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Abstract

Traitor tracing schemes [Chor-Fiat-Naor, Crypto '94] help content distributors
fight against piracy and are defined with the content distributor as a trusted
authority having access to the secret keys of all users. While the traditional model
caters well to its original motivation, its centralized nature makes it unsuitable for
many scenarios. For usage among mutually untrusted parties, a notion of ad hoc
traitor tracing (naturally with the capability of broadcast and revocation) is proposed
and studied in this work. Such a scheme allows users in the system to generate their
own public/secret key pairs, without trusting any other entity. To encrypt, a list of
public keys is used to identify the set of recipients, and decryption is possible with
a secret key for any of the public keys in the list. In addition, there is a tracing
algorithm that given a list of recipients’ public keys and a pirate decoder capable
of decrypting ciphertexts encrypted to them, identifies at least one recipient whose
secret key must have been used to construct the said decoder.

Two constructions are presented. The first is based on obfuscation and has
constant-size ciphertext, yet its decryption time is linear in the number of recipients.
The second is a generic transformation that reduces decryption time at the cost
of increased ciphertext size. A lower bound on the trade-off between ciphertext
size and decryption time is shown, indicating that the two constructions achieve all
possible optimal trade-offs, i.e., they fully demonstrate the Pareto front of efficiency.
The lower bound also applies to broadcast encryption and is of independent interest.
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1 Introduction

Traitor tracing schemes [CFN94] enable content distributors to fight against piracy. A
content distributor such as a media streaming service can generate a public key and
many different secret keys for individual subscribers, all of which can decrypt the
ciphertexts created using the public key. Given a pirate decoder capable of decrypting,
which could have been created from the secret keys of multiple subscribers, the
tracing algorithm can find at least one subscriber (a traitor) whose key was used to
create the said decoder. A long line of subsequent works [BSW06,BW06,BN08,BZ14,
NWZ16,GKW18, GKRW18,CVW*18, GQWW19,GKW19,Zha20a,Zha21] proposed the different
security definitions, extended the functionality, and presented new constructions.

While the traditional model caters well to the needs of content distributors, its
centralized nature makes it unsuitable for many scenarios, e.g., when a group of
individuals want to communicate among themselves and trace traitors who provide
decoders to outsiders. For example [Zha2l], in an encrypted group chat among
protesters, the users are worried about potential infiltration by government agents. To
mitigate this concern, they want to trace traitors and remove them from the group.
If they used a traditional traitor tracing scheme, whoever set it up would be able to
impersonate anyone since they would know all the secret keys. Moreover, as words
are spread and the protest gets wider support, more people need to join the group.
The joining process should as simple as possible, preferably without interaction. This
motivation naturally calls for a decentralized notion of traitor tracing, termed ad hoc
traitor tracing in this work.

The first question is thus naturally the following:

What is the right notion of a secure ad hoc traitor tracing scheme?
Having formalized its syntax and security, we study its constructions:

How can such a scheme be constructed,
from what assumptions, and with what efficiency?

Efficiency improvement never ends until we reach the optimum, for which it is necessary
to understand where the limit stands:

What bounds are there on the efficiency of such schemes?

Our Contributions. We provide answers to all three questions:

« Conceptually, we pose the question of ad hoc traitor tracing, develop from the ideas
thereof, and eventually arrive at the definitions for ad hoc broadcast, trace, and
revoke (AH-BTR). We prove the relation among the security notions considered in
this work.

« Construction-wise, we present secure AH-BTR schemes based on functional
encryption for general circuits [BSW11]. With polynomial factors in the security
parameter ignored, they achieve

encryption time Tenc = O(N),
ciphertext size ct| = O(NYY),
decryption time Thec = O(NT),

for any constant 0 < y < 1.
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* Questing for the ultimate efficiency, we prove that for all secure AH-BTR,
|ct] - Toec = Q(N),

so our schemes offer all possible optimal trade-offs between |ct| and Tpec, fully
demonstrating the Pareto front of AH-BTR efficiency. Better yet, the bound holds
for a restricted kind of weakly secure broadcast encryption [FN94], which is a
specific case of attribute-based encryption [SW05,GPSW06]. Our result is the first
time-space lower bound applicable to any computationally secure BE scheme,’
shedding new insights into the efficiency of ABE and BE.

A final addition is that our scheme is compatible with the existing public-key encryption
schemes, i.e., the keys of such a scheme can be those of any secure public-key
encryption, and there is no need to regenerate keys to take advantage of our scheme.

Open Questions. The tracing model in this work is black-box and classical, and recent
works [Zha21,Zha20c] have studied white-box or quantum traitor tracing. Conceptually,
it is interesting to understand the ad hoc versions of those tracing models.

Another question for future investigation is whether (weakened versions of) AH-BTR
can be constructed from more lightweight assumptions such as factoring-related, group-
based, or lattice-based assumptions. Potential relaxations include making the scheme
bounded,? settling for static security, considering security against bounded collusion,
and only achieving threshold tracing [NP98].

1.1 Overview

Developing Definitions. We start with the first principles of ad hoc traitor tracing.
Syntactically, there should be a key generation algorithm that is run by each user of
the system.® To encrypt, a list of public keys is used to identify the set of recipients.
Decryption should only require one secret key from the list of public keys. In addition,
the decryptor gets random access to all the recipients’ public keys as well as the
ciphertext. The choice to give random access to these inputs is based on performance
concerns, as the decryptor might not have to read all of the public keys or the ciphertext.

It should be clear that such a scheme would automatically have the functionality of
broadcast encryption [FN94].* There is no event prior to encryption that “binds” the
system to a specific, fixed set of possible recipients, and the encryptor is free to use
whatever public keys it sees fit. Similarly, the encryptor can remove any public key
when it encrypts a second ciphertext, i.e., the scheme supports revocation. Therefore,
the object is named ad hoc broadcast, trace, and revoke (AH-BTR).

As usual with broadcast encryption, we do not hide the list of recipients. Hiding
the recipients makes ciphertext grow at least linearly with the number of recipients,

Iprevious works [BC95,1.598,KYDB98,AK08,KY09,GKW15,DLY21] show a few efficiency lower bounds
related to ABE and BE. Yet they only apply to information-theoretically secure primitives and even specific
construction techniques. Moreover, all of them are space (ciphertext or secret key size, or their trade-
off) lower bounds. Indeed, based on obfuscation [BWZ14] or both LWE and pairing [AY20], BE with
|ct], |sk| = O(1) can be constructed.

2A maximum of number of recipients per ciphertext is set when generating a key pair, and only
“compatible” public keys can be used to form a recipient set.

3We aim for a scheme without any trusted party, so there should be no global set-up.

“Decentralized versions of broadcast encryption were studied in [PPS12,DPP07] with interactive
management of recipient sets. Ad hoc (threshold) broadcast encryption was studied in [DHMR08,WQZD10]
with constructions for bounded schemes requiring global set-up.
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diminishing the potential of efficiency. As we shall see, it is possible to construct AH-
BTR with short ciphertexts.

Due to the decentralized nature of such systems, an adversary might indistinguish-
ably generate malformed keys, which could potentially evade tracers that only take well-
formed keys into account. To make it worse, a malformed key could be used to mount a
denial-of-service attack against (other) honest users if it appears in the list of recipients’
public keys during encryption — the encryption algorithm might have been carelessly
designed and the presence of certain malformed keys could make it impossible to de-
crypt for anyone, including the recipients with honestly generated public keys.

In order to protect against such attacks by definition, we require correctness be robust
against malformed keys — however, for performance reasons, namely to be able to index
into any particular public key in constant time, we reject blatantly malformed keys, e.g.,
those of incorrect lengths, in the definition of correctness. This restriction does not
hamper the usefulness of such a scheme.

As for security, when attacking the traceability of the scheme, the adversary is allowed
to supply an arbitrary list of recipients’ public keys, generated honestly by the challenger
or (adversarially) by the adversary, so that the definition covers the scenario when
(blatantly or not) malformed keys are present in the list of recipients’ public keys. The
tracing algorithm is given oracle access to a stateless® decoder. It must not accuse an
honest user, defined as one whose public key is generated by the challenger without
its secret key revealed to the adversary. It must find a traitor as long as the decoder
has sufficient advantage (i.e., succeeds in decrypting with sufficient probability), where
traitors are associated with public keys in the recipient list that are either generated by
the challenger with their secret keys revealed to the adversary or crafted by the adversary
in any manner (e.g., skewed distribution, or even without a well-defined secret key).

Once the issues above are identified and conceptually resolved (as done here), it is
straight-forward to define AH-BTR analogously to traditional broadcast, revoke, and trace
schemes [NP01,NNL01,GQWW19].

Simplifying Security Notions. Traditionally [BSW06], traceability has been defined
using one comprehensive interactive experiment,® which is complicated to work with.
Intuitively, the notion requires that i) a traitor should be found from a decoder with
sufficient advantage and ii) no honest user should be identified as a traitor, regardless of
the decoder advantage.

We thus define two security notions for AH-BTR capturing the requirements
separately. The former is called completeness and the latter is called soundness. Their
conjunction is equivalent to traceability. Since only one requirement is considered in
each notion, both of them can be vastly simplified and the interactions in those notions
are minimal. They are also more convenient for reductionist proofs.

Construction. Our first construction of AH-BTR follows the existing blueprint of traitor
tracing schemes from private linear broadcast encryption (PLBE) schemes introduced
in [BSWO06]. We first define an ad hoc version of PLBE:’

5The general transformation [KY01,BSW06] to deal with stateful decoder applies to our definition of
AH-BTR, mutatis mutandis.

5While some previous works [BF99,GKW18,Zha20a] separate traceability into multiple notions, those
notions still share one single complicated security experiment.

7AH-PLBE can be cast as multi-authority attribute-based encryption [Cha07] for 1-local monotone
functions without global set-up.
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+ Everyone generates their own public and secret key pair (pk, sk).

+ Encryption uses a list {pk;};e[n7 of N public keys of the recipients as well as a cut-
off index 0 < i, < N.

+ Decryption is possible with sk; if j > i, .

There are two security requirements. Message-hiding requires that the plaintext is
hidden if i, = N. Index-hiding requires that an adversary without sk; for an honest pk;
cannot distinguish between cut-off index being (j — 1) versus j.

Colloquially, the cut-off index i, disables ski,...,sk; , and the only way to detect
whether an index is disabled is to have control over the corresponding key pair (by
knowing sk or generating a malformed pk). When i, = N, the plaintext should be hidden
since all keys are disabled.

Given an AH-PLBE scheme, an AH-BTR scheme can be constructed by adapting
the work of [BSW06]. The AH-BTR inherits key generation and decryption algorithms
from AH-PLBE. To perform AH-BTR encryption, simply encrypt using AH-PLBE with
i, =0, disabling no key so that every recipient can decrypt. Given a pirate decoder with
advantage at least ¢, the tracing algorithm computes its advantages with the cut-off index
i, being 0,1,2,...,N, and identifies the recipient associated with pk;- as a traitor if the
advantage changes by Q(e/N) when i, increases from (i* — 1) to i*.

The message-hiding property translates to completeness, and index-hiding to
soundness. It now remains to construct an AH-PLBE.

Constructing AH-PLBE. 1t is folklore that any public-key encryption (PKE) scheme can
be used to construct a naive PLBE by encrypting individually to each recipient. The
individual ciphertext that corresponds to a disabled key encrypts garbage instead of the
actual plaintext. This scheme is also ad hoc. The downside of it is that the ciphertext is
of size Q(N).

Our scheme uses obfuscation to compress the naive PLBE ciphertext. The ciphertext
will contain an obfuscated program, which, when evaluated at j € [N], allows us to
recover the PKE ciphertext under pk;. However, the obfuscated program itself cannot
simply compute each PKE ciphertext if we want AH-PLBE ciphertexts of size o(N), as
there is no enough space in the program to encode all the public keys that have been
independently generated.

Laconic oblivious transfer (OT) [CDG"17] comes to rescue. It allows compressing an
arbitrarily long string D down to a fixed-length hash A with which one can efficiently
perform oblivious transfer. The sender can encrypt messages Lo, L; to a hash 4 and an
index m into D. The time to encrypt is independent of the length of D. The receiver will
be able to obtain Lp,) by decrypting the laconic OT ciphertext.

During AH-PLBE encryption, we use laconic OT to compress the list of public keys.
The obfuscated program in our AH-PLBE ciphertext, when evaluated at j € [N], will
output i) a garbled circuit whose input (resp. output) is a PKE public key (resp. ciphertext)
and ii) a bunch of laconic OT ciphertexts that decrypts to the labels so that the garbled
circuit is evaluated at pk;. Decryption proceeds in the obvious manner.

The obfuscated program size, thus the ciphertext size, can be made constant,®

8We ignore fixed polynomial factors in the security parameter. The point is that the size does not grow
with N (the number of recipients).
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because both the time to garble a PKE encryption circuit and the time of laconic OT
encryptions are constant.

You Can (Not) Optimize. While our basic construction enjoys constant-size ciphertext,
its decryption algorithm runs in time Q(N). Concretely, the laconic OT hash is a Merkle
tree, and before performing laconic OT decryption, it is necessary to reconstruct the
tree as it is not stored in the ciphertext. In contrast, the decryption time of the scheme
implied by the naive PLBE is constant in the RAM model, as it only looks at the relevant
piece of the underlying PKE ciphertext.

We can trade ciphertext size for decryption time by using the naive PLBE on top of
our construction. By grouping the recipients into ©(N'7) sets of size ®(N?) and using
our basic construction over each set, we obtain a scheme with ciphertext size @(N'7)
and decryption time @(N7). The core idea of this transformation was formalized as the
user expansion compiler [Zha20a] in the context of traditional traitor tracing.

All the constructions we now know have |ct|-Tpec = Q(N), where |ct| is the
ciphertext length and 7Tpe. is the decryption time. It turns out that this bound
necessarily holds for all secure AH-BTR, and the blame is on the functionality of
broadcast encryption (not traitor tracing). Indeed, it is possible to make both |ct|
and Tpec constant in a traditional traitor tracing scheme [BZ14]. In existing broadcast
encryption (or revocation) schemes [BGW05,Del07,GW09,BZ14,AY20,AWY20,BV20] for N
users, encrypting to arbitrary subsets of size S or (N —S) makes |ct] - Tpec = Q(S). It is
precisely the capability to encrypt to many ©(N)-subsets among N users that is the deal
breaker, as we shall see in the formal proof. Interestingly, the adversary used in the
proof is simply the decryption algorithm, so the bound holds as long as the scheme is
not blatantly insecure.

We explain the ideas of our proof based on a corollary’ of a result [Unr07] dealing
with random oracles in the presence of non-uniform advice. Let S,T > 0 be such that
ST < N. The corollary says that for any adversary learning any S-bit function (advice)
of a random string R & {0,1}"V and additionally (adaptively) querying at most T' bits
in R, it is “indistinguishable” to flip a bit in R at a random location after the advice is
computed (using the non-flipped R) and before queries are answered, even if the index
of the potentially flipped bit is revealed to the adversary after the advice is computed.

Back to AH-BTR. Imagine that there are 2N users in the system, associated with key
pairs (pkj s, sk;s) for j € [N] and s € {0,1}. Consider a ciphertext ct encrypting a random
plaintext to {pk; r[;i}jen] for a random string R and regard ct as the advice. Let’s try

decrypting ct using sk; g[;+; for a random * & [N]. Each time the AH-BTR decryption
algorithm queries pk;, we probe R[] and respond with pk; z[;;. By way of contradiction,
suppose |ct| - Tpec < N, which would translate to the setting of the corollary as S = |ct],
T < Tpec, and ST < N.

By the correctness of AH-BTR, the attempted decryption should successfully recover
the plaintext. From the corollary it follows that flipping R[i*] should also lead to
successful recovery. But if R[i*] is flipped after ct is computed, by the security of AH-
BTR, the attempted decryption must fail to recover the plaintext except for negligible
probability, yielding a contradiction.

9This corollary is also a lower bound of a probabilistic variant of Yao’s box problem [Y2090] (generalized
and studied in [CHK22]), on which our proof can be alternatively based.
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2 Preliminaries

We denote by 1 € N the security parameter, by poly(-) a polynomial function, and by
negl(1) a negligible function of A. Efficient algorithms are probabilistic random-access
machines M¥(x) of running time poly(|x|, |w|). Efficient adversaries (in interactive
experiments) are probabilistic Turing machines of (total) running time poly(1), with
or without poly(1)-long advices. (All of the proofs in this work are uniform) The
advantage of A in distinguishing Expy and Exp; is Pr[Exp;'(1}) = 1] — Pr[Exps}(1}) = 1].
We write ~, ~g,= for computational indistinguishability, statistical indistinguishability,
and identity.

Under the standard assumption that a pseudorandom generator (with polynomial
security) exists, we can assume, whenever convenient, that a randomized algorithm uses
a uniformly random A-bit string as its randomness (without losing polynomial security
considered in this work or degrading its efficiency).

For n,n’ € N, we write [n..n'] for the set {n,...,n’}, and [n] for [1..n]. For a bit-
string D, we denote by |D| its bit-length, and given an index m € [|D|], we denote
by D[m] the m™® bit of D. For two bit-strings D, D’, their concatenation is D|| D’. Given a
circuit C : {0,1}"*M0 — {0,1}" and w € {0, 1}", we define C[w] to be C with w hardwired
as its first portion of input, so C[w](x) = C(w | x). For an event X, its indicator random
variable is 1x. For events X,Y in the same probability space, “X implies Y” means
XcY.

Garbled Circuits. The following version of partially hiding garbling [IW14] suffices for
the purpose of this work.

Definition 1 (garbled circuit [Yao86,LP09,BHR12,IW14]). A circuit garbling scheme consists
of 2 efficient algorithms:

« Garble(1*, C,w) takes as input a circuit C : {0, 1}”+MO — {0,1}" and some hardwired
input w € {0,1}". It outputs a garbled circuit C and M, pairs of labels Lo, s € {0,1}"
for mo € [M()] be {0, 1}

. Eval(l’l,a,x, {Lmo}moem,]) takes as input a garbled circuit, a non-hardwired input,
and M, labels. It outputs an n’-bit string.

The scheme must be correct, i.e., for all 1 € N, n,My,n’ €N, C : {0,1}"* — {0,1}",
w e {0> 1}”) X € {0’ ]-}Mo)

(C {Lmo,b Y moe[ Mo bef0,1}) & Garble(14, C,w)
: Eval(1}, C, %, {Lmg x(mo] Ymociaty)) = Clw 1|

Definition 2 (garbled circuit security [Yao86,LP09,BHR12,IW14]). Let (Garble, Eval) be a
circuit garbling scheme (Definition 1). A simulator is an efficient algorithm

SimGarble(1%,C : {0,1}"*™ — (0,1}, x € {0,1}™,y € {0,1}") = (C, {Lmo } moc(aty])

taking as input a circuit, a non-hardwired input, and a circuit output, and producing a
simulated garbled circuit and M, simulated labels. The scheme is w-hiding (or secure for
the purpose of this work) if there exists a simulator SimGarble such that ExpgC ~ Expge)
where Exp? (1) with adversary A proceeds as follows:
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- Challenge. Launch 4(1%) and receive a circuit C : {0,1}"**° — {0,1}", a hardwired
input w € {0,1}", and a non-hardwired input x € {0, 1}*° from it. Run

lf b= O, (67 {Lmo,b }mOG[Mo],bE{O,l}) (i Garble(l/la 07 w)}
if b= 17 (6’ {Lmo,x[mo]}moe[Mo] ) i SimGarble(l/l,C,x,C[w] (x))i
and send (C, { Lo x[mo] }moe[Mo]) tO A.
+ Guess. A outputs a bit &', which is the output of the experiment.
Puncturable Pseudorandom Function. We rely on PPRF [BW13,KPTZ13,BGI14,SW14].

Definition 3 (PPRF [BW13,KPTZ13,BGI14,SW14]). A puncturable pseudorandom function
(PPRF) family (with key space, domain, and codomain {0,1}") consists of 2 efficient
algorithms:

« Puncture(1*,k € {0,1}*,x) takes as input a non-punctured key and a point. It
outputs a punctured key k,.

. Eval(1*, k,x € {0,1}*) takes as input a (punctured or non-punctured) key and a
point. It is deterministic and outputs a A-bit string.

The scheme must be correct, i.e., for all 1 € N, x,x’ € {0,1}* such that x # «/,

k<& {0,137 . L
Pri, R : Eval(1*, k,x") = Eval(1*, &y, x") | = 1.
k. & Puncture(1t, £, x)

Definition 4 (PPRF security [BW13,KPTZ13,BGI14,SW14]). A PPRF (Puncture, Eval) per
Definition 3 is pseudorandom at the punctured point (or secure for the purpose of this work)
if ExpgPRF ~ Exp%,PRF, where Explf,PRF(l’l) with adversary A proceeds as follows:

« Challenge. Launch A(1%) and receive from it a point x € {0, 1}*. Run
k<& {011, k. & Puncture(h, k,x), ro « Eval(l}, k,x), r1 < {0,1}%,

and send (l;x,rb) to A.

* Guess. A outputs a bit &', which is the output of the experiment.

Public-Key Encryption. Our ad hoc broadcast, trace, and revoke scheme can be based
on any public-key encryption scheme.

Definition 5 (PKE). A public-key encryption (PKE) scheme (with message space {0,1}* and
public key length M((1)) consists of 3 efficient algorithms:

« Gen(1") outputs a pair (pk, sk) of public and secret keys with |pk| = My(A).

« Enc(1*, pk, iz € {0,1}") takes as input the public key and a message. It outputs a
ciphertext ct.

« Dec(1%, sk, ct) takes as input the secret key and a ciphertext. It outputs a message.
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The scheme must be correct, i.e., for all A € N, u € {0,1}*,

k,sk) <& Gen(1*
Pr (P ) . () : Dec(1%, sk, ct) = | =1.
ct « Enc(l’l, pk, 1)

Definition 6 (PKE security). A PKE scheme (Gen, Enc, Dec) per Definition 5 is semantically
secure for random messages (or secure for the purpose of this work) if

{(1*, po, 1, Pk, cto)} ~ {(1*, po, w1, pk, ctr) },
where (pk, sk) < Gen(11) and up < {0, 1}, cty < Enc(14, pk, ) for b € {0,1}.

Laconic Oblivious Transfer. We rely on laconic oblivious transfer [CDG"17].

Definition 7 (laconic OT [CDG"17]). A laconic oblivious transfer (OT) scheme (with message
space {0,1}") consists of 4 efficient algorithms:

+ Gen(1}, M € N) takes the database length as input and outputs a hash key hk.

« Hash(1},hk,D € {0,1}") takes as input a hash key and a database. It is
deterministic, runs in time O(M)poly(4,logM), and outputs a hash A of
length poly(A,log M) and a processed database D.

. Send(1%, hk, b, m € [M], Lo € {0,1}*, L, € {0,1}) takes as input a hash key, a hash,
an index, and two labels (messages). It outputs a ciphertext ct.

. Recvﬁ(l’l, hk,h,m € [M],ct) is given random access to a processed database, and
takes as input a hash key, a hash, an index, and a ciphertext. It runs in
time poly(A,log M) and outputs a label (message).

The scheme must be correct, i.e., for all A, M € N, D € {0,1}*, m € [M], Lo, L, € {0,1}*,
hk & Gen(1%, M)
Pr | (h, D) — Hash(1}, hk, D) : Recv? (11, hk, h, m, ct) = Lppn | = 1.
ct & Send(1%, hk, h, m, Lo, L1)

We only need database-selective security [AL18]. The following indistinguishability-
based definition is equivalent to the usual simulation-based formulation.

Definition 8 (laconic OT security [CDG*"17,AL18,KNTY19]). A laconic OT scheme
(Gen, Hash, Send, Recv) per Definition 7 is database-selectively sender-private (or secure for
the purpose of this work) if Exp? .. ~ Exp} ., where Exp® . (1*) with adversary A proceeds
as follows:

+ Setup. Launch A(1') and receive from it some M € N and a database D € {0,1}*.
Run

hk & Gen(1*, M), (h, D) — Hash(1*, hk, D),

and send hk to A.

8/34



+ Challenge. A submits an index m € [M] and two labels (messages) Lo, L; € {0, 1.
Run

Lo Send(1*,hk,h,m,Ly ,L; ), ifb=0;
H
Send(ll, hk,h,m,LD[m],LD[m]), if b = 1;

and send ct to A.

 Guess. A outputs a bit 4’, which is the output of the experiment.

Obfuscation. We rely on indistinguishability obfuscator for polynomial-sized domain.

Definition 9 ((circuit) obfuscator [BGI*01]). A (circuit) obfuscator is an efficient algorithm
Obf(1*,C) taking a circuit C:{0,1}" — {0, 1" as input and producing a circuit
C:{0,1}" - {0,1}" as output. The scheme must be correct, i.e., for all 1 € N, n,n’ € N,
C:{0,1}" - {0,1}", x € {0,1}",

Pr[Obf(1*,C)(x) =C(x)] = 1.
Definition 10 (:O [BGI*01] for poly(A1)-sized domain). An obfuscator Obf (Definition 9) is

an indistinguishability obfuscator for polynomial-sized domain (iO for poly(1)-sized domain)
if Exp?o ~ Expllo, where Expf’o(lﬁ) with adversary A proceeds as follows:

+ Challenge. Launch A(1") and receive from it the domain size 1** and two circuits
Co,C1:{0,1}" — {0,1}". Send Obf(1*,C}) to A.

* Guess. A outputs a bit ’. The output of the experiment is &’ if Cy, C; have the same
(description) size and Cy(x) = C1(x) for all x € {0,1}". Otherwise, the output is set
to 0.

Assumption. All of the primitives defined in this section are implied by the existence
of weakly selectively secure, single key, and sublinearly succinct public-key functional
encryption for general circuits (so-called obfuscation-minimum PKFE), of which we refer
the reader to [KNTY19] for the precise definition.

Lemma 1. Suppose there exists an obfuscation-minimum PKFE with polynomial security,
then there exist

¢ [Ya086,1.P09,BHR12] a secure circuit garbling scheme (Definitions 1 and 2),
+ [GGM84,BW13,KPTZ13,BGI14] a secure PPRF (Definitions 3 and 4),

* [folklore] a secure PKE scheme (Definitions 5 and 6),

[CDG*17,L717,AL18,KNTY19] a secure laconic OT scheme (Definitions 7 and 8), and

[LT17,LZ17] an 1O for poly(A)-sized domain (Definitions 9 and 10),

with polynomial security.
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Alternatively, those primitives can be based on the existence of ;O and one-way function.
However, iO security (for circuits whose domains are not necessarily poly(A1)-sized) is
not known to be falsifiable [GW11] and it is hard to conceive [GGSW13] a reduction of :O
security to complexity assumptions [GK16]. Since all of the security notions defined in this
section are falsifiable, it is unsatisfactory to base them on iO from a theoretical point of
view.

In contrast, obfuscation-minimum PKFE security is falsifiable and there are
constructions [JLS21,JLS22] from well-studied complexity assumptions. The point of
Lemma 1 is to base our constructions solely on one falsifiable assumption, or even
complexity assumptions.

3 Ad Hoc Broadcast, Trace, and Revoke

This section concerns the definitions for ad hoc broadcast, trace, and revoke. After
formally defining the syntax and correctness of AH-BTR, we present an intuitive
definition of its security. =~ While the security definition is comprehensive, it is
not the easiest to work with, so we turn to define two simpler security notions,
whose conjunction is equivalent to the comprehensive definition. The proof of their
equivalence follows the definitions. Later in this paper, we will only work with the
simpler notions.

Definition 11 (AH-BTR). An ad hoc broadcast, trace, and revoke (AH-BTR) scheme (with
message space {0, 1} and public key length M(1)) consists of 4 efficient algorithms:

« Gen(1") outputs a pair (pk, sk) of public and secret keys with |pk| = My(A).

« Enc(1, {pk;}jevs 1 € {0, 1}1) takes as input a list of public keys and a message.
It outputs a ciphertext ct.

« DeclPkilievi (11 N i e [N], sk;) is given random access to a list of public keys and
a ciphertext, and takes as input the length of the list, an index, and a secret key.
It outputs a message.

. TraceD(li,{pkj’f}jelNJ,ll/f*) is given oracle access to a (stateless randomized)
distinguisher D and takes as input a list of public keys and an error bound.
It outputs an index i* € {L} U [N].

The scheme must be robustly correct, i.e., for all 1 € N, N € N, i € [N], {pk;}jeinp iy ™
such that |pk;| = My(A) for all j € [N]\ {i}, and u € {0,1}",

ki, sk;) < Gen(1*
Pr (p i) $ ( /1) : DeC{pkj}jE[NJ’Ct(llaN’i’Ski) =u| =1
ct & Enc(1!, {pk;}jerny, )

Definition 12 (traceability). An AH-BTR scheme (Gen, Enc, Dec, Trace) per Definition 11
is traceable if all efficient adversary wins Expirace Only with negligible probability, where
EXptrace (1*) with adversary B proceeds as follows:

« Setup. Launch B(1%). Initialize the set S to @ and let @ « 0.

10These public keys could be out of the support of Gen, i.e., malformed.
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* Query. Repeat the following for arbitrarily many rounds determined by B. In each
round, B has two options:

- B can request that a new user be initialized and obtain the newly generated
public key. Upon this request, let @ «— @ +1, run

(pkg, skg) < Gen(11),

insert @ into S, and send pkq to 5.

- B can query for sk; by submitting ¢ € [@]. Upon this query, remove ¢ from S
and send sk; to B.

* Challenge. 53 outputs a (probabilistic) circuit D, a list {pk:};c(n of public keys, and
an error bound 1/¢". Run
i* & Trace” (14, {pK: }je ), 1Y9).
Let
- FalsePos be the event that i* € [N] and pk’. = pk, for some s € S,
- GoodDist the event that
po < {0,144, & {0, 1}
Pr| < (0,1} Do, pr,ct) = | - 5| = €,
ct < Enc(1!, {pk }e(n, t1p)
- and NotFound the event that i* ¢ [N] (i.e., i* = L).
B wins if and only if FalsePos v (GoodDist A NotFound).

AH-BTR as defined above is KEM, following [Zha20a]. Using hybrid encryption, such
a scheme can be easily adapted for arbitrarily long messages with traceability under
adversarially chosen messages. As noted in Remark 3 of [Zha20b], traceability implies
KEM security (or IND-CPA when combined with hybrid encryption).

3.1 Simplified Security Notions

The traceability of AH-BTR guarantees that a traitor must be found (if the decoder is good
enough) and innocent users must not be accused (whether or not the decoder is good
enough). Decomposing the two requirements (plus some apparent weakening) makes
each of them simpler (in particular, non-interactive). The first requirement is called
completeness, and the second soundness.

Definition 13 (completeness). An AH-BTR scheme (Gen, Enc, Dec, Trace) per Definition 11
is complete if all efficient adversary wins Expcomplete ONly with negligible probability,
where Expcomplete(lﬁ) with adversary C proceeds as follows:

« Challenge. Launch C(1"), which outputs a (probabilistic) circuit D, a list {ka".‘ e[
of public keys, and an error bound 1Y/¢". Run

i* & Trace® (1%, {pK: }jerny, 1V9).

Let
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- GoodDist be the event that
po < {0,11%, < {0, 1}
Pr| p < {0,1) Do, pr,ct) = | - 5| = €,
ct < Enc(1Y, {pk}e(n, t1p)
- and NotFound the event that i* ¢ [N] (i.e., i* = 1).
C wins if and only if GoodDist A NotFound.

Definition 14 (soundness). An AH-BTR scheme (Gen, Enc, Dec, Trace) per Definition 11
is sound if all efficient adversary wins Expsounq only with negligible probability, where
EXpsound (1*) with adversary C proceeds as follows:

« Challenge. Run (pk, sk) < Gen(1%), then run C(1%, pk), which outputs a (probabilis-
tic) circuit D, some N € N, a challenge index i} € [N], alist {pk:};e(ny i) of public
keys, and an error bound 1Y¢". Let pk: < pk and run

i* & Trace® (1%, {pK: }jerny, 19).
C wins if and only if i* =i} (the event FalsePos).

Theorem 2 (). An AH-BTR scheme is traceable if and only if it is both complete and sound.

Proof (Theorem 2). The reductionist proof of necessity is straight-forward — the query
phase is unused by the reduction algorithm for completeness, and used only for creating
the public key given to the adversary as input for soundness.

To show sufficiency, suppose the AH-BTR scheme (Gen,Enc,Dec,Trace) is both
complete and sound and let B be an efficient adversary against its traceability. We
consider two efficient adversaries. C; is against the completeness of the scheme. It works
by internally simulating the traceability game for B and outputting whatever 5 outputs.
Consider the coupling between Expcomplete for C1 and the simulated Expirace for B inside,
writing the events for adversary X in its security experiment with subscript X,

GoodDiste, &< GoodDists and NotFound¢, <= NotFoundg.
Therefore,
Pr[GoodDistz A NotFoundg] = Pr[GoodDistc, A NotFoundc, ].

C, is against the soundness of the scheme. Let B = poly(1) > 1 be an upper bound of the
running time of B. The adversary C, does the following:

+ Co(pk) launches B, initializes S to @, lets @ < 0, and samples and sets

s* & [B],  pke < pk,  (pk:,sk;) < Gen() forte [B]\ {s*}.

+ C, answers queries from B and updates @, S as stipulated by the query phase of the
traceability experiment, except that it aborts if B queries for sks-.
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« After the query phase, B outputs

D; {pk;}]E[N]> 11/6*7

and C, samples or sets

1

L&, i~ {ie[N] : pkl =pk} % o;
«— 1 otherwise.

It aborts if i} = L. Otherwise, C; outputs
D, N, i, {pKlewna, 1Y°

Consider the coupling between Expgoung for C2 and the simulated Expirace for B inside.
Routine calculation yields

1
Pr[FalsePosc,] > 72 Pr[FalsePosg].

By the union bound,

Pr[FalsePosg Vv (GoodDistg A NotFoundp)]
< Pr[FalsePosg] + Pr[GoodDistg A NotFoundg]
< B? Pr[FalsePosc,] + Pr[GoodDistc, A NotFounde, ]
= (poly(1))? negl(1) + negl(1) = negl(A). m|

4 Ad Hoc Private Linear Broadcast Encryption

Our construction of AH-BTR follows that of traitor tracing schemes in [BSW06]. We
define ad hoc private broadcast linear encryption (AH-PLBE) by adapting the notion of
PLBE [BSWO06] to the ad hoc setting.

Definition 15 (AH-PLBE). An ad hoc private linear broadcast encryption (AH-PLBE) scheme
(with message space {0,1}* and public key length My(1)) consists of 3 efficient
algorithms:

« Gen(1") outputs a pair (pk, sk) of public and secret keys with |pk| = My(A).

« Enc(1%, {pk;} ey, i € [0..N], 1 € {0, 1}}) takes as input a list of public keys, a cut-
off index, and a message. It outputs a ciphertext ct.

« Dec{Pkiliew1- (14 N i € [N], sk;) is given random access to a list of public keys and
a ciphertext, and takes as input the length of the list, an index, and a secret key. It
outputs a message.

The scheme must be robustly correct, i.e., for all A€ N, N € N, i € [N], {pkj}jenp\ii™
such that |pk;| = My(A) for all j € [N]\ {i}, and u € {0, 14

k;, sk;) < Gen(1%
Pr (pk sk) (1) : DecPlilievi (14 N 4 sk;) = u| = 1.

ct < Enc(1%, {pk;}jc(n)» 0, 1)

These public keys could be out of the support of Gen, i.e., malformed.
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Security. We define security notions of AH-PLBE analogously to those in [BSW06], except
“mode indistinguishability” (Game 1 in [BSWO06]), which is not needed here. The two
security definitions have a one-to-one correspondence to the simplified security notions
of AH-BTR in Section 3.1. Namely, message-hiding translates to completeness, and index-
hiding translates to soundness.

Definition 16 (message-hiding). An AH-PLBE scheme (Gen, Enc, Dec) per Definition 15 is
message-hiding if Expg/IH = Explle, where Expﬁ/IH(ll) with adversary .4 proceeds as follows:

- Challenge. Launch A(1}) and receive from it a list {pkj*. }jern) of public keys. Run

po < {0,114, i & {0,114, ct & Enc(1?, {pK:Yjen), N, tb),
and send (o, u1, ct) to A.
+ Guess. A outputs a bit &', which is the output of the experiment.

Definition 17 (index-hiding). An AH-PLBE scheme (Gen, Enc,Dec) per Definition 15 is
index-hiding if Exp?H ~ Expyy, where Expi’H(lﬁ) with adversary A proceeds as follows:

- Challenge. Run (pk,sk) < Gen(1%), launch A(1%, pk), and receive from it
some N € N, a cut-off index i¥ € [N], and a list {pk;}je[]v]\{ii} of public keys. Let
pk’. « pk, run

M <i {0’ 1}/1’ ct (i EnC(l/l, {pk;}jE[N]’lj_ -1+ b: ,U),
and send (g, ct) to A.

* Guess. A outputs a bit &', which is the output of the experiment.

4.1 Construction

Ingredients of Construction 1. Let

+ GC = (GC.Garble, GC.Eval, GC.SimGarble) be a circuit garbling scheme such that
GC.Garble uses A-bit randomness,

* PPRF = (PPRF.Puncture, PPRF.Eval) a PPREF,

« PKE = (PKE.Gen,PKE.Enc,PKE.Dec) a PKE scheme such that PKE.Enc uses A-bit
randomness and whose public keys are (exactly) of polynomial length My,

« LOT = (LOT.Gen, LOT.Hash, LOT.Send, LOT.Recv) a laconic OT scheme,

» Obf an obfuscator.

Construction 1 (AH-PLBE). Our AH-PLBE works as follows:

« Gen is the same as PKE.Gen.
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CGC [Na hk, h’ iJ_a /*tJ_a /'t7 kGC7 kPKEa {kLOT}moe[Mol] (l)

mo
Hardwired. N, number of users;
hk, laconic OT hash key;
h, laconic OT hash of D = pky || - - || pkn;
i, cut-off index;
Ly, cut-off message;
U, message;

kC°C, PPRF key for circuit garbling;

EPXE PPRF key for public-key encryption;
K0T, PPRF key for sending the m{ label using laconic OT.

Input. i € [N], index of recipient.
Output. Computed as follows.
¢ « PPRF.Eval(%°S, i)
rP*E «— PPRF.Eval(E™"F, i)
rOT « PPRF.Eval(k97,i) for mg € [My]

1,mo mo
(Cetis {Limo,b Y moc Mol bef01))
_ {Gc.earble(éct, (s, PPREY;700), if i <y
GC.Garble(C, (1 ,rP¥€);r80), if i >i;
LOT.ct; , < LOT.Send(hk, A, (i — 1) My + my,
Li 0,0, Limo 15 ’”iL,(,)nTO) for mg € [Mo]

output (Cet;, {LOT.Cti o} moc[ats])

Cetl 1, 7 1 (pks)

Hardwired. p/,  message or cut-off message;
rPXE,  public-key encryption randomness.
Input. pk;, public key of recipient.

Output. PKE.ct; « PKE.Enc(pk;, u/;rF®).

Figure 1. The circuits Cgc and C¢ in Construction 1.
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Enc({pk;}je[ny, i1, p) first checks whether |pk;| = M, for all j € [N]. If not, it outputs
ct = L and terminates. Otherwise, the algorithm hashes down the public keys by
running

M « NM,, D « pkil---|lpky,
hk < LOT.Gen(M), (h, D) « LOT.Hash(hk, D).
It samples the cut-off message ., < {0,1}* and PPRF keys
k¢ & {0,1}%, EPKE & 10, 1)1, BT & {0,131 for mg € [My],
and obfuscates Cqc (Figure 1) by running

Coc < Obf(Coc[N, hk, A, iy, pa, 1, RO, EPKE {BEOTY o cinaol )

mo
The algorithm outputs ct = (hk, Cgc) as the ciphertext.
Dec{Pkikievi- St (N 4 sk;) first parses ct = (hk, 5(3(;) and recomputes
M «— NM,, D « pkq||-- -l pky, (h, D) — LOT.Hash(hk, D).
The algorithm next runs the obfuscated circuit,
(Cetis {LOT-Ctizmo bmociaso]) — Coc (i),

to obtain the garbled C. (Figure 1) for the decryptor and the laconic OT ciphertexts
sending its labels. It then receives the labels,

Li.mo.pk[mo] — LOT.RecV?(hk, b, (i — 1)My + mq, LOT.ct; ;) for myg € [Mo],
and evaluates the garbled circuit,
PKE'Cti — GC'Eval(ECt,iy pki7 {Li,mo,pki[mo] }moE[Mo])’

to obtain the PKE ciphertext under the decryptor’s public key. Lastly, the algorithm
runs and outputs (as the decrypted message)

1 «— PKE.Dec(sk;, PKE.ct;).

Robustness Correctness. This can be verified by inspection.

Efficiency. By the efficiency of laconic OT, LOT.Gen takes time poly(A,log N), LOT.Hash
takes time O(N) poly(A,logN), and |hk|,|2| = poly(A1,log N). As we shall see later, it
suffices to pad Cgc to size poly(A,log N) for the security proofs to go through. Putting
these together,

Tenc = O(N) poly(A,log N), |ct] = poly(A,logN), Tpec = O(N) poly(4,logN).

In practice and for security reasons, we always assume N < 2% and log N is absorbed
by A. Therefore, with poly(1) factors ignored, both encryption and decryption take linear
time, and the ciphertext is constant-size.
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Compatibility. Since the key generation algorithm of Construction 1 is just the key
generation algorithm of the underlying PKE scheme (which only has to be semantically
secure for random messages), it is compatible with the existing public-key encryption
schemes, i.e., existing users possessing PKE key pairs can utilize our AH-PLBE without
regenerating their keys.

4.2 Message-Hiding Property

Theorem 3 (). Suppose in Construction 1, the obfuscator Obf is an iO for poly(A)-sized
domain, then the resultant AH-PLBE is message-hiding.

Proof (Theorem 3). For Construction 1, the only difference between Exp%,;; and Expyy is
whether Cgc used to create ct = (hk, Cgc) has uo or ; hardwired as u. In Cgc (Figure 1),
p is used only in the branch i > i,, which is never taken in Expj;; or Expy,; because i,
is hardwired to be N and the domain of i is [N]. Therefore, the two Csc’s in Exp),;; and
Expy,y; being obfuscated are functionally equivalent and have the same size. Moreover,
their domain size is N (polynomially large). Therefore, Exp?,;; ~ Expy,;; reduces to the :O
security for poly(A1)-sized domain of Obf. o

4.3 Index-Hiding Property

Theorem 4 (). Suppose in Construction I, all of the ingredients are secure, then the resultant
AH-PLBE is index-hiding.

Proof (Theorem 4). The only difference between Exp%; and Expl, is whether the Cgc being
obfuscated hardwires u (in Exp?H) or i, (in Exp%H) into Cct,;+, which only affects the output
of Csc at i =i} . We consider the following hybrids, each (except the first) described by
the changes from the previous one:

« H} (for b € {0,1}) is Exp},, where
hk <& LOT.Gen(NM,),  (h,D) & LOT.Hash(hk, pki |- - [ pki),
£ & (0,1}, EPRE & g0, 1), EOT & {0,114 for mg € [Mo],
Coc & Obf(Coc [N, hk, kit — 1+ b, pry, o, O, kP {10} et ),
ct = (hk, Cgc).
« H? alters the obfuscation into
6;GC <i Obf(CéC [N, hk’ ha Hi, |,
ij_, ];%C, I;Zr;KE, {];I;;%le_}mo‘E[Mo] ) act,ii’ {LOT'Ctii,mo}moe[Mo]])7
where

- C¢ is defined in Figure 2,
- the PPRF keys are punctured at i} by running

ESC & PPRF.Puncture(k°C,i%),
EPKE & PPRF.Puncture(k™F,i%),

EOT. & PPRF.Puncture(k97,i*)  for mg € [M],

mo,ij_ mo ?
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- and the output (é’\ct,ij, {LOT.cti mo tmoe[n,]) Of Cg ati =17 is computed as

« H% changes r¢¢, ri, and r}

rC « PPRF.Eval(k°,i}),  r™ « PPRF.Eval(k™€,i}),

O, — PPRF.Eval(krol,i})  for mg € [Mo],

it mo mo
(act,ij, {Li, mo,b Y moe[Mo],be{0,1})
{GC.Garble(Cct, (u ,rfIKE); r%C), if b = 0;
GC.Garble(Cq, (,uL,rfIKE); r%c), ifo=1;
LOT.ct;: m, < LOT.Send(hk, &, (i} — 1) My + my,
Lii,mO,O,Lii,mo’l;r.LOT for mg € [My].

*
it ,mo

GC. pPKE LOT s into true randomness, i.e.,
i it ,mo

re¢ & 0,14, PR S {0,134, LOT & (0,13*  for mg € [M].

I
i1,mo

C(,_T,C [N7 hka h” ,UJ_a )u’ L_*L’ ];%C, ];fIKE> {];LOT }m()E[M()] ’ 6Ct,ii7 {LOT'Ctii,mo}moe[Mo]] (l)

Hardwired.

Input.
Output.

mo,i7]
N,hk, h, u,, u, see Figure 1;
i, challenge cut-off index;
k- o PPRF keys punctured at i7;
C it LOT.ct;« .., hardwired output of C¢. ati =17.
i € [N], index of recipient.
Computed as follows.

output (é’\ct,ij, {LOT.cti* imo tmoc(aso]) @s hardwired
else:
roC PPRF.Eval(I;fiC,i)
rPRE PPRF.Eval(lgfiKE,i)

riO — PPRF.Eval(k.0",. i) for mg € [My]

i,mgp
(Ceti» {Li mo,b Y moe[Mo],be{0,1})
{GC.Garble(act, (e, rPRE); rS0), if | < i |
GC.Garble(Cq, (1 ,rPRE); rS0), if | >0
LOT.ct; ;n, < LOT.Send(hk, A, (i — 1) My + my,
Limy,0 Limo1;rion,)  for mo € [Mo]

output (Cet, {LOT.Ct; o b moc[ao])

Figure 2. The circuit C;. in the proof of Theorem 4.
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» H} removes the unused labels from LOT.ct;: ,»,’s by setting
LOT.Ct;2 mo < LOT.Send(hk, h, (i} — 1) Mo + mo,

‘, . _LoT
Lis mopk, 1mal> Lig mo ok, [mo]3 755 g for mo € [Mo].

. HZ changes C,;: into simulation, i.e.,

PKE.Enc(pk?., iz ;rP%E), if b =0;

PKE.ct;+ « )
+ PKE.Enc(pk?. , i, ;rP€E), if b =1;

(Ect,ija {Li, mo,pk. [mo] Ymoe[Mo]) & GC.SimGarble(Cq, pk;. , PKE.ct;; ),

where pkfi = pk is sampled by the experiment (not adversarially controlled).
The following claims hold, all of which are immediate by inspection:
Claim 5. H) ~ H? for b € {0,1} if Obf is an iO for poly(A)-sized domain.
Claim 6. H ~ HS for b € {0,1} if PPRF is pseudorandom at the punctured point.
Claim 7. H5 ~ H} for b € {0,1} if LOT is database-selectively sender-private.
Claim 8. H} ~ H§ for b € {0,1} if GC is w-hiding.
Claim 9. H} ~ H} if PKE is semantically secure for random messages.

Expl; ~ Expfy; follows from a hybrid argument. O

5 AH-BTR from AH-PLBE

Ingredient of Construction 2. Let ahPLBE = (ahPLBE.Gen, ahPLBE.Enc, ahPLBE.Dec) be an
AH-PLBE scheme.

Construction 2 (adapted from Section 2.2 in [BSW06]). Our AH-BTR works as follows:
* Gen is the same as ahPLBE.Gen.
* Enc({pk;}je[n], #) runs and outputs ct & ahPLBE.Enc({pk;}jecny, 0, 12).
* Dec is the same as ahPLBE.Dec.
. TraceD({pkj’f}je[N], 1/¢") defines for i € [0..N],

po < {0,134, w & {0,134, B<E{0,1) 1

g =Pr : D(uo, p1,ct) = B| - -
ct & ahPLBE.Enc(1%, {PK: }jerny, iy 1p)

2

experiment &; (sampling and testing) and event E; (correct guessing)

%ﬁvm], for each i € [0..N], the algorithm runs &

for n times independently, counts the absolute frequency ¢; € [0..7] of E;, and

computes & = 3 - 3. It outputs

Setting § « £+ and n « [

. |minT, ifT « {i€[N] : |§-&-1]=236}+2;
1 =
1, ifT =o.
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Robustness Correctness, Efficiency, Compatibility. These are inherited from the
underlying AH-PLBE. When based on Construction 1, the resultant AH-BTR has

Tene = O(N) poly(1),  [ct| = poly(A),  Tbec = O(N) poly(1),
and is compatible with the existing public-key encryption schemes.

Theorem 10 (7). Suppose in Construction 2, the AH-PLBE scheme ahPLBE is message-hiding,
then the resultant AH-BTR is complete.

Theorem 11 (). Suppose in Construction 2, the AH-PLBE scheme ahPLBE is index-hiding,
then the resultant AH-BTR is sound.

Proof (Theorem 10). Consider any efficient adversary C against the completeness of
Construction 2. Let GoodEst be the event that |¢; — ¢;] < d for all i € [0..N]. By the
Chernoff bound, the union bound, and the law of total probability,

Pr[-GoodEst] = E[Pr[~GoodEst | £*, N]| < E[2(N +1) exp(-252n)] < 27%.

Let BadEnd be the event that |ey]| > 5—2*, then GoodDist A =BadEnd implies

1|
=—leg—¢€
N'OTN

N
> (eii1— &)
i

1 1 e* e*

> —(leo] = len)) = =" - = = =50.
v leol = le) N( 2) ~
GoodDist —BadEnd

| |> 1 | |> 1
max |E;-1 — &; — E Ei—1— & —
1€[N] i1 ! N =1 i1 ! N

Therefore, GoodDist A =BadEnd A GoodEst implies

max |g;_1 — &| > max (|&;_; — & —20) > 56 — 26 = 36,
1€[N] i€[N]
GoodEst GoodDistA-BadEnd

which in turn implies T' # @ hence * € [N], i.e., =NotFound. By contraposition,
GoodDist A NotFound A GoodEst =  BadEnd.
By the union bound,

Pr[C wins] < Pr[-GoodEst] + Pr[(C wins) A GoodEst]
Pr{-GoodEst] + Pr[GoodDist A NotFound A GoodEst]
< 27* + Pr[BadEnd],

so it remains to show Pr[BadEnd] = negl(1).
Consider the following efficient adversary A against the message-hiding property
of ahPLBE:

« A runs C to obtain
Da {pk;}JE[N]a 11/5*'

+ A runs &y once and notes down a € {0,1} indicating whether Ey happened, i.e.,
a =1if and only if D guessed correctly in the trial.
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+ A submits {pkj’f}je[N] to the message-hiding experiment, receives (uo, 141, ct) back,

and runs and outputs &’ & D(uo, 1, ct) @ a.

Routine calculation shows that the advantage of A is E[4¢3 ], which must be negligible
by the message-hiding property of ahPLBE. Let B = poly(1) be an upper bound of 1/¢*
(B exists since C outputs 1/¢" in polynomial time). By Markov’s inequality,

Pr[BadEnd] = Pr[4e3, > (¢*)%] < Pr[4ex, > B7%]
< B*E[4¢3] = (poly(1))* negl(1) = negl(1). O
Proof (Theorem 11). Consider any efficient adversary C against the soundness of

Construction 2. Similarly to the proof of Theorem 10, define GoodEst and recall that
Pr[-~GoodEst] < 27*. We have

Pr[C wins] < Pr[-GoodEst] + Pr[(C wins) A GoodEst]
Pr[-GoodEst] + Pr[FalsePos A GoodEst]
< 27 4+ Pr[FalsePos A GoodEst],

and it suffices to prove Pr[FalsePos A GoodEst] = negl(A).
Let a be a random element in an execution of Trace with

0, ifi* € [N]and &+ - > 30;
a=11, ifi*e[N]andé&-_— &+ < -37;

1, ifif=1. )
Consider the following efficient adversary A against the index-hiding property of ahPLBE:
+ A(pk) runs C(pk) to obtain
D, N, i, {pPKliemngy. 179,
and sets pk;:“i «— pk.
+ A runs
i* & Trace” ({pk;} e, 1Y),
and aborts if i* #i}.
+ A notes down a € {0,1} from the above execution of Trace, submits
N, i, APk tiemvis
to the index-hiding experiment, gets (u, ct) back, samples and sets
B0}, s p, pp {01

and runs and outputs b’ & D (o, th,ct) ® - & a.
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Routine calculation shows that the advantage of A is
E[Traisepos - (=1)*(€i+-1 — €i+)],

which must be negligible by the index-hiding property of ahPLBE.
Let B = poly(1) be an upper bound of 10N/&* (B exists since C outputs 1¥ and 1V¢
in polynomial time). The event FalsePos A GoodEst implies

|(gim1 — &) = (Eio-1 — &+)| < 26 <30 < |€jo1 — &2

E*

= (=D ep_1—€p) = €1 — €0 236 - 20 = 10N > B!,

Moreover, (-1)*(g;+—1 — &+) = —1 always holds. These together show that

Pr[FalsePos A GoodEst]
=B ]E[]lFalsePos * LoodEst B_l]
< BE[Traisepos - Looodest - (—1)% (€i+-1 — &i+)]

< B(]E[]lFalsePos : ]lGoodEst : (_l)a(fi*—l - 5i*)]
+ ]E[]lFalsePos : ]lﬂGoodEst ' (_l)a(gi*—l - 5i*)] + ]E[]lFalsePos ' ]lﬂGoodEst])
= B(IE[]lFalsepos - (=1)*(&;+_1 — €;+)] + Pr[FalsePos A —|GoodEst])

< B(]E[ﬂFalsePos (=D)%(gpo1 - €0)] + 2_/1)
= poly(1) (negl(1) +27*) = negl(A). o

6 Trading Ciphertext Size for Decryption Time in AH-BTR

While Construction 2 achieves constant ciphertext size, it takes time Q(N) to decrypt.
In contrast, the naive scheme that encrypts to each user separately has Q(N)-size
ciphertext, yet decryption only takes constant time. By grouping the recipients and
encrypting to each group separately, we can trade ciphertext size for decryption time.'?
Previous work [Zha20a] already systemizes the idea of grouping in the context of
traditional traitor tracing.

Ingredients of Construction 3. Let old = (old.Gen, old.Enc, old.Dec, old.Trace) be an AH-
BTR scheme and y some'® constant (0 < y < 1).

Construction 3 (adapted from Theorem 1 in [Zha20a]). Our new AH-BTR works as
follows:

« Gen is the same as old.Gen.

12 Alternatively, one can reformulate Construction 2 as a compiler that trades decryption time for
ciphertext size, by grouping the recipients and compressing the groups. We refrained from such a
formulation because the “transformation” uses a quite strong additional assumption, namely functional
encryption for general circuits.

13We require that N — [N7] can be computed in (deterministic) time poly(logN).
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* Enc({pk;}je[n], 1) sets N1 = [N7] and N, = [N/Ny]. It runs

Old.Ctj1 & old.Enc({pkj}(jl_l)N2<j§le2,,u) for J1 € [Nl]
The algorithm outputs ct = {old.ct; } e(ny]-

« Dec{Pliliev (N i, sk;) sets Ny = [NV], No = [N/Np]. It parses ct as {old.ctj, }j,c(ni]
finds i; € [N1] such that (i; —1)N2 < i < i1N, and sets N; = min {N2, N — (i; — 1)N2}.
The algorithm runs and outputs

old.DecPKi}ir-vvy<isiny-ldctiy (N7 3 (i) — 1) Ny, sk;).

» Trace” ({pk;}jein), 17/¢") sets N1 = [N”] and Ny = [N/Ny]. It runs

*

ij1 (i old.TraceDfl({pk;f}(jl_l)qusth, 1N1/£*) for j1 € [Nl],
where Dj, (1o, p1, old.ct”) runs and outputs D (uo, th, {old.ct;, }jie[Nl]) with
& old.Enc({pk:} (ji-1)ny<j<jinss Ho),  if J] < J1;

old.ctjy | « old.ct", if j} = J1;

& old Enc({pK: }(ji-ymp<jzsives 1), if 7 > o,
The algorithm outputs

(1—-1DN2 + i;'fl, if iJ’fi = 1 for all j] < j1 and i;.‘l #1;

1, if iJ’f, = 1 for all j] € [N].

1

Robustness Correctness and Compatibility. These are inherited from the underlying
AH-BTR. When based on Construction 2, the resultant AH-BTR is compatible with the
existing public-key encryption schemes.

Efficiency. Let y1, 72,73 be constants such that the AH-BTR efficiency is
Tenc = O(N™) poly(1), |ct] = O(N"*) poly(4),  Tbec = O(N'?) poly(2),
then the underlying efficiency is mapped to the resultant efficiency'* by
(r,v2,73) = A=y +yr, 1=y + 772, 773).
When based on Construction 2, the resultant AH-BTR enjoys
Tenc = O(N) poly(1), |ct| = O(N'™) poly(4), Tbec = O(N?) poly(A).

Theorem 12 (). Suppose in Construction 3, the underlying AH-BTR scheme old is complete,
then so is the resultant AH-BTR.

Theorem 13 (€). Suppose in Construction 3, the underlying AH-BTR scheme old is sound,
then so is the resultant AH-BTR.

14We assume that old.ct’s are of deterministic length so Dec knows the location of each particular old.ct.
Alternatively, Enc can store a look-up table of their locations in ct.
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Proof (Theorem 12). Let C be an efficient adversary against the completeness of
the resultant scheme. Consider the following efficient adversary Coq4 against the
completeness of old:

* Coiq launches C to obtain
Dy {pk;}jG[N]a 11/5‘*-
It computes N, N» as specified by the resultant scheme.

* Coid samples j] & [Ny], prepares D;j: (using D, as specified by the resultant
scheme), and outputs

Di> {pk;}(jf—l)NKij'{Nz, 1M/

Let B = poly(1) be an upper bound of N;. Routine calculation shows

Pr[Colg Wins] > B Pr[C wins],
hence by the completeness of old,
Pr[C wins] < B Pr[Colq Wins] = poly(1) negl(1) = negl(1). m|

Proof (Theorem 13). Let C be an efficient adversary against the soundness of the resultant
scheme. Consider the following efficient adversary Coq against the soundness of old:

¢ Cold(pk) launches C(pk) to obtain
D, N, i, {pKlewngy, 177
It computes N, N as specified by the resultant scheme.
* Cold computes j; = [i] /N>] and outputs
Dj:, min{Ny, N - (j; —DN2}, i} — (j; —DN2,  {pK }i-nmajiivg jeins VY6
Routine calculation and the soundness of old yield

Pr[C wins] < Pr[Colg Wins] = negl(1). m|

7 Lower Bound on Ciphertext Size and Decryption Time

In this section, we prove that for all secure AH-BTR,
|ct| - Thec = -Q(N),

and therefore, we have constructed all the optimal (ignoring poly(A) factors) AH-BTR
schemes in this work, completely pinning down the Pareto front of its efficiency. In
fact, we will show a related bound against a restricted kind of broadcast encryption,®
which can be implemented using AH-BTR in a straight-forward manner.

The scheme is restricted in the sense that the users are paired and encryption only
broadcasts to those sets for which there is precisely one recipient from each pair. The
required security notion is also weaker — it does not consider collusion among multiple
non-recipients nor adaptive attacks.

15The lower bound thus also applies to all mildly expressive attribute-based encryption schemes.
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Definition 18 (restricted broadcast encryption and its security). A restricted broadcast
encryption (BE) scheme (for the purpose of this work) consists of 3 efficient algorithms:

« Gen(1%,1V) takes a length parameter as input. It outputs a master public key mpk
and a list {skj}je[n],sef0,1) Of secret keys.

« Enc(1*, mpk, R, i) takes as input the master public key mpk, an N-bit string
R € {0,1}"V, and a message u € {0, DA It outputs a ciphertext ctg.

« Dec™Pkirskir Rtz (11) is given random access to the master public key mpk, a secret
key with its description (i,r,sk;,), a ciphertext with its attribute (R,ctg). It is
supposed to recover y if and only if R[] =r.

The scheme must be correct, i.e., for all A, N € N, R € {0,1}", i € [N], p € {0, 1},

(mpk, {sk; s}je[N1.scr0.1)) < Gen(11,1V)
Pr ctg & Enc(1*, mpk, R, p)| = 1.
Decmpk9i:R[i]’5ki,R[i]’R:CtR(1/1) — ﬂ

The scheme is I-key secure for random challenge against uniform adversaries (or secure for
the purpose of this work) if

{at, mpk,R,i*,pO,ski*ﬁR[i*],)} ~ {(14,mpk,R,i*,po,ski*ﬁR[i*],)}, where
R<&E{0,1}Y, i &[N,
(mpk, {skj,s}je[n,sefo.1}) < Gen(1%,1V),
Up & {0, 1}’1, cty & Enc(l’l, mpk, R, up) for b € {0, 1},

for all polynomially bounded N = N(A1), where the computational indistinguishability
only has to hold against uniform adversaries.'

Theorem 14 (1). For all secure restricted BE,

N
1000
for all polynomially bounded N = N(A) and sufficiently large A, where ct runs through all

possible ciphertexts and Tpec the time to probe R and produce output by Dec, both for R of
length N.

max |ct| - max Tpec >

We remark that while the statement and the proof here apply to perfectly correct
schemes with polynomial security, it is straight-forward to adapt them for schemes with
sufficient (say, constant) gap between correctness and security.

To prove Theorem 14, we need the following lemma:

Lemma 15 (adapted from Theorem 2 in [Unr07]). For all N,P € N subject to 1 <P <N,
distribution D supported over Z, function F : Z x {0,1}" — {0, 1}5, there exists a function
G:Zx{0,1} - {0,1, L}V such that

{j € [N] : G(z,R)[j] # L} <P  forallze ZandR € {0,1}"

16 need not be a computable function of A. This does not make the security definition “non-uniformy”,
as a standard guessing argument (with advantage sign correction) applies to an interactive formulation in
which the uniform and efficient .A chooses N.
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and for all'’ oracle (randomized) algorithm BY making at most T queriesto Y,

|Pr [B%(2,F(2,R)) — 1] - Pr [B¥(2, F(2,R)) - 1]| < Ji—T,

where
& N & L |= G R[], ifG(z,R)[j] # L;
EB=on%  z<D  HI {& (0,1}, if G(z,R)[/] = L.

Proof (Theorem 14). Define
S =1+ max|ct|, T =1+ max {number of bits in R probed by Dec}.

For A,N > 1, it is necessary that |ct| > 1 because ct can encode any string u of length A,
and that max Tpec > T because Dec performs all the probes and, in addition, produces at

least 1 bit of output. Therefore,

max |ct| +1 ST
max |ct| - maxThec > ——————— - max Tpec > -
It remains to prove ST > 2 for sufficiently large A. It suffices to consider the case

when N > 2 and ST < 2N.
We prepare for Lemma 15. Let P be determined later, and
p < {0,114

b Z b m k7
z= # Zenc, MP ~D = Zenc - randomness for Enc
{sk; s }ie[n,sefo0,1)

(mpk, {skj,s}je(v) sef0)) < Gen(1V)
F(z,R) = 057111 1||ct, where ct « Enc(mpk, R, ; zenc)-
Let G be the function guaranteed by Lemma 15 and make BY (z, f) do the following:
- Sample i* & [N] and query r* « Y [i*].
* Read p, mpk, sk;- ,~ from z. Read ct from f.
« Run g/ & DecMPki'r skis Yot ()
« Output 1 if and only if u = y'.

Note that 5 indeed makes at most T' queries to Y, the first to obtain r* and the rest to
run Dec.
For w € {1,2,3, 4,5}, write p,, for Pr[BY«(z, f;i*) — 1], where

it & [N], Y1 =R,
=Gz, F(z,R))[j], ifG(z,F(z,R))[j] # L;
Y[ Jj] $ . 9.
< {0,1}, if G(z,F(z,R))[Jj] = L;
=G(z,F(z,R))[j], ifj+#i" and G(z,F(z,R))[j] # L1;
Ys[j]14{< {0,1}, if j #1* and G(z,F(z,R))|[j] = L;
& 0,1}, if j =%
=R, ifj# i =R, ifj £
YalJ] {i 0,1}, ifj=i Y5l {: ~R[i*], if j=i".

"Here, BY need not be efficient for the lemma to hold. The particular BY used in this work is efficient.
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By the correctness of the restricted BE scheme, p; = 1.

2] = 2 P > 4 p3 = .

Here, the second inequality is obtained by applying the lemma to

=Y[j], ifj#i

y _ py . S Ty
C'(z,f)=B"(z,f;i"),  wherei < [N], Y[J]{&{o,l}, if j =i

Clearly, |ps — p3| < . Setting P = F/%Nﬂ, we have

|p1— pal < |p1 —p2| +|p2 — p3| + |p3 — pal
2P N 2P ~ 2N’
where the last inequality follows from N > 2. By how Y [i*] is set,

p1+p ST
D4 = 12 > = p5=p1—2(p1—p4)2p1—2|p1—p4|>1—83m-

Consider the following adversary A(mpk, R, i*, to, sk;- -g[i-], Ct) against the security of the
restricted BE scheme:

+ Construct Ys from R and let r* « Ys[i*] = =R[i*].

« Run g/ & DecMPi’ sk Ysct(y e pretend R[i*] were —=R[i*] and try decrypting
using the key given to A.

+ Output 1 if and only if y’ = yo.

If ct=ct; is an encryption of y, then gy is uniformly random and independent of
everything else, hence

Pr[A(---) — 1 with ct = ct;] < 274

Note that A is a uniform adversary. By the security of the restricted BE scheme,
. 1
ps = Pr[BY(z, f;i%) — 1] = Pr[A(---) — 1 with ct = ctg] < 27* + negl(1) < :

for sufficiently large A, which gives

ST 1 IN
1-82— < < = - ST > ——. m|
Von P55 1000

Corollary 16 (7). For all secure AH-BTR,

N
1000

for all polynomially bounded N = N(A) and sufficiently large A, where Tpec only counts the
time to probe pk;’s and produce output. Ignoring poly(A) factors, Construction 3 achieves all
possible optimal trade-offs in terms of the exponents over N in the dependency of ciphertext size
and (actual) decryption time, fully demonstrating the Pareto front of AH-BTR efficiency.

max |ct| - max Tpec >
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Proof (Corollary 16). Let ahBTR = (ahBTR.Gen, ahBTR.Enc,ahBTR.Dec, ahBTR.Trace) be a
secure AH-BTR and construct the following restricted BE scheme:

« Gen(1V) runs
(pk;.s, k; ) < ahBTR.Gen() for j € [N],s € {0,1}

and outputs mpk = {pkK; s}je[n],sef0,1} With {sk; s}ie[n],sef0,1}-

« Enc(mpk, R, 1) runs and outputs

ct & ahBTR.Enc({pk; r[]}je[N]> 1)-

« DecMPkirskir Bt () runs ahBTR.DecK (N, i, sk; ), where K is an oracle implemented
by Dec for ahBTR.Dec to probe pk;’s. Whenever ahBTR.Dec probes pk;[m], we make
Dec probe R[] and answer pk; g[;j[mo].

It is straight-forward to verify that the constructed scheme is correct and secure.
Since a restricted BE ciphertext is precisely an AH-BTR ciphertext, each probe to pk;’s
by ahBTR.Dec translates to exactly one probe to R[j] by Dec with no more additional
probes by Dec on its own, and Dec outputs whatever ahBTR.Dec outputs, the corollary
follows from Theorem 14. i
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