ki does not extract a “trapdoor witness” (i.e., a witness

for (Ṽ0, Ṽ1) ∈ LOR
f ) except for a negligible probability by the one-wayness of f and the WI property

of the right WIPoK-Trap.

2. Since we assume that Bad 4 does not occur, the witness-extended emulator for the left WIPoK-1-

A-i∗ does not rewind the right WIPoK-1-B. Thus, Ki does not extract a witness for Slot-B, (i.e.,

a witness for Ỹ B ∈ Ln−tf ) except for a negligible probability by the one-wayness of f and the WI

property of the right WIPoK-1-B. This can be proven by a similar analysis to that in Sec. 5.3.1.

3. Since we assume that Bad 3 does not occur, we can rely on the WI property of the right WIPoK-1-

A in a hybrid where we find the committed messages in {comA
i }i∈[t] by brute-force. This is needed

in a step corresponding to the proof of Inequality (36) in Sec. 4.6.

4. Since we assume that Bad 5 does not occur, the left WIPoK-1-A and the right WIPoK-2 do not

run simultaneously. Thus, there is no nesting of extractors in hybrids where we invoke extractors for

both of them (e.g., K and Ki).

Remark 15. One might wonder how we rely on the computational hiding property of the left ExtCom-

{1,2,3} even though the witness-extended emulator of the right WIPoK-2 may rewind them. However,

one can see by a close inspection of the proof that we only need to use computational hiding of the left

ExtCom-{1,2,3} in hybrids that do not run the witness-extended emulator of the right WIPoK-2.

This is similar to how we replace the witness used in the left WIPoK-2 using the WI property in the

proof for the one-sided synchronous case in Sec. 4.

This completes the proof of Lem. 13, which finishes the proof for the case of t < t̃.

6.5.2 The Case of t > t̃

Similarly to the synchronous case (i.e., the proof of Thm. 11), the proof of this case can be done
similarly to that of the case of t < t̃ except that we extract a witness from (the good index of) the
left WIPoK-1-B instead of from WIPoK-1-A. In doing so, one has to be careful that Bad 4 is
not symmetric for Slot-A and Slot-B. In particular, even if we assume that Bad 4 does not occur,
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it may be still possible that the left WIPoK-1-B and the right WIPoK-1-A run concurrently.
However, this is not an issue since we rewind the left WIPoK-1-B of the good index that does not
interleave with any message of the right session before WIPoK-1-B. In particular, its rewinding
does not rewind any slot of the right WIPoK-1-A. Except for the above remark, the proof of this
case is almost identical to the proof for the case of t < t̃ with the roles of Slot-A and Slot-B being
swapped.

6.6 Non-Malleability for Bad Schedules

Before analyzing bad cases, we show a lemma that is used many times in the analysis of bad cases.

Lemma 14. Let C∗ be a PPT cheating prover of the protocol in Prot. 3 with advice z. For (c, i) ∈ J
(where J = ({1} × [n5]) ∪ ({2} × [n7]) ∪ ({3} × [n9]) as defined in Step 10 of Prot. 3) we define
experiments Exp and Expc,i as follows.

– Experiment Exp(λ, z): It simulates the interaction between C∗ and R in the commit stage and
outputs (OUTC∗ , valb(τ)) where OUTC∗ is the final output of C∗, b is R’s decision bit, τ is Naor’s
commitment generated in Steps 1 and 2, and

valb(τ) :=

{
val(τ) b = >
⊥ b = ⊥

.

– Experiment Expc,i(λ, z): This experiment works similarly to Exp(λ, z) except that it runs the ex-
tractor of ExtCom-c-i to obtain the extracted message m∗ and outputs (OUTC∗ , Γb(m

∗)) where

Γb(m
∗) :=

{
m∗ b = >
⊥ b = ⊥

.

Then, for all (c, i) ∈ J , it holds that

{Exp(λ, z)}λ∈N,z∈{0,1}∗
s
≈ {Expc,i(λ, z)}λ∈N,z∈{0,1}∗ .

Proof. First, we prove the following claim.

Claim 14.

Pr
[
b = > ∧ (com, {τ ci }(c,i)∈J ) /∈ Lβ

]
= negl(λ) (72)

where the probability is taken over the execution of Exp(λ, z).

Proof of Claim 14. We consider a modified experiment Exp′(λ, z) that works similarly to Exp(λ, z)

except that it runs the witness-extended emulator for WIPoK-2 instead of running it honestly. By the

PoK property (as per Def. 12), it suffices to prove Eq. (72) holds in Exp′(λ, z).

Let w̃ be the extracted witness from WIPoK-2. By the PoK property (as per Def. 12), w̃ is a valid

witness for (com, {τ ci }(c,i)∈J , Y A, Y B , V0, V1) ∈ Lβ ∨Ltf ∨L
n−t
f ∨LOR

f except for a negligible probability

when b = >.

We can show that w̃ cannot be a witness of Y A ∈ Ltf except for a negligible probability by using

the one-wayness of f and WI of WIPoK-1-A. Indeed, this can be seen as follows.
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– In Exp′(λ, z), the receiver uses (1, xA1 , r
A
1 ) as a witness for WIPoK-1-A. Therefore, if the probability

that w̃ = (j, xAj ) such that yAj = f(xAj ) for some j 6= 1 is non-negligible, it clearly breaks the

one-wayness of f or the computational hiding property of Com.

– If the probability that w̃ = (1, xA1 ) such that yA1 = f(xA1 ) is non-negligible, by the WI property of

WIPoK-1-A, a similar statement holds even if the receiver uses (2, xA2 , r
A
2 ) instead of (1, xA1 , r

A
1 )

as a witness for WIPoK-1-A. Then, by a similar argument to the above case, it also breaks the

one-wayness of f or the computational hiding property of Com.

By similar arguments, w̃ cannot be a witness of Y B ∈ Ln−tf or (V0, V1) ∈ LOR
f except for a negligible

probability. Thus, w̃ is a witness for (com, {τ ci }(c,i)∈J ) ∈ Lβ except for a negligible probability when

b = >. This completes the proof of Claim 14.

Claim 14 in particular means that we have val(τ) = val(τ ic) 6= ⊥ whenever b = > except for a

negligible probability. Then, the extractability of ExtCom immediately implies Lem. 14.

Next, we analyze the bad cases one by one.

6.6.1 Analysis of Bad 1

Lemma 15. The commitment scheme 〈C,R〉asynctg in Prot. 3 is non-malleable against asynchronous
PPT adversaries whose schedule satisfies Bad 1.

Proof. The proof for this case is easy. When Bad 1 occurs, the right commitment c̃om (in Step 2)

is sent before the left commitment com (in Step 2) is sent. Then, a straightforward reduction to the

computational hiding of the left session works by extracting m̃ from c̃om by brute-force and treating it

as non-uniform advice of an adversary against computational hiding.

6.6.2 Analysis of Bad 2

Lemma 16. The commitment scheme 〈C,R〉asynctg in Prot. 3 is non-malleable against asynchronous
PPT adversaries whose schedule satisfies Bad 2.

Proof. Recall that Bad 2 means that the left message of Step 4 is sent before the right message of

Step 2 is sent. We assume thatM receives the right message of Step 1 at first w.l.o.g. In particular, no

massage in the right session is sent during the execution of the left WIPoK-Trap.

We consider the following sequence of hybrids.

– Hybrid HM1 (λ,m, z): This hybrid is the real man-in-the-middle experiment mimM〈C,R〉(λ,m, z). The

output of the experiment can be written as (OUTM, valb(τ̃)) where OUTM is M’s final output, b is

the R’s decision bit, and τ̃ is Naor’s commitment generated in Steps 1 and 2 in the right session, and

valb(τ̃) :=

{
val(τ̃) b = >
⊥ b = ⊥

.

– Hybrid HM2 (λ,m, z): It is identical to HM1 (λ,m, z) except that it runs the witness-extended emulator

for the left WIPoK-Trap instead of running it honestly. Let v be the extracted witness. If C accepts

the left WIPoK-Trap but v is not a valid witness for (V0, V1) ∈ LOR
f , it aborts with outputting

(⊥,⊥). Otherwise, it works similarly to HM1 (λ,m, z). We remark that it does not use v though it

extracts it.
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– Hybrid HM3 (λ,m, z): It is identical to HM2 (λ,m, z) except that it uses v extracted from the left

WIPoK-Trap as a witness in the left WIPoK-2.

– Hybrid HM4 (λ,m, z): It is identical to HM3 (λ,m, z) except that it commits to 0 instead of m in all

slots of ExtCom-{1,2,3}.

We prove that each pair of neighboring hybrids is computationally indistinguishable.

Claim 15. It holds that

{HM1 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗
s
≈ {HM2 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗ .

Proof of Claim 15. This follows from the PoK property (as per Def. 12) of the left WIPoK-Trap

straightforwardly.

Claim 16. It holds that

{HM2 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗
c
≈ {HM3 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗ .

Proof of Claim 16. We introduce the following additional hybrids:

– Hybrid H
M
2 (λ,m, z): Choose the smallest i∗ ∈ [n5] such that the right ExtCom-1-i∗ does not

interleave with the left WIPoK-2, i.e., no message of the left WIPoK-2 is sent during the execution

of the right ExtCom-1-i∗.29 Such i∗ exists by the pigeonhole principle since we assume that n5 is

larger than the round complexity of WIPoK-2. This experiment is identical to HM2 (λ,m, z) except

that it runs the extractor of the right ExtCom-1-i∗ to extract m̃∗, and outputs (OUTM, Γb(m̃
∗))

instead of (OUTM, valb(τ̃)) where

Γb(m
∗) :=

{
m∗ b = >
⊥ b = ⊥

.

– Hybrid H
M
3 (λ,m, z): It is identical to H

M
2 (λ,m, z) except that it uses v extracted from the left

WIPoK-Trap as a witness in the left WIPoK-2.

Note that both H
M
2 (λ,m, z) and H

M
3 (λ,m, z) are efficient since they no longer need to output valb(τ̃).

Then, by the assumption that the right ExtCom-1-i∗ does not interleave with the left WIPoK-2, the

WI property of the left WIPoK-2 gives

{HM2 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗
c
≈ {HM3 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗ . (73)

By the assumption that Bad 2 occurs and that M receives the right message of Step 1 at first,

hybrids HM2 (λ,m, z) and HM3 (λ,m, z) do not rewind the right session at all. Indeed, they only rewind

the left WIPoK-Trap, but the right message of Step 1 is sent before the left WIPoK-Trap starts by

our simplifying assumption and the rest of messages in the right session is sent after the left WIPoK-

Trap finishes by the assumption that Bad 2 occurs. Thus, by considering the combination of M and

C as a single cheating committer, Lem. 14 gives

{HM2 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗
c
≈ {HM2 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗ (74)

29 Rmk. 14 applies here.
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and

{HM3 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗
c
≈ {HM3 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗ . (75)

By combining Eq. (73) to (75), we complete the proof of Claim 16.

Claim 17. It holds that

{HM3 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗
c
≈ {HM4 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗ .

Proof of Claim 17. This follows from a similar argument to that in the proof of Claim 16. However, we

remark that we cannot prove it at once since the total round complexity of ExtCom-{1,2,3} is larger

than n5, in which case we cannot choose i∗ such that the right ExtCom-1-i∗ does not interleave with

any message of the left ExtCom-{1,2,3}. To resolve this issue, we replace the committed message m

with 0 for each execution of ExtCom in ExtCom-{1,2,3} one by one. Since we assume that n5 is larger

than the round complexity of ExtCom, a similar argument to the proof of Claim 16 works by using the

computational indistinguishability of ExtCom.

Claim 18. It holds that

{HM4 (λ,m0, z)}λ,m0,m1,z
c
≈ {HM4 (λ,m1, z)}λ,m0,m1,z,

where both ensembles are indexed by λ ∈ N, (m0,m1) ∈ {0, 1}`(λ) × {0, 1}`(λ), and z ∈ {0, 1}∗.

Proof of Claim 18. This immediately follows from the computational hiding property of Naor’s com-

mitment noting that the left message m is only used for generating Naor’s commitment in Step 2 in

HM4 (λ,m, z).

By combining Claims 15 to 18, we obtain

{HM1 (λ,m0, z)}λ,m0,m1,z
c
≈ {HM1 (λ,m1, z)}λ,m0,m1,z

where both ensembles are indexed by λ ∈ N, (m0,m1) ∈ {0, 1}`(λ) × {0, 1}`(λ), and z ∈ {0, 1}∗. This

completes the proof of Lem. 16.

6.6.3 Analysis of Bad 3

Lemma 17. The commitment scheme 〈C,R〉asynctg in Prot. 3 is non-malleable against asynchronous
PPT adversaries whose schedule satisfies Bad 3.

Proof. Recall that Bad 3 means that the right WIPoK-1-A starts before the left message of Step 4 is

sent.

We consider the following sequence of hybrids.

– Hybrid HM1 (λ,m, z): This hybrid is the real man-in-the-middle experiment mimM〈C,R〉(λ,m, z). The

output of the experiment can be written as (OUTM, valb(˜̃τ)) where OUTM is M’s final output, b is

the R’s decision bit, and τ̃ is Naor’s commitment generated in Steps 1 and 2 in the right session, and

valb(τ̃) :=

{
val(τ̃) b = >
⊥ b = ⊥

.
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– Hybrid HM2 (λ,m, z): Choose the smallest i∗ ∈ [n5] such that the right ExtCom-1-i∗ does not

interleave with Steps 1 to 4 in the left, i.e., no message of the left WIPoK-2 is sent during the

execution of the right ExtCom-1-i∗.30 Such i∗ exists by the pigeonhole principle since we assume

that n5 is larger than the total round complexity of Steps 1 to 4. This experiment is identical to

HM1 (λ,m, z) except that it runs the extractor of the right ExtCom-1-i∗ to extract m̃∗, and outputs

(OUTM, Γb(m̃
∗)) instead of (OUTM, valb(τ̃)) where

Γb(m
∗) :=

{
m∗ b = >
⊥ b = ⊥

.

Claim 19. It holds that

{HM1 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗
s
≈ {HM2 (λ,m, z)}λ∈N,m∈{0,1}`(λ),z∈{0,1}∗ .

Proof of Claim 19. This immediately follows from Lem. 14.

Claim 20. It holds that

{HM2 (λ,m0, z)}λ,m0,m1,z
s
≈ {HM2 (λ,m1, z)}λ,m0,m1,z

where both ensembles are indexed by λ ∈ N, (m0,m1) ∈ {0, 1}`(λ) × {0, 1}`(λ), and z ∈ {0, 1}∗.

Proof. By the choice of i∗ and the assumption that Bad 3 occurs, HM2 (λ,m, z) does not rewind the

left session at all. Therefore, by considering the combination of M and R as a single cheating receiver,

Claim 20 follows from the computational hiding property of Prot. 3.

By combining Claims 19 and 20, we obtain

{HM1 (λ,m0, z)}λ,m0,m1,z
c
≈ {HM1 (λ,m1, z)}λ,m0,m1,z

where both ensembles are indexed by λ ∈ N, m0,m1 ∈ {0, 1}`(λ), and z ∈ {0, 1}∗. This completes the

proof of Lem. 17.

6.6.4 Analysis of Bad 4

Lemma 18. The commitment scheme 〈C,R〉asynctg in Prot. 3 is non-malleable against asynchronous
PPT adversaries whose schedule satisfies Bad 4.

Proof. Recall that Bad 4 means that the right WIPoK-1-B starts before the left WIPoK-1-A finishes.

Lem. 18 can be proven similarly to Lem. 17 except that we extract m̃ from the right ExtCom-2-i∗

that does not interleave with Steps 1 to 6 in the left.

30 Rmk. 14 applies here.
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6.6.5 Analysis of Bad 5

Lemma 19. The commitment scheme 〈C,R〉asynctg in Prot. 3 is non-malleable against asynchronous
PPT adversaries whose schedule satisfies Bad 5.

Proof. Recall that Bad 5 means that the right WIPoK-2 starts before the left WIPoK-1-B finishes.

Lem. 19 can be proven similarly to Lem. 17 except that we extract m̃ from the right ExtCom-3-i∗

that does not interleave with Steps 1 to 10 in the left.

By combining Lem. 12 and 15 to 19 along with Lem. 11, we complete the proof of Thm. 13.

7 Extract-and-Simulate Lemma

In this section, we show a generalized version of the extract-and-simulate lemma given in [CCLY22,
Lemma 4].

Lemma 20 (Extract-and-Simulate Lemma). Let G be a QPT algorithm that takes the security
parameter 1λ, an error parameter 1γ

−1
, a quantum state ρ, and a classical string z as input, and

outputs b ∈ {>,⊥} and a quantum state ρout.

Suppose that there exists a QPT algorithm K (referred to as the simulation-less extractor) that
takes as input the security parameter 1λ, an error parameter 1γ

−1
, a quantum state ρ, and a classical

string z, and outputs s ∈ {0, 1}poly(λ) ∪{⊥} satisfying the following w.r.t. some sequence of classical
strings {s∗z}z∈{0,1}∗.

1. For any λ, γ, ρλ, and zλ, the output s of K(1λ, 1γ
−1
, ρλ, zλ) is equal to s∗zλ whenever s 6= ⊥.

2. For any noticeable function γ(λ), there exists a noticeable function δ(λ) that is efficiently com-
putable from γ(λ) and satisfies the following. For any sequence {ρλ, zλ}λ∈N of polynomial-size
quantum states and classical strings, if

Pr
[
b = > : (b, ρout)← G(1λ, 1γ

−1
, ρλ, zλ)

]
≥ γ(λ),

then

Pr
[
K(1λ, 1γ

−1
, ρλ, zλ) = s∗zλ

]
≥ δ(λ).

Then, there exists a QPT algorithm SE such that for any noticeable function ε = ε(λ), there exists a
noticeable function γ = γ(λ) ≤ ε(λ) that is efficiently computable from ε and satisfies the following:
For any sequence {ρλ, zλ}λ∈N of polynomial-size quantum states and classical strings,

{SE(1λ, 1ε
−1
, ρλ, zλ)}λ∈N

s
≈ε {(ρout, Γb(s∗zλ)) : (b, ρout)← G(1λ, 1γ

−1
, ρλ, zλ)}λ∈N,

where Γb(s
∗
zλ

) :=

{
s∗zλ if b = >
⊥ otherwise

.

In [CCLY22], the authors essentially proved a special case of the above lemma where the
simulation-less extractor is fixed to Unruh’s rewinding extractor [Unr12]. We observe that essen-
tially the same proof works for general simulation-less extractors.31 We provide the full proof of
Lem. 20 in Appx. A for completeness.

31 Indeed, this observation is also mentioned in the technical overview of [CCLY22].
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8 Post-Quantum Non-Malleable Commitments

In this section, we construct a full-fledged post-quantum non-malleable commitment scheme that
supports an exponential-size tag space and is secure against QPT asynchronous MIM adversaries.

8.1 Small-Tag, One-sided, Synchronous, Post-Quantum Setting

First, we show that the Prot. 1 given in Sec. 4 is post-quantumly secure if we instantiate it with post-
quantum building-blocks. Specifically, let 〈C,R〉OneSided

tg,PQ be Prot. 1 instantiated with post-quantum
Naor’s commitment Com (which is constructed based on post-quantum OWFs), post-quantum
injective OWF f , and a post-quantum witness-distinguishable arguments of knowledge with ε-
close emulation as per Def. 14 (see Prot. 5 in Appx. B for the full description of 〈C,R〉OneSided

tg,PQ ).
Then, we can prove the following theorem:

Theorem 21. The commitment scheme 〈C,R〉OneSided
tg,PQ is non-malleable against one-sided synchronous

QPT adversaries with tag space [n], with n being any polynomial on λ.

We remark that the injectivity assumption for f can be removed in exactly the same way as in
the classical setting (as explained in Sec. 4.8).

The proof of Thm. 21 is very similar to that of its classical counterpart (Thm. 2) except for
one step as explained below. Thus, we only give a proof sketch below, and defer the full proof to
Appx. B.

Proof of Thm. 21 (sketch). We observe that all steps of the proof of Thm. 2, except for the proof of

Lem. 7 (in particular, Lem. 9 in Sec. 4.4), can be translated into the post-quantum setting easily with

the following remarks. The only difference in those steps (except for some superficial differences like

PPT vs QPT) is that we only have WIAoK with ε-close emulation (as per Def. 14) instead of WIPoK

(with negligibly-close emulation). First, the AoK property instead of the PoK property suffices because

we run witness-extended emulators only for (possibly non-uniform) efficient cheating provers. Second,

the ε-close emulation (in contrast to negligibly-close emulation) also suffices, because we can take a

sufficiently small noticeable error parameter such that it is much smaller than the MIM adversary’s

advantage. With these modifications, the whole proof will go through.

Thus, the only remaining issue is how to prove the post-quantum version of Lem. 7 (using a post-

quantum version of Lem. 9). Roughly, we have to construct a simulation-extractor SE that extracts

the right committed message val(τ̃) while simulating M’s final state from a simulation-less extractor

K, which extracts val(τ̃) with a noticeable probability without simulating M’s final state. This task

is exactly what can be achieved by our new extract-and-simulate lemma (Lem. 20). Indeed, the re-

quirements for K in Lem. 9 (more precisely, its post-quantum version Lem. 31) exactly correspond to

the assumptions of Lem. 20. Therefore, this step can be completed by reducing it to Lem. 20. (We

believe that readers with good understanding of the classical case can directly go to Proof of Lem. 29
in Page 86 after checking the statements of Lem. 29 and 31 and relevant definitions to see how this step

exactly works.)

8.2 Small-Tag, Asynchronous, Post-Quantum Setting

Next, we explain how to make 〈C,R〉OneSided
tg,PQ (shown in Prot. 5) secure against two-sided asyn-

chronous adversaries. We emphasize that this subsection still focuses on the small-tag setting. This
step is essentially the same as its classical counterpart in Sec. 5 and 6 except for that we rely on
post-quantum building blocks.

We present our construction in Prot. 4. This protocol makes use of the following building blocks.
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– A post-quantum OWF f ;

– Naor’s commitment Com that is implemented with a post-quantum OWF;

– A post-quantum witness-indistinguishable argument of knowledge with ε-close emulation WIAoK

(as per Def. 14);

– A post-quantum ε-simulatable extractable commitment ExtCom (as per Def. 9). We denote by
VerifyExtCom the verification algorithm of ExtCom in the decommit stage.

Similarly to Sec. 6, we recursively define n5, ..., n9 so that ni is greater than the total round
complexity of Steps 1 to i − 1. We also require that n5 is greater than the round complexities of
WIAoK and ExtCom. It is easy to see that we can set ni to a constant if both WIPoK and ExtCom

have constant rounds. In particular, Prot. 4 runs in constant rounds.

Protocol 4: Post-Quantum Small-Tag Asynchronous NMCom 〈C,R〉asynctg,PQ

The tag space is defined to be [n] where n is a polynomial on λ. Let t ∈ [n] be the tag for the
following interaction. Let m be the message to be committed to.

Commit Stage:

1. Receiver R samples and sends the first message β for Naor’s commitment.

2. Committer C commits to m using the second message of Naor’s commitment. C also sends a
β′ that will be used as the first Naor’s message for R to generate a commitment in next step.
Formally, C samples r and β′ and sends the tuple

(
com = Comβ(m; r), β′

)
.

3. R and C do the following:

(a) (TrapGen.) R computes V0 = f(v0) and V1 = f(v1) with v0, v1
$←− {0, 1}λ and sends

(V0, V1) to C

(b) (WIAoK-Trap.) R and C execute an instance of WIAoK where R proves to C that he
“knows” a pre-image of V0 or V1. Formally, R proves that (V0, V1) ∈ LOR

f , where

LOR
f :=

{
(V0, V1)

∣∣ ∃v s.t. f(v) = V0 ∨ f(v) = V1

}
. (76)

Note that R uses v0 as the witness when executing this WIAoK.

4. R performs the following computation:

(a) R computes {yAi = f(xAi )}i∈[t] with xAi
$←− {0, 1}λ for each i ∈ [t], and sets Y A :=

(yA1 , . . . , y
A
t ). R also computes {comA

i = Comβ′(x
A
i ; rAi )}i∈[t], where rAi is a random string

for each i ∈ [t].

(b) R computes {yBi = f(xBi )}i∈[n−t] with xBi
$←− {0, 1}λ for each i ∈ [n − t], and sets Y B :=

(yB1 , . . . , y
B
n−t). R also computes {comB

i = Comβ′(x
B
i ; rBi )}i∈[n−t], where rBi is a random

string for each i ∈ [n− t].

R sends the tuple
(
Y A, {comA

i = Comβ′(x
A
i ; rAi )}i∈[t], Y

B , {comB
i = Comβ′(x

B
i ; rBi )}i∈[n−t]

)
.

5. (ExtCom-1 × n5.) C and R sequentially execute n5 instances of ExtCom where C commits to
m. Let τ1

i and decom1
i be the transcript and decommitment (privately obtained by C) of the

i-th execution.

6. (WIAoK-1-A × n6.) R and C sequentially execute n6 instances of WIAoK where R proves to
C that he “knows” a pre-image of some yAi contained in Y A, and yAi are consistent with comA

i
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(as defined in Step 4a). Formally, R proves that (Y A, {comA
i }i∈[t]) ∈ Ltf,β′ , where

Ltf,β′ :=

{
(yA1 , . . . , y

A
t ), (comA

1 , . . . , com
A
t )

∣∣∣∣∣ ∃(i, xAi , rAi ) s.t.

i ∈ [t] ∧
yAi = f(xAi ) ∧
comA

i = Comβ′(x
A
i ; rAi )

}
. (77)

Note that R uses (1, xA1 , r
A
1 ) as the witness when executing this WIAoK.

7. (ExtCom-2 × n7.) C and R sequentially execute n7 instances of ExtCom where C commits to
m. Let τ2

i and decom2
i be the transcript and decommitment (privately obtained by C) of the

i-th execution.

8. (WIAoK-1-B × n8) R and C sequentially execute n8 instances of WIAoK where R proves to
C that he “knows” a pre-image of some yBi contained in Y B, and yBi are consistent with comB

i

(as defined in Step 4b). Formally, R proves that (Y B , {comB
i }i∈[n−t]) ∈ Ln−tf,β′ , where

Ln−tf,β′
:=

{
(yB1 , . . . , y

B
n−t), (com

B
1 , . . . , com

B
n−t)

∣∣∣∣∣ ∃(i, xBi , rBi ) s.t.

i ∈ [n− t] ∧
yBi = f(xBi ) ∧
comB

i = Comβ′(x
B
i ; rBi )

}
. (78)

Note that R uses (1, xB1 , r
B
1 ) as the witness when executing this WIPoK.

9. (ExtCom-3 × n9.) C and R sequentially execute n9 instances of ExtCom where C commits to
m. Let τ2

i and decom2
i be the transcript and decommitment (privately obtained by C) of the

i-th execution.

10. (WIAoK-2.) C and R execute an instance of WIAoK where C proves to R that he “knows” the
(same) message committed in com (defined in Step 2) and all commitments τ ci of ExtCom (in
Steps 5, 7 and 9), or a pre-image of some yAi contained in Y A (defined in Step 4a), or a pre-image
of some yBi contained in Y B (defined in Step 4b) or a preimage of either of V0 or V1 (defined
in Step 3a). Formally, C proves that (com, {τ ci }(c,i)∈J , Y A, Y B , V0, V1) ∈ Lβ ∨ Ltf ∨ L

n−t
f ∨ LOR

f ,
where J = ({1} × [n5]) ∪ ({2} × [n7]) ∪ ({3} × [n9]),

Lβ :=

{
(com, {τ ci }(c,i)∈J )

∣∣∣∣∣
∃(m, r, {decomc

i}(c,i)∈J ) s.t.

com = Comβ(m; r) ∧
∀ (c, i) ∈ J, VerifyExtCom(m, τ ci , decom

c
i ) = >

}
(79)

Ltf := {(yA1 , . . . , yAt ) | ∃(i, xAi ) s.t. i ∈ [t] ∧ yAi = f(xAi )}, (80)

Ln−tf
:= {(yB1 , . . . , yBn−t) | ∃(i, xBi ) s.t. i ∈ [n− t] ∧ yBi = f(xBi )}, (81)

and LOR
f is defined in Language (76). Note that C uses the (m, r, {decomc

i}(c,i)∈J ) defined in
Steps 2, 5, 7 and 9 as the witness when executing this WIAoK.

Decommit Stage: C sends (m, r). R accepts if com = Comβ(m; r), and rejects otherwise.

We remark that Prot. 4 is identical to Prot. 3 except that we require post-quantum security for
building blocks and use WIAoK instead of WIPoK.

Security. Completeness is straightforward. Statistical binding follows from that of Naor’s commit-
ment.
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For computational hiding and non-malleability, we observe that the proofs against classical
adversaries in Sec. 6 is already quantum-friendly, and they can be translated into proofs against
quantum adversaries in a straightforward manner. The only difference is that we now have ε-close
simulation for WIAoK and ExtCom though the classical counterparts have negligible simulation
errors. Thus, whenever we invoke extractors of WIPoK or ExtCom in the original proof in the classical
setting, a noticeable error occurs in the post-quantum setting. However, this is not a problem since
the error can be an arbitrarily small noticeable function. Thus, by repeating the same proofs as
those in the classical case, we can show that QPT MIM adversary’s advantage is smaller than any
noticeable function in the security parameter. This means that the advantage is negligible, which
is nothing but non-malleability in the standard sense. Thus, we obtain the following theorems.

Theorem 22. The commitment scheme 〈C,R〉asynctg,PQ in Prot. 4 is computationally hiding against
QPT adversaries.

Theorem 23. The commitment scheme 〈C,R〉asynctg,PQ in Prot. 4 is non-malleable against asynchronous
QPT adversaries with tag space [n], with n being any polynomial on λ.

8.3 Tag Amplification

Finally, we explain how to amplify the tag space of Prot. 4. For this step, we rely on the following
variant of a theorem shown in [BLS22].

Theorem 24 ([BLS22, Section 6]). Assume the existence of

– a post-quantum, k1-round, ε-simulatable extractable commitment (as per Def. 9), and

– a post-quantum, k2-round, witness-indistinguishable argument.

Let 〈C,R〉asynctg,PQ be a post-quantumly non-malleable commitment scheme, where the subscript tg de-

notes the length of the maximum tag it can support. Assume 〈C,R〉asynctg,PQ satisfies the following
conditions:

1. 〈C,R〉asynctg,PQ supports tg ∈ {3, 4, . . . , O(log λ)} bit tags, and

2. 〈C,R〉asynctg,PQ is also a post-quantum (k1 +k2)-robust ε-simulatable extractable commitment scheme
(as per Def. 10).

Then, there exists a post-quantum non-malleable commitment scheme 〈C,R〉asyncTG,PQ which supports

tags of TG = 2tg−1 bits. Moreover, 〈C,R〉asyncTG,PQ has k1 + k2 +O(1) rounds.

Remark 16. In the original version of the above theorem in [BLS22], they require negl-simulatability

instead of ε-simulatability for the extractable commitment and the non-malleable commitment schemes

(in Condition 2). However, we can see that the ε-simulatable version suffices due to a similar reason as

explained in the end of the previous subsection. That is, if we use extractors with a noticeable error

in their proof, we can show that the adversary’s advantage is at most a noticeable function in λ. Since

the noticeable error can be chosen to be arbitrarily small, this implies non-malleability in the standard

sense.

Given the above Thm. 24, we only need to prove that 〈C,R〉asynctg,PQ in Prot. 4 has (k1 +k2)-robust
ε-simulatable extractability where k1 and k2 are the round complexities of ExtCom and WIAoK used
in the construction of 〈C,R〉asynctg,PQ.32 We show this below.

32 For applying Thm. 24, we only need to require computational soundness for the witness indistinguishable
argument rather than the witness-extended emulation property. But since the latter is stronger than the
former, we can simply instantiate it with any WIAoK that satisfies Def. 14.
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Theorem 25. The commitment scheme 〈C,R〉asynctg,PQ in Prot. 4 satisfies post-quantum (k1+k2)-robust
ε-simulatable extractability (as per Def. 10) where k1 and k2 are round complexities of ExtCom and
WIAoK.

Proof. (sketch.) We first remark that we have n9 > k1 + k2 since we assume that n9 is larger than the

total round complexity of Steps 1 to 8, which is clearly larger than k1 + k2 since those steps include

repetitions of ExtCom and WIAoK. Then, by the pigeonhole principle, for each session with O∞, there

is i∗ such that ExtCom-3-i∗ does not interleave with the interaction with the external (k1 +k2)-round

machine B in the definition of r-robust ε-simulatable extractability (in Def. 10). Then, we can extract

the committed message by running the extractor for ExtCom-3-i∗ without rewinding B.33 We can

show that the extracted message is the correct committed message in com (in Step 1) whenever the

receiver accepts except for a negligible probability similarly to Lem. 14. This enables us to simulate the

oracle O∞ without rewinding B.

Finally, by combining Thm. 23 to 25, we obtain the following theorem.

Theorem 26. Assuming the existence of post-quantum OWFs, there exist constant-round post-
quantum non-malleable commitments supporting tag space [Ω(2λ)].

9 Application: Quantum-Secure MPC in Constant Rounds from QLWE

MPC for Classical Functionalities. Agarwal et al. [ABG+21] constructed a constant-round post-
quantum MPC protocol in the plain model assuming the super-polynomial hardness of QLWE
and a QLWE-based circular security assumption. The only reason why they rely on the super-
polynomial hardness of QLWE is for their construction of a constant-round post-quantum non-
malleable commitment scheme.34 Since we have constructed constant-round post-quantum non-
malleable commitments from post-quantum OWFs (Thm. 26), we can weaken the assumption to
the polynomial hardness of QLWE. Thus, we obtain the following theorem.

Theorem 27. Assuming the polynomial hardness of QLWE and a QLWE-based circular security
assumption (as in [ABG+21]), there exist constant-round constructions of post-quantum MPC for
classical functionalities in the plain model.

Recall that “post-quantum MPC” means an MPC protocol secure against QPT adversaries
where honest parties only need to perform classical computation. This is the first construction of
constant-round post-quantum MPC from polynomial hardness assumptions in the plain model.

Remark 17 (Synchronous Security Suffices.). For the construction of post-quantum MPC, we only

need post-quantum non-malleable commitments secure against synchronous adversaries. It is simpler

to obtain such non-malleable commitments than those against asynchronous adversaries. For example,

this can be done by applying the tag amplification of [ABG+21, Sec. 7.3] to our small-tag, synchronous

construction (i.e., Prot. 2 instantiated with post-quantum building blocks).

33 We can assume that such i∗ is known in advance w.l.o.g. by Lem. 11.
34 Actually, what they need is the so-called many-to-one non-malleable commitments. But it is known that

(one-to-one) non-malleability as defined in Def. 7 is equivalent to many-to-one non-malleability (even in the
post-quantum setting, as noted in [ABG+21, Lemma 7.3]).
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MPC for Quantum Functionalities. Recently, Bartusek et al. [BCKM21a] built a constant-round
quantum-secure MPC for quantum functionalities in the CRS model35, based on the hardness of
QLWE. It is easy to see that the post-quantum MPC from Thm. 27 can be used to instantiate
the CRS required by the [BCKM21a] protocol. Since the protocol from Thm. 27 is also constant
round, this leads to the first constant-round quantum-secure MPC for quantum functionalities from
polynomial hardness assumptions without any trusted setup.

Theorem 28. Assuming (polynomial) QLWE and the QLWE-based circular security assumption
(as in [ABG+21]), there exists a constant-round construction of quantum-secure MPC for quantum
functionalities in the plain model.
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Appendix

A Proof of Extract-and-Simulate Lemma (Lem. 20)

We prove Lem. 20. The proof follows similar techniques as in the proof of [CCLY22, Lemma 4].

A.1 Preparation

We prepare several lemmas that will be used in the proof of Lem. 20.

Watrous’ Rewinding Lemma. The following is Watrous’ rewinding lemma [Wat09] in the form
of [BS20, Lemma 2.1].

Lemma 21 (Watrous’ Rewinding Lemma [Wat09]). There is a quantum algorithm R that gets
as input the following:

– A quantum circuit Q that takes n-input qubits in register Inp and outputs a classical bit b (in a
register outside Inp) and an m-qubit output.

– An n-qubit state ρ in register Inp.

– A number T ∈ N in unary.

R(1T ,Q, ρ) executes in time T ·|Q| and outputs a distribution over m-qubit states Dρ := R(1T ,Q, ρ)

with the following guarantees.

For an n-qubit state ρ, denote by Qρ the conditional distribution of the output distribution Q(ρ),
conditioned on b = 0, and denote by p(ρ) the probability that b = 0. If there exist p0, q ∈ (0, 1),
α ∈ (0, 1

2) such that:

– Amplification executes for enough time: T ≥ log(1/α)
4p0(1−p0)

,

– There is some minimal probability that b = 0: For every n-qubit state ρ, p0 ≤ p(ρ),

– p(ρ) is input-independent, up to α distance: For every n-qubit state ρ, |p(ρ)− q| < α, and

– q is closer to 1
2 : p0(1− p0) ≤ q(1− q),

then for every n-qubit state ρ,

TD(Qρ, Dρ) ≤ 4
√
α

log(1/α)

p0(1− p0)
.

Lemma 22 ([CCLY22, Lemma 8]). Let |φb〉 =
∣∣φb,0〉 +

∣∣φb,1〉 be a normalized quantum state in
a Hilbert space H. Let F be a quantum algorithm that takes a state in H as input and outputs a
quantum state (not necessarily in H) or a classical failure symbol Fail. Suppose that we have

Pr

[
F

(∣∣φb,0〉 〈φb,0∣∣
‖
∣∣φb,0〉 ‖2

)
= Fail

]
≥ 1− γ

for b ∈ {0, 1} and ‖ |φ1,1〉 − |φ1,0〉 ‖ ≤ δ. Then for any distinguisher D, it holds that

|Pr[D(F (|φ0〉 〈φ0|)) = 1]− Pr[D(F (|φ1〉 〈φ1|)) = 1]| ≤ (12γ1/2 + 2δ)1/2.
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Lemma 23 ([CCY21, Lemma 3.2]). Let |ψ〉X be a (not necessarily normalized) state over
register X and U be a unitary over registers (X,Y,Z). Suppose that a measurement of register Z

of U |ψ〉X |0〉Y,Z results in a deterministic value except for probability ν, i.e., there is z∗ such that

‖(I − |z∗〉 〈z∗|)ZU |ψ〉X |0〉Y,Z ‖
2 ≤ ν.

If we let R := (|0〉 〈0|)Y,ZU †(|z∗〉 〈z∗|)ZU , then we have

‖ |ψ〉X |0〉Y,Z −R |ψ〉X |0〉Y,Z ‖ ≤
√
ν.

Lemma 24 (A variant of [CCLY22, Lemma 10]). Let Π be a projection over a Hilbert space
HX⊗HY. For any noticeable function δ = δ(λ), there exists an orthogonal decomposition (S<δ, S≥δ)
of HX ⊗HY that satisfies the following:

1. (S<δ and S≥δ are invariant under Π and (|0〉 〈0|)Y.) For any |ψ〉X,Y ∈ S<δ, we have

Π |ψ〉X,Y ∈ S<δ, (IX ⊗ (|0〉 〈0|)Y) |ψ〉X,Y ∈ S<δ.

Similarly, for any |ψ〉X,Y ∈ S≥δ, we have

Π |ψ〉X,Y ∈ S≥δ, (IX ⊗ (|0〉 〈0|)Y) |ψ〉X,Y ∈ S≥δ.

2. (Π succeeds with probability < δ and ≥ δ in S<δ and S≥δ.) For any quantum state
|φ〉X ∈ HX s.t. |φ〉X |0〉Y ∈ S<δ we have

‖Π |φ〉X |0〉Y ‖
2 < δ.

Similarly, for any quantum state |φ〉X ∈ HX s.t. |φ〉X |0〉Y ∈ S≥δ we have

‖Π |φ〉X |0〉Y ‖
2 ≥ δ.

3. (Unitary for amplification.) For any T ∈ N, there exists a unitary Uamp,T over HX ⊗HY ⊗
HB ⊗HAnc where B is a register to store a qubit and Anc is a register to store ancillary qubits
with the following properties:

(a) (Mapped onto Π(IX⊗ (|0〉 〈0|)Y) when B contains 1.) For any quantum state |ψ〉X,Y ∈
HX ⊗HY, we can write

|1〉 〈1|B Uamp,T |ψ〉X,Y |0〉B,Anc =
∑
anc

∣∣ψ′anc〉X,Y |1〉B |anc〉Anc

by using sub-normalized states |ψ′anc〉X,Y that are in the span of Π(IX ⊗ (|0〉 〈0|)Y).

(b) (Amplification of success probability in S≥δ.) For any noticeable function ν = ν(λ),
there is T = poly(λ) such that for any quantum state |φ〉X ∈ HX s.t. |φ〉X |0〉Y ∈ S≥δ, we
have

‖ |1〉 〈1|B Uamp,T |φ〉X |0〉Y |0〉B,Anc ‖
2 ≥ 1− ν.

(c) (S<δ and S≥δ are invariant under Uamp,T ). For any quantum state |ψ<δ〉X,Y ∈ S<δ and
any b, anc, we can write

Uamp,T |ψ<δ〉X,Y |b, anc〉B,Anc =
∑
b′,anc′

∣∣ψ′<δ,b′,anc′〉X,Y ∣∣b′, anc′〉B,Anc
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by using sub-normalized states
∣∣∣ψ′<δ,b′,anc′〉

X,Y
∈ S<δ.

Similarly, for any quantum state
∣∣ψ≥δ〉X,Y ∈ S≥δ and any b, anc, we can write

Uamp,T

∣∣ψ≥δ〉X,Y |b, anc〉B,Anc =
∑
b′,anc′

∣∣ψ′≥δ,b′,anc′〉X,Y ∣∣b′, anc′〉B,Anc

by using sub-normalized states
∣∣∣ψ′≥δ,b′,anc′〉

X,Y
∈ S≥δ.

4. (Efficient Implementation of Uamp,T .) There exists a QPT algorithm Amp (whose descrip-
tion is independent of Π) that takes as input 1T , a description of quantum circuit that perform a
measurement (Π, IX,Y −Π), and a state |ψ〉X,Y,B,Anc, and outputs Uamp,T |ψ〉X,Y,B,Anc. More-
over, Amp uses the measurement circuit for only implementing an oracle that apply unitary to
write a measurement result in a designated register in Anc, and it acts on X only through the
oracle access.

A.2 Proving Lem. 20

Since any mixed state can be seen as a distribution over pure states, we assume G’s input ρλ is
a pure state and denote it by |ψ〉, omitting the dependence on λ. Similarly, we simply write z to
mean zλ and s∗ to mean s∗zλ for simplicity.

For a noticeable function γ(λ) and a quantum state |ψ〉, we define an experiment Exp(λ, 1γ
−1
, |ψ〉 , z)

as follows

Exp(λ, 1γ
−1
, |ψ〉 , z): Run (b, ρout)← G(1λ, 1γ

−1
, |ψ〉 , z).

– If b = >, the experiment outputs (ρout, s
∗). We remark that this step may not be done efficiently

since we do not assume that s∗ can be computed from z efficiently.

– If b = ⊥, the experiment outputs (ρout,⊥).

What we have to do is to construct a QPT SE such that for any polynomial-size |ψ〉 and noticeable
ε = ε(λ),

{SE(1λ, 1ε
−1
, |ψ〉 , z)}λ∈N

s
≈ε {(Exp(λ, 1γ

−1
, |ψ〉 , z)}λ∈N

for some noticeable γ.

Let Exp⊥(λ, 1γ
−1
, |ψ〉 , z) and Exp>(λ, 1γ

−1
, |ψ〉 , z) be the same as Exp(λ, 1γ

−1
, |ψ〉 , z) except that

they output a failure symbol Fail in the cases of b = > and b = ⊥, respectively. That is, they work
as follows.

Exp⊥(λ, 1γ
−1
, |ψ〉 , z): Run (b, ρout)← G(1λ, 1γ

−1
, |ψ〉 , z).

– If b = >, the experiment outputs Fail.

– If b = ⊥, the experiment outputs (ρout,⊥).

Exp>(λ, 1γ
−1
, |ψ〉 , z): Run (b, ρout)← G(1λ, 1γ

−1
, |ψ〉 , z).

– If b = >, the experiment outputs (ρout, s
∗).

– If b = ⊥, the experiment outputs Fail.

First, we give simulation extractors for each of these experiments.
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Lemma 25 (Extract-and-Simulate for the Case of b = ⊥). For any noticeable γ that is effi-
ciently computable from ε, there is a QPT algorithm SE⊥ such that for any polynomial-size quantum
state |ψ〉 and noticeable ε,

{SE⊥(1λ, 1ε
−1
, |ψ〉 , z)}λ∈N ≡ {Exp⊥(λ, 1γ

−1
, |ψ〉 , z)}λ∈N.

Proof of Lem. 25. Since Exp⊥ is efficient (because it never outputs s∗), SE⊥ just needs to run Exp⊥.

Lemma 26 (Extract-and-Simulate for the Case of b = >). There is a QPT algorithm SE>
such that for any polynomial-size quantum state |ψ〉 and noticeable ε,

{SE>(1λ, 1ε
−1
, |ψ〉 , z)}λ∈N

s
≈ε {Exp>(λ, 1γ

−1
, |ψ〉 , z)}λ∈N,

where γ :=
(
ε
5

)4
.

Proof of Lem. 26. Let δ be a noticeable function that satisfies Item 2 of Lem. 20 for γ =
(
ε
5

)4
.

We apply Lem. 24 with respect to a projection corresponding to the success of K. Let UK be the

unitary that represents K(1λ, 1γ
−1
, ·, z). More precisely, we define UK over registers the input register

Inp, working register W, and output register Out so that K(1λ, 1γ
−1
, ·, z) can be described as follows:

K(1λ, 1γ
−1
, ·, z): It takes a quantum state |ψ〉 in the register Inp and initializes registers W and Out

to be |0〉W,Out. Then it applies the unitary UK, measures the register Out in the standard basis to

obtain s, and outputs s.

We define a projection Π over (Inp,W,Out) as

Π := U †K

∑
s 6=Fail

|s〉 〈s|


Out

UK. (82)

Then the following claim immediately follows from the assumption about K (Item 1 of Lem. 20).

Claim 29. Given any state in the span of Π(IInp⊗(|0〉 〈0|)W,Out), if we apply UK and then measure
register Out, then the measurement outcome is always s∗

We apply Lem. 24 for the above Π where HX := HInp, HY := HW ⊗ HOut, and T = poly(λ)

is chosen in such a way that Item 3b of Lem. 24 holds for ν :=
(
ε
2

)4
. Then we have a decomposition

(S<δ, S≥δ) of HX⊗HY and a unitary Uamp,T over HX⊗HY⊗HB⊗HAnc that satisfy the requirements

in Lem. 24. We denote by Other to mean the registers W, Out, B, and Anc for brevity. We construct

the extractor SE> for Lem. 26 as follows:

SE>(1λ, 1ε
−1
, |ψ〉 , z):

1. Set |ψ〉 in register Inp and initlialize register Other to be |0〉.

2. Apply Uamp,T by using the algorithm Amp in Item 4 of Lem. 24.

3. Measure register B and let b be the outcome. If b = 0, output Fail and immediately halt. Otherwise,

proceed to the next step.

4. Apply UK, measure register Out to obtain an outcome sExt, and apply U †K.

5. Apply U †amp,T by using the algorithm Amp in Item 4 of Lem. 24.

6. Measure register Other. If the outcome is not the all 0’s string, output Fail and immediately halt.

Otherwise, let |ψ′〉 be the state in register Inp at this point, and proceed to the next step.
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7. Run (b, ρout)← G(1λ, 1γ
−1
, |ψ′〉 , z)

– If b = >, output (ρout, sExt).

– If b = ⊥, output Fail.

We can easily see the following claim:

Claim 30. Whenever Step 4 of SE> is invoked, sExt obtained in the step is always equal to s∗.
Moreover, the step does not change the state in registers Inp and Other, that is, the states before
and after the step are identical.

Proof of Claim 30. Whenever Step 4 is invoked, the bit b obtained in Step 3 is equal to 1. In this case,

by Item 3a of Lem. 24, the state in registers Inp, W, and Out is in the span of Π(IInp⊗ (|0〉 〈0|)W,Out).

Then, Claim 29 implies that sExt is always equal to s∗. Then the measurement of Out does not collapse

the state and thus the step does not change the state.

The rest of the proof is similar to that of [CCY21, Claim 4.5]. Let R be an operator defined as

follows:

R := (|0〉 〈0|)OtherU
†
amp,T (|1〉 〈1|)BUamp,T .

Let Π<δ and Π≥δ be projections onto S<δ and S≥δ, respectively. To apply Lemma 22, we define states

|φ0〉 = |φ0,0〉+ |φ0,1〉 and |φ1〉 = |φ1,0〉+ |φ1,1〉 over (D, Inp,Other) where D is an additional one-qubit

register as follows:

|φ0〉 := |1〉D |ψ〉Inp |0〉Other ,

|φ0,0〉 := |1〉DΠ<δ |ψ〉Inp |0〉Other ,

|φ0,1〉 := |1〉DΠ≥δ |ψ〉Inp |0〉Other ,

|φ1〉 := |1〉DR |ψ〉Inp |0〉Other + α |0〉D |0〉Inp |0〉Other ,

|φ1,0〉 := |1〉DRΠ<δ |ψ〉Inp |0〉Other + α |0〉D |0〉Inp |0〉Other ,

|φ1,1〉 := |1〉DRΠ≥δ |ψ〉Inp |0〉Other

for α :=
√

1− ‖R |ψ〉Inp |0〉Other ‖2 (so that |φ1〉 is a normalized state). Let F be a quantum algorithm

that works as follows:

F
(
|φ〉D,Inp,Other

)
: It measures D, and outputs Fail if the outcome is 0. Otherwise, for the state∣∣ψinp

〉
in register Inp, it runs (b, ρout)← G(1λ, 1γ

−1
,
∣∣ψinp

〉
, z) and outputs (ρout, sExt) if b = > and

otherwise outputs Fail.

It is easy to see that

Exp>(λ, 1γ
−1
, |ψ〉 , z) ≡ F (|φ0〉 〈φ0|).

Moreover, by the definition of ExtSim,na and Claim 30, we can see that

SE>(1λ, 1ε
−1
, |ψ〉 , z) ≡ F (|φ1〉 〈φ1|).

Thus, it suffices to prove that the distinguishing advantage between F (|φ0〉 〈φ0|) and F (|φ1〉 〈φ1|) is at

most ε. To apply Lem. 22, we prove the following claim.
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Claim 31. The following hold:

1. Pr

[
F

(
|φb,0〉〈φb,0|
‖|φb,0〉‖2

)
= Fail

]
≥ 1− γ for b ∈ {0, 1}.

2. ‖ |φ1,1〉 − |φ0,1〉 ‖ ≤ ν1/2.

Proof of Claim 31.
First item. We can write Π<δ |ψ〉Inp |0〉Other = |ψ<δ〉Inp |0〉Other. By |ψ<δ〉Inp |0〉Other ∈ S<δ, Item 2

of Lem. 24, and Item 1 of Lem. 20, we have

Pr

[
K
(

1λ, 1γ
−1 |ψ<δ〉
‖ |ψ<δ〉 ‖

, z

)
= s∗z

]
< δ.

By the contraposition of Item 2 of Lem. 20, we have

Pr

[
b = > : (b, ρout)← G

(
1λ, 1γ

−1 |ψ<δ〉
‖ |ψ<δ〉 ‖

, z

)]
< γ.

Thus, we have

Pr

[
F

(
|φ0,0〉 〈φ0,0|
‖ |φ0,0〉 ‖2

)
6= Fail

]
= Pr

[
b = > : (b, ρout)← G

(
1λ, 1γ

−1 |ψ<δ〉
‖ |ψ<δ〉 ‖

, z

)]
≤ γ.

This completes the proof of the first item for the case of b = 0. The case of b = 1 can be proven similarly

noting that RΠ<δ |ψ〉Inp |0〉Other ∈ S<δ by Item 1 and item 3c of Lemma 24.

Second Item. By Item 3b of Lem. 24, we have

‖(|1〉 〈1|)BUamp,TΠ≥t |ψ〉Inp |0〉Other ‖
2 ≤ ν.

Thus, Lem. 23 implies

‖Π≥t |ψ〉Inp |0〉Other −RΠ≥t |ψ〉Inp |0〉Other ‖ ≤ ν
1/2.

By Lem. 22 and Claim 31 the distinguishing advantage between F (|φ0〉 〈φ0|) and F (|φ1〉 〈φ1|) is at

most (
12γ1/2 + 2ν1/2

)1/2
. (83)

By using γ =
(
ε
5

)4
and ν =

(
ε
2

)4
, we can see that this is at most ε. This completes the proof of Lem. 26.

We complete the proof of Lem. 26.

Given Lem. 25 and Lem. 26, the rest of the proof of Lem. 20 is very similar to the corresponding
part of the ε-zero-knowledge property of the protocols in [CCY21]. We give the full proof for
completeness.

Let SEcomb be an algorithm that works as follows:

SEcomb(1λ, 1ε
−1
, |ψ〉 , z):

1. Set ε′ := ε2

4 log4(λ)
.
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2. Choose mode← {>,⊥}.

3. Run and output SEmode(1
λ, 1ε

′−1
, |ψ〉).

Lemma 27 (SEcomb Simulates Exp with Probability almost 1/2). Let psuccomb(1λ, 1ε
−1
, |ψ〉 , z) be

the probability that SEcomb(1λ, 1ε
−1
, |ψ〉 , z) does not return Fail, and let

Dext,comb(1λ, 1ε
−1
, |ψ〉 , z)

be a conditional distribution of SEcomb(1λ, 1ε
−1
, |ψ〉 , z), conditioned on that it does not return Fail.

Then we have ∣∣∣psuccomb(1λ, 1ε
−1
, |ψ〉 , z)− 1/2

∣∣∣ ≤ ε′/2 + negl(λ). (84)

Moreover, we have

{Dext,comb(1λ, 1ε
−1
, |ψ〉 , z)}λ∈N

s
≈4ε′ {Exp(λ, 1γ

−1
, |ψ〉 , z)}λ∈N, (85)

where γ :=
(
ε′

5

)4
.

Proof. (sketch.) The intuition behind this proof is as follows. By Lem. 25 and 26, SE⊥ and SE> almost

simulate Exp conditioned on that b = ⊥ and b = >, respectively. Therefore, if we randomly guess b

and runs either of SE⊥ or SE> that successfully works for the guessed case, the output distribution

is close to the real output distribution of Exp conditioned on that the guess is correct, which happens

with probability almost 1/2.

A formal proof can be obtained based on the above intuition and is exactly the same as the proof

of [CCY21, Lemma 5.5] except for notational adaptations.

Then, we convert SEcomb into a full-fledged simulator that does not return Fail by using Watrous’
rewinding lemma (Lem. 21). Namely, we let Q be a quantum algorithm that takes |ψ〉 as input
and outputs SEcomb(1λ, 1ε

−1
, |ψ〉 , z) where b := 0 if and only if it does not return Fail, p0 := 1

4 ,
q := 1

2 , α := ε′, and T := 2 log(1/ε′). Then it is easy to check that the conditions for Lem. 21
is satisfied by Inequality (84) in Lem. 27 (for sufficiently large λ). Then, by using Lem. 21, we
can see that R(1T ,Q, |ψ〉) runs in time T = poly(λ) and its output (seen as a mixed state) has

a trace distance bounded by 4
√
α

log(1/α)
p0(1−p0)

from Dext,comb(1λ, 1ε
−1
, |ψ〉 , z). Since we have α = ε′ =

ε2

4 log4(λ)
= 1/poly(λ), we have 4

√
α

log(1/α)
p0(1−p0)

<
√
α log2(λ) = ε

2 for sufficiently large λ where we used

log(1/α) = log(poly(λ)) = o(log2(λ)) and 4
p0(1−p0)

= O(1). Thus, by combining the above and Eq. (85)

in Lem. 27, if we define SE(1λ, 1ε
−1
, |ψ〉 , z) := R(1T ,Q, |ψ〉), then we have

{SE(1λ, 1ε
−1
, |ψ〉 , z)}λ∈N

s
≈ ε

2
+4ε′ {Exp(λ, 1γ

−1
, |ψ〉 , z)}λ∈N

where γ =
(
ε′

5

)4
< ε′ < ε. We can conclude the proof of Lem. 20 by noting that we have ε

2 + 4ε′ < ε

since we have ε′ = ε2

4 log4(λ)
< ε

8 for sufficiently large λ.
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B Small-Tag, One-sided, Synchronous, Post-Quantum Setting

B.1 Construction

In this section, we prove that Prot. 1 is post-quantumly secure if we rely on post-quantum building-
blocks. Similarly to the classical case in Sec. 4, we present the construction assuming the existence
of post-quantum injective OWFs. The assumption can be relaxed to any OWFs by an appropriate
modification to the protocol similarly to the classical case. Since this is exactly the same as that in
the classical setting (i.e., Sec. 4.8), we do not repeat it in this section.

Our construction is based on the following building blocks:

– A post-quantum injective OWF f ;

– Naor’s commitment Com that is implemented with a post-quantum OWF.36;

– A post-quantum witness-indistinguishable argument of knowledge with ε-close emulation WIAoK

(as per Def. 14).

Protocol 5: Small-Tag One-Sided Synchronous Post-Quantum NMCom 〈C,R〉OneSided
tg,PQ

The tag space is defined to be [n] where n is a polynomial on λ. Let t ∈ [n] be the tag for the
following interaction. Let m be the message to be committed to.

Commit Stage:

1. Receiver R samples and sends the first message β for Naor’s commitment;

2. Committer C commits to m using the second message of Naor’s commitment. Formally, C
samples a random tape r and sends com = Comβ(m; r);

3. R computes {yi = f(xi)}i∈[t] with xi
$←− {0, 1}λ for each i ∈ [t]. R sends Y = (y1, . . . , yt) to C;

4. (WIAoK-1.) R and C execute an instance of WIAoK where R proves to C that he “knows”
a pre-image of some yi contained in Y (defined in Step 3). Formally, R proves that Y ∈ Ltf ,
where

Ltf := {(y1, . . . , yt) | ∃(i, xi) s.t. i ∈ [t] ∧ yi = f(xi)}. (86)

Note that R uses (1, x1) as the witness when executing this WIAoK.

5. (WIAoK-2.) C and R execute an instance of WIAoK where C proves to R that he “knows”
either the message committed in com (defined in Step 2), or a pre-image of some yi contained
in Y (defined in Step 3). Formally, C proves that (com, Y ) ∈ Lβ ∨ Ltf , where Lβ ∨ Ltf denotes

the OR-composed language (as per Def. 1), Ltf was defined in Language (86) and

Lβ := {com | ∃(m, r) s.t. com = Comβ(m; r)}. (87)

Note that C uses the (m, r) defined in Step 2 as the witness when executing this WIAoK.

Decommit Stage: C sends (m, r). R accepts if com = Comβ(m; r), and rejects otherwise.

Remark that the above protocol is exactly the same as Prot. 1 except that we use post-quantum
WIAoK with ε-close emulation and assume post-quantum security for all other building-blocks.

36 In this way, the Naor’s commitment is statistically binding and post-quantumly computationally hiding.
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Security. Completeness is straightforward from the description of Prot. 5. The statistical binding
property follows from that of Naor’s commitment. Computational hiding of any non-malleable com-
mitment follows from its non-malleability. So, we only need to show that Prot. 5 is non-malleable.
This is established by the following Thm. 32, which we prove in subsequent subsections.

Theorem 32. The commitment scheme 〈C,R〉OneSided
tg,PQ in Prot. 5 is non-malleable against one-sided

synchronous QPT adversaries with tag space [n], with n being any polynomial on λ.

B.2 Proving Non-Malleability

We prove Thm. 32 in Appx. B.2 to B.7. The proof follows the same template used in Sec. 4.2. The
only exception is the proof of Lem. 29 (which is the post-quantum counterpart of Lem. 7). Recall
that in Lem. 7, we amplify the extractor K to the simulation-extractor SE by rewinding. In the
current post-quantum setting, we cannot rewind quantum algorithms in general. Therefore, we rely
on an alternative argument based on our new extract-and-simulate lemma (Lem. 20). The rest of
the proof is almost the same as its classical counterpart; Thus, many parts of the proof are taken
verbatim from there. Essentially, the only difference is that we have to deal with noticeable errors
that come from witness-extended ε-close emulator (as per Property 2 of Def. 14). We highlight
differences from the classical counterpart in purple color throughout this section.

We use the same notation as in the proof of Thm. 2, with the only difference that now the
adversaries are non-uniform QPT (instead of PPT) machines. It is worth noting that the honest
committer and receiver are still classical (i.e., non-uniform PPT) machines.

In the sequel, we write 〈C,R〉 to mean 〈C,R〉OneSided
tg,PQ for notational convenience.

Game HMλ(λ,m, ρλ): This game is identical to its classical counterpart defined on Page 26, except
that M = {Mλ, ρλ}λ∈N now is a (non-uniform) QPT machine. That is, this is the man-in-the-
middle execution of the commit stage of the 〈C,R〉 defined in Prot. 5, where the left committer
commits to m andM’s non-uniform advice is ρλ. The output of HMλ(m, ρλ) is again defined to be
(OUTM, τ̃ , b), where OUTM is the (quantum) output of Mλ(ρλ) at the end of this game, τ̃ consists
of the Steps 1 and 2 messages exchanged in the right session, and b ∈ {>,⊥} is the honest receiver’s
final decision.

Notation. Recall from Def. 7 that the man-in-the middle game for a QPT adversaryM is denoted

by mim
Mλ

〈C,R〉(m, ρλ). Also, note that “
c
≈” refers to quantumly computational indistinguishability

throughout this section.

For any (OUTM, τ̃ , b) in the support of HMλ(λ,m, z), we define valb(τ̃) similarly to the classical
case, i.e.,

valb(τ̃) :=

{
val(τ̃) b = >
⊥ b = ⊥

,

where val(τ̃) denote the value statistically-bound in Steps 1 and 2 of the right session.

Similarly to Eq. (13), we have

{
mim

Mλ

〈C,R〉(m, ρλ)
} i.d.

==
{(

OUT, valb(τ̃)
)

: (OUT, τ̃ , b)← HMλ(m, ρλ)
}
, (88)

where both ensembles are indexed by λ ∈ N and m ∈ {0, 1}`(λ).
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Then, similarly to Eq. (14), the post-quantum non-malleability can be reduced to establishing
the following equation: {(

OUT0, valb0(τ̃0)
)

: (OUT0, τ̃0, b0)← HMλ(m0, ρλ)
}

c
≈
{(

OUT1, valb1(τ̃1)
)

: (OUT1, τ̃1, b1)← HMλ(m1, ρλ)
}
, (89)

where both ensembles are indexed by λ ∈ N and (m0,m1) ∈ {0, 1}`(λ) × {0, 1}`(λ).

Proof by Contradiction. Similarly to Inequality (15), we assume for contradiction that there are
a (possibly non-uniform) QPT distinguisher D = {Dλ, σλ}λ∈N and a function δ(λ) = 1/poly(λ) such
that for infinitely many λ ∈ N, it holds that∣∣∣∣Pr

[
Dλ
(
OUT0, valb0(τ̃0);σλ

)
= 1
]
− Pr

[
Dλ
(
OUT1, valb1(τ̃1);σλ

)
= 1
]∣∣∣∣ ≥ 3 · δ(λ), (90)

where the first probability is taken over the random procedure (OUT0, τ̃0, b0)← HMλ(m0, ρλ), and
the second probability is taken over the random procedure (OUT1, τ̃1, b1)← HMλ(m1, ρλ) (and the
randomness due to the measurements performed by Dλ (if any) for both probabilities).

Then, we show the following Lem. 28, which should be understood as the post-quantum coun-
terpart of Lem. 6.

Lemma 28. For the above δ(λ), there exits a hybrid G such that for any QPT M = {Mλ, ρλ}λ∈N,
the following holds

1.
{

(OUT0,Val0) : (OUT0,Val0)← GMλ(λ,m0, ρλ)
} c
≈
{

(OUT1,Val1) : (OUT1,Val1)← GMλ(λ,m1, ρλ)
}

,

where both ensembles are indexed by λ ∈ N and (m0,m1) ∈ {0, 1}`(λ) × {0, 1}`(λ).

2.
{

(OUTG,ValG) : (OUTG,ValG)← GMλ(λ,m, ρλ)
} c
≈δ(λ)

{(
OUTH , valbH (τ̃H)

)
: (OUTH , τ̃H , bH)← HMλ(λ,m, ρλ)

}
,

where both ensembles are indexed by λ ∈ N and m ∈ {0, 1}`(λ).

It is easy to see that if Lem. 28 is true, it contradicts our assumption in Inequality (90).
Therefore, it will finish the proof of non-malleability. Indeed, this lemma is the most technically
involved part. We prove it in Appx. B.3.

B.3 Proof of Lem. 28

Similarly to Algo. 4.1, we provide a new but equivalent interpretation of the game HMλ(λ,m, ρλ)

in Algo. B.1. We also provide a picture in Fig. 11a to illustrate it.

Algorithm B.1: Re-interpretation of Game HMλ(λ,m, ρλ)

Game HMλ(λ,m, ρλ) can be split into the following stages:

1. Prefix Generation: First, execute Steps 1 and 2 of the man-in-the-middle game of Prot. 5.
That is, it plays as the left honest committer committing to m and the right honest receiver,
with Mλ(ρλ) being the man-in-the-middle adversary.

Notation: Let stM denote the state of M at the end of Step 2; Let stC (resp. stR) denote the
state of the honest committer (resp. receiver) at the end of Step 2; Let τ̃ denote the tuple
(β̃, c̃om)a. In terms of notation, we denote the execution of this stage by

(stM, stC , stR, τ, τ̃)← HMλ
pre (λ,m, ρλ). (91)
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We will call the tuple (stM, stC , stR, τ, τ̃) the prefix and denote it by pref. It is worth noting that
this pref contains all the information such that a QPT machine can “complete” the remaining
execution of HMλ(λ,m, ρλ) starting from pref.

2. The Remainder: Next, it simply resumes from where the Prefix Generation stage stops, to
finish the remaining steps of the man-in-the-middle execution HMλ(λ,m, ρλ).

Notation: We introduce the following notations to describe this stage. Define a QPT machine
A that takes as input (stM, τ̃); Machine Aλ is supposed to run the residual strategy of Mλ

starting from stM. Also, define a QPT machine B that takes as input (stC , stR, τ̃); Machine B
is supposed to run the residual strategies of the honest committer C and receiver R, starting
from stC and stR respectivelyb. With the above notations, we can denote the execution of the
remaining steps of HM(λ,m, z) by

(OUTA, b)← 〈Aλ(stM),B(stC , stR)〉(1λ, τ̃), (92)

where OUTA is the output of Aλ, and b ∈ {⊥,>} is the output of the honest receiver R (in the
right), indicating if the man-in-the-middle’s commitment (i.e., the right session) is accepted
(b = >) or not (b = ⊥). (We remark that OUTA is nothing but the man-in-the-middle M’s
final output.)

3. Output: It outputs the tuple (OUTA, τ̃ , b).

a Recall that β̃ and c̃om are the Steps 1 and 2 messages in the right session; they constitutes an execution
of Naor’s commitment.

b Note that it is not necessary to give τ̃ as common input to these parties; indeed, it can be included in their
respective internal states. We choose to make τ̃ explicit only to match the syntax of Lem. 20.

We prove the following lemma.

Lemma 29. Let HMλ
pre (λ,m, ρλ), Aλ, and B be as defined in Algo. B.1. There exists a QPT machine

SE (the simulation-extractor) such that for any (stM, stC , stR, τ, τ̃) in the support of HMλ
pre (λ,m, ρλ),

any noticeable ε(λ), it holds that{
(OUTSE ,ValSE) : (OUTSE ,ValSE)← SE(1λ, 1ε

−1
,Aλ, stM, stR, τ, τ̃)

}
λ∈N

c
≈ε(λ)

{(
OUTA, valb(τ̃)

)
: (OUTA, b)← 〈Aλ(stM),B(stC , stR)〉(1λ, τ̃)

}
λ∈N

Remark 18. Compared to the classical counterpart (Lem. 7), SE takes Aλ and stM as part of its input

instead of accessing Aλ(stM). Though we can see that SE actually makes only black-box use of Aλ(stM)

in a certain sense, we do not try to formally state it because black-box simulation is not our focus.

Another minor difference is that we removed bSE from the output of bSE . This is because bSE was only

used in the proof of the classical counterpart of Lem. 29 (i.e., Lem. 7), which will be replaced with a

different proof based on Lem. 20.

Lem. 29 is the main technical lemma for the current proof of Lem. 28. We present its proof in
Appx. B.4. In the following, we finish the proof of Lem. 28 assuming that Lem. 29 is true.

With Lem. 29, we are now ready to present the description of G.

Algorithm B.2: Hybrid GMλ(λ,m, ρλ)

This hybrid proceeds as follows:
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1. Prefix Generation: This stage is identical to Stage 1 of HMλ(λ,m, ρλ). Formally, it executes

(stM, stC , stR, τ, τ̃)← HMλ
pre (λ,m, ρλ),

where HMλ
pre (λ,m, ρλ) is defined in Stage 1 of Algo. B.1.

2. The Remainder: Define Aλ in the same way as in Stage 2 of HMλ(λ,m, ρλ). With this Aλ
and the (stM, stR, τ, τ̃) from the previous stage, GMλ(λ,m, ρλ) invokes the SE prescribed in
Lem. 29. Formally, it executes the following procedure:

(OUTSE ,ValSE)← SE(1λ, 1δ
−1
,Aλ, stM, stR, τ, τ̃),

where the δ is the statistical distance that we want to show for Property 2 of Lem. 28.

Remark 19. We emphasize that in this stage, GMλ(λ,m, ρλ) does not make use of stC .

3. Output: It outputs (OUTSE ,ValSE).

Proving Property 1 of Lem. 28. Observe that hybrid GMλ(λ,m, ρλ) is an efficient machine, since
both HMλ

pre (λ,m, ρλ) and SE(1λ, 1δ
−1
,Aλ, stM, stR, τ, τ̃) are efficient. Moreover, it does not rewind

Steps 1 and 2 of the man-in-the-middle execution, and SE(1λ, 1δ
−1
,Aλ, stM, stR, τ, τ̃) does not need

to know stC . Therefore, Property 1 of Lem. 28 follows immediately from the computational-hiding
property of the left Naor’s commitment (i.e., Steps 1 and 2 in the left session).

Proving Property 2 of Lem. 28. First, observe that the distribution of the prefix is identical in
GMλ(λ,m, ρλ) and HMλ(λ,m, ρλ). For each fixed prefix, Lem. 29 implies that GMλ(λ,m, ρλ) and
HMλ(λ,m, ρλ) are δ(λ)-computationally indistinguishable (notice that GMλ(λ,m, ρλ) runs SE with
the second input 1δ

−1
). This immediately implies Property 2 of Lem. 28.

B.4 Proof of Lem. 29

witness

witness

(a)

witness

witness

(b)

Fig. 11: Machines HM and G1 (Difference is highlighted in red color)

First, we describe a machine G1 that simulates the real execution without using stC . Unlike its
classical counterpart, G1 is parameterized by a noticeable function εwiaok(λ), which is used as the
error parameter for witness-extended emulators for WIAoK (as per Property 2 of Def. 14).
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Machine G1[εwiaok]: (Illustrated in Fig. 11b) For any prefix pref, G1[εwiaok](stM, stR, τ, τ̃) behaves
identically to Stage 2 of HMλ(λ,m, ρλ) shown in Algo. B.1 (and depicted in Fig. 11a), except for the
following difference: Instead of executing the left WIAoK-1 honestly, it uses the witness-extended
emulator (as per Property 2 of Def. 14) of the left WIAoK-1 with the error parameter εwiaok(λ) to
extract a witness, and

– If the left committer accepts the left WIAoK-1 and the extracted witness is valid (i.e., it is a
(j, xj) pair such that yj = f(xj) for some j ∈ [t]), G1 uses (j, xj) to finish the left WIAoK-2.
Similarly to HMλ(λ,m, ρλ), G1 eventually outputsM’s final state and the right receiver’s decision
bit b;

– If the left committer accepts the left WIAoK-1 but the extracted witness is invalid, it aborts
immediately and outputs (⊥,⊥).

– If the left committer rejects the left WIAoK-1, it runs the rest of execution of HMλ(λ,m, ρλ) to
output M’s final state and the right receiver’s decision bit b. Note that it does not need to run
the left WIAoK-2 in this case since the left committer aborts after the left WIAoK-1.

We denote the above procedure by (OUT, b) ← G1[εwiaok](stM, stR, τ, τ̃). It is worth noting that G1

does not need to know stC .

Next, we prove a lemma that shows that G1[εwiaok] simulates the real execution up to an error
εwiaok.

Lemma 30. Let HMλ
pre (λ,m, ρλ), Aλ, and B be as defined in Algo. B.1. For any pref = (stM, stC , stR, τ, τ̃)

in the support of HMλ
pre (λ,m, ρλ), it holds that{(

OUT, b
)

: (OUT, b)← G1[εwiaok](stM, stR, τ, τ̃)
}
λ∈N

c
≈εwiaok(λ)

{(
OUTA, b

)
: (OUTA, b)← 〈Aλ(stM),B(stC , stR)〉(1λ, τ̃)

}
λ∈N.

Proof. We first define an intermediate machine G′1[εwiaok] below.

witness

witness

(Compared with      )

Fig. 12: Machine G′1 (Difference with G1 is highlighted in red color)

Machine G′1[εwiaok]: (Illustrated in Fig. 12) For any prefix pref, G′1[εwiaok](stM, stR, τ, τ̃) behaves iden-

tically to G1[εwiaok](stM, stR, τ, τ̃) except that it uses (m, r) as the witness in the left WIAoK-2 even

if it succeeds in extracting a valid witness from the left WIAoK-1.
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By the WI property of the left WIAoK-2, it holds that{(
OUT, b

)
: (OUT, b)← G1[εwiaok](stM, stR, τ, τ̃)

}
λ∈N

c
≈
{(

OUT, b
)

: (OUT, b)← G′1[εwiaok](stM, stR, τ, τ̃)
}
λ∈N

. (93)

Note that the only difference between G′1[εwiaok](stM, stR, τ, τ̃) and 〈Aλ(stM),B(stC , stR)〉(1λ, τ̃) is

that the former runs the witness-extended emulator of the left WIAoK-1 with the error parameter

εwiaok(λ) (but does not use the extracted witness at all). Thus, by the AoK property of the left WIAoK-

1, it holds that {(
OUT, b

)
: (OUT, b)← G′1[εwiaok](stM, stR, τ, τ̃)

}
λ∈N

c
≈εwiaok(λ)

{(
OUTA, b

)
: (OUTA, b)← 〈Aλ(stM),B(stC , stR)〉(1λ, τ̃)

}
λ∈N

. (94)

By combining Eq. (93) and (94), we obtain Lem. 30.

Next, we define the probability of R being convinced in the execution of G1[εwiaok]. This value
plays an important role later in our proof.

Definition 16. For any (stM, stC , stR, τ, τ̃) in the support of HMλ
pre (λ,m, ρλ) and any noticeable

εwiaok, we define the following value pSimpref [εwiaok]:

pSimpref [εwiaok] := Pr[b = > : (OUT, b)← G1[εwiaok](stM, stR, τ, τ̃)]

Next, we show a technical lemma that gives an extractor K without the simulation property.

Lemma 31. Let HMλ
pre (λ,m, ρλ), Aλ, B be as defined in Algo. B.1. There exists a QPT machine K

such that for any noticeable ε(λ), there is a noticeable εwiaok(λ) ≤ ε(λ) that is efficiently computable
from ε(λ) such that the following holds for any pref = (stM, stC , stR, τ, τ̃):

1. (Syntax.) K takes as input (1λ, 1ε
−1
,Aλ, stM, stR, τ, τ̃). It outputs a value ValK ∈ {0, 1}`(λ)∪{⊥}

such that ValK = val(τ̃) whenever ValK 6= ⊥.

2. If pSimpref [εwiaok] ≥ ε(λ), then it holds that

Pr
[
ValK = val(τ̃) : ValK ← K(1λ, 1ε

−1
,Aλ, stM, stR, τ, τ̃)

]
≥ ε′(λ)

t̃
,

where ε′(λ) :=
ε(λ)
10t2

.

Remark 20. Compared to the classical counterpart (Lem. 9), K takes 1ε
−1

as an additional input. This

is needed because we only assume the AoK property via witness-extended ε-close emulation (as per

Property 2 of Def. 14). As a positive effect of the above difference, K in Lem. 31 runs in strict QPT

whereas it runs in expected PPT in the classical counterpart (Lem. 9). Also, we give Aλ and stM as

part of input to K instead of giving oracle access to Aλ(stM) for a similar reason in Rmk. 18.

We will prove Lem. 31 in Appx. B.5. In the rest of this subsection, we finish the proof of Lem. 29
assuming Lem. 31 is true. This is the only part of the proof of Thm. 32 that significantly differs
from its classical counterpart.
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Proof of Lem. 29. We apply Lem. 20 where G1[εwiaok], K, (Aλ, stM, stR, τ), τ̃ , and val(τ̃) play the roles

of G, K, ρλ, zλ, and s∗zλ in Lem. 20, respectively. Then, Lem. 31 ensures that the assumptions of Lem. 20

are satisfied.37 Thus, there exists a polynomial poly and a QPT machine SE ′ such that for any noticeable

function ε(λ), {
(OUTSE ′ ,ValSE ′) : (OUTSE ′ ,ValSE ′)← SE ′(1λ, 1ε

−1
,Aλ, stM, stR, τ, τ̃)

}
λ∈N

s
≈ε(λ)

{(
OUT, valb(τ̃)

)
: (OUT, b)← G1[εwiaok](stM, stR, τ, τ̃)

}
λ∈N

(95)

for a noticeable function εwiaok(λ) ≤ ε(λ).

Moreover, since valb(τ̃) is determined by b for each fixed τ̃ , Lem. 30 directly implies{(
OUT, valb(τ̃)

)
: (OUT, b)← G1[εwiaok](stM, stR, τ, τ̃)

}
λ∈N

c
≈εwiaok(λ)

{(
OUTA, valb(τ̃)

)
: (OUTA, b)← 〈Aλ(stM),B(stC , stR)〉(1λ, τ̃)

}
λ∈N

. (96)

By setting ε(λ) := ε(λ)/2 so that ε(λ) + εwiaok(λ) ≤ ε(λ) + ε(λ) ≤ ε(λ) and defining SE(1λ, 1ε
−1
, ...) :=

SE ′(1λ, 1ε−1
, ...), Eq. (95) and (96) give Lem. 29.

B.5 Extractor K (Proof of Lem. 31)

In the following, we fix a noticeable function ε(λ) for which we want to prove Lem. 31. We show
that it suffices to set εwiaok(λ) := t+1

t2+6t+3
· ε′(λ) = t+1

10t2(t2+6t+3)
· ε(λ). Since we fix ε and εwiaok, we

omit the dependence on εwiaok in our notation, i.e., we simply write pSimpref and G1 to mean pSimpref [εwiaok]

and G1[εwiaok]. Similarly, machines introduced in the following also depend on εwiaok, but we do not
explicitly write it in our notation. We also omit writing (1λ, 1ε

−1
,Aλ) from inputs of those machines

for notational simplicity.

witness

witness

(Compared with      )

Fig. 13: Machine Gi (Difference with G1 is highlighted in red color)

37 Remark that ε(λ) and ε′(λ)
t̃

in Lem. 31 play the roles of γ(λ) and δ(λ) in Lem. 20, respectively.
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(a)
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(b)

Fig. 14: Machines G′i and G′′i (Difference is highlighted in red color)

Machine Gi (i ∈ [t̃]): (Illustrated in Fig. 13.) Recall that we have already defined the ma-
chine G1(stM, stR, τ, τ̃) on Page 84. Now, for i ∈ [t̃] \ {1}, Gi(stM, stR, τ, τ̃) behaves identically to
G1(stM, stR, τ, τ̃) except that it uses (i, x̃i) as the witness in the right WIAoK-1.

Claim 33. ∀i ∈ [t̃], Pr[b = > : (OUT, b)← Gi(stM, stR, τ, τ̃)] ≥ pSimpref−2εwiaok(λ)− negl(λ).

Proof. We define hybrid machines G′i and G′′i as follows.

Machine G′i (i ∈ [t̃]): (Illustrated in Fig. 14a.) Recall that we have already defined the machine

G′1(stM, stR, τ, τ̃) on Page 84. Now, for i ∈ [t̃]\{1}, Gi(stM, stR, τ, τ̃) behaves identically to G1(stM, stR, τ, τ̃)

except that it uses (i, x̃i) as the witness in the right WIAoK-1.

Machine G′′i (i ∈ [t̃]): (Illustrated in Fig. 14b) For any prefix pref, G′′i (stM, stR, τ, τ̃) behaves identically

to G′i(stM, stR, τ, τ̃) except that it honestly runs the left WIAoK-1 instead of running the witness-

extended emulator. In other words, G′′i (stM, stR, τ, τ̃) behaves identically to 〈Aλ(stM),B(stC , stR)〉(1λ, τ̃)

except that it uses (i, x̃i) as the witness in the right WIAoK-1. In particular, G′′i (stM, stR, τ, τ̃) is iden-

tical to 〈Aλ(stM),B(stC , stR)〉(1λ, τ̃).

Then, Claim 33 follows from the following sequence of inequalities.

– By the WI property of the left WIAoK-2 and the definition of pSimpref , it holds that:

Pr
[
b = > : (OUT, b)← G′1(stM, stR, τ, τ̃)

]
≥ pSimpref − negl(λ).

– By the AoK property of the left WIAoK-1 and the above inequality, it holds that:

Pr
[
b = > : (OUT, b)← G′′1 (stM, stR, τ, τ̃)

]
≥ pSimpref−εwiaok(λ)− negl(λ).

– By the WI property of the right WIAoK-1 and the above inequality, it holds that:

∀i ∈ [t̃], Pr
[
b = > : (OUT, b)← G′′i (stM, stR, τ, τ̃)

]
≥ pSimpref−εwiaok(λ)− negl(λ).

– By the AoK property of the left WIAoK-1 and the above inequality, it holds that:

∀i ∈ [t̃], Pr
[
b = > : (OUT, b)← G′i(stM, stR, τ, τ̃)

]
≥ pSimpref−2εwiaok(λ)− negl(λ).

– By the WI property of the left WIAoK-2 and the above inequality, it holds that:

∀i ∈ [t̃], Pr[b = > : (OUT, b)← Gi(stM, stR, τ, τ̃)] ≥ pSimpref−2εwiaok(λ)− negl(λ).
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Fig. 15: Machines Ki and K (Difference is highlighted in red color)

Machine Ki (i ∈ [t̃]): (Illustrated in Fig. 15a.) For a prefix pref, Ki(stM, stR, τ, τ̃) behaves iden-
tically to the Gi(stM, stR, τ, τ̃) depicted in Fig. 13, except for the following difference. Machine
Ki(stM, stR, τ, τ̃) uses the witness-extended emulator (as per Property 2 of Def. 14) with the error
parameter εwiaok(λ) to finish the right WIAoK-2, instead of playing the role of the honest receiver.

Ki’s Output: Let w′ denote the third output of the witness-extended emulator (see Property 2
of Def. 14), which is supposed to be the witness used by M in the right WIAoK-2 (for the

statement (c̃om, Ỹ ) w.r.t. the language L
β̃
∨ Lt̃

f̃
). Depending on the value of w′, we define a value

Val ∈ {0, 1}`(λ) ∪ {⊥
Ỹ
,⊥invalid} as follows:

1. If w′ is a valid witness for (c̃om, Ỹ ) ∈ L
β̃
∨ Lt̃

f̃
. Then, there are tow sub-cases:

(a) w′ is a valid witness for c̃om ∈ L
β̃
. In this case, w′ consists of the value val(τ̃), i.e., the value

committed in τ̃ = (β̃, c̃om), and the randomness r̃. We set Val := val(τ̃). Importantly, notice
that we do not include the randomness r̃ in Val.

(b) w′ is a valid witness for Ỹ ∈ Lt̃
f̃
: In this case, we set Val := ⊥

Ỹ
.

2. Otherwise, set Val := ⊥invalid.

The output of Ki is defined to be the above Val. Notice that this is in contrast to all previous
machines, for which the output is defined to be the main-in-the-middle’s output and the honest
receiver’s decision bit. We emphasize that such a Val satisfies the syntax requirement in Property 1
of Lem. 31. In particular, Val = val(τ̃) whenever Val 6= ⊥.38

Claim 34. ∀i ∈ [t̃], Pr[Val 6= ⊥invalid : Val← Ki(stM, stR, τ, τ̃)] ≥ pSimpref−3εwiaok(λ)− negl(λ).

Proof. This claim follows from Claim 33 and the AoK property of the right WIAoK-2.

38 Note that here we defined two types of abortion: ⊥Ỹ and ⊥invalid, while Property 1 of Lem. 31 only allows
a single abortion symbol ⊥. We remark that this is only a cosmetic difference—It can be made consistent
using the following rules: ⊥ = ⊥Ỹ and ⊥ = ⊥invalid (i.e., Val 6= ⊥ ⇔ (Val 6= ⊥Ỹ ∧ Val 6= ⊥invalid)).
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Finally, we are ready to define the extractor K. Intuitively, K can be conceived as an average-case
version of {Ki}i∈[t̃]:

Extractor K: (Illustrated in Fig. 15b.) For a prefix pref, K(stM, stR, τ, τ̃) samples uniformly at

random an index i
$←− [t̃], executes Ki(stM, stR, τ, τ̃), and outputs whatever Ki(stM, stR, τ, τ̃) outputs.

Next, we show that the extractor K satisfies the requirements in Lem. 31.

Running Time of K. Observe that for each i ∈ [t̃], Ki(stM, stR, τ, τ̃) differs from the real man-in-
the-middle execution only in the following places:

– (i, x̃i) is used in the right WIAoK-1;

– the witness-extended emulator is used in the right WIAoK-2 and the left WIAoK-1.

Since the witness-extended emulator (as per Property 2 of Def. 14) runs in QPT, so does Ki. Thus,
K is QPT.

Proving Property 1 of Lem. 31. It is straightforward to see that the K defined above satisfies the
syntax requirement in Lem. 31. In particular, we have ValK = val(τ̃) whenever ValK 6= ⊥, because
this is true for each Ki by definition (see the paragraph for “Ki’s Output” on Page 88).

Proving Property 2 of Lem. 31. First, recall that Property 2 requires that for any pref in the
support of HMλ

pre (λ,m, ρλ) , if pSimpref ≥ ε(λ), then it holds that

Pr[ValK = val(τ̃) : ValK ← K(stM, stR, τ, τ̃)] ≥ ε′(λ)

t̃
. (97)

Also recall that K(stM, stR, τ, τ̃) is defined to execute the machine Ki(stM, stR, τ, τ̃) with i uniformly
sampled from [t̃]. Therefore, Inequality (97) can be reduced to the following Lem. 32. We will prove
Lem. 32 in Appx. B.6, which will eventually finish the current proof of Lem. 31.

Lemma 32. Let ε(λ) = 1
poly(λ)

and ε′(λ) =
ε(λ)
t2

. For any pref = (stM, stC , stR, τ, τ̃), if pSimpref ≥ ε(λ),

then there exists an i ∈ [t̃] such that

Pr[Val = val(τ̃) : Val← Ki(stM, stR, τ, τ̃)] ≥ ε′(λ).

B.6 Proof of Lem. 32

Notation. We highly recommend reviewing the “Ki’s Output” part on Page 88 (in particular, the
meanings of Val, ⊥

Ỹ
, and ⊥invalid) before starting reading this subsection. Recall that Ki’s output

Val is determined by the w′ output by the witness-extended emulator of the right WIAoK-2. In
this subsection, we will need to refer to this w′, although it is not included as a part of Ki’s output.
Particularly, we will make use of the following notation: whenever we write an expression of the
form

Pr
[
Some Event Ew′ about w′ : Val← Ki(stM, stR, τ, τ̃)

]
,

it should be understood as the probability of Ew′ , where w′ refers to the w′ generated during the
random procedure Val← Ki(stM, stR, τ, τ̃), over which the probability is taken.

Using these notations, we can partition the event Val = ⊥
Ỹ

as the following mutually exclusive

events: w′ = (1, x̃1), or, . . ., or w′ = (t̃, x̃t̃), where ỹi = f̃(x̃i) for each i ∈ [t̃]. Formally, we express
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this relation by

Pr
[
Val = ⊥

Ỹ
: Val← Ki(stM, stR, τ, τ̃)

]
=

t̃∑
i=1

Pr
[
w′ = (i, x̃i) : Val← Ki(stM, stR, τ, τ̃)

]
(98)

With the above notations, we prove Lem. 32 in the following.

Proof of Lem. 32. We assume for contradiction that for some pref satisfying pSimpref ≥ ε(λ), it holds
that

∀i ∈ [t̃], Pr[Val = val(τ̃) : Val← Ki(stM, stR, τ, τ̃)] < ε′(λ). (99)

Claim 35. Under the assumption in Inequality (99), it holds that

∀i ∈ [t̃], Pr
[
w′ = (i, x̃i) : Val← Ki(stM, stR, τ, τ̃)

]
≥ pSimpref−3εwiaok(λ)− ε′(λ)− negl(λ).

Proof. In this proof, all the probabilities are taken over the random procedure Val← Ki(stM, stR, τ, τ̃).

First, notice that

∀i ∈ [t̃], Pr[Val 6= ⊥invlid] = Pr[Val = val(τ̃)] + Pr
[
Val = ⊥

Ỹ

]
(by Eq. (98)) = Pr[Val = val(τ̃)] + Pr

[
w′ = (i, x̃i)

]
+

∑
j∈[t̃]\{i}

Pr
[
w′ = (j, x̃j)

]
. (100)

Then, the following holds:

∀i ∈ [t̃], Pr[w′ = (i, x̃i)] = Pr[Val 6= ⊥invalid]− Pr[Val = val(τ̃)]−
( ∑
j∈[t̃]\{i}

Pr[w′ = (j, x̃j)]

)
(101)

≥ pSimpref−3εwiaok(λ)− negl(λ)− Pr[Val = val(τ̃)]−
( ∑
j∈[t̃]\{i}

Pr[w′ = (j, x̃j)]

)
(102)

≥ pSimpref−3εwiaok(λ)− negl(λ)− ε′(λ)−
( ∑
j∈[t̃]\{i}

Pr[w′ = (j, x̃j)]

)
, (103)

where Eq. (101) follows from Eq. (100), Inequality (102) follows from Claim 34, and Inequality (103)

follows from Inequality (99).

Now, to prove Claim 35, it suffices to show that

∀i ∈ [t̃], ∀j ∈ [t̃] \ {i}, Pr
[
w′ = (j, x̃j) : Val← Ki(stM, stR, τ, τ̃)

]
= negl(λ). (104)

This can be reduced via standard techniques to the (post-quantum) one-wayness of the OWF f̃ in Step 3

of the right execution. In more details, we assume for contradiction that there exist i∗, j∗ ∈ [t̃] such that

i∗ 6= j∗ and that the probability Pr
[
w′ = (j∗, x̃j∗) : Val← Ki∗(stM, stR, τ, τ̃)

]
is non-negligible, where,

by definition, x̃j∗ is the preimage of ỹj∗ under the right OWF f̃ . Then, we can build a QPT adversary

Aowf breaking one-wayness in the following way: Aowf obtains the challenge y∗ from the external

one-wayness challenger; it then runs the machine Ki∗(pref) internally, for which Aowf uses y∗ in place

of ỹj∗ when executing Step 3 in the right. Note that the internal execution of Ki∗(pref) is identically

to the real execution of Ki∗ , thus the extracted w′ = (j∗, x̃j∗) must satisfy f̃(x̃j∗) = ỹ∗j (= y∗) with

non-negligible probability, breaking one-wayness.

This finishes the proof of Claim 35.
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Fig. 16: Machines K′i and K′′i (Difference is highlighted in red color)

Machine K′i (i ∈ [t̃]): (Illustrated in Fig. 16a.) For a prefix pref, K′i(stM, stR, τ, τ̃) proceeds as
follows:

1. It first finishes Step 3 of the man-in-the-middle execution in the same way as Ki(stM, stR, τ, τ̃).
In particular, it will see in the left execution the values Y = (y1, . . . , yt) sent from M;

2. It then recovers (x1, . . . , xt) by brute-force: Namely, for each i ∈ [t], it inverts the OWF f to find
xi s.t. f(xi) = yi. It is possible that there exist some “bad” yi’s that are not in the range of f .
For such bad i’s, it sets xi = ⊥. If all the xi’s are bad, K′i(stM, stR, τ, τ̃) halts and outputs Fail;

3. If this step is reached, we know that (x1, . . . , xt) cannot be all-⊥. K′i(stM, stR, τ, τ̃) then picks an
(s, xs) uniformly at random from the good (i.e. non-⊥) xi’s.

4. Then, K′i(stM, stR, τ, τ̃) continues to finish the execution in the same way as Ki(stM, stR, τ, τ̃),
except that it uses (s, xs) as the witness when executing the left WIAoK-2.

It is worth noting that the (j, xj) extracted by the witness-extended emulator for the left WIAoK-1

(inherited from Ki(pref)) is not used any more by K′i(stM, stR, τ, τ̃).
It is easy to see that if the (s, xs) picked by K′i(stM, stR, τ, τ̃) is equal to the (j, xj) extracted

in Ki(stM, stR, τ, τ̃) from its left WIAoK-1, then K′i(stM, stR, τ, τ̃) and Ki(stM, stR, τ, τ̃) are identi-
cal.39 Since K′i(stM, stR, τ, τ̃) samples (s, xs) uniformly from all the good (i, xi)’s, it must hold with
probability at least 1/t that (s, xs) = (j, xj). Therefore, the following must hold:

∀i ∈ [t̃], Pr[w′ = (i, x̃i) : Val← K′
i(stM, stR, τ, τ̃)] ≥ 1

t
· Pr[w′ = (i, x̃i) : Val← Ki(stM, stR, τ, τ̃)].

(105)

Machine K′′i (i ∈ [t̃]): (Illustrated in Fig. 16b.) For a prefix pref, K′′i (stM, stR, τ, τ̃) behaves iden-
tically to K′i(stM, stR, τ, τ̃) except that it plays as the honest committer in the left WIAoK-1,
instead of running the witness-extended emulator. Recall that starting from K′i, the witness (j, xj)

extracted by the witness-extended emulator from the left WIAoK-1 is not used any more. Thus,
machine K′′i does not need to perform this witness-extended emulation.

By the AoK property of the left WIAoK-1, it holds that

∀i ∈ [t̃],
∣∣Pr
[
w′ = (i, x̃i) : Val← K′′i (stM, stR, τ, τ̃)

]
− Pr

[
w′ = (i, x̃i) : Val← K′i(stM, stR, τ, τ̃)

]∣∣
≤ εwiaok(λ) + negl(λ). (106)

39 Similar to Rmk. 11, this is the only place we make use of the injectivity of f .
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Next, by the (non-uniform) WI property of the right WIAoK-1, it holds that

∀i ∈ [t̃],
∣∣Pr
[
w′ = (i, x̃i) : Val← K′′i (stM, stR, τ, τ̃)

]
− Pr

[
w′ = (i, x̃i) : Val← K′′1(stM, stR, τ, τ̃)

]∣∣
≤ negl(λ). (107)

Remark 21 (Power of Non-Uniform Reductions). Note that we can rely on the AoK and WI proper-

ties even though K′i and K′′i perform brute-force to recover (x1, ..., xt). This is because the brute-forcing

step is done before WIAoK-1 or WIAoK-2 starts; Thus, (x1, ..., xt) can be treated as a non-uniform

advice in the reductions. This non-uniform type of argument will be used again in this section later.

Then, we have the following claim:

Claim 36. It holds that

∀i ∈ [t̃], Pr
[
w′ = (i, x̃i) : Val← K′′1(stM, stR, τ, τ̃)

]
≥ 1

t
·
(
pSimpref−(t+ 3)εwiaok(λ)− ε′(λ)

)
− negl(λ).

Proof. This claim follows from Claim 35 and Inequalities (35), (36) and (105). Formally, (in the follow-

ing, we omit the input (stM, stR, τ, τ̃) to Ki, K′i, and K′′i )

∀i ∈ [t̃], Pr
[
w′ = (i, x̃i) : Val← K′′1

]
≥ Pr

[
w′ = (i, x̃i) : Val← K′′i

]
− negl(λ) (108)

≥ Pr
[
w′ = (i, x̃i) : Val← K′i

]
−εwiaok(λ)− negl(λ) (109)

≥ 1

t
· Pr
[
w′ = (i, x̃i) : Val← Ki

]
−εwiaok(λ)− negl(λ) (110)

≥ 1

t
·
(
pSimpref−3εwiaok(λ)− ε′(λ)

)
−εwiaok(λ)− negl(λ), (111)

where Inequality (108) follows from Inequality (107), Inequality (109) follows from Inequality (106),

Inequality (110) follows from Inequality (105), and Inequality (111) follows from Claim 35.

Now, we show the last claim which, together with Claim 36, will lead to the desired contradiction.

Claim 37. It holds that

Pr
[
Val 6= ⊥invalid : Val← K′′1(stM, stR, τ, τ̃)

]
≤ pSimpref+2εwiaok(λ) + negl(λ).
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Deriving the Contradiction. Before proving Claim 37, we first show why Claims 10 and 36 are
contradictory. In the following, all the probabilities are taken over Val← K′′1(stM, stR, τ, τ̃):

Pr[Val 6= ⊥invalid] = Pr[Val = val(τ̃)] + Pr
[
Val = ⊥

Ỹ

]
= Pr[Val = val(τ̃)] +

t̃∑
i=1

Pr
[
w′ = (i, x̃i)

]
(112)

≥
t̃∑
i=1

Pr
[
w′ = (i, x̃i)

]
≥ t̃ · 1

t
·
(
ppref−(t+ 3)εwiaok(λ)− ε′(λ)

)
− negl(λ) (113)

≥ (1 +
1

t
) · (ppref−(t+ 3)εwiaok(λ)− ε′(λ))− negl(λ) (114)

= (1 +
1

t
) ·
(
ppref−

t2 + 6t+ 3

t+ 1
· εwiaok(λ)− ε′(λ)

)
+2εwiaok(λ)− negl(λ)

= (1 +
1

t
) ·
(
ppref−2ε′(λ)

)
+2εwiaok(λ)− negl(λ) (115)

= pSimpref+2εwiaok(λ) +

(
pSimpref

t
−2ε′(λ)− 2ε′(λ)

t

)
− negl(λ)

≥ pSimpref+2εwiaok(λ) +
5t2 − t− 1

5t3
· ε(λ)− negl(λ)) (116)

where Eq. (112) follows from Eq. (98), Inequality (113) follows from Claim 36, Inequality (114)
follows from the assumption that t̃ ≥ t+ 1, Eq. (115) follows from our parameter setting εwiaok(λ) =
t+1

t2+6t+3
·ε′(λ), and Inequality (116) follows from the assumption that pSimpref ≥ ε(λ) and our parameter

setting ε′(λ) =
ε(λ)
10t2

.
Recall that t is the tag taking values from [n] with n being a polynomial of λ. Also recall that

ε(λ) is an inverse polynomial on λ. Therefore, Inequality (116) can be written as:

Pr
[
Val 6= ⊥invalid : Val← K′′1(pref)

]
≥ pSimpref +

1

poly(λ)
− negl(λ),

which contradicts Claim 37.
This eventually finishes the proof of Lem. 32 (modulo the proof of Claim 37, which we show in

Appx. B.7).

B.7 Proof of Claim 37

We first define two extra machines K∗∗1 and K∗1.

Machine K∗∗1 : (Illustrated in Fig. 17a.) For a prefix pref, K∗∗1 (stM, stR, τ, τ̃) behaves identically
as K′′1(stM, stR, τ, τ̃) except that K∗∗1 (stM, stR, τ, τ̃) finishes the right WIAoK-2 using the honest
receiver’s algorithm, instead of using the witness-extended emulator.

K∗∗1 ’s Output. We define the output of K∗∗1 (stM, stR, τ, τ̃) to be the honest receiver’s decision b ∈
{>,⊥}. This is in contrast to previous hybrids K′i, K′′i , and Ki, whose output is defined to be the
value Val that depends on the value w′ extracted by the SE for the right WIAoK-2.
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Fig. 17: Machines K∗∗1 and K∗1 (Difference is highlighted in red color)

By the AoK property of the right WIAoK-2, it holds that∣∣Pr
[
Val 6= ⊥invalid : Val← K′′1(stM, stR, τ, τ̃)

]
−Pr[b = > : b← K∗∗1 (stM, stR, τ, τ̃)]

∣∣ ≤ εwiaok(λ)+negl(λ).

(117)

Machine K∗1: (Illustrated in Fig. 17b.) For a prefix pref, K∗1(stM, stR, τ, τ̃) behaves identically as
K∗∗1 (stM, stR, τ, τ̃) except the following difference: K∗1(stM, stR, τ, τ̃) uses the witness-extended emu-
lator with the error parameter εwiaok(λ) to extract a witness (j, xj) from the left WIAoK-1, and if
xj is not a valid preimage for yj , K∗1 aborts.

By the AoK property of the left WIAoK-1, it holds that∣∣Pr[b = > : b← K∗∗1 (stM, stR, τ, τ̃)]− Pr[b = > : b← K∗1(stM, stR, τ, τ̃)]
∣∣ ≤ εwiaok(λ) + negl(λ). (118)

Compare K∗1 with G1. Now, let us compare K∗1 with the G1 depicted in Fig. 13. They only differ
in the witness used in the left WIAoK-2 (and that G1 does not need to perform brute-forcing for
Y , as it does not use those preimages). Therefore, by the (non-uniform) WI property of the left
WIAoK-2, it holds that∣∣Pr[b = > : b← K∗1(stM, stR, τ, τ̃)]− Pr[b = > : (OUT, b)← G1(stM, stR, τ, τ̃)]

∣∣ ≤ negl(λ).

Also, recall (from Def. 16) that Pr[b = > : (OUT, b)← G1(stM, stR, τ, τ̃)] is exactly the definition of
pSimpref . Thus, the above implies:∣∣Pr[b = > : b← K∗1(stM, stR, τ, τ̃)]− pSimpref

∣∣ ≤ negl(λ). (119)

Therefore, the following holds:

Pr
[
Val 6= ⊥invalid : Val← K′′1(stM, stR, τ, τ̃)

]
≤ Pr[b = > : b← K∗∗1 (stM, stR, τ, τ̃)]+εwiaok(λ) + negl(λ)

(120)

≤ Pr[b = > : b← K∗1(pref)]+2εwiaok(λ) + negl(λ) (121)

≤ pSimpref+2εwiaok(λ) + negl(λ), (122)

where Inequality (120) follows from Inequality (117), Inequality (121) follows from Inequality (118),
and Inequality (122) follows from Inequality (119).

This finishes the proof of Claim 37.
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