
Get Me out of This Payment!
Bailout: An HTLC Re-routing Protocol

Oğuzhan Ersoy1,3, Pedro Moreno-Sanchez2, and Stefanie Roos3

1 Radboud University, The Netherlands
oguzhan.ersoy@ru.nl

2 IMDEA Software Institute, Spain
pedro.moreno@imdea.org

3 Delft University of Technology, The Netherlands
s.roos@tudelft.nl

Abstract. The Lightning Network provides almost-instant payments to
its parties. In addition to direct payments requiring a shared payment
channel, parties can pay each other in the form of multi-hop payments
via existing channels. Such multi-hop payments rely on a 2-phase commit
protocol to achieve balance security; that is, no honest intermediary party
loses her coins. Unfortunately, failures or attacks in this 2-phase commit
protocol can lead to coins being committed (locked) in a payment for
extended periods of time (in the order of days in the worst case). During
these periods, parties cannot go offline without losing funds due to their
existing commitments, even if they use watchtowers. Furthermore, they
cannot use the locked funds for initiating or forwarding new payments,
reducing their opportunities to use their coins and earn fees.
We introduce Bailout, the first protocol that allows intermediary parties
in a multi-hop payment to unlock their coins before the payment com-
pletes by re-routing the payment over an alternative path. We achieve
this by creating a circular payment route starting from the intermediary
party in the opposite direction of the original payment. Once the circu-
lar payment is locked, both payments are canceled for the intermediary
party, which frees the coins of the corresponding channels. This way, we
create an alternative route for the ongoing multi-hop payment without
involving the sender or receiver. The parties on the alternative path are
incentivized to participate through fees. We evaluate the utility of our
protocol using a real-world Lightning Network snapshot. Bailouts may
fail due to insufficient balance in alternative paths used for re-routing.
We find that attempts of a node to bailout typically succeed with a
probability of more than 94% if at least one alternative path exists.

1 Introduction

Payment channels have emerged as one of the most promising mitigations to
the blockchain scalability problem [22]. A payment channel enables two users
to perform many payments between them while requiring only two transactions
to be published on the blockchain. In a bit more detail, Alice and Bob open a

2 O. Ersoy et al.

channel between each other by submitting a transaction to the blockchain that
locks coins in a shared deposit. A (off-chain) payment only requires that Alice
and Bob exchange an authenticated agreement of a new deposit’s balance, i.e.,
the split of the funds in the deposit between the two. This off-chain payment op-
eration can be repeated arbitrarily often until the channel is closed by publishing
a transaction on the blockchain that releases the deposited coins according to
the last authorized balance. However, opening a channel only pays off if parties
transact with each other repeatedly.

To enable parties to conduct a transaction without establishing a new chan-
nel, payment channel networks (PCNs) [3–5,16,17,32,39] allow routing payments
from a sender to a receiver via multiple channels. In such a multi-hop payment,
each channel in the route is updated with the payment amount (and a fee)
from the sender to the receiver. The most important requirement for a multi-
hop payment protocol is balance security [5, 19, 32], i.e., no honest party other
than the sender should lose coins and the sender should only lose the payment
amount and the fees. While there exist several proposals to achieve balance se-
curity [5,19,33,39], hash-time lock contracts (HTLC) are currently implemented
in the Lightning Network (LN).

An HTLC-based multi-hop payment works as follows: When agreeing to con-
duct a payment, the receiver chooses a random value and then gives the hash of
that value to the sender. The sender decides on one payment path. The first node
on each channel making up the path commits to paying the second node if the
second node provides the preimage of the hash within a certain time. The time,
which depends on the node’s individual preference and its position in the path,
is called the timelock of the conditional payment. More details on the HTLC
construction and timelocks are given in Section 2. Once all the commitments are
made, the receiver provides the preimage and the preimage is forwarded along
the path back to the sender, concluding the promised payments.

While the protocol provides balance security, it causes issues with regard to
the availability of coins. After a node has committed to a payment, neither the
node nor their successor on the path can use the payment amount for concurrent
payments, as it is not yet known whether the coins will be successfully trans-
ferred. The typical amount of time funds can be locked in this manner is in the
order of seconds, assuming that all parties are responsive. However, there can
sometimes be delays in the order of days [37].

The delays can be caused by nodes being offline or payment failure. Thus,
the locked coins can severely limit a node’s liquidity and prevent them both
from initiating payments of their own and from forwarding other payments due
to the lack of available funds, which can drastically reduce the ability of the
network to conduct payments [37, 41]. Also, if there are several locked HTLCs,
the parties may not able to accept new HTLCs (even if they have enough funds)
because of the upper limit in the number of concurrent HTLC [12]. Moreover,
it is important to note that intermediary parties cannot go offline until all the
locked payments are released. This holds even with watchtowers, as there is no

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 3

watchtower protocol that updates the channel state without the presence of the
channel owner [7, 8, 15,25,27,35].

These negative effects of unexpectedly long-locked coins give rise to the ques-
tion: Is it possible to unlock coins of an intermediary party if the multi-hop pay-
ment is not completed and the timelock has not expired?
Our contributions. In this work, we positively answer this question by provid-
ing Bailout, which allows an intermediary party, who has locked her coins for
an unfinished multi-hop payment, to unlock her coins before the expiration of
the corresponding timelock. In a nutshell, Bailout allows the intermediary party
to re-route the on-going multi-hop payment, so that other nodes with a better
availability situation take over the payment, freeing up coins for the intermediary
party to use in other payments. We incentivize the other parties to take over the
payment through offering them extra fees, typically higher than the standard
fee for routing a payment. In this manner, we offload payments from overloaded
nodes to nodes with a low load and available funds. Our contributions are:

– We introduce Bailout, the first protocol that allows intermediary parties
to unlock their coins from an ongoing HTLC payment and provably achieves bal-
ance security. Bailout re-routes the payment over an alternative path that con-
nects the neighboring parties of the intermediary. It is compatible with HTLC-
based multi-hop payments in Lightning: (i) it can be implemented with the
scripting language of Bitcoin, (ii) it does not require any additional information
than the existing knowledge in Lightning, e.g., the intermediary party knows
only her neighbors on the payment path.

– We evaluate our protocol in the face of parties that want to go offline and
bailout of their ongoing payments. The level of concurrency and the frequency of
long delays determine the amount of locked collateral in the network and hence
affect the ability of a party to find an alternative path with sufficient funds. Still,
even for high concurrency and frequent delays, less than 6% of bailouts fail.

2 Building Blocks

Transactions and Ledger. In this work, we utilize a simplified version of
Bitcoin to model transactions and the ledger as in [3]. The transactions are
based on the unspent transaction output (UTXO) model, where the coins are
represented by outputs. An output ~θ is defined as a tuple (cash, θ) where cash
denotes the number of coins in the output and θ is the corresponding spending
condition. For readability, we extract away the details of the ledger functionality.
We require that the ledger handles the notion of time in rounds, and the round
number corresponds to the number of blocks on the ledger. Also, we assume that
a valid transaction is included in a block on the ledger after at most ∆ rounds.
The details of transactions and ledger functionality are given in Appx. A.
Payment Channels. A payment channel is defined as a tuple of γ := (id , users,
cash, st) where γ.id is the id of the channel between parties P ∈ γ.users, γ.cash
denotes the capacity of the channel and γ.st := (~θ1, . . . , ~θn) is the state of the

4 O. Ersoy et al.

channel. We denote channel between A and B as γA,B . A channel has three
phases: (i) create where the channel is opened by publishing the funding trans-
action on the ledger, (ii) update where parties update the state of the channel,
and (iii) close where parties close the channel by publishing the latest channel
state on the ledger. The payment channel functionality is given in Appx. A.

Payment Channel Networks. A payment channel network is a network where
parties are nodes and channels are edges. One can route payments from a payer to
a payee along multiple channels without requiring a direct channel between them.
A Multi-hop payment (MHP) is constructed over a path of channels path :=
(path[0], . . . , path[n− 1]) and conditional payments (MHP[0], . . . ,MHP[n− 1])
(one for each channel) where n is the payment route length. path[i] is the ith
channel in the payment route and path[i].payer (and also MHP[i].payer) denotes
the ith party in the path who pays to the (i+ 1)th party, path[i].payee.

We present the ideal functionality of MHP FMHP in Appx. E, which has two
phases: Setup and Lock, and Pay or Revoke phases. In the Setup and Lock phase,
the payment path is created and the channels on the path lock the corresponding
amounts. More concretely, at each channel path[i], amt[i] coins of path[i].payer
are locked. Here, the order of the locking corresponds to the order of channels on
the path, starting with the channel adjacent to the sender. If the locking fails in
a channel on the path, then the locking stops. When all channels in the path are
locked, this phase is finished. In the Pay (or Revoke) phase, for each channel of
path[i], the locked coins are paid to path[i].payee. Unlike in the previous phase,
the channel updates are executed in the order from the receiver to the sender. If
the payment is not completed before TL[i], then the locked coins can be revoked
and given back to the path[i].payer.

Lightning Network achieves multi-hop payments via the HTLC (hash time
locked contract) protocol. An HTLC is a conditional payment where the receiv-
ing party can claim the payment amount by providing the preimage of the given
hash value. If the preimage is not provided within a certain time, the payment
amount returns to the sending party. We write an HTLC tuple with the fol-
lowing attributes HTLC := (mid, cpid, γ, payer → payee, cond, TL, amt) where
HTLC.cpid is the id of the HTLC in channel HTLC.γ between the payer HTLC.
payer and the payee HTLC.payee. If the HTLC is part of a multi-hop payment,
then HTLC.mid stores the corresponding id, otherwise it is ⊥. The payment
amount of the HTLC is HTLC.amt that is locked for the condition HTLC.cond.
If the HTLC is part of a MHP, the amount is deducted from the available coins
of HTLC.payer. If a witness witness is provided s.t. H(witness) = cond until time
HTLC.TL, then the payment amount is given to HTLC.payee. Otherwise, at time
HTLC.TL, the amount is returned to HTLC.payer. Note that a channel γ can have
several ongoing HTLCs at the same time. For readability, unless it is necessary,
we skip the first three attributes of the HTLC tuple, also we omit the payer and
payee in figures where they are visually ascertainable. The scripts of an HTLC
are given in Appx. A.

As explained previously, a MHP in Lightning is done by locking HTLCs in
the payment path from sender to receiver wrt. the condition cond chosen by the

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 5

1. ℎ = 𝐻(𝑥)

Sarah Alice Bob Carol Ron
2. 𝐻𝑇𝐿𝐶(ℎ, 𝑡!, 𝑣!) 3. 𝐻𝑇𝐿𝐶(ℎ, 𝑡", 𝑣") 4. 𝐻𝑇𝐿𝐶(ℎ, 𝑡#, 𝑣#) 5. 𝐻𝑇𝐿𝐶(ℎ, 𝑡$, 𝑣$)

6. 𝑥7. 𝑥8. 𝑥9. 𝑥

Fig. 1: A multi-hop payment with HTLCs. h denotes MHP[i].cond where x is the
corresponding preimage, and ti and vi represents MHP[i].TL and MHP[i].amt.

receiver. Note that each intermediary party Pi plays the role of payee in the
channel (of MHP[i]) closer to sender, and the role of payer in the subsequent
channel (of MHP[i+ 1]), which is closer to the receiver. Party MHP[i+ 1].payer
accepts locking the conditional payment MHP[i + 1] if the following conditions
are satisfied: (i) the previous channel should be updated first with the same hash
condition,MHP[i+1].cond = MHP[i].cond, (ii) the locked amount should be equal
to the one in previous channel minus the fee, i.e, MHP[i].amt−MHP[i+ 1].amt
is equal to the fee amount chosen by the channel, and the locked amount can be
at most the channel balance, and (iii) the timelock of the HTLC is less than or
equal to the timelock of the previous channel plus the timelock of the channel
chosen by the intermediary, MHP[i + 1].TL = MHP[i].TL − Ti where Ti is the
timelock of the channel. In Lightning Network, the timelock and fee values of a
channel is publicly known. An illustrative example of a MHP is given in Figure 1.

After the last channel before the receiver has been updated with an HTLC
condition, the receiver reveals the preimage and obtains the payment. Subse-
quently, all intermediaries forward the preimage to their predecessor. If the re-
ceiver does not share the preimage, each channel returns to its initial state after
the timelock. In this case, the coins in each channel will be locked and cannot
be used until the timelock is over.

3 The Bailout protocol

Assume there is an ongoing multi-hop payment (MHP0) including the chan-
nels from A to B and B to C (seen at the Initial State of Figure 2). Let HTLCA

and HTLCC be the existing HTLCs with condition h and amounts amtA and
amtC in channels γA,B and γB,C , defined as: HTLCA := (A→ B, h, TLA, amtA)
and HTLCC := (B → C, h, TLC , amtC), where TLC < TLA and amtC < amtA.
In both channels, coins have been locked for longer than expected by B. If the
payment is not completed, B has to wait until the timelock of HTLCC expires,
which can be days.
Motivation. Here, we list some of the potential reasons that B may request
to be removed from the long-lasting payment. First, B may want to go offline
with minimal monitoring of the blockchain. If there are no ongoing payments
locked, B only needs to monitor the blockchain (wrt. the channel timelock, once

6 O. Ersoy et al.

per day) for potential fraud of the other party of the channel, and this can
even be delegated to a watchtower [27]. However, if there are ongoing HTLCs,
the channel needs to be updated wrt. the outcome of them, and this cannot be
delegated. Note that even if every party in the MHP is honest and online but
B is offline, then the MHP cannot be completed until B is online again or the
timelocks of B are expired. Thus, other parties also benefit from removing B
from the ongoing payment as B’s absence may delay the payment further.

Secondly, B may want to close his channels and spend the coins immediately.
Even though, B can close the channel with ongoing payments, he needs to wait
for them to be finalized. Thirdly, B may want to make an off-chain payment
but due to the ongoing payment and the locked coins, there are not enough
funds available. In the last scenario, B could also want to unlock his funds to
participate in off-chain payments as an intermediary and make profits in the
form of fees from other payments using the currently locked coins.
Security and Compatibility Requirements. Here, we aim to design a pro-
tocol that unlocks the coins of B, which is compatible with Bitcoin’s scripting
language and the Lightning Network. The protocol requires the participation of
B’s neighbors A and C as they need to be involved in unlocking previously made
commitments. Without the cooperation of these neighbors, B cannot update the
channels. The Lightning Network uses onion routing such that the intermediary
only learns the identity of the previous and next node on the path. Thus, our
protocol should also not require the identities of other parties on the path, in
particular the sender and receiver. Finally, but most importantly, the protocol
should provide balance security to every honest intermediary, meaning that no
honest party should lose coins regardless of the acts of other parties.

3.1 Overview of Bailout

In this work, we design Bailout and show that it satisfies all the requirements
given above. Bailout re-routes the ongoing locked HTLCs via an alternative
path such that coins of B are released. In a nutshell, the idea is creating new
HTLCs in the opposite direction with the same payment amounts and then
cancelling them out. For that reason, we create a circular MHP (MHP1) of length
four starting from B that goes through A, D (party in the new route, called a
bailout party), C and ends at B again (see Step 2 in Figure 2).4 Once the new
MHP is locked, both payments are canceled for B, which frees the coins of the
corresponding channels, which is illustrated in the Step 3 of Figure 2. The re-
routing of the original payment can be seen in the path difference between the
Initial and Final State given in Figure 2.
Naive approach. A naive solution is creating a circular MHP1 with the same
condition as MHP0, then HTLCA and MHP1[0] have the same amount and the
same hash condition but in opposite directions. Then, for the parties A and
B, it would be the same if they cancel both of them, rather than waiting for
4 Here, we require that there is an alternative path between Alice and Carol via only
one intermediary, Dave. Later on, we generalize it to multiple intermediaries.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 7

Alice Bob Carol
𝐻𝑇𝐿𝐶(ℎ, 𝑡!, 𝑣!) 𝐻𝑇𝐿𝐶(ℎ, 𝑇𝐿", 𝑎𝑚𝑡") 𝐻𝑇𝐿𝐶(ℎ, 𝑇𝐿# , 𝑎𝑚𝑡#) 𝐻𝑇𝐿𝐶(ℎ, 𝑡$, 𝑣$)

Dave

Alice Bob Carol
𝐻𝑇𝐿𝐶(ℎ, 𝑡!, 𝑣!)

𝐻𝑇𝐿𝐶(ℎ, 𝑇𝐿" , 𝑎𝑚𝑡#)

𝐻𝑇𝐿𝐶(ℎ, 𝑡$, 𝑣$)

Dave
𝐻𝑇
𝐿𝐶
(ℎ,
𝑇𝐿 #
, 𝑎𝑚

𝑡 #)

Alice Bob Carol
𝐻𝑇𝐿𝐶(ℎ, 𝑡!, 𝑣!)

𝐻𝑇𝐿𝐶({ℎ, ℎ
% }, 𝑇𝐿" , , 𝑎𝑚𝑡#)

𝐻𝑇𝐿𝐶(ℎ, 𝑡$, 𝑣$)

Dave
𝐻𝑇
𝐿𝐶
({ℎ
, ℎ %
}, 𝑇
𝐿 #
, , 𝑎
𝑚𝑡 #

)

Alice Bob Carol
𝐻𝑇𝐿𝐶(ℎ, 𝑡!, 𝑣!) 𝐻𝑇𝐿𝐶(ℎ, 𝑡$, 𝑣$)

Dave

1. Initial State

2. Setup and Lock Phase 3. Cancellation & Pay and Reroute Phases

4. Final State

𝐻𝑇𝐿𝐶(ℎ
% , 𝑇𝐿" , 3𝑓) 𝐻𝑇

𝐿𝐶
(ℎ %
, 𝑇𝐿

#,
2𝑓
)

𝐻𝑇𝐿𝐶(ℎ, ℎ% , 𝑇𝐿" + Δ, 𝑎𝑚𝑡#) 𝐻𝑇𝐿𝐶({ℎ, ℎ%}, 𝑇𝐿# − Δ, , 𝑎𝑚𝑡#)

𝐻𝑇𝐿𝐶(ℎ%, 𝑇𝐿" + Δ, 4𝑓) 𝐻𝑇𝐿𝐶(ℎ%, 𝑇𝐿# − Δ, 𝑓)

𝐻𝑇𝐿𝐶(ℎ, 𝑇𝐿", 𝑎𝑚𝑡") 𝐻𝑇𝐿𝐶(ℎ, 𝑇𝐿# , 𝑎𝑚𝑡#) 𝐻𝑇𝐿𝐶(ℎ, 𝑇𝐿", 𝑎𝑚𝑡") 𝐻𝑇𝐿𝐶(ℎ, 𝑇𝐿# , 𝑎𝑚𝑡#)
𝐻𝑇𝐿𝐶({ℎ, ℎ

% }, 𝑇𝐿" , , 𝑎𝑚𝑡#) 𝐻𝑇
𝐿𝐶
({ℎ
, ℎ %
}, 𝑇
𝐿 #
, , 𝑎
𝑚𝑡 #

)

𝐻𝑇𝐿𝐶(ℎ
% , 𝑇𝐿" , 3𝑓) 𝐻𝑇

𝐿𝐶
(ℎ %
, 𝑇𝐿

#,
2𝑓
)

𝐻𝑇𝐿𝐶(ℎ, ℎ% , 𝑇𝐿" + Δ, 𝑎𝑚𝑡#) 𝐻𝑇𝐿𝐶({ℎ, ℎ%}, 𝑇𝐿# − Δ, , 𝑎𝑚𝑡#)

𝐻𝑇𝐿𝐶(ℎ%, 𝑇𝐿" + Δ, 4𝑓) 𝐻𝑇𝐿𝐶(ℎ%, 𝑇𝐿# − Δ, 𝑓)

Fig. 2: Simplified protocol phases for the full cancellation/re-routing. In Setup
and Lock Phase, the new multi-hop payments (MHP1 and MHP2) are locked. In
Cancellation Phase, the HTLCs of B are cancelled in the channels with A and
C. In Pay and Reroute Phase, MHP2 is payed by sharing the preimage of hB
and the condition of MHP1 is reduced to h. For simplification of the figure, we
use a constant fee f , which can actually differ among parties. HTLCs of MHP0,
MHP1 and MHP2 are colored with black, blue and green respectively.

the payments to be completed. It is similar for the channel between B and C.
However, there is a security problem: if the preimage of h is known to A during
the locking phase of MHP1, then B loses his coins. More specifically, just after
locking MHP1[0], and before locking the other hops in MHP1, if A knows the
preimage5, A can claim the payment in MHP1[0] from B. Yet, if the last hop
MHP1[3] is not locked, then B is not be compensated in MHP1.

To overcome the aforementioned problem, the conditional payments in MHP1

should include an additional condition chosen by B, say hB . In this way, if MHP0

is completed during the process, then the new MHP (MHP1) cannot be spent,
and B does not lose his coins. In this case, MHP1 is cancelled since there is no
need to execute the protocol. With the additional condition, after re-routing,
we need to ensure that parties A and C do not lose their coins because of the
differences in conditions of MHP0 and MHP1. From A’s perspective, since A is
the payer for conditions (h, hB) in MHP1[1], and payee for h in MHP0 (if she is
not the sender), she is guaranteed that after paying in MHP1[1], she can get paid
in MHP0. However, for C, it is the opposite. For that reason, we have an interim
step for the update between B and C where B needs to reveal the preimage of
hB , which we explain in more detail while presenting the protocol phases.

5 A can learn the preimage from B (or the other parties on the path if she is colluding
with them).

8 O. Ersoy et al.

Incentives. Note that the reason of re-routing HTLCs of B in MHP0 is that
it was not completed in the expected time. The delay can be due to i) a node
not forwarding the payment or preimage, ii) a node not peacefully settling the
payment that she knows will fail and instead waiting for the timelock to expire,
and iii) a receiver (intentionally) not providing the preimage, e.g., in a griefing
attack. In case ii) and iii), the payment fails and the cancellation happens at the
last possible moment, leading to very long delays. If the payment fails, interme-
diaries do not receive fees. As a consequence, the bailout party D is unlikely to
agree to take over the payment if a fee is only paid when the original payment
is successful. For this reason, there should be an additional incentive for D to
be involved in the re-routing.

We introduce a secondary MHP, MHP2 with the sole purpose of paying fees
to the bailout party D, as well as A and C, for their involvement in the protocol.
The condition of MHP2 is hB , which is revealed by B to C after the cancellation
of HTLCs in their channel. Thus, the intermediary parties will get paid just after
the HTLCs of B are cancelled, which is independent of the completion of MHP0.
D can negotiate its fee with B.

A simplified overview of Bailout steps is given in Figure 2. The locking of
the new MHPs, MHP1 and MHP2, is done in the Setup and Lock phase. After
that, the Cancellation phase starts. In this phase, the previous HTLCs, HTLCA

and HTLCC , together with the new ones in MHP1 belonging to channels γA,B

and γB,C are cancelled, i.e., they are simultaneously revoked. Thus, the coins of
B are released. Then, in the last phase, B reveals the secret xB , so that each
party can claim the payment in MHP2 and also reduce the conditions of HTLCs
in MHP1 to only h.

Extension I - Multiple bailout parties and timelocks. So far we explained
the protocol for only one bailout party D that connects A and C. However, such
a party may not exist because of the network topology or insufficient balance.
Thus, we extend the protocol to multiple bailout parties, Di’s. For the multiple
case, the protocol steps do not change. The only concern of having multiple Di’s
is that the timelocks of the re-routing payments (MHP1) have to be divided by
the number of new parties. In practice, a default timelock of a channel is either
40 or 144 blocks, with one block being published roughly every 10 minutes [37].
The average transaction confirmation time is not higher than one hour in the last
three months (as of Oct. 17, 2022), yet, in the past, it had spikes higher than
five days [10]. Thus, we assume the bailout parties can assess a safe timelock
value regarding the transaction confirmation time at the moment, and whether
they are willing to participate in the protocol with a lower timeout.

Extension II - Partial re-routing (or cancellation). Until now, Bailout
is defined over the scenario where HTLCA and HTLCC of MHP0 are completely
cancelled and MHP0 is re-routed over the bailout parties. Yet, it is also possible
that the payment is partially re-routed and the HTLCs in γA,B and γB,C are
updated accordingly. Let amtcxl be the amount that party B aims to re-route
via the new path. We can achieve partial re-routing by replacing the amount
locked in MHP1 with amtcxl (instead of the amount in MHP1). Then, during the

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 9

cancellation phase, instead of completely cancelling the corresponding HTLCs
in γA,B and γB,C , we replace HTLCA and HTLCC with HTLCnew

A and HTLCnew
C

with the only difference of amount reduction by amtcxl. Hereby, we re-route the
amount amtcxl over the channels of bailout parties and keep the remaining in
channels γA,B and γB,C .

3.2 The Phases of Bailout

In Appendix B, we give the protocol,ΠBO in the UC framework. Here, we explain
the phases of Bailout: Setup and Lock, Cancellation and Pay and Reroute.

First, we should discuss the path of new multi-hop payments. The protocol
requires existence of bailout parties, Di’s, that connect A and C. Here, finding
an alternative path is not sufficient, it is also necessary that all channels on the
new path have sufficient funds and the new bailout parties charge a fee that
is acceptable. Also, as mentioned in the previous section, the more parties are
involved, the lower the timelock values are. Thus, having only one bailout party
is preferable to not shortening the timelock values. For completeness, we write
the protocol for multiple ones.
Setup and Lock phase. In this phase, the new MHPs are created and locked
wrt. to the initial HTLCs, HTLCA and HTLCC , given in Eqn. (??). B constructs
the new MHPs of length n with mhpInfo1 := (amt1,TL, path) and mhpInfo2 :=
(amt2,TL, path) such that:

– path[0].payer = path[n − 1].payee = B, path[0].payee = path[1].payer = A,
path[n − 2].payee = path[n − 1].payer = C and path[i].payee = path[i +
1].payer = Di for i ∈ [1, n− 3].

– For i ∈ [0, n − 1], amt1[i] := amtcxl ≤ amtC , and amt2[i] =
∑n−1

j=i fj where
fj is the fee of channel path[j].

– TL[0] = TLA + ∆, TL[n − 1] = TLC − ∆, and for i ∈ [1, n − 2], TL[i] =
(n−2−i)

n−3 × (TLA − TLC) + TLC .

B chooses a random value xB and computes hB = H(xB). Then, B computes
the HTLCs of MHP1 and MHP2 (for i ∈ [0, n− 1]):

MHP1[i] = (payeri → payeei, {h, hB},TL[i], amt1[i]),

MHP2[i] = (payeri → payeei, {hB},TL[i], amt2[i]),

where payeri = path[i].payer and payeei = path[i].payee.
Once the HTLCs are created, starting from i = 0 to n − 1, each channel of

path[i] is locked with both MHP1[i] and MHP2[i]. In the locking phase, parties
follow the standard Lightning MHP locking procedure with the only difference
being the two parallel HTLCs. If there is failure in any of them, the parties do
not continue. Once both MHPs are successfully locked, the phase is completed.
Cancellation phase. In this phase, B updates his channels with both parties
P ∈ {A,C} by (partially or fully) canceling the existing HTLCs and unlocking
the coins in his channels. B updates his channels γA,B and γB,C . To ensure

10 O. Ersoy et al.

balance security of B, both channels are updated atomically. Also, the new
states of both channels should not be publishable on the blockchain until the
old ones are revoked. Otherwise, an old state of one channel (e.g., γA,B) and a
new state of the other channel (γB,C) can be published. To achieve this, we use
the idea presented in [4] where the updated states have an additional timelock
condition. This additional timelock gives enough time for B to make sure that
the previous state of both channels are revoked. If not, then he can publish the
old states of both channels before the timelocks of the new states.

Another atomicity is required in the channel update of γB,C . The update
of the channel γB,C and revealing of xB should be atomic. On the one hand,
B should not share xB with C before updating their channel. Otherwise, a
malicious C can stop the update, and if x is revealed between MHP1[n− 1].TL
and MHP1[2].TL, C can get paid by B from HTLCC of MHP0 without paying
MHP1[n − 1]. On the other hand, C should not update the channel without
learning xB . Otherwise, if a malicious B does not share xB , then C might pay for
MHP0 when receiving x (assuming C is not the receiver of MHP0), but cannot
claim the payment from Dn−3 in MHP1[n − 2]. For that reason, we have an
additional condition payment HTLC′C that updates the channel where B needs
to reveal xB to claim his coins with the timelock of MHP1[n− 1].TL:

HTLC′C ← (C → B, hB , TLC −∆, amtC) (1)

where ∆ is the time required to publish a transaction on the ledger. It is im-
portant to note that, unlike other HTLCs, the amount amtC in HTLC′C is not
deducted from C, but B, which is the released amount in HTLCC . It is better to
interpret HTLC′C as a conditional payment that uses collateral of B, and B can
re-claim it by revealing xB , otherwise, it goes to C after the timelock period.

For the channel γB,C , there are three existing HTLCs: HTLCC has condition
h for the amount of amtC from B to C, MHP1[n − 1] has conditions {h, hB}
for the amount of amtcxl from C to B and MHP2[n − 1] has condition {hB}
for the amount of fn−1 from C to B. For full cancellation where the amounts
are the same, i.e., amtC = amtcxl, B and C update γB,C by canceling HTLCC

and MHP1[n− 1], and locking HTLC′C . Otherwise, for partial cancellation where
amtC > amtcxl, parties additionally lock HTLCnew

C where HTLCnew
C := (B →

C, h, TLC , amtC − amtcxl).
For the channel γA,B , there are also three ongoing HTLCs: HTLCA has con-

dition h for the amount of amtA from A to B, MHP1[0] has conditions {h, hB}
for the amount of amtC from B to A and MHP2[0] has condition {hB} for the
amount of

∑n−1
j=0 fj from B to A. For full cancellation, since atomic reveal of

xB is not necessary for A, A and B will update γA,B by canceling HTLCA and
MHP1[0]. Here, the difference of cancelling HTLCA and MHP1[0], amtA− amtC ,
can be seen as an additional fee gain for A. For partial cancellation, parties lock
HTLCnew

A where HTLCnew
A := (A→ B, h, TLA, amtA − amtcxl).

In the honest case where both channels of B are updated, B can reveal
xB to C and update their transitory state by unlocking HTLC′C and receiving
payment MHP2[n−1]. Here, B can also share xB with A and make the payment
of MHP2[0].

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 11

If a malicious A or C does not complete the channel update, then B publishes
the previous state of both channels, which includes the pending HTLCs ofMHP0,
MHP1 and MHP2. Then, B does not reveal xB and waits until the end of all
timelocks that require xB . For the initial HTLCs, HTLCA and HTLCC , he follows
the standard HTLC protocol. Hence, even if A and/or C are malicious, B doesn’t
lose any funds.
Pay and Reroute. In this phase, the bailout parties get paid by MHP2 once B
reveals xB . Here, parties follow the standard MHP payment procedure. Also, the
intermediaries update the locking condition of MHP1 by eliminating hB there.
For each i ∈ [1, n− 2], MHP1[i] is updated with

MHPnew
1 [i] = (payeri → payeei, h,TL[i], amt1[i]). (2)

This implies that MHP0 is re-routed. In the full cancellation case, HTLCA

and HTLCC are replaced by MHPnew
1 [1], . . . ,MHPnew

1 [n− 2]. In other words, the
new payment path goes via D1, . . . , Dn−3, and B is no longer involved in the
payment. In partial cancellation case, the locked amounts in channels γA,B and
γB,C are reduced by amtcxl, which is now locked in the alternative path.

3.3 Security Discussion

Here, we briefly argue the balance security of the parties. For parties A and
C, they are replacing their existing HTLCs of MHP0 with the ones in MHP1

where the timelocks are hash conditions are the same. Thus for them, only the
path is changing. For the bailout intermediaries, the balance security mainly
relies on the security of MHPs since they are regular intermediaries. For B, the
balance security comes from the fact that the new MHPs depend on the secret
xB chosen by him. Thus, if the HTLC updates and the cancellation phase are
incomplete, then B can always ignore the new HTLCs since only he has the
witness xB of them. Because of the page limitations, we present the detailed
security discussion of the HTLC updates with timelines in Appx. C. Also, in
Appx. D, we provide the ideal functionality FBO and we show that our protocol
Bailout (ΠBO) emulates the ideal functionality FBO.

4 Evaluation

We consider the scenario that a party (Bob) wants to go offline and bailout of
all of his payments. In Appendix F, we also treat the case of a party wanting to
bailout to re-gain liquidity. While in the first scenario, the party wants to get out
of all ongoing payments, for the second case he only wants to bailout of a subset
of payments that allows him to freely use a certain amount of locked funds.
Metrics. Our evaluation is focused on the rate of successful bailouts. For this,
we classify the result of a bailout in three categories:

1. No Loop: the network does not contain an alternative path that can be
used for bailout for at least one of the payments the party aims to bailout from.

12 O. Ersoy et al.

2. Failed : the party finds an alternative path for all payments but the bailout
fails nevertheless, e.g., due to insufficient balance on the alternative paths.

3. Successful : the party managed to bailout of all payments.
During a simulation, we count the number of occurrences of each of the above,
and the sum of all these three numbers (called number of bailout events).

The first possible cause of failure, ‘No Loop’, results from the topology of
the network. Our algorithm does not directly impact the topology, since no new
channel is created or deleted during the protocol execution. However, it stands to
reason that if parties have the option to use Bailout, they ensure that bailout
parties are present by establishing channels such that alternative paths exist.
Consequently, we expect a lower amount of ‘No Loop’ cases when our protocol
is deployed than for the current Lightning topology, which we use as a model in
our evaluation. In order to focus on protocol-related rather than topology-related
aspects, we compute the failure ratio as (Failed)/(Successful + Failed).

Simulation Model. We implemented the protocol by extending a known simu-
lator, and the code is open-source6. We simulate the Lightning Network by using
real-world topology snapshots. As 92% of parties use the LND client [37], our
simulation implements the routing behavior of LND. Other clients differ slightly
in the path selection but otherwise execute the same behavior.

Payments are executed concurrently. For simplicity, we disregard the time
required for local operations and only add network latency for the communi-
cation. As Lightning only requires relatively fast operations such as encryption
and decryption of messages of 1300 bytes as well as hashing [13], the network
latency should dominate the local computation time.

Generally, the latency of payments that are properly executed are chosen
such that parties do not bailout during this time but only if additional delays
happen. In order for parties to use Bailout, we consider the following behaviors
that cause additional delays:

– Delaying : with a certain probability p, an intermediary or receiver delays
the payment (e.g., by being offline) until the maximal timeout.

– Not settling : a fraction p of intermediaries does not cancel failed payments
but rather waits until the timeout expires.

Parameters.We run our simulation on a real-world Lightning snapshot [40]. We
restricted our evaluation to the largest connected component with nearly 7,000
nodes and about 65,000 channels to ensure that every node had a path to every
other node. For each channel and direction, we choose the balance exponentially
with an average of 4 million satoshi, similar to the statistics of Lightning from
early 2022 [1]. For the normal Lightning fees, we roughly approximated the
statistics as follows: More than 75% of the parties choose a base fee of 0 or 1,
so we chose each with a probability of 50%. For the fee rate, the probability to
have a rate of 0.000001 was 25%, otherwise the fee rate followed an exponential
distribution with parameter λ = 1/0.000004. We chose the local timelock of
each party to be the widely used value of 144 blocks. We generated 100,000

6 https://github.com/stef-roos/PaymentRouting/tree/bailout

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 13

transactions with random source-destination pairs, an exponentially distributed
payment value of 10% of the average channel balance, and an average of 10
transactions per party and hour. There is no real-world data on transactions in
Lightning as they are considered private. Thus, we took the same parameters as
previous work [19]. For the additional delays, i.e., Delaying and Not Settling, p
was varied between 0.1 and 0.5 in steps of 0.1. All results were averaged over 10
runs. When the last transaction is initiated, a party B decides that he wants to go
offline. He waits 60s such that any ongoing payments without additional delays
can terminate. 60s was chosen as Lightning payments should terminate within
a minute [2]. During the 60s, he no longer accepts to forward new payments.
After the 60s, he attempts to bailout of all remaining payments. For simplicity,
we assume that bailout parties are not paid fees here but we consider how to
choose fees in Appendix F.

The party aiming to use Bailout considers each ongoing payment and first
determines a list of alternative paths for the payment. The discovery of alter-
native paths works as follows: We initialize a queue containing paths, with the
first path in the queue being a path containing only the party A, i.e., the party
preceding the party B that aims to go offline. We want to find loop-free path
from A to B’s successor C, which does not contain B. In each step of the path
discovery algorithm, we remove the first path from the queue. We iterate over all
neighbors I of the last node in the path. If I = C, we extend the path by I and
add it to the list of alternative paths. Otherwise, if I is not B and appending
it to the path does not create a loop, we add the path with I appended to the
queue. For efficiency reasons, we limit the alternative path length to at most 4
and the maximal queue size to 1000. If no alternative paths are found, we record
‘No Loop’ to note that the bailout failed due to the absence of alternative paths.

After determining a list of alternative paths, the party checks whether he can
bailout of the payment using one or several of the alternative paths. Concretely,
we consider the first path and determine the amount of funds that can be sent via
it in accordance with the balance constraints. If the balance is sufficient to take
over the complete payment value, we bailout out of the payment by moving the
value to this alternative paths. Note that the balance of the path is accordingly
reduced. Otherwise, we split the payment value and execute Bailout for the
amount that can be moved to the alternative path. For the remaining funds,
we consider the second path found, for which we repeat the same process. We
continue the algorithm until we have either moved all funds to another path or
there are no alternative paths left. In the later case, the bailout fails.

The party executes the above process for all ongoing payments he is an inter-
mediary for. Note that the party can only go offline if he can bailout of all these
payments. Thus, we mark the bailout as ‘Successful’ if all separate bailouts are
successful. If we experience ‘No Loop’ for any of them, we terminate and record
‘No Loop’ as the result of the overall bailout attempt. Otherwise, the bailout is
‘Failed’. We count the number of ‘No Loop’, ‘Failed’, and ‘Successful’ by exe-
cuting the above bailout protocol for every party that has at least one ongoing
payment. Based on these value, we compute the success ratio of bailouts. Note

14 O. Ersoy et al.

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

F
a
ilu

re
 r

a
ti
o

Probability p

Delaying-Low
Delaying-High

No-Settling-Low
No-Settling-High

(a) Failure Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
o
d
e
s
 w

it
h
o
u
t
p
a
y
m

e
n
ts

Probability p

(b) No Need

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
o
 L

o
o
p

Probability p

(c) No Path

Fig. 3: a) Failure ratio for bailing out of all ongoing payments; b)+c) Fraction
of parties that do not attempt to bailout because they b) do not have ongoing
payments or c) do not have an alternative path

that parties cannot bailout of payments that they are the source off. However,
as they do not need to relay a preimage to their predecessor when they are the
source, these payments do not prevent them from going offline, so that we do
not consider them in the set of ongoing payments.

As concurrency has a major impact on the number of ongoing payments, we
consider a low-concurrency and a high-concurrency scenario. In the former, a
party on average sends 0.04 transactions per hour, or roughly 1 transaction per
day. In the latter, parties send an average of 10 transactions per hour.

Results. Figure 3a shows the failure ratio. Note that since few payments fail,
the figure uses a log scale. High concurrency indicates that at any time, there
is more collateral locked and hence the probability that an alternative path has
sufficient collateral is lower. Furthermore, Delaying can be executed during any
payment and by any party whereas Not Settling only happens when payments
fail, which is less frequent. As a consequence, there are less ongoing payments
to bail out for Not Settling, resulting in a lower failure ratio.

The main difference between the various parameter selections lies in the
number of parties that attempt to bailout. Parties may not attempt a bailout
because they do not need to as they have no ongoing payments or because they
cannot find an alternative path. Thus, we divide the parties in the snapshot in
four classes: ‘No Loop’, ‘Successful’, and ‘Failed’, as defined in Section 4, as well
as ‘No Need’, the parties without ongoing payments. Figures 3b and 3c show
the fraction of parties that all fall into the ’No Need’ and ‘No Loop’ category,
respectively. As there are more concurrent payments and a higher probability
of delay, more parties have ongoing payments and consequently, the fraction
of parties not discovering an alternative path increases. In particular, when few
parties have ongoing parties, ongoing payments mainly affect central parties with
a large number of links. These parties can easily find alternative paths. As more
parties are affected, parties with few connections that are not part of any loops
have ongoing payments as well. Establishing channels such that alternative paths
are possible is hence an important aspect when aiming to use Bailout. We can
see that as long as alternative paths exist, Bailout is nearly always successful.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 15

5 Related Work

There have been several works on the different channel constructions: Lightning
channels [39], generalized channels [3,18], and virtual channels [4,6,16,17,23,26].
A network of channels can be used for atomic multi-channel updates and multi-
hop payments over parties who do not have a direct channel [5,19,20,33,36,39].

An important aspect regarding multi-hop payments concerns the channel
balances. The balance in each side of a channel determines the usability of that
channel in a multi-hop payment in that direction. Thus, if a channel is depleted in
one direction, then that direction cannot be used for multi-hop payments. There
have been studies on reducing depletion by (i) active re-balancing with circular
payments [9, 29, 38, 43], and (ii) passive re-balancing with fees and incentive
mechanisms [14,21,42]. It is also possible to change the capacity, and thereby the
balance, of a channel by Loop-in and Loop-out protocols [28], which require on-
chain transactions. Recently, Spider [41] has been proposed to improve channel
balances and network throughput. It utilizes a packet-switched architecture that
allows splitting transactions into smaller units for better load balancing. These
re-balancing protocols re-locate the available (unlocked) coins in the channels,
yet they do not solve the unavailability of locked coins.

The existing multi-hop payment protocols require locking coins in each chan-
nel in the path for a period of time, which can be days. The coins can be un-
locked if the payment is completed (with success or honest immediate cancel-
lation). However, the locking period can be abused by griefing and congestion
attacks [30, 37, 44], which lock the available balances in the channels, and limit
their usability for the period of time. The attacks can be against the whole
network or some specific parties/channels. The effect of the griefing attack can
be reduced by changing the path selection algorithm [44], limiting the number
of hops [37], or decreasing the locked time [5, 36]. Also, recently, an alterna-
tive HTLC protocol with a griefing-penalty mechanism is proposed [34], which
requires the receiving parties (payees) to lock coins as well, which are paid in
the case of griefing. With this mechanism, the budget of executing the griefing
attack is increased by a factor of 4 for a path length of 4. Note that all these
(partial) countermeasures are preventive, i.e., they aim to reduce the effect of
the attack before the payment is locked. To the best of our knowledge, there was
no reactive countermeasure that frees (unlocks) the locked coins of a party from
an ongoing multi-hop payment.

Watchtowers [7, 8, 15, 25, 27, 35] address the issue of offline parties for single
payment channels. In a single channel, one party may publish an invalid balance
on the blockchain with the goal of earning more coins than their actual balance.
Then, the other party has to publish a dispute including the correct balance
within a certain time. In a watchtower protocol, the responsibility of raising
a dispute is delegated to third party. However, watchtowers are not designed
for relaying multi-hop payments as they are observing the blockchain rather
than local payments. Indeed, multi-hop payments aim for value privacy [31,32],
meaning that no party not involved in the payment should learn the payment
value, which seems to contradict the involvement of an outside party.

16 O. Ersoy et al.

Acknowledgements. This work has been partially supported by Madrid re-
gional government as part of the program S2018/TCS-4339 (BLOQUES-CM)
co-funded by EIE Funds of the European Union; by grant IJC2020-043391-
I/MCIN/AEI/10.13039/501100011033; by PRODIGY Project (TED2021-132464
B-I00) funded by MCIN/AEI/10.13039/501100011033/ and the European Union
NextGenerationEU/PRTR; and by Ripple’s University Blockchain Research Ini-
tiative. The Distributed ASCI supercomputer (https://www.cs.vu.nl/das5/)
was used to run the experiments.

References

1. Lightning network statistics, https://1ml.com/statistics
2. Antonopoulos, A.M.: Mastering Bitcoin: Programming the open blockchain. "

O’Reilly Media, Inc." (2017)
3. Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostáková, K., Maffei, M., Moreno-

Sanchez, P., Riahi, S.: Generalized channels from limited blockchain scripts and
adaptor signatures. In: ASIACRYPT (2021)

4. Aumayr, L., Maffei, M., Ersoy, O., Erwig, A., Faust, S., Riahi, S., Hostáková, K.,
Moreno-Sanchez, P.: Bitcoin-compatible virtual channels. In: IEEE SP (2021)

5. Aumayr, L., Moreno-Sanchez, P., Kate, A., Maffei, M.: Blitz: Secure multi-hop
payments without two-phase commits. In: USENIX Security Symposium (2021)

6. Aumayr, L., Moreno-Sanchez, P., Kate, A., Maffei, M.: Donner: Utxo-based virtual
channels across multiple hops. IACR Cryptol. ePrint Arch. p. 855 (2021)

7. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. FC (2018)

8. Avarikioti, Z., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: Incentivizing
watchtowers for bitcoin. In: FC (2020)

9. Awathare, N., Suraj, Akash, Ribeiro, V.J., Bellur, U.: REBAL: channel balancing
for payment channel networks. In: MASCOTS. pp. 1–8. IEEE (2021)

10. Blockchain.com: Average confirmation time (2022), available at: https://www.
blockchain.com/charts/avg-confirmation-time

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive (2000), https://eprint.iacr.org/2000/067

12. Community, L.N.: Lighning network specification, https://github.com/
lightning/bolts/blob/master/02-peer-protocol.md#rationale-7

13. Community, L.N.: Lightning network specification, https://lightning-bolts.
readthedocs.io/en/latest/

14. Conoscenti, M., Vetrò, A., Martin, J.C.D.: Hubs, rebalancing and service providers
in the lightning network. IEEE Access 7, 132828–132840 (2019)

15. Dryja, T., Milano, S.B.: Unlinkable outsourced channel monitoring. Scaling Bitcoin
Milan (2016)

16. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual
state channels. In: EUROCRYPT (2019)

17. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment
hubs over cryptocurrencies. In: IEEE SP (2019)

18. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In:
CCS. pp. 949–966. ACM (2018)

19. Eckey, L., Faust, S., Hostáková, K., Roos, S.: Splitting payments locally while
routing interdimensionally. IACR Cryptol. ePrint Arch. 2020, 555 (2020)

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 17

20. Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with con-
stant collateral in bitcoin-compatible payment-channel networks. In: CCS (2019)

21. van Engelshoven, Y., Roos, S.: The merchant: Avoiding payment channel depletion
through incentives. In: DAPPS. pp. 59–68. IEEE (2021)

22. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Layer-
two blockchain protocols. In: Financial Cryptography (2020)

23. Jourenko, M., Larangeira, M., Tanaka, K.: Lightweight virtual payment channels.
In: CANS (2020)

24. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: TCC (2013)

25. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: A responsive lightweight
watchtower. In: ACM AFT (2019)

26. Kiayias, A., Litos, O.S.T.: Elmo: Recursive virtual payment channels for bitcoin.
IACR Cryptol. ePrint Arch. p. 747 (2021)

27. Lab, T.M.D.C.I..M.: Watchtower - watch channels for fraudulent transactions
(2018), available at: https://github.com/mit-dci

28. Labs, L.: Loop, available at: https://lightning.engineering/loop/
29. Li, P., Miyazaki, T., Zhou, W.: Secure balance planning of off-blockchain payment

channel networks. In: INFOCOM. pp. 1728–1737. IEEE (2020)
30. Lu, Z., Han, R., Yu, J.: General congestion attack on HTLC-based payment channel

networks. IACR Cryptol. ePrint Arch. p. 456 (2020)
31. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Silentwhispers: Enforcing

security and privacy in credit networks. In: NDSS (2017)
32. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency

and privacy with payment-channel networks. In: ACM CCS (2017)
33. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-

mous multi-hop locks for blockchain scalability and interoperability. In: NDSS
(2019)

34. Mazumdar, S., Banerjee, P., Ruj, S.: Griefing-penalty: Countermeasure for griefing
attack in lightning network. arXiv preprint arXiv:2005.09327 (2020)

35. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: Arbitration
outsourcing for state channels. In: ACM AFT (2019)

36. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: FC (2019)

37. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks. In: Fi-
nancial Cryptography (2021)

38. Pickhardt, R., Nowostawski, M.: Imbalance measure and proactive channel rebal-
ancing algorithm for the lightning network. In: IEEE ICBC. pp. 1–5. IEEE (2020)

39. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016), https://lightning.network/lightning-network-paper.pdf

40. roher: discharged-pc-data (github project), https://git.tu-berlin.de/rohrer/
discharged-pc-data/

41. Sivaraman, V., Venkatakrishnan, S.B., Ruan, K., Negi, P., Yang, L., Mittal, R.,
Fanti, G., Alizadeh, M.: High throughput cryptocurrency routing in payment chan-
nel networks. In: NSDI. pp. 777–796. USENIX Association (2020)

42. Stasi, G.D., Avallone, S., Canonico, R., Ventre, G.: Routing payments on the light-
ning network. In: iThings/GreenCom/CPSCom/SmartData. IEEE (2018)

43. Subramanian, L.M., Eswaraiah, G., Vishwanathan, R.: Rebalancing in acyclic pay-
ment networks. In: PST. pp. 1–5. IEEE (2019)

44. Tochner, S., Zohar, A., Schmid, S.: Route hijacking and dos in off-chain networks.
In: AFT. pp. 228–240. ACM (2020)

18 O. Ersoy et al.

A Additional Models, Protocols and Functionalities

UTXO Transaction Model. The transactions are based on the unspent trans-
action output (UTXO) model, where the coins are represented by outputs. An
output ~θ is defined as a tuple (cash, θ) where cash denotes the number of coins
in the output and θ is the corresponding spending condition. A transaction is a
tuple of tx := (txid, Input,Output,Witness) where txid is the id of the transaction,
Input and Output are the inputs and outputs, respectively, and Witness is the wit-
ness that satisfies the spending conditions of the transaction outputs. In Bitcoin,
the commonly used spending conditions are: signature verification (Sig), time-
lock check (CheckLockTime) and hash verification (CheckCond). CheckLockTime
introduces a timing condition such as “a transaction tx is publishable after T
blocks once its inputs are published", and CheckCond requires a preimage of a
given hash value to spend the output. These two conditions are mainly used
in payment channel protocols. We denote the hash function with H and the
signature scheme with Σ.

Ledger and Channel Functionalities. Here, we present simplified versions
of the ideal functionalities for the ledger and payment channel given in [3].

Ideal Functionality GLedger(∆)

The functionality stores public keys of all parties in PKI, and maintains the trans-
actions on the ledger L.
Register: Upon receiving (Register, pkP) from P for the first time P , add (pkP , P)
to PKI.
Post a transaction: Upon receiving (Post, tx) from P where P ∈ PKI, check if the
transaction tx is valid. If the check holds, publish tx on L within at most∆ rounds.

Ideal Functionality Fchan

The functionality handles channel creation, update and closing procedures.
Create: Upon receiving (Create, γ, txidP) from P , wait for receiving (Create, γ, txidQ)
where P and Q are the parties in channel γ. If the funding transaction of the chan-
nel appears on L, then send (Created, γ.id) to P and Q, and register the channel
id γ.id. Else stop.
Update: Upon receiving (Update, id , ~θ) from a party P where id is already regis-
tered for the channel γ and P is part of the channel, if both parties of the channel
agree and the new state ~θ is valid, then update the channel state within at most
tupd rounds, and send (Updated, id , ~θ) to the parties of the channel. Else, start
forceful closure of the channel.
Close: Upon receiving (Close, id), from a party P where id is already registered for
the channel γ and P is part of the channel, start the closing procedure. Post the
latest state of the channel on the ledger L. Once it appears on L, send (Closed, id)
to the parties of the channel. The parties are assumed to spend all the outputs
belonging to them accordingly.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 19

MHP and HTLC Protocols. Here, we present the MHP setup and check pro-
tocols. Also, we provide the HTLC subprotocols with transaction output scripts.
Encpk denotes the encryption algorithm used in Lightning for onion routing. We
denote the realization of the signature algorithm Σ with the script Sigpk, that
requires the signature wrt. public key pk. Hashing with H is denoted with the
script CheckCondcond, which requires the corresponding preimage wrt. hash value
cond. CheckLockTimeTL is used for timelock condition where the transaction is
publishable after the timelock TL.

Additional Protocols

Setup Multi-Hop Payment
SetupMHP(mid, amt,TL, cond, path):
Let n = |path|. For each channel in the path γi := path[i], assign an id cpid and
create the conditional payment:
HTLCi := (mid, cpid, γi, γi.payer→ γi.payee, cond,TL[i], amt[i]).
Then, MHP := (HTLC0, . . . ,HTLCn−1).
Let pk i is the public key of HTLCi.payer, create the onion structure: oMHP[0] :=
Encpk0

(HTLC0,Encpk1
(HTLC1, . . . ,Encpkn−1

(HTLCn−1]) . . .)).
Return oMHP[0].

Check SubProtocols

CheckMHP(MHP[i],MHP[i+ 1]):
Check the followings:

– MHP[i].mid = MHP[i+ 1].mid
– MHP[i].payee = MHP[i+ 1].payer
– MHP[i].cond = MHP[i+ 1].cond
– MHP[i].TL ≥ MHP[i+ 1].TL+ tlmin
– MHP[i].amt ≥ MHP[i+ 1].amt+ fmin

where tlmin is the minimum time difference accepted between two conditional
payments, and fmin is the minimum accepted fee.
If any of them fails, return Fail. Otherwise, return Success.
CheckCond(witness, cond):
Check if witness satisfies the condition cond for a given hard relation R. If (witness,
cond) ∈ R, return Success, otherwise return Fail. For a hash-based hard relation
where H is the hash function, the check can be done via H(witness) = cond.

Conditional Payment SubProtocols

For each of the following subprotocols, we use the following notations:
Parse HTLC as (mid, cpid, γ, payer→ payee, cond, TL, amt). Let P := HTLC.payer

be the payer and Q := HTLC.payee be the payee of the payment in the channel
HTLC.γ. Let ~θ := (θP , θQ, ~θocp) be the latest state of the channel HTLC.γ where
θP := (cP , SigpkP

) is the output for the payer’s coins, θQ := (cQ, SigpkQ
) is the

20 O. Ersoy et al.

output for the payee’s coins and ~θocp is the set of the outputs of the ongoing
conditional payments.
LockHTLC(HTLC):

1. First, check cP ≥ HTLC.amt, if it fails return Fail. Otherwise, continue.
2. Create the new output object st. θnew :=

(HTLC.amt, (SigP ∧ CheckLockTimeHTLC.TL) ∨ (SigQ ∧ CheckCondHTLC.cond)).
Compute the new state as ~θ′ := (θ′P , θQ, ~θ

′
ocp) where θ′P = (cP − HTLC.amt,

SigpkP
) and ~θ′ocp = ~θocp ∪ {θnew}.

3. Send (Update,HTLC.γ.id , ~θ′) to Fchan.
4. Upon receiving (Updated,HTLC.γ.id , ~θ′), return Success. Otherwise, return

Fail.

PayHTLC(HTLC,witness):

1. Let θcur be the output in ~θcp with the condition HTLC.cond. First, check
CheckCond(witness,HTLC.cond), if it fails return Fail. Otherwise, continue.

2. Compute the new state as ~θ′ := (θP , θ
′
Q, ~θ

′
cp) where θ′Q = (cQ + HTLC.amt,

SigpkQ
) and ~θ′cp = ~θcp − {θcur}.

3. Send (Update,HTLC.γ.id , ~θ′) to Fchan.
4. Upon receiving (Updated,HTLC.γ.id , ~θ′), return Success. Otherwise, return

Fail.

RevokeHTLC(HTLC):

1. Compute the new state as ~θ′ := (θ′P , θQ, ~θ
′
cp) where θ′P = (cP + HTLC.amt,

SigpkP
) and ~θ′cp = ~θcp − {θcur}.

2. Send (Update,HTLC.γ.id , ~θ′) to Fchan.
3. Upon receiving (Updated,HTLC.γ.id , ~θ′), return Success. Otherwise, return

Fail.

LockHTLC2(HTLC):
This protocol is only used for HTLC′C . The difference to the LockHTLC protocol

is that the locked amount is taken from the receiver. Note that the pay and revoke
functions do not change.

1. First, check cQ ≥ HTLC.amt, if it fails return Fail. Otherwise, continue.
2. Create the new output object st. θnew :=

(HTLC.amt, (SigP ∧ CheckLockTimeHTLC.TL) ∨ (SigQ ∧ CheckCondHTLC.cond)).
Compute the new state as ~θ′ := (θP , θ

′
Q, ~θ

′
ocp) where θ′Q = (cQ − HTLC.amt,

SigpkQ
) and ~θ′ocp = ~θocp ∪ {θnew}.

3. Send (Update,HTLC.γ.id , ~θ′) to Fchan.
4. Upon receiving (Updated,HTLC.γ.id , ~θ′), return Success. Otherwise, return

Fail.

B Our Protocol ΠBO

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 21

In this section, we present the interactive steps of protocol ΠBO, which is ex-
plained in Section 3. Also, we provide ideal functionalities for ledger and payment
channels, and the additional subprotocols for constructing MHP and HTLCs.
The ideal functionality of MHP FMHP and a simplified version of Lightning
Network multi-hop payment ΠMHP are given in Appendix E.

Protocol ΠBO

Setup and Lock

Party B

Upon receiving (SETUP,mid0,mid1,mhpInfo1,mid2,mhpInfo2) from E

1. Parse mhpInfo1 := (amt1,TL1, path1) and mhpInfo2 := (amt2,TL2, path2).
2. Check the following conditions:

– Check the paths are the same, i.e., path1 = path2 := path. Let A :=
path[1].payer, C := path[n − 1].payer, and path[i].payee = Di = path[i +
1].payer for i ∈ [1, n− 3].

– Check the ongoing HTLCs with id mid0 with A and C. Let pathA and
pathB be part of the path of mid0 with direction from A to B to C. Check
if there are ongoing and locked HTLCs with id mid0 in these paths. If not,
stop. Otherwise, let HTLCA and HTLCC be the corresponding HTLCs
with (h, amtA, TLA) and (h, amtC , TLC) being the hash condition, the
locked amount and the timelock, respectively.

– Check whether the MHPs are properly generated:
• Amount: For i ∈ [0, n − 1], check amt1[i] := amtcxl ≤ amtC and

amt2[i] =
∑n−1

j=i fj where fj is the fee of jth channel and amtcxl is
the amount that party B aims to re-route via the new path.

• Timelocks: Check TL1 = TL2 := TL, and TL[0] = TLA +∆, TL[n−
1] = TLC−∆, and for i ∈ [1, n−2], TL[i] = (n−2−i)

n−3
×(TLA − TLC)+

TLC .
If any of the checks fails, do not continue.

3. Send (SETUP–OK,mid0,mid1,mid2) to E .
4. Upon receiving both messages (INIT–MHP,mid1,mhpInfo1) and (INIT–MHP,

mid2,mhpInfo2) from E , continue to the next step. If only one is received, or
none, then do nothing.

5. Let h be the condition of the HTLCs with id mid0. Choose a random value
xB , and compute hB = H(xB). Assign cond1 = {h, hB} and cond2 = {hB}

6. Setup the MHPs oMHP1[0] ← SetupMHP(mid1, amt1,TL1, cond1, path1) and
oMHP2[0]← SetupMHP(mid2, amt2,TL2, cond2, path2). Obtain (MHP1[0], oMHP1

[1]) and (MHP2[0], oMHP2[1]) by decrypting oMHP1[0] and oMHP2[0].
7. Send both (LockMHP,MHP1[0], oMHP1[1]) and (LockMHP,MHP2[0], oMHP2[1])

to path[0].payee, and follow the MHP protocol, ΠMHP , steps for locking both
MHPs.

Party path[i].payee = path[i+ 1].payer (for i = 0, . . . , n− 2)

22 O. Ersoy et al.

Upon receiving (LockMHP,MHP1[i], oMHP1[i+1]) and (LockMHP,MHP2[i], oMHP2

[i+ 1]) from path[i].payer, follow ΠMHP protocol steps for locking both MHPs.

1. If both MHP1[i] and MHP2[i] are locked, then send (LockMHP,MHP1[i +
1], oMHP1[i+2]) and (LockMHP,MHP2[i+1], oMHP2[i+2]) to path[i+1].payee,
and follow ΠMHP protocol steps for locking both MHPs. Otherwise, stop.

Party B

Upon receiving (LockMHP,MHP1[n − 1], oMHP1[n]) and (LockMHP,MHP2[n −
1], oMHP2[n]) from path[n − 1].payer, follow ΠMHP protocol steps for locking
both MHPs.

1. If both MHP1[n − 1] and MHP2[n − 1] are locked, then the Setup and Lock
phase is successful, send (LOCK–OK,mid0,mid1,mid2) to E and continue to
the next phase.

Cancellation

Party B

Upon receiving (CANCEL,CxlInfo1,CxlInfo2) from E at round τ0,

1. Parse both CxlInfo1 := (mid0,mid1,mid2, path[0]) and CxlInfo2 := (mid0,mid1,
mid2, path[n− 1]).

2. Let HTLCA,1 ← MHP1[0], HTLCA,2 ← MHP2[0], HTLCC,1 ← MHP1[n − 1]
and HTLCC,2 ← MHP2[n− 1]. Create the new HTLCs for the channels γA,B

and γB,C :
– Use the same MHP id mid0, and assign unique ids cpidnew

A and cpidnew
C .

– HTLCnew
A ← (mid0, cpid

new
A , γA,B , A→ B, h, TLA, amtA − amtcxl)

– HTLCnew
C ← (mid0, cpid

new
A , γB,C , B → C, h, TLC , amtC − amtcxl)

Create the temporary HTLC for channel between B and C, γB,C :
– Assign unique ids mid′ and cpid′.
– HTLC′C ← (mid′, cpid′, γB,C , C → B, hB , TLC −∆, amtC)

3. LetHT LCC ← {HTLCC ,HTLCC,1,HTLCC,2,HTLC
new
C ,HTLC′C} andHT LCA

← {HTLCA,HTLCA,1,HTLC
new
A ,HTLCA,2}. At time τ1, send (Cancel, γB,C ,

HT LCC) to C, and (Cancel, γA,B ,HT LCA) to A.

Party C

Upon receiving (CANCEL,CxlInfo2) from E ,

1. Wait until receiving (Cancel, γB,C ,HT LCC) from B. If no such a message is
received, then do not continue.

2. Parse mhpInfo2 := (mid0,mid1,mid2, path[n− 1]) and
HT LCC := {HTLCC ,HTLCC,1,HTLCC,2,HTLC

new
C ,HTLC′C}, check correct-

ness of the HTLCs:
– Timelock: HTLCnew

C .TL
?
= HTLCC .TL

?
= HTLCC,1.TL+∆

?
= HTLCC,2.TL

+∆
?
= HTLC′C .TL+∆.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 23

– Hash: HTLCC .cond = HTLCnew
C .cond = {h}, HTLCC,1.cond = {h, hB},

HTLCC,2.cond = {hB}, and HTLC′C .cond = {hB}.
– Amount: HTLCC,1.amt + HTLCnew

C .amt
?
= HTLCC .amt

?
= HTLC′C .amt

and HTLCC,2.amt ≥ fC where fC is the channel fee.
– If any of them fails, do not continue and initiate channel closing of γB,C .

3. If all the checks are successful, send (UpdateOk, γB,C) to B, and continue.

Party A

Upon receiving (CANCEL,CxlInfo1) from E ,

1. Wait until receiving (Cancel, γA,B ,HT LCA) from B. If not such a message is
received, then do not continue.

2. Parse mhpInfo1 := (mid0,mid1,mid2, path[0]) and
HT LCA := {HTLCA,HTLCA,1,HTLC

new
A ,HTLCA,2}, check correctness of the

HTLCs:
– Timelock: HTLCA.TL

?
= HTLCnew

A .TL
?
= HTLCA,1.TL−∆

?
= HTLCA,2.TL

−∆.
– Hash: HTLCA.cond = HTLCnew

A .cond = {h}, HTLCA,1.cond = {h, hB}
and HTLCA,2.cond = {hB} .

– Amount: HTLCA,1.amt+HTLCnew
A .amt

?
= HTLCA.amt and HTLCA,2.amt

≥ fA where fA is the channel fee.
– If any of them fails, do not continue and initiate channel closing of γA,B .

3. If all the checks are successful, send (UpdateOk, γA,B) to B, and continue.

Party B

Wait to receive messages (UpdateOk, γB,C) from C and (UpdateOk, γA,B) from A,

1. Initiate channel updates for both γB,C and γA,B at round τ1:
– Execute RevokeHTLC(HTLCC), LockHTLC(HTLC

new
C), RevokeHTLC(HTLCC,1)

and LockHTLC2(HTLC′C) simultaneously in the same channel update of
γB,C .

– Execute RevokeHTLC(HTLCA), LockHTLC(HTLC
new
A), RevokeHTLC(HTLCA,1)

simultaneously in the same channel update of γA,B .
Here before revoking the previous states of the channels, wait for both parties
A and C to revoke. If any of them is not revoked within τ1+tUPD, then execute
channel closing of γA,B and γB,C with both parties. Otherwise continue.

Party C

If initiated by B, follow the channel update protocol for execution of RevokeHTLC(
HTLCC), LockHTLC(HTLCnew

C), RevokeHTLC(HTLCC,1), and LockHTLC2(HTLC′C).

Party A

If initiated by B, follow the channel update protocol for execution of RevokeHTLC(
HTLCA), LockHTLC(HTLCnew

A), and RevokeHTLC(HTLCA,1).

24 O. Ersoy et al.

Party B

If both channels γA,B and γB,C are updated with the corresponding revoking and
locking payments,

1. Initiate channel updates for γA,B and γB,C at round τ2:
– Execute PayHTLC(HTLC′C , xB) and PayHTLC(MHP2[n− 1], xB) in channel
γB,C .

– Execute PayHTLC(MHP2[0], xB) in channel γA,B .

Party C

Once B initiates PayHTLC(HTLC′C , xB) and PayHTLC(MHP2[n− 1], xB),

1. Check H(xB) = HTLC′C .cond, if it fails, then do not continue. Otherwise,
follow the channel update protocol.

Party A

Once B initiates PayHTLC(MHP2[0], xB),

1. Check H(xB) = MHP2[0].cond, if it fails, then do not continue. Otherwise,
follow the channel update protocol.

Party B

1. If the updates fail, then execute channel closing of γA,B and γB,C with A and
C.

2. If the updates are completed, then the Nullify phase is successful and send
(CANCEL–OK,mid0,mid1,mid2) to E and continue to the next phase.

Pay and Reroute

Party path[i].payee (for i = n− 2 to 1)

Upon receiving (REDUCE–CP,mid1,mid2, path[i]) from E ,

1. Distinguish the following cases:
– For i = n−2, i.e., path[i].payee = C, check if the nullify phase is completed

by canceling HTLC with id mid1. Otherwise, do not continue.
– For i < n−2, check if HTLC in path[i+1] is paid with id mid2. Otherwise,

do not continue.
2. Let xB the corresponding value revealed in the previous step. Execute PayHTLC(

MHP2[i], xB) by revealing xB to C.
3. Send (ReduceCP,MHP1[i]) to MHP1[i].payer.

Party path[i].payer (for i = n− 2 to 1)

Once path[i].payee initiates PayHTLC(MHP2[i], xB),

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 25

1. Check H(xB) = MHP2[i].cond, if it fails, then do not continue. Otherwise,
follow the channel update protocol.

Upon receiving (ReduceCP,MHP1[i]) from MHP1[i].payee,

1. If MHP2[i] is paid, then initiate the channel update with MHP1[i].payee:
– Execute RevokeHTLC(MHP1[i]) and LockHTLC(MHP′1[i]) simultaneously in

the same channel update where the only difference between the HTLCs
is the condition and MHP′1[i].cond := h.

Party path[i].payee (for i = n− 2 to 1)

Once path[i].payer initiates RevokeHTLC(MHP1[i]) and LockHTLC(MHP′1[i]),

1. Follow the channel update protocol. If the update is completed, then the Pay
and Reduce Condition phase is successful, send (REDUCE–OK, path[i]) to E .

C Security Discussion of Our Protocol with a Timeline

In this section, we argue the balance security of the parties with the timeline
of the ongoing HTLCs. Here, we will investigate the full cancellation case where
B would like to cancel both of the existing HTLCs, HTLCA and HTLCC . The
analysis of partial cancellation case (where the payment amounts are partially
moved to another path) can be shown similarly.

The ideal functionality for multi-hop payments FMHP ensures the balance
security of an intermediary party under the assumption that the timelock dif-
ference between two consecutive conditional payments (CP) is adequate for an
honest party to react. Also, each intermediary party locks his coins once he is
ensured to be paid for the same locking condition by the previous party. Thus,
in our security analysis, we can rely on the security guarantees of the MHP
functionality. In this manner, since the bailout parties are only involved as in-
termediaries for the new MHPs, MHP0 and MHP1, we omit their analysis.

We discuss the balance security of B and the neighbors A and C. For each
case, we show that an honest party does not lose their coins regardless of the
actions of others. First, we analyze the case of B. B is aiming to cancel the
existing HTLCs in his channels with A and C. For that, he first constructs new
HTLCs from A to C via D1, . . . , Dn−3. Then, he cancels all HTLCs with his
neighbors.

Balance Security of B: As shown in Figure 47, at the beginning of the
protocol there are two HTLCs, HTLCA and HTLCC where he is guaranteed
that if he pays HTLCC to C in exchange for the corresponding preimage x, he
can claim the same amount (plus fee) via HTLCA from A by sharing the same
preimage.

In the Setup and Lock phase, B creates two MHPs, MHP1 and MHP2, which
are both conditioned with a hash value hB of his choice. Thus, he is the only
7 For simplicity, we did not include MHP2 in the figures.

26 O. Ersoy et al.

Initial Setup and Lock Cancellation Pay and Reroute

	(𝐴➝𝐵, ℎ, 𝑇𝐿!, 𝑎𝑚𝑡!)

(𝐵➝𝐴, ℎ, ℎ" , 𝑇𝐿! + Δ, 𝑎𝑚𝑡#)

𝐻𝑇𝐿𝐶!

𝑀𝐻𝑃$[0]

(𝐵➝𝐶, ℎ, 𝑇𝐿# , 𝑎𝑚𝑡#)

(𝐶➝𝐵, ℎ, ℎ" , 𝑇𝐿# − Δ, 𝑎𝑚𝑡#) (𝐵➝𝐶, ℎ" , 𝑇𝐿# − Δ, 𝑎𝑚𝑡#)

𝐻𝑇𝐿𝐶#

𝑀𝐻𝑃$[𝑛 − 1] 𝐻𝑇𝐿𝐶′#

Fig. 4: Conditional Payments of B wrt. protocol phases

party who can start the unlocking of these new MHPs, which ensures that no
one can claim the new HTLC payments of MHP1 and MHP2. This is crucial
if the preimage of the ongoing HTLCs HTLCA and HTLCC is revealed during
this phase. In that case, B can finalize both HTLCA and HTLCC payments and
cancel the new MHPs. If the preimage is not received by B and both MHPs
are successfully locked, then Setup and Lock phase is completed and B can
rely on the standard HTLC guarantees. If at least one of the new MHPs is not
successfully locked, then B assumes the Setup and Lock phase failed, and does
not continue. For releasing of the locked coins earlier, B may start revocation of
them as well.

In the Cancellation phase, B first updates his channels with both parties
P ∈ {A,C} by canceling the existing HTLCs. Both channels are updated simul-
taneously.

For the channel γA,B , there are three existing HTLCs: HTLCA is conditioned
with h of amount amtA from A to B, MHP1[0] is conditioned with {h, hB} of
amount amtC from B to A, MHP2[0] is conditioned with {hB} of fee amount
MHP2[0].amt from B to A. Since xB is known to B, it can be seen that HTLCA

and MHP1[0] HTLCs are conditioned with h. Thus, parties can update their
channel balances accordingly by canceling both HTLCs. For the channel γB,C , B
and C can update their channels by cancelling the HTLCs HTLCC , MHP1[n−1]
and MHP2[n− 1], and locking HTLC′C (See Figure 4). The interim step HTLC′C
has the updated channel balances where C can receive her coins immediately,
but B needs to provide xB to claim his coins. Note that since B knows xB , he
can claim his coins whenever he wants.

If one of the channel updates of γA,B or γB,C fails, meaning that it is not
revoked, then B publishes the non-updated version of both channels on the
blockchain. Here, since the updates of both channels have additional timelock to
publish, the other parties are not able to publish the new state of the channels.
This ensures the atomicity of both channel updates. In this case, party B does
not reveal xB and waits for timelocks of the HTLCs of MHP1 and MHP2 to
reclaim his coins. For HTLCA and HTLCC , he will either reclaim HTLCC after

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 27

timelock or receive the coins from HTLCA if x is revealed. Overall, it can be said
that B is not losing his coins if the updates fail.

If both channel updates are successful, then B can share xB with C to update
their channel to unlock the coins in HTLC′C in γB,C . If C does not collaborate,
then B can publish the new channel state on the blockchain and claim his coins
by revealing xB . For the channel γA,B , coins of both parties are already unlocked
and can be used for other payments. Thus, if the channel updates are successful,
then B is again not losing his coins. This concludes the balance security for B.

Case of A: As shown in Figure 5, for party A, initially, there is an HTLC
HTLCA where A pays to B for the preimage x. In the Setup and Lock phases, two
new MHPs are created, and Lightning’s MHP construction ensures the balance
security of them. In the Cancellation phase, A updates her channel with B by
canceling HTLCA andMHP1[0]. Here, both of the HTLCs are conditioned with h,
and MHP1[0] has an additional condition of hB . Since, A is the payer of MHP1[0],
it is convenient for A to cancel both HTLCs. This is because if the preimage of h
is revealed, then A has to pay HTLCA to B, yet cannot claim MHP1[0] without
knowing xB .

Initial Setup and Lock Cancellation Pay and Reroute

	(𝐴➝𝐵, ℎ, 𝑇𝐿!, 𝑎𝑚𝑡!)

(𝐵➝𝐴, ℎ, ℎ" , 𝑇𝐿! + Δ, 𝑎𝑚𝑡#)

(𝐴➝𝐷$, ℎ, ℎ" , 𝑇𝐿!, 𝑎𝑚𝑡#) (𝐴➝𝐷$, ℎ, 𝑇𝐿!, 𝑎𝑚𝑡#)

𝐻𝑇𝐿𝐶!

𝑀𝐻𝑃$[0]

𝑀𝐻𝑃$[1] 𝑀𝐻𝑃$%&'[1]

Fig. 5: Conditional Payments of A wrt. protocol phases

If the cancellation of HTLCs fails, i.e., the channel update of γA,B is failed,
then A waits for all MHPs to be finalized by either fulfilling the condition or
timelocks. In both cases, the balance security of A is guaranteed by the MHP
constructions.

If the cancellation succeeds, then A has the HTLCs of MHP2 and MHP1[1].
For MHP2, her balance security is guaranteed by standard MHP construction.
MHP2 will either succeed if xB is revealed or not; in both cases, A will not lose
her coins.

For MHP1[1], we need to show that it is equivalent to the initial state HTLCA

regarding the balance security of A. For that, it can be seen that the differences
between the two HTLCs: preimage conditions and timelocks. If there is one
bailout intermediary, then the timelocks of both HTLCs are the same, meaning
that A can reclaim her coins at the same time. However, if there are multiple
intermediaries, then the timelock of MHP1[1] will be lower than that of HTLCA.
Therefore, A can claim her coins earlier. For the hash conditions, the preimage

28 O. Ersoy et al.

conditions in MHP1[1] covers the one in HTLCA, thus if A pays the payment
MHP1[1], she obtains x. Overall, her balance security is not affected.

Case of C: The case of C is similar to A. If the new HTLCs are locked but the
channel update fails, then balance security is guaranteed by Lightning’s HTLC
construction. The main difference between C and A happens if the update is
successful. In that case, C is replacing HTLCC withMHP1[n−2], andMHP1[n−2]
has an additional preimage condition hB . Unlike A, since C is the payee of these
HTLCs, it is important to make sure that C obtains xB before the corresponding
timelock is expired. For this reason, as shown in Figure 6, the update of γB,C

has an interim state HTLC′C where B is required to publish the preimage xB
to claim his coins. This condition ensures that C either obtains xB within time
MHP1[n− 1].TL or C can get the coins of B in their channel. Since the amount
of locked coins of B in HTLC′C is amtC , C is adequately compensated if xB is
not revealed on time.

Initial Setup and Lock Cancellation Pay and Reroute

(𝐵➝𝐶, ℎ, 𝑇𝐿! , 𝑎𝑚𝑡!)

(𝐶➝𝐵, ℎ, ℎ" , 𝑇𝐿! − Δ, 𝑎𝑚𝑡!)

(𝐷#$%➝𝐶, ℎ, ℎ" , 𝑇𝐿! , 𝑎𝑚𝑡!) (𝐷#$%➝𝐶, ℎ, 𝑇𝐿! , 𝑎𝑚𝑡!)

(𝐵➝𝐶, ℎ" , 𝑇𝐿! − Δ, 𝑎𝑚𝑡!)

𝐻𝑇𝐿𝐶!

𝑀𝐻𝑃&[𝑛 − 1]

𝑀𝐻𝑃&[𝑛 − 2] 𝑀𝐻𝑃&#'([𝑛 − 2]

𝐻𝑇𝐿𝐶′!

Fig. 6: Conditional Payments of C wrt. protocol phases

In the case where xB is revealed, HTLCC and MHP1[n − 2] are equivalent
regarding the hash condition. The only difference of the HTLCs is the timelocks,
in MHP1[n − 2], the timelock condition is 1/(n − 3) of the timelock of HTLCC .
Thus, for only one bailout party the timelock is the same, but otherwise, it is
smaller. Under the assumption that the new timelock is adequate for claiming the
coins in the case of a dispute, both HTLCs are equivalent. Overall, the balance
security of C is preserved in the protocol.

D Security Analysis

Wemodel the security of Bailout in the Universal Composability framework [11].
We follow a similar security model as other off-chain protocols [3–5, 16, 17]. We
assume the set of parties involved in the protocol is fixed and the public keys of
all parties are known in PKI. A PPT (probabilistic polynomial time) adversary
A can corrupt any party at the beginning of the protocol, which is called a static
adversary. Once a party is corrupted, A can read the internal state, as well as all
of the incoming and outgoing messages, of that party. The communication chan-
nels between parties and functionalities are secure and authenticated. Also, we

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 29

assume a synchronous communication network, and all parties know the current
round by utilizing an ideal functionality Fclock [24].

We use GLedger(∆) to model global ledger functionality where ∆ denotes the
upper bound on the delay of publishing transactions on the ledger. Let H be the
hash function and Σ be the signature scheme used in the ledger. Moreover, we
use Fchan to model a simplified ideal functionality for payment channels. The
ideal functionalities are given in Appendix A. To model two-phase multi-hop
payments, we present a simplified ideal functionality FMHP and its realizations
for Lightning Network ΠMHP in Appendix E.

We present an hybrid ideal functionality FBO that achieves the behavior of
the bailout operation. FBO also stipulates any behavior of the ledger, payment
channel and multi-hop payment functionalities as well. We show that FBO sat-
isfies balance security, i.e., honest parties do not lose their coins. Then, we show
that our protocol Bailout (ΠBO), explained in Section 3 and defined in UC
framework in Appendix B, emulates the ideal functionality FBO.

Ideal Functionality FBO

The hybrid ideal functionality FBO maintains the set of (to be) nullified con-
ditional payments HT LCBO and acts as the multi-hop payment functionality
FMHP when necessary. For the MHPs, it maintains the set of ongoing multi-hop
paymentsMHP and conditional payments HT LC.

Setup and Lock

Upon receiving (SETUP,mid0,mid1,mhpInfo1,mid2,mhpInfo2) from B where
B := path1[0].payer in mhpInfo1 := (amt1,TL1, path1) and mhpInfo2 := (amt2,
TL2, path2),

1. Check the following conditions:
– Check the paths are the same, i.e., path1 = path2 := path. Let A :=

path[1].payer, C := path[n − 1].payer, and path[i].payee = Di = path[i +
1].payer for i ∈ [1, n− 3].

– Let pathA in channel γA,B and pathC in channel γB,C be part of the
path of mid0 with direction from A to B to C. Check if there are two CPs
(mid0, amtA, TLA, pathA, status = locked) and (mid0, amtC , TLC , pathC ,
status = locked) stored in HT LC.

– Check whether the MHPs are properly generated:
• Amount: For i ∈ [0, n − 1], check amt1[i] := amtcxl ≤ amtC and

amt2[i] =
∑n−1

j=i fj where fj is the fee of jth channel.
• Timelocks: Check TL1 = TL2 := TL, and TL[0] = TLA +∆, TL[n−

1] = TLC−∆, and for i ∈ [1, n−2], TL[i] = (n−2−i)
n−3

×(TLA − TLC)+
TLC .

If any of the checks fails, do not continue.
2. Send (SETUP–OK,mid0,mid1,mid2) to B.
3. Upon receiving both (INIT–MHP,mid1,mhpInfo1) and

(INIT–MHP,mid2,mhpInfo2) from B, execute the multi-hop payment func-
tionality and follow the functionality steps. If only one of the messages is
received, or none, then do nothing.

30 O. Ersoy et al.

4. If all the channels in the path are locked, then the Setup and Lock phase is suc-
cessful, store (mid0,mid1,mid2, path) inHT LCBO, and send (LOCK–OK,mid0,
mid1,mid2) to B. Otherwise stop.

Cancellation

Upon receiving (CANCEL,CxlInfo1,CxlInfo2) from B := path[0].payer at round
τ0,

1. Parse CxlInfo1 := (mid0,mid1,mid2, path[0]) and
CxlInfo2 := (mid0,mid1,mid2, path[n − 1]). Check (mid0,mid1,mid2, path) is
stored in HT LCBO with the corresponding path[0] and path[n− 1]; if not, go
idle.

2. Wait until round τ0 +1 for receiving both messages (CANCEL,CxlInfo1) from
A := path[0].payee, and also (CANCEL,CxlInfo2) from C := path[n− 1].payer,
then continue. Otherwise, go idle.

3. Within 2tupd + 2 rounds, update both channels in path[0] and path[n − 1]
by cancelling out the corresponding amounts in each conditional payments
with ids mid0, mid1 and paying mid2. More specifically, for cancelling out, if
amtcxl = amtC , then cancel the corresponding payments in both channels,
otherwise,
– In channel γA,B , remove the payment with id mid1, and update the pay-

ment with id mid0 by replacing the locked amount with amtA − amtcxl.
– In channel γB,C , remove the payment with id mid1, and update the pay-

ment with id mid0 by replacing the locked amount with amtC − amtcxl.
If any of the update fails, initiate channel closing for both channels in path[0]
and path[n− 1] (wrt. states before the update). If the updates are successful,
send (CANCEL–OK,mid0,mid1,mid2) to B.

Pay and Reroute

Upon receiving (REDUCE–CP,mid1,mid2, path[i]) from path[i].payee at round
ti (for i = n− 2 to 1),

1. Check that mid1 and mid2 are stored in HT LCBO with the corresponding
path, if not go idle.

2. For i = n − 2, check if the nullify phase is completed. Otherwise, do not
continue. For i < n − 2, check if path[i + 1] is paid for mid2. Otherwise, do
not continue.

3. Update the channel of path[i] by paying the corresponding amount in the
conditional payment with id mid2.

4. Update the path of mid0: replace the two conditional payments in mid0, pathA
and pathC , with the ones in mid1, path2[1], . . . , path1[n− 2].

5. Send (REDUCE–OK, path[i]) to path[i].payee.

To evaluate expected behavior of nullify operation, we utilize the balance
security definition given in [5, 19,32]:

Definition 1 (Balance Security). No honest party involved in the nullify pro-
tocol loses her coins except the paid fees.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 31

Balance security for B implies that the total balance of B is preserved except
the fees paid to the other parties. For the other parties, it refers that the total
balance of an honest party is not decreased. Here, if A is the sender ofMHP0, and
if the payment is successfully finalized, then A would pay the payment amount.
However, this is not considered as losing coins as it is an intentional payment. It
would have been seen as losing coins if the receiver would not receive the coins.

Note that for the multi-hop payment operations, we utilize the same function-
ality of the Lightning Network. The ideal functionality for multi-hop payments
FMHP and its realization in the Lightning Network ensure the balance security
of an intermediary party under the assumption that the timelock difference be-
tween two consecutive HTLCs is adequate for an honest party to react. Also,
each intermediary party locks their coins once they are ensured to be paid for
the same locking condition by the previous party. In our security analysis, we
can rely on the security guarantees of the MHP functionality, which we refer to
as MHP balance security assumption (MHP-BSA). Note that this assumption
does not take into account the wormhole attack, which targets the fee of honest
parties [33].

Theorem 1. The ideal functionality FBO satisfies balance security of honest
parties under the MHP balance security assumption.

Proof. We discuss the balance security in four cases: B, the neighbors A and C,
and the bailout parties Di’s. For each case, we show that the honest parties do
not lose their coins regardless of the actions of others, and the status of other
ongoing MHPs including MHP0.

Case of B: At the beginning of the protocol there are two conditional pay-
ments in HTLCA and HTLCC (of MHP0) where he is guaranteed that if he pays
HTLCC to C, he can claim the same amount (plus fee) via HTLCA from A via
MHP-BSA.

In the Setup and Lock phase, B creates two MHPs, MHP1 and MHP2. Before
locking these, the status of the ongoing HTLCA and HTLCC are checked. If they
are finalized, then there is no need to operate new MHPs. Once both MHPs are
successfully locked, then Setup and Lock phase is completed and B can rely on
the standard MHP guarantees. Also, since B is the sender/receiver of MHP1 and
MHP2, he is the party who can start the unlocking of these new MHPs, which
ensures that no one can claim the new HTLC payments of MHP1 and MHP2

otherwise.
In the Cancellation phase, B first updates his channels with both parties

P ∈ {A,C} by (partial) canceling the existing HTLCs. Both channels are up-
dated simultaneously. For the channel γA,B , there are three existing HTLCs:
HTLCA, MHP1[0], and MHP2[0]. In this phase, HTLCA and MHP1[0] are can-
celed, HTLCnew

A is locked and MHP2[0] is paid. Note that HTLCA and MHP1[0]
are in the opposite directions and have a difference in the amount of HTLCnew

A .
If amtcxl = amtC and both channels are fully cancelled, then, the difference
between HTLCA and MHP1[0] is equal to the fee of B from MHP0 (see Step (1)
of Setup and Lock phase of FBO). The difference can be considered part of the

32 O. Ersoy et al.

fee paid to A for the cancellation operation. Thus, B does not lose his coins
with the (partial) cancellation of HTLCA and MHP1[0], and locking HTLCnew

A .
Similarly, the channel γB,C is updated by cancelling HTLCC , MHP1[n−1], lock-
ing HTLCnew

C and paying MHP2[n− 1] where the amount in HTLCC is equal to
the summation of the amounts in MHP1[n − 1] and HTLCnew

C . Here, again, B
does not lose coins with the cancellations in γB,C . If any of the channel updates
of γA,B or γB,C fails, then both updates are cancelled and the channel closing
procedure is started (see Step (3) of Cancellation phase of FBO)). In this case,
balance of B is preserved via MHP-BSA.

Case of A: For party A, initially, there is a conditional payment HTLCA

where A pays to B. Depending on A being the sender of MHP0, there could be
another conditional payment before. In both cases, the balance security regarding
only MHP0 is guaranteed by MHP-BSA.

In the Setup and Lock phases, two new MHPs are created. Both MHPs are
locked via the MHP functionality where A is ensured to be paid first before
locking for a payment. In the Cancellation phase, A updates her channel with B
by canceling HTLCA and MHP1[0] and locking HTLCnew

A . Since HTLCA.amt =
MHP1[0].amt+HTLCnew

A .amt, A does not lose any coins with the cancellation. If
both channels are fully cancelled, the fee gain of A is increased by fB . Moreover,
A is paid by MHP2[0] if the updates are successful. If the updates fail, the
channel is closed. Then, for all three existing MHPs (as HTLCnew

A is not locked),
the balance security of A is guaranteed by MHP-BSA.

In the Pay and Reroute phase, A pays to D1 in MHP2[1] only if the Cancella-
tion phase is completed (see Step (1) of Pay and Reroute phase of FBO), which
includes the payment of MHP2[0] where MHP2[0].amt−MHP2[1].amt = f1 (see
Step (1) of Setup and Lock phase of FBO). Thus, in this case, A gains f1 fee
from MHP2.

Overall, it can be seen that HTLCA is replaced with HTLCnew
A and MHP1[1]

(see Step (4) of Pay and Reroute phase of FBO) where the timelocks are the
same. Thus, A does not lose any coins in the protocol, but might earn the fee of
B in MHP0 (in the case of full cancellation), in addition to MHP2[0].

Case of C: The case of C is similar to A in the sense that for both parties
the protocol replaces their connection in the path from B to bailout party. The
only difference is that the amounts in HTLCA and HTLCC are not the same.
Yet, since HTLCC and MHP1[n− 1] have the same amount, C does not lose any
coins by canceling both of them. Thus, we omit the detailed discussion of this
case because of the similarities with the previous case.

Case of Di: At the beginning there are no ongoing HTLCs. In the Setup
phase, Di is involved in two MHP payments, MHP1 and MHP2. As in previous
cases, the balance security at this stage is secured by MHP-BSA. Note that if
there are multiple Di’s, then the timelock value is divided among the bailout
parties. It is responsibility of an honest Di to assess if the offered timelock value
is adequate or not.

In the Pay and Reroute phase, payments of MHP2 are paid in which first Di

receives the payment. Here, Di earns a fee. Finally, the conditional payments in

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 33

MHP1 are moved to MHP0. From Di’s perspective, there is no difference since
MHP-BSA applies here as well. Thus, Di does not lose any coins as well.

Now, we can show that our protocol Bailout emulates the ideal functionality
FBO. We prove this by showing that any attack applied onΠBO can be simulated
on FBO as well. More specifically, we design a simulator S that simulates any
attack of an adversary A on the protocol ΠBO into the ideal functionality FBO.
This way, we show that an environment E cannot distinguish the real world with
ΠBO from the ideal world with FBO.

Theorem 2. Let H be a cryptographic hash function and Σ be a EUF–CMA se-
cure signature scheme. Then, the protocol ΠBO UC-realizes the ideal function-
ality FBO.

In general, the challenge in UC-realization is that a simulator is required to
provide an indistinguishable transcript in the ideal world wrt. the real execution
of the protocol without knowing the secret inputs of the parties. In our case,
parties do not obtain secret values, but receive commands from environment E .
Thus, the only challenge is handling the behavior of the adversary, i.e., ensuring
the same messages/transactions are seen at the same rounds by the environment
who observes both real and ideal worlds.

Note that the indistinguishability of real and ideal worlds relies on the secu-
rity of the H and Σ primitives. More specifically, the cryptographically secure
hash function H ensures that the preimage conditions in the HTLCs are only
satisfied with a unique "correct" secret value, which can only be known by the
receiver. The EUF–CMA secure signature scheme Σ ensures that the signature of
a party cannot be forged without knowing the corresponding private key. These
properties ensure that the adversary cannot (i) obtain the preimage of the hash
condition unless it is revealed (ii) sign a message/transaction on behalf of other
parties. In other words, it prevents an adversary to execute an unauthorized
operation, which would lead to the distinguishability of real and ideal worlds.
We present the simulator code below.

D.1 Simulator for Our Protocol

In order to show that our protocol ΠBO emulates the ideal functionality FBO,
we prove that any attack applied on ΠBO can be simulated on FBO as well. More
specifically, we design a simulator S that simulates any attack of an adversary A
on the protocol ΠBO into the ideal functionality FBO. This way, we show that
an environment E cannot distinguish the real world with ΠBO from the ideal
world with FBO.

Here, we present the simulator for each phase of the protocol. Note that we
do not provide the simulator for the case where all parties are honest since it is a
straightforward consequence of the protocol steps. We investigate the cases with
one honest party (for each role) and the rest is malicious. These cases already
cover the rest of the cases where there are multiple honest parties.

34 O. Ersoy et al.

Simulator for Setup and Lock

Honest B, Dishonest path[i].payee (for i = 0, . . . , n− 2)

1. If B sends (SETUP,mid0,mid1,mhpInfo1,mid2,mhpInfo2) to FBO,
(a) Parse mhpInfo1 := (amt1,TL1, path1) and mhpInfo2 := (amt2,TL2, path2).
(b) Check the following conditions:

– Check the paths are the same, i.e., path1 = path2 := path. Let
A := path[1].payer, C := path[n − 1].payer, and path[i].payee = Di =
path[i+ 1].payer for i ∈ [1, n− 3].

– Check the ongoing HTLCs with id mid0 with A and C. Let pathA

and pathB be part of the path of mid0 with direction from A to B
to C. Check if there are ongoing and locked HTLCs with id mid0 in
these paths. If not, stop. Otherwise, let HTLCA and HTLCC be the
corresponding HTLCs with (h, amtA, TLA) and (h, amtC , TLC) hash
condition, the locked amount and the timelock, respectively.

– Check whether the MHPs are properly generated:
• Amount: For i ∈ [0, n− 1], check amt1[i] := amtcxl ≤ amtC and

amt2[i] =
∑n−1

j=i fj where fj is the fee of jth channel.
• Timelocks: Check TL1 = TL2 := TL, and TL[0] = TLA + ∆,

TL[n − 1] = TLC −∆, and for i ∈ [1, n − 2], TL[i] = (n−2−i)
n−3

×
(TLA − TLC) + TLC .

If any of the checks fails, do not continue.
2. If B sends both messages (INIT–MHP,mid1,mhpInfo1) and (INIT–MHP,mid2,

mhpInfo2) to FBO, continue to the next step. If only one is received, or none,
then do nothing.
(a) Let h be the condition of the HTLCs with id mid0. Choose a random value

xB , and compute hB = H(xB). Assign cond1 = {h, hB} and cond2 =
{hB}

(b) Setup the MHPs oMHP1[0] ← SetupMHP(mid1, amt1,TL1, cond1, path1)
and oMHP2[0]← SetupMHP(mid2, amt2,TL2, cond2, path2). Obtain
(MHP1[0], oMHP1[1]) and (MHP2[0], oMHP2[1]) by decrypting oMHP1[0]
and oMHP2[0].

(c) Send (LockMHP,MHP1[0], oMHP1[1]) and (LockMHP,MHP2[0], oMHP2[1])
to path[0].payee, and follow the MHP protocol, ΠMHP , execute the sim-
ulator code for locking both MHPs.

3. Upon receiving (LockMHP,MHP1[n−1], oMHP1[n]) and (LockMHP,MHP2[n−
1], oMHP2[n]) from path[n−1].payer, follow ΠMHP protocol, execute the sim-
ulator code for locking both MHPs.
(a) If both MHP1[n− 1] and MHP2[n− 1] are locked, then assume the Setup

and Lock phase is successful, and continue to the next phase.

Honest path[i].payee, Dishonest B, path[j].payee

(for j 6= i, i ≤ n− 2)

1. Upon receiving both (LockMHP,MHP1[i], oMHP1[i+ 1]) and (LockMHP,
MHP2[i], oMHP2[i+1]) from path[i].payer, follow ΠMHP protocol, execute the
simulator code for locking both MHPs.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 35

(a) If MHP1[i] and MHP2[i] are locked, then send (LockMHP,MHP1[i + 1],
oMHP1[i + 2]) and (LockMHP,MHP2[i + 1], oMHP2[i + 2]) to path[i +
1].payee, and follow ΠMHP protocol, execute the simulator code for lock-
ing both MHPs. Otherwise, stop.

Simulator for Cancellation

Honest B, Dishonest A and C

1. If B sends (CANCEL,CxlInfo1,CxlInfo2) to FBO at round τ0,
(a) Parse both CxlInfo1 := (mid0,

mid1,mid2, path[0]) and CxlInfo2 := (mid0,mid1,mid2, path[n− 1]).
(b) Let HTLCA,1 ← MHP1[0], HTLCA,2 ← MHP2[0], HTLCC,1 ← MHP1[n−1]

and HTLCC,2 ← MHP2[n − 1]. Create the new HTLCs for the channels
γA,B and γB,C :
– Use the same MHP id mid0, and assign unique ids cpidnew

A and
cpidnew

C .
– HTLCnew

A ← (mid0, cpid
new
A , γA,B , A→ B, h, TLA, amtA − amtcxl)

– HTLCnew
C ← (mid0, cpid

new
A , γB,C , B → C, h, TLC , amtC − amtcxl)

Create the temprorary HTLC for channel between B and C, γB,C :
– Assign unique ids mid′ and cpid′.
– HTLC′C ← (mid′, cpid′, γB,C , C → B, hB , TLC −∆, amtC)

(c) Let HT LCC ← {HTLCC ,HTLCC,1,HTLCC,2,HTLC
new
C ,HTLC′C} and

HT LCA ← {HTLCA,HTLCA,1,HTLC
new
A ,HTLCA,2}. At time τ1, send

(Cancel, γB,C ,HT LCC) to C, and (Cancel, γA,B ,HT LCA) to A.
2. Upon receiving messages (UpdateOk, γB,C) from C and (UpdateOk, γA,B)

from A, send (CANCEL,CxlInfo1) to FBO on behalf of A, and send (CANCEL,
CxlInfo2) to FBO on behalf of C if they have not sent the messages.
(a) Initiate channel updates for both γB,C and γA,B at round τ1:

– Execute simulator code for RevokeHTLC(HTLCC), LockHTLC(HTLCnew
C),

RevokeHTLC(HTLCC,1), and LockHTLC2(HTLC′C) simultaneously in the
same channel update of γB,C .

– Execute simulator code for RevokeHTLC(HTLCA), LockHTLC(HTLCnew
A),

RevokeHTLC(HTLCA,1) simultaneously in the same channel update of
γA,B .

Here before revoking the previous states of the channels, wait for both
parties A and C to revoke. If any of them is not revoked within τ1 +
tupd, then execute channel closing of γA,B and γB,C with both parties.
Otherwise continue.

3. If both channels γA,B and γB,C are updated with the corresponding revoking
and locking payments,
(a) Initiate channel updates for γA,B and γB,C at round τ2:

– Execute PayHTLC(HTLC′C , xB) and PayHTLC(MHP2[n−1], xB) in chan-
nel γB,C .

– Execute PayHTLC(MHP2[0], xB) in channel γA,B .
4. If the updates fail, then execute the simulator code for channel closing of γA,B

and γB,C with A and C.
5. If the updates are completed, then assume the Nullify phase is successful, and

continue to the next phase.

36 O. Ersoy et al.

Honest C, Dishonest B and A

1. If C sends (CANCEL,CxlInfo2) to FBO,
(a) Wait until receiving (Cancel, γB,C ,HT LCC) from B. If not such a message

is received, then do not continue.
(b) Parse mhpInfo2 := (mid0,mid1,mid2, path[n− 1]) and
HT LCC := {HTLCC ,HTLCC,1,HTLCC,2,HTLC

new
C ,HTLC′C}, check cor-

rectness of the HTLCs:
– Timelock: HTLCnew

C .TL
?
= HTLCC .TL

?
= HTLCC,1.TL+∆

?
=

HTLCC,2.TL+∆
?
= HTLC′C .TL+∆.

– Hash: HTLCC .cond = HTLCnew
C .cond = {h}, HTLCC,1.cond = {h, hB},

HTLCC,2.cond = {hB}, and HTLC′C .cond = {hB}.
– Amount: HTLCC,1.amt+HTLCnew

C .amt
?
= HTLCC .amt

?
= HTLC′C .amt

and HTLCC,2.amt ≥ fC where fC is the channel fee.
– If any of them fails, do not continue and initiate channel closing of
γB,C , and execute the simulator code.

(c) If all the checks are successful, send (UpdateOk, γB,C) to B, and continue.
2. If initiated by B, follow the simulator code for the channel update protocol for

execution of RevokeHTLC(HTLCC), LockHTLC(HTLCnew
C), RevokeHTLC(HTLCC,1),

and LockHTLC2(HTLC′C).
3. Once B initiates PayHTLC(HTLC′C , xB) and PayHTLC(MHP2[n− 1], xB),

(a) Check H(xB) = HTLC′C .cond, if it fails, then do not continue. Otherwise,
follow the simulator code for the update of the channel γB,C .

Honest A, Dishonest B and C

1. If A sends (CANCEL,CxlInfo1) to FBO,
(a) Wait until receiving (Cancel, γA,B ,HT LCA) from B. If not such a message

is received, then do not continue.
(b) Parse mhpInfo1 := (mid0,mid1,mid2, path[0]) and
HT LCA := {HTLCA,HTLCA,1,HTLC

new
A ,HTLCA,2}, check correctness of

the HTLCs:
– Timelock: HTLCA.TL

?
= HTLCnew

A .TL
?
= HTLCA,1.TL−∆

?
=

HTLCA,2.TL−∆.
– Hash: HTLCA.cond = HTLCnew

A .cond = {h}, HTLCA,1.cond = {h, hB}
and HTLCA,2.cond = {hB} .

– Amount: HTLCA,1.amt+ HTLCnew
A .amt

?
= HTLCA.amt and

HTLCA,2.amt ≥ fA where fA is the channel fee.
– If any of them fails, do not continue and initiate channel closing of
γA,B , and execute the simulator code.

(c) If all the checks are successful, send (UpdateOk, γA,B) to B, and continue.
2. If initiated by B, follow the simulator code for the channel update protocol

for execution of RevokeHTLC(HTLCA), LockHTLC(HTLCnew
A), and RevokeHTLC(

HTLCA,1).
3. Once B initiates PayHTLC(MHP2[0], xB),

(a) CheckH(xB) = MHP2[0].cond, if it fails, then do not continue. Otherwise,
follow the simulator code for the update of the channel γA,B .

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 37

Simulator for Pay and Reroute

Honest path[i].payee, Dishonest B, path[j].payee
(for j 6= i, 1 ≤ i ≤ n− 2)

1. If path[i].payee sends (REDUCE–CP,mid1,mid2, path[i]) to FBO,
(a) Distinguish the following cases:

– For i = n − 2, i.e., path[i].payee = C, check if the nullify phase
is completed by canceling HTLC with id mid1. Otherwise, do not
continue.

– For i < n − 2, check if HTLC in path[i + 1] is paid with id mid2.
Otherwise, do not continue.

(b) Let xB the corresponding value revealed in the previous step. Execute
the simulator code for PayHTLC(MHP2[i], xB) by revealing xB to C.

(c) Send (ReduceCP,MHP1[i]) to MHP1[i].payer.
2. Once path[i].payer initiates RevokeHTLC(MHP1[i]) and LockHTLC(MHP′1[i]),

(a) Follow the simulator code for channel update protocol. If the update is
completed, then assume Pay and Reduce Condition phase is successful.

Honest path[i].payer, Dishonest B, path[j].payer

(for j 6= i, 1 ≤ i ≤ n− 2)

1. Once path[i].payee initiates PayHTLC(MHP2[i], xB),
(a) CheckH(xB) = MHP2[i].cond, if it fails, then do not continue. Otherwise,

follow the simulator code for channel update protocol.
Upon receiving (ReduceCP,MHP1[i]) from MHP1[i].payee,
(a) If MHP2[i] is paid, then initiate the simulator code for channel update

with MHP1[i].payee:
– Execute RevokeHTLC(MHP1[i]) and LockHTLC(MHP′1[i]) simultaneously

in the same channel update where the only difference between the
HTLCs is the condition and MHP′1[i].cond := h.

E Multi-hop Payment Functionality

In this section, we first present the ideal functionality for two-round multi-
hop payments. Then, we provide a simplified version of Lightning’s MHP proto-
col ΠMHP . Finally, we present a simulator that shows that ΠMHP UC-realizes
FMHP .

E.1 Ideal Functionality for MHP

FMHP Ideal Functionality for MHP

The ideal functionality FMHP utilizes the channel functionality Fchan. It main-
tains the set of ongoing multi-hop payments MHP and conditional payments
HT LC.

38 O. Ersoy et al.

Setup and Lock

1. Upon receiving (INIT–MHP,mid,mhpInfo) from Sender := path[0].payer where
mhpInfo := (amt,TL, path)
– Wait until to receive (INIT–MHP,mid,mhpInfo) from Receiver := path[n−

1].payee where n = |path|, register (mid,mhpInfo, status = initiated) into
MHP, and send (INITIATED,mid) to Receiver. Otherwise, stop.

2. Upon receiving (LOCK–MHP,mid, path[i]) from party path[i].payer at round
ti; for i = 0, i.e., path[0].payer = Sender where there is a corresponding MHP
registered as initiated with id mid, update the status with setup in MHP.
For i ≥ 1 where there is a MHP registered with status = setup for id mid,
check if path[i− 1] is registered with status = locked in HT LC. If not, then
stop.
– Until ti + tupd, if the channel balance permits, lock the amount amt[i] in

channel path[i] from the balance of path[i].payer, i.e., remove them from
path[i].payer’s available balance, add them to locked coin outputs, and
keep track of them.

– If the channel is successfully updated with the corresponding locking,
send (LOCKED,mid, path[i]) to path[i].payer and path[i].payee and register
(mid, amt[i],TL[i], path[i], status = locked) inHT LC, and continue. Oth-
erwise, send (FAILED,mid, path[i]) to path[i].payer and path[i].payee and
register (mid, amt[i],TL[i], path[i], status = failed) in HT LC. Change
status of mid inMHP to failed, and do not continue.

3. Once all the channels in path are locked including path[n− 1], update status
of mid inMHP to locked, and continue.

Pay or Revoke

1. Upon receiving (PAY–MHP,mid, path[i]) from path[i].payee at round τi, where
mid is registered with status locked; for i = n − 1, i.e., path[n − 1].payee =
Receiver, continue. For i < n−1, check if path[i+1] is registered with status =
paid. If not, then stop.
– Until τi + tupd, pay the corresponding locked amount amt[i] in channel

path[i] to the balance of path[i].payee. Otherwise, start channel closing.
– If the payment is successful, send (PAYED,mid, path[i]) to path[i].payer

and path[i].payee and update the corresponding status in HT LC with
paid, and continue. Otherwise, send (FAILED,mid, path[i]) to path[i].payer
and path[i].payee, update the status with failed and initiate channel clos-
ing procedure.

2. Upon receiving (REVOKE–MHP,mid, path[i]) from path[i].payer at round τ ′i
where path[i] is registered with status locked and τ ′i ≥ TL[i],
– Until τ ′i + tupd, revoke the payment by re-paying corresponding locked

amount amt[i] in channel path[i] to the balance of path[i].payer. Otherwise,
initiate channel closing procedure.

– If the revoke is successful, send (REVOKED,mid, path[i]) to path[i].payer
and path[i].payee and update the corresponding status in HT LC with
revoked, and continue. Otherwise, send (FAILED,mid, path[i]) to path[i]
.payer and path[i].payee, update the status with failed and initiate chan-
nel closing procedure.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 39

E.2 Simplified version of Lightning Multi-Hop Payment Protocol

In the Setup and Lock phase, the payment route is created, and each channel
in the path locks wrt. the conditional payments. A MHP setup is executed by
calling SetupMHP(mid, amt,TL, cond, path) function. Here, mid is the unique id of
the payment, and amt denotes the payment amounts in each channel (including
the fees). cond is randomly chosen by Receiver for which he possesses a preim-
age (witness) satisfying the condition. TL are the timelocks determined for each
channel in the path.

Note that for the privacy concerns, each intermediary party is allowed to
know the previous and the following party in the path. The MHP payment MHP
is transmitted via onion routing. More specifically, each party MHP[i].payer re-
ceives oMHP[i] := Encpki

(MHP[i],Encpki+1
(MHP[i+1], . . . ,Encpkn−1

(MHP[n− 1]
)) where Enc is the public key encryption scheme. Using the private key sk i,
MHP[i].payer can extractMHP[i] and pass the rest oMHP[i+1] toMHP[i].payee =
MHP[i+1].payer. The origin of the onion structure, oMHP[0] is created by Sender
using the public keys of each parties in the payment route.

In the Pay or Revoke phase, the payment is completed with success or revo-
cation. First, the receiver provides the preimage (witness) to path[n− 1].payer. If
the preimage is valid, i.e.,
H(witness) = cond, then the corresponding channel of MHP[n− 1] is updated by
completing the payment. In the same manner, party path[n−1].payer reveals the
preimage to path[n− 2].payer to get paid in MHP[n− 2]. This goes until the first
channel in the path is also updated with payment. If the receiver does not reveal
the preimage on time, or the process stops at a malicious intermediary, each
party path[i].payer can re-claim the payment at the timelock time MHP[i].TL.
If one of the parties in a channel does not accept to update the channel (in
payment or revocation), the other party initiates the closure of the channel to
obtain her coins on the blockchain.

ΠMHP Multi-hop Payments with HTLCs

The hybrid protocol ΠMHP utilizes the channel functionality Fchan.

Setup and Lock

Let Sender and Receiver be the sender and receiver of the payment, respec-
tively. The conditional payments are generated wrt. the hard relation R.

Sender

Upon receiving (INIT–MHP,mid,mhpInfo) from E ,

1. Parse mhpInfo := (amt,TL, path).
2. Check path[0].payer = Sender, and continue. Otherwise, stop.
3. Store (mid, amt,TL, path) as an initiated MHP.

Receiver

40 O. Ersoy et al.

Upon receiving (INIT–MHP,mid,mhpInfo) from E ,

1. Parse mhpInfo := (amt,TL, path).
2. Check Receiver = path[n− 1].payee where n = |path|.
3. Check amt > 0. If not, stop. Otherwise, continue.
4. Choose a random secret witness and compute the condition cond such that

(witness, cond) ∈ R. Store (witness,mid).
5. Store (mid, amt,TL, path, cond) as an initiated MHP.
6. Send (InitOk,mid, cond) to Sender and (INITIATED,mid) to E .

Sender

Upon receiving (InitOk,mid, cond) from Receiver and (LOCK–MHP,mid, path[0])
from E at round t0,

1. Execute oMHP[0]← SetupMHP(mid, amt,TL, cond, path).
2. Obtain MHP[0] and oMHP[1] by decrypting oMHP[0].
3. Send (LockMHP,MHP[0], oMHP[1]) to party MHP[0].payee.
4. Upon receiving (LockOk,MHP[0]) from party MHP[0].payee until t0 + 1, exe-

cute LockHTLC(MHP[0]). Otherwise, stop.
5. Distinguish the following cases:

– Upon receiving Success, assumeMHP[0].mid as locked, send (LOCKED,mid,
path[0]) to E , and continue.

– Upon receiving Fail, assume MHP[0].mid as failed, send (FAILED,mid,
path[0]) to E , and do not continue.

MHP[i].payee = MHP[i+ 1].payer (for i = 0, . . . , n− 2)

Upon receiving (LockMHP,MHP[i], oMHP[i+ 1]) from MHP[i].payer,

1. Within a round, send (LockOk,MHP[i]) to party MHP[i].payer.
2. Distinguish the following cases:

– Upon receiving (Updated,MHP[i].γ.id , ~θ) from Fchan where ~θ includes the
conditional paymentMHP[i], assumeMHP[i] as locked, send (LOCKED,mid,
path[0]) to E , and continue.

– If no such message is received within at most tupd rounds, assume MHP[i]
as failed, send (FAILED,mid, path[0]) to E , and do not continue.

Upon receiving (LOCK–MHP,mid, path[i+ 1]) from E at round ti+1,

1. Obtain MHP[i+ 1] and oMHP[i+ 2] by decrypting oMHP[i+ 1].
2. Execute CheckMHP(MHP[i],MHP[i+ 1]), if it returns Fail, stop.
3. Send (LockMHP,MHP[i+ 1], oMHP[i+ 2]) to party MHP[i+ 1].payee.
4. Upon receiving (LockOk,MHP[i+1]) from partyMHP[i+1].payee until ti+1+1,

execute LockHTLC(MHP[i+ 1]). Otherwise, stop.
5. Distinguish the following cases:

– Upon receiving Success, assume MHP[i+1].mid as locked, send (LOCKED,
mid, path[i+ 1]) to E , and continue.

– Upon receiving Fail, assume MHP[i+1].mid as failed, send (FAILED,mid,
path[i+ 1]) to E , and do not continue.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 41

Receiver

Upon receiving (LockMHP,MHP[n− 1], oMHP[n]) from MHP[n− 1].payer,

1. Within a round, send (LockOk,MHP[n− 1]) to party MHP[n− 1].payer.
2. Distinguish the following cases:

– Upon receiving (Updated,MHP[n−1].γ.id , ~θ) from Fchan where ~θ includes
the conditional payment MHP[n− 1], assume MHP[n− 1].mid as locked,
send (LOCKED,mid, path[i+1]) to E , and continue to the Pay and Revoke
phase.

– If no such message is received within at most tupd rounds, assumeMHP[n−
1].mid as failed, send (FAILED,mid, path[i+1]) to E , and do not continue.

Pay or Revoke

Receiver

Upon receiving (PAY–MHP,mid, path[n− 1]) from E at round τn−1,

1. Let (witness,MHP[n − 1].mid) be the stored pair of witness and id of the
conditional paymentMHP[n−1].mid which is locked. Send (PayMHP,MHP[n−
1],witness) to MHP[n− 1].payer.

2. Upon receiving (PayOk,MHP[n−1]) from party MHP[n−1].payer until τn−1+
1, execute PayHTLC(MHP[n − 1],witness). Otherwise, send (Close,MHP[n −
1].γ.id) to Fchan.

3. Distinguish the following cases:
– Upon receiving Success, assumeMHP[n−1].mid as paid, and send (PAYED,

mid, path[n− 1]) to E .
– Upon receiving Fail, assume MHP[n−1].mid as failed, send (FAILED,mid,

path[n− 1]) to E , and send (Close,MHP[n− 1].γ.id) to Fchan.

MHP[i].payer = MHP[i− 1].payee (for i = n− 1, . . . , 1)

Upon receiving (PayMHP,MHP[i],witness) from MHP[i].payee,

1. Execute CheckCond(witness,MHP[i].cond), if it returns Fail, then send (Close,
MHP[i].γ.id) to Fchan. Otherwise, within a round, send (PayOk,MHP[i]) from
party MHP[i].payee.

2. Distinguish the following cases:
– Upon receiving (Updated,MHP[i].γ.id , ~θ) from Fchan where ~θ excludes

the conditional payment MHP[i], assume MHP[i].mid as paid, and send
(PAYED,mid, path[n− 1]) to E .

– If no such message is received within at most tupd rounds, assumeMHP[i].mid
as failed, send (FAILED,mid, path[n− 1]) to E .

Upon receiving (PAY–MHP,mid, path[i− 1]) from E at round τi−1

1. Let witness be the witness obtained by payingMHP[i], send (PayMHP,MHP[i−
1],witness) to MHP[i− 1].payer. Otherwise, stop.

42 O. Ersoy et al.

2. Upon receiving (PayOk,MHP[i− 1]) from party MHP[i− 1].payer until τi +1,
execute PayHTLC(MHP[i−1],witness). Otherwise, send (Close,MHP[i−1].γ.id)
to Fchan.

3. Distinguish the following cases:
– Upon receiving Success, assumeMHP[i−1].mid as paid, and send (PAYED,

mid, path[i− 1]) to E .
– Upon receiving Fail, assumeMHP[i−1].mid as failed, and send (FAILED,mid,

path[i− 1]) to E , send (Close,MHP[i− 1].γ.id) to Fchan.

Upon receiving (REVOKE–MHP,mid, path[i]) from E at round τ ′i where τ ′i ≥
MHP[i].TL,

1. Send (RevokeMHP,MHP[i]) to MHP[i].payee.
2. Upon receiving (RevokeOk,MHP[i]) from party MHP[i].payee until τ ′i +1, ex-

ecute RevokeHTLC(MHP[i]). Otherwise, send (Close,MHP[i].γ.id) to Fchan.
3. Distinguish the following cases:

– Upon receiving Success, assume MHP[i].mid as revoked, send (REVOKED,
mid, path[i]) to E .

– Upon receiving Fail, assumeMHP[i].mid as failed, send (FAILED,mid, path[i])
to E , send (Close,MHP[i].γ.id) to Fchan.

Sender

Upon receiving (PayMHP,MHP[0],witness) from MHP[0].payee,

1. Execute CheckCond(witness,MHP[0].cond), if it returns Fail, then send (Close,
MHP[0].γ.id) to Fchan. Otherwise, within a round, send (PayOk,MHP[0]) from
party MHP[0].payee.

2. Distinguish the following cases:
– Upon receiving (Updated,MHP[0].γ.id , ~θ) from Fchan where ~θ excludes

the conditional payment MHP[0], assume MHP[0].mid as paid, and send
(PAYED,mid, path[i− 1]) to E .

– If no such message is received within at most tupd rounds, assumeMHP[0].mid
as failed, and send (FAILED,mid, path[i− 1]) to E .

Upon receiving (REVOKE–MHP,mid, path[0]) from E at round τ ′0 where τ ′0 ≥
MHP[0].TL,

1. Send (RevokeMHP,MHP[0]) to MHP[0].payee.
2. Upon receiving (RevokeOk,MHP[0]) from party MHP[0].payee until τ ′0 + 1,

execute RevokeHTLC(MHP[0]). Otherwise, send (Close,MHP[0].γ.id) to Fchan.
3. Distinguish the following cases:

– Upon receiving Success, assumeMHP[0].mid as revoked, send (REVOKED,
mid, path[0]) to E .

– Upon receiving Fail, assume MHP[0].mid as failed, send (FAILED,mid,
path[0]) to E , send (Close,MHP[0].γ.id) to Fchan.

E.3 Simulator for Multi-hop payment

In order to show that simplified Lightning MHP protocol ΠMHP emulates the
ideal functionality FMHP , we prove that any attack applied on ΠMHP can be

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 43

simulated on FMHP as well. More specifically, we design a simulator S that
simulates any attack of an adversary A on the protocol ΠMHP into the ideal
functionality FMHP . This way, we show that an environment E cannot distin-
guish, the real world with ΠMHP from the ideal world with FMHP .

Here, we present the simulator for each phase of the protocol. Like in Sec-
tion D.1, here, we do not explain the simulator for the case where all parties are
honest since it is straightforward follow of the protocol steps.

Simulator for Setup and Lock

Honest Sender, Dishonest MHP[i].payee (for i ∈ [0, n− 1])

1. If Sender sends (INIT–MHP,mid,mhpInfo) to FMHP ,
(a) Parse mhpInfo := (amt,TL, path).
(b) Check path[0].payer = Sender, and continue. Otherwise, stop.
(c) Store (mid,mhpInfo) as an initiated MHP.

2. Upon receiving (InitOk,mid, cond) from Receiver, send (INIT–MHP,mid,mhpInfo)
to FMHP on behalf of Receiver, if Receiver has not send this message.

3. If Sender sends (LOCK–MHP,mid, path[0]) to FMHP at round t0,
(a) Execute oMHP[0]← SetupMHP(mid, amt,TL, cond, path).
(b) Obtain MHP[0] and oMHP[1] by decrypting oMHP[0].
(c) Send (LockMHP,MHP[0], oMHP[1]) to MHP[0].payee.
(d) Upon receiving (LockOk,MHP[0]) from MHP[0].payee until t0+1, execute

simulator code for LockHTLC(MHP[0]). Otherwise, stop.
(e) Distinguish the following cases:

– Upon receiving Fail, assume MHP[0].mid as failed, and do not con-
tinue.

– Upon receiving Success, assume MHP[0].mid as locked, and continue.

Honest Receiver, Dishonest MHP[i].payer (for i ∈ [0, n− 1])

1. If Receiver sends (INIT–MHP,mid,mhpInfo) to FMHP ,
(a) Parse mhpInfo := (amt,TL, path).
(b) Check Receiver = path[n− 1].payee where n = |path|.
(c) Check amt > 0. If not, stop. Otherwise, continue.
(d) Choose a random witness witness and compute the condition cond such

that (witness, cond) ∈ R. Store (witness,mid).
(e) Store (mid,mhpInfo, cond) as an initiated MHP.
(f) Send (InitOk,mid, cond) to Sender.

2. Send (INIT–MHP,mid,mhpInfo) to FMHP on behalf of Sender, if Sender has
not send this message.

3. Upon receiving (LockMHP,MHP[n− 1], oMHP[n]) from MHP[n− 1].payer,
(a) Within a round, send (LockOk,MHP[n − 1]) to party MHP[n − 1].payer,

and execute the simulator code for locking.
(b) Distinguish the following cases:

– Upon receiving (Updated,MHP[n − 1].γ.id , ~θ) from Fchan where ~θ
includes the conditional payment MHP[n−1], assume MHP[n−1].mid
as locked, and continue to the Pay and Revoke phase.

44 O. Ersoy et al.

– If no such message is received within at most tupd rounds, assume
MHP[n− 1].mid as failed and do not continue.

Honest MHP[i].payee, Dishonest Sender, MHP[j].payee

(for j 6= i, i 6= n− 1)

1. Upon receiving (LockMHP,MHP[i], oMHP[i+ 1]) from party MHP[i].payer,
(a) Within a round, send (LockOk,MHP[i]) to MHP[i].payer, and execute the

simulator code for locking.
(b) Distinguish the following cases:

– Upon receiving (Updated,MHP[i].γ.id , ~θ) from Fchan where ~θ includes
the conditional payment MHP[i], assume MHP[i] as locked, and con-
tinue.

– If no such message is received within at most tupd rounds, assume
MHP[i] as failed and do not continue.

2. Send (INIT–MHP,mid,mhpInfo) to FMHP on behalf of Sender and Receiver,
if they have not send the message.

3. If MHP[i].payee sends (LOCK–MHP,mid, path[i+1]) to FMHP at round ti+1,
(a) Obtain MHP[i+ 1] and oMHP[i+ 2] by decrypting oMHP[i+ 1].
(b) Execute the simulator code for CheckMHP(MHP[i],MHP[i+1]), if it returns

Fail, stop.
(c) Send (LockMHP,MHP[i+ 1], oMHP[i+ 2]) to party MHP[i+ 1].payee.
(d) Upon receiving (LockOk,MHP[i + 1]) from party MHP[i + 1].payee until

ti+1 + 1, execute simulator code for LockHTLC(MHP[i + 1]). Otherwise,
stop.

(e) Distinguish the following cases:
– Upon receiving Success, assume MHP[i + 1].mid as locked, and con-

tinue.
– Upon receiving Fail, assume MHP[i + 1].mid as failed, and do not

continue.

Simulator for Pay or Revoke

Honest Sender, Dishonest MHP[i].payee (for i ∈ [0, n− 1])

1. Upon receiving (PayMHP,MHP[0],witness) from the party MHP[0].payee,
(a) Execute CheckCond(witness,MHP[0].cond), if it returns Fail, then initi-

ate FMHP for sending (Close,MHP[0].γ.id) to Fchan and execute the
simulator code for closing procedure. Otherwise, within a round, send
(PayOk,MHP[0]) from party MHP[0].payee.

(b) Distinguish the following cases:
– Upon receiving (Updated,MHP[0].γ.id , ~θ) from Fchan where ~θ ex-

cludes the conditional payment MHP[0], assume MHP[0].mid as paid,
and continue.

– If no such message is received within at most tupd rounds, assume
MHP[0].mid as failed.

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 45

2. If Sender sends (REVOKE–MHP,mid, path[0]) to FMHP at round τ ′0 where
τ ′0 ≥ MHP[0].TL,
(a) Send (RevokeMHP,MHP[0]) to MHP[0].payee.
(b) Upon receiving (RevokeOk,MHP[0]) from MHP[0].payee until τ ′0 +1, exe-

cute the simulator code for RevokeHTLC(MHP[0]). If Sender sends (Close,
MHP[0].γ.id) to Fchan, execute the simulator code for closing procedure.

(c) Distinguish the following cases:
– Upon receiving Success, assume MHP[0].mid as revoked, then send

(REVOKED,mid, path[0]) to E .
– Upon receiving Fail, assume MHP[0].mid as failed. If Sender sends

(Close,MHP[0].γ.id) to Fchan, execute the simulator code for closing
procedure.

Honest Receiver, Dishonest MHP[i].payer (for i ∈ [0, n− 1])

1. If Receiver sends (PAY–MHP,mid, path[n− 1]) to FMHP at round τn−1,
(a) Let (witness,MHP[n− 1].mid) be the stored pair of witness and id of the

conditional payment MHP[n− 1].mid which is locked. Send (PayMHP,
MHP[n− 1],witness) to MHP[n− 1].payer.

(b) Upon receiving (PayOk,MHP[n − 1]) from party MHP[n − 1].payer until
τn−1 +1, execute the simulator code for PayHTLC(MHP[n− 1],witness). If
Receiver sends (Close,MHP[n − 1].γ.id) to Fchan, execute the simulator
code for closing procedure.

(c) Distinguish the following cases:
– Upon receiving Success, assume MHP[n− 1].mid as paid.
– Upon receiving Fail, assume MHP[n − 1].mid as failed. If Receiver

sends (Close,MHP[n− 1].γ.id) to Fchan, execute the simulator code
for closing procedure.

Honest MHP[i].payer, Dishonest Receiver, MHP[j].payer

(for j 6= i, i 6= 0)

1. Upon receiving (PayMHP,MHP[i],witness) from the party MHP[i].payee,
(a) Execute CheckCond(witness,MHP[i].cond), if it returns Fail, then initi-

ate FMHP for sending (Close,MHP[i].γ.id) to Fchan and execute the
simulator code for closing procedure. Otherwise, within a round, send
(PayOk,MHP[i]) from party MHP[i].payee.

(b) Distinguish the following cases:
– Upon receiving (Updated,MHP[i].γ.id , ~θ) from Fchan where ~θ ex-

cludes the conditional payment MHP[i], assume MHP[i].mid as paid,
and continue.

– If no such message is received within at most tupd rounds, assume
MHP[i].mid as failed.

2. If MHP[i].payer = MHP[i − 1].payee sends (PAY–MHP,mid, path[i − 1]) to
FMHP at round τi−1,

46 O. Ersoy et al.

(a) Let (witness,MHP[i− 1].mid) be the stored pair of witness and id of the
conditional paymentMHP[i−1].mid which is locked. Send (PayMHP,MHP
[i− 1],witness) to MHP[i− 1].payer.

(b) Upon receiving (PayOk,MHP[i − 1]) from party MHP[i − 1].payer until
τi−1 + 1, execute the simulator code for PayHTLC(MHP[i− 1],witness). If
MHP[i].payer sends (Close,MHP[i − 1].γ.id) to Fchan, execute the simu-
lator code for closing procedure.

(c) Distinguish the following cases:
– Upon receiving Success, assume MHP[i− 1].mid as paid.
– Upon receiving Fail, assume MHP[i−1].mid as failed. If MHP[i].payer

sends (Close,MHP[i − 1].γ.id) to Fchan, execute the simulator code
for closing procedure.

3. If MHP[i].payer sends (REVOKE–MHP,mid, path[i]) to
FMHP at round τ ′i where τ ′i ≥ MHP[i].TL,
(a) Send (RevokeMHP,MHP[i]) to MHP[i].payee.
(b) Upon receiving (RevokeOk,MHP[i]) from MHP[i].payee until τ ′i + 1, exe-

cute the simulator code for RevokeHTLC(MHP[i]). If MHP[i].payer sends
(Close,MHP[i].γ.id) to Fchan, execute the simulator code for closing pro-
cedure.

(c) Distinguish the following cases:
– Upon receiving Success, assume MHP[i].mid as revoked.
– Upon receiving Fail, assume MHP[i].mid as failed. If MHP[i].payer

sends (Close,MHP[i].γ.id) to Fchan, execute the simulator code for
closing procedure.

F Experiments: Requiring Liquidity

In this second evaluation scenario, parties can bail out of payments at any time
during the simulation. They bailout because they require the funds for a con-
current payment.
Metrics. For this scenario, bailing out of ongoing payments to realize concurrent
payments should have the side effect of increasing the overall success probability
of payments, as bailouts allow forwarding payments that otherwise fail. As a
consequence, we also consider the payment success ratio, i.e., the overall frac-
tion of payments that succeed, as a metric, in addition to the metrics listed in
Section 4.
Simulation Setup. During the simulation, a party B can be prevented from
initiating or forwarding a payment due to collateral locked in ongoing payments.
If that happens, the party considers all ongoing payments that have been in
progress for at least 60s. He checks whether bailing out of these payments enables
him to complete the new payment. If yes, he checks if he can bailout. We consider
only paths with one bailout party.

Once the party B has identified one or more potential bailout parties, B
sends any potential bailout party D information about the payment, namely
the value that needs to be locked on the two channels. If D’s channels do not
have sufficient balance, D denies participation. If there is sufficient balance, D
names the fee he charges. B then chooses the bailout party. We consider two

Get Me out of This Payment! Bailout: An HTLC Re-routing Protocol 47

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

DEL-A DEL-S NO-A NO-S

NORM

MULT

Fig. 7: Bailouts over time for fee strategies NORM and MULT considering both
Delaying (DEL) and Not Settling (NO); A denotes the number of overall bailouts
while S denotes the number of successful bailouts, p = 0.1

configurations for the fee charged by D: i) NORM: D charges the same fee as
for a normal payment, and i) MULT : D multiplies its normal fee with a factor
of 10. Given that payments that have been ongoing for a while are likely to
only be resolved when the timeout expires rather than within seconds as most
payments, a higher fee seems appropriate to make up for the longer than average
time. The problem of how to exactly select this fee is out of scope for this paper
and we just use a factor 10 as an example. Note that to include the aspect of
selecting bailout parties based in the cheapest fee offered, we only choose one
alternative path rather than splitting the amount over multiple paths as in our
first scenario. We only consider the high concurrency scenario here, which has a
higher chance to require bailouts.

Results. There are relatively few bailout events during the simulation and many
of them are not successful. The failures are almost always due to the lack of a
bailout party rather than a lack of funds. Figure 7 displays the number of overall
bailout events and the number of successful bailouts over 100,000 transactions
for p = 0.1. Note that the number of overall events includes all three options
listed in Section 4. Results for other values of p show slightly higher values but
a similar ratio between overall bailouts and successful ones.

We see that the choice of fee strategy — NORM or MULT — has no statis-
tically significant impact on the number of bailouts, which justifies disregarding
the aspect of fees in our first scenario. The behavior with regard to delays is a
major factor: For No Settling, the number of bailouts are much lower. The reason
lies in the fact that No Settling is only applied by parties who cannot forward a
payment while delaying is an action that can be executed by any party on the
path. Thus, there are more delayed payments for Delaying and thus, more parties
are affected and need to bailout. Given the low number of successful bailouts,

48 O. Ersoy et al.

the impact on successful payment ratio is minimal, increasing the fraction from
0.66 to 0.67.

