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Abstract

Solitary output secure computation models scenarios, where a single entity wishes to com-
pute a function over an input that is distributed among several mutually distrusting parties.
The computation should guarantee some security properties, such as correctness, privacy, and
guaranteed output delivery. Full security captures all these properties together. This setting is
becoming very important, as it is relevant to many real-world scenarios, such as service providers
wishing to learn some statistics on the private data of their users.

In this paper, we study full security for solitary output three-party functionalities in the
point-to-point model (without broadcast) assuming at most a single party is corrupted. We give
a characterization of the set of three-party Boolean functionalities and functionalities with up
to three possible outputs (over a polynomial-size domain) that are computable with full security
in the point-to-point model against a single corrupted party. We also characterize the set of
three-party functionalities (over a polynomial-size domain) where the output receiving party
has no input. Using this characterization, we identify the set of parameters that allow certain
functionalities related to private set intersection to be securely computable in this model.

Our main technical contribution is a reinterpretation of the hexagon argument due to Fis-
cher et al. [Distributed Computing ’86]. While the original argument relies on the agreement
property (i.e., all parties output the same value) to construct an attack, we extend the argument
to the solitary output setting, where there is no agreement. Furthermore, using our techniques,
we were also able to advance our understanding of the set of solitary output three-party func-
tionalities that can be computed with full security, assuming broadcast but where two parties
may be corrupted. Specifically, we extend the set of such functionalities that were known to be
computable, due to Halevi et al. [TCC ’19].

Keywords: broadcast; point-to-point communication; secure multiparty computation;
solitary output; impossibility result.
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1 Introduction
Solitary output secure computation [25] allows a single entity to compute a function over an input
that is distributed among several parties, while guaranteeing security. The two most basic security
properties are correctness and privacy. However, in many scenarios participating parties may also
desire the output receiving party to always receive an output (also known as guaranteed output
delivery or full security).1 Examples include service providers that want to perform some analysis
over their client’s data, federal regulatory agencies wishing to detect fraudulent users/transactions
among banks, researchers looking to collect statistics from users, or a government security agency
wishing to detect widespread intrusions on different high-value state agencies. In cryptography, soli-
tary output functionalities have been considered in privacy-preserving federated learning [10, 8, 11],
and in designing minimal communication protocols via Private Simultaneous Messages Protocols
[18] and its robust variant [7, 1].

Additionally, understanding solitary output functions have further theoretical motivation as this
is a special case of secure multiparty computation (MPC). In particular, in order to understand
the general MPC setting we first need to understand important special cases. As noted by [25],
one reason to study solitary output as an important stepping stone, is due to the fact that fairness,
where either all parties receive the output or none do, is not an issue. Indeed, in general MPC
many impossibility results [28, 4] rely on the impossibility of fair two-party coin-tossing due to
Cleve [13].

In the late 1980’s, it was shown that every function (even non-solitary output) can be computed
with full security in the presence of malicious adversaries corrupting a strict minority of the parties,
assuming the existence of a broadcast communication channel (such a channel allows any party to
reliably send its message to all other parties, guaranteeing that all parties receive the same message)
and pairwise private channels (that can be established over broadcast using standard cryptographic
techniques) [9, 30, 22].

Conversely, although fairness in not an issue for solitary output functions, without a broadcast
channel or without an honest majority full security cannot be achieved. Indeed, Halevi et al.
[25] presented a class of solitary output functionalities that cannot be computed with full security
assuming the majority of the parties are corrupted (even assuming a broadcast channel). On the
other hand, [2, 20] presented several examples of three-party solitary output functionalities that
cannot be securely computed without a broadcast channel, even when only a single party may be
corrupted. However, besides these handfuls of examples, no general class of functions was identified
to be impossible to securely compute without broadcast. This raises the question of identifying
the set of functions that can be computed with full security assuming either the availability of a
broadcast channel but no honest majority, or vice versa.

In this paper, we investigate the above question for the important, yet already challenging,
three-party case. Thus, we aim to study the following question:

Characterize the set of solitary output three-party functionalities that can be computed
with full security, assuming either a broadcast channel and two corrupted parties, or

assuming no broadcast channel and a single corrupted party.

1Formally, full security is defined via the real vs. ideal paradigm, where a (real-world) protocol is required to
emulate an ideal setting, in which the adversary is limited to selecting inputs for the corrupted parties and receiving
their outputs.
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1.1 Our Results

Our main technical contribution is a reinterpretation of the hexagon argument due to Fischer et al.
[19]. This argument (and its generalization known as the ring argument [15]) uses the agreement
property, i.e., all parties obtain the same output, in order to derive an attack on a given three-
party protocol, assuming there is no broadcast channel available. Since we consider solitary output
functionalities, where only one party receives the output, we cannot rely on agreement. Thus, we
cannot use this technique in a straightforward manner. Instead, we derive an attack by leveraging
the correlation in the views between the parties.

Given this new interpretation, we are able to identify a large class of three-party solitary output
functionalities that cannot be computed without a broadcast channel. Furthermore, we comple-
ment this negative result by showing a non-trivial class of solitary output functionalities that can
be computed in this setting. Interestingly, for several important classes of functionalities, our re-
sults provide a complete characterization of which solitary output three-party functionality can be
computed with full security. Examples include Boolean and even ternary-output functionalities
over a domain of polynomial size.

Somewhat surprisingly, we are able to show that all functionalities captured by our positive
results, can also be securely computed in the face of a dishonest majority (where two parties may
be corrupted), assuming a broadcast channel is available. We do not know if this is a part of a
more general phenomenon (i.e., if the ability to compute a functionality without broadcast channel
against a single corruption implies the ability to compute it with a broadcast channel against two
corruptions) and we leave it as an interesting open question. Still, our results do slightly improve
the positive results of [25].

We next describe our positive and negative results, starting with the model, where a broadcast
channel is not available and only a single party may be corrupted. We consider three-party solitary
output functionalities f : X × Y × Z → W, where the first party A holds an input x ∈ X , the
second party B holds an input y ∈ Y, and the third party C holds an input z ∈ Z. We let the
output receiving party be A.

To simplify the presentation, we will limit the following discussion to two families of function-
alities, for which our results admit a characterization (a formal statement of the results for a more
general class of functionalities is given in Section 3). Though the discussion is somewhat limited
when compared to the rest of the paper, all of our techniques and ideas are still present.

The first family we characterize is that of no-input output-receiving party (NIORP) functional-
ities, where the output-receiving party A has no input. We further showcase the usefulness of the
result by characterizing which parameters allow for secure computation of various functionalities
related to private set intersection. The second family we characterize is the set of ternary-output
functionalities, where the output of A is one of three values (with A possibly holding an input).
In particular, this yields a characterization of Boolean functionalities. Below are the informal
statements of the characterizations for deterministic functionalities. We handle randomized func-
tionalities by a reduction to the deterministic case (see Section 1.2.3 below).

Functionalities with no input for the output-receiving party (NIORP). Before stating
the theorem, we define a special partitioning of the inputs of B and C. The partition is derived
from an equivalence relation, which we call common output relation (CORE), hence, we call the
partition the CORE partition. To obtain some intuition for the definition, consider the matrix M
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associated with a NIORP functionality f , defined as M(y, z) = f(y, z) for all y ∈ Y and z ∈ Z.2
Before defining the equivalence relation, consider the following relation ∼. We say that two

inputs y, y′ ∈ Y satisfy y ∼ y′ if the rows M(y, ·) and M(y′, ·) contain a common output. Note that
this relation is not transitive. The equivalence relation we define is the transitive closure of ∼, i.e.,
y and y′ are equivalent if there exists a sequence of inputs starting at y and ending at y′ such that
every consecutive pair satisfy ∼. Formally, we define the relation as follows.

Definition 1.1 (CORE partition). Let f : {λ} × Y × Z → W be a deterministic solitary output
three-party NIORP functionality. For inputs y, y′ ∈ Y, we say that y ∼ y′ if and only if there exist
(possibly equal) z, z′ ∈ Z such that f(y, z) = f(y′, z′). We define the equivalence relation ≡rel to be
the transitive closure of ∼. That is, y ≡rel y′ if and only if either y ∼ y′ or there exist a sequence
of inputs y1, . . . , yk ∈ Y such that

y ∼ y1 ∼ . . . ∼ yk ∼ y′.

We partition the set of inputs Y according to the equivalence classes of ≡rel, and we write the
partition as Y = {Yi : i ∈ [n]}. We partition Z into disjoint sets Z = {Zj : j ∈ [m]} similarly. We
also abuse notations and use the relations ∼ and ≡rel over Z as well. We refer to these partitions
as the CORE partitions of Y and Z, respectively, with respect to f . When Y, Z, and f are clear
from context, we will simply refer to the partitions as CORE partitions.

Observe that given a function f , finding its CORE partition can be done in time that is polyno-
mial in the domain size. As an example, consider the following NIORP solitary output three-party
functionality whose associated matrix is given by0 1 2

1 3 4
3 4 5


Here, the CORE partitions of both the rows and the columns result in the trivial partition, i.e., all
rows are equivalent and all columns are equivalent. To see this, note that both the first and second
rows contain the output 1. Therefore they satisfy the relation ∼. Similarly, the second and last row
satisfy ∼ since 3 (and 4) are a common output. Thus, the first and last rows are equivalent (though
they do not satisfy the relation ∼). Using a similar reasoning, one can verify that all columns are
also equivalent.

We are now ready to state our characterization for NIORP functionalities.

Theorem 1.2 (Characterization of NIORP functionalities, informal). Let f : {λ} × Y × Z → W
be a deterministic solitary output three-party NIORP functionality, and let Y = {Yi : i ∈ [n]} and
Z = {Zj : j ∈ [m]} be the CORE partitions of Y and Z, respectively. Then, f can be securely
computed against a single corruption in the point-to-point model, if and only if there exist two
families of distributions {Qi}i∈[n] and {Rj}j∈[m], such that the following holds. For all i ∈ [n],
j ∈ [m], y ∈ Yi, and z ∈ Zj, it holds that f(y∗, z) where y∗ ← Qi, and that f(y, z∗) where z∗ ← Rj,
are computationally indistinguishable.

2We abuse notations and write f(y, z) instead of f(λ, y, z) where λ is the empty string (representing the input of
A).
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Stated differently, consider the partition of Y × Z into combinatorial rectangles3 defined by
R = {Yi × Zj : i ∈ [n], j ∈ [m]}, i.e., it is given by all Cartesian products of CORE partitions.
Then f can be securely computed if and only if both B and C can each associate a distribution to
each set in the partition of their respective set of inputs, such that the output distribution in each
combinatorial rectangle in R looks fixed for any bounded algorithm. That is, if B samples an input
y ← Qi for some i ∈ [n], then the only way for C to affect the output of f is by choosing its own
equivalence class Z ∈ Z, however, choosing a specific input within that class will not change the
output distribution.

We briefly describe a few classes of functions that are captured by Theorem 1.2. Observe that
any functionality, where there exists a value w ∈ W such that any single party (among B and C)
can fix the output of A to be w, regardless of the other party’s input, can be securely computed
by the above theorem. This includes functionalities such as OR of y and z.4 In fact, even if there
exists a distribution D over W, such that any single party among B and C can fix the output
of A to be distributed according to D, can be securely computed. For example, this means that
XOR and equality can be securely computed. Theorem 1.2 essentially refines the latter family
of functionalities, by requiring the parties to be able to fix the distributions with respect to the
combinatorial rectangles given by the CORE partition.

In Table 1, we illustrate the usefulness of Theorem 1.2 by considering various functionalities
(which were also considered by [25]) related to private-set intersection (PSI), and mark whether
each variant can be computed with full security. Define the NIORP functionality PSIℓ1,ℓ2

k1,k2,m to
output to A the intersection of S1 and S2, held by B and C, respectively. Here, Si ⊆ {1, . . . , m} and
ki ≤ |Si| ≤ ℓi for every i ∈ {1, 2}. The variants we consider are those that apply some function g

over the output of A, i.e., the functionality the parties compute is g(PSIℓ1,ℓ2
k1,k2,m(S1,S2)). The proofs

for which parameters allow each function to be computed are presented in Section 7. It is important
to note that the domains of the functionalities are constant as otherwise some of the claims are
provably false (e.g., [2] implicitly showed that PSI1,1

1,1,κ, where κ is the security parameter, can be
securely computed).

Ternary-output functionalities. We next give our characterization for ternary-output func-
tionalities. In this setting, party A also has an input, and its output is a value in {0, 1, 2}. We
stress that this case is far more involved than the NIORP case, in both the analysis and in the
description of the characterization. Nevertheless, we later demonstrate the usefulness of this char-
acterization.

Similarly to the NIORP case, we consider partitions over the inputs of B and C. Here, however,
each input x ∈ X is associated with a different CORE partition. For the characterization, we are
interested in the meet of all such partitions. Intuitively, the meet of partitions of a is the partition
given by using all partitions together. Formally, for partitions P1, . . . ,Pn over a set S, their meet
is defined as the collection of all non-empty intersections, i.e.,

n∧
i=1

Pi :=
{
T ⊆ S : T ̸= ∅,∃T1 ∈ P1, . . . , Tn ∈ Pn s.t. T =

n⋂
i=1
Ti

}
.

3A combinatorial rectangle is subset R ⊆ Y × Z that can be written as R = S × T where S ⊆ Y and T ⊆ Z.
4A similar condition was given by [15] for the symmetric case, where all parties output the same value. There,

every party must be able to fix the output to be w.
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Input restriction\Function g g(S) = S g(S) = |S| g(S) =
{

1 if S = ∅
0 otherwise

k1 = k2 = 0, or
ℓ1 = 0, or ℓ2 = 0, or
k1 = m, or k2 = m

✓ ✓ ✓

k1 = ℓ1 /∈ {0, m} and
k2 = ℓ2 /∈ {0, m} ✗ ✓ ✓

0 < k1 < ℓ1,
0 < k2 < ℓ2, and
ℓ1 + k2, k1 + ℓ2 > m

✗ ✗ ✓

Any other choice ✗ ✗ ✗

Table 1: Summary of our results stated for various versions of the PSI functionality. Each row
in the table above corresponds to a different choice of parameters. Each column corresponds to a
different function g applied to the output of A. B holds set S1 and C hold set S1. We let S = S1∩S2.
The parameters k1, k2, ℓ1, ℓ2 correspond to bounds on the sizes of S1 and S2, and m is the size of
the universe from which S1 and S2 are taken.

Before stating the theorem, we formalize the meet of the CORE partitions, which we call
CORE∧-partition, for a given solitary output functionality.

Definition 1.3 (CORE∧-partition). Let f : X ×Y ×Z → {0, 1, 2} be a deterministic solitary out-
put three-party ternary-output functionality. For every x ∈ X , we can view f(x, ·, ·) as a NIORP
functionality, and consider the same CORE partition as in Definition 1.1. We denote these par-
titions by Yx = {Yx

i : i ∈ [n(x)]} and Zx = {Zx
j : j ∈ [m(x)]}. We define the CORE∧-partitions

of f as the meet of its CORE partitions, that is, we let Y∧ = ∧
x∈X Yx and Z∧ = ∧

x∈X Zx. We
denote their sizes as n∧ = |Y∧| and m∧ = |Z∧|, and we write them as Y∧ = {Y∧i : i ∈ [n∧]} and
Z∧ = {Z∧j : j ∈ [m∧]}.

As an example, consider the deterministic variant of the convergecast functionality [20], CC :
({0, 1})3 → {0, 1} defined as5

CC(x, y, z) =
{

y if x = 0
z otherwise

(1)

Equivalently, CC can be defined by the two matrices

M0 =
(

0 0
1 1

)
and M1 =

(
0 1
0 1

)

Here, A chooses a matrix, B chooses a row, and C chooses a column. The output of A is the value
written in the chosen entry. Observe that in M0, the rows are not equivalent while the columns

5Fitzi et al. [20] defined the convergecast functionality as the NIORP randomized solitary output functionality,
where A outputs y with probability 1/2, and outputs z with probability 1/2.

5



are. In M1, however, the converse holds, namely, the rows are equivalent while the columns are
not. Thus, in the CORE∧-partitions of CC any two inputs are in different sets.

We are now ready to state our characterization for ternary-output functions.

Theorem 1.4 (Characterization of ternary-output functionalities, informal). Let f : X × Y ×
Z → {0, 1, 2} be a deterministic solitary output three-party ternary-output functionality, and let
Y∧ = {Y∧i : i ∈ [n∧]} and Z∧ = {Z∧j : j ∈ [m∧]} be its CORE∧-partitions. Then f can be securely
computed against a single corruption in the point-to-point model, if and only if the following hold.

1. Either Yx = {Y} for all x ∈ X , or Zx = {Z} for all x ∈ X . In other words, either all y ∈ Y
are equivalent for every x ∈ X , or all z ∈ Z are equivalent for every x ∈ X .

2. There exists an algorithm S, and there exist three families of distributions {Px}x∈X ,
{Qi}i∈[n∧], and {Rj}j∈[m∧], such that the following holds. For all i ∈ [n∧], j ∈ [m∧], y ∈ Y∧i ,
z ∈ Z∧j , and x ∈ X , it holds that

S(x, x∗, f(x∗, y, z)), that f(x, y∗, z), and that f(x, y, z∗),

are computationally indistinguishable from each other, where x∗ ← Px, where y∗ ← Qi, and
where z∗ ← Rj.

In fact, the positive direction holds even for functionalities that are not ternary-output.

At first sight, it might seem that the characterization is hard to use since it requires the existence
of an algorithm S, which in spirit seems like a simulator for a corrupt A. However, note that we
only require S to output what would become the output of (an honest) A, and not the entire view
of an arbitrary adversary. Arguably, determining whether such an algorithm exists is much simpler
than determining whether there exists a simulator for some adversary interacting in some protocol.

We next give two examples for using Theorem 1.4. As a first example, consider the deterministic
convergecast functionality CC. Observe that it does not satisfy Item 1 since Y0 ̸= {Y} and Z1 ̸=
{Z}. Therefore it cannot be securely computed. To exemplify Item 2 of Theorem 1.4, consider
the maximum function Max : {0, 1, 2}3 → {0, 1, 2}. Similarly to CC, it can be defined by the three
matrices

M0 =

0 1 2
1 1 2
2 2 2

 , M1 =

1 1 2
1 1 2
2 2 2

 and M2 =

2 2 2
2 2 2
2 2 2

 ,

where A chooses a matrix, B chooses a row, and C chooses a column. The output of A is the value
written in the chosen entry. Clearly, any two y’s are equivalent, and any two z’s are equivalent as
well, for all x ∈ {0, 1, 2}. Therefore, Item 1 holds. As for Item 2, we let Q1 and R1 output 2 with
probability 1 (recall that n∧ = m∧ = 1). Additionally, we let S ignore its inputs and output 2 with
probability 1. It follows that Item 2 holds. Thus, Max can be securely computed. In fact, as the
positive direction of Theorem 1.4 holds for functions that are not ternary-output, the same argument
can be made when Max has a domain that is arbitrarily large, i.e., Max : {1, . . . , m}3 → {1, . . . , m}
for some natural m.

To illustrate how the Theorem 1.4 can be used (in the positive direction), consider the following
functionality f : {0, 1} × ({0, 1}2 ∪ {2})× {0, 1} → {0, 1, 2} defined as

f(x, y, z) =
{

y1 ⊕ z if y = (y0, y1) ∧ y0 = x

2 otherwise

6



Similarly to CC, f can be defined by the two matrices

M0 =


0 1
1 0
2 2
2 2
2 2

 and M1 =


2 2
2 2
0 1
1 0
2 2


where the first four rows corresponds to the set of inputs {0, 1}2 for party B, and last row corresponds
to the input y = 2. We next show that f can be securely computed. First, observe that CORE
partitions of the columns are trivial for both x = 0 and x = 1, i.e., Z0 = Z1 = {Z}. As for the
rows, in each matrix the two rows with Boolean values are in the same set, and the three rows
with the fixed value of 2 belong to the same set, that is, Y0 = {{(0, 0), (0, 1)}, {(1, 0), (1, 1), 2}},
Y1 = {{(0, 0), (0, 1), 2}, {(1, 0), (1, 1)}}. As a result, Item 1 holds, and the CORE∧-partition of
the rows is Y∧ = {{(0, 0), (0, 1)}, {(1, 0), (1, 1)}, {2}}, while the CORE∧-partition of the columns
is the trivial partitioning. To fix the output distributions, we take the distributions over the
equivalence classes to be uniform, that is, for i ∈ {1, 2} let Qi be uniform over {(i− 1, 0), (i− 1, 1)}
(Q3 always outputs y = 2), and let R1 be uniform over {0, 1}. Then for i ∈ {1, 2} it holds
that f(x, y∗, z) ≡ f(x, (y0, y1), z∗), which is a uniform random bit if y0 = x and is equal to two
otherwise. Furthermore, for i = 3 the two distributions always output 2. To show that f can be
securely computed, using Theorem 1.4, it is left to define the algorithm S and the distributions P0
and P1. For all x ∈ {0, 1} we let Px always output x, and define S(x, x∗, w) to output a uniform
random bit if w ∈ {0, 1}, and output 2 otherwise. Thus Item 2 holds. Therefore, f can be securely
computed.

Randomized functionalities. So far, we have only dealt with deterministic functionalities. To
handle the randomized case, we show how to reduce it to the deterministic case. That is, for any
randomized solitary output three-party functionality f , we define a deterministic solitary output
three-party functionality f ′, such that f can be securely computed if and only if f ′ can be securely
computed.

Proposition 1.5 (Reducing randomized functionalities to deterministic functionalities, informal).
Let f : X×Y×Z →W be a (randomized) solitary output three-party functionality, and let R denote
the domain of its randomness. Define the deterministic solitary output three-party functionality
f ′ : (X ×R)× (Y ×R)× (Z ×R)→W as

f ′((x, r1), (y, r2), (z, r3)) = f(x, y, z; r1 + r2 + r3),

where addition is done over R when viewed as an additive group. That is, the parties receive a
share of the randomness in a 3-out-of-3 secret sharing scheme. Then f can be securely computed if
and only if f ′ can be securely computed.

Assuming a broadcast channel. Surprisingly, we are also able to show that any (randomized)
solitary output three-party functionality that can be securely computed, as captured by Theo-
rems 1.2 and 1.4, can also be securely computed assuming the availability of a broadcast channel
with security holding against two corrupted parties. In particular, any solitary output three-party
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ternary-output functionality and any NIORP functionality, that can be securely computed with-
out broadcast against a single corruption, can be securely computed with broadcast against two
corruptions. Moreover, the set of functions captured by Theorems 1.2 and 1.4 extends the set of
three-party functionalities previously known to be computable with broadcast, due to Halevi et al.
[25] (see [25, Theorem 4.4]).

On the other hand, we claim that the converse is false, i.e., there exists a solitary output
NIORP Boolean three-party functionality that can be securely computed with broadcast against
two corruptions, yet it cannot be securely computed without broadcast against a single corruption.
Indeed, consider the following solitary output three-party variant of the GHKL functionality,6
denoted soGHKL, defined by the matrix 0 1

1 0
1 1

 (2)

where B chooses a row, C chooses a column, and the output of A is the value written in the chosen
entry.

Observe that soGHKL is a NIORP functionality that does not satisfy the necessary conditions
given by Theorem 1.2. Thus, it cannot be securely computed in the point-to-point model. On the
other hand, Halevi et al. [25] showed that soGHKL can be computed assuming a broadcast channel.7
The theorem below summarizes our results.

Theorem 1.6 (Informal). Let f : X × Y × Z → W be a deterministic solitary output three-party
functionality. Assume that oblivious transfer exists, and that f is either a NIORP or a ternary-
output functionality. Suppose that f can be securely computed assuming an honest majority in the
point-to-point model. Then, assuming the availability of a broadcast channel, f can be securely
computed tolerating two corruptions.

Moreover, the converse is false. That is, there exists a NIORP Boolean three-party functionality
that can be securely computed against two corruptions, assuming a broadcast channel in the OT-
hybrid model, however, it cannot be securely computed in the point-to-point model against a single
corruption.

In fact, Theorem 1.6 can be improved by slightly relaxing some of the conditions the function
has to satisfy (see Section 1.2.4 below for more details). Furthermore, Theorem 1.6 captures
NIORP functionalities whose status was previously unknown, e.g., the NIORP functionality fspecial :
{λ} × ({0, 1, 2, 3})2 → {0, . . . , 7} defined by the matrix

0 1 2 3
1 0 3 2
4 5 6 7
5 4 7 6

 (3)

can be securely computed assuming a broadcast channel, tolerating two corruptions.
In Table 2 below, we present several examples of three-party functionalities, and compare their

status assuming no broadcast channel and one corruption, to the case where such a channel is
available with two possible corruptions.

6Gordon et al. [24] showed that the symmetric two-party variant of this functionality can be computed with full
security.

7In fact, [25] gave three different protocols for computing soGHKL securely.
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Function\Model
Without broadcast
(honest majority)

With broadcast
(no honest majority)

Millionaires’ Problem:

GT(x, y, z) =


0 if x > y, z

1 if y > z, y ≥ x

2 otherwise

✗ Thm. 1.4 ✓ [25]

NIORP Millionaires’ Problem:

cGT(y, z) =
{

0 if y > z

1 otherwise
✓ Thm. 1.4 ✓ [25]

CC(x, y, z) (see Eq. 1) ✗ Thm. 1.4 ✓ [25]

soGHKL(y, z) (see Eq. 2) ✗ Thm. 1.4 (also Thm. 1.2) ✓ [25]

Max(x, y, z) ✓ Thm. 1.4 ✓ [25]

EQ(y, z) =
{

1 if y = z

0 otherwise
✓ Thm. 1.4 ✓ [25]

EQ(y, z) =
{

y if y = z

0 otherwise
✗ Thm. 1.4 (also Thm. 1.2) ✗ [25]

fspecial (see Eq. 3) ✓ Thm. 1.4 (also Thm. 1.2) ✓ Thm. 1.4

Table 2: Comparing the landscape of functionalities that can be computed without broadcast but
with an honest majority, to functionalities that can be computed with broadcast but no honest
majority. All functions above have a constant domain. It is important that the domain of EQ does
not include 0. Finally, the results for the computation of NIORP functionalities without broadcast
also follow from Theorem 1.2.

1.2 Our Techniques

We now turn to describe our techniques. In Section 1.2.1 we handle NIORP functionalities. Then,
in Section 1.2.2 we handle ternary-output functionalities. Then, in Section 1.2.3 we show how to
reduce the randomized case to the deterministic case. Finally, in Section 1.2.4 we prove Theorem 1.6,
showing that for the families of functions considered, the broadcast assumption is strictly stronger
than the honest majority assumption. To simplify the proofs in this introduction, we only consider
perfect security and functionalities with finite domain and range.

1.2.1 Characterizing NIORP Functionalities

We start with the negative direction of Theorem 1.2. Our argument is split into two parts. In the
first part, we adapt the hexagon argument, due to Fischer et al. [19], to the MPC setting. Roughly,
for every secure three-party protocol we attribute six distributions, all of which are identically
distributed by the perfect security of the protocol. The second part of the proof is dedicated to the

9



analysis of these six distributions, resulting in necessary conditions for perfect security.

The hexagon argument for NIORP functionalities. In the following, let f be a solitary
output three-party NIORP functionality (no input for the output receiving party), and let π be
a three-party protocol computing f securely over point-to-point channels, tolerating a single cor-
rupted party. At a high level, the hexagon argument is as follows.

1. First, we construct a new six-party protocol π′. This is the same hexagon protocol from [19]
(see below for a formal definition).

2. Then, we consider six different semi-honest adversaries for π′ corrupting four parties, and
observe that each of them can be emulated by a malicious adversary in the original three-
party protocol π. In more detail, for each of the semi-honest adversaries we consider for π′, we
show there exists a malicious adversary corrupting a single party in π satisfying the following:
The transcript between the two honest parties and the transcript between each honest party
and the adversary, are identically distributed in both protocols. We stress that π′ is not
secure, but rather any attacker for it can be emulated by an attacker for the three-party
protocol π.

3. Observe that as the adversaries for π′ are semi-honest, the view of each party (both corrupted
and honest) is identically distributed across all six scenarios.

4. We then translate the above observation to π using the fact that each of the semi-honest
adversaries for π′ can be emulated in π. Thus, we obtain a certain correlation between the
six malicious adversaries for π.

5. By the assumed security of π, each of the malicious adversaries can be simulated in the ideal
world of f . Therefore, we can translate the correlation from the previous step to the ideal
world, and obtain a necessary property f has to satisfy. This results in six distributions with
differing definitions, all of which are identically distributed. Looking ahead, the second part
of our argument is dedicated to analyzing these distributions.

We next provide a more formal argument. Consider the following six-party protocol π′. For
each party P ∈ {A, B, C} in π we have two copies P and P′ in π′, both use the same code as an
honest P does in π. Furthermore, the parties are connected via the following undirected cycle
graph: (1) A is connected to B and C, (2) A′ is connected to B′ and C′, (3) B is also connected to
C′, and (4) C is also connected to B′. See Figure 1 below for a pictorial definition. Finally, we let
B, B′, C, and C′ hold inputs y, y′, z, and z′, respectively.

Now, consider the following 6 attack-scenarios for the six-party protocol, where in each scenario
a semi-honest adversary corrupts four adjacent parties, as depicted in Figure 2. Observe that
each attacker can be emulated in the original three-party protocol π, by a malicious adversary
emulating the corresponding four parties in its head. For example, in Scenario 2a, an adversary in
π can emulate the attack by corrupting C, and emulating in its head two virtual copies of C, a copy
of A, and a copy B.

We now focus on party A in the six-party protocol. First, note that in Scenarios 2a and 2b, where
A is honest, its output is identically distributed8 since the adversaries are semi-honest. Second, in

8Note that even though f is assumed to be deterministic, it is not guaranteed that the output of an honest A
is a fixed value even when interacting with a semi-honest adversary. This is due to the fact that the semi-honest
adversaries are emulated in the three-party protocol using malicious adversaries.
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Figure 1: The six-party protocol
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Figure 2: The six adversaries in the hexagon argument. The shaded yellow areas in each scenario
correspond to the (virtual) parties the adversary controls.

the other four scenarios, where A is corrupted, the adversary’s view contains the same view that an
honest A has in an honest execution of π′. Therefore, it can compute an output with an identical
distribution to the output distribution an honest A has in Scenarios 2a and 2b.

Next, we use the fact that the six semi-honest adversaries in π′ can be emulated by malicious
adversaries in π. We obtain that there exists some distribution D (that depends on all inputs y, y′,
z, and z′ in the six-party protocol) over the set of possible outputs W of A, such that the following
hold.
Scenarios 1 and 2: There exist two malicious adversaries for π, one corrupting C and holding

(y′, z, z′), and one corrupting B and holding (y, y′, z′), such that the output of A in both
scenarios is distributed according to D.

Scenarios 4 and 5: There exist two malicious adversaries for π, one corrupting C and holding
(y, z, z′), and one corrupting B and holding (y, y′, z), both of which can generate a sample
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from D at the end of the execution.

Scenarios 3 and 6: There exist two malicious adversaries for π, both corrupting A, where one is
holding (y, z′) and the other is holding (y′, z), such that both can generate a sample from D
at the end of the execution.

By the assumed security of π, each of the adversaries can be simulated in the corresponding
ideal world of the three-party functionality f . Thus, we obtain six different expressions for the
distribution D, representing the output of A. The six expressions are described as follows.
Scenarios 1 and 2: There exist two malicious simulators in the ideal world of f , one corrupting

C and holding (y′, z, z′), and one corrupting B and holding (y, y′, z′), such that the output
of A in both ideal world executions is distributed according to D. Recall that the only way
for the simulators to affect the output of A is by choosing the input they send to the trusted
party. It follows the first simulator corrupting C, defines a distributed distribution Ry′,z,z′

that depends only on y′, z, and z′, such that f(y, z∗) ≡ D, where z∗ ← Ry′,z,z′ . Similarly, the
second simulator corrupting B, defines a distributed distribution Qy,y′,z′ that depends only
on y′, z, and z′, such that f(y∗, z) ≡ D, where y∗ ← Qy,y′,z′ .

Scenarios 4 and 5: There exist two malicious simulators, one corrupting C and holding (y, z, z′),
and one corrupting B and holding (y, y′, z), both of which can generate a view that is identical
to their corresponding real world adversary. In particular, since both adversaries can generate
a sample from D, it follows that both simulators must be able to do the same at the end of
their respective ideal world execution. Since the simulators do not receive any output from
the trusted party, it follows there exist two algorithms SB and SC, such that both SC(y, z, z′)
and SB(y, y′, z) output a sample from D.

Scenarios 3 and 6: There exist two malicious simulators, both corrupting A, where one is holding
(y, z′) and the other is holding (y′, z), such that both can generate a sample from D at the
end of the execution. Unlike the previous case, this time the two simulators do receive an
output from the trusted party. This implies there exist two algorithms S3 and S6, such that
both S3(y, z′, f(y′, z)) and S6(y′, z, f(y, z′)) output a sample from D.

We conclude that for all y, y′ ∈ Y and z, z′ ∈ Z, there exist two efficiently samplable distribu-
tions Qy,y′,z′ and Ry′,z,z′ over Y and Z, respectively, and four algorithms SB, SC, S3, and S6, such
that

f (y∗, z) ≡ f (y, z∗) ≡ SB
(
y, y′, z

)
≡ SC

(
y, z, z′

)
≡ S3

(
y, z′, f

(
y′, z

))
≡ S6

(
y′, z, f

(
y, z′

))
, (4)

where y∗ ← Qy,y′,z′ and where z∗ ← Ry′,z,z′ .

Analyzing the six distributions over the output of A. We now turn to the analysis of
Equation (4), which results in the necessary conditions stated in Theorem 1.2. Recall that our goal
is to show that for all y ∈ Y and z ∈ Z, it holds that

f(y, z∗) ≡ f(y∗, z),

where y∗ and z∗ are sampled according to specific distributions that depend on the equivalence
classes containing y and z, respectively.
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First, observe that as SB is independent of z′, it follows that all other distributions are also
independent of it. For example, for any z′′ ̸= z′ it holds that

S3
(
y, z′, f

(
y′, z

))
≡ SB

(
y, y′, z

)
≡ S3

(
y, z′′, f

(
y′, z

))
.

Similarly, since SC is independent of y′ it follows that all other distributions are also independent
of it as well. From this, we conclude the following: Let y0 and z0 be the lexicographically smallest
elements of Y and Z, respectively, and define the distributions Q′y := Qy,y0,z0 and R′z := Ry0,z,z0 .9
Then, the above observation implies that

f (y∗, z) ≡ f (y, z∗) ≡ S3
(
y, z′, f

(
y′, z

))
≡ S6

(
y′, z, f

(
y, z′

))
, (5)

for all y′ ∈ Y and z′ ∈ Z, where y∗ ← Q′y and z∗ ← R′z.
Let us focus on S3, and fix z̃ ∈ Z such that z ∼ z̃. Recall that the relation ∼ is defined as

z ∼ z̃ if and only if there exist ỹ, ỹ′ ∈ Y such that f(ỹ, z) = f(ỹ′, z̃). Since S3 is independent of y′,
it follows that

S3
(
y, z′, f

(
y′, z

))
≡ S3

(
y, z′, f (ỹ, z)

)
≡ S3

(
y, z′, f

(
ỹ′, z̃

))
≡ S3

(
y, z′, f

(
y′, z̃

))
,

where the first and last transition follows from the previously made observation that the output
distribution of S3 is independent of the value of y′, and the second transition follows from the fact
that f(ỹ, z) = f(ỹ′, z̃), hence S3 receives the same inputs in both cases. Therefore, changing z
to z̃ where z ∼ z̃ does not change the output distribution of S3. Note that the argument can be
repeated to show that replacing z̃ with any other z̃′, where z̃ ∼ z̃′, does not change the distribution.
It follows that changing z to any z̃′ satisfying z ≡rel z̃′ does not change the output distribution of
S3. Thus, all distributions in Equation (5) are not affected by such change.

Plugging this back to Equation (5), results in the following. For every j ∈ [m], every y ∈ Y, and
every equivalent z, z̃′ ∈ Zj (recall that Zj is the jth equivalence class with respect to the relation
≡rel), it holds that

f(y, z∗) ≡ f(y∗, z) ≡ f(y∗, z̃′) ≡ f(y, z̃∗),
where y∗ ← Q′y, where z∗ ← R′z, and where z̃∗ ← R′z̃. In particular, the distributions depend only
on the index j, and not on the specific choice of input from the equivalence class Zj . Thus, if for
any j ∈ [m] we define the distribution R′′j := R′zj

, where zj is the lexicographically smallest element
in Zj , it then follows that for every j ∈ [m], every y ∈ Y, and every z ∈ Zj , that

f(y, z∗) ≡ f(y∗, z),

where y∗ ← Q′y and z∗ ← R′j .
Finally, an analogous argument starting by focusing on S6, implies that the distributions depend

only on the equivalence class containing y, rather than depending on y directly. Therefore, for any
i ∈ [n] we can define the distribution Q′′i := Q′yi

, where yi is the lexicographically smallest element
in Yi. It then follows that for every i ∈ [n], j ∈ [m], y ∈ Yi, and z ∈ Zj it holds that

f(y∗, z) ≡ f(y, z∗),

where y∗ ← Q′′i and z∗ ← R′′j , as claimed.
9Note that the choice of taking the lexicographically smallest elements of Y and Z is arbitrary, and any other

element would work.
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The positive direction for NIORP functionalities. We now present a protocol for any
solitary output three-party NIORP functionality f , satisfying the conditions stated in Theorem 1.2.
Our starting point is the same as that of [15, 2], namely, computing f fairly (i.e., either all parties
obtain the output or none do). This follows from the fact that, by the honest-majority assumption,
the protocol of Rabin and Ben-Or [30] computes f assuming a broadcast channel; hence by [14] it
follows that f can be computed with fairness over a point-to-point network.

We now describe the protocol. The parties start by computing f with fairness. If they receive
outputs, then they can terminate, and output what they received.10 If the protocol aborts, then B
finds the unique i ∈ [n] such that y ∈ Yi and sends i to A. Similarly, C finds the unique j ∈ [m]
such that z ∈ Zj and sends j to A. Observe that this can be done efficiently since the domain
of f is of constant size. Party A then samples y∗ ← Qi and outputs f(y∗, zj), where zj is the
lexicographically smallest element in Zj .

Observe that correctness holds since when all parties are honest, the fair protocol will never
abort (note that without the fair computation of f the above protocol is not correct since A would
always output f(y∗, zj) instead of f(y, z)). Now, consider a corrupt B (the case of a corrupt C is
similar). First, note that the adversary does not obtain any information from the fair computation
of f . Next, if the adversary sends some i′ to A, then the simulator sends y∗ ← Qi′ to the trusted
party. Then the output of A in the ideal world is f(y∗, z). By our assumption on f this is identical
to f(y∗, zj) – the output of A in the real world.

Next, consider a corrupt A. Since it does not obtain any information from the (failed) fair
computation of f , it suffices to show how a simulator that is given f(y, z) can compute the corre-
sponding i and j. Observe that by our definition for the partition of the inputs, any two distinct
combinatorial rectangles Yi × Zj and Yi′ × Zj′ , where (i, j) ̸= (i′, j′), have no common output.
Indeed, if f(y, z) = f(y′, z′), where (y, z) ∈ Yi ×Zj and (y′, z′) ∈ Yi′ ×Zj′ , then y ∼ y′ and z ∼ z′,
hence they belong to the same sets. Therefore, the simulator for the corrupt A can compute the
corresponding i and j given the output by simply looking them up (which can be done efficiently
since the domain is of constant size).

1.2.2 Characterizing Ternary-Output Functionalities

We now explain our techniques for proving Theorem 1.4. We begin with the negative direction.
Similarly to the proof of Theorem 1.2 presented earlier, the argument is comprised of the hexagon
argument and the analysis of the six distributions that are obtained. However, since A now has an
input, the argument is much more involved.

A generalized hexagon argument. Unlike in the previous proof, here the hexagon argument
(as used there) does not suffice. To show where the argument falls short, let us first describe the six
distributions obtained from the hexagon argument. In this setting, where A now has an input, the
six-party protocol described earlier will now have A and A′ hold inputs x and x′, respectively. The
two inputs are then given to the correct adversaries from the six scenarios. Furthermore, observe
that the algorithms S3 and S6, which came from the two simulators for a corrupt A in the ideal
world, can also send to the trusted party an input that is not necessarily the same input that the
simulators hold. Let x∗3 and x∗6 denote the inputs used by S3 and S6, respectively, each sampled

10Although B and C are supposed to receive no output from f , in a fair computation they either receive the empty
string indicating that A received its output, or a special symbol ⊥ indicating abort.
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according to a distribution that depends on the simulator’s inputs. Thus, to adjust the hexagon
argument to this case, Equation (4) should now be replaced with

f (x, y∗, z) ≡ f (x, y, z∗) (6)
≡ SB

(
x, y, y′, z

)
≡ SC

(
x, y, z, z′

)
≡ S3

(
x, x′, y, z′, x∗3, f

(
x∗3, y′, z

))
≡ S6

(
x, x′, y′, z, x∗6, f

(
x∗6, y, z′

))
,

where y∗ ← Qx′,y,y′,z′ , where z∗ ← Rx′,y′,z,z′ , where x∗3 ← P 3
x,x′,y,z′ , and where x∗6 ← P 6

x,x′,y′,z.
We now show where the argument falls short using an example: recall that we defined the

deterministic variant of the convergecast functionality [20], CC : ({0, 1})3 → {0, 1} as

CC(x, y, z) =
{

y if x = 0
z otherwise

We claim that there exist distributions and algorithms satisfying Equation (6), hence the argument
is insufficient to show the impossibility of securely computing CC. Indeed, take Qx′,y,y′,z′ to always
output y∗ = y, take Rx′,y′,z,z′ to always output z∗ = z, define P 3

x,x′,y,z′ to always output x∗3 = 1
(causing S3 to obtain z), define P 6

x,x′,y′,z to always output x∗6 = 0 (causing S6 to obtain y), and
define SB and SC, both of which hold x, y, and z, to compute CC(x, y, z). Then all six distributions
always output CC(x, y, z).

However, as we next explain, the functionality CC cannot be computed securely in our setting.
Intuitively, this is because the adversary corrupting A as in Scenario 2c using inputs x = 1 and
x′ = 0, learns both y′ and z. Indeed, in Scenario 2b (where B is corrupted) the output of an
honest A is z, and in Scenario 2d (where C is corrupted) the output of an honest A′ is y′. Since
the adversaries are semi-honest, the adversary corrupting A as in Scenario 2c can compute both z
and y′ by computing the output of the honest A and A′, respectively. However, in the ideal world,
a simulator (for the malicious adversary emulating Scenario 2c) can only learn one of the inputs.

To generalize this intuition, we consider the joint distribution of the outputs of A and A′ in the
six-party protocol, rather than only the distribution of the output of A. Doing a similar analysis to
the NIORP case results in the existence of six distributions P 3

x,x′,y,z′ , P 6
x,x′,y′,z, Qx,y,y′,z, Q′x′,y,y′,z′ ,

Rx,y,z,z′ , and R′x′,y′,z,z′ , and the existence of six algorithms S3, S6, SB, S′B, SC, and S′C, where S3
and S6 output two values (corresponding to the outputs of A and A′), such that the following six
distributions are identically distributed:

1. S3(x, x′, y, z′, x∗3, f(x∗3, y′, z)), where x∗3 ← P 3
x,x′,y,z′ .

2. S6(x, x′, y′, z, x∗6, f(x∗6, y, z′)), where x∗6 ← P 6
x,x′,y′,z.

3. (SB(x, y, y′, z, y∗1), f(x′, y∗1, z′)), where y∗1 ← Qx,y,y′,z.

4. (f(x, y∗2, z), S′B (x′, y, y′, z′, y∗2)), where y∗2 ← Q′x′,y,y′,z′ .

5. (SC(x, y, z, z′, z∗1), f(x′, y′, z∗1)), where z∗1 ← Rx,y,z,z′ .

6. (f(x, y, z∗2), S′C (x′, y′, z, z′, z∗2)), where z∗2 ← R′x′,y′,z,z′ .

15



We stress that both S3 and S6 output two values from the set of outputs {0, 1, 2}, while SB, S′B,
SC, and S′C, each output a single value from {0, 1, 2}.

Observe that for the function CC, the above distributions and algorithms do not exist for all
possible choice of inputs. Indeed, for x = 1 and x′ = 0, it holds that CC(x, y∗2, z) = z (from
the fourth distribution) and that CC(x′, y′, z∗1) = y′ (from the fifth distribution). Therefore, the
marginal distribution of the first value must be z, and the marginal distribution of the second value
must be y′, both with probability 1. However, note that S3 is given only one of y′ or z, depending
on the value of x∗3, hence it cannot output both of them correctly.

Analyzing the six joint distributions over the outputs of A and A′. We now analyze the
new six distributions described earlier. First, similarly to the case of NIORP functionalities, we
make the observation that the marginal distribution of the first entry is independent of x′, y′, and
z′, and the marginal distribution of the second entry is independent of x, y, and z. Let us focus on
S3 and the distribution P 3

x,x′,y,z′ .
Our next goal is to analyze the support of P 3

x,x′,y,z′ , namely, analyze which inputs x∗3 can be
used by S3. This results in a necessary condition for f to be securely computable, since if the input
x∗3 must satisfy some condition, in particular, this implies an input satisfying such condition must
exist. We do this analysis by comparing the first (i.e., left) output of S3 to the distribution in
Item 4 above, where the first value is f(x, y∗2, z), and by comparing the second (i.e., right) output
of S3 to the distribution in Item 5 above, where the second value is f(x′, y′, z∗1). In fact, rather
than directly comparing the outputs, we compare the information on the equivalence class of z and
y′ with respect to the CORE partitions that can be inferred from the outputs. We next focus on
comparing to f(x, y∗2, z) (comparing to f(x′, y′, z∗1) is analogous).

Let us first recall the definition of the CORE partitions. Recall that for every x we can view
f(x, ·, ·) as a NIORP function. Thus, we can partition Y and Z according to the CORE partition
for the given x. Since we focus on S3 it suffices, for now, to only consider the partition of Z. Let
Mx ∈ {0, 1, 2}|Y|×|Z| be the matrix associated with f(x, ·, ·), defined as Mx(y, z) = f(x, y, z) for
all y ∈ Y and z ∈ Z. Recall that we denote the partition as Zx = {Zx

j : j ∈ [m(x)]}, and we let
z and z̃ be in the same equivalence class if and only if there exist z1, . . . , zk ∈ Z such that the
columns Mx(·, z) and Mx(·, z1) have a common output, for all i ∈ [k− 1] the columns Mx(·, zi) and
Mx(·, zi+1) have a common output, and the columns Mx(·, zk) and Mx(·, z̃) have a common output.
Observe that for any x ∈ X and every y ∈ Y it holds that if z ∈ Z and z̃ ∈ Z are in different
classes, then f(x, y, z) ̸= f(x, y, z̃).

Now, consider the distribution in Item 4 above, where the first value is f(x, y∗2, z). It follows
that S3 must be able to output f(x, y∗2, z).11 Next, observe that from f(x, y∗2, z) it is possible to
infer the (unique) j ∈ [m(x)] satisfying z ∈ Zx

j . This is due to the fact that, as noted earlier,
for z and z̃ in two different classes, the output of f on each of them (with the same x and y) is
always different. Thus, for any fixed value for y∗2, from the output f(x, y∗2, z) we can compute the
equivalence class of z.

However, the only information that S3 can obtain on the class j ∈ [m(x)] can come from the
output f(x∗3, y′, z) (which corresponds to the output it receives from the trusted party). That is,
the only information that S3 can have is the equivalence class of z with respect to the partition
of x∗3 rather than the partition with respect to x. Since the first entry in the output of S3 must
be identically distributed to f(x, y∗2, z), the value x∗3 it uses must be such that f(x∗3, y′, z) reveals

11Formally, the marginal distribution of the first value in the output of S3 is identically distributed to f(x, y∗
2 , z).
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at least the same information on j as f(x, y∗2, z) does. This implies that x∗3 must be such that
if z ∈ Zx∗

3
j∗

3
then z ∈ Zx

j , with probability 1. Furthermore, this must hold for all z ∈ Z and the
distribution P 3

x,x′,y,z′ , from which x∗3 is drawn from, is independent of z, it follows that the partition
Zx∗

3
must be a refinement of Zx. That is, any Z ∈ Zx∗

3
must be a subset of some Z ′ ∈ Zx. Similarly,

since S3 must also output f(x′, y′, z∗1) from the fifth distribution in Item 5, it follows that Yx∗
3

is a
refinement of Yx′ . As a result, we conclude that for any x, x′ ∈ X there exists x∗3 ∈ X such that
Yx∗

3
is a refinement of Yx′ and such that Zx∗

3
is a refinement of Zx. We stress that so far, we have

not used the fact that f is ternary-output, thus the existence of such x∗3 holds for any function that
can be securely computed. We formalize this in Lemma 4.9, where we also consider functions with
polynomial-sized domain (note that it is important for the domain to be small in order to claim
that the equivalence classes can be inferred efficiently from the output).

We now have all the necessary tools to prove Items 1 and 2 of Theorem 1.4. Let us start with
the former. Recall that we need to show that either Yx = {Y} for all x, or Zx = {Z} for all x.
First, since f is ternary-output, for every x it holds that either Yx = {Y} or Zx = {Z}. Note that
this is weaker than what we wish to show since for one x it might be the case that Yx = {Y}, while
for another x it might be the case that Zx = {Z}. Let us assume that Item 1 of Theorem 1.4 does
not hold. Then there exist x and x′ such that Yx ̸= {Y} and Zx′ ̸= {Z}. Then, as argued above,
there exists x∗ such that Yx∗ refines Yx and Zx∗ refines Zx′ . However, this implies that Yx∗ ̸= {Y}
and Zx∗ ̸= {Z}, which is impossible for ternary-output functions.

We now prove Item 2 of Theorem 1.4. From here on, we will only focus on the first (i.e., left)
entry in each of the above 6 distributions (there is no need to consider the second entry anymore).
The proof follows similar ideas to that of the NIORP case. In more detail, we consider the CORE∧-
partition of the inputs Y∧ and Z∧, and we show that changing, say, z to any z̃ that belongs to the
same equivalence class Z∧j ∈ Z∧, does not change the distribution. Let us first recall the definition
of CORE∧-partition. We define Z∧ to be the meet of the partitions {Zx}x∈X , defined as

Z∧ :=
{
Z∧ ⊆ Z : Z∧ ̸= ∅, and ∀x ∈ X ∃Zx ∈ Zx s.t. Z∧ =

⋂
x∈X
Zx

}
.

For the sake of brevity, we will abuse notations and let S3 only output the first entry rather than
two values.

First observe that if z, z̃ ∈ Z∧j for some j ∈ [m∧], then for any x there exists jx ∈ [m(x)] such
that z, z̃ ∈ Zx

jx
. Then, a similar analysis to the NIORP case shows that for any fixed x∗3 ∈ X

satisfying Zx∗
3

refines Zx, it holds that

S3(x, x′, y, z′, x∗3, f(x∗3, y′, z)) ≡ S3(x, x′, y, z′, x∗3, f(x∗3, y′, z̃)).

As the support of P 3
x,x′,y,z′ is contains only those x∗3 where Zx∗

3
refines Zx, it follows that

S3(x, x′, y, z′, x∗3, f(x∗3, y′, z)) ≡ S3(x, x′, y, z′, x∗3, f(x∗3, y′, z̃)),

where x∗3 ← P 3
x,x′,y,z′ . Therefore, the same must hold for all of the six distributions, i.e., they

depend on the equivalence classes of y and z with respect to the CORE∧-partition, rather than
depending on the actual values themselves.

In the following we let x0, y0, and z0 be the lexicographically smallest elements of X , Y, and Z,
respectively. For i ∈ [n∧] let Q′′i := Qx0,yi,y0,z0 , where yi is the lexicographically smallest elements
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of Y∧i . Similarly, for j ∈ [m∧] we let R′′j := R′x0,y0,zj ,z0 , where zj is the lexicographically smallest
element of Z∧j . Then, similarly to the NIORP case, it follows that for all i ∈ [n∧], all j ∈ [m∧], all
x ∈ X , all y ∈ Y∧i , and all z ∈ Z∧, it holds that

f(x, y∗, z) ≡ f(x, y, z∗), (7)

where y∗ ← Q′′i and z∗ ← R′′j . Note that the proof of Equation (7) did not use the fact that f is
ternary-output (see Claim 4.7 for a formal treatment of the general case).

It is left to show the existence of an algorithm S that given x, x∗ sampled from an appropriate
distribution Px, and f(x, y, z) can generate the distribution in Equation (7). Here we use the fact
that we showed that for ternary-output functions, either Yx = {Y} for all x ∈ X , or Zx = {Z} for
all x ∈ X . Assume first the former. In this case we let S(x, x∗, w) = S3(x, x0, y0, z0, x∗, w). Then,
for Px := P 3

x,x0,y0,z0 it holds that

S (x, x∗, f(x∗, y, z)) ≡ S3 (x, x0, y0, z0, x∗, f(x∗, y, z)) ≡ f(x, y∗, z) ≡ f(x, y, z∗),

where x∗ ← Px, y∗ ← Q′′1 (recall we assume that Yx = {Y} for all x which implies that n∧ = 1), and
z∗ ← R′′j , as claimed. Now, if we assume that Zx = {Z} for all x ∈ X , we will define S(x, x∗, w)
using S6 rather than S3. In more details, we let S(x, x∗, w) = S6(x, x0, y0, z0, x∗, w). Then, for
Px := P 6

x,x0,y0,z0 it holds that

S (x, x∗, f(x∗, y, z)) ≡ S6 (x, x0, y0, z0, x∗, f(x∗, y, z)) ≡ f(x, y∗, z) ≡ f(x, y, z∗),

where x∗ ← Px, y∗ ← Q′′i , and z∗ ← R′′1 (recall we assume that Zx = {Z} for all x which implies
that m∧ = 1), as claimed.

The positive direction for ternary-output functionalities. We now turn to the positive
direction. Here we show that the protocol suggested by [2] securely computes f . Roughly speaking,
in their protocol, in case an attack is detected (without the identity of the attacker being revealed)
party A interacts either B or C while ignoring the other party, where the decision is based only on
the function being computed (this is done even if the ignored party is honest).12

However, in [2], determining which party should interact with A (given the function f) is rather
difficult. In contrast, as we show below, in our setting this is only determined by Item 1. Specifically,
if Yx = {Y} for all x ∈ X then A interacts with C, and if Zx = {Z} for all x ∈ X then A interacts
with B. In fact, if both Yx = {Y} and Zx = {Z} hold for all x ∈ X , then A does not interact with
any party in case of an attack. Additionally, in this case, the assumption of the existence of the
algorithm S and the distributions {Px}x∈X is made redundant.

We next present the protocol. We assume without loss of generality that Zx = {Z} for all
x ∈ X . First, similarly to the NIORP case, by the honest-majority assumption, the parties can
compute f fairly. If the parties receive an output, they can terminate; otherwise, similarly to [2]
we let A and B compute the two-party functionality f(x, y, z∗), where z∗ ← R1, ignoring C in the
process (recall that since Zx = {Z} for all x ∈ X there is only one distribution given by Item 2 of
Theorem 1.4).

12For the general case, where the domain of f is not constant, the protocol we use is a slight generalization of the
one suggested by [2]. Specifically, the decision of whether A interacts with B or C in case of an attack depends on the
security parameter κ. Assuming the domain of f is of polynomial size in κ, the decision can be computed efficiently
and locally by every party.
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Similarly to the NIORP case, correctness holds due to the correctness of the fair protocol.
Furthermore, it is clear that a corrupt C cannot attack the protocol. Indeed, it does not gain any
information in the fair computation of f ; hence, if it aborts in this phase then the output of A is
g(x, y) = f(x, y, z∗), where z∗ ← R1. Similarly, a corrupt B cannot attack the protocol since its
simulator can send y∗ ← Qi, where i ∈ [n∧] is such that y ∈ Y∧i . By Item 2 of Theorem 1.4 the
output of A in the ideal world is

f(x, y∗, z) ≡ f(x, y, z∗) ≡ g(x, y),

where y∗ ← Qi and z∗ ← R1.
Next, consider a corrupt A. Similarly to the previous two cases, we only need to consider the

case where A aborts during the fair computation of f . Observe that the only information it receives
is g(x, y) = f(x, y, z∗), where z∗ ← R1. The simulator will simply send x∗ ← Px to the trusted
party and receive back w as the output. Then, the corrupt A will output whatever S(x, x∗, w)
outputs. By Item 2 of Theorem 1.4, the simulator output is identically distributed as g(x, y).

1.2.3 Reducing the Randomized Case to the Deterministic Case

We next explain how to reduce the randomized case to the deterministic case. The reduction works
in both the positive and the negative directions. Thus, we obtain characterizations for randomized
NIORP functionalities, and randomized ternary-output functionalities as well.

Recall that for a randomized solitary output three-party f : X × Y × Z → W, we define the
deterministic solitary output three-party functionality

f ′((x, r1), (y, r2), (z, r3)) = f(x, y, z; r1 + r2 + r3).

Namely, the parties hold a share of the randomness of f in a 3-out-of-3 secret sharing scheme. We
next show that f can be securely computed in the point-to-point model if and only if f ′ can.

Let us first assume that f ′ can be securely computed. Then in order to compute f , the parties
will compute f ′ with their original inputs, and where r1, r2, and r3 are sampled uniformly at
random. Security follows from the fact that at least one party is honest, hence either r1, r2, or r3
are sampled uniformly at random.

Let us now assume that f can be securely computed. First, similarly to the previous protocols,
by the honest-majority assumption, the parties can compute f ′ with fairness. If the parties receive
an output, they can terminate; otherwise, they compute f on their respective inputs. Correctness is
given by the fact that the parties first compute f ′ fairly. Security is guaranteed since the adversary
obtains no information from the fair computation, and since the simulator can send a uniform
random r as part of the input, in case the fair computation is aborted.

1.2.4 When a Broadcast Channel is Available

In this section, we show that any NIORP or ternary-output functionality that can be securely com-
puted in the point-to-point model against a single corrupted party, can also be securely computed
assuming a broadcast channel against two corruptions. Similarly to the point-to-point model, we
will only handle deterministic functionalities, as the randomized case can be handled using the
same reduction from Section 1.2.3.
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The NIORP case. Let us start with describing a protocol for the NIORP functionalities cap-
tured by Theorem 1.2. Recall that for these functionalities there exist two families of efficiently
samplable distributions {Qi}i∈[n] and {Rj}j∈[m] such that the following holds. For all i ∈ [n],
j ∈ [m], y ∈ Yi, and z ∈ Zj , it holds that

f(y∗, z) ≡ f(y, z∗),

where y∗ ← Qi and z∗ ← Rj .
In the following, we show that a larger class of functionalities than those described above, can

be securely computed against two corruptions. Specifically, it suffices to assume the existence of
only a single efficiently samplable distribution, one for B or one for C. By symmetry, we only
consider the latter case. That is, we assume there exists j∗ ∈ [m] and there exists a distribution
Rj∗ over Zj∗ such that the following holds. For every i ∈ [n] and every y, y′ ∈ Yi it holds that

f(y, z∗) ≡ f(y′, z∗), (8)

where z∗ ← Rj∗ .
The protocol is an extension of one of the protocols suggested by [25], and it proceeds as follows.

First, the parties compute a 3-out-of-3 secret sharing of the output f(x, y, z) using a secure-with-
identifiable-abort protocol (i.e., the adversary can force an abort after obtaining the output but
at the expense of revealing the identity of a corrupted party).13 In case a single party aborts, the
remaining two parties compute the function on their inputs and with the input of the aborting
party set to a default value. Observe that since f is solitary output, this can be done securely using
the protocol of Kilian [26]. If both B and C abort, then A outputs f(x, y0, z0), where y0 ∈ Y and
z0 ∈ Z are default inputs.

If no abort occurs, then first B sends its share to A, and additionally, it sends the (unique)
index i ∈ [n] such that y ∈ Yi. If B aborts, then A and C compute f(x, y0, z). Otherwise, C sends
its share to A. If C aborts, then A outputs f(x, yi, z∗), where yi is the lexicographically smallest
element in Yi, and where z∗ ← Rj∗ .

Similarly to the point-to-point case, corrupting A will not provide the adversary with any infor-
mation since the index i can be inferred from the output given by the trusted party. Additionally,
B and C obtain no information from the execution, since their views contain only secret shares of
the output. Furthermore, if a corrupt B aborts (at any point during the computation), then it can
be simulated by sending y0 to the trusted party. Finally, if a corrupt C aborts after B sent its share,
then this attack can be simulated by sending z∗ ← Rj∗ to the trusted party. Then the output of A
in the ideal world is f(x, y, z∗), while its output in the real world is f(x, yi, z∗). By Equation (8),
the two distributions are identical.

The ternary-output case. We now turn to ternary-output functionalities. In fact, we show
that a much larger class of functionalities than those captured by Theorem 1.4, can be securely
computed. Similarly to the point-to-point case, the protocol we present securely computes non-
ternary-output functionalities. First, recall that by Item 1 of Theorem 1.4, it holds that either
Yx = {Y} for all x ∈ X , or Zx = {Z} for all x ∈ X . We assume the latter without loss of
generality. We next present a relaxation of Item 2 of Theorem 1.4 that suffices for f to be securely

13Additionally, the shares are also signed using a MAC to ensure that B and C won’t change their values. For
simplicity, we assume that a malicious adversary does not modify these values, but can abort the execution.
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computable against two corruptions. Specifically, we assume that there exist two distributions Q
and R over Y∧i and Z, respectively, for some i ∈ [n∧], such that the following holds. There exists
yi ∈ Y∧i , such that for all z ∈ Z, and x ∈ X , it holds that

f(x, y∗, z) ≡ f(x, yi, z∗), (9)

where y∗ ← Q and z∗ ← R. Observe that this is indeed a relaxation since we do not require the
assumption of the existence of S, and the distributions {Px}x∈X and {Qi′}i′∈[n∧]\{i}, and since the
quantifier over yi is replaced with an existential quantifier.

The protocol proceeds as follows. The parties first compute a secret sharing of the output
of f(x, y, z) using a secure-with-identifiable-abort protocol. The sharing scheme is a 2-out-of-2
scheme, with the shares given only to A and B. Assuming the computation followed through, B
sends its share to A, which reconstructs the output. If B aborts at any point in the computation,
then A outputs f(x, yi, z∗) where z∗ ← R. If C aborts during the secure-with-identifiable-abort
computation, then its input is replaced with a default value and the protocol restarts.

Clearly, corrupting C will not provide the adversary with any advantage. Additionally, cor-
rupting A and (possibly) B will provide the adversary with only the output. The only case left is
when B is corrupted and A is honest. In this case, the adversary gains no information from the
secure-with-identifiable-abort computation, since it obtains only one share of the output. Now, if
B aborts then we let its simulator send to the trusted party the input y∗ ← Q. Then A outputs
f(x, y∗, z) in the ideal world. On the other hand, in the real world, the output of A is f(x, yi, z∗).
By Equation (9), the two distributions are identical.

1.3 Related Work

For non-solitary output functionalities, Cleve [13] showed that without an honest majority, full
security cannot be achieved even for the simple task of fair coin-tossing (even with a broadcast
channel). On the other hand, even if two-thirds of the parties are honest, there is no fully secure
protocol for computing the broadcast functionality in the plain model (i.e., without setup/proof-
of-work assumptions) [29, 27, 19].14

For the two-party setting a characterization was given for the set of two-party, Boolean,
symmetric (i.e., where all parties receive the same output) functions over a constant size do-
main [24, 3, 28, 5]. The cases of asymmetric functions and of multiparty functions assuming
broadcast but no honest majority, were also investigated [23, 5, 17, 25, 16], but both characteriza-
tions are open.

The hexagon argument has been first used in the context of Byzantine agreement to rule out
three-party protocols tolerating one corruption [19]. Cohen et al. [15] considered symmetric (possi-
bly randomized) functionalities in the point-to-point model, and showed that a symmetric n-party
functionality f can be computed against t corruptions, if and only if f is (n− 2t)-dominated, i.e.,
there exists y∗ such that any n−2t of the inputs can fix the output of f to be y∗. They generalized
the hexagon argument to the ring argument to obtain their results.

Recently, Alon et al. [2] extended the discussion to consider asymmetric functionalities in the
point-to-point model. They provided various necessary and sufficient conditions for a functionality

14Note that if strictly more than two-thirds of the parties are honest any functionality can be computed with full
security [9].
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to be securely computable. They considered some interesting examples for the special case of
solitary-output functionalities, however, provided no characterization for any class of functions.

The investigation of the set of solitary output functionalities that can be securely computed
assuming a broadcast channel but no honest majority was initiated in the work of Halevi et al. [25].
They provided various negative and positive results, and further investigated the round complexity
required to securely compute solitary output functionalities. Badrinarayanan et al. [6] investigated
the round complexity required to compute solitary output functionalities, assuming the availability
of a broadcast channel and no PKI, and vice versa.

1.4 Organization

The preliminaries and definition of the model of computation appear in Section 2. In Section 3
we state our results in the point-to-point model. Then, in Sections 4 and 5 we prove the negative
and positive results, respectively. Finally, in Section 6 we state and prove our results assuming a
broadcast channel.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and distributions, lower-
case for values, and we use bold characters to denote vectors. For n ∈ N, let [n] = {1, 2 . . . n}. For
a set S we write s← S to indicate that s is selected uniformly at random from S. Given a random
variable (or a distribution) X, we write x← X to indicate that x is selected according to X. A ppt
algorithm is probabilistic polynomial time, and a pptm is a polynomial time (interactive) Turing
machine.

A function µ : N → [0, 1] is called negligible, if for every positive polynomial p(·) and all suffi-
ciently large n, it holds that µ(n) < 1/p(n). We write neg for an unspecified negligible function and
write poly for an unspecified positive polynomial. For a randomized function (or an algorithm) f
we write f(x) to denote the random variable induced by the function on input x, and write f(x; r)
to denote the value when the randomness of f is fixed to r.

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of random variables indexed
by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. When the domains are clear,
we will sometimes write {Xa,n}a,n in order to alleviate notations.

The statistical distance between two finite distributions is defined as follows.

Definition 2.1. The statistical distance between two finite random variables X and Y is

SD (X, Y ) = max
S
{Pr [X ∈ S]− Pr [Y ∈ S]} .

For a function ε : N→ [0, 1], the two ensembles X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N are
said to be ε-close, if for all sufficiently large n and a ∈ Dn, it holds that

SD (Xa,n, Ya,n) ≤ ε(n),

and are said to be ε-far otherwise. X and Y are said to be statistically close, denoted X
S≡ Y , if

they are ε-close for some negligible function ε. If X and Y are 0-close then they are said to be
equivalent, denoted X ≡ Y .
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Computational indistinguishability is defined as follows.
Definition 2.2. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. We say that
X and Y are computationally indistinguishable, denoted X

C≡ Y , if for every non-uniform ppt
distinguisher D, there exists a negligible function µ(·), such that for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ µ(n).
The following simple fact states that whenever two ensembles with polynomial-size supports

are computationally indistinguishable, they are also statistically close.
Fact 2.3. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two computationally indistinguish-
able ensembles over a set-family {Sn}n∈N, of size |Sn| ≤ poly(n). Then X

S≡ Y .

Proof sketch. Assume for the sake of contradiction that the claim is false. It follows that there
exists a set-family {Tn}n∈N where Pr [Xa,n ∈ Tn]− Pr [Ya,n ∈ Tn] ≥ 1/p(n), for some polynomial p.
Since Tn ⊆ Sn, it follows that Tn is of polynomial size, hence it can be given as auxiliary input to
a bounded distinguisher D. Then, D can distinguish X from Y by outputting 1 if its input belongs
to Tn, and outputting 0 otherwise, thus contradicting the assumption that X

C≡ Y . □

The following fact states an equivalent definition for statistical distance.

Fact 2.4. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. Then X
S≡ Y if

and only if for every unbounded distinguisher D, there exists a negligible function µ(·), such that
for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ µ(n).
Definition 2.5 (Minimal and minimum elements). Let S be a set and let ⪯ be a partial order over
S. An element s ∈ S is called minimal, if no other element is smaller than s, that is, for any
s′ ∈ S, if s′ ⪯ s then s′ = s.

An element s ∈ S is called minimum if it is smaller than any other element, that is, for any
s′ ∈ S it holds that s ⪯ s′.

We next define a refinement of a partition of some set.
Definition 2.6 (Refinement of partitions). Let P1 and P2 be two partitions of some set S. We say
that P1 refines P2, if for every S1 ∈ P1 there exists S2 ∈ P2 such that S1 ⊆ S2.

The meet of two partitions is the partition formed by taking all non-empty intersections. For-
mally, it is defined as follows.
Definition 2.7 (Meet of partitions). Let P1 and P2 be two partitions of some set S. The meet of
P1 and P2, denoted P1 ∧ P2, is defined as

P1 ∧ P2 := {S1 ∩ S2 | ∀i ∈ {1, 2} : Si ∈ Pi and S1 ∩ S2 ̸= ∅} .

Observe that ∧ is associative, thus we can naturally extend the definition for several partitions.
Definition 2.8 (Equivalence class and quotient sets). For an equivalence relation ≡ over some set
S, and an element s ∈ S we denote by [s]≡ the equivalence class of s, i.e.,

[s]≡ :=
{
s′ ∈ S : s ≡ s′

}
.

We let S/≡ denote the quotient set with respect to ≡ defined as the set of all equivalence classes.
Stated differently, it is the partition of S induced by the equivalence relation ≡.
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2.2 The Model of Computation

We provide the basic definitions for secure multiparty computation according to the real/ideal
paradigm, for further details see [21]. Intuitively, a protocol is considered secure if whatever an
adversary can do in the real execution of the protocol, can be done also in an ideal computation,
in which an uncorrupted trusted party assists the computation.

In this paper we consider solitary output three-party functionalities. A functionality is a se-
quence of function f = {fκ}κ∈N, where fκ : Xκ×Yκ×Zκ →Wκ for every κ ∈ N.15 The functionality
is called solitary output if only one party obtains an output. We denote the parties by A, B and C,
holding inputs x, y, and z, respectively, and let A receive the output, denoted w. To alleviate nota-
tions, we will remove κ from f and its domain and range, and simply write it as f : X ×Y×Z →W.

Although we focus on solitary output functionalities and deal with adversaries that corrupt a
single party, we present the definition for the general case, as it will be useful later.

The Real Model

A three-party protocol π is defined by a set of three ppt interactive Turing machines A, B, and
C. Each Turing machine (party) holds at the beginning of the execution the common security
parameter 1κ, a private input, and random coins. The adversary A is another ppt interactive
Turing machine describing the behavior of the corrupted parties. It starts the execution with input
that contains the identities of the corrupted parties, their inputs, and an additional auxiliary input
aux.

The parties execute the protocol over a synchronous network. That is, the execution proceeds
in rounds: each round consists of a send phase (where parties send their messages for this round)
followed by a receive phase (where they receive messages from other parties).

We consider a fully connected point-to-point network, where every pair of parties is connected
by a communication line. We will consider the secure-channels model, where the communication
lines are assumed to be ideally private (and thus the adversary cannot read or modify messages
sent between two honest parties). Depending on the context, we may assume the parties have
access to a broadcast channel. We note that our upper bounds (protocols) can also be stated
in the authenticated-channels model, where the communication lines are assumed to be ideally
authenticated but not private (and thus the adversary cannot modify messages sent between two
honest parties but can read them) via standard techniques, assuming public-key encryption. On
the other hand, stating our lower bounds assuming secure channels will provide stronger results.

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary.
The adversary is considered to be malicious, meaning that it can instruct the corrupted parties to
deviate from the protocol in any arbitrary way. Additionally, the adversary has full access to the
view of the corrupted parties, which consists of their inputs, their random coins, and the messages
they see throughout this execution. At the conclusion of the execution, the honest parties output
their prescribed output from the protocol, the corrupted parties output nothing, and the adversary
outputs a function of its view. In some of our proofs, we consider semi-honest adversaries that
always instruct the corrupted parties to honestly execute the protocol but may try to learn more
information than they should.

15The typical convention in secure computation is to let f : ({0, 1}∗)3 → {0, 1}∗. However, we will mostly be
dealing with functionalities whose domain is of polynomial size in κ, which is why we introduce this notation.
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We next define the real-world global view for security parameter κ ∈ N, inputs x, y, z ∈ {0, 1}∗,
and an auxiliary input aux ∈ {0, 1}∗ with respect to some adversary A controlling a subset I ⊆
{A, B, C} of the parties. Let OUTreal

π,A(aux) (κ, (x, y, z)) denote the outputs of the honest parties in a
random execution of π on inputs (x, y, z) and security parameter κ interacting with A with auxiliary
input aux corrupting the parties in I. Further let VIEWreal

π,A(aux) (κ, (x, y, z)) be the adversary’s
output, being a function of its view (i.e., its auxiliary input, its random coins, the input of the
corrupted party, and the messages it sees during the execution of the protocol) during an execution
of π. We denote the global view in the real model by

REALπ,A(aux) (κ, (x, y, z)) =
(

VIEWreal
π,A(aux) (κ, (x, y, z)) , OUTreal

π,A(aux) (κ, (x, y, z))
)

.

The Ideal Model

We consider an ideal computation with guaranteed output delivery (also referred to as full security),
where a trusted party performs the computation on behalf of the parties, and the ideal-model
adversary cannot abort the computation. An ideal computation of a three-party functionality
f = (f1, f2, f3), with f1, f2, f3 : ({0, 1}∗)3 → {0, 1}∗, on inputs x, y, z ∈ {0, 1}∗ and security
parameter κ, with an ideal-world adversary A running with an auxiliary input aux and corrupting
a subset I ⊆ {A, B, C} of the parties, proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input to the trusted
party. The adversary A sends a value v from its domain as the input for the corrupted party.
Let (x′, y′, z′) denote the inputs received by the trusted party.

The trusted party performs computation: The trusted party selects a random string r, com-
putes (w1, w2, w3) = f (x′, y′, z′; r), and sends w1 to A, sends w2 to B, and sends w3 to C.

Outputs: Each honest party outputs whatever output it received from the trusted party and the
corrupted party outputs nothing. The adversary A outputs some function of its view (i.e.,
the auxiliary input, its randomness, and the input and output of the corrupted party).

We next define the ideal-world global view for security parameter κ ∈ N, inputs x, y, z ∈ {0, 1}∗,
and an auxiliary input aux ∈ {0, 1}∗ with respect to some adversary A controlling a subset I of
the parties. Let OUTideal

f,A(aux) (κ, (x, y, z)) denote the output of honest parties in a random execution
of the above ideal-world process, interacting with A. Further let VIEWideal

f,A(aux) (κ, (x, y, z)) be the
output (a simulated view) of A in such a process. We denote the global view in the ideal model by

IDEALf,A(aux) (κ, (x, y, z)) =
(

VIEWideal
f,A(aux) (κ, (x, y, z)) , OUTideal

f,A(aux) (κ, (x, y, z))
)

.

The Security Definition

Having defined the real and ideal models, we can now define security of protocols according to the
real/ideal paradigm.

Definition 2.9 (Malicious security). Let f be a three-party functionality and let π be a three-party
protocol. For t ∈ {1, 2}, we say that π computes f with computational t-security, if for every non-
uniform ppt adversary A, controlling a subset I ⊆ {A, B, C} of size at most t in the real world,
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there exists a non-uniform ppt adversary Sim, controlling the same subset I in the ideal-world such
that{

IDEALf,Sim(aux) (κ, (x, y, z))
}

κ∈N,x,y,z,aux∈{0,1}∗

C≡
{

REALπ,A(aux) (κ, (x, y, z))
}

κ∈N,x,y,z,aux∈{0,1}∗
.

We define statistical t-security similarly, by replacing computational indistinguishability with sta-
tistical distance.

When t = 2 we will sometimes say that π computes f will full security.

Ideal computation with fairness. Although all our results are stated with respect to guaran-
teed output delivery, in our proofs we will consider a weaker security variant, where the adversary
may cause the computation to prematurely abort, but only before it learns any new information
from the protocol. Formally, security with fairness is defined by only modifying the ideal computa-
tion. Specifically, the difference is that during the Parties send inputs to the trusted party step, the
adversary can send a special abort symbol. In this case, the trusted party sends ⊥ to all parties
instead of computing the function.

Ideal computation with security-with-identifiable-abort. We also use a security notion
called security-with-identifiable-abort where, similarly to fairness,the adversary can cause the com-
putation to prematurely abort. However, it can do so after learning the output, at the expense of
revealing the identity of a corrupted party (see Appendix A for a formal definition).

The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party that provides ideal
computation for specific functionalities. The parties communicate with this trusted party in exactly
the same way as in the ideal models described above.

Let f be a functionality. Then, an execution of a protocol π computing a functionality g in the
f -hybrid model involves the parties sending normal messages to each other (as in the real model)
and in addition, having access to a trusted party computing f . It is essential that the invocations
of f are done sequentially, meaning that before an invocation of f begins, the preceding invocation
of f must finish. In particular, there is at most a single call to f per round, and no other messages
are sent during any round in which f is called.

Let type ∈ {g.o.d., fair, id-abort}, and let A be a non-uniform ppt machine with auxiliary input
aux controlling a subset of the parties. We denote by HYBRIDf,type

π,A(aux)(κ, (x, y, z)) the random variable
consisting of the view of the adversary and the output of the honest parties, following an execution
of a protocol π with ideal calls to a trusted party computing f according to the ideal model “type,”
on input vector (x, y, z), auxiliary input aux to A, and security parameter κ. We call this the
(f, type)-hybrid model.

The sequential composition theorem of Canetti [12] states the following. Let ρ be a protocol
that securely computes f in the ideal model “type.” Then, if a protocol π computes g in the
(f, type)-hybrid model, then the protocol πρ, that is obtained from π by replacing all ideal calls to
the trusted party computing f with the protocol ρ, securely computes g in the real model.

Theorem 2.10 ([12]). Let t ∈ {1, 2}, let f be a three-party functionality, let type1, type2 ∈
{g.o.d., fair, id-abort}, let ρ be a protocol that t-securely computes f with type1, and let π be a
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protocol that t-securely computes g with type2 in the (f, type1)-hybrid model. Then, protocol πρ

t-securely computes g with type2 in the real model.

We make use of a known fact stating that any functionality can be computed fairly assuming
an honest majority.

Fact 2.11. Let f be a three-party functionality. Then (f, fair) can be computed with statistical
1-security.

This follows from the results of [30] and [14]. Specifically, Rabin and Ben-Or [30] showed how to
compute any functionality with full security assuming an honest majority and a broadcast channel.
On the other hand, Cohen and Lindell [14] showed that any protocol computing some functionality
f with full security assuming a broadcast channel can be transformed into a protocol computing f
fairly over a point-to-point network without the use of broadcast.

3 Our Main Results in the Point-to-Point Model
In this section, we present the statement of our main results in the point-to-point model. We
present a necessary condition and two sufficient conditions for solitary output three-party function-
alities with polynomial-sized domains, that can be computed with 1-security without broadcast.
In Section 3.2.1, we present several corollaries of our results. In particular, we show that vari-
ous interesting families of functionalities, such as deterministic NIORP and (possibly randomized)
ternary-output functionalities, our necessary and sufficient conditions are equivalent, thus we obtain
a characterization.

3.1 Useful Definitions

Before stating the result, we first present several important definitions. Throughout the entire
subsection, we let f : X ×Y ×Z →W be a deterministic solitary output three-party functionality.

The first definition introduces an equivalence relation over the domains Y and Z with respect to
any fixed input x ∈ X . We call this relation the common output relation (CORE). Note that the
relation depends on the security parameter κ as well. We will not write κ as part of the notations
in order to alleviate them.

Definition 3.1 (CORE and CORE partition). For an input x ∈ X we define the relation ∼x over
Y as follows.

y ∼x y′ if there exist z, z′ ∈ Z such that f(x, y, z) = f(x, y′, z′).

We define relation ≡x, called CORE, to be the transitive closure of ∼x, i.e., y ≡x y′ if either
y ∼x y′ or if there exist y1, . . . , yk ∈ Y such that

y ∼x y1 ∼x . . . ∼x yk ∼x y′.

Observe that ≡x is an equivalence relation. We let Yx denote the set of equivalence classes of Y
formed by ≡x. We also abuse notations, and define the relations z ∼x z′ and z ≡x z′ over Z
similarly, and let Zx denote the set of equivalence classes over Z formed by ≡x.
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Additionally, we denote n(x) = |Yx|, m(x) = |Zx|, and we write

Yx = {Yx
i : i ∈ [n(x)]} and Zx = {Zx

j : j ∈ [m(x)]}.

Finally, we let
Rx = {Yx

i ×Zx
j : i ∈ [n(x)], j ∈ [m(x)]}

be the partition of Y × Z into the combinatorial rectangles formed by Yx and Zx. We call Yx, Zx,
and Rx the CORE partitions of f with respect to x.

We next introduce equivalence relations over X that correspond to the CORE partitions formed
by the inputs. In addition, we define partial orders over the quotient sets associated with these
equivalence relations. Roughly, both the equivalence relations and the partial orders are defined by
comparing the corresponding CORE partitions. Similarly to Definition 3.1, the following definition
also depends κ, which is omitted from the notations to alleviate them.

Definition 3.2 (Equivalence relations and partial orders over X ). We define three equivalence
relations ≡B, ≡C, and ≡, over X as follows.

• We say that x ≡B x′ if Yx = Yx′.

• We say that x ≡C x′ if Zx = Zx′

• We say that x ≡ x′ if Rx = Rx′. Equivalently, x ≡ x′ if x ≡B x′ and x ≡C x′.
We define partial orders ⪯B, ⪯C, and ⪯ over the quotient sets X/≡B, X/≡C, and X/≡, respec-

tively, as follows.
• We say that [x]≡B ⪯B [x′]≡B if Yx refines Yx′.

• We say that [x]≡C ⪯C [x′]≡C if Zx refines Zx′.

• We say that [x]≡ ⪯ [x′]≡ if Rx refines Rx′. Equivalently, [x]≡ ⪯ [x′]≡ if [x]≡B ⪯B [x′]≡B and
[x]≡C ⪯C [x′]≡C.

For brevity, we write the partial orders as if they are over X , e.g., we write x ⪯B x′ instead
of [x]≡B ⪯B [x′]≡B.16 Finally, χ ∈ X is called B-minimal if [χ]≡B is minimal with respect to ⪯B,
χ is called C-minimal if [χ]≡C is minimal with respect to ⪯C, and χ is called R-minimal if [χ]≡ is
minimal with respect to ⪯.

As mentioned in Section 1, we are interested in the meet of all CORE partitions. We call this
new partition the CORE∧-partition of f . Similarly to previous notations, CORE∧-partition also
depends on κ, and we will omit it for brevity.

Definition 3.3 (CORE∧-partition). We denote

Y∧ :=
∧

x∈X
Yx =

∧
χ∈X :

χ is R-minimal

Yχ and Z∧ :=
∧

x∈X
Zx =

∧
χ∈X :

χ is R-minimal

Zχ,

16Note that if we had defined ⪯B, ⪯C, and ⪯ directly over X , then they would not correspond to partial orders.
Indeed, for the relations to be partial orders, it required that they are antisymmetric, i.e., if x ⪯ x′ and x′ ⪯ x then
x = x′. Observe that this is not generally the case, as the only guarantee we have is that x ≡ x′.
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and call these two partitions the CORE∧-partitions of f . We let n∧ = |Y∧| and m∧ = |Z∧|, and we
write the partitions as

Y∧ := {Y∧i : i ∈ [n∧]} and Z∧ := {Z∧j : j ∈ [m∧]}.

Finally, we let
R∧ = {Y∧i ×Z∧j : i ∈ [n∧], j ∈ [m∧]},

be the partition of Y × Z into the combinatorial rectangles formed by Y∧ and Z∧.
The partitions Y∧ and Z∧ are naturally associated with an equivalence relation ≡∧ over Y and

over Z, respectively: We say that y ≡∧ y′ if there exists Y∧ ∈ Y∧ such that y, y′ ∈ Y∧. Equivalently,
y ≡∧ y′ if y ≡χ y′ for all R-minimal χ ∈ X . Similarly, z ≡∧ z′ if there exists Z∧ ∈ Z∧ such that
z, z′ ∈ Z∧.

We next define an important special property of a functionality f , which we call CORE∧-forced.
This property plays a central role in both our positive and negative results, and generalizes the
forced property defined in [25], which states that any party can fix the distribution of the output,
using an appropriate distribution over its input.

Roughly, f is called CORE∧-forced if both B and C can each associate a distribution to each
set in the CORE∧-partition of their respective set of inputs, such that the output distribution of A
in each combinatorial rectangle in R∧ is fixed for every input x ∈ X .

Definition 3.4 (CORE∧-forced). The function f is said to be CORE∧-forced if there exist two
ensembles of efficiently samplable distributions Q = {Qκ,i}κ∈N,i∈[n∧] and R = {Rκ,j}κ∈N,j∈[m∧] over
Y and Z, respectively, such that the following holds.

{f(x, y∗, zj)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y, z∗)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, yi, z∗)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where y∗ ← Qκ,i, z∗ ← Rκ,j, and where yi and zj are the lexicographically smallest elements in Y∧i
and Z∧j , respectively.

Remark 3.5. Though our lowerbound shows that any securely computable solitary output function-
ality must be CORE∧-partition, this can be strengthened as follows. Instead of requiring that every
rectangle in R∧ is fixed for every x, it suffices to consider the meet of partitions formed by the CORE
partitions with respect to all R-minimal elements that are smaller than x, i.e.,

∧
χ⪯x:χ is R-minimal Rχ.

Then our lowerbound shows that for any x, the output distributions in the above collections of rect-
angles are fixed.

3.2 Our Main Results

We are now ready to state our results, providing both sufficient and necessary conditions for a
deterministic solitary output three-party functionalities with polynomial-sized domain, to be com-
putable with 1-security over point-to-point channels. The result for randomized functionalities,
where the domain of the randomness is polynomial as well, is handled below in Proposition 3.10
by reducing it to the deterministic case. We start by stating our negative results.
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Theorem 3.6. Let f : X ×Y×Z →W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ). If f can be computed with computational 1-security, then the
following hold.

1. For all sufficiently large κ ∈ N, all B-minimal χB and all C-minimal χC, there exists an
R-minimal χ ∈ X such that χB ≡B χ ≡C χC.

2. f is CORE∧-forced.
Moreover, suppose that f has the property that for all sufficiently large κ, it holds that either y ≡x y′

for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all x ∈ X and z, z′ ∈ Z. Then there exists an ensemble
of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and there exists a ppt algorithm S such
that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced property.

The proof is given in Section 4.
We now state our two positive results. The first positive result considers functionalities that sat-

isfy the property given in the “moreover” part of Theorem 3.6. Specifically, we get a characterization
(see Corollary 3.8 below) for when such functionalities can be computed securely. Interestingly, the
protocol used in the proof of the theorem below is a slight generalization of the protocol suggested
by [2].

Theorem 3.7. Let f : X ×Y×Z →W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, that |X |, |Y|, |Z| = poly(κ), and that the following hold.

1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all
x ∈ X and z, z′ ∈ Z.

2. f is CORE∧-forced.

3. There exists an ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt
algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced
property.

Then f can be computed with computational 1-security.

We thus have the following corollary, stating a characterization for a special class of function-
alities.

Corollary 3.8. Let f : X ×Y×Z →W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists and that |X |, |Y|, |Z| = poly(κ). Further assume that f has
the property that for all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′

for all x ∈ X and z, z′ ∈ Z. Then f can be computed with computational 1-security if and only if
the following hold.

1. f is CORE∧-forced.
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2. There exists an ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt
algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced
property.

The proof of Theorem 3.7 is given in Section 5.1. The next result gives another sufficient
condition. In fact, it characterizes a special class of functionalities, which includes (deterministic)
NIORP functionalities, where the output-receiving party A has no input (see Corollary 3.15 below).
Here, instead of assuming the functionality satisfies the property stated in the “moreover” part of
Theorem 3.6, we assume that A has a minimum input, i.e., smaller than all other inputs with
respect to ⪯.

Theorem 3.9. Let f : X ×Y×Z →W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), and that for all sufficiently large κ, there exists χ ∈ X such
that for all x ∈ X it holds that χ ⪯ x.17 Then f can be computed with computational 1-security if
and only if it is CORE∧-forced. Moreover, the protocol in the positive direction admits statistical
1-security.

The negative direction directly follows from Theorem 3.6. We prove both Theorem 3.7 and the
positive direction of Theorem 3.9 in Section 5.

The next proposition reduces the randomized case to the deterministic case. We stress that the
reduction holds for general domain sizes, and functionalities where every party obtains an output
(in fact, the reduction can be easily generalized to the multiparty setting assuming an honest
majority).

Proposition 3.10 (Reducing randomized functionalities to deterministic functionalities). Let
f : ({0, 1}∗)3 → {0, 1}∗ be a (randomized) three-party functionality. Define the deterministic func-
tionality f ′ : ({0, 1}∗)2 × ({0, 1}∗)2 × ({0, 1}∗)2 → {0, 1}∗ as follows.

f ′((x, r1), (y, r2), (z, r3)) = f(x, y, z; r1 ⊕ r2 ⊕ r3).

Then f can be computed with computational (statistical) 1-security if and only if f ′ can be computed
with computational (statistical) 1-security.

Proof. Let us first assume that f ′ can be computed with 1-security. To compute f (in the (f ′, g.o.d.)-
hybrid model), the parties will invoke (f ′, g.o.d.) with their original inputs x, y, and z, and where
r1, r2, r3 ← {0, 1}∗ are sampled uniformly at random. Security follows directly from the fact that
either r1, r2, or r3 are guaranteed to be a uniform random string. Indeed, a simulator for some
corrupted party will send to the trusted party T the same input the corrupted party used in the
protocol.

We next show that if f can be computed with 1-security, then so is f ′. Using Fact 2.11 and
the composition theorem, it suffices to present a protocol for f ′ in the {(f, g.o.d.), (f ′, fair)}-hybrid
model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17Note that there may be several minimum inputs, however, the assumption implies that they are all equivalent.
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Protocol 3.11.

Private inputs: party A holds (x, r1) ∈ ({0, 1}∗)2, party B holds (y, r2) ∈ ({0, 1}∗)2, and party C
holds (z, r3) ∈ ({0, 1}∗)2.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (f ′, fair) with their inputs. Let w1, w2, and w2 be the outputs of A, B, and
C, respectively.

2. If w1, w2, w3 ̸= ⊥ then A outputs w1, B outputs w2, and C outputs w3.

3. Otherwise, the parties invoke (f, g.o.d.) on their inputs x, y, and z, and output the result.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We next show that the protocol is secure. Consider an adversary A corrupting A. The other
cases are analogous. The simulator SimA will first query A to receive its input (x′, r′1) to (f ′, fair).

• If (x′, r′1) ̸= abort, then SimA sends (x′, r′1) to the trusted party.

• Otherwise, the adversary A chooses an input x′′ ∈ {0, 1}∗ to send to (f, g.o.d.).18 The
simulator samples r∗1 ← {0, 1}∗ and sends (x′′, r∗1) to the trusted party.

In both cases, SimA forwards the output w1 received from the trusted party to A, outputs whatever
A outputs, and halts.

Clearly, if A does not abort during the invocation of (f ′, fair), then its joint view and the output
of the honest parties is f(x′, y, z; r′1⊕r2⊕r3) in both worlds. Observe that if A does abort, however,
then the output in both worlds is distributed as f(x′′, y, z). □

3.2.1 Interesting Corollaries

Although our necessary and sufficient conditions do not coincide in general, for various interesting
families of functionalities the results do form a characterization. In the following section, we consider
several such interesting families and present a characterization for them, as can be derived from
Theorems 3.6, 3.7 and 3.9.

We first state the characterization for functionalities with at most three possible outputs. For
this class of functionalities, we make the observation that for every x ∈ X , either y ≡x y′ for all
y, y′ ∈ Y, or z ≡x z′ for all z, z′ ∈ Z.

Corollary 3.12 (Characterization of ternary-output functionalities). Let f : X ×Y×Z → {0, 1, 2}
be a deterministic solitary output three-party functionality. Assume that oblivious transfer exists
and that |X |, |Y|, |Z| = poly(κ). Then f can be computed with computational 1-security if and only
if the following hold.

1. For all sufficiently large κ ∈ N, all B-minimal χB and all C-minimal χC, there exists an
R-minimal χ ∈ X such that χB ≡B χ ≡C χC.

2. f is CORE∧-forced.
18If A sends an invalid value or does not send any value, the simulator sets x′′ to be the default value used by the

ideal functionality of f .
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3. There exists an ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt
algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced
property.

Proof. It suffices to show that Item 1 from the above statement implies Item 1 from Theorem 3.7.
That is, we show that for all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or
z ≡x z′ for all x ∈ X and z, z′ ∈ Z. Assume towards contradiction that for infinitely many κ’s,
there exist x, x′ ∈ X , y, y′ ∈ Y, and z, z′ ∈ Z such that y ̸≡x y′ and z ̸≡x′ z′. Now, observe
that as f is a ternary-output functionality, it holds that x and x′ are B-minimal and C-minimal,
respectively. Moreover, it holds that z ≡x z′ and that y ≡x′ y′. By (the assumed) Item 1 there
exists an R-minimal χ ∈ X satisfying x ≡B χ ≡C x′. However, such χ cannot exists since it satisfies
y ≡χ y′ and z ≡χ z′. □

We now state a characterization for functionalities that are symmetric with respect to the
inputs of B and C, i.e., where f(x, y, z) = f(x, z, y) for all x, y, and z. Here, the characterization
follows from the observation all y’s are equivalent and z’s are equivalent with respect to all x’s. In
particular, the CORE∧-forced property implies the simpler forced property (i.e., both B and C can
fix the distribution of the output).

Corollary 3.13 (Characterization of (B, C)-symmetric functionalities). Let f : X × D × D → W
be a deterministic solitary output three-party functionality. Assume that oblivious transfer exists,
that |X |, |D| = poly(κ), and that for all sufficiently large κ ∈ N, for all x ∈ X and for all y, z ∈ D
it holds that f(x, y, z) = f(x, z, y). Then f can be computed with computational 1-security if and
only if it is forced.

We next state a characterization for the case where the input of party A is a single bit. The
proof follows from the observation that for such functionalities there exists a minimum χ, hence we
can apply Theorem 3.9.

Corollary 3.14. Let f : {0, 1} × Y × Z → W be a deterministic solitary output three-party
functionality. Assume that |Y|, |Z| = poly(κ). Then f can be computed with computational 1-
security if and only if the following hold.

1. For all sufficiently large κ ∈ N, either 0 ⪯ 1 or 1 ⪯ 0.

2. f is CORE∧-forced.
Moreover, the protocol in the positive direction admits statistical 1-security.

Proof. First observe that if 0 ⪯ 1 or 1 ⪯ 0 for all sufficiently large κ ∈ N, then f can be computed
due to Theorem 3.9. For the other direction, we consider two cases. First, if f is not CORE∧-forced
then by Theorem 3.6 it cannot be computed with 1-security. Otherwise, if 0 ̸⪯ 1 and 1 ̸⪯ 0 infinitely
often, then both are R-minimal inputs infinitely often. However, there is no R-minimal χ such that
0 ≡B χ ≡C 1. Therefore, f cannot be computed due to Theorem 3.6. □

If A has no input, then the first property of Corollary 3.14 holds vacuously. Thus we have the
following.
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Corollary 3.15 (Characterization of NIORP functionalities). Let f : {λ} × Y × Z → W be a
deterministic solitary output three-party functionality. Assume that |Y|, |Z| = poly(κ). Then f
can be computed with computational 1-security if and only if it is CORE∧-forced. Moreover, the
protocol in the positive direction admits statistical 1-security.

4 Impossibility Results
In this section, we prove the necessary conditions stated in Theorem 3.6. Our proof is split into two
parts. In the first part, presented in Section 4.1, we apply the hexagon argument over the secure
protocol assumed to exist. This results in 6 ensembles of distributions, all of which are statistically
close. The second part of the proof, presented in Section 4.2, is dedicated to the analysis of these
6 ensembles. Specifically, we show how the assumption that the ensembles are close implies the
necessary conditions stated in Theorem 3.6.

4.1 The Hexagon Argument

In this section we present the hexagon argument, which is the first step in the proof of Theorem 3.6.
For a fixed three-party protocol π = (A, B, C) that is defined over secure point-to-point channels in
the plain model (without a broadcast channel or trusted setup assumptions), we can associate a
six-party protocol denoted Hex(π) = (B, A, C, B′, A′, C′) as illustrated in Figure 1. Formally, Hex(π)
is defined as follows.

Definition 4.1 (The hexagon protocol). Given a three-party protocol π = (A, B, C) we denote by
Hex(π) = (B, A, C, B′, A′, C′) the following six-party protocol. Parties A and A′ are set with the code
of A from π, parties B and B′ with the code of B from π, and parties C and C′ with the code of C
from π.

The communication network of Hex(π) is a cycle. Party A is connected to C, which is connected
to B′, which is connected to A′, which is connected to C′, which is connected to B, which is connected
to A.

The following lemma states that any attacker corrupting any four adjacent parties in the six-
party protocol Hex(π), can be perfectly emulated by an adversary corrupting a single party in
three-party π.

Lemma 4.2 (Mapping attackers for Hex(π) to attackers for π). Let π = (A, B, C) be a three-party
protocol and let Hex(π) = (B, A, C, B′, A′, C′) be as in Definition 4.1. In the following, for possible
inputs (x, x′, y, y′, z, z′) for protocol Hex(π) we let h = (x, x′, y, y′, z, z′). Then the following hold.

1. For every non-uniform ppt adversary AB,C′

H corrupting {A, B, C′, A′} in Hex(π), there exists a
non-uniform ppt adversary A corrupting A in π, receiving the inputs y, z′, and x′ for B, C′,
and A′, respectively, as auxiliary information, that perfectly emulates AB,C′

H , namely
{

REALπ,A(y,z′,x′,aux)
(
κ,
(
x, y′, z

))}
κ,h,aux

≡
{

REALHex(π),AB,C′
H (aux) (κ, h)

}
κ,h,aux

.
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2. For every non-uniform ppt adversary AB′,C
H corrupting {A′, B′, C, A} in Hex(π), there exists a

non-uniform ppt adversary A′ corrupting A in π, receiving the inputs y′, z, and x for B′, C,
and A, respectively, as auxiliary information, that perfectly emulates AB′,C

H , namely{
REALπ,A′(y′,z,x,aux)

(
κ,
(
x′, y, z′

))}
κ,h,aux

≡
{

REALHex(π),AB′,C
H (aux) (κ, h)

}
κ,h,aux

.

3. For every non-uniform ppt adversary BA,C
H corrupting {B, A, C, B′} in Hex(π), there exists a

non-uniform ppt adversary B corrupting B in π, receiving the inputs x, z, and y′ for A, C, and
B′, respectively, as auxiliary information, that perfectly emulates BA,C

H , namely{
REALπ,B(x,z,y′,aux)

(
κ,
(
x′, y, z′

))}
κ,h,aux

≡
{

REALHex(π),BA,C
H (aux) (κ, h)

}
κ,h,aux

.

4. For every non-uniform ppt adversary BA′,C′

H corrupting {B′, A′, C′, B} in Hex(π), there exists a
non-uniform ppt adversary B′ corrupting B in π, receiving the inputs x′, z′, and y for A′, C′,
and B, respectively, as auxiliary information, that perfectly emulates BA′,C′

H , namely{
REALπ,B′(x′,z′,y,aux)

(
κ,
(
x, y′, z

))}
κ,h,aux

≡
{

REALHex(π),BA′,C′
H (aux) (κ, h)

}
κ,h,aux

.

5. For every non-uniform ppt adversary CA,B
H corrupting {C′, B, A, C} in Hex(π), there exists a

non-uniform ppt adversary C corrupting C in π, receiving the inputs y, x, and z for A, B, and
C, respectively, as auxiliary information, that perfectly emulates CA,B

H , namely{
REALπ,C(y,x,z,aux)

(
κ,
(
x′, y′, z′

))}
κ,h,aux

≡
{

REALHex(π),CA,B
H (aux) (κ, h)

}
κ,h,aux

.

6. For every non-uniform ppt adversary CA′,B′

H corrupting {C, B′, A′, C′} in Hex(π), there exists a
non-uniform ppt adversary C′ corrupting C in π, receiving the inputs y′, x′, and z′ for A, B,
and C, respectively, as auxiliary information, that perfectly emulates CA′,B′

H , namely{
REALπ,C′(y′,x′,z′,aux) (κ, (x, y, z))

}
κ,h,aux

≡
{

REALHex(π),CA′,B′
H (aux) (κ, h)

}
κ,h,aux

.

Proof. We will prove only Item 1 as the rest follows from a similar argument. Fix an adversary
AB,C′

H corrupting {A, B, C′, A′} in Hex(π). Define an adversary A corrupting A in π as follows. First,
it initializes AB,C′

H with input x for A, input y for B, input z′ for C′, input x′ for A′, and auxiliary
information aux. Each round, it passes to AB,C′

H the messages received from the honest parties B
and C, and replies to them as AB,C′

H does. Finally, A output whatever AB,C′

H outputs.
By the definition of A, in each round, the messages it receives from and sends to B and C in

π, are identically distributed to the messages AB,C′

H received from and sent to B′ and C in Hex(π).
Therefore the transcript in both executions are identically distributed. In particular, the joint
distribution of the view of the adversary and the output of the honest parties are identical in both
executions. □
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An important use-case of the above lemma is for 1-secure protocols π computing some 3-party
functionality f . Here, any attacker in π that emulates some attacker for Hex(π) as given by
Lemma 4.2, can be simulated in the ideal world of f . Thus, we get the following corollary.

Corollary 4.3 (Mapping attackers for Hex(π) to simulators for f). Let π = (A, B, C) be a three-
party protocol computing some solitary output three-party functionality f : ({0, 1}∗)3 → {0, 1}∗ with
computational 1-security. Then the following hold.

1. For every non-uniform ppt adversary AB,C′

H corrupting {A, B, C′, A′} in Hex(π), there exists a
non-uniform ppt simulator SimB,C′

A in the ideal world of f corrupting A, such that{
IDEAL

f,SimB,C′
A (y,z′,x′,aux)

(
κ,
(
x, y′, z

))}
κ,h,aux

C≡
{

REALHex(π),AB,C′
H (aux) (κ, h)

}
κ,h,aux

.

2. For every non-uniform ppt adversary AB′,C
H corrupting {A′, B′, C, A} in Hex(π), there exists a

non-uniform ppt simulator SimB′,C
A in the ideal world of f corrupting A, such that{

IDEAL
π,SimB′,C

A (y′,z,x,aux)
(
κ,
(
x′, y, z′

))}
κ,h,aux

C≡
{

REALHex(π),AB′,C
H (aux) (κ, h)

}
κ,h,aux

.

3. For every non-uniform ppt adversary BA,C
H corrupting {B, A, C, B′} in Hex(π), there exists a

non-uniform ppt simulator SimA,C
B in the ideal world of f corrupting B, such that{

IDEAL
π,SimA,C

B (x,z,y′,aux)
(
κ,
(
x′, y, z′

))}
κ,h,aux

C≡
{

REALHex(π),BA,C
H (aux) (κ, h)

}
κ,h,aux

.

4. For every non-uniform ppt adversary BA′,C′

H corrupting {B′, A′, C′, B} in Hex(π), there exists a
non-uniform ppt simulator SimA′,C′

B in the ideal world of f corrupting B, such that{
IDEAL

π,SimA′,C′
B (x′,z′,y,aux)

(
κ,
(
x, y′, z

))}
κ,h,aux

C≡
{

REALHex(π),BA′,C′
H (aux) (κ, h)

}
κ,h,aux

.

5. For every non-uniform ppt adversary CA,B
H corrupting {C′, B, A, C} in Hex(π), there exists a

non-uniform ppt simulator SimA,B
C in the ideal world of f corrupting C, such that{

IDEAL
π,SimA,B

C (y,x,z,aux)
(
κ,
(
x′, y′, z′

))}
κ,h,aux

C≡
{

REALHex(π),CA,B
H (aux) (κ, h)

}
κ,h,aux

.

6. For every non-uniform ppt adversary CA′,B′

H corrupting {C, B′, A′, C′} in Hex(π), there exists a
non-uniform ppt simulator SimA′,B′

C in the ideal world of f corrupting C, such that{
IDEAL

π,SimA′,B′
C (y′,x′,z′,aux) (κ, (x, y, z))

}
κ,h,aux

C≡
{

REALHex(π),CA′,B′
H (aux) (κ, h)

}
κ,h,aux

.
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One important use-case of Corollary 4.3 is when the six adversaries for Hex(π) are semi-honest.
This is due to the fact that the views of the honest parties are identically distributed in all six
cases, hence the same holds with respect to their outputs. Next, consider the joint distribution of
the outputs of A and A′ in Hex(π). Observe that for any adversary corrupting either of them, say
A, its simulator given by Corollary 4.3 must be able to generate the output of A, as it is part of
the view. Furthermore, if either A or A′ is honest, then the simulator can force the output of A in
the ideal world of f to be indistinguishable from the real world.

Now, recall that these simulators are for the malicious setting, hence they can send arbitrary
inputs to the trusted party. Thus, the distributions over the outputs depend on the distribution
over the input sent by each simulator to the trusted party. Notice that when considering semi-
honest adversaries for Hex(π) that have no auxiliary input, these distributions depend only on the
security parameter and the inputs given to the semi-honest adversary.

For example, in the case where {B, A, C, B′} are corrupted, the simulator samples a random
input y∗ according to some distribution Q that depends only on the security parameter κ, and the
inputs y, x, z, and y′ given to the adversary. The input y∗ must be such that the joint output of
the simulator and the output of A in the ideal world of f , must be indistinguishable from the joint
output of A and A′ in Hex(π).

Lemma 4.4. Let f : ({0, 1}∗)3 → {0, 1}∗ be a solitary output three-party functionality that can be
computed with computational 1-security. Then the there exist

• two ensembles of efficiently samplable distributions

PB,C′ = {P B,C′

κ,x,y,z′,x′}κ∈N,x,x′,y,z′∈{0,1}∗ and PB′,C = {P B′,C
κ,x′,y′,z,x}κ∈N,x,x′,y,z′∈{0,1}∗

over X ,

• two ensembles of efficiently samplable distributions

Q =
{
Qκ,y′,z,x,y

}
κ∈N,x,y,y′,z∈{0,1}∗ and Q′ =

{
Q′κ,y,z′,x′,y′

}
κ∈N,x,y,y′,z∈{0,1}∗

over Y,

• two ensembles of efficiently samplable distributions

R =
{
Rκ,z,x,y,z′

}
κ∈N,x,y,z,z′∈{0,1}∗ and R′ =

{
R′κ,z′,x′,y′,z

}
κ∈N,x,y,z,z′∈{0,1}∗

over Z,

• and six ppt algorithms SB,C′, SB′,C, SB, S′B, SC, and S′C,

such that the following six distribution ensembles are computationally indistinguishable

1. {SB,C′ (x, y, z′, x′, x∗1, f(x∗1, y′, z))}κ,x,x′,y,y′,z,z′, where x∗1 ← P B,C′

κ,x,y,z′,x′.

2. {SB′,C (x′, y′, z, x, x∗2, f(x∗2, y, z′))}κ,x,x′,y,y′,z,z′, where x∗2 ← P B′,C
κ,x′,y′,z,x.

3. {(SB (y′, z, x, y, y∗1) , f(x′, y∗1, z′))}κ,x,x′,y,y′,z,z′, where y∗1 ← Qκ,y′,z,x,y.

4. {(f(x, y∗2, z), S′B (y, z′, x′, y′, y∗2))}κ,x,x′,y,y′,z,z′, where y∗2 ← Q′κ,y,z′,x′,y′.
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5. {(SC (z, x, y, z′, z∗1) , f(x′, y′, z∗1))}κ,x,x′,y,y′,z,z′, where z∗1 ← Rκ,z,x,y,z′.

6. {(f(x, y, z∗2), S′C (z′, x′, y′, z, z∗2))}κ,x,x′,y,y′,z,z′, where z∗2 ← R′κ,z′,x′,y′,z.

Moreover, if the domain of f is of polynomial size in κ, then the above ensembles are statistically
close.

Proof. let π be a three-party protocol computing f with 1-security, and consider an honest execution
of Hex(π). Let (OUT(κ, h), OUT′(κ, h)) denote the joint distribution of the outputs of A and A′,
respectively, in such execution of Hex(π), where h = (x, x′, y, y′, z, z′) are the inputs of the parties.
We will show how to obtain each of the Ensembles 1–6, such that each of them is computationally
indistinguishable from (OUT,OUT’).

We first show how to obtain Ensemble 1. Ensemble 2 can be obtained using a similar argument.
Consider the semi-honest adversary AB,C′

H corrupting {A, B, C′, A′} with no additional auxiliary
information, that outputs the output of A and A′ (note that this is well-defined since the adversary
is semi-honest). By Item 1 from Corollary 4.3, there exists a non-uniform ppt simulator SimB,C′

A in
the ideal world of f corrupting A, such that{

IDEAL
f,SimB,C′

A (y,z′,x′)
(
κ,
(
x, y′, z

))}
κ,h

C≡
{

REALHex(π),AB,C′
H

(κ, h)
}

κ,h
.

Since only A receives an output in the ideal world of f , it follows that{
VIEWideal

f,SimB,C′
A (y,z′,x′)

(
κ,
(
x, y′, z

))}
κ,h
≡
{

IDEAL
f,SimB,C′

A (y,z′,x′)
(
κ,
(
x, y′, z

))}
κ,h

C≡
{

VIEWreal
Hex(π),AB,C′

H
(κ, h)

}
κ,h

≡
{
(OUT, OUT′)

}
κ,h ,

where h = (x, x′, y, y′, z, z′). We let Pκ,x,y,z′,x′ denote the distribution over the input x∗ that SimB,C′

A
sends to the trusted party T, and let SB,C′(x, y, z′, x′, x∗1, w) output whatever SimB,C′

A outputs given
that it sent x∗1 to T and received the output w. Therefore,{

SB,C′ (
x, y, z′, x′, x∗1, f(x∗1, y′, z)

)}
κ,h
≡
{

VIEWideal
f,SimB,C′

A (y,z′,x′)

(
κ,
(
x, y′, z

))}
κ,h

C≡
{(

OUT(κ, h), OUT′(κ, h)
)}

κ,h ,

where x∗1 ← P B,C′

κ,x,y,z′,x′ .
We now show how to obtain Ensemble 3. The rest of the ensembles can be obtained using

a similar argument. Similarly to the previous case, we consider the semi-honest adversary BA,C
H

corrupting {B, A, C, B′} with no additional auxiliary information, that outputs the output of A. By
Item 3 from Corollary 4.3, there exists a non-uniform ppt simulator SimA,C

B in the ideal world of f
corrupting B, such that{

IDEAL
π,SimA,C

B (x,z,y′)
(
κ,
(
x′, y, z′

))}
κ,h

C≡
{

REALHex(π),BA,C
H

(κ, h)
}

κ,h
.
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Since only A and A′ receives an output in the execution of Hex(π), it follows that{
REALHex(π),BA,C

H
(κ, h)

}
κ,h
≡
{(

VIEWreal
Hex(π),BA,C

H

(
κ,
(
x′, y, z′

))
, OUTideal

Hex(π),BA,C
H

(
κ,
(
x′, y, z′

)))}
κ,h

≡
{(

OUT(κ, h), OUT′(κ, h)
)}

κ,h .

Let Qκ,y′,z,x,y denote the distribution over the input y∗ that SimA,C
B sends to the trusted party T,

and let SB(y′, z, x, y, y∗1) output whatever SimA,C
B outputs given that it sent y∗1 to T. Then

{(
SB
(
y′, z, x, y, y∗1

)
, f(x′, y∗1, z′)

)}
κ,h ≡

{
IDEAL

π,SimA,C
B (x,z,y′)

(
κ,
(
x′, y, z′

))}
κ,h

C≡
{

REALHex(π),BA,C
H

(κ, h)
}

κ,h

≡
{(

OUT(κ, h), OUT′(κ, h)
)}

κ,h ,

where y∗1 ← Qκ,y′,z,x,y.
As for the “moreover” part, observe that if the domain of f is of polynomial size, then the

support of all ensembles is of polynomial size. Thus, by Fact 2.3 the ensembles are statistically
close. □

4.2 Analyzing The Ensembles

In this section, we analyze the six distribution ensembles given by Lemma 4.4. For the sake of
brevity, throughout the entire section, we fix a deterministic solitary output three-party function-
ality that can be computed with 1-security f : X × Y × Z → W, where |X |, |Y|, |Z| = poly(κ).
Additionally, we fix all distribution ensembles and ppt algorithms from Lemma 4.4, using the same
notations.

It will be convenient in the proof to use the following notion of statistical independence. Roughly,
a distribution ensemble is statistically independent of one of its variables, if changing the variable
results in a statistically close distribution ensemble.

Definition 4.5 (Statistical independence). Let X = {Xa,b,n}a∈Dn,b∈D′
n,n∈N be a distribution en-

semble. We say that X is statistically independent of {D′n}n∈N if

{Xa,b,n}a∈Dn,b,b′∈D′
n,n∈N

S≡ {Xa,b′,n}a∈Dn,b,b′∈D′
n,n∈N.

For the sake of simplifying the presentation, we will usually say that X is statistically indepen-
dent of b, rather than referring to its domain.

Theorem 3.6 follows from the following two claims, stating the conditions specified in it.

Claim 4.6. For all sufficiently large κ ∈ N, if χC and χB are C-minimal and B-minimal, respectively,
then there exists an R-minimal χ ∈ X such that χC ≡C χ ≡B χB.

Claim 4.7. For every κ ∈ N and every i ∈ [n∧] we let yi denote the lexicographically smallest
element of Y∧i . Similarly, for j ∈ [m∧] we let zj denote the lexicographically smallest element of
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Z∧j . Then there exist two ensembles of efficiently samplable distributions Q = {Qκ,i}κ∈N,i∈[n∧] and
R = {Rκ,j}κ∈N,j∈[m∧] over Y and Z, respectively, such that the following holds.

{f(x, y∗, zj)}κ,x,i,j,y,z

S≡ {f(x, y∗, z)}κ,x,i,j,y,z

S≡ {f(x, y, z∗)}κ,x,i,j,y,z

S≡ {f(x, yi, z∗)}κ,x,i,j,y,z (10)

where y∗ ← Qκ,i, z∗ ← Rκ,j.
Moreover, suppose that f has the property that for all sufficiently large κ, it holds that either

y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all x ∈ X and z, z′ ∈ Z. Then there exists an
ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ,x,i,j,y,z
S≡ {f(x, y∗, z)}κ,x,i,j,y,z,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced property.

We prove Claims 4.6 and 4.7 below. We first make the following simple yet useful observation,
which states that each of the marginal distributions of the ensembles are statistically independent
of several of the inputs.

Claim 4.8. Consider the ppt algorithms SB,C′ and SB′,C from Lemma 4.4, and write them as
SB,C′ = (SB,C′

1 , SB,C′

2 ) and SB′,C = (SB′,C
1 , SB′,C

2 ). Then both SB,C′

1 and SB′,C
1 are statistically inde-

pendent of x′, y′, and z′. Similarly, both SB,C′

2 and SB′,C
2 are statistically independent of x, y, and

z.

Proof. We prove that SB,C′

1 is statistically independent of x′, y′, and z′. The second statement can
be proven using an analogous argument. Observe that by Lemma 4.4, it follows that

{SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z)

)
}κ,x,x′,y,y′,z,z′

S≡ {SB
(
y′, z, x, y, y∗

)
}κ,x,x′,y,y′,z,z′

S≡ {SC
(
z, x, y, z′, z∗

)
}κ,x,x′,y,y′,z,z′ ,

where y∗ ← Qκ,y′,z,x,y and z∗ ← Rκ,z,x,y,z′ . As SB and SC are statistically independent of x′, z′ and
x′, y′, respectively, it follows that SB,C′

1 is statistically independent of them as well. □

The following two lemmata are the main ingredients in our proof. The first lemma roughly
identifies the support of the inputs x∗1 and x∗2 used by ppt algorithms SB,C′ and SB′,C (up to
negligible probability). The second lemma identifies when it is possible to change some of the
inputs, such that at least one of the marginal distributions of the outcome of the ppt algorithms
SB,C′ and SB′,C remains similar.

Lemma 4.9. Consider the distribution ensembles PB,C′ and PB′,C from Lemma 4.4. Then for
every x, x′ ∈ X , every y ∈ Y, and every z′ ∈ Z, it holds that

Pr
x∗

1←P B,C′
κ,x,y,z′,x′

[
x∗1 ̸⪯C x ∨ x∗1 ̸⪯B x′

]
= neg(κ).

Similarly, for every x, x′ ∈ X , every y′ ∈ Y, and every z ∈ Z, it holds that

Pr
x∗

2←P B′,C
κ,x′,y′,z,x

[
x∗2 ̸⪯B x ∨ x∗2 ̸⪯C x′

]
= neg(κ).

In particular, for all sufficiently large κ and every x, x′ ∈ X , there exists x∗ ∈ X such that

x∗ ⪯C x ∧ x∗ ⪯B x′.
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Lemma 4.10. The following hold.

1. {
SB,C′

1
(
x, y, z′, x′, x∗1, f(x∗1, y′, z1)

)}
κ,x,x′,y,y′,z1,z2,z′

S≡
{

SB,C′

1
(
x, y, z′, x′, x∗1, f(x∗1, y′, z2)

)}
κ,x,x′,y,y′,z1,z2,z′

,

where z1 ≡x̃ z2 for all x̃ ⪯C x, and where x∗1 ← P B,C′

κ,x,y,z′,x′.

2. {
SB,C′

2
(
x, y, z′, x′, x∗1, f(x∗1, y′1, z)

)}
κ,x,x′,y,y′

1,y′
2,z,z′

S≡
{

SB,C′

2
(
x, y, z′, x′, x∗1, f(x∗1, y′2, z)

)}
κ,x,x′,y,y′

1,y′
2,z,z′

,

where y′1 ≡x̃ y′2 for all x̃ ⪯C x, and where x∗1 ← P B,C′

κ,x,y,z′,x′.

3. {
SB′,C

1
(
x′, y′, z, x, x∗2, f(x∗2, y, z′1)

)}
κ,x,x′,y,y′,z,z′

1,z′
2

S≡
{

SB′,C
1

(
x′, y′, z, x, x∗2, f(x∗2, y, z′2)

)}
κ,x,x′,y,y′,z,z′

1,z′
2

,

where z′1 ≡x̃ z′2 for all x̃ ⪯C x, and where x∗2 ← P B′,C
κ,x′,y′,z,x.

4. {
SB′,C

2
(
x′, y′, z, x, x∗2, f(x∗2, y1, z′)

)}
κ,x,x′,y1,y2,y′,z,z′

S≡
{

SB′,C
2

(
x′, y′, z, x, x∗2, f(x∗2, y2, z′)

)}
κ,x,x′,y1,y2,y′,z,z′

,

where y1 ≡x̃ y2 for all x̃ ⪯C x, and where x∗2 ← P B′,C
κ,x′,y′,z,x.

Lemmas 4.9 and 4.10 are proved in Sections 4.2.1 and 4.2.2, respectively. Before providing the
proofs, we first show that they imply Claims 4.6 and 4.7, and thus they imply Theorem 3.6.

Proof of Claim 4.6. Let χB and χC be B-minimal and C-minimal, respectively. We assume without
loss of generality that χB ̸≡ χC, as otherwise the claim is trivial. By Lemma 4.9 there exists χ ∈ X
satisfying χ ⪯B χB and χ ⪯C χC. By the minimality of χB and χC it follows that χ ≡B χB and
χ ≡C χC. It is left to show that χ is R-minimal. Let χ̃ ⪯ χ. By Lemma 4.9 there exists x̃ satisfying
x̃ ⪯B χ̃ ⪯B χ ≡B χB and x̃ ⪯C χ̃ ⪯C χ ≡C χC. By the minimality of χB and χC it follows that
χB ≡B x̃ ≡C χC. Therefore x̃ ≡B χ and x̃ ≡C χ, hence x̃ ≡ χ. □

Proof of Claim 4.7. We first define the distributions Qκ,i and Rκ,j , for i ∈ [n∧] and j ∈ [m∧]. Let
Q′ and R′ be the distribution ensembles from Lemma 4.4. In the following, we fix x0, y0, and
z0 to be the lexicographically smallest elements of X , Y, and Z, respectively. We let Qκ,i be the
distribution Q′κ,yi,z0,x0,y0 and let Rκ,j be the distribution R′κ,z0,x0,y0,zj

.
We now prove Equation (10). The second transition follows from Lemma 4.4. We prove the

first transition. The last transition can be proved using an analogous argument. Let SB,C′ be as in
Lemma 4.4, and let SB,C′

1 be the first entry in its output. First, observe that if z ≡∧ zj , then z ≡χ zj

for all R-minimal χ. The minimality of all such χ implies that z ≡x̃ zj for all x̃ ⪯C x. Second,
by Lemma 4.9 x∗ ⪯C x with probability at least 1− neg(κ). Thus, combining with Lemma 4.10 it
follows that{

SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z)

)}
κ,j,x,x′,y,y′,z,z′

S≡
{

SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zj)

)}
κ,j,x,x′,y,y′,z,z′

,

(11)
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where x∗ ← P B,C′

κ,x,y,z′,x′ . Furthermore, by Claim 4.8 the above ensembles are statistically independent
of x′, y′, and z′, thus the ensembles are statistically close for fixed x′ = x0, y′ = y0, and z′ = z0,
i.e., it holds that{

SB,C′

1 (x, y, z0, x0, x∗, f(x∗, y0, z))
}

κ,j,x,y,z

S≡
{

SB,C′

1 (x, y, z0, x0, x∗, f(x∗, y0, zj))
}

κ,j,x,y,z
.

Combined with Lemma 4.4 this implies that

{f(x, y∗, z)}κ,j,x,y,z

S≡
{

SB,C′

1 (x, y, z0, x0, x∗, f(x∗, y0, z))
}

κ,j,x,y,z

S≡
{

SB,C′

1 (x, y, z0, x0, x∗, f(x∗, y0, zj))
}

κ,j,x,y,z

S≡ {f(x, y∗, zj)}κ,j,x,y,z ,

where x∗ ← P B,C′
κ,x,y,z0,x0 and y∗ ← Q′κ,y,z0,x0,y0 . Finally, observe that this implies that

{f(x, y∗, zj)}κ,x,i,j,y,z

S≡ {f(x, y∗, z)}κ,x,i,j,y,z ,

where y∗ ← Q′κ,yi,z0,x0,y0 ≡ Qκ,i.
We now prove the “moreover” part of the claim. Let KB ⊆ N be the set of all κ ∈ N such that

y ≡x y′ for all x ∈ X and y, y′ ∈ Y, and let KC ⊆ N be the set of all κ ∈ N such that z ≡x z′

for all x ∈ X and z, z′ ∈ Z. For every κ ∈ KB, we define the distribution Pκ,x as P B,C′
κ,x,y0,z0,x0

and let S(1κ, x, x∗, w) output SB,C′

1 (x, y0, z0, x0, x∗, w). Similarly, for any κ ∈ KC we define the
distribution Pκ,x as P B′,C

κ,x0,y0,z0,x and let S(1κ, x, x∗, w) output SB′,C
1 (x0, y0, z0, x, x∗, w). Observe

that since |X |, |Y|, |Z| = poly(κ) identifying whether κ ∈ KB or κ ∈ KC can be done efficiently.
To conclude the proof, we now show that

{S (1κ, x, x∗, f(x∗, y, z))}κ,x,i,j,y,z
S≡ {f(x, y∗, z)}κ,x,i,j,y,z, (12)

where x∗ ← Pκ,x and y∗ ← Qκ,i. Assume for the sake of contradiction that Equation (12) is false.
Then the ensembles have a statistical distance of at least 1/ poly(κ), for infinitely many κ ∈ N.
By assumption, κ ∈ KB ∪ KC for all sufficiently large κ, hence the distance of 1/ poly(κ) holds for
infinitely many κ ∈ KB ∪KC. We assume without loss of generality that all such infinitely many κ
belong to KB. However, by the definition of Pκ,x and the ppt algorithm S, it holds that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈KB,x,i,j,y,z ≡ {SB,C′

1 (x, y0, z0, x0, x∗, f(x∗, y, z))}κ∈KB,x,i,j,y,z,

where x∗ ← P B,C′
κ,x,y0,z0,x0 . Thus,

{SB,C′

1 (x, y0, z0, x0, x∗, f(x∗, y, z))}κ∈KB,x,i,j,y,z ̸
S≡ {f(x, y∗, z)}κ∈KB,x,i,j,y,z,

which contradicts Lemma 4.4. □

4.2.1 Proof of Lemma 4.9

Proof of Lemma 4.9. We prove the first part of the claim. The second part follows from an analo-
gous argument. For brevity, we write x∗ instead of x∗1. Assume for the sake of contradiction that
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there exist x, x′ ∈ X , y ∈ Y, z′ ∈ Z, and a polynomial p, such that for infinitely many κ’s it holds
that

Pr
x∗←P B,C′

κ,x,y,z′,x′

[
x∗ ̸⪯C x ∨ x∗ ̸⪯B x′

]
≥ 1/p(κ).

Then by the union bound it follows that for infinitely many κ’s either

Pr
x∗←P B,C′

κ,x,y,z′,x′
[x∗ ̸⪯C x] ≥ 1/2p(κ)

or
Pr

x∗←P B,C′
κ,x,y,z′,x′

[
x∗ ̸⪯B x′

]
≥ 1/2p(κ).

Assume the former without loss of generality. We next show that Ensembles 1 and 4 are statistically
far, that is, we show that

{SB,C′ (
x, y, z′, x′, x∗, f(x∗, y′, z)

)
}κ,x,x′,y,y′,z,z′ ̸ S≡ {

(
f(x, y∗, z), S′B

(
y, z′, x′, y′, y∗

))
}κ,x,x′,y,y′,z,z′ ,

(13)

where x∗ ← P B,C′

κ,x,y,z′,x′ and y∗ ← Q′κ,y,z′,x′,y′ , thus contradicting Lemma 4.4.
By Fact 2.4 it suffices to show a distinguisher. The distinguisher D will simply consider the first

entry and infer the equivalence class of z. Formally, let CClassx(w) output the unique j ∈ [m(x)]
such that w ∈ f(x,Y,Zx

j ). Observe that CClassx can be computed in polynomial time since |Y|
and |Z| are polynomials. Then, given an output w ∈ W in the first entry, our distinguisher D
outputs 1 if CClassx(w) = j, where z ∈ Zx

j , and outputs 0 otherwise. Clearly, given the output
from the ensemble on the right-hand side of Equation (13), D outputs 1 with probability 1. We
next analyze the probability of SB′,C outputting a value w′ satisfying CClassx(w′) = j, and show
that it is significantly far from 1, thus proving that D has a noticeable distinguishing advantage.

Intuitively, if x∗ ̸⪯C x then SB,C′ lacks information about the equivalence class of z with respect
to the input x. Therefore it will have to guess it. In the following, we abuse notations and for z ∈ Z
we let CClassx(z) output the value j ∈ [m(x)] satisfying z ∈ Zx

j . Let SB,C′

1 be the first entry in the
output of SB,C′ . We next formalize the above intuition. First observe that by the union bound, for
each of the infinitely many κ’s considered there exists x̃ ∈ X satisfying x̃ ̸⪯C x, such that

Pr
x∗←P B,C′

κ,x,y,z′,x′
[x∗ = x̃] ≥ 1

2p(κ) · |X | .

We let z1, z2 ∈ Z satisfy z1 ≡x̃ z2 and z1 ̸≡x z2. The next claim roughly states that for SB,C′

1 ,
changing from z = z1 to z = z2 will not change its output with noticeable probability.

Claim 4.11. For all x′ ∈ X , y, y′ ∈ Y, and z′ ∈ Z, it holds that

Pr
[
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z1)

)
= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

)]
≥ 1

2p(κ) · |X | − neg(κ),

where the probability is taken over the random coins of SB,C′

1 , and where x∗ ← P B,C′

κ,x,y,z′,x′.

The claim is proven below. We first use it to show how D can distinguish with non-negligible
probability. Consider the case where z ← {z1, z2} is sampled uniformly at random and x∗ ←
P B,C′

κ,x,y,z′,x′ , where both are sampled independently. We denote

q := Pr
[
SB,C′

1
(
x, y, z′, x′, x∗1, f(x∗1, y′, z1)

)
= SB,C′

1
(
x, y, z′, x′, x∗2, f(x∗2, y′, z2)

)]
.
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Then

Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z)

))
= CClassx (z)

]
= 1

2 · Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z1)

))
= CClassx (z1)

]
+ 1

2 · Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z2)

]
≤ 1

2 ·
(
q · Pr

[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z1)

]
+ 1− q

)
+ 1

2 · Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z2)

]
.

Now, let
a := Pr

[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z1)

]
,

and let
b := Pr

[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z2)

]
.

Then a + b ≤ 1. Therefore

Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z)

))
= CClassx (z)

]
≤ 1

2 · (aq + 1− q) + 1
2 · b

≤ 1
2 · (aq + 1− q) + 1

2 −
1
2 · a

= 1
2 · (1− q) (1− a) + 1

2
≤ 1− 1

2 · q

≤ 1− 1
2 ·
( 1

2p(κ) · |X | − neg(κ)
)

,

where the last inequality follows from Claim 4.11. Since we assume |X | to be polynomial in κ,
it follows that D has a noticeable distinguishing advantage. □

Proof of Claim 4.11. Since z1 ≡x̃ z2 there exist zi1 , . . . , zik
∈ Z such that

z1 ∼x̃ zi1 ∼x̃ . . . ∼x̃ zik
∼x̃ z2,

where k = k(κ). For convenience, we let zi0 := z1 and zik+1 := z2. This implies the existence of
yij , y′ij

∈ Y for every j ∈ {0, . . . , k + 1}, such that the following hold.

1. f(x̃, y′, zi0) = f(x̃, yi0 , zi0).

2. For all j ∈ {0, . . . , k} it holds that f(x̃, y′ij
, zij ) = f(x̃, yij+1 , zij+1).

3. f(x̃, y′ik+1
, zik+1) = f(x̃, y′, zik+1).

Now, observe that the event

SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zi0)

)
= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zik+1)

)
is implied by the conjunction of the following four events:
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1. SB,C′

1 (x, y, z′, x′, x∗, f(x∗, y′, zi0)) = SB,C′

1 (x, y, z′, x′, x∗, f(x∗, yi0 , zi0)).

2. For all j ∈ {0, . . . , k} it holds that

SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, y′ij

, zij )
)

= SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, yij+1 , zij+1)

)
.

3. For all j ∈ [k] it holds that

SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, yij , zij )

)
= SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, y′ij

, zij )
)

.

4. SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, y′ik+1

, zik+1)
)

= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zik+1)

)
.

Furthermore, observe that Event 2 is implied by the event x∗ = x̃. Let E be the event that Events 1,
3, and 4 occur. Then

Pr
[
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zi0)

)
= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zik+1)

)]
≥ Pr [x∗ = x̃ | E] · Pr [E]

Additionally, by Claim 4.8 it follows that Pr [E] ≥ 1− neg(κ), hence
1

2p(κ) · |X | ≤ Pr [x∗ = x̃] ≤ Pr [x∗ = x̃ | E] · Pr [E] + neg(κ).

Therefore

Pr
[
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zi0)

)
= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zik+1)

)]
≥ 1

2p(κ) · |X | − neg(κ),

as claimed. □

4.2.2 Proof of Lemma 4.10

Proof of Lemma 4.10. We prove only the first item. The rest can be proved using a similar argu-
ment. We also write x∗ instead of x∗1 for the sake of brevity. Assume towards contradiction that
the claim is false. Then by Fact 2.4 there exists a distinguisher D such that for infinitely many κ,
there exist x, x′ ∈ X , y, y′ ∈ Y, and z1, z2, z′ ∈ Z, satisfying

Pr
[
D
(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z1)

))
= 1

]
− Pr

[
D
(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= 1

]
≥ 1

poly(κ) .

To alleviate notations, we will write S(x, y, x∗, w) instead of SB,C′

1 (x, y, z′, x′, x∗, w). First, we claim
that there exists x̃ ∈ X , such that x∗ = x̃ occurs with noticeable probability, and D distinguishes
the two ensembles for fixed x∗ = x̃. That is, it holds that

Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, z1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, z2)

))
= 1

]
≥ 1

poly(κ) .

Indeed,
1

poly(κ) ≤ Pr
[
D
(
S
(
x, y, x∗, f(x∗, y′, z1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x∗, f(x∗, y′, z2)

))
= 1

]
=
∑
x̃∈X

Pr [x∗ = x̃] ·
(
Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, z1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, z2)

))
= 1

])
≤ |X | ·max

x̃∈X

{
Pr [x∗ = x̃] ·

(
Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, z1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, z2)

))
= 1

])}
.
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Since |X | is polynomial in κ, it follows that such x̃ exists.
Now, let zi1 , . . . , zik

∈ Z satisfy

z1 ∼x̃ zi1 ∼x̃ . . . ∼x̃ zik
∼x̃ z2,

and denote zi0 := z1 and zik+1 := z2. Since |Z| = poly(κ), by a hybrid argument there exists
ℓ ∈ {0, . . . , k} such that

Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ

)
))

= 1
]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ+1)

))
= 1

]
≥ 1

poly(κ) .

Let y′′ ∈ Y satisfy f(x̃, y′, ziℓ
) = f(x̃, y′′, ziℓ+1). We now show that D can distinguish

S(x, y, x∗, f(x∗, y′, ziℓ+1)) from S(x, y, x∗, f(x∗, y′′, ziℓ+1)), where x∗ ← P B,C′

κ,x,y,z′,x′ , thus contradicting
Claim 4.8. Indeed,

Pr
[
D
(
S
(
x, y, x∗, f(x∗, y′′, ziℓ+1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x∗, f(x∗, y′, ziℓ+1)

))
= 1

]
≥ Pr [x∗ = x̃] ·

(
Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′′, ziℓ+1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ+1)

))
= 1

])
= Pr [x∗ = x̃] ·

(
Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ

)
))

= 1
]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ+1)

))
= 1

])
≥ 1

poly(κ) .

□

5 Positive Results For the Point-to-Point Model
In this section, we prove Theorem 3.7 and the positive direction of Theorem 3.9, which give suffi-
cient conditions for a functionality f to be computable with 1-security. We prove Theorem 3.7 in
Section 5.1, and prove positive direction of Theorem 3.9 in Section 5.2.

5.1 Proving Theorem 3.7

In this section, we prove Theorem 3.7 by constructing a protocol for any functionality f satisfying
the properties given in the theorem. Interestingly, our protocol is a slight variant of the one given
by [2], where in case an attack is detected, A and one of the other parties interact in a two-party
computation while ignoring the third party (even if it was honest). Our generalization chooses the
other party that will interact with A in case of attack, depending on the security parameter. In
particular, we get a characterization for all functionalities that can be securely computed with a
such protocol.19

In the following section, we let KB ⊆ N be the set of all κ ∈ N such that y ≡x y′ for all x ∈ X
and y, y′ ∈ Y, and let KC ⊆ N be the set of all κ ∈ N such that z ≡x z′ for all x ∈ X and z, z′ ∈ Z.
Recall that we assume that f has the property where N \ (KB ∪KC) is finite. Define the families of

19The slight variant we use, is that in our protocol, the identity of the party that will interact with A depends on
the security parameter κ. To get a characterization as to which functionalities can be securely computed with the
protocol of [2] directly, we need to reposition the quantifier over x in the first property from Theorem 3.7: For all
sufficiently large κ and for all x ∈ X , it holds that either y ≡x y′ for all y, y′ ∈ Y, or z ≡x z′ for all z, z′ ∈ Z.
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sets D = {Dκ}κ∈N as follows: let Dκ = Z for all κ ∈ KB or κ ∈ N \ (KB ∪ KC), and let Dκ = Y for
all κ ∈ KC. The two-party functionality g : X ×Dκ →W is defined as

g(x, d) =
{

f(x, d, z∗) if κ ∈ KC

f(x, y∗, d) otherwise

where y∗ ← Qκ,1 and z∗ ← Rκ,1 (recall that in each case, there is only one equivalent class for the
inputs of B or C). Observe that since we assume the domain of f to be of polynomial size in κ, it
is possible to efficiently verify whether or not κ ∈ KC, and efficiently compute g.

We now present a protocol for computing f in the {(f, fair), (g, g.o.d.)}-hybrid model. By
Fact 2.11 (f, fair) can be computed in the plain model, and since g is a solitary output two-party
functionality, the result of Kilian [26] states it can be securely computed assuming OT. Thus,
Theorem 3.7 follows from the composition theorem.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 5.1 (πACOS).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (f, fair) with their inputs. Let w1, w2, and w2 be the outputs of A, B, and
C, respectively.

2. If w1, w2, w3 ̸= ⊥ then A outputs w1.

3. Otherwise, if κ ∈ KC then parties A and B invoke (g, g.o.d.) with their inputs. If κ /∈ KC then
parties A and C invoke (g, g.o.d.) with their inputs.

4. Party A outputs whatever it received from g.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 3.7 follows from the following lemma, stating the security of πACOS.

Lemma 5.2. Let f : X × Y ×Z →W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), and that the following hold.

1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all
x ∈ X and z, z′ ∈ Z.

2. f is CORE∧-forced.

3. There exists an ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt
algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ,x,i,j,y,z
S≡ {f(x, y∗, z)}κ,x,i,j,y,z,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced
property.

Then πACOS computes f with statistical 1-security in the {(f, fair), (g, g.o.d.)}-hybrid model.
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Proof. πACOS is clearly correct since if all parties are honest, the fair computation of f will never
abort. We next show that the protocol is secure against any adversary B corrupting B. The case
of a corrupt C follows from a similar argument. We define the simulator SimB as follows.

1. Query B for its input y′ to (f, fair).

2. If y′ ̸= ⊥, then send y′ to the trusted party T, output whatever B outputs, and halt.

3. Otherwise, if κ ∈ KC, query B for its input y′′ to (g, g.o.d.). If κ ̸∈ KC, then set y′′ to be a
default value.

4. Find the unique value i ∈ [n∧] such that y′′ ∈ Y∧i , sample y∗ ← Qκ,i, and send y∗ to the
trusted party.

5. Output whatever B outputs and halt.

Since B receives no messages in the protocol, the inputs y′ and y′′ chosen by the adversary in the
real world, are identically distributed to their ideal world counterparts. Furthermore, it suffices
to show that the output of A in both worlds are statistically close. Clearly, given that y′ ̸= ⊥ or
κ ̸∈ KC the output of A in both worlds is identical. Otherwise, the output of A in the real world
is f(x, y′′, z∗), where z∗ ← Rκ,1 (recall that all z are equivalent with respect to ≡x). On the other
hand, in the ideal world, the output of A is f(x, y∗, z), where y∗ ← Qκ,i and i ∈ [n∧] is such that
y′′ ∈ Y∧i . By the CORE∧-forced property of f , the two distributions are statistically close.

We next fix an adversary A corrupting A. We define the simulator SimA as follows.

1. Query A for its input x′ to (f, fair).

2. If x′ ̸= ⊥, then send x′ to the trusted party T, pass the received output to A, output whatever
it outputs, and halt.

3. Otherwise, query A for its input x′′ to (g, g.o.d.).

4. Sample x∗ ← Pκ,x′′ and send it to the trusted party T.

5. Given an output w from T, send toA the result of S(1κ, x′′, x∗, w), output whateverA outputs,
and halt.

Since no honest party has an output, it suffices to show that the view of A in both worlds are
statistically close. First, since A does not receive any message before the invocation of g, it follows
that x′ and x′′ are identically distributed in both worlds. Now, in the real world, the only message
that A receives is f(x, y, z∗) if κ ∈ KC or f(x, y∗, z) if κ /∈ KC, where y∗ ← Qκ,1 and z∗ ← Rκ,1.
In the ideal world, on the other hand, it receives S(1κ, x′′, x∗, f(x∗, y, z)), where x∗ ← Pκ,x′′ . By
the assumption on f , this is statistically close to f(x, y∗, z), thus security holds with respect to all
κ /∈ KC. For all κ ∈ KC, the CORE∧-forced property implies that f(x, y∗, z) is statistically close to
f(x, y, z∗), concluding the proof. □
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5.2 Proving The Positive Direction of Theorem 3.9

In this section, we present a 1-secure protocol for computing the functionalities captured by Theo-
rem 3.9. We first present an intuitive description of the protocol.

Similarly to πACOS, the parties first compute f fairly and if the computation followed through,
then A outputs the result. Otherwise, the parties do the following. Both B and C (locally) compute
the equivalence classes of their respective inputs with respect to the lexicographically smallest
minimum input χ (i.e., smaller than all x ∈ X with respect to ⪯). They then send these values
to A, who samples their inputs y∗ and z∗ according to the appropriate distribution given by the
CORE∧-forced assumption, and outputs f(x, y∗, z∗).20

Intuitively, the only information a corrupt A obtains from the above interaction is the equiva-
lence classes of the inputs of B and C with respect to χ. This can be simulated by sending χ to the
trusted party and searching (by brute-force) for the equivalence classes. This can be done since by
the definition of CORE partition, the equivalence classes are fully determined by the output and
χ.

We next formalize the above intuition. We present the protocol in the (f, fair)-hybrid model.
By Fact 2.11 (f, fair) can be computed in the plain model. Thus, Theorem 3.9 follows from the
composition theorem. In the following we let χ be the lexicographically smallest minimum input
with respect to ⪯.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 5.3 (π).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (f, fair) with their inputs. Let w1, w2, and w2 be the outputs of A, B, and
C, respectively.

2. If w1, w2, w3 ̸= ⊥ then A outputs w1.

3. Otherwise, party B finds the (unique) index i ∈ [n(χ)] such that y ∈ Yχ
i and sends it to A.

Similarly, C sends the index j ∈ [m(χ)] such that z ∈ Zχ
j .

4. A samples and outputs w = f(x, y∗, zj), where y∗ ← Qκ,i and Qκ,i is the distribution given by
the CORE∧-forced property, and where zj is the lexicographically smallest element of Zχ

j .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next lemma immediately proves Theorem 3.9.

Lemma 5.4. Let f : X × Y ×Z →W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), that for all sufficiently large κ, there exists χ ∈ X such that
for all x ∈ X it holds that χ ⪯ x, and that f is CORE∧-forced. Then π computes f with statistical
1-security in the (f, fair)-hybrid model.

Proof. Clearly, π is correct since if all parties are honest, the fair computation of f will never
abort. We next show that the protocol is secure against any adversary B corrupting B. The case
of a corrupt C follows from a similar argument. We define the simulator SimB as follows.

20In the formal description of the protocol below, we let A set one of the random inputs to be the lexicographically
smallest element in its equivalence class. This is only for the sake of presentation and it does not affect the security
of the protocol.
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1. Query B for its input y′ to (f, fair).

2. If y′ ̸= ⊥, then send y′ to the trusted party T, output whatever B outputs, and halt.

3. Otherwise, B sends to A a value i′ ∈ [n(χ)].

4. Sample y∗ ← Qκ,i′ , send it to T, output whatever B outputs, and halt.

Since B receives no messages, it suffices to show that the outputs of A in both worlds are statistically
close. Now, observe that the messages B sends are identically distributed in both worlds. For the
case where B sends and input y′ ̸= ⊥ to (f, fair), the output of A in both worlds is f(x, y′, z). Next,
assume that B sends y′ = ⊥ and then sends i′. Then the output of A in the real world is f(x, y∗, zj),
where y∗ ← Qκ,i′ and where zj in the lexicographically smallest element in Zχ

j . In the ideal world,
the output of A is f(x, y∗, z), where y∗ is distributed as before. By the CORE∧-forced property of
f , the two distributions are statistically close.

We next consider an adversary A corrupting A. We define the simulator SimA as follows.

1. Query A for its input x′ to (f, fair).

2. If x′ ̸= ⊥, then send x′ to the trusted party T, pass the received output to A, output whatever
it outputs, and halt.

3. Otherwise, send χ to T.

4. Let w be the output sent by T.

5. Find the (unique) i ∈ [n(χ)] and j ∈ [m(χ)] such that there exist y′ ∈ Yχ
i and z′ ∈ Zχ

j

satisfying w = f(x, y′, z′).

6. Send i and j to A, output whatever it outputs, and halt.

Since B and C have no output, it suffices to show that the view of A in both worlds are close
(in fact, they are identically distributed). Now, if A sent an input x′ ̸= ⊥ to (f, fair), then in
both worlds the only message that A sees is f(x,′ , y, z). Otherwise, it obtains two values i and j
representing equivalence classes over Y and Z, respectively. Observe that the classes are the same
in both worlds since they were computed with respect to the minimum input χ.

□

6 Computation With Broadcast and a Dishonest Majority
In this section we show that all three-party functionalities captured by our positive results from the
previous section, i.e., Theorems 3.7 and 3.9, can be computed given a broadcast channel, tolerating
two corruptions. In fact, we can even relax some of the requirements. Both of our results (stated
below) improve the results of Halevi et al. [25], which identify several classes of functionalities that
can be securely computed.

We next state our two results. We state the results only for deterministic functionalities, as
the randomized case can be handled with using a standard reduction. The first result states that
a generalized class of functionalities of those captured by Theorem 3.7, can be computed with full
security.
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Theorem 6.1. Let f : X ×Y×Z →W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, that |X |, |Y|, |Z| = poly(κ), and that one of the following
holds.

1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all
x ∈ X and z, z′ ∈ Z.

2. f is CORE∧-forced.

Then f can be computed with computational full security.

The proof is given in Section 6.1.1. We next state our second result, which states that a
generalized class of functionalities of those captured by Theorem 3.9, can be computed with full
security. This result directly improves one of the results by Halevi et al. [25], who showed that any
all-but-one forced solitary output functionality (i.e., either B or C but not necessarily both, can fix
the output distribution), can be computed with full security.

For this result, we need a stronger notion than (all-but-P) CORE∧-forced. Intuitively, all-but-P
strong CORE∧-forced requires that the output distributions in some of the combinatorial rectangles
in R∧ to be close. Roughly speaking, for every x ∈ X there exists a minimal input χ smaller than
x with respect to an appropriate partial order, such that the output distribution in the rectangles
in Rχ can be fixed by the parties. Note that for CORE∧-forced, the distributions for different
rectangles could be far. Similarly to [25], for our construction it suffices to consider an all-but-P
strong CORE∧-forced functionality, for some P ∈ {B, C}, where the remaining party in {B, C}\{P}
can fix the output distributions in the rectangles.

Definition 6.2 (All-but-P strong CORE∧-forced). Let f : X × Y × Z → W be a deterministic
solitary output three-party functionality. We say that f is all-but-B strong CORE∧-forced, if there
exists an ensemble of efficiently samplable distributions {Rκ,j}κ∈N,j∈[m∧] such that the following
holds. For every sequence of inputs x = {xκ ∈ X}κ∈N, there exists a sequence of B-minimal inputs
χB = {χκ ∈ X}κ∈N, such that χκ ⪯ xκ for all κ ∈ N, and

{f(xκ, y, z∗)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(xκ, yχ, z∗)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where yχ is the lexicographically smallest element such that yχ ≡χκ y and where z∗ ← Rκ,j. We
define C-strong CORE∧-forced similarly.

Observe that for any functionality with a minimum element for A, strong-CORE∧-forced is
equivalent to standard CORE∧-forced (since the minimum input satisfies the conditions stated
above).

We are now ready to state the result.

Theorem 6.3. Let f : X ×Y×Z →W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, that |X |, |Y|, |Z| = poly(κ) and that f is all-but-P strong
CORE∧-forced, for some P ∈ {B, C}. Then f can be computed with computational full security.

The proof of Theorem 6.3 is given in Section 6.1.2. We first discuss an interesting consequence
of Theorems 6.1 and 6.3. Observe that the conditions stated in Theorems 6.1 and 6.3 are relax-
ations of the conditions stated in Theorems 3.7 and 3.9, respectively. Therefore, for the families
of functionalities discussed in Section 3.2.1 (e.g., ternary-output), for which we have a complete
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characterization in the point-to-point model, it holds that if a functionality f can be computed
assuming an honest majority but without a broadcast channel, then f can also be computed with
a broadcast channel, but with no honest majority. Thus, we have the following corollary.

Corollary 6.4. Let f : X ×Y×Z →W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, that |X |, |Y|, |Z| = poly(κ) and that either |W| ≤ 3 or
|X | ≤ 2. Then, if f can be computed with computational 1-security in the point-to-point model
(without broadcast), then f can be computed with computational full security given a broadcast
channel.

Furthermore, since the conditions stated in Theorems 6.1 and 6.3 are strict relaxations of the
conditions stated in Theorems 3.7 and 3.9, it follows that the converse is not true. Thus, the
more common broadcast assumption is a strictly stronger than the honest majority assumption,
for the above families of functionalities. A concrete example that showcases the separation is the
following solitary output three-party variant of the GHKL function [24]. That is, the function
soGHKL : ∅ × {0, 1, 2} × {0, 1} → {0, 1} given by the matrix

0 1
1 0
1 1


where B chooses a row, C chooses a column, and the output of A is the value written in the chosen
entry. Indeed, all inputs of B and C are equivalent, yet soGHKL is not forced and thus cannot be
computed in the point-to-point model. On the other hand, Theorem 6.3 requires that only one of
the parties needs to be able to fix the distribution of the output.

6.1 Proofs of the Results

In this section, we prove Theorems 6.1 and 6.3. We start with proving Theorem 6.1 in Section 6.1.1,
and then proving Theorem 6.3 in Section 6.1.2.

6.1.1 Proof of Theorem 6.1

The idea of the protocol is as follows. The parties first compute a 2-out-of-2 secret sharing of the
output, where one share is given to party A, and the other share is given to either B or C depending
on κ. This second party that holds a share, denoted P, then sends it to A who reconstructs the
output. In case, P does not send the share, A replaces the aborting party’s input with a default
input, samples the input of the third party according to the distribution associated with it as given
by the CORE∧-forced property, and computes the function on these inputs.

Intuitively, the party that does not receive any share provides no advantage to the adversary.
Additionally, corrupting A and P gives to the adversary only the output, hence it cannot attack
the protocol. Finally, when A is honest, corrupting and aborting P can be simulated by sending an
input sampled according to the appropriate distribution associated with the default input of P, as
given by the CORE∧-forced property of f .

We next formalize the above intuition. Similarly to Section 5.1, let KB ⊆ N be the set of all
κ ∈ N such that y ≡x y′ for all x ∈ X and y, y′ ∈ Y, and let KC ⊆ N be the set of all κ ∈ N such
that z ≡x z′ for all x ∈ X and z, z′ ∈ Z. Recall that we assume that f has the property where
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N \ (KB ∪ KC) is finite. Let P = B if κ ∈ KC, and let P = C otherwise. Further let P′ be the
remaining party in {B, C} \ {P}.

We let ShrGenf (x, y, z) be the three-party functionality that computes a 2-out-of-2 additive
secret sharing of the output f(x, y, z). The functionality gives the shares to only A either B or C
depending on κ (see Algorithm 6.5 below for a formal description). Additionally, it signs each of
the shares using a one-time MAC. To simplify the presentation, we assume that a corrupted party
will not modify its share, but may abort and not send it at all.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm 6.5 (Functionality ShrGenf ).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. Compute w = f(x, y, z).

2. Share w in an 2-out-of-2 secret sharing scheme. For Q ∈ {A, P}, let w[Q] denote the share
associated with party Q.

3. Party A receives w[A], and party P receives w[P].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We next present a protocol for computing f in the {(ShrGenf , id-abort)}-hybrid model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 6.6 (πbc).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (ShrGenf , id-abort) with their inputs.
- If A aborts then the computation halts.
- Otherwise, if P′ aborts then the parties restart without it, and with their input being set

to default values. If P aborts, go to Step 3.

2. If P is still active, it sends w[P] to A.

3. If P aborts during any step of the computation, then A does the following.

(a) If P = B, set y0 ∈ Y to be the lexicographically smallest element, sample z∗ ← Rκ,1, and
output f(x, y0, z∗).

(b) If P = C, set z0 ∈ Z to be the lexicographically smallest element, sample y∗ ← Qκ,1, and
output f(x, y∗, z0).

4. Otherwise, A outputs w[A] + w[P].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next lemma immediately proves Theorem 6.1
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Lemma 6.7. Let f : X × Y ×Z →W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), and that the following hold.

1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all
x ∈ X and z, z′ ∈ Z.

2. f is CORE∧-forced.

Then πbc computes f with statistical full security in the (ShrGenf , id-abort)-hybrid model.

Proof. Clearly, the protocol is correct. Fix an adversary A corrupting a subset of the parties.
Observe that if A is corrupted, then the adversary sees at most two shares whose sum is the output
f(x, y, z). Therefore, this case can be simulated.

We now assume that A is honest. In this case, A (possibly) sees only the random value w[P].
If P′ is corrupted and aborts during the call to (ShrGenf , id-abort), then the simulator replaces its
input with a default value. If P is corrupted and aborts during any step of the protocol, then the
simulator replaced its input with a random input as follows: If P = B then send y∗ ← Qκ,i where
i ∈ [n∧] is the unique index satisfying y0 ∈ Y∧i . Otherwise, if P = C then send z∗ ← Rκ,j where
j ∈ [m∧] is the unique index satisfying z0 ∈ Z∧j .

Then for all κ ∈ KC (i.e., P = B) it holds that the output of A in the ideal world is f(x, y∗, z),
which by the CORE∧-forced assumption, is statistically close to f(x, y0, z∗) that is the output of
A in the real world. Similarly, for all κ /∈ KC the outputs are statistically close. □

6.1.2 Proof of Theorem 6.3

We first present an intuitive description of the protocol. Towards constructing the protocol, we
use an algorithm, denoted StrP for P ∈ {B, C}, which computes efficiently the sequence of minimal
inputs that satisfy the conditions from Definition 6.2, for any all-but-P strong CORE∧-forced three-
party solitary output functionality. We present the algorithm in Section 6.1.3 below. We first use
it to construct the protocol.

Assume without loss of generality that the functionality f is all-but-B strong CORE∧-forced.
The idea is for the parties to compute a 3-out-of-3 secret sharing of the output. Additionally, A
and B will receive shares of the equivalence class of the input y held by B, with respect to the input
χ ⪯ x guaranteed to exist by the strong CORE∧-forced assumption.

The protocol proceeds as follows. First, B sends its two shares to A. In case of abort, A and C
restart the protocol with the input of B set to a default value. Otherwise, C sends its input to A,
which reconstructs the output. In case C aborts, A reconstructs B’s equivalence class and chooses
any input from it. It then samples an input for C according to a default distribution and computes
f on these inputs. Intuitively, a corrupted B or C can be simulated by sending to the trusted party
either a default input or sample an input according to the distribution guaranteed to exist by the
CORE∧-forced assumption. Additionally, a corrupt A only learns the output and the equivalence
class of y with respect to χ, which can be inferred from the output since χ ⪯ x.

We next present a formal description of the protocol. Denote N = Nκ = ∏
x∈X n(x). We

next define the three-party share generator functionality ShrGen′f (x, y, z). Roughly speaking, it
computes a three-out-of-three additive secret sharing of the output f(x, y, z), and it shares between
A and B the equivalence class of y with respect to to χ, for the B-minimal χ that is computed by
the algorithm from Claim 6.12 (see Algorithm 6.8 below for a formal description). Additionally,
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it signs each of the shares using a one-time MAC. To simplify the presentation, we assume that
a corrupted party will not modify its shares, but may abort and not send them at all. We now
present a formal description of ShrGen′f .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm 6.8 (Functionality ShrGen′f ).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

Computation:

1. Compute w = f(x, y, z).
2. Compute χ = StrB(1κ, x).
3. Find the unique index i ∈ [n(χ)] satisfying y ∈ Yχ

i .

Sharing phase:

1. Share w in an 3-out-of-3 secret sharing scheme. For P ∈ {A, B, C} let w[P] denote the
share associated with party P.

2. Sample i[A]← [N ], and let i[B] = i− i[A] mod N .21

Output: Party A receives (χ, w[A], i[A]), party B receives (w[B], i[B]), and party C receives w[C]
(note that χ can also be computed locally by A).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We next present a protocol for computing f in the {(ShrGen′f , id-abort)}-hybrid model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 6.9 (π′bc).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (ShrGen′f , id-abort) with their inputs.
- If A aborts then the computation halts.
- Otherwise, if any other party aborts the parties restart without it, and their input being

set to a default value.

2. If B is still active, it sends (w[B], i[B]) to A.
- In case B aborts, the parties set its input to a default value and restart the protocol

without it.

3. If C is still active, it sends w[C] to A.
- In case C aborts, A does the following.

(a) Set i = i[A] + i[B] mod n(χ) if B is active, and set i = 1 otherwise.
21We let mod n output in [n] instead of {0, . . . , n − 1} for convenience.
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(b) Compute and output w∗ = f(x, yχ, z∗), where yχ is the lexicographically smallest
element of Yχ

i , and where z∗ ← Rκ,1.

4. If no party aborts, A reconstructs the output.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next lemma immediately proves Theorem 6.3

Lemma 6.10. Let f : X ×Y ×Z →W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), and that f is all-but-B strong. Then π′bc computes f with
statistical full security in the (ShrGen′f , id-abort)-hybrid model.

Proof. Clearly, the protocol is correct. Fix an adversary A corrupting a subset of the parties. We
separate the proof into two cases. For the first case, let us assume that A is honest. We assume
that both B and C are corrupted. The case where exactly one of them is corrupted can be handled
similarly. The simulator SimA does the following.

1. Query A for its input y and z to (ShrGen′f , id-abort).

2. Send to A the values (w[B], i[B]) and w[C], where w[B], w[C]← W and where i[B]← [N ]. If
A replies with (abort, P), for some P ∈ {B, C}, then go back to Step 1 with the input of P set
to a default value.

3. Otherwise, if B aborts at Step 2, then go back to Step 1 with the input of B set to a default
value.

4. If C aborts, sample z∗ ← Rκ,1 and send to the trusted party (y′, z∗), where y′ = y if B is
active, and y′ is a default value otherwise. Output whatever A outputs, and halt.

5. Otherwise, if C does not abort, send y and z to the trusted party T, output whatever A
outputs, and halt.

It’s clear that the views of A in both worlds are identically distributed, and in particular, its
responses are identically distributed as well. First, consider the case where C does not abort at
Step 3. Then the output of A in both worlds is f(x, y′, z), where y′ = y if B is active, and y′ is a
default value otherwise.

Now, consider the case where C does abort at Step 3. Let us first consider the real world. Then
the value i set by A is i = 1 if B is inactive, and i ∈ [n(χ)] is the unique index satisfying y ∈ Yχ

i if
B is active. Then the output of A is of the form f(x, y′real, z∗), where z′ ← Rκ,1, and where y′real is
the lexicographically smallest element in Yχ

i . Let us now consider the ideal world. The of A in this
case is f(x, y′ideal, z∗), where z∗ ← Rκ,1 as before, and where y′ideal = y if B is active, and is a default
value otherwise. Observe that, regardless of whether or not B is active, it holds that y′real ≡χ y′ideal.
By Claim 6.12, it follows that both outputs are statistically close.

We now assume that A is corrupted. We only deal with the case where C is also corrupted since
the other cases are simpler. We define the simulator SimA as follows.

1. Query A for its inputs to (ShrGen′f , id-abort). If the adversary aborts then restart without
the aborting party. Let x and z be the inputs used in the last call.
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2. Send to A random shares of the output w[A], w[C] ← W, the random share i[A] ← [N ], and
the R-minimal element χ as computed by ShrGen′f (recall that χ depends only on x).

3. Send x and z to the trusted party T, and let w be the output received from T.

4. Set w[B] = w − w[A]− w[C].

5. Find i ∈ [n(χ)] for which there exist y′ ∈ Yχ
i and z′ ∈ Z such that w = f(x, y′, z′).

6. Let i[B] = i− i[A] mod n(χ).

7. Send to A the pair (w[B], i[B]), output whatever A outputs and halt.

Clearly, since n(χ) divides N , the view of A in both worlds are identically distributed. Since no
honest party obtains an output from T, it follows that the real and ideal worlds are identically
distributed. □

6.1.3 The StrP Algorithm For Finding χB and χC

We next present the idea behind the algorithm StrP for P = B (the case where P = C is analogous).
For a given input x, the algorithm searches for a B-minimal input χB and two rectangles YχB

i ×Z
χB
j

and YχB
i′ × ZχB

j such that statistical distance between the output distributions that are associated
with the rectangles (as given by sampling either y or z according to the corresponding distributions
and computing f over these inputs) is maximized. The algorithm then outputs χB. Intuitively, if
χB does not satisfy the properties from Definition 6.2, then this contradicts the maximality of the
statistical distance. Note that the algorithm is efficient since we assume the domain of f to be of
polynomial size. We now formalize the above intuition.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm 6.11 (StrP).

Setting: Suppose that f : X ×Y×Z →W is a three-party solitary output all-but-P strong CORE∧-
forced functionality, and let Q and R be the associated distribution ensembles.

Input: The security parameter 1κ and x ∈ X .

Computation:

• If P = B, find a B-minimal χ ⪯B x, ŷ, ŷ′ ∈ Y, and j ∈ [m(χB)] such that ŷ ̸≡χ ŷ′ and
ŷ ≡x ŷ′, that maximizes

SD
(
f(x, ŷ, z∗1), f(x, ŷ′, z∗2)

)
,

where z∗1 , z∗2 ← Rκ,j are independent.
• If P = C find a C-minimal χ ⪯C x, i ∈ [n(χC)] and ẑ, ẑ′ ∈ Z such that ẑ ̸≡χ ẑ′ and

ẑ ≡x ẑ′, that maximizes
SD

(
f(x, y∗1, ẑ), f(x, y∗2, ẑ′)

)
,

where y∗1, y∗2 ← Qκ,i are independent.

Output: χ.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Claim 6.12. Suppose that f is all-but-P strong CORE∧-forced, and fix a sequence of inputs x =
{xκ ∈ X}κ∈N. Define the sequence χ = {χκ}κ∈N, where χκ is the output of StrP(1κ, xκ). Then χ
is the sequence guaranteed to exist by the all-but-P strong CORE∧-forced assumption. That is, if
P = B then

{f(xκ, y, z∗)}κ,xκ,i,j,y,z

S≡ {f(xκ, yχ, z∗)}κ,xκ,i,j,y,z ,

where yχ is the lexicographically smallest element such that yχ ≡χκ y and where z∗ ← Rκ,j. Simi-
larly, if P = C then an analogous statement holds.

Proof. We prove the statement only for the case where P = B, as the other case is analogous.
Assume that the claim is false. Then for infinitely many κ, there exist i ∈ [n∧], j ∈ [m∧], y ∈ Y∧i ,
and z ∈ Z∧j , such that

SD (f(xκ, y, z∗1), f(xκ, yχ, z∗2)) > 1/ poly(κ),

where z∗1 , z∗2 ← Rκ,j are independent. Since y ≡χκ yχ, by the CORE∧-forced property of f , it
follows that there exists a different sequence χ′ = {χ′κ}κ∈N such that y ̸≡χ′

κ
yχ. However, this

contradicts the maximality assumption over χ. □

7 Various Interesting Examples
In this section, we provide some interesting examples of functionalities and identify which can be
securely computed with 1-security in the point-to-point model. Our examples include variants
of private-set intersection. Throughout the section, for natural numbers k, ℓ, m ∈ N satisfying
k ≤ ℓ ≤ m, we denote (

[m]
k

)
= {S ⊆ [m] : |S| = k}

and we denote (
[m]
k, ℓ

)
= {S ⊆ [m] : k ≤ |S| ≤ ℓ} .

Claim 7.1. For two natural numbers k ≤ m, let disjk,m :
([m]

k

)3
→ {0, 1} be the solitary output

three-party disjointness functionality defined as

disjk,m(S1,S2,S3) =
{

1 if S1 ∩ S2 ∩ S3 = ∅
0 otherwise

Then disjk,m can be computed with computational 1-security if and only if k > 2m/3 or k = 0.

Proof. Observe that if k > 2m/3 or k = 0, then disjk,m is constant, and thus can be securely
computed. We now assume that 0 < k ≤ 2m/3 and show that disjk,m is not CORE∧-forced, and
thus cannot be computed securely. We separate the proof into two cases.
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Case 1: m/2 < k ≤ 2m/3. We first show that for any S1, it holds that S2 ≡S1 S ′2 for all
S2,S ′2 ∈

([m]
k

)
. Indeed, since k > m/2 it follows that S1 ∩ S2 ̸= ∅ and that S1 ∩ S ′2 ̸= ∅. Therefore,

for any S3 ⊇ S1 ∩ S2 it holds that disjk,m(S1,S2,S3) = 0. Similarly, for any S ′3 ⊇ S1 ∩ S ′2 it holds
that disjk,m(S1,S ′2,S ′3) = 0. By symmetry, S3 ≡S1 S ′3 for all S3,S ′3 ∈

([m]
k

)
as well.

Now, assume towards contradiction that there exists a distribution R = {Rκ}κ∈N over
([m]

k

)
such that {

disjk,m (S1,S2,S∗3 )
}

κ,S1,S2,S′
2

S≡
{

disjk,m

(
S1,S ′2,S∗3

)}
κ,S1,S2,S′

2
, (14)

where S∗3 ← Rκ. Since the domain of disjk,m is finite, there exists S3 ∈
([m]

k

)
such that PrS∗

3←Rκ [S∗3 =
S3] ≥ p infinitely often for some constant p > 0. Consider S1 that minimizes |S1 ∩S3|, i.e., it holds
that |S1∩S3| = 2k−m. Since 2k−m ≤ m/3, there exists S2 such that S1∩S2∩S3 = ∅. Therefore

PrS∗
3←Rκ

[
disjk,m (S1 ∩ S2 ∩ S∗3 ) = 1

]
≥ PrS∗

3←Rκ [S∗3 = S3] ≥ p,

holds infinitely often. On the other hand, for S ′2 = S1 it holds that disjk,m(S1,S ′2, ·) is the constant
0 function, hence

PrS∗
3←Rκ

[
disjk,m

(
S1 ∩ S ′2 ∩ S∗3

)
= 1

]
= 0

for all κ, contradicting Equation (14).

Case 2: 0 < k ≤ m/2. The proof follows similar arguments to the previous case. We first
show that for any S1, it holds that S2 ≡S1 S ′2 for all S2,S ′2 ∈

([m]
k

)
. Indeed, since k ≤ m/2 it

follows that there exists S3 ∈
([m]

k

)
such that S1 ∩ S3 = ∅, and in particular, disjk,m(S1,S2,S3) =

disjk,m(S1,S ′2,S3) = 1. By symmetry, S3 ≡S1 S ′3 for all S3,S ′3 ∈
([m]

k

)
as well.

Assume towards contradiction that there exists a distribution ensemble R = {Rκ}κ∈N over
([m]

k

)
such that {

disjk,m (S1,S2,S∗3 )
}

κ,S1,S2,S′
2

S≡
{

disjk,m

(
S1,S ′2,S∗3

)}
κ,S1,S2,S′

2
, (15)

where S∗3 ← Rκ. Since the domain of disjk,m is finite, there exists S3 ∈
([m]

k

)
such that PrS∗

3←Rκ [S∗3 =
S3] ≥ p infinitely often for some constant p > 0. Consider S1 = S2 = S3. Then, as k ̸= 0 it follows
that S3 ̸= ∅. Thus

PrS∗
3←Rκ

[
disjk,m (S1 ∩ S2 ∩ S∗3 ) = 0

]
≥ PrS∗

3←Rκ [S∗3 = S3] ≥ p,

holds infinitely often. On the other hand, since k ≤ m/2 there exists S ′2 ∈
([m]

k

)
such that S1∩S ′2 = ∅,

hence
PrS∗

3←Rκ

[
disjk,m

(
S1 ∩ S ′2 ∩ S∗3

)
= 0

]
= 0

for all κ, contradicting Equation (15). □

Claim 7.2. For k1, ℓ1, k2, ℓ2, m ∈ N where 0 ≤ k1 ≤ ℓ1 ≤ m and 0 ≤ k2 ≤ ℓ2 ≤ m, let PSIℓ1,ℓ2
k1,k2,m :

{λ} ×
( [m]

k1,ℓ1

)
×
( [m]

k2,ℓ2

)
→ 2[m] be the solitary output three-party private set intersection functionality

defined as
PSIℓ1,ℓ2

k1,k2,m(S1,S2) = S1 ∩ S2.
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Then PSIℓ1,ℓ2
k1,k2,m can be computed with computational 1-security if and only if one of the following

holds.

1. k1 = k2 = 0, or

2. ℓ1 = 0 or ℓ2 = 0, or

3. k1 = m or k2 = m.

Proof. We write PSI instead of PSIℓ1,ℓ2
k1,k2,m for brevity. We first show the positive direction. If

k1 = k2 = 0, then PSI is forced since both B and C can fix the output to be ∅. If ℓ1 = 0 or ℓ2 = 0
then PSI is the constant ∅ function. If k1 = m or k2 = m, then PSI is independent of one of its
second argument and in particular, is CORE∧-forced.22

We now show the negative direction. We first show that S1 ≡ S ′1 and S2 ≡ S ′2, for all S1,S ′1 ∈( [m]
k1,ℓ1

)
and S2,S ′2 ∈

( [m]
k2,ℓ2

)
. We show only the former as the latter can be proved using an analogous

argument. Observe that if |S1 ∩ S ′1| ≥ k2, then for any S2 ⊆ S1 ∩ S ′1 of size k2 ≤ |S2| ≤ ℓ2 it
holds that PSI(S1,S2) = S2 = PSI(S ′1,S2). On the other hand, if |S1 ∩ S ′1| < k2, then there exists
S2 ∈

([m]
k2

)
such that S1 ∩ S ′1 ⊆ S2 and S2 ∩ (S1 \ S ′1) = S2 ∩ (S ′1 \ S1) = ∅.

Now, assume towards contradiction that PSI is CORE∧-forced. since all inputs are equivalent,
it follows that PSI is forced. Then there exists an ensemble of efficiently samplable distributions
R = {Rκ}κ∈N such that

{S1 ∩ S∗2}κ,S1,S′
1

S≡
{
S ′1 ∩ S∗2

}
κ,S1,S′

1
, (16)

where S∗2 ← Rκ. Since the domain of PSI is finite, there exists S2 ∈
( [m]

k2,ℓ2

)
such that PrS∗

2←Rκ [S∗2 =
S2] ≥ p infinitely often for some constant p > 0. Now, recall that k1 ̸= 0 or k2 ̸= 0. We assume the
latter without loss of generality. Thus, S2 ̸= ∅. We next separate the proof into two cases.

Case 1: |S2| ≤ ℓ1. In this case, there exists S1 ∈
( [m]

k1,ℓ1

)
such that S2 ⊆ S1. Therefore

PrS∗
2←Rκ [S1 ∩ S∗2 = S2] ≥ PrS∗

2←Rκ [S∗2 = S2] ≥ p

infinitely often. However, since S2 ̸= ∅ there exists S ′1 ∈
( [m]

k1,ℓ1

)
such that S2 ̸⊆ S ′1. Thus

PrS∗
2←Rκ [S ′1 ∩ S∗2 = S2] = 0

for all κ, contradicting Equation (16).

Case 2: |S2| > ℓ1. In this case, there exist S1,S ′1 ∈
( [m]

k1,ℓ1

)
such that S1,S ′1 ⊆ S2. Moreover, since

k1 ̸= m and ℓ1 ̸= 0, it follows that we can take S1 ̸= S ′1. Thus

PrS∗
2←Rκ [S1 ∩ S∗2 = S1] ≥ PrS∗

2←Rκ [S∗2 = S2] ≥ p

infinitely often. However,
PrS∗

2←Rκ [S ′1 ∩ S∗2 = S1] = 0
for all κ, contradicting Equation (16). □

22Note that in all cases we do not need to assume the existence of OT. For the first case, where k1 = k2 = 0, we
can use the protocol where if the fair computation fails, we let A output ∅. For the other two cases the computation
is trivial, since either the function is constant, or the protocol where B or C send their input to A is secure.
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Claim 7.3. For k1, ℓ1, k2, ℓ2, m ∈ N where 0 ≤ k1 ≤ ℓ1 ≤ m and 0 ≤ k2 ≤ ℓ2 ≤ m, let PSIZEℓ1,ℓ2
k1,k2,m :

{λ} ×
( [m]

k1,ℓ1

)
×
( [m]

k2,ℓ2

)
→ {0, . . . , m} be the solitary output three-party functionality defined as

PSIZEℓ1,ℓ2
k1,k2,m(S1,S2) = |S1 ∩ S2| .

Then PSIZEℓ1,ℓ2
k1,k2,m can be computed with computational 1-security if and only if one of the following

holds.

1. k1 = k2 = 0, or

2. ℓ1 = 0 or ℓ2 = 0,

3. k1 = m or k2 = m, or

4. k1 = ℓ1 and k2 = ℓ2.

Proof. We write PSIZE instead of PSIZEℓ1,ℓ2
k1,k2,m for brevity. Similarly to the PSI functionality, if

k1 = k2 = 0, then PSIZE is forced since both B and C can fix the output to be 0. If ℓ1 = 0 or
ℓ2 = 0, then PSIZE is the constant 0. If k1 = m or k2 = m, then PSIZE is independent of one of its
arguments and in particular, is forced. Finally, if k1 = ℓ1 and k2 = ℓ2 then PSIZE is forced since
the uniform distribution for both parties fixes the output distribution to be uniform.

We now show the negative direction. We first show that S1 ≡ S ′1 and S2 ≡ S ′2, for all S1,S ′1 ∈( [m]
k1,ℓ1

)
and S2,S ′2 ∈

( [m]
k2,ℓ2

)
. We show only the former as the latter can be proved using an analogous

argument. Observe that the set of possible outputs for a fixed S1 ∈
( [m]

k1,ℓ1

)
is exactly

{max {0, |S1|+ k2 −m} , . . . , min {|S1|, ℓ2}} .

Then, if |S1| = |S ′1| there are S2,S ′2 ∈
( [m]

k2,ℓ2

)
such that |S1 ∩ S2| = |S ′1 ∩ S2|. Next, consider the

case where S ′1 = S ∪ {a}, where a /∈ S1. Then there are no such S2 and S ′2 if and only if

max {0, |S1|+ 1 + k2 −m} > min{|S1|, ℓ2}.

However, since |S1|, ℓ2 ≥ 0 and |S1|+k2−m < |S1| as k2 ̸= m, it follows that |S1|+k2−m ≥ ℓ2. This
is clearly impossible since this implies that |S1| ≥ ℓ2 − k + m ≥ m. The case where |S ′1| > |S1|+ 1
can be done using an inductive argument (over |S ′1| − |S1|).

We now show that PSIZE is not forced and hence cannot be computed with 1-security. Recall
that for the negative direction, we assume that k1 ̸= ℓ1 or k2 ̸= ℓ2. Assume the former without
loss of generality, and assume towards contradiction that PSIZE is forced. Then there exists an
ensemble of efficiently samplable distributions R = {Rκ}κ∈N such that

{|S1 ∩ S∗2 |}κ,S1,S′
1

S≡
{∣∣S ′1 ∩ S∗2 ∣∣}κ,S1,S′

1
, (17)

where S∗2 ← Rκ. Since the domain of PSIZE is finite, there exists S2 ∈
( [m]

k2,ℓ2

)
such that

PrS∗
2←Rκ [S∗2 = S2] ≥ p infinitely often for some constant p > 0. We separate the proof into

two cases.
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Case 1: k1 < k2. Fix S1 ∈
([m]

k1

)
such that S1 ⊆ S2, and fix some a ∈ S2 \ S1. Let n = |S1 ∩ S2|,

and let S ′1 = S1 ∪ {a} (note that S ′1 ∈
( [m]

k1,ℓ1

)
since k1 ̸= ℓ1). Then

PrS∗
2←Rκ [|(S1 ∪ {a}) ∩ S∗2 | = n + 1] ≥ PrS∗

2←Rκ [S∗2 = S2] ≥ p,

infinitely often. However, for those exact same κ it holds that

PrS∗
2←Rκ [|S1 ∩ S∗2 | = n + 1] = 0,

resulting in a contradiction.

Case 2: k1 ≥ k2. Fix S1 ∈
( [m]

k1+1
)

such that S2 ⊆ S1, and fix some a ∈ S1 \ S2. Let n = |S1 ∩S2|.
Then

PrS∗
2←Rκ [|S1 ∩ S∗2 | = n] ≥ PrS∗

2←Rκ [S∗2 = S2] ≥ p,

infinitely often. However, since ℓ2 ̸= 0 it follows that S2 ̸= ∅, hence for those exact same κ it holds
that

PrS∗
2←Rκ [|(S1 \ {a}) ∩ S∗2 | = n] = 0,

resulting in a contradiction. □

Claim 7.4. For k1, ℓ1, k2, ℓ2, m ∈ N where 0 ≤ k1 ≤ ℓ1 ≤ m and 0 ≤ k2 ≤ ℓ2 ≤ m, let disjℓ1,ℓ2
k1,k2,m :

{λ} ×
( [m]

k1,ℓ1

)
×
( [m]

k2,ℓ2

)
→ {0, . . . , m} be the solitary output three-party functionality defined as

disjℓ1,ℓ2
k1,k2,m(S1,S2) =

{
1 if S1 ∩ S2 = ∅
0 otherwise

Then disjℓ1,ℓ2
k1,k2,m can be computed with computational 1-security if and only if one of the following

holds.

1. k1 = k2 = 0, or

2. ℓ1 = 0 or ℓ2 = 0, or

3. k1 = m or k2 = m, or

4. k1 = ℓ1 and k2 = ℓ2.

5. ℓ1 + k2 > m and k1 + ℓ2 > m.

Proof. We write disj instead of disjℓ1,ℓ2
k1,k2,m for brevity. Similarly to the PSI and PSIZE functionality,

if k1 = k2 = 0, then disj is forced since both B and C can fix the output to be 1. If ℓ1 = 0 or ℓ2 = 0
then disj is the constant 1. If k1 = m or k2 = m, then disj is independent of one of its arguments
and in particular, is forced. If k1 = ℓ1 and k2 = ℓ2 then disj is forced since the uniform distribution
for both parties fixes the output distribution to be uniform. Finally, if ℓ1 +k2 > m and k1 +ℓ2 > m,
then both parties can fix the output to be 0.

We now show the negative direction. We first show that S1 ≡ S ′1 and S2 ≡ S ′2, for all S1,S ′1 ∈( [m]
k1,ℓ1

)
and S2,S ′2 ∈

( [m]
k2,ℓ2

)
. We show only the former as the latter can be proved using an analogous

argument. Since disj is Boolean, it suffices to show that there exists S1 ∈
( [m]

k1,ℓ1

)
for which disj(S1, ·)
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is not constant. Clearly, since we assume ℓ1, ℓ2 ̸= 0, any S1 ∈
( [m]

k1,ℓ1

)
must intersect at least one

S2 ∈
( [m]

k2,ℓ2

)
. Now, recall that we assume that either ℓ1 + k2 ≤ m or k1 + ℓ2 ≤ m. Either way,

it follows that k1 + k2 ≤ m. Therefore, for any S1 ∈
([m]

k1

)
there exists S2 ∈

([m]
k2

)
that does not

intersect S1.
We now show that disj is not forced and hence cannot be computed with 1-security. Recall that

for the negative direction, we assume that k1 ̸= ℓ1 or k2 ̸= ℓ2. Assume the former without loss of
generality, and assume towards contradiction that disj is forced.

Then there exist two ensembles of efficiently samplable distributions Q = {Qκ}κ∈N R =
{Rκ}κ∈N such that, in particular

{disj (S∗1 ∩ S2)}κ,S2,S′
2

S≡
{
disj

(
S∗1 ∩ S ′2

)}
κ,S2,S′

2
, (18)

and

{disj (S1 ∩ S∗2 )}κ,S1,S′
1

S≡
{
disj

(
S ′1 ∩ S∗2

)}
κ,S1,S′

1
, (19)

where S∗1 ← Qκ and S∗2 ← Rκ. We next separate the proof into two cases.

Case 1: ℓ1 + k2 ≤ m and k1 + ℓ2 > m. In this case, disj(·,S2) ≡ 0 for any S2 ∈
([m]

ℓ2

)
, but

disj(S1, ·) ̸≡ 0 for any S1 ∈
( [m]

k1,ℓ1

)
. Similarly to Claim 7.1, this immediately contradicts Equa-

tion (18).

Case 2: k1 + ℓ2 ≤ m. We show that for S1 ←
([m]

k1

)
and S ′1 ←

( [m]
k1+1

)
sampled independently,

the statistical distance between disj (S1 ∩ S∗2 ) and disj (S ′1 ∩ S∗2 ) is not negligible. This implies that
there exist S1 and S ′1 for which the statistical distance is not negligible, thus Equation (19) does
not hold.

Observe that for any S2 ∈
([m]

n

)
, for some n ∈ {k2, . . . , ℓ2}, it holds that

PrS1←([m]
k1

) [S1 ∩ S2 = ∅] = PrS1←([m]
k1

) [S1 ⊆ [m] \ S2] =
(m−n

k1

)(m
k1

) .

Similarly,

PrS′
1←( [m]

k1+1) [S1 ∩ S2 = ∅] =
(m−n

k1+1
)( m

k1+1
) .

Let d(n) := (m−n
k1

)
(m

k1
) −

(m−n
k1+1)

( m
k1+1)

. Then for any n ≤ m − k1 it holds that d(n) > 0. Since k1 + ℓ2 ≤ m,

it follows that d(n) > 0 for any n ∈ {k2, . . . , ℓ2}. Now, for every n ∈ {k2, . . . , ℓ2} and every κ ∈ N,
let pn,κ = PrS∗

2←Rκ [|S∗2 | = n]. Then

PrS1←([m]
k1

),S∗
2←Rκ

[S1 ∩ S2 = ∅]− PrS′
1←( [m]

k1+1),S∗
2←Rκ

[
S ′1 ∩ S2 = ∅

]
=

ℓ2∑
n=k2

pn,κ · d(n).

Since there exists n∗ for which pn∗,κ ≥ 1/n∗ infinitely often, it follows that the above difference is
at least d(n∗)/n∗, which is non-negligible. □
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A Definition of Security-With-Identifiable-Abort
We next define an ideal computation with security-with-identifiable-abort, where a trusted party
performs the computation on behalf of the parties, and where the ideal-model adversary can
abort the computation after learning the output, but at the expense of revealing the identity
of a corrupted party. An ideal computation of a three-party functionality f = (f1, f2, f3), with
f1, f2, f3 : ({0, 1}∗)3 → {0, 1}∗, on inputs x, y, z ∈ {0, 1}∗ and security parameter κ, with an ideal-
world adversaryA running with an auxiliary input aux and corrupting a (strict) subset I ⊆ {A, B, C}
of the parties proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input to the trusted
party. For each corrupted party, the adversary A sends a value v from the corresponding
domain as the input for the corrupted party. Let (x′, y′, z′) denote the inputs received by the
trusted party.

The trusted party performs computation: The trusted party selects a random string r, com-
putes (wA, wB, wC) = f (x′, y′, z′; r), and sends {wP}P∈I to A.

Malicious adversary instructs trusted party to continue or halt: The adversary A sends
either continue or (abort, P) for some P ∈ I to T. If it sent continue, then for every honest
party Q the trusted party sends it wQ. Otherwise, if A sent (abort, P), then T sends (abort, P)
to the each honest party Q.

Outputs: Each honest party outputs whatever output it received from the trusted party and the
corrupted parties output nothing. The adversary A outputs some function of its view (i.e.,
the auxiliary input, its randomness, and the input and output of the corrupted parties).
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