Universal Gaussian Elimination Hardware for Cryptographic Purposes

JINGWEI HU, Nanyang Technological University, Singapore
WEN WANG, Yale University, USA
KRIS GAJ, George Mason University, USA
DONGLONG CHEN, BNU-HKBU United International College, China
HUAXIONG WANG, Nanyang Technological University, Singapore

Abstract

In this paper, we investigate the possibility of performing Gaussian elimination for arbitrary binary matrices on hardware. In particular, we presented a generic approach for hardware-based Gaussian elimination, which is able to process both non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO and RQC, which are among NIST post-quantum cryptography standardization round-2 candidates, require performing Gaussian elimination for random matrices regardless of the singularity. We accordingly implemented an optimized and parameterized Gaussian eliminator for (singular) matrices over binary fields, making the intense computation of linear algebra feasible and efficient on hardware. To the best of our knowledge, this work solves for the first time eliminating a singular matrix on reconfigurable hardware and also describes the a generic hardware architecture for rank-code based cryptographic schemes. The experimental results suggest hardware-based Gaussian elimination can be done in linear time regardless of the matrix type.

CCS Concepts: • Security and privacy \rightarrow Public key encryption; • Hardware \rightarrow Application-specific VLSI designs; • Computer systems organization \rightarrow Embedded systems.

Additional Key Words and Phrases: post-quantum cryptography, Gauassian elimination, FPGA

1 INTRODUCTION

From computational efficiency point of view, Gaussian elimination on an $n \times n$ matrix requires $O\left(n^{3}\right)$ divisions, $O\left(n^{3}\right)$ multiplications, $O\left(n^{3}\right)$ additions, and $O\left(n^{3}\right)$ subtractions, for a total of $O\left(n^{3}\right)$ arithmetic operations. There are numerous applications of Gaussian elimination in nearly any area of computer science. Cryptology is no exception, with matrix problems arising both in cryptanalysis and cryptography. In the introductory part, we briefly outline the areas where our hardware-based Gaussian elimination is of the most relevance.

Algebraic cryptanalysis of symmetric-key ciphers. Cryptanalysis of symmetric-key ciphers frequently involves systems of linear equations (SLEs), which can be efficiently solved using Gaussian elimination. This is because the majority of deterministic symmetric ciphers can be represented as finite state machines whose output can be described by a (sometimes rather complicated) boolean function of the initial internal state and input values (if any) giving rise to SLEs over \mathbb{F}_{2}. For instance, linearization methods [3, 15] have gained lots of attention during the last decade and are widely used nowadays. Here, the nonlinear system is first simplified, then linearized and solved as an SLE. To make cryptanalysis with linearization methods feasible, one is reliant upon efficient SLE solvers.

Implementing asymmetric cryptography. Gaussian elimination also plays a central role in some cryptographic applications. For example, the performance of digital signature schemes based on multivariate quadratic polynomials highly depends on the efficiency of solving small SLEs over finite extension fields. This class of digital signature
schemes is of special interest due to its resistance to quantum computer attacks. For the generation of a signature using the Rainbow signature scheme [4] with recently recommended parameter sets, two SLEs of dimension 12×12 over $\mathbb{F}_{2^{8}}$ need to be solved. In [2], a generic hardware architecture for this kind of signature schemes is proposed, with an SLE solver being a major building block. Furthermore, Gaussian elimination is the most compute-intensive and also a distinguishing operation in rank metric cryptography and particularly in the context of ROLLO [8]. For example, ROLLO-II PKE.encrypt generates a random matrix over \mathbb{F}_{2} to represent the error vector space E, which requires performing Gaussian elimination to get its reduced-row-echelon form. ROLLO-II PKE.decrypt also requires Gaussian elimination to intersect the secret syndrome spaces $S_{i}=f_{i}^{-1} S$ for finding the linearly independent bases of the secret error vector space E.

Contributions. Based on the parallel nature of hardware, we propose a new approach that could Gaussian-eliminate arbitrary matrices over a binary field in constant $\Theta(n)$ steps, which remains unsolved prior to this work. Our work differs from the previous work in two aspects:

- The new design presents a new mechanism called dual-mode switch to determine the pivot position on the fly and thus can Gaussian-eliminate a singular matrix, whereas the previous designs assume the input matrix is non-singular and cannot return a correct answer for a singular matrix.
- The new design is constant-time, fully parameterized and open-sourced ${ }^{1}$. The HDL codes for our hardware design are auto-generated by a Python script and thus can be easily adapted for different matrix sizes used in numerous cryptographic applications.

This paper is roughly structured as follows. We start with a brief discussion of previous work on hardware-based Gaussian elimination. Then, we provide a high-level review of the ROLLO specification, which is later used as a case study for our Gaussian elimination design. We then present our new algorithm, which guides the hardware implementation of a Gaussian elimination design. The novel algorithm and the new hardware design can Gaussian-eliminate both singular and non-singular matrices. After that, further applications of the hardware architecture are discussed, including how to Gaussian-eliminate a medium-sized binary matrix using the proposed design and reuse this new module for any large-sized matrices. We also showcase how to adapt our new Gaussian eliminatation module to ROLLO hardware design. Finally, we show our proof-of-concept implementations on contemporary low-cost FPGAs.

2 RELATED WORK

From a geometric point of view, the hardware architectures for Gaussian elimination over a finite field fall into two groups: triangular and linear, each of which is subdivided into three types: systolic array, systolic network, and systolic line.
2.0.1 Triangular-shaped array. A triangular-shaped array is a two-dimensional array, where all nodes in the array shape a triangle. This array is triangular because Gaussian elimination causes all nodes except the pivot node to be zero for each column of the matrix, and these zeros are unnecessary to be saved. In 1989, Hochet et. al described for the first time the triangular systolic array for doing Gaussian elimination of a matrix over \mathbb{F}_{q} [6]. This work was further adapted for faster processing using triangular systolic network (TSN) [12] and triangular systolic line (TSL) [9]. In general, a triangular-shaped array sets the priority for time complexity while sacrificing space complexity. It typically completes one Gaussian elimination for a $k \times l$ matrix in $\Theta(k+l)$ of time and $\Theta(k l)$ of space.

[^0]2.0.2 Linear-shaped array. A linear-shaped array is a one-dimensional array, where all nodes in the array form a horizontal line as described in [9]. It only preserves the first line of the triangular array while all intermediate results are pushed to an array of shift registers waiting for the next round of processing. A linear systolic array is more area-efficient than the triangular-shaped array if the Gaussian elimination is performed on a matrix over an extended finite field $\mathbb{F}_{2^{m}}$. It typically completes one Gaussian elimination for a $k \times l$ matrix in $\Theta(k l)$ of time and $\Theta(l)$ of space.

In addition to the systolic architectures, a different hardware approach realizing Gaussian elimination including backward-substitution over $\mathbb{F}_{2^{k}}$, called GSMITH, is presented in [9]. It consists of a rectangular array of simple cells exhibiting local as well as some global connections. The running time of GSMITH is non-constant-time, depending on the probability distribution of the matrix entries. The implementation results suggest the timing performance is close to that of TSL but uses more hardware resources.

For cryptographic purposes, Gaussian elimination hardware for $n \times n$ square matrices over $\mathbb{F}_{2^{k}}$, also known as linear system of equations (LSE) solver [1, 2, 11], is explored in multivariate cryptosystems. If the LSE solver encounters under-determined equations, i.e., the matrix associated with the linear system of equations is not full-rank, the solver throws out an exception and halts. Note that the LSE solver can identify the under-determined equations without fully performing the Gaussian elimination. It suffices to make such a decision whenever one of the pivots along the diagonal of the matrix is zero. In other words, the LSE solver in the open literature cannot eliminate singular matrices.

On the other hand, the only two hardware implementations of Gaussian elimination used in Hamming-metric-codebased cryptography that are closely related to our work are presented in [10, 14]. They are used in the key generation of the classic Niederretier code-based scheme. These designs are capable of eliminating a binary matrix of the size $k \times l$, with $k \neq l$, which removes the shape limit existing in the LSE solver mentioned above. The pre-requisite for successful Gaussian elimination is that the input matrix must be full-rank. For rank-metric-code-based cryptography like ROLLO and RQC, Gaussian elimination is the most computing-intensive and also a distinguishing operation. However, these rank-code-based schemes require performing Gaussian elimination on medium-size and large-size matrices over a binary field, and most importantly, these matrices can be rank-deficient. Unfortunately, the current state-of-the-art designs cannot process such type of matrices.

3 PRELIMINARIES OF ROLLO

This section introduces the rank-metric code based cryptographic scheme - ROLLO [8] which heavily relies on a universal Gaussian elimination utility. The requirement for universal Gaussian elimination utility posts a new challenge for cryptographic hardware designers. ROLLO is a compilation of two cryptographic schemes, ROLLO-I and ROLLO-II, which are among 26 round- 2 candidates to the NIST's process for post-quantum cryptography standardization. It is worth mentioning that the actual implementation of ROLLO introduces a new challenge for hardware-based Gaussianelimination: the computation in ROLLO requires Gaussian-eliminating a matrix with an unknown rank, and it is most likely that the matrix under operation is singular. Effective manipulation for such a matrix goes beyond the applicability of the existing Gaussian elimination hardware.

Let $\mathcal{S}_{w}^{n}\left(\mathbb{F}_{q^{m}}\right)$ stand for the set of vectors of length n and rank weight w over $\mathbb{F}_{q^{m}}$ and $\mathcal{S}_{1, w}^{n}\left(\mathbb{F}_{q^{m}}\right)$ stand for the set of vectors of length n and rank weight w, such that its support contains 1 :

$$
\begin{gathered}
\mathcal{S}_{w}^{n}\left(\mathbb{F}_{q^{m}}\right)=\left\{\mathbf{x} \in \mathbb{F}_{q^{m}}^{n}: \operatorname{dim} \operatorname{Supp}(\mathbf{x})=w\right\} \\
\mathcal{S}_{1, w}^{n}\left(\mathbb{F}_{q^{m}}\right)=\left\{\mathbf{x} \in \mathbb{F}_{q^{m}}^{n}: \operatorname{dim} \operatorname{Supp}(\mathbf{x})=w, 1 \in \operatorname{Supp}(\mathbf{x})\right\}
\end{gathered}
$$

3.1 ROLLO-I

ROLLO-I, formerly known as LAKE, is a CPA-secure Key Encapsulation Mechanism (KEM) running in the category "post-quantum key exchange". A Key-Encapsulation scheme KEM = (KeyGen, Encap, Decap) is a triple of probabilistic algorithms together with a key space \mathcal{K}. The key generation algorithm KeyGen generates a pair of public and secret key (pk , sk). The encapsulation algorithm Encap uses the public key pk to produce an encapsulation c of a key $K \in \mathcal{K}$. Finally Decap using the secret key sk and an encapsulation c, recovers the key $K \in \mathcal{K}$ or fails and returns \perp.

ROLLO-I is formally described in Algorithm 1. The RSR algorithm is the rank support recover algorithm proposed in [5] to recover the rank support of the error vector from the secret syndrome. P is an irreducible polynomial of $\mathbb{F}_{q}[X]$ of degree n and constitutes a parameter of the cryptosystem.

```
\({ }_{1} \operatorname{KeyGen}\left(1^{\lambda}\right)\) : Pick \((x, y) \stackrel{\$}{\leftarrow} \mathcal{S}_{d}^{2 n}\left(\mathbb{F}_{q^{m}}\right)\). Set \(h=x^{-1} y \bmod P\), and return \(\mathrm{pk}=h, \mathrm{sk}=(x, y)\).
\(2 \operatorname{Encap}(\mathrm{pk}): \operatorname{Pick}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \stackrel{\$}{\leftarrow} \mathcal{S}_{r}^{2 n}\left(\mathbb{F}_{q^{m}}\right)\), set \(E=\operatorname{Supp}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right), \mathbf{c}=\mathbf{e}_{1}+\mathbf{e}_{2} \mathbf{h} \bmod P\). Compute the shared secret key
    \(K=\operatorname{Hash}(E)\) and return \(\mathbf{c}\).
\(3 \operatorname{Decap}(\mathbf{c}, \operatorname{sk}): \operatorname{Set} \mathbf{s}=\mathbf{x c} \bmod P, F=\operatorname{Supp}(\mathbf{x}, \mathbf{y})\) and \(E \leftarrow \operatorname{RSR}(F, \mathbf{s}, r)\). Recover \(K=\operatorname{Hash}(E)\).
```

Algorithm 1: Formal Description of ROLLO-I

It is worthwhile to mention that in the encapsulation/encryption step, two random polynomials of degree n over $\mathbb{F}_{2^{m}}$, i.e., e_{1} and e_{2} have rank support $\operatorname{Supp}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=r$. In other terms, $e_{i}(i=1,2)$ formulates a vector space represented by a $n \times m$ matrix with small rank r. This is where universal Gaussian elimination comes into play.

3.2 ROLLO-II

ROLLO-II, formerly known as LOCKER, is a CPA-secure Public Key Encryption (PKE) running in the category "postquantum public-key encryption" and can be adapted for CCA2 security via the HHK framework for the FujisakiOkamoto transformation [7]. A PKE scheme is defined by three algorithms: the key generation algorithm KeyGen, which takes on input the security parameter λ and outputs a pair of public and private keys ($p k, s k$); the encryption algorithm Encrypt($M, p k$), which outputs the ciphertext C corresponding to the message M and the decryption algorithm $\operatorname{Decrypt}(C, s k)$, which outputs the plaintext M.

A formal description of ROLLO-II is given in Algorithm 2. P is an irreducible polynomial in $\mathbb{F}_{q}[X]$ of degree n and constitutes a parameter of the cryptosystem. The symbol \oplus denotes the bitwise XOR. It is worth noting that at the core of the decapsulation/decryption step, the rank support recovery $(\operatorname{RSR}(\cdot))$ algorithm requires computing the intersection of two vector spaces F and s, which is equivalent to Gauss-eliminating a large-sized matrix. This type of matrix is inevitably singular and very large such that the previous designs in the open literature are inapplicable.

4 A NEW APPROACH FOR HARDWARE-BASED GAUSSIAN ELIMINATION

This section describes a new approach for Gaussian elimination on a systolic array. Based on this method, we design a constant-time and flexible Gaussian elimination module to overcome the difficulty of implementing Guassian elimination for arbitrary matrices which are useful for many cryptographic schemes, e.g., ROLLO, in which intensive linear-algebrarelated computations are required.

```
1 KeyGen(1}\mp@subsup{1}{}{\lambda}): Pick (x,y)\stackrel{$}{\leftrightarrows}\mp@subsup{\mathcal{S}}{d}{2n}(\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{m}}{}).\mathrm{ Set }h=\mp@subsup{x}{}{-1}y\operatorname{mod}P\mathrm{ , and return pk =h, sk = (x,y).
2 Encrypt(M,pk): Pick ( }\mp@subsup{\mathbf{e}}{1}{},\mp@subsup{\mathbf{e}}{2}{})\stackrel{$}{&}\mp@subsup{\mathcal{S}}{r}{2n}(\mp@subsup{\mathbb{F}}{\mp@subsup{q}{}{m}}{})\mathrm{ , set E = Supp( ( }\mp@subsup{\mathbf{e}}{1}{},\mp@subsup{\mathbf{e}}{2}{}),\mathbf{c}=\mp@subsup{\mathbf{e}}{1}{}+\mp@subsup{\mathbf{e}}{2}{}\mathbf{h}\operatorname{mod}P.\mathrm{ . Compute
    cipher =M\oplusHash(E) and return the ciphertext C=(c, cipher).
3 Decrypt(C,sk): Set s = xc mod P,F=Supp(x, y) and E\leftarrowRSR(F,\mathbf{s},r).Return M = cipher }\oplus\operatorname{Hash}(E)\mathrm{ .
```

Algorithm 2: Formal Description of ROLLO-II

Fig. 1. A versatile node proposed to solve non-fixed-pivot row exceptions in Gaussian elimination. The node can operate three types of transformations including: 1. PASS: The node passes the input data data_in onto the output port data_out and retains the data stored in the internal register r; 2. ADD: The node adds the input data data_in and the internal register data r, and then outputs sum onto data_out. Meanwhile, the node retains the internal register data r; 3. SWAP: The node swaps the input data data_in and the internal register data r, i.e., the node outputs r onto data_out and then updates r with data_in.

4.1 Gaussian Elimination on a Systolic Array

In this work, we use the terms 'triangularization' to denote the operation of putting the input matrix into its row-echelon form, aka Gaussian elimination, and 'systemization' to denote the operation of putting a row-echelon formed matrix into its reduced-row-echelon form. The combination of triangularization and systemization is also referred to as Gauss-Jordan elimination. We are facing a new challenge in rank-code based cryptosystem, namely, triangularizing a singular matrix in ROLLO/RQC. In this subsection, we will detail our generalized approach, which not only solves this new problem but is also applicable to the Gaussian elimination cases used in the classic Niederreiter cryptosystem and multi-variate cryptosystem.
4.1.1 Core idea - pivot/non-pivot mode switch. In our work, we focus on Gaussian elimination for matrices over \mathbb{F}_{2}. As mentioned before, the most challenging part for universal Gaussian elimination hardware is that the position of pivot nodes in our Gaussian elimination architecture is flexible. Our new idea of implementing Gaussian elimination is to assign pivot-node functionality or non-pivot-node functionality on the fly: Each node is configured to have dual functionalities for every iteration of Gaussian elimination. The node can be converted to either pivot node or basic(non-pivot) node depending on the data input from the above node and the control input from the left-hand-side node. The pivot node behaves actively as the pivot in that particular row and propagates the operational signal to its right-hand-side basic nodes. The basic node behaves passively according to the operation signal, i.e., PASS, ADD, or SWAP for performing elementary row operations.

Fig. 2. Overview of the two dimensional array for Gaussian elimination. Each node is pipelined to reduce the critical path delay.

A systematic exposition of the proposed node is shown in Fig. 1. The node uses an internal register r for storage. It also has 9 signals and 6 of them are identical to the ports of classic nodes presented in the literature [10, 14], including 3 input ports data_in, start_in, op_in and 3 output ports data_out, start_out, op_out. The difference is that a new pair of signals, pivot_in and pivot_out is used to determine whether the current node is pivot or not and broadcast this message to its right neighboring node. Also, an additional input signal mode_in is augmented to switch between matrix triangularization process and matrix systemization process. All input signals drive a centralized control logic module CTRL which outputs selector signals including r_sel, op_out_sel, pivot_out_sel, and data_out_sel. Then, these selector signals accordingly select the output values of r, op_out, pivot_out, and data_out.

With this new mechanism of dual-mode switch, the node can dynamically switch between the pivot and non-pivot functionality for each input data update, as shown in Fig. 3, to perform matrix triangularization: The entire process can be split into two stages, initial phase and normal phase. In the initial phase, the input data flushes into the node internal register r for the first time by asserting the signal start_in; In the normal phase, the node acts as either the pivot node or the basic(non-pivot) node to update the value of r depending on the 2-bit signal $\{r$, pivot_in\}: if $\{r$, pivot_in\}== $2^{\prime} b 10$, it means that the internal register r is for the first time updated to a nonzero value and thus the

Fig. 3. Behavior description of the node used in the proposed systolic array for small/medium matrix triangularization, written in Verilog-like pseudocode.
node acts as pivot. Otherwise, it means that the pivot has been found already (since pivot_in== $1^{\prime} b 1$) and thus it acts as basic node by executing passively the instruction (SWAP, ADD, or PASS) passed from the signal op_in.
4.1.2 Triangular systolic array design. With the new design of node for Gaussian elimination, the next decision we need to make is the selection of systolic array. First, consider the triangular-shaped arrays. Triangular systolic line (TSL) and triangular systolic network (TSN) have lower cycle latency and lower resource usage but they are not suitable for our case: TSN only maintains its efficiency for small matrices as its critical path propagates throughout the whole network. The critical path latency of TSL is a good candidate for the previous Gaussian elimination work but not for ours. Specifically, the horizontal latency (i.e. the total delay along one row of the computation array) of previous work is affected merely by wiring. However, the horizontal latency of the new node in the array is much longer and involves propagating data from the leftmost node to the rightmost one. Therefore, TSL can only be useful for small matrices.

Fig. 4. A toy example for the proposed Gaussian elimination hardware by triangularizing a 4×4 matrix over \mathbb{F}_{2} using the node logic shown in Fig. 3. Here triangularization means putting the input matrix into its row-echelon form. The signals ' S ', ' P ', and ' A ' stand for 'SWAP', 'PASS' and 'ADD', respectively.

On the other hand, the clock frequency of triangular systolic array (TSA) remains as high as 200 MHz despite the matrix dimension increasing from 20 to 90 [9]. Secondly, the linear-shaped arrays, linear systolic array (LSA), and linear systolic line (LSL) are efficient for matrix over $\mathbb{F}_{2^{m}}$ but not for matrix over \mathbb{F}_{2} [9]. Based on the above discussion, TSA is chosen as the basic architecture for implementing Gaussian elimination in this work.

Fig. 2 presents an overview of the Gaussian elimination systolic array for any matrices over \mathbb{F}_{2}, including singular and non-singular ones. The basic structure is arranged in a rectangular shape such that every signal of the node is pipelined, allowing all data and control signals to be propagated in a systolic manner. It is worthwhile to mention that in order to make this systolic array works correctly for matrix triangularization, in the initial phase as discussed in Fig. 3, the signal op_in of the first node in every row of the systolic array must be de-asserted (indicating that the pivot is not yet found). Moreover, an improvement of this architecture is that all r registers in the nodes below the diagonal of the systolic array are always zero independently of the input matrix after the Gaussian elimination. Therefore, these nodes can be removed and are drawn with a dotted line.

4.2 Cryptographic Applications for the Proposed Gaussian Elimination

This subsection describes how to leverage the proposed Gaussian elimination method for accelerating Gaussian elimination for any matrix size. The architectures presented in this subsection are two-fold: The Gaussian elimination module for medium-sized matrices is based on the systolic array design and the new dual-mode switching node for processing a (singular) matrix; the Gaussian elimination module for large-sized matrices reuses the former to process any large-sized matrices while preserving constant resource utilization. The proposed method for Gaussian elimination
is constant-time and thus is secure against timing attacks. This characteristic is important for security concerns since the Gaussian elimination used in cryptographic context may directly operate on the secret sensitive information and any vulnerability exploited from the timing information might endanger the cryptosystem. In addition, the proposed systolic array for Gaussian elimination is fully parameterized at compile-time to support rapid configurations for different sets of parameters without the need to re-write the hardware code. This is a great advantage for implementers to sketch Gaussian elimination modules for different sizes of matrices used in different cryptographic applications.
4.2.1 Gaussian elimination for medium-sized matrices. We first consider how to Gaussian-eliminate a matrix of relatively small size. For example, in the ROLLO encryption part, the matrix has relatively small dimension of $r \times m$, e.g., $r=7,8,9$ and $m=67,79,97$ are used in ROLLO-I. In this case, it is natural to realize the entire Gaussian triangularization/systemization using a single systolic array. Note that not only matrix triangularization but also matrix systemization is necessary to acquire a unique representation of error vector space E such that the subsequent hash function always outputs a correct shared key. To better understand the mechanism of the proposed Gaussian elimination architecture, Fig. 3 describes a flow chart of the behavior of the node in triangularization: The symbol ' $=$ ' indicates blocking assignment, and the symbol '<=' indicates nonblocking assignment in Verilog, respectively. The blue circle shape denotes the start of the algorithm; the yellow diamond shape denotes branch condition, and the green rectangular shape denotes the end of the algorithm.

Fig. 4 illustrates a step-by-step procedure for a single systolic array to transform a 4×4 matrix $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ to its row echelon form $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ within 10 clock cycles. The data colored in red indicates the value stored in the r register of the node. The data colored in blue indicates the buffered data_out signal in the pipeline register (i.e., the small white-colored solid box) between two neighboring nodes. The circled value indicates it is the current pivot of that particular row. Note that the input matrix must be fed into the array in a skewed form via pipeline buffering for systolic processing, as shown in step-(0), i.e., at the first clock cycle, the systolic array takes one bit ' 0 ' as input; at the second clock cycle, the systolic array takes two bit ' 00 ' as inputs, and so forth:

- In step-(0), the signal start_in attached to the upper-left node in the systolic array is assertive, and thus the internal register r will be updated to ' 0 ' in the next clock cycle;
- In step-(1), now ' 0 ' has been updated to the node at the upper-left corner of the systolic array. Given the input signals $\{r$, pivot_in\}==2'b00, this particular node executes the SWAP operation, which updates r by ' 0 ', outputs ' 0 ' and also passes 'SWAP' signal and pivot_out $=0$ (clearly, the node is currently not a pivot and hence broadcasts 'pivot not found') to its right neighbor in the next cycle;
- In step-(2), consider the first row of the systolic array, the leftmost node has updated ' 0 ' to the buffer register (colored in blue) and executes SWAP again since $\{r$, pivot_in\} $==2$ 'b00, and the second node executes 'SWAP', which is passed from the leftmost node in step-(1). Consider the second row of the systolic array, the start_in signal attached to the first node is assertive and thus ready to accept the value ' 0 ' stored in the (blue) buffer register in the next cycle;
- In step-(3), consider the first row, the second node in the first row acts as the pivot since $\{r$, pivot_in\}==2'b10. This pivot node (circled in the figure) ignores the 'SWAP' signal passed from step-(2) but performs 'PASS' as a replacement. Consider the second row, the first node has been updated to ' 0 ' and also outputs signal SWAP due to $\{r$, pivot_in $\}=2^{\prime}$ b00;
- An analogous pattern can be found in step-(4), where the pivot node in the first row ignores 'SWAP' but executes 'ADD' since the input data is ' 1 '.
Eventually, when all input data are flushed into the internal registers of all nodes distributed at four distinct rows as shown in step-(10), the input matrix has been successfully eliminated in the desired row echelon form. Further, a careful calculation shows the total delay for triangularizing a $k \times l$ binary matrix is:

$$
2 k+l-2
$$

and the following proposition proves the correctness of the proposed method.
Proposition 4.1. The proposed Gaussian elimination systolic array can triangularize any $k \times l$ matrix over \mathbb{F}_{2} correctly.
Proof. We prove here the correctness of matrix triangularization, by induction on the rows of the systolic array. Let M represent the input $k \times l$ matrix. Initially, consider the first row of the systolic array when the start_in signal is active. At this time, the first row of M denoted as M_{1} is loaded. In the subsequent clock cycles when start_in is inactive, the logic specified in the systolic array nodes will update M_{1} by j-th row of the matrix M_{j} whenever the pivot element in M_{j} lays ahead of M_{1}. This logic guarantees that the first row of the systolic array will eventually find the matrix row with the most significant ' 1 '.

Next, consider the i-th row of the systolic array. Suppose at some time, the i-th row finds the matrix row with i-th significant ' 1 '. In this case, the 1 -st significant, 2 -nd, up to $i-1$-th significant matrix rows should reside in the above $i-1$ rows of the systolic array such that the data stored in the first i rows of the systolic array are in a triangular shape. This triangular shape filters every row of the target matrix M and let the $i+1$-th, $i+2$-th, up to k-th significant row pass (note that the k-th significant row might be a null vector if M is not full-rank). Therefore, the logic specified in the $i+1$ row of the systolic array will eventually find the matrix row with the $i+1$-th significant ' 1 ', which is equivalent to finding the matrix row with the most significant ' 1 ' in the remaining $k-i$ unsorted rows of M. Following this induction, the systolic array always re-arranges the matrix M in a triangular shape.

On the other hand, the Gaussian systemization is required immediately after the triangularization process to shape the matrix to the systematic form. Fig. 5 describes the behavior logic of the node for matrix systemization, and Fig. 6 illustrates a toy example of how to systemize a 4×4 binary matrix $\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ within 7 clock cycles. Compared with the triangularization process shown in Fig. 4, the node in the systemization process behaves in two different ways: First, at the initial stage (step-(0)), the leftmost node in each of the four rows is triggered by the signals op_in='SWAP' and pivot_in=1'b0 where 'SWAP' here slightly differs from the previous one by retaining the value in the internal register, meanwhile, outputing this value to data_out. Second, whenever the node cannot determine the pivot position, i.e., $\{r$, pivot_in $\}==2$ 'b00, it always performs 'PASS'. During step-(1) and step-(7), the systolic array gradually outputs the result matrix $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ in reversed order and skewed format: it first outputs the last row [0001], then [0010] and [0100], and finally the first row [1000].

The correctness of systemization can be proven using the similar arguments shown in Proposition 4.1 and we skip the details in this paper. In summary, the total delay for $k \times l$ matrix systemization is a linear function of the matrix size as:

$$
k+l
$$

4.2.2 Gaussian elimination for large-sized matrices. Some cryptographic applications require eliminating large matrices. Processing large matrices is essential and performance-critical in these applications. For example, the ROLLO decryption

Fig. 5. Behavior description of the node used in the proposed systolic array for matrix systemization, written in Verilog-like pseudocode
requires to calculate the intersection of two vector spaces in the rank support recovery algorithm and later to systemize the intersected vector space to reconstruct the secret shared key K, which dominates the performance of ROLLO decryption. Such intersection uses the Zassenhaus algorithm, in which the Gaussian elimination for a large $2 n \times 2 m$ matrix over \mathbb{F}_{2} is performed. In this case, it is infeasible to realize the large-scale elimination on a single systolic array by the method we proposed for medium-size matrices since the resource utilization has exceeded the maximum capacity of most Xilinx FPGAs. The new solution proposed for large matrices in this work is to divide the large matrix into several smaller blocks and to conquer each submatrix using a relatively small systolic array. There exists a tradeoff between hardware utilizaiton and processing time: we use a smaller Gaussian elimination hardware which can be tolerated on most FPGA platforms to Gauss-eliminate a large matrix but the price we pay is the increase of processing time of Gaussian elimination. In this work, we are particularly interested in such a tradeoff (or division) where our Gaussian elimination hardware can directly process a smaller matrix which shares the same column width as the large matrix does. This requirement removes the storage of intermediate operation codes (op_in signals from each Gaussian elimination node).

$\xrightarrow[\rightarrow]{s}(1)$	1	0	0
$\xrightarrow[\rightarrow]{s}$	0	(1)	0

(0)

(1)

(3)

(4)

(5)
(1) 100

(6)

(2)
(1) 100
(7)

Fig. 6. A toy example for the proposed Gaussian elimination hardware by transforming a 4×4 matrix over \mathbb{F}_{2} using the node logic shown in Fig. 5. Systemization refers to transforming a row-echelon matrix into its reduced-row-echelon form.

Table 1. Gaussian elimination performance for square $k \times k$ binary matrix on Xilinx Virtex-5 FPGA, compared with the TSA, TSL, TSN, LSA, LSL presented in $[9,13]$.

Instance	$k \times k$	Device	Freq[MHz]	Cycle	Slice	Slice*Cycle/Freq
This work	20×20		600	60	1228	122
	50×50	Virtex-5	500	150	6499	1949
	90×90		500	270	21954	11855
TSA [9]	20×20			80	363	58
	50×50	Virtex-5	600	200	1727	691
	90×90			360	5804	4179
TSL [9]	20×20			60	161	19
	50×50	Virtex-5	500	150	912	274
	90×90			270	3082	1664
TSN [9]	20×20			40	160	63
	50×50	Virtex-5	102	100	715	701
	90×90			180	2045	17529
LSA [9]	20×20			400	55	40
	50×50	Virtex-5	550	2500	171	777
	90×90			8100	291	4286
LSL [9]	20×20			400	33	24
	50×50	Virtex-5	550	2500	78	355
	90×90			8100	116	1708
TSL [13]	50×50	Spartan-3	178	150	3129	2636

Fig. 7. Behavior description of the node used in the proposed systolic array for large matrix triangularization, written in Verilog-like pseudocode

Table 2. Gaussian elimination performance (triangularization + systemization) for a $k \times l$ matrix used in ROLLO-II.encrypt on Xilinx Artix-7 FPGA

Instance	$k \times l$	freq	cycle	slice	slice*cycle/freq
ROLLO-II-128.encrypt	7×67	400	153	1149	440
ROLLO-II-192.encrypt	8×79	400	180	1575	709
ROLLO-II-256.encrypt	9×97	400	219	2131	1167

Round-1

Round-2

	0	0
0	0	
0		

(0)
(1)
$\begin{array}{ll} & 0 \\ 0 & 0\end{array}$

(2)
(3)
(4)
(5)
(1)

$$
\begin{aligned}
& \xrightarrow{s} x \xrightarrow{s} x \xrightarrow{s} x \xrightarrow{s} x \quad \xrightarrow{s} x \xrightarrow{s} x \xrightarrow{s} x \quad \xrightarrow{s} x \xrightarrow{s} x \xrightarrow{s} x \xrightarrow{s} x
\end{aligned}
$$

> (6)
> (7)
> (8)

Fig. 8. A toy example to transform 4×4 matrix over \mathbb{F}_{2} by the proposed 2×4 systolic array using the node logic shown in Fig. 7 . Triangularization refers to putting the input matrix into its row-echelon form.

Again, we describe our idea with the same example used in Fig. 4 to transform a 4×4 matrix $\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1\end{array}\right]$ to its row echelon form $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. An additional function we add to the node is the signal swap_in, which permits to load the sorted rows out of the systolic array to external memory at desired timing. We assume here the 4×4 matrix is too 'large' to process and the 2×4 systolic array is exploited to do this task. The triangularization is done within two rounds of Gaussian elimination. In Round-1, the systolic array sorts (Gaussian-eliminates) the first two rows of the matrix into $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ and then loads them out. In Round-2, the systolic array sorts the remaining unsorted two lines of the matrix and then loads them out.

In more details, the node behavior mode must be modified such that the node can correctly load data in or load data off to the external memory. Therefore, we add a new feature, called swap_in, to the input signal lists of the node as shown in the red colored texts in Fig. 7. swap_in is triggered to output the data within the internal register r and, meanwhile, update the register by the input data at the specific timing when the systolic array requires to load the register data off to the memory. A simple example, i.e., to transform a 4×4 matrix $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1\end{array}\right]$ to its row echelon form $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ on a 2×4 systolic array is depicted step-by-step in Fig. 8. The entire process requires two rounds of Gaussian $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
eliminations: The first round costs 10 steps which manipulate the entire four rows of the input matirx and eliminate the first two rows, and finally load the four rows back to memory; The second round costs 8 steps which manipulate only the last two rows of the input matrix and then load back to memory.

Specifically, in Round-1, initially at step-(0), the input matrix $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]$ is prepared in skewed form and fed to the array; At step-(1), the upperleft node accepts ' 0 ' to its internal register and \{r, pivot_in\}==2'b00 triggers 'SWAP' signal; At step-(2), on the one hand, the upperleft node outputs ' 0 ' to the buffer register due to the 'SWAP' signal from step-(1), and again performs 'SWAP' since $\{r$, pivot $\}==2$ 'b00. On the other hand, the second node in the first row of the array receives 'SWAP' passed by the leftmost node in the previous step and therefore, executes 'SWAP' accordingly; At step-(3), the second node in the first row acts as a pivot since $\{r$, pivot_in $\}==2^{\prime} b 10$; At step-(4), the swap_in is externally triggered on the upperleft node for loading-off to external memory storage; Starting from step-(5), the swap_in signals of the two leading nodes of the respective rows of the systolic array keep assertive until the array finally loads all effective data out to the external memory at step-(10). It is worth mentioning that the systolic array outputs the result matrix $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ in reversed order, i.e, firstly, it outputs the last row, then second last one, and eventually the first one. It is easily seen that the first two rows of the result matrix has been sorted correctly at the end of Round-1.

The Round-2 process mostly repeats what has been described for Round-1 except that the input matrix has two rows which are extracted from the last two rows of the result matrix mentioned in Round-1. In general, it costs D / d (assume $d \mid D$ for simplicity) rounds for triangularizing a $D \times l$ matrix with a single $d \times l(d<D)$ systolic array within about $\frac{(D+2 l) \cdot D}{2 d}$ cycles. The exact results are stated and proved in Proposition 4.2.

Proposition 4.2. The total number of rounds for one $d \times l(d<D)$ systolic array to triangularize a $D \times l$ matrix is D / d; A particular i-th round costs $D+l-2+(3-i) d$ cycles to complete. The total cycle count for one $d \times l(d<D)$ systolic array to triangularize a $D \times l$ matrix is $\frac{D}{d}\left(\frac{D}{2}+l+\frac{5}{2} d-2\right)$.

Proof. Each round sorts d rows of the D-rows matrix and thus the round complexity is D / d. At Round $i(i=1, \ldots, D / d)$, the first $(i-1) d$ rows have been sorted already and the systolic array needs to process the remaining $D-(i-1) d$ rows. It takes $2 d-1$ cycles for the first output of the systolic array to appear since the first column of the systolic
array consists of $2 d$ registers; Note that the first output of the systolic array belongs to the unsorted $D-i d$ rows and it takes $l-1+D-i d$ cycles to output the entire $D-i d$ unsorted rows; Finally, it takes d cycles to load out the sorted d rows stored in the nodes of the systolic array. These three parts contribute to the total cycle count of Round- i : $(2 d-1)+(l-1+D-i d)+d$. Therefore, the accumulation of all rounds gives the final cycle delay as $\sum_{i} D+l-2+(3-i) d=\frac{D}{d}\left(D+l-2+3 d-\frac{d+D}{2}\right) \approx \frac{D}{d}\left(D+l-\frac{D}{2}\right)=\frac{(D+2 l) D}{2 d}$.

4.3 High Level Description for Implementing ROLLO

This subsection describes the adaptation of the proposed Gaussian elimination module for the complete ROLLO hardware at a higher level. It is worth mentioning that the CPA-secure ROLLO can be converted to a CCA2-secure KEM when the HHK [7] framework for the Fujisaki-Okamoto transformation is applied. Therefore, we focus on the CCA2-secure parameter sets and include the core functionalities, e.g., encryption and decryption in this work.
4.3.1 ROLLO Encapsulation/Encryption. In encryption part, Gaussian elimination is essential to generate a unique symmetric key K : The error space \mathbf{E}, which is reprensented as a $k \times l$ binary matrix, must be converted to reduced row-echelon form $\mathbf{E}_{\text {rref }}$, and thus hashing $\mathbf{E}_{\text {rref }}$ eventually returns the key K. Gaussian elimination on \mathbf{E} includes two phases: first triangularize and then systemize which costs $2 k+l-2$ and $k+l$ cycles, respectively.

Hardware architecture Fig. 9 depicts the top-level architecture for the ROLLO encryption. In ROLLO-I, the RNG

Fig. 9. ROLLO encryption hardware
provides the necessary randomness to drive Low-Rank Polynomial Generator for generating the error space E and
subsequently the two 'small' error vectors e_{1}, e_{2}. Gaussian Systemizer transforms E to its reduced row echelon form $E_{\text {rref }}$ and then checks its rank value. Finally, the ciphertext c is calculated via the polynomial multiplier $\left(\mathbb{F}_{2^{m}}[z]\right.$ multiplier) and adder, and K is calculated by hashing $E_{\text {rref }}$ through the SHA3 module. Likewise, the architecture for ROLLO-II encryption is almost identical to that for ROLLO-I except for the way of manipulating the final ciphertext: ROLLO-I outputs the hash value K directly, whereas ROLLO-II encrypts the message M by XORing K. Moreover, the circuit size for ROLLO-II is generally larger since ROLLO-II requires an extremely low decoding failure rate for satisfying the security requirement and this results in increasing parameter values.
4.3.2 ROLLO Decapsulation/Decryption. In this subsection, we discuss the implementation details of ROLLO-I.Decap and ROLLO-II.Decrypt. The most critical component in the decryption part, is called Rank Support Recovery (RSR). When the two syndrome spaces, i.e., S_{1} and S_{2}, are ready in memory, the module RSR will perform the RSR algorithm (see Algorithm 3) to retrieve the intersection as the error vector space $E=S_{1} \cap S_{2}$. The primary operation in RSR algorithm is the Zaussenhaus algorithm which returns the intersection of two vector spaces (see Algorithm 4). The most computational-intensive task of Zaussenhaus algorithm is essentially trianguarization on a relatively large block matrix $\left[\begin{array}{c|c}S_{1} & S_{1} \\ \hline S_{2} & 0\end{array}\right]$. Note that the dimension of E is upper bounded by $r \cdot d$ and therefore E is always written back to the first $r \cdot d$ rows of memory such that the first $\operatorname{dim}(E)$ rows store E and the remaining $r d-\operatorname{dim}(E)$ rows store null vector. Next, $S_{i}(i=3, \cdots, d)$ is written to the following n rows of memory to formulate the large matrix as $\left[\begin{array}{c|c}E & E \\ \hline S_{i} & 0\end{array}\right]$ for Zassenhaus algorithm to update a new and further reduced E. The Zaussenhaus algorithm is repeatedly performed $d-1$ times to extract the correct E after which a final matrix systemization of E is required for hashing.

```
Input: \(\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{F}_{q^{m}}^{n}\) a syndrome of an error \(\mathbf{e}\) of weight \(r\) and of support \(E\)
Output: A candidate for the vector space \(E\)
// Compute the vector space EF
\({ }_{1}\) Compute the syndrome vector space \(S=\left\langle s_{1}, \ldots, s_{n}\right\rangle\)
    // Recover the vector space \(E\) from \(S_{i}\) 's
\({ }_{2}\) Compute every \(S_{i}=f_{i}^{-1} S\) for \(i=1\) to \(d\)
3 \(E \leftarrow \cap_{i=1}^{d} S_{i} / /\) Repeat \(d\) times Zaussenhaus algorithm
4 return \(E\)
```

Algorithm 3: Constant-Time Rank Support Recover (RSR) algorithm

```
input : Vector space \(S_{1}=\left(\overrightarrow{s_{1,1}}, \cdots, \overrightarrow{s_{1, n}}\right)^{T}\) and Vector space \(S_{2}=\left(\overrightarrow{s_{2,1}}, \cdots, \overrightarrow{s_{2, k}}\right)^{T}\)
output:Intersection of vector space \(S_{1}\) and \(S_{2}\) as \(S_{1} \cap S_{2}\)
1 Create a block matrix as \(\left[\begin{array}{c|c}S_{1} & S_{1} \\ \hline S_{2} & 0\end{array}\right]\).
2 Perform Gaussian elimination (triangularization) on the block matrix above and obtain an updated block matrix
    as \(\left[\begin{array}{c|c}S_{1} \cup S_{2} & \ddots \\ \hline 0 & S 1 \cap S_{2} \\ \hline 0 & 0\end{array}\right]\).
\({ }_{3}\) Return \(S_{1} \cap S_{2}\).
```

Algorithm 4: Zaussenhaus algorithm

(b) Hardware architecture for ROLLO-II data decryption

Fig. 10. ROLLO decryption hardware

Hardware architecture

Figs. 10a and 10b depict the hardware architecture for the ROLLO decryption/decapsulation. The critical components include the $\mathbb{F}_{2^{m}}[z]$ multiplier and the Gaussian Elimination systolic array, which contributes the majority of the hardware utilization. ROLLO-I and ROLLO-II share almost an identical architecture though the ROLLO-II decryption is relatively larger due to the larger system parameter n. The only difference at the top level is that ROLLO-I outputs the hash value K directly whereas ROLLO-I decrypts the cryptogram by XORing K.

4.4 Performance and Comparisons

We show in Table 1 the scalability of our approach by implementing Gaussian eliminator for three different matrix sizes, $20 \times 20,50 \times 50$, and 90×90, on Xilinx Virtex-5 FPGA. This FPGA family is selected to enable fair comparison with previous work presented in [9]. We choose [9] as the primary comparison target since this work implements various systolic architectures for Gaussian elimination on the same device. We also include the experimental data on Xilinx Spartan-3 FPGA, reported in [13], which is the most recent hardware-based Gaussian elimination implementation that we are aware of.

Compared with the triangular architectures, including TSA, TSL, and TSN, our design mostly retains as high frequency as theirs due to the full pipeline structure. It also uses almost the same number of clock cycles. The significant increase of slice utilization is primarily due to the dual switching mode used in the node: The conventional triangular architectures for $k \times k$ binary matrices consist of k pivot nodes along the diagonal of the systolic array and $k(k-1) / 2$ non-pivot nodes at the remaining positions. Therefore, the area complexity is determined by the number of non-pivot nodes, which is quadratic as a function of k. On the contrary, our design consists of $k(k+1) / 2$ dual-functional nodes, and the
number of these nodes determines the slice count. The dual-functional node presented in this work can be roughly interpreted as a combination of the pivot and non-pivot nodes, and the pivot utilization outweighs the non-pivot.

In terms of speed, compared with the linear architectures, our design is significantly faster, since it runs in $\Theta(k)$ steps, whereas linear architectures run in $\Theta\left(k^{2}\right)$ steps. The linear architectures are advantageous in lightweight applications since the resource utilization increases linearly with the dimension k. On top of that, when previous designs are used as SLE solvers, they cannot return valid solutions for unsolvable under-determined equations, which are equivalent to Gaussian-eliminating singular matrices. Our new design, however, overcomes this difficulty.

Finally, we test the performance of our systolic array for Gaussian elimination with parameters used in ROLLOII.encrypt. The implementation results are collected in Table 2. Three different sizes of matrices, $7 \times 67,8 \times 79$, and 9×97, are used, matching the parameters used in 128 -bit, 192-bit, and 256 -bit pre-quantum security, respectively. ROLLO-II.encrypt requires the standard Gaussian-Jordan elimination, i.e. triangularization and systemization must be performed. The previous hardware designs cannot be applied for this task due to the singularity of the matrices.

5 CONCLUSIONS

This paper explored the possibility of realizing Gaussian elimination for arbitrary binary matrices on hardware. The idea stems from the proposed dynamical dual switching mode, which allows the hardware to determine the position of pivot elements in each row of the matrix on the fly. The correctness of the universal Gaussian elimination using this new type of switching mode is strictly proved. We showcased the usefulness of hardware-based Gaussian elimination for medium-sized and large-sized binary matrices. It is the first available hardware architecture for Gaussian elimination that supports quantum-resisting rank-code-based cryptography with varying security parameters.

REFERENCES

[1] Sundar Balasubramanian, Harold W Carter, Andrey Bogdanov, Andy Rupp, and Jintai Ding. 2008. Fast multivariate signature generation in hardware: The case of rainbow. In 2008 International Conference on Application-Specific Systems, Architectures and Processors. IEEE, 25-30.
[2] Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christopher Wolf. 2008. Time-Area Optimized Public-Key Engines: MQ-Cryptosystems as Replacement for Elliptic Curves?. In International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 45-61.
[3] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. 2000. Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 392-407.
[4] Jintai Ding and Dieter Schmidt. 2005. Rainbow, a new multivariable polynomial signature scheme. In International Conference on Applied Cryptography and Network Security. Springer, 164-175.
[5] Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zémor. 2013. Low rank parity check codes and their application to cryptography. In Proceedings of the Workshop on Coding and Cryptography WCC, Vol. 2013.
[6] Bertrand Hochet, Patrice Quinton, and Yves Robert. 1989. Systolic Gaussian elimination over GF (p) with partial pivoting. IEEE Trans. Comput. 38, 9 (1989), 1321-1324.
[7] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. 2017. A modular analysis of the Fujisaki-Okamoto transformation. In Theory of Cryptography Conference. Springer, 341-371.
[8] Jean-Christophe Deneuville et. al Philippe Gaborit. [n. d.]. ROLLO - Rank-Ouroboros, LAKE, LOCKER, updated on April 21st, 2020. https://pqc-rollo.org/doc/rollo-specification_2020-04-21.pdf.
[9] Andy Rupp, Thomas Eisenbarth, Andrey Bogdanov, and Oliver Grieb. 2011. Hardware SLE solvers: Efficient building blocks for cryptographic and cryptanalyticapplications. Integration 44, 4 (2011), 290-304.
[10] Abdulhadi Shoufan, Thorsten Wink, H Gregor Molter, Sorin A Huss, and Eike Kohnert. 2010. A novel cryptoprocessor architecture for the McEliece public-key cryptosystem. Computers, IEEE Transactions on 59, 11 (2010), 1533-1546.
[11] Shaohua Tang, Haibo Yi, Jintai Ding, Huan Chen, and Guomin Chen. 2011. High-speed hardware implementation of rainbow signature on FPGAs. In International Workshop on Post-Quantum Cryptography. Springer, 228-243.
[12] Chin-Liang Wang and Jung-Lung Lin. 1993. A systolic architecture for computing inverses and divisions in finite fields $G F\left(2^{m}\right)$. IEEE Trans. Comput. 42, 9 (1993), 1141-1146.
[13] Wen Wang, Jakub Szefer, and Ruben Niederhagen. 2016. Solving large systems of linear equations over GF (2) on FPGAs. In 2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE, 1-7.
[14] Wen Wang, Jakub Szefer, and Ruben Niederhagen. 2017. FPGA-based key generator for the Niederreiter cryptosystem using binary Goppa codes. In International Conference on Cryptographic Hardware and Embedded Systems. Springer, 253-274.
[15] Bo-Yin Yang, Jiun-Ming Chen, and Nicolas T Courtois. 2004. On asymptotic security estimates in XL and Gröbner bases-related algebraic cryptanalysis. In International Conference on Information and Communications Security. Springer, 401-413.

[^0]: ${ }^{1}$ The automation tools and reference implementations can be found at https://github.com/davidhoo1988/gaussian-elimination-hardware

