
Quantum Security of FOX Construction
based on Lai-Massey Scheme

Amit Kumar Chauhan and Somitra Kumar Sanadhya

Indian Institute of Technology Jodhpur, India
{amitchauhan,somitra}@iitj.ac.in

Abstract. The Lai-Massey scheme is an important cryptographic approach to design
block ciphers from secure pseudorandom functions. It has been used in the designs of
IDEA and IDEA-NXT. At ASIACRYPT’ 99, Vaudenay showed that the 3-round and
4-round Lai-Massey scheme are secure against chosen-plaintext attacks (CPAs) and
chosen-ciphertext attacks (CCAs), respectively, in the classical setting. At SAC’04,
Junod and Vaudenay proposed a new family of block ciphers based on the Lai-Massey
scheme, namely FOX. In this work, we analyze the security of the FOX cipher in the
quantum setting, where the attacker can make quantum superposed queries to the
oracle. Our results are as follows:

• The 3-round FOX construction is not a pseudorandom permutation against
quantum chosen-plaintext attacks (qCPAs), and the 4-round FOX construction
is not a strong pseudorandom permutation against quantum chosen-ciphertext
attacks (qCCAs). Essentially, we build quantum distinguishers against the
3-round and 4-round FOX constructions, using Simon’s algorithm.

• The 4-round FOX construction is a pseudorandom permutation against qCPAs.
Concretely, we prove that the 4-round FOX construction is secure up to O(2n/12)
quantum queries. Our security proofs use the compressed oracle technique
introduced by Zhandry. More precisely, we use an alternative formalization of
the compressed oracle technique introduced by Hosoyamada and Iwata.

Keywords: Symmetric-key cryptography · Lai-Massey scheme · FOX cipher ·
Simon’s algorithm · Quantum chosen-plaintext attacks · quantum chosen-ciphertext
attacks · Compressed oracle technique.

1 Introduction
A block cipher is an important cryptographic primitive that is widely used for data
encryption, data authentication, and to build one-way functions. A block cipher is a
pseudo-random permutation (PRP), i.e., for a distinct key it provides distinct permutations
that cannot be distinguished from a random permutation in polynomial time. Some of the
popular designing approaches are based on the Feistel network, the Lai-Massey scheme,
and the substitution-permutation network. Luby and Rackoff [LR88] showed that the
3-round and 4-round Feistel constructions are secure PRPs against chosen-plaintext attacks
(CPAs) and chosen-ciphertext attacks (CCAs), respectively. Similar to the Feistel network,
Vaudenay [Vau99] showed that the 3-round and 4-round Lai-Massey constructions [LM90]
are secure PRPs against CPAs and CCAs, respectively. Following the Lai-Massey scheme,
Junod and Vaudenay [JV04] proposed a family of block ciphers, namely FOX. Later, FOX
was also announced under IDEA-NXT by MediaCrypt AG [AG07], as a successor of IDEA.

mailto:{amitchauhan, somitra}@iitj.ac.in

2 Quantum Security of FOX Construction

FOX Cipher. The high level structure of FOX cipher adopts the Lai-Massey
scheme [LM90], operating on an arbitrary group G. It consists of two layers: a non-linear
layer Φ which applies the round function f , and a linear layer ζ which applies the function σ
as an orthomorphism such that σ and x 7→ σ(x)−x are both permutations (see Figure 1a).
In the FOX design, the group (G,+) is chosen to be ({0, 1}n/2,⊕), and the orthomorphism
σ is defined as σ(y1, y2) = (y2, y1 ⊕ y2), where y1, y2 ∈ ({0, 1}n/2,⊕). The detailed
description of the design can be found in [JV04].

fi

xiL xiR

Φ

ζ

x(i−1)L x(i−1)R

σ

(a) 1-round of LM.

fi

x(i−1)LL x(i−1)LR

σ

xiLL xiLR

x(i−1)RL x(i−1)RR

xiRL xiRR

fiL

fiR

(b) 1-round of FOX.

Figure 1: Round transformation of the Lai-Massey (LM) scheme and FOX cipher.

Let fi := {fi,k : {0, 1}n/2 → {0, 1}n/2} be a family of functions that is parameterized
by k from a key space K (1 ≤ i ≤ r). The r-round FOX construction FOXr(f1, . . . , fr) is
defined as follows: first, keys k1, . . . , kr are chosen independently and uniformly at random
from K. For each input x0 = x0LL||x0LR||x0RL||x0RR, where x0LL, x0LR, x0RL, x0RR ∈
{0, 1}n/4, the i-th state is updated as x(i−1)LL||x(i−1)LR||x(i−1)RL||x(i−1)RR 7→
xiLL||xiLR||xiRL||xiRR, where xiLL, xiLR, xiRL, xiRR are given by

xiLL := x(i−1)LR ⊕ fiR(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)
xiLR := x(i−1)LL ⊕ x(i−1)LR ⊕ fiL(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)

⊕ fiR(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)
xiRL := x(i−1)RL ⊕ fiL(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)
xiRR := x(i−1)RR ⊕ fiR(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)

for i = 1, . . . , r in a sequential order (see Figure 1b). Here, fiL and fiR denote the left and
right halves of fi, respectively. In the classical setting, if each fi is a secure PRF then FOXr

is a PRP against CPAs for r ≥ 3 and a strong PRP against CCAs for r ≥ 4 [WLLZ09].
Analyzing the quantum security of various cryptographic primitives has become an

important question in the last decade. In public-key cryptography, Shor’s seminal
work [Sho94] showed that factoring large integers and computing discrete logarithms
with quantum computers is possible in polynomial time. This result completely breaks
public-key schemes such as RSA, ECDSA, and ECDH in the quantum setting. On the
other hand, in the case of symmetric-key cryptography, it was believed that the security
of symmetric-key schemes would not be much affected by quantum computers. The only
caveat was Grover’s search algorithm [Gro96] that provides square-root improvement in
exhaustive key search attacks. However, a series of recent results has shown that some
symmetric-key schemes can be broken in polynomial time by using Simon’s algorithm if
quantum adversaries have access to quantum circuits that implement keyed primitives
such as block ciphers, message authentication codes [KM10,KLLN16a,Bon17,LM17,SS17,
BNS19, IHM+19, DDW20]. Further improvements based on Grover’s algorithm and its
derivatives have been presented on block ciphers [KLLN16b,BNS19,BGLP21] and hash
functions [HS20,DSS+20,CKS21,NDJY21].

Amit Kumar Chauhan and Somitra Kumar Sanadhya 3

In particular, Kuwakado and Morii [KM10] showed that the 3-round Feistel construction
is not a PRP against quantum chosen-plaintext attacks (qCPAs). Recently, Ito et
al. [IHM+19] showed that the 4-round Feistel construction is not a strong PRP against
quantum chosen-ciphertext attacks (qCCAs). These attacks primarily rely on Simon’s
algorithm [Sim97] that can find a hidden period in polynomial-time. Hosoyamada and
Iwata [HI19] asked a fundamental question about the quantum security of the Feistel
construction, namely “how many rounds are sufficient to achieve provable security against
quantum query attacks”. They answered this question by using Zhandry’s compressed
oracle technique [Zha19] and showed that 4-rounds of the Feistel structure are sufficient to
provide security against qCPAs. Motivated by these results on the Feistel construction,
we focus on analyzing the security of FOX cipher against an attacker having access to
quantum superposed queries to the cryptographic oracle.

1.1 Our Contributions
The main technical contributions of this work are as follows:

• We present a quantum CPA distinguisher against the 3-round FOX construction
FOX3. We do this by carefully choosing the inputs to FOX3 such that the inputs to
the second round function f2 collide, and then we define an appropriate function G
which is periodic (see Lemma 1). By running Simon’s algorithm on the oracle G, we
can recover its hidden secret-period in polynomial time.

• We develop a more challenging quantum CCA distinguisher against the 4-round FOX
construction FOX4 by connecting the FOX and inverse FOX ciphers. To connect the
4-round FOX and the inverse 4-round FOX ciphers, we add appropriate constants in
between so that we are able to define a suitable periodic function G (see Lemma 2),
whose period can be recovered in polynomial time with Simon’s algorithm. In
contrast, in the classical setting, only 2-round CPA and 3-round CCA distinguishers
are known against the FOX construction.

• Thereafter, we show that the 4-round FOX construction FOX4 is a PRP against
qCPAs. In particular, we give a security bound of FOX4 against qCPAs when all the
round functions are truly random. The concrete bound is stated in Theorem 1.

A summary of distinguishing attacks for FOX construction, the Lai-Massey scheme
and the Feistel network is given in Table 1.

Table 1: Comparison of the number of attacked rounds in various settings.
Construction Classical CPA

Distinguisher
Classical CCA
Distinguisher

Quantum CPA
Distinguisher

Quantum CCA
Distinguisher

Feistel 2 [LR88] 3 [LR88] 3 [KM10] 4 [IHM+19]
Lai-Massey 2 [Vau99] 3 [Vau99] – –

FOX 2 [WLLZ09] 3 [WLLZ09] 3 [Ours, § 4] 4 [Ours, § 5]

1.2 Organization of the Paper
This paper is organized as follows. Section 2 describes preliminaries, definitions, and
Simon’s algorithm. Section 3 gives an overview of the RstOE technique. Section 4 presents
our quantum CPA distinguisher against the 3-round FOX construction FOX3 that shows
that the 3-round FOX construction FOX3 is not a PRP. Section 5 presents our quantum
CCA distinguisher against the 4-round FOX construction FOX4 that shows that the 4-round
FOX construction FOX4 is not a strong PRP. Section 6 provides the quantum security
proof of FOX4 to be a PRP against qCPAs. Finally, Section 7 concludes our work.

4 Quantum Security of FOX Construction

2 Preliminaries
Throughout this work, we assume that all algorithms (or adversaries) are quantum
algorithms and are allowed to make quantum superposed queries to various oracles. We
assume that readers are familiar with basics of quantum computation and finite dimensional
linear algebra (see textbooks such as [NC11] for an introduction).

2.1 Basic Notations
For strings x, y ∈ {0, 1}n, we denote their concatenation as x||y. The length of the string
x is denoted by |x|. For any n-bit string x, we denote the left-half n/4-bits of the left-half
n/2-bits of x by xLL. In the same way, the right-half n/4-bits of the left-half n/2-bits of x
is denoted by xLR. We similarly define xRL and xRR as well. For any finite sets X and Y ,
let Func(X,Y) denote the set of all functions from X to Y . Let Perm(X) denote the set
of all permutations from X onto itself. For a function F ∈ Func(X,Y), we denote the left
and right halves of F by FL and FR, respectively. For a finite set X , we write X $←− X
for sampling an element uniformly from X and assigning the result to X. We denote a
database by D that consists of input-output pairs for some function f . For an input x and
output α := α1||α2 for D, we denote DL(x) := α1 and DR(x) := α2 as the left and right
halves of D’s output, respectively.

2.2 Quantum Computation
We use the standard quantum circuit model of quantum computation. Complexity of
quantum algorithms is measured by the number of queries they make and the number
of gates required to implement the algorithms. We assume that quantum circuits are
composed of quantum gates that are chosen from a fixed universal gate set (i.e., Clifford+T
gates). We denote Hadamard operator by H, and identity operator by In. In addition, for
a vector ϕ and a positive integer m, we sometimes use the same notation |ϕ⟩ to denote
the |ϕ⟩ ⊗ |0m⟩ or |0m⟩ ⊗ |ϕ⟩ for simplicity, when it will cause no confusion. Let ∥ · ∥ and
∥ · ∥tr denote the norm of vector and trace norm of matrix, respectively. td(·, ·) denotes
the trace distance. For Hermitian operators ρ, σ on a Hilbert space H, the trace distance
td(ρ, σ) := 1

2∥ρ− σ∥tr holds. For a mixed state ρ of a joint quantum system HA ⊗HB , let
trB(ρ) (resp. trA(ρ)) denote the partial trace of ρ over HB (resp. HA).

2.3 Quantum Algorithms and Quantum Oracles
Following previous works (e.g., see [BDF+11]), we model an (oracle-aided) quantum
algorithm A that makes at most q quantum queries to a single oracle as a sequence of
unitary operators (U0, U1, . . . , Uq), where Ui corresponds to A’s offline computation after
the i-th oracle query for i ≥ 1, and U0 corresponds to A’s initial computation. In addition,
the quantum state space of A is a tensor product Hquery ⊗Hanswer ⊗Hwork, where Hquery,
Hanswer, and Hwork correspond to the register to make queries to the oracle, the register to
receive answers from the oracle, and the register for A’s offline computations, respectively.
After the application of the final unitary operator Uq, A’s entire state is measured, and
the measurement result (a classical bit string) is returned as the output. When A does not
take any initial input, we assume that A’s initial state is set to be |0s⟩ for some positive
integer s. When A takes a classical input x ∈ {0, 1}m, we assume that A’s initial state is
set to be |x⟩ by convention.

A quantum oracle O is modeled as a sequence of unitary operator (O1, . . . , Oq). O may
have some randomness, and each Oi may be chosen randomly according to a distribution
at the beginning of each game. O can maintain its own state. If O has s′-qubit quantum
states, then joint quantum states of A and O are (s + s′)-qubit quantum states. We

Amit Kumar Chauhan and Somitra Kumar Sanadhya 5

denote O’s private state space as Hstate. When A makes the i-th query, the unitary
operator Oi acts on Hquery ⊗ Hanswer ⊗ Hstate. We assume that the initial state of A
is set to |x⟩ when A runs relative to the quantum oracle O on input x, and |init⟩ be
the initial state of the oracle’s private space Hstate. Then the initial whole quantum
state is expressed as |x⟩ ⊗ |init⟩. The whole quantum state just before the i-th query
is Ui−1Oi−1Ui−2Oi−2 · · ·O1U0 |x⟩ ⊗ |init⟩, and the whole quantum state just before the
final measurement UqOqUq−1Oq−1 · · ·O1U0 |x⟩ ⊗ |init⟩. We denote the event that A runs
relative to the oracle O and returns an output z by z ← AO(x).

Example of an oracle. Let F be a family of functions from {0, 1}m to {0, 1}n. Suppose
that a quantum algorithm A runs relative to a quantum oracle OF that first chooses
f randomly from F (according to a distribution on F) and gives A a quantum oracle
access to f . Then Hquery and Hanswer are defined as m-qubit space and n-qubit space,
respectively. OF has no quantum states, and each Oi is the unitary operator defined
by Oi : |x⟩ |y⟩ 7→ |x⟩ |y ⊕ f(x)⟩. When f is chosen uniformly at random, then it is the
quantum oracle of a random function.

2.4 Security Definitions
Quantum distinguishing advantages. Let A be a quantum algorithm that makes at most
q queries and outputs 0 or 1, and let O1 and O2 be some oracles. We define the quantum
distinguishing advantage of A by

Advdist
O1,O2

(A) :=
∣∣∣∣Pr
O1

[AO1()→ 1]− Pr
O2

[AO2()→ 1]
∣∣∣∣ .

When we are interested only in the number of queries and do not consider other
complexities such as the number of gates (i.e., we focus on information theoretic adversaries),
we use the notation

Advdist
O1,O2

(q) := max
A

{
Advdist

O1,O2
(A)
}
,

where the maximum is taken over all quantum algorithms that make at most q quantum
queries.

Quantum PRF advantages. Let RF denote the quantum oracle of random functions, i.e.,
the oracle such that a function f ∈ Func({0, 1}m, {0, 1}n) is chosen uniformly at random,
and adversaries are given oracle access to f .

Let F denote the quantum oracle for keyed functions, i.e. the oracle such that a
function Fk ∈ {{0, 1}m → {0, 1}n} is chosen for a random k ∈ K and adversaries are given
oracle access to it. In addition, let A be an algorithm with query access to the oracles RF
or F . Then we define the quantum pseudorandom function (qPRF) advantage against the
keyed function family Fk by

AdvqPRF
F (A) := Advdist

F,RF(A).

Similarly, we define AdvqPRF
F (q) by

AdvqPRF
F (q) := max

A

{
AdvqPRF

F (A)
}
,

where the maximum is taken over all quantum algorithms A that makes at most q queries.

6 Quantum Security of FOX Construction

Quantum PRP advantages. Let RP denote the quantum oracle of random permutations,
i.e., the oracle such that a permutation P ∈ Perm({0, 1}n) is chosen uniformly at random,
and adversaries are given oracle access to P .

Let P denote the quantum oracle for keyed permutations, i.e. the oracle such that a
permutation Pk ∈ Perm({0, 1}n) is chosen for a random k ∈ K and adversaries are given
oracle access to it. In addition, let A be an algorithm with query access to the oracles RP
or P . Then we define the quantum pseudorandom permutation (qPRP) advantage against
the keyed permutation family Pk by

AdvqPRP
P (A) := Advdist

P,RP(A).

Similarly, we define AdvqPRP
P (q) by

AdvqPRP
P (q) := max

A

{
AdvqPRP

P (A)
}
,

where the maximum is taken over all quantum algorithms A that make at most q queries.

Security against efficient adversaries. An algorithm A is called efficient if it can be
realized as a quantum circuit that has a polynomial number of quantum gates in the
security parameter n. A set of functions F (resp., a set of permutations P) is a quantumly
secure PRF (resp., a quantumly secure PRP) if the following properties are satisfied:

1. Uniform sampling and evaluation of a randomly chosen function from F (resp.,
permutation from P) can be performed by an efficient algorithm.

2. AdvqPRF
F (A) (resp., AdvqPRP

P (A)) is negligible for any efficient algorithm A.

2.5 Simon’s Algorithm
The period-finding problem is hard classically, but quantum mechanically, it can be solved
in polynomial time.

Problem 1 (Simon’s problem). Let s ∈ {0, 1}n\{0}n and h : {0, 1}n → {0, 1}n be a
function that satisfies the following two conditions: (1) h(x) = h(x⊕ s) ∀ x ∈ {0, 1}n, and
(2) if h(x) = h(x′), then either x′ = x or x′ = x⊕ s. Given an oracle access to f , find s.

The first condition is equivalent to function h being periodic, with period s ̸= 0n.
Therefore, we call the above problem (black-box) period finding problem. Solving this
problem is hard classically, but in quantum domain, Simon’s algorithm [Sim97] can solve
the above 1 with O(n) queries, using O(n) qubits.

Next, we explain how Simon’s algorithm works. We assume that we have access to the
quantum oracle Uh, which is defined as Uh |x⟩ |z⟩ = |x⟩ |z ⊕ h(x)⟩. For an n-qubit state
|x⟩, Hadamard transformation H⊗n is defined as H⊗n |x⟩ = 1√

2n

∑
y∈{0,1}n(−1)x.y |y⟩.

Simon proposed a circuit Sh that computes a vector that is orthogonal to s for a periodic
function h, which is defined as Sh = (H⊗n ⊗ In) · Uh · (H⊗n ⊗ In) and works as follows.

Sh |0n⟩ |0n⟩ = (H⊗n ⊗ In) · Uh · (H⊗n ⊗ In) |0n⟩ |0n⟩

= (H⊗n ⊗ In) · Uh
1√
2n

∑
x

|x⟩ |0n⟩

= (H⊗n 1√
2n

∑
x

|x⟩ |h(x)⟩

= 1
2n

∑
x,y

(−1)x.y |y⟩ |y ⊕ h(x)⟩ (1)

Amit Kumar Chauhan and Somitra Kumar Sanadhya 7

If h satisfies h(x) = h(x′) ⇐⇒ x′ = x⊕ s, then equation (Equation 1) can be rearranged
as follows.

1
2n

∑
x∈V,y

((−1)x.y + (−1)(x⊕s).y) |y⟩ |y ⊕ h(x)⟩ ,

where V is a linear subspace on {0, 1}n of dimension (n−1) that partitions {0, 1}n into cosets
V and V + s. The vector y such that y.s ≡ 1 (mod 2) satisfies ((−1)x.y + (−1)(x⊕s).y) = 0.
Therefore, the vector y that we obtain by measuring Sh |0n⟩ |0n⟩ satisfies y.s ≡ 0 (mod 2).
By repeating this measurement for O(n) times, we obtain (n − 1) linearly independent
vectors that are all orthogonal to s with a high probability. Then we can recover s by
solving the system of linear equations with O(n3) classical steps.

One can note that the function h derived from a symmetric-key scheme usually does
not satisfy the second condition in Problem 1. However, Kaplan et al. [KLLN16a] showed
that Simon’s algorithm still usually works even if the second condition is relaxed to the
following variant: (2’) Pr

x
$←−{0,1}n

[h(x⊕s′) = h(x)] ≤ 1/2 holds for any s̃ ∈ {0, 1}n\{0n, s}.
Intuitively, this condition says that there does not exist any s̃ ̸= 0n (other than s) such
that “h is almost periodic on s̃.”

2.6 Quantum Security Tools
We recall quantum version of PRP-PRF switching lemma, and how to compute a linear
function quantumly.

Proposition 1 (Quantum PRP-PRF switching lemma, Theorem 2 in [Zha15]). For any
quantum adversary A that makes at most q quantum queries to a random permutation
over {0, 1}n, AdvqPRF

RP (A) ≤ O(q3/2n) holds.

Let FamP({0, 1}n/2) be the set of functions F : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2

such that F (x, ·) is a permutation for each x. If P is chosen uniformly at random from
FamP({0, 1}n/2), we say that P is a family of random permutations, or shortly FRP. The
following proposition shows that it is hard to distinguish FRP from a random function RF.

Proposition 2 (Proposition 5 in [HI19]). For any quantum adversary A that makes at
most q quantum queries, Advdist

FRP,RF(q) ≤ O(
√
q6/2n/2) holds.

Given an input x and access to the oracle Of for a linear function f , the output f(x)
can be computed using a single quantum query. However, Hosoyamada and Sasaki [HS18]
have shown that it is possible to compute the truncation of f(x) on some bits using only
one quantum query to Of . Bhaumik et al. [BBC+21] extend this result to compute any
linear function, not just truncation, using only one quantum query.

Proposition 3 (Lemma 2 in [BBC+21]). Let f : {0, 1}n → {0, 1}m be a function, and
Of : |x⟩ |y⟩ 7→ |x⟩ |y ⊕ f(x)⟩. Let g : {0, 1}m → {0, 1}ℓ be an F2-linear function. Then it
is possible to construct the oracle Og◦f : |x⟩ |y⟩ 7→ |x⟩ |y ⊕ (g ◦ f)(x)⟩ using a single query
to Of .

3 Overview of Recording Standard Oracle with Errors
Next, we provide an overview of the recording standard oracle with errors [HI19], which is
an alternative formalization of Zhandry’s compressed oracle technique [Zha19]. It enables
us to record transcripts of queries made to random functions.

8 Quantum Security of FOX Construction

3.1 Standard Oracle.
A random function f is chosen uniformly at random from Func({0, 1}m, {0, 1}n). Quantum
oracle access to the function f can be realized by the unitary operator Of : |x⟩ |y⟩ 7→
|x⟩ |y ⊕ f(x)⟩. Below, we describe an equivalent model for quantum oracle of a random
function, which we call the standard oracle (StO).

The function f : {0, 1}m → {0, 1}n can be represented as its truth table: a vector of size
2m where each component is an n-bit string. That is, it can be encoded into an n · 2m-bit
string as f(0)||f(1)|| · · · ||f(2m − 1). However, we suppose that f : {0, 1}m → {0, 1}n

can be encoded into an (n+ 1) · 2m-bit string as (0||f(0))||(0||f(1))|| · · · ||(0||f(2m − 1)),
and f is identified with this bit string1. Let StO be the unitary operator that acts on
(n+m+ (n+ 1)2m)-qubit states, and is defined as

StO : |x⟩ |y⟩ ⊗ |S⟩ 7→ |x⟩ |y ⊕ sx⟩ ⊗ |S⟩ , (2)

where x ∈ {0, 1}m, y ∈ {0, 1}n, and S = (b0||s0)||(b1||s1)|| · · · ||(b2m−1||s2m−1) with bi ∈
{0, 1} and si ∈ {0, 1}n for each i ∈ {0, 1}m. When the operator StO does not act on the
register bi for each i, we have StO : |x⟩ |y⟩ ⊗ |f⟩ 7→ |x⟩ |y ⊕ f(x)⟩ ⊗ |f⟩ for each function f .

Thus, the standard oracle is the quantum oracle such that the initial state of the oracle
is
∑

f

√
1/2n·2m |f⟩ and each quantum query is processed with StO. For any quantum

algorithm A and any (classical) possible output z, it holds that

Pr[z ← AStO] = Pr[z ← ARF].

Notations related to RstOE. Let the database D can be encoded as an (n+ 1) · 2m-bit
string (b0||d0)|| · · · ||(b2m−1||d2m−1), where bi ∈ {0, 1}, and di ∈ {0, 1}n for 0 ≤ i ≤ 2m − 1.
We call D a valid database if dx ̸= 0n holds only if bx = 1. We call D an invalid database
if it is not a valid database. Note that, in a valid database, bx can be either 0 or 1 when
dx = 0n. Hence, for a valid database D, we write

D(x) =
{
y when bx = 1 and dx = y,

⊥ when bx = 0.

When two valid databases D ≠ D′ which match on all but one input x, such that
D(x) =⊥ but D′(x) = α (̸=⊥), we write D′ = D ∪ {(x, α)} and D = D′\{(x, α)}.

On the other hand, when a database D′ is invalid, it must have an entry (x, β) such
that bx = 0 while β ̸= 0n. We denote this invalid entry by (x, β)invalid. This allows us to
construct an invalid database D′ from a valid database D (with D(x) = ⊥) differing in
the entry (x, β) as D′ = D ∪ (x, β)invalid.

3.2 Recording Standard Oracle with Errors
Let IH, Utoggle, and CH be unitary operators that act on (n+ 1) · 2m-qubit states defined
as follows:

IH := (I ⊗H⊗n)⊗2m

,

Utoggle := (I1 ⊗ |0n⟩ ⟨0n|+X ⊗ (In − |0n⟩ ⟨0n|))⊗2m

where X |b⟩ = |b⊕ 1⟩ , and
CH := (CHn)⊗2m

where CHn := |0⟩ ⟨0| ⊗ In + |1⟩ ⟨1| ⊗H⊗n.

Let Uenc := CH · Utoggle · IH and Udec := U∗
enc. We define the unitary operator RstOE

that acts on (n+m+ (n+ 1) · 2m)-qubit states by

RstOE := (Im+n ⊗ Uenc) · StO · (Im+n ⊗ Udec). (3)
1Prefixing f(i) with bit “0” appears redundant at this stage. However, it is required so that the notation

for StO is compatible with that for the “Recording Standard Oracle with Errors” introduced later.

Amit Kumar Chauhan and Somitra Kumar Sanadhya 9

Then the recording standard oracle with errors RstOE is defined as follows:

Definition 1 (Recording standard oracle with errors). The recording standard oracle
with errors is the quantum oracle such that its initial state is |0(n+1)2m⟩ and each quantum
query is processed with the unitary operator RstOE.

The following proposition shows the main properties of RstOE.

Proposition 4 (Proposition 1 in [HI19,HI20]). Let x ∈ {0, 1}m and D be a valid database
such that D(x) =⊥. Then the following properties hold.

1. For any y, α ∈ {0, 1}n, there exists a vector |ϵ1⟩ such that

RstOE |x, y⟩ ⊗ |D ∪ (x, α)⟩ = |x, y ⊕ α⟩ ⊗ |D ∪ (x, α)⟩+ |ϵ1⟩ (4)

and || |ϵ1⟩ || ≤ O(
√

1/2n). More precisely,

|ϵ1⟩ = 1√
2n
|x, y ⊕ α⟩

|D⟩ −
 ∑

β∈{0,1}n

1√
2n
|D ∪ (x, β)⟩

 (5)

− 1√
2n

∑
β∈{0,1}n

1√
2n
|x, y ⊕ β⟩

(
|D ∪ (x, β)⟩ − |Dinvalid

β ⟩
)

(6)

+ 1
2n
|x⟩ |0̂n⟩

2
∑

β∈{0,1}n

1√
2n
|D ∪ (x, β)⟩ − |D⟩

 , (7)

where |Dinvalid
β ⟩ is a superposition of invalid databases for each β defined by |Dinvalid

β ⟩ =∑
γ ̸=0n

(−1)β·γ

√
2n
|D ∪ (x, γ)invalid⟩ and |0̂n⟩ := H⊗0n |0n⟩.

2. For any y ∈ {0, 1}n, there exists a vector |ϵ2⟩ such that

RstOE |x, y⟩ ⊗ |D⟩ =
∑

α∈{0,1}n

1√
2n
|x, y ⊕ α⟩ ⊗ |D ∪ (x, α)⟩+ |ϵ2⟩ (8)

and || |ϵ2⟩ || ≤ O(
√

1/2n). More precisely,

|ϵ2⟩ = 1√
2n
|x⟩ |0̂n⟩

|D⟩ − ∑
β∈{0,1}n

1√
2n
|D ∪ (x, β)⟩

 , (9)

where |0̂n⟩ := H⊗0n |0n⟩.

Remark 1. Roughly speaking, Proposition 4 states that RstOE behaves as a quantum version
of the classical lazy sampling (up to a small error) when the state before a query is not
superposed. The first property is analogous to the property of classical lazy sampling that
respects prior queries. That is, if the query x has already been queried and was responded
with α then the response to the current query is α as before, possibly with some errors.
The second property is analogous to the classical one for the case when a query x has not
been posed earlier. In this case, RstOE samples α uniformly at random and responds with
it, possibly with some errors. When the initial state before a query is superposed, the effect
of the error terms |ϵ1⟩ and |ϵ2⟩ becomes non-negligible, and quantum-specific properties
(such that a record is deleted or overwritten from the database) emerge. Therefore, careful
analysis of quantum security proofs with RstOE is required.

10 Quantum Security of FOX Construction

Next, we recall an important Proposition from [HI19, HI20] which shows that when
an adversary’s register to receive responses from the oracle (i.e., the |y⟩ register) is not
superposed, we can ignore the effect that an existing record (x, α) will be deleted from a
database. Nevertheless, we cannot ignore the effect that an existing record (x, α) will be
overwritten with another record (x, γ).

Proposition 5 (Proposition 3 in [HI19,HI20]). Let y be a fixed n-bit string, and

|ψ⟩ =
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y⟩ ⊗ |D ∪ (x, α)⟩ ⊗ |ψx,α,D⟩

+
∑

x∈{0,1}m,D
D(x)=⊥

c′
x,D |x, y⟩ ⊗ |D⟩ ⊗ |ψ′

x,D⟩

be a vector such that ∥ψ∥ ≤ 1, ∥ |ψx,α,D⟩ ∥ ≤ 1, and ∥ |ψ′
x,D⟩ ∥ ≤ 1 for each x, α, and D.

Here |x⟩ and |y⟩ are the registers to send queries to f and receive the responses, respectively,
and |ψx,α,D⟩, |ψ′

x,D⟩ correspond to an additional quantum system which is not affected by
RstOE. In addition, cx,α,D and cx,D are complex numbers such that∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

|cx,α,D|2 = 1 and
∑

x∈{0,1}m,D
D(x)=⊥

|cx,D|2 = 1.

Let Πvalid be the orthogonal projection operator onto the vector space spanned by valid
databases. Then there exists a vector |ϵ⟩ such that ∥ |ϵ⟩ ∥ ≤ 10/

√
2n and

ΠvalidRstOE |ψ⟩ =
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y⟩ ⊗ |D ∪ (x, α)⟩ ⊗ |ψx,α,D⟩

−
∑

x∈{0,1}m,α,γ∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y ⊕ γ⟩ ⊗ |D ∪ (x, γ)⟩ ⊗ |ψx,α,D⟩

+
∑

x∈{0,1}m,α∈{0,1}n,D
D(x)=⊥

cx,α,D |x, y ⊕ α⟩ ⊗ |D ∪ (x, α)⟩ ⊗ |ψ′
x,D⟩ .

+ |ϵ⟩

4 Quantum CPA Distinguisher against 3-Round FOX

We now describe a quantum CPA distinguisher against the 3-round FOX construction
FOX3. To construct the CPA-distinguisher, we first define a function h using FOX3 and
show that it is periodic. We then apply Simon’s algorithm to h to recover its hidden period
in polynomial time.

We write f(ki, ·) as fi. We also express fi as fiL||fiR, where fiL and fiR denote the
left and right halves of fi, respectively. Let FOX3 denote the encryption algorithm of the
3-round FOX construction. Figure 2 illustrates FOX3.

Let f1, f2, f3 ∈ Func({0, 1}n/2, {0, 1}n/2) be the round functions of the FOX
construction. FOX3 takes a plaintext X as input where X = (x0LL, x0LR, x0RL, x0RR) ∈
({0, 1}n/4)4 and outputs a ciphertext Y = (x3LL, x3LR, x3RL, x3RR) ∈ ({0, 1}n/4)4. These

Amit Kumar Chauhan and Somitra Kumar Sanadhya 11

are given by

x3LL = x0LL ⊕ x0LR ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L,

x3LR = x0LL ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R,

x3RL = x0RL ⊕ g1L ⊕ g2L ⊕ g3L,

x3RR = x0RR ⊕ g1R ⊕ g2R ⊕ g3R,

where giL and giR denote the left and right halves of the output gi of the function fi (see
Figure 2). For i = 1, 2, 3, the outputs gi are defined as

g1 = f1
(
(x0LL ⊕ x0RL), (x0LR ⊕ x0RR)

)
,

g2 = f2
(
(x0LR ⊕ x0RL ⊕ g1L ⊕ g1R), (x0LL ⊕ x0LR ⊕ x0RR ⊕ g1L)

)
,

g3 = f3
(
(x0LL ⊕ x0LR ⊕ x0RL ⊕ g1R ⊕ g2L ⊕ g2R), (x0LL ⊕ x0RR ⊕ g1L ⊕ g1R ⊕ g2L)

)
.

Let Π $←− Perm({0, 1}n) be a random permutation that takes a plaintext input
X = (x0LL, x0LR, x0RL, x0RR) ∈ ({0, 1}n/4)4 and outputs a ciphertext Y =
(x3LL, x3LR, x3RL, x3RR) ∈ ({0, 1}n/4)4.

Problem 2. Let O : {0, 1}n → {0, 1}n be either FOX3 or a random permutation Π $←−
Perm({0, 1}n). Given access to the quantum oracle O with unitary operator UO : |X⟩ |Y ⟩ 7→
|X⟩ |Y ⊕O(X)⟩, where X,Y ∈ {0, 1}n, the goal is to distinguish the two cases.

Let us first fix two arbitrary distinct constants α0, α1 ∈ {0, 1}n/4. For b ∈ {0, 1},
and X = (x0LL, x0LR, x0RL, x0RR) ∈ ({0, 1}n/4)4, we construct the function GO which is
defined as:

GO : {0, 1} × {0, 1}n → {0, 1}n/4

(b,X) 7→ x3LR ⊕ x3RL ⊕ (x3RR ⊕ αb),

where X = (x0LL, x0LR, x0RL, x0RR) = (x ⊕ αb, y, x, y ⊕ αb) with x, y ∈ {0, 1}n/4, and
(x3LL, x3LR, x3RL, x3RR) = O(x0LL, x0LR, x0RL, x0RR).

More precisely, the function GO which is illustrated in Figure 2, can be described as

GO(b, x⊕ αb, y, x, y ⊕ αb) = x⊕ f1L (αb, αb)⊕ f2R

((
x⊕ y ⊕ f1L(αb, αb)

⊕ f1R(αb, αb)
)
,
(
x⊕ f1L(αb, αb)

))
. (10)

We now define another function h(b, x, y) using Equation (10), which is as follows:

h(b, x, y) := GO(b, x⊕ αb, y, x, y ⊕ αb). (11)

Note that both GO and h can be evaluated in quantum superpositions. We can realize
the unitary operator Uh : |X⟩ |Y ⟩ 7→ |X⟩ |Y ⊕ h(X)⟩ which makes quantum queries to h.
Hence we can apply Simon’s algorithm [Sim97] to recover the period of the function h
when it is periodic.

Lemma 1. If O = FOX3, the function h satisfies h(b, x, y) = h(b′, x′, y′) if b′ = b ⊕ 1,
x′ = x⊕ f1L(α0α0)⊕ f1L(α1α1) and y′ = y⊕ f1R(α0α0)⊕ f1R(α1α1) for any x, x′, y, y′ ∈
{0, 1}n/4. That is, h has the period (1, s) =

(
1, f1L(α0α0) ⊕ f1L(α1α1), f1R(α0α0) ⊕

f1R(α1α1)
)
.

Proof. Let us consider the intermediate state value after 1-round of FOX given by the
following expression

(x1LL, x1LR, x1RL, x1RR) = ζ(Φ(X)) = ζ
(
Φ(x0LL, x0LR, x0RL, x0RR)

)
. (12)

12 Quantum Security of FOX Construction

f1

σ

f2

σ

f3

σ
x0LL = x⊕ αb

x0RR = y ⊕ αb

x0RL = x

x0LR = y

g1L

g1R

g2L

g2R

g3L

g3R GO(b,X)

αb

x3RR

x3RL

x3LR

x3LL

Φ ζ

Figure 2: The function GO with FOX3, where O = FOX3, and fi ∈
Func({0, 1}n/2, {0, 1}n/2). A detailed view of GO (with all intermediate calculations
after each round) is also provided in Appendix A.

To build a qCPA distinguisher against FOX3, our goal is to find two different inputs
X = (x0LL, x0LR, x0RL, x0RR) and X ′ = (x′

0LL, x
′
0LR, x

′
0RL, x

′
0RR) such that the inputs(

(x1LL ⊕ x1RL), (x1LR ⊕ x1RR)
)

and
(
(x′

1LL ⊕ x′
1LR), (x′

1RL ⊕ x′
1RR)

)
to the function f2

collide. The inputs and outputs of f2 are shown in red-colored oval in Figure 2.
Considering the input X as X = (x0LL, x0LR, x0RL, x0RR) = (x⊕αb, y, x, y⊕αb) with

b ∈ {0, 1}, Equation (12) becomes

(x1LL, x1LR, x1RL, x1RR) = ζ
(
Φ(x⊕ αb, y, x, y ⊕ αb)

)
= ζ
(
x⊕ αb ⊕ f1L(αb, αb), y ⊕ f1R(αb, αb), x⊕ f1L(αb, αb), y ⊕ αb ⊕ f1R(αb, αb)

)
=
(
y ⊕ f1R(αb, αb), x⊕ y ⊕ αb ⊕ f1L(αb, αb)⊕ f1R(αb, αb), x⊕ f1L(αb, αb),

y ⊕ αb ⊕ f1R(αb, αb)
)
. (13)

On the other hand, if we consider the input X ′ as X ′ = (x′
0LL, x

′
0LR, x

′
0RL, x

′
0RR) =(

x ⊕ αb⊕1 ⊕ f1L(α0, α0) ⊕ f1L(α1, α1), y ⊕ f1R(α0, α0) ⊕ f1R(α1, α1), x ⊕ f1L(α0, α0) ⊕
f1L(α1, α1), y ⊕ αb⊕1 ⊕ f1R(α0, α0)⊕ f1R(α1, α1)

)
, then Equation (12) becomes

(x′
1LL, x

′
1LR, x

′
1RL, x

′
1RR) = ζ

(
Φ(X ′)

)
= ζ
(
Φ(x⊕ αb⊕1 ⊕ f1L(α0, α0)⊕ f1L(α1, α1), y ⊕ f1R(α0, α0)⊕ f1R(α1, α1),

x⊕ f1L(α0, α0)⊕ f1L(α1, α1), y ⊕ αb⊕1 ⊕ f1R(α0, α0)⊕ f1R(α1, α1))
)

= ζ
(
(x⊕ αb⊕1 ⊕ f1L(αb, αb), y ⊕ f1R(αb, αb), x⊕ f1L(αb, αb),

y ⊕ αb⊕1 ⊕ f1R(αb, αb)
))

=
(
y ⊕ f1R(αb, αb), x⊕ y ⊕ αb⊕1 ⊕ f1L(αb, αb)⊕ f1R(αb, αb), x⊕ f1L(αb, αb),

y ⊕ αb⊕1 ⊕ f1R(αb, αb)
)
. (14)

From Equations (13) and (14), we can easily see that

x1LL ⊕ x1RL = x′
1LL ⊕ x′

1RL = x⊕ y ⊕ f1L(αb, αb)⊕ f1R(αb, αb), and
x1LR ⊕ x1RR = x′

1LR ⊕ x′
1RR = x⊕ f1L(αb, αb).

This shows that the inputs to second round function f2 collide.
On summing up x3LR, x3RL and x3RR with αb (see Figure 2), the function GO can

be described as given in Equation (10). Using GO, we can show that h, as defined in
Equation (11), has the claimed period since it satisfies

h(b′,x′, y′) = GO(b⊕ 1, x⊕ αb⊕1 ⊕ f1L(α0, α0)⊕ f1L(α1, α1), f1R(α0, α0)⊕ f1R(α1, α1),
x⊕ f1L(α0, α0)⊕ f1L(α1, α1), y ⊕ αb⊕1 ⊕ f1R(α0, α0)⊕ f1R(α1, α1)

)
= x⊕ f1L(αb, αb)⊕ f2R

((
x⊕ y ⊕ f1L(αb, αb)⊕ f1R(αb, αb)

)
,
(
x⊕ f1L(αb, αb)

))

Amit Kumar Chauhan and Somitra Kumar Sanadhya 13

= GO(b, x⊕ αb, y, x, y ⊕ αb)
= h(b, x, y).

This proves the lemma.

Therefore, we can construct a distinguisher against FOX3 by applying Simon’s algorithm
to h, whose period (1, s) can be recovered in polynomial time. As a result, the 3-round
FOX construction is not a PRP against qCPAs.

5 Quantum CCA Distinguisher against the 4-Round FOX
To develop a qCCA distinguisher against the 4-round FOX construction FOX4, we use
a strategy similar to the one described in Section 4. That is, we construct a function
h using FOX4 and show that it is periodic and then recover this period by applying
Simon’s algorithm to h. Recall that the orthomorphism σ for the FOX construction is
defined as σ(x1, x2) = (x2, x1 ⊕ x2) = (y1, y2), and thus its inverse σ′ can be defined as
σ′(y1, y2) = (y1 ⊕ y2, y1) = (x2 ⊕ x1 ⊕ x2, x2) = (x1, x2).

We write f(ki, ·) as fi as in the previous section. Let FOX4 denote the
encryption algorithm of the 4-round FOX construction, and FOX−1

4 denote its decryption
algorithm. Let f1, f2, f3, f4 ∈ Func({0, 1}n/2, {0, 1}n/2) be the round functions
of the FOX construction. The encryption FOX4 : (x0LL, x0LR, x0RL, x0RR) 7→
(x4LL, x4LR, x4RL, x4RR) is defined as

x4LL = x0LL ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R ⊕ g4L, (15)
x4LR = x0LR ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g4R, (16)
x4RL = x0RL ⊕ g1L ⊕ g2L ⊕ g3L ⊕ g4L, (17)
x4RR = x0LL ⊕ g1R ⊕ g2R ⊕ g3R ⊕ g4R, (18)

where giL and giR denote the left and right halves of output gi of the function fi as shown
in Figure 3. For i = 1, 2, 3, 4, functions gi are defined as follows:

g1 = f1
(
(x0LL ⊕ x0RL), (x0LR ⊕ x0RR)

)
, (19)

g2 = f2
(
(x0LR ⊕ x0RL ⊕ g1L ⊕ g1R), (x0LL ⊕ x0LR ⊕ x0RR ⊕ g1L)

)
, (20)

g3 = f3
(
(x0LL ⊕ x0LR ⊕ x0RL ⊕ g1R ⊕ g2L ⊕ g2R), (x0LL ⊕ x0RR ⊕ g1L ⊕ g1R ⊕ g2L)

)
,

(21)
g4 = f4

(
(x0LL ⊕ x0RL ⊕ g2R ⊕ g3L ⊕ g3R), (x0LR ⊕ x0RR ⊕ g2L ⊕ g2R ⊕ g3L)

)
. (22)

The decryption FOX−1
4 : (x4LL, x4LR, x4RL, x4RR) 7→ (x0LL, x0LR, x0RL, x0RR) is defined

by

x0LL = x4LL ⊕ g′
4L ⊕ g′

3R ⊕ g′
2L ⊕ g′

1L, (23)
x0LR = x0LR ⊕ g′

4R ⊕ g′
3L ⊕ g′

3R ⊕ g′
2L ⊕ g′

1R, (24)
x0RL = x0RL ⊕ g′

4L ⊕ g′
3L ⊕ g′

2L ⊕ g′
1L, (25)

x0RR = x0RR ⊕ g′
4R ⊕ g′

3R ⊕ g′
2R ⊕ g′

1R, (26)

where g′
iL and g′

iR denote the left and right halves of output g′
i of the function fi during

the decryption process. For i = 4, 3, 2, 1, functions g′
i are defined as follows:

g′
4 = f4

(
(x4LL ⊕ x4RL), (x4LR ⊕ x4RR)

)
, (27)

g′
3 = f3

(
(x4LL ⊕ x4LR ⊕ x4RL ⊕ g′

4R), (x4LL ⊕ x4RR ⊕ g′
4L ⊕ g′

4R)
)
, (28)

g′
2 = f2

(
(x4LR ⊕ x4RL ⊕ g′

4L ⊕ g′
4R ⊕ g′

3R), (x4LL ⊕ x4LR ⊕ x4RR ⊕ g′
4L)
)

(29)

14 Quantum Security of FOX Construction

g′
1 = f1

(
(x4LL ⊕ x4RL ⊕ g′

3L ⊕ g′
3R ⊕ g′

2R), (x4LR ⊕ x4RR ⊕ g′
3L ⊕ g′

2L ⊕ g′
2R)
)
. (30)

Let Π $←− Perm({0, 1}n) be a random permutation that takes input as a
plaintext X = (x0LL, x0LR, x0RL, x0RR) ∈ ({0, 1}n/4)4 and outputs a ciphertext Y =
(x4LL, x4LR, x4RL, x4RR) ∈ ({0, 1}n/4)4.

Problem 3. Let O : {0, 1}n → {0, 1}n be either FOX4 or Π. Given access to the quantum
oracle O and O−1, our goal is to distinguish these two cases.

Suppose that α0, α1 ∈ {0, 1}n/4 be two arbitrary distinct constants. We construct the
function GO as follows:

GO : {0, 1} × {0, 1}n → {0, 1}n/4

(b,X) 7→ x′
0LL ⊕ x′

0LR ⊕ x′
0RL ⊕ x′

0RR,

where (x4LL, x4LR, x4RL, x4RR) = O(x0LL, x0LR, x0RL, x0RR) = O(x⊕αb, y, x, y⊕αb), and
(x′

0LL, x
′
0LR, x

′
0RL, x

′
0RR) = O−1((x4LL⊕α0⊕α1), x4LR, (x4RL⊕α0⊕α1), (x4RR⊕α0⊕α1)

)
.

That is, GO is designed by first encrypting X = (x ⊕ αb, y, x, y ⊕ αb) to obtain the
ciphertext (x4LL, x4LR, x4RL, x4RR), and then decrypting

(
(x4LL⊕α0⊕α1), x4LR, (x4RL⊕

α0 ⊕ α1), (x4RR ⊕ α0 ⊕ α1)
)

to obtain the plaintext (x′
0LL, x

′
0LR, x

′
0RL, x

′
0RR).

If O is FOX4, then by connecting FOX4 and FOX−1
4 , the function GO is illustrated in

Figure 3. Formally, the function GO can be described as

GO(b,X) = g2L(b,X)⊕ g′
2L(b,X)⊕ g3L(b,X)⊕ g′

3L(b,X)⊕ g3R(b,X)⊕ g′
3R(b,X),

(31)

where g2L(b,X) and g2R(b,X) denote the left and right halves of g2(b,X), g3L(b,X), and
likewise for g3, g′

2, and g′
3.

g2(b,X) = f2

((
x⊕ f1L(αb, αb)⊕ f1R(αb, αb)

)
,
(
x⊕ f1L(αbαb)

))
(32)

g3(β,X) = f3

((
αb ⊕ f1R(αb, αb)⊕ g2L ⊕ g2R

)
,(

x⊕ f1L(αb, αb)⊕ f1R(αb, αb)⊕ g2L

))
(33)

g′
3(β,X) = f3

((
αb⊕1 ⊕ f1R(αb, αb)⊕ g2L ⊕ g2R

)
,(

x⊕ f1L(αb, αb)⊕ f1R(αb, αb)⊕ g2L

))
(34)

g′
2(b,X) = f2

((
x⊕ f1L(αb, αb)⊕ f1R(αb, αb)⊕ g3R ⊕ g′

3R

)
,(

x⊕ α0 ⊕ α1 ⊕ f1L(αb, αb)⊕ g3L ⊕ g′
3L ⊕ g3R ⊕ g′

3R

))
. (35)

f1

σ

f2

σ

f3

σ

g1L

g1R
g2L

g2R
g3L

g3R f4

σ

g4L

g4R f4 g4L

g4R f3

σ′
g′
3L

g′
3R f2

σ′
g′
2L

g′
2R f1 g′

1L

g′
1R GO

α0 ⊕ α1

α0 ⊕ α1

α0 ⊕ α1

σ′σ′
x0LL

x0LR

x0RL

x0RR

x′
0LL

x′
0RR

x′
0LR

x′
0RL

Figure 3: The function GO with O = FOX4, O−1 = Inverse-FOX4, and fi ∈
Func({0, 1}n/2, {0, 1}n/2). A detailed view of GO with all intermediate calculations is
also provided in Appendix B.

We now design a function h based on GO defined by Equation (31) as follows:

h(b, x, y) := GO(b,X) = GO(b, x⊕ αb, y, x, y ⊕ αb). (36)

Amit Kumar Chauhan and Somitra Kumar Sanadhya 15

Lemma 2. If O = FOX4, the function h satisfies the following

h(b, x, y) = h(b⊕ 1, x⊕ f1L(α0α0)⊕ f1L(α1α1), y ⊕ f1R(α0α0)⊕ f1R(α1α1)).

That is, h has the period (1, s) =
(
1, f1L(α0α0)⊕ f1L(α1α1), f1R(α0α0)⊕ f1R(α1α1)

)
.

Proof. Assume that X = (x ⊕ αb, y, x, y ⊕ αb). Now consider the function g2(b,X) as
defined in (32):

g2(b,X) = f2

((
x⊕ f1L(αb, αb)⊕ f1R(αb, αb)

)
,
(
x⊕ f1L(αb, αb)

))
.

It can be easily observed that the above expression is similar to the one given in
Equation (10), and we have already shown in Lemma 1 that the following holds

g2
(
(b,X)⊕ (1, t)

)
= g2(b,X) (37)

for some value of t given by

t =
(
α0 ⊕ α1 ⊕ f1L(α0, α0)⊕ f1L(α1, α1), f1R(α0, α0)⊕ f1R(α1, α1),

f1L(α0, α0)⊕ f1L(α1, α1), α0 ⊕ α1 ⊕ f1R(α0, α0)⊕ f1R(α1, α1)
)
. (38)

Further, notice that {αb, αb ⊕ α0 ⊕ α1} = {α0, α1}. Based on this fact, our next claim
is that the function g3 ⊕ g′

3 also satisfies (g3 ⊕ g′
3)
(
(b,X) ⊕ (1, t)

)
= (g3 ⊕ g′

3)(b,X) for
some t. From Equations (33), (34) and the fact that g2

(
(b,X)⊕ (1, t)

)
= g2(b,X), we can

easily see that the following holds for the value of t given in Equation (38) :

g3
(
(b,X)⊕ (1, t)

)
⊕ g′

3
(
(b,X)⊕ (1, t)

)
= g3(b,X)⊕ g′

3(b,X). (39)

We now claim that g′
2(b,X) also satisfies the condition g′

2
(
(b,X)⊕ (1, t)

)
= g′

2(b,X).
From Equation (35), we can observe that g′

2 depends upon g2, g3 and g′
3. Thus, using

Equations (37) and (39), it also holds that

g′
2
(
(b,X)⊕ (1, t)

)
= g′

2(b,X). (40)

Consequently, the function GO defined in (31) also satisfies GO((b,X) ⊕ (1, t)
)

=
GO(b,X) for the value of t given in Equation (38).

Therefore, we can conclude that the function h as defined in Equation (36), has the
claimed period, since we have

h
(
b⊕ 1,x⊕ f1L(α0, α0)⊕ f1L(α1, α1), y ⊕ f1R(α0, α0)⊕ f1R(α1, α1)

)
= GO(b⊕ 1, x⊕ αb⊕1 ⊕ f1L(α0, α0)⊕ f1L(α1, α1), f1R(α0, α0)⊕ f1R(α1, α1),

x⊕ f1L(α0, α0)⊕ f1L(α1, α1), y ⊕ αb⊕1 ⊕ f1R(α0, α0)⊕ f1R(α1, α1)
)

= GO(b, x⊕ αb, y, x, y ⊕ αb)
= h(b, x, y).

This completes the proof of the lemma.

6 Security Proof: 4-round FOX is a PRP against qCPAs
This section gives a quantum query lower bound for the problem of distinguishing 4-round
FOX construction FOX4 from a random permutation RP, under the assumption that all the
round functions of FOX4 are truly random functions. Specifically, we prove the following
theorem.

16 Quantum Security of FOX Construction

Theorem 1. Let q be a positive integer and A be an adversary that makes at most
q quantum queries. Further, let AdvqPRP

FOX4
(A) denote the advantage of adversary A in

distinguishing FOX4 from a random permutation. Then, the following holds

AdvqPRP
FOX4

(A) ∈ O(
√
q6/2n/2).

Next, we define a collision event at the output of round r of the FOX construction.
If we can find two different values colliding at the input to fr+1 then this will allow an
adversary to distinguish the Lai-Massey scheme from a random permutation.

Definition 2 (XOR-Collision). Assume the output of two queries at round r is
(x(r)LL, x(r)LR, x(r)RL, x(r)RR) and (x′

(r)LL, x
′
(r)LR, x

′
(r)RL, x

′
(r)RR), r ≥ 0, we say that

two queries collide at round r if the following two conditions are satisfied:

1. x(r)LL ⊕ x(r)RL = x′
(r)LL ⊕ x

′
(r)RL, and

2. x(r)LR ⊕ x(r)RR = x′
(r)LR ⊕ x

′
(r)RR.

An Overview of Classical Security Proof for FOX3 by Luo et al. [LLH15]. We
briefly discuss a classical proof for the security of FOX3 against chosen plaintext
attacks. Let bad2 be the event that an adversary makes two distinct plaintext queries
(x0LL, x0LR, x0RL, x0RR) ̸= (x′

0LL, x
′
0LR, x

′
0RL, x

′
0RR) to the real oracle FOX3 such that the

inputs (x1LL ⊕ x1RL, x1LR ⊕ x1RR) and (x′
1LL ⊕ x′

1RL, x
′
1LR ⊕ x′

1RR) to the second round
function f2 are equal, i.e., inputs to f2 collide. In addition, let bad3 be the event that
inputs to f3 collide. Define bad := bad2 ∧ bad3. If bad2 (resp. bad3) does not occur then
FOX3’s outputs cannot be distinguished from truly random strings. Thus, unless the event
bad occurs, adversaries cannot distinguish FOX3 from random functions.

If the number of queries made by an adversary A is at most q, we can show that the
probability for the bad event to occur is O(q2/2n/2). Thus we can deduce that FOX3 is
indistinguishable from a random function up to O(2n/4) queries.

Observation: Why does the classical proof technique not extend to the quantum
setting? It is interesting to observe that quantum adversaries can distinguish FOX3 from
random permutations even though FOX3 is proven to be indistinguishable from a random
permutation in the classical setting.

As described in Section 4, we can efficiently find the period (1, s) =
(
1,
(
α0 ⊕ α1 ⊕

f1L(α0, α0)⊕ f1L(α1, α1), f1R(α0, α0)⊕ f1R(α1, α1), f1L(α0, α0)⊕ f1L(α1, α1), α0 ⊕ α1 ⊕
f1R(α0, α0)⊕ f1R(α1, α1)

))
given quantum access to the oracle FOX3 with O(n) quantum

queries. Once the period is known, it is easy to create a bad2 event (collision on the input
of f2) in two queries as follows.

Take x ∈ {0, 1}n/4 arbitrarily and set (x0LL, x0LR, x0RL, x0RR) = (x ⊕ α0, 0, x, α0)
and (x′

0LL, x
′
0LR, x

′
0RL, x

′
0RR) =

(
x ⊕ α1 ⊕ f1L(α0, α0) ⊕ f1L(α1, α1), f1R(α0, α0) ⊕

f1R(α1, α1), x ⊕ f1L(α0, α0) ⊕ f1L(α1, α1), α1 ⊕ f1R(α0, α0) ⊕ f1R(α1, α1)
)
. Then the

corresponding inputs to f2 become
(
x⊕ f1L(α0α0)⊕ f1R(α0α0)), (x⊕ f1L(α0α0)

)
for both

the plaintexts.
This shows that the classical proof idea for the security of FOX3 does not work in the

quantum setting.

Quantum Security Proof for FOX4: The idea. The essence of the quantum attack on
FOX3 is to find a collision on the inputs to the second round function f2. On the other
hand, finding collisions for inputs to the third round function f3 seems difficult even for
quantum (chosen-plaintext) query adversaries. We later prove that this is indeed the case.

Amit Kumar Chauhan and Somitra Kumar Sanadhya 17

With these observations, our starting point is to modify FOX3 to a new function FOX′
3

such that even quantum adversaries can’t distinguish between these two. The modified
function FOX′

3 (see Figure 4b) uses the first two round functions f1 and f2 exactly the
same as FOX3. The third state update for FOX′

3 is modified as follows.

(x3LL, x3LR, x3RL, x3RR) :=
(
x2LR ⊕ FR(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR),
x2LL ⊕ x2LR ⊕ FL(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR)

⊕ FR(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR),
FL(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR),
FR(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR)

)
,

where F : {0, 1}n/4 × {0, 1}n/4 × {0, 1}n/4 × {0, 1}n/4 → {0, 1}n/2 is a random function.
We show that it is hard to distinguish FOX′

3 from FOX3. The idea behind the
modification of FOX3 to FOX′

3 is to avoid one of the two colliding conditions mentioned
in Definition 2. We show this by using the “recording standard oracle with errors” proof
technique. We define “bad” databases as the ones that contains “collisions at inputs to the
third round function”. Then we show that the probability that a bad database is measured
is negligible. We also show that the adversary cannot distinguish FOX′

3 from FOX3 when
the database is not bad.

f1

σ

f2

σ

f3

σ

(a) FOX3

f1

σ

f2

σ

F

σ

(b) FOX′
3

F1

σ

F2

σ

(c) FOX′
2

Figure 4: The modified versions of FOX3 and FOX2.

Next, let FOX′
2 denotes a modified version of the 2-round FOX construction (see

Figure 4c) such that the first state update is modified as follows

(x1LL, x1LR, x1RL, x1RR) :=
(
x0LR ⊕ F1R(x0LL ⊕ x0RL, x0LR ⊕ x0RR, x0RL, x0RR),
x0LL ⊕ x0LR ⊕ F1L(x0LL ⊕ x0RL, x0LR ⊕ x0RR, x0RL, x0RR)

⊕ F1R(x0LL ⊕ x0RL, x0LR ⊕ x0RR, x0RL, x0RR),
F1L(x0LL ⊕ x0RL, x0LR ⊕ x0RR, x0RL, x0RR),
F1R(x0LL ⊕ x0RL, x0LR ⊕ x0RR, x0RL, x0RR)

)
,

where F1 : {0, 1}n/4 × {0, 1}n/4 × {0, 1}n/4 × {0, 1}n/4 → {0, 1}n/2 is a random function.

18 Quantum Security of FOX Construction

Furthermore, the second state update is modified as

(x2LL, x2LR, x2RL, x2RR) :=
(
x1LR ⊕ F2R(x1LL ⊕ x1RL, x1LR ⊕ x1RR, x1RL, x1RR),
x1LL ⊕ x1LR ⊕ F2L(x1LL ⊕ x1RL, x1LR ⊕ x1RR, x1RL, x1RR)

⊕ F2R(x1LL ⊕ x1RL, x1LR ⊕ x1RR, x1RL, x1RR),
F2L(x1LL ⊕ x1RL, x1LR ⊕ x1RR, x1RL, x1RR),
F2R(x1LL ⊕ x1RL, x1LR ⊕ x1RR, x1RL, x1RR)

)
,

where F2 : {0, 1}n/4 × {0, 1}n/4 × {0, 1}n/4 × {0, 1}n/4 → {0, 1}n/2 is a random function.
Then, we intuitively see that FOX′

2 is hard to distinguish from a random function RF from
{0, 1}n to {0, 1}n/2.

Our next goal is to show the two properties mentioned above, i.e.,

1. FOX′
3 is hard to distinguish from FOX3, and

2. FOX′
2 is hard to distinguish from RF.

Once these two properties are proven, the proof of Theorem 1 follows in a straightforward
manner. To show the first property, we use the recording standard oracle with errors
technique. For the second property, we can show it by using some previous results.

6.1 Hardness of Distinguishing FOX′
3 from FOX3

Proposition 6. Let A be an adversary that makes at most q quantum queries. Then,
Advdist

FOX′
3,FOX3

(A) ≤ O(
√
q3/2n/2).

First, we discuss the behavior of the quantum oracles for FOX′
3 and FOX3.

Quantum Oracle for FOX3. Let Ofi
be the quantum oracle for each round function fi.

In addition, let us define the unitary operator OUP.i that computes the state update of the
i-th round by

OUP.i : |x(i−1)LL, x(i−1)LR, x(i−1)RL, x(i−1)RR⟩ |yLL⟩ |yLR⟩ |yRL⟩ |yRR⟩
7→ |x(i−1)LL, x(i−1)LR, x(i−1)RL, x(i−1)RR⟩
|yLL ⊕ x(i−1)LR ⊕ fiR(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)⟩
|yLR ⊕ x(i−1)LL ⊕ x(i−1)LR ⊕ fiR(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)

⊕ fiR(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)⟩
|yRL ⊕ x(i−1)RL ⊕ fiL(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)⟩
|yRR ⊕ x(i−1)RR ⊕ fiR(x(i−1)LL ⊕ x(i−1)RL, x(i−1)LR ⊕ x(i−1)RR)⟩ .

Following Proposition 3, the oracle OUP.i can be implemented by making a single query
to fi. The same is OUP.i is also illustrated in Figure 5.

This allows us to implement quantum oracle for FOX3 by making two queries to OUP.1
and OUP.2, and one query to OUP.3 (see Figure 6).

OUP.1

OUP.2

OUP.3

OUP.2

OUP.1

|y〉

|0〉

|0〉

|x〉

|y ⊕ FOX3(x)〉

|0〉

|0〉

|x〉

Figure 6: Implementation of FOX3.

Amit Kumar Chauhan and Somitra Kumar Sanadhya 19

|yRR〉
|yRL〉
|yLR〉
|yLL〉
|0〉
|0〉

|yLR ⊕ x(i−1)LL ⊕ x(i−1)LR ⊕ fiL ⊕ fiR〉

|yRR ⊕ x(i−1)RR ⊕ fiR〉
|yRL ⊕ x(i−1)RL ⊕ fiL〉

|yLL ⊕ x(i−1)LR ⊕ fiR〉

|x(i−1)RR〉
|x(i−1)RL〉
|x(i−1)LR〉
|x(i−1)LL〉

|0〉
|0〉

in

in

fiR

fiL

in

in

in

in

out

out

out

out

|x(i−1)RR〉
|x(i−1)RL〉
|x(i−1)LR〉
|x(i−1)LL〉

fi fi

Figure 5: Implementation of OUP.i. The function fi can be implemented using RstOE.

Quantum Oracle for FOX′
3. The quantum oracle for FOX′

3 is implemented in the same
way as FOX3, except that the third round state update oracle OUP.3 is replaced with
another oracle O′

UP.3 defined as

O′
UP.3 : |x2LL, x2LR, x2RL, x2RR⟩ |yLL⟩ |yLR⟩ |yRL⟩ |yRR⟩
7→ |x2LL, x2LR, x2RL, x2RR⟩
|yLL ⊕ x2LR ⊕ FR(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2LR, x2RR)⟩
|yLR ⊕ x2LL ⊕ x2LR ⊕ FL(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2LR, x2RR)

⊕ FR(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2LR, x2RR)⟩
|yRL ⊕ FL(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2LR, x2RR)⟩
|yRR ⊕ FL(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2LR, x2RR)⟩ .

Following Proposition 3, we can also implement O′
UP.3 by making one query to OF (the

quantum oracle of F).
In what follows, we consider that the oracles for the functions fi and F are implemented

as the recording standard oracle with errors, and we use D1, D2, D3, and DF to denote
(valid) databases for f1, f2, f3, and F , respectively. In particular, after the i-th query of
an adversary to FOX3, the joint quantum states of the adversary and these functions can
be described as

∑
x,y,z,D1,D2,D3

ax,y,z,D1,D2,D3 |x, y, z⟩ ⊗ |D1⟩ |D2⟩ |D3⟩ for some complex
numbers ax,y,z,D1,D2,D3 such that

∑
x,y,z,D1,D2,D3

|ax,y,z,D1,D2,D3 |2 = 1. Here, x, y, and z
correspond to the adversary’s register to send queries to the oracles, receive answers from
oracles, and perform offline computations, respectively. (If the oracle is FOX′

3, then the
register |D3⟩ corresponding to f3 is replaced with |DF ⟩ corresponding to F .)

Next, we define good and bad databases for FOX3 and FOX′
3. Intuitively, we say that

a tuple (D1, D2, D3) (resp. (D1, D2, DF)) for FOX3 (resp. FOX′
3) is bad if and only if it

contains the information that some inputs to f3 (resp. F) collide. Roughly speaking, we
define good and bad databases in such a way that there exists a one-to-one correspondence
between good databases for FOX3 and those for FOX′

3.

Good and Bad databases for FOX3. We say that a database (D1, D2, D3) for FOX3 is
good if, for each entry ((x2LL ⊕ x2RL, x2LR ⊕ x2RR), γ) ∈ D3 (where γ = (γ1||γ2)), there
exists exactly one pair (((x0LL⊕x0RL, x0LR⊕x0RR), α), ((x1LL⊕x1RL, x1LR⊕x1RR), β)) ∈
D1×D2 (where α = α1||α2 and β = β1||β2) such that x0LL⊕x0LR⊕x0RL⊕α2⊕β1⊕β2 =
x2LL ⊕ x2RL and x0LL ⊕ x0RR ⊕ α1 ⊕ α2 ⊕ β1 = x2LR ⊕ x2RR. We say that (D1, D2, D3)
is bad if it is not good.

Good and Bad Databases for FOX′
3. We say that a valid database DF is without

overlap if each pair of distinct entries ((x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), γ) and
((x′

2LL ⊕ x′
2RL, x

′
2LR ⊕ x′

2RR, x
′
2RL, x

′
2RR), γ′) in DF satisfies x2RL ̸= x′

2RL, x2RR ≠ x2RR,

20 Quantum Security of FOX Construction

and x2LL ⊕ x2RL ̸= x′
2LL ⊕ x′

2RL, x2LR ⊕ x2RR ≠ x′
2LR ⊕ x′

2RR. Further, we say that
(D1, D2, DF) is good if DF is without overlap, and for each entry ((x2LL ⊕ x2RL, x2LR ⊕
x2RR, x2RL, x2RR), γ) ∈ DF , there exists exactly one pair (((x0LL⊕x0RL, x0LR⊕x0RR), α),
((x1LL ⊕ x1RL, x1LR ⊕ x1RR), β)) ∈ D1 ×D2 (where α = α1||α2 and β = β1||β2) such that
x0LL ⊕ x0LR ⊕ x0RL ⊕ α2 ⊕ β1 ⊕ β2 = x2LL ⊕ x2RL and x0LL ⊕ x0RR ⊕ α1 ⊕ α2 ⊕ β1 =
x2LR ⊕ x2RR. We say that (D1, D2, DF) is bad if it is not good.

Compatibility of DF with D3. Let DF be a valid database for F without overlap and
D3 be a valid database for f3. We say that DF is compatible with D3 if the following
conditions are satisfied:

1. If ((x2LL⊕x2RL, x2LR⊕x2RR, x2RL, x2RR), γ) ∈ DF with γ = γ1||γ2, then ((x2LL⊕
x2RL, x2RL ⊕ x2RR), (x2RL ⊕ γ1, x2RR ⊕ γ2)) ∈ D3.

2. If ((x2LL ⊕ x2RL, x2RL ⊕ x2RR), γ) ∈ D3 with γ = γ1||γ2, then there exists a
unique pair (x2RL, x2RR) such that ((x2LL⊕x2RL, x2LR⊕x2RR, x2RL, x2RR), (x2RL⊕
γ1, x2RR ⊕ γ2)) ∈ DF .

For each valid DF without overlap, there exists a unique valid database compatible
with f3, which we denote by [DF]3.

Next, we present the following lemma which shows that the behavior of O′
UP.3 for

DF without overlap is the same as that of OUP.3 for [DF]3, i.e., there is a one-to-one
correspondence between good databases for FOX3 and FOX′

3.

Lemma 3. Let DF and D′
F be valid databases for f3 and F without overlap.

Then, for arbitrary x2LL, x2LR, x2RL, x2RR, x
′
2LL, x

′
2LR, x

′
2RL, x

′
2RR ∈ {0, 1}n/4, and

yLL, yLR, yRL, yRR, , y
′
LL, y

′
LR, y

′
RL, y

′
RR ∈ {0, 1}n/4, the following holds:

⟨x′
2LL,x

′
2LR, x

′
2RL, x

′
2RR, x

′
2LL ⊕ x′

2RL, x
′
2LR ⊕ x′

2RR, y
′
LL, y

′
LR, y

′
RL, y

′
RR|

⊗ ⟨D′
F |O′

UP.3|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR,

yLL, yLR, yRL, yRR⟩ ⊗ |DF ⟩
= ⟨x′

2LL, x
′
2LR, x

′
2RL, x

′
2RR, x

′
2LL ⊕ x′

2RL, x
′
2LR ⊕ x′

2RR, y
′
LL, y

′
LR, y

′
RL, y

′
RR|

⊗ ⟨[D′
F]3|OUP.3|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR,

yLL, yLR, yRL, yRR ⊗ |[DF]3⟩ . (41)

Proof. It suffices to consider the case that x2LL = x′
2LL, x2LR = x′

2LR, x2RL = x′
2RL and

x2RR = x′
2RR since the oracle does not affect the input registers. Moreover, the database

O′
UP.3 affects only the entry of (x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR) in DF when

it acts on |x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2LR, x2RL ⊕ x2RR, yLL, yLR, yRL, yRR⟩⊗ |DF ⟩.
Therefore, it is sufficient to show that the claim for the following two cases:

1. DF has only a single entry of the form ((x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), γ),

2. DF has no entry (i.e., DF = ϕ).

In the case (ii), [DF]3 is also empty and Equation (41) follows from Equations (8) and (9)
in Proposition 4. In the case (i), [DF]3 has only a single entry, and Equation (41) follows
from Equations (4)-(7) in Proposition 4.

We show the claim for the first case where DF = {(x2LL ⊕ x2RL, x2LR ⊕
x2RR, x2RL, x2RR), α}. Let α := α1||α2, γ := γ1||γ2 and δ := δ1||δ2. By using the
first property of Proposition 4, we have

O′
UP.3 |x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR, yLL, yLR, yRL, yRR⟩ ⊗ |DF ⟩

= |x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR, yLL ⊕ x2LR ⊕ α2,

Amit Kumar Chauhan and Somitra Kumar Sanadhya 21

yLR ⊕ x2LL ⊕ x2LR ⊕ α1 ⊕ α2, yRL ⊕ α1, yRR ⊕ α2⟩
⊗ |(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), α⟩

+ 1√
2n/2
|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR, yLL ⊕ x2LR

⊕ α2, yLR ⊕ x2LL ⊕ x2LR ⊕ α1 ⊕ α2, yRL ⊕ α1, yRR ⊕ α2⟩(
|ϕ⟩ −

(∑
γ

1√
2n/2

|(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), γ⟩
))

− 1√
2n/2

∑
γ

1√
2n/2
|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR,

yLL ⊕ x2LR ⊕ γ2, yLR ⊕ x2LL ⊕ x2LR ⊕ γ1 ⊕ γ2, yRL ⊕ γ1, yRR ⊕ γ2⟩
⊗ |(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), γ⟩

+ 1√
2n/2

|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR⟩ |0̃n⟩(
2
∑

δ

1√
2n/2

|(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), δ⟩ − |ϕ⟩
)

+ |invalid⟩ ,

where ϕ is empty database and |invalid⟩ is a vector containing invalid databases.
In addition, we have that [DF]3 = {(x2LL⊕ x2RL, x2LR⊕ x2RR), (x2RL⊕α1)||(x2RR⊕

α2)}, and hence it follows:

OUP.3 |x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR, yLL, yLR, yRL, yRR⟩ ⊗ |[DF]3⟩
= |x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR, yLL ⊕ x2LR ⊕ α2,

yLR ⊕ x2LL ⊕ x2LR ⊕ α1 ⊕ α2, yRL ⊕ α1, yRR ⊕ α2⟩
⊗ |(x2LL ⊕ x2RL, x2LR ⊕ x2RR), (α1 ⊕ x2RL)||(α2 ⊕ x2RR)⟩

+ 1√
2n/2
|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR, yLL ⊕ x2LR

⊕ α2, yLR ⊕ x2LL ⊕ x2LR ⊕ α1 ⊕ α2, yRL ⊕ α1, yRR ⊕ α2⟩(
|ϕ⟩ −

(∑
γ

1√
2n/2

|(x2LL ⊕ x2RL, x2LR ⊕ x2RR), γ⟩
))

− 1√
2n/2

∑
γ

1√
2n/2
|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR,

yLL ⊕ x2LR ⊕ γ2 ⊕ x2RR, yLR ⊕ x2LL ⊕ x2LR ⊕ γ1 ⊕ x2RL ⊕ γ2 ⊕ x2RR,

yRL ⊕ γ1 ⊕ x2RL, yRR ⊕ γ2 ⊕ x2RR⟩
⊗ |(x2LL ⊕ x2RL, x2LR ⊕ x2RR), γ⟩

+ 1√
2n/2

|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR⟩ |0̃n⟩(
2
∑

δ

1√
2n/2

|(x2LL ⊕ x2RL, x2LR ⊕ x2RR), δ⟩ − |ϕ⟩
)

+ |invalid′⟩
= |x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR, yLL ⊕ x2LR ⊕ α2,

yLR ⊕ x2LL ⊕ x2LR ⊕ α1 ⊕ α2, yRL ⊕ α1, yRR ⊕ α2⟩
⊗ |[(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), (x2RL ⊕ α1)||(x2RR ⊕ α2)]3⟩

22 Quantum Security of FOX Construction

+ 1√
2n/2
|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR, yLL ⊕ x2LR

⊕ α2, yLR ⊕ x2LL ⊕ x2LR ⊕ α1 ⊕ α2, yRL ⊕ α1, yRR ⊕ α2⟩(
|ϕ⟩ −

(∑
γ

1√
2n/2
|[(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), γ)]3⟩

))

− 1√
2n/2

∑
γ

1√
2n/2
|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR,

yLL ⊕ x2LR ⊕ γ2, yLR ⊕ x2LL ⊕ x2LR ⊕ γ1 ⊕ γ2, yRL ⊕ γ1, yRR ⊕ γ2⟩
⊗ |[(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), γ)]3⟩

+ 1√
2n/2

|x2LL, x2LR, x2RL, x2RR, x2LL ⊕ x2RL, x2LR ⊕ x2RR⟩ |0̃n⟩(
2
∑

δ

1√
2n/2
|[(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), δ)]3⟩ − |ϕ⟩

)
+ |invalid′⟩ ,

where |invalid′⟩ is a vector containing invalid databases. Thus, the claim holds for the first
case when DF = {(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR), α}.

Similarly, we can show that the claim holds for the second case when DF is empty by
straightforward calculations using the second property of Proposition 4.

Regular and Irregular States of Oracles. Recall that, in addition to database registers,
the quantum oracle OFOX3 uses ancillary 2n-qubit registers to compute the intermediate
state after the first and second rounds. We say that a state vector |D1⟩ |D2⟩ |D3⟩⊗|x1⟩⊗|x2⟩
for OFOX3 , where |x1⟩ ⊗ |x2⟩ is the ancillary 2n qubits, is irregular if x1 ̸= 0n, x2 ̸= 0n and
at least one of the databases (D1, D2, or D3) is invalid. We say that the state vector is
regular if it is not irregular. Similarly, we define the regular and irregular states for OFOX′

3
.

In addition, we say that a state vector |D1⟩ |D2⟩ |D3⟩ ⊗ |x1⟩ ⊗ |x2⟩ for OFOX3 is preregular
if x2 = 0n and the database is valid. We can define preregular states for OFOX′

3
similarly.

Technical Core to Prove the Indistinguishability of FOX3 and FOX′
3. Let |ψi⟩ and |ψ′

i⟩
be the joint quantum states of the adversary A and the oracle just before making the i-th
query when A runs relative to FOX3 and FOX′

3, respectively. In addition, let |ψq+1⟩ and
|ψ′

q+1⟩ denote the states just before the final measurement. Then, we have

|ψi⟩ =
∑

x,y,z,D1,D2,D3
(D1,D2,D3): valid database

ax,y,z,D1,D2,D3 |x, y, z⟩ ⊗ |D1⟩ |D2⟩ |D3⟩

for some complex numbers ax,y,z,D1,D2,D3 such that∑
x,y,z,D1,D2,D3

(D1,D2,D3): valid database

|ax,y,z,D1,D2,D3 |2 = 1.

Here, x = x0LL||x0LR||x0RL||x0RR, y = yLL||yLR||yRL||yRR, and z correspond to the
adversary’s registers to send queries to the oracles, receive answers from oracles, and perform
offline computations, respectively (x0LL, x0LR, x0RL, x0RR, yLL, yLR, yRL, yRR ∈ {0, 1}n/4).
Note that |D1|, |D2| ≤ 2(j − 1) and |D3| ≤ (j − 1), since each query to the RstOE affects
only the qubits that correspond to a single entry to each database. Similarly, |ψ′

j⟩ can be
decomposed on the computational basis.

Showing the following proposition is the technical core to prove Proposition 6.

Amit Kumar Chauhan and Somitra Kumar Sanadhya 23

Proposition 7. For each 1 ≤ j ≤ q+1, there exist vectors |ψgood
j ⟩, |ψbad

j ⟩, |ψ
′good
j ⟩, |ψ′bad

j ⟩,
and complex numbers a(j)

x,y,z,D1,D2,DF
such that

|ψj⟩ = |ψgood
j ⟩+ |ψbad

j ⟩ , |ψ′
j⟩ = |ψ

′good
j ⟩+ |ψ

′bad
j ⟩ ,

|ψgood
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good

a
(j)
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩ , (42)

|ψ
′good
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good

a
(j)
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, DF ⟩ . (43)

The vector |D1, D2, DF ⟩ in |ψ
′good
j ⟩ (resp., |D1, D2, [DF]3⟩ in |ψgood

j ⟩) has non-zero quantum
amplitude only if |D1| ≤ 2(j − 1), |D2| ≤ 2(j − 1), |DF | ≤ j − 1, and

∥ |ψbad
j ⟩ ∥ ≤ ∥ |ψbad

j−1⟩ ∥+ ϵ
(j−1)
bad , ∥ |ψ

′bad
j ⟩ ∥ ≤ ∥ |ψ

′bad
j−1⟩ ∥+ ϵ

′(j−1)
bad , (44)

where ϵ(j−1)
bad , ϵ

′(j−1)
bad ≤ O

(√
j/2n/2

)
(we set |ψbad

j ⟩ = 0 and |ψ′bad
j ⟩ = 0).

Proof Intuition. We now explain some intuitions behind the proof strategy. When we
define good and bad databases, we choose good databases so that the following conditions
hold (in addition that there exists a one-to-one correspondence between good databases
for FOX3 and FOX′

3).

1. The behavior of FOX3 on a good database (D1, D2, D3) is the same as that of FOX′
3

on the corresponding database (D1, D2, [DF]3). (see Lemma 3)

2. The “probability” (in a quantum sense) that a good database (D1, D2, D3) for FOX3
(resp. (D1, D2, DF) for FOX′

3) changes to a bad database at each query of FOX3
(resp. FOX′

3) is small.

The first condition ensures that the adversary cannot distinguish between FOX3 and FOX′
3

as long as the databases are good, which leads to the existence of vectors |ψgood
j ⟩ and

|ψ
′good
j ⟩ that satisfies (42) and (43) for each j. We can show this using induction on j. Let

Πgood and Πvalid denote the projections onto the space spanned by vectors that correspond
to good and valid databases, respectively. After applying Proposition 4 to OFOX3 , we can
set |ψgood

j+1 ⟩ := Πgood

(
ΠvalidRstOE OFOX3 |ψ

good
j ⟩ − |ϵbad

j ⟩
)

and |ψbad
j+1⟩ := |ψj+1⟩ − |ψgood

j+1 ⟩;

and similarly we can set for |ψ
′good
j+1 ⟩. Therefore, if the error term |ϵbad

j ⟩ is negligible, then
we can easily show the properties given in (42) and (43) hold for j + 1.

The “probability” in the second condition corresponds to the terms
(
ϵ

(j)
bad

)2
and(

ϵ
′(j)
bad

)2
. If we can show that

(
ϵ

(j)
bad

)2
and

(
ϵ

′(j)
bad

)2
are negligible then we can show the

indistinguishability of FOX3 and FOX′
3 using Proposition 4 similar to classical lazy sampling.

On the other hand, the good database changes to bad if and only if a fresh query is made
to f1 or f2, and the corresponding input to f3 collides with some existing record in the
database for f3. Since each database of |ψgood

j ⟩ has at most (j − 1) entries and the outputs
of f1 and f2 are n/2-bits, the input to f3 collides with one of the existing records in D3
with a probability p in O(j/2n/2). In the quantum setting, roughly speaking, the difference
between the norms of the j-th bad vector |ψbad

j ⟩ (resp., |ψ′bad
j ⟩) and the (j − 1)-th bad

vector |ψbad
j−1⟩ (resp., |ψ′bad

j−1⟩) is bounded by √p, which is O(
√
j/2n/2). This corresponds to

the claim that ∥ |ψbad
j ⟩ ∥ ≤ ∥ |ψbad

j−1⟩ ∥+O
(√

j/2n/2
)

. The claim for FOX′
3 can be shown

in a similar way.

24 Quantum Security of FOX Construction

Next, we provide the complete proof of Proposition 7. Note that an existing record
(x, α) in the database D will later be deleted or overwritten with a different record in
the quantum setting, and the effect of such deletion and overwriting is too large to be
ignored. Therefore, we have to perform more careful and quantum-specific analysis by
using Proposition 4 and Proposition 5.

Proof (of Proposition 7). We show the proposition by using mathematical induction
on j. First, recall that the oracles of FOX3 and FOX′

3 are decomposed as OFOX3 =
OUP.1 · OUP.2 · OUP.3 · OUP.2 · OUP.1 and OFOX3 = OUP.1 · OUP.2 · O′

UP.3 · OUP.2 · OUP.1. We
check how the quantum states change when OUP.1, OUP.2, OUP.3 (resp., O′

UP.3), OUP.2, and
OUP.1 act on |ψj⟩ (resp. |ψ′

j⟩) in a sequential order. The claim obviously holds for j = 1
by setting |ψgood

1 ⟩ := |ψ1⟩ and |ψ
′good
1 ⟩ := |ψ′

1⟩. By applying induction, we can show the
claim on |ψj+1⟩ and |ψ′

j+1⟩ holds if the claim on |ψk⟩ and |ψ′
k⟩ holds for k = 1, . . . , j.

Let Πgood and Πbad denote the projections onto the vector space spanned by the vectors
that correspond to good databases and bad databases, respectively. In addition, let Πreg
and Πprereg be the projections onto the spaces spanned by the vectors that correspond to
regular and preregular states, respectively. We emphasize that the recording standard
oracle with errors is used to implement the function f for each oracle OUP.i, 1 ≤ i ≤ 3.

Further, we use shorthand notations in the proofs of lemmas below, by defining x′ :=
(xLL ⊕ xRL, xLR ⊕ xRR), x′

1 := (x1LL ⊕ x1RL, x1LR ⊕ x1RR), x′
2 := (x2LL ⊕ x2RL, x2LR ⊕

x2RR), α := α1||α2 and γ := γ1||γ2. For a database D with entry (x, α = α1||α2),
DL(x) := α1 and DR(x) := α2 denote the left and right halves of D’s output, respectively.

Next, we study how the states |ψj⟩ and |ψ′
j⟩ change when five unitary operators act in

sequential order. First, we show the following lemma.

Lemma 4 (Action of the first OUP.1). Suppose that there exist j and vectors |ψgood
i ⟩,

|ψbad
i ⟩, |ψ

′good
i ⟩ and |ψ′bad

i ⟩ that satisfy Proposition 7 for i = 1, . . . , j. Then, there exists
vectors |ψgood,1

j ⟩, |ψbad,1
j ⟩, |ψ

′good,1
j ⟩ and |ψ

′bad,1
j ⟩ that satisfy the following properties:

1. OUP.1 |ψj⟩ = |ψgood,1
j ⟩+ |ψbad,1

j ⟩, and OUP.1 |ψ′
j⟩ = |ψ

′good,1
j ⟩+ |ψ

′bad,1
j ⟩.

2. There exists complex numbers a(j),1
x,y,z,D1,D2,DF

such that

|ψgood,1
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′)̸=⊥

a
(j),1
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ,

|ψ
′good,1
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′)̸=⊥

a
(j),1
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, DF ⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ .

3. The vector |D1, D2, DF ⟩ in |ψ
′good,1
j ⟩ (resp., |D1, D2, [DF]3⟩ in |ψgood,1

j ⟩) has non-zero
quantum amplitude only if |D1| ≤ 2(j − 1) + 1, |D2| ≤ 2(j − 1), and |DF | ≤ (j − 1).

4. ∥ |ψbad,1
j ⟩ ∥ and ∥ |ψ

′bad,1
j ⟩ ∥ are upper bounded as

∥ |ψbad,1
j ⟩ ∥ ≤ ∥ |ψbad

j ⟩ ∥+O

(√
j

2n/2

)
, ∥ |ψ

′bad,1
j ⟩ ∥ ≤ ∥ |ψ

′bad
j ⟩ ∥+O

(√
j

2n/2

)
,

Amit Kumar Chauhan and Somitra Kumar Sanadhya 25

where x1LL = xLR ⊕D1R(x′), x1LR = xLL ⊕ xLR ⊕D1L(x′) ⊕D1R(x′), x1RL = xRL ⊕
D1L(x′), and x1RR = xRR ⊕D1R(x′) for each summand of |ψgood,1

j ⟩ and |ψ
′good,1
j ⟩.

Proof. Let Πvalid denote the projection onto the space spanned by the vectors that
correspond to valid databases. Further, the response of the first OUP.1 is written into an
auxiliary register that is initially set to be |0n/4, 0n/4, 0n/4, 0n/4⟩.

By applying Proposition 5 to RstOE of f1, the following hold:

ΠvalidOUP.1 |ψgood
j ⟩

=
∑

x,y,z,D1,D2,DF

(D1,D2,DF): good,D1(x′)̸=⊥

a
(j)
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |xLR ⊕D1R(x′), xLL ⊕ xLR ⊕D1L(x′)⊕D1R(x′), xRL ⊕D1L(x′), xRR ⊕D1R(x′)⟩

−
∑

x,y,z,γ,D1,D2,DF

(D1,D2,DF): good,D1(x′)̸=⊥

1
2n/2 a

(j)
x,y,z,D1,D2,DF

|x, y, z⟩

⊗ |D1\(x′, D1(x′)) ∪ (x′, γ), D2, [DF]3⟩
⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2)⟩

+
∑

x,y,z,D1,D2,DF ,α
(D1,D2,DF): good,D1(x′)=⊥

√
1

2n/2 a
(j)
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1 ∪ (x′, α), D2, [DF]3⟩

⊗ |xLR ⊕ α2, xLL ⊕ xLR ⊕ α1 ⊕ α2, xRL ⊕ α1, xRR ⊕ α2⟩
+ |ϵ⟩ , (45)

and

ΠvalidOUP.1 |ψ
′good
j ⟩

=
∑

x,y,z,D1,D2,DF

(D1,D2,DF): good,D1(x′)̸=⊥

a
(j)
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, DF ⟩

⊗ |xLR ⊕D1R(x′), xLL ⊕ xLR ⊕D1L(x′)⊕D1R(x′), xRL ⊕D1L(x′), xRR ⊕D1R(x′)⟩

−
∑

x,y,z,γ,D1,D2,DF

(D1,D2,DF): good,D1(x′)̸=⊥

1
2n/2 a

(j)
x,y,z,D1,D2,DF

|x, y, z⟩

⊗ |D1\(x′, D1(x′)) ∪ (x′, γ), D2, DF ⟩
⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2)⟩

+
∑

x,y,z,D1,D2,DF ,α
(D1,D2,DF): good,D1(x′)=⊥

√
1

2n/2 a
(j)
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1 ∪ (x′, α), D2, DF ⟩

⊗ |xLR ⊕ α2, xLL ⊕ xLR ⊕ α1 ⊕ α2, xRL ⊕ α1, xRR ⊕ α2⟩
+ |ϵ′⟩ . (46)

Now, we can set

|ψgood,1
j ⟩ := Πgood

(
ΠvalidOUP.1 |ψgood

j ⟩ − |ϵ⟩
)
, |ψbad,1

j ⟩ := OUP.1 |ψj⟩ − |ψgood,1
j ⟩

|ψ
′good,1
j ⟩ := Πgood

(
ΠvalidOUP.1 |ψ

′good
j ⟩ − |ϵ′⟩

)
, |ψ

′bad,1
j ⟩ := OUP.1 |ψj⟩ − |ψ

′good,1
j ⟩ .

26 Quantum Security of FOX Construction

Then the first property of the claim holds by definition, and the second and third
properties immediately follow from (45) and (46) and the assumption on |ψj⟩ and |ψ′

j⟩.

Next, on the first term of right-hand side of (46), we have

Πbad
∑

x,y,z,D1,D2,DF

(D1,D2,DF): good,D1(x′)̸=⊥

a
(j),1
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, DF ⟩

⊗ |xLR ⊕D1R(x′), xLL ⊕ xLR ⊕D1L(x′)⊕D1R(x′), xRL ⊕D1L(x′), xRR ⊕D1R(x′)⟩
= 0. (47)

On the second term of right-hand side of (46), we have

Πbad
∑

x,y,z,γ,D1,D2,DF

(D1,D2,DF): good,D1(x′) ̸=⊥

1
2n/2 a

(j)
x,y,z,D1,D2,DF

|x, y, z⟩

⊗ |D1\(x′, D1(x′)) ∪ (x′, γ), D2, DF ⟩
⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2⟩

=
∑

x,y,z,α,γ,D1,D2,DF

(D1∪(x′,α),D2,DF): good,D1(x′)=⊥
(D1∪(x′,γ),D2,DF): bad

1
2n/2 a

(j)
x,y,z,D1∪(x′,α),D2,DF

|x, y, z⟩

⊗ |D1 ∪ (x′, γ), D2, DF ⟩
⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2⟩

=
∑

x,y,z,α,γ,D1,D2,DF

(D1∪(x′,α),D2,DF): good,D1(x′)=⊥
(D1∪(x′,γ),D2,DF): bad
D2(x′

1) ̸=⊥∧[DF]3(x′
2)̸=⊥

1
2n/2 a

(j)
x,y,z,D1∪(x′,α),D2,DF

|x, y, z⟩

⊗ |D1 ∪ (x′, γ), D2, DF ⟩
⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2⟩ (48)

+
∑

x,y,z,α,γ,D1,D2,DF

(D1∪(x′,α),D2,DF): good,D1(x′)=⊥
(D1∪(x′,γ),D2,DF): bad

D2(x′
1)=⊥∨

(
D2(x′

1)̸=⊥∧[DF]3(x′
2)=⊥

)
1

2n/2 a
(j)
x,y,z,D1,D2,DF

|x, y, z⟩

⊗ |D1 ∪ (x′, γ), D2, DF ⟩
⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2⟩, (49)

where x1LL := α2 ⊕ xLR, x1LR := α1 ⊕ α2 ⊕ xLL ⊕ xLR, x1RL := α1 ⊕ xRL, x1RR :=
α2 ⊕ xRR, and x2LL := D2R(x′

1) ⊕ x1LR, x2LR := D2L(x′
1) ⊕ D2R(x′

1) ⊕ x1LL ⊕ x1LR,
x2RL := D2L(x′

1)⊕ x2RL, x2RR := D2R(x′
1)⊕ x1RR when D2(x′

1) ̸=⊥.
Next, we give an upper bound of the norm of the term (48). Note that if a tuple

(x, (D1 ∪ (x′, γ), D2, DF)) satisfies the conditions

(1) D1(x′) =⊥, and (2) (D1 ∪ (x′, γ), D2, DF)) is bad,

the number of α such that

(1) (D1 ∪ (x′, α), D2, DF)) becomes good, (2) D2(x′
1) ̸=⊥, and (3) [DF]3(x′

2) ̸=⊥,

Amit Kumar Chauhan and Somitra Kumar Sanadhya 27

is at most |D2| ≤ 2(j − 1). Hence, we have∥∥∥∥∥ ∑
x,y,z,α,γ,D1,D2,DF

(D1∪(x′,α),D2,DF): good
D1(x′)=⊥

(D1∪(x′,γ),D2,DF): bad
D2(x′

1)̸=⊥∧[DF]3(x′
2) ̸=⊥

1
2n/2 a

(j)
x,y,z,D1∪(x′,α),D2,DF

|x, y, z⟩ ⊗ |D1 ∪ (x′, γ), D2, DF ⟩

⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2⟩

∥∥∥∥∥
2

=
∑

x,y,z,α,γ,D1,D2,DF

D1(x′)=⊥
(D1∪(x′,γ),D2,DF): bad

1
2n
·

∣∣∣∣∣ ∑
α:(D1∪(x′,α),D2,DF) is good

D2(x′
1)̸=⊥∧[DF]3(x′

2) ̸=⊥

a
(j)
x,y,z,D1∪(x′,α),D2,DF

∣∣∣∣∣
2

≤
∑

x,y,z,α,γ,D1,D2,DF

D1(x′)=⊥
(D1∪(x′,γ),D2,DF): bad

1
2n
· 2(j − 1) ·

∑
α:(D1∪(x′,α),D2,DF) is good

D2(x′
1) ̸=⊥∧[DF]3(x′

2)̸=⊥

∣∣∣a(j)
x,y,z,D1∪(x′,α),D2,DF

∣∣∣2

=
∑

x,y,z,α,γ,D1,D2,DF

(D1∪(x′,α),D2,DF): good,D1(x′)=⊥
(D1∪(x′,γ),D2,DF): bad
D2(x′

1) ̸=⊥∧[DF]3(x′
2)̸=⊥

2(j − 1)
2n

≤
∑

γ

2(j − 1)
2n

= 2(j − 1)
2n/2 (50)

holds, where we used the convexity of the function X 7→ X2 for the first inequality.
Next, we give an upper bound of the norm of the term (49). Note that if a tuple

(x, α,D1, D2, DF)) satisfies the conditions

(1) D1(x′) =⊥, (2) (D1 ∪ (x′, α), D2, DF)) is good, and

(3) D2(x′
1) =⊥, or D2(x′

1) ̸=⊥ ∧[DF]3(x′
2) =⊥,

the number of γ such that (D1 ∪ (x′, γ), D2, DF)) becomes bad is at most |D2| ≤ (j − 1).
Thus, we have∥∥∥∥∥ ∑

x,y,z,α,γ,D1,D2,DF

(D1∪(x′,α),D2,DF): good,D1(x′)=⊥
(D1∪(x′,γ),D2,DF): bad

D2(x′
1)=⊥∨

(
D2(x′

1) ̸=⊥∧[DF]3(x′
2)=⊥

)
1

2n/2 a
(j)
x,y,z,D1∪(x′,α),D2,DF

|x, y, z⟩ ⊗ |D1 ∪ (x′, γ), D2, DF ⟩

⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2)⟩
∥∥∥∥∥

2

=
∑

x,y,z,D1,D2,DF

D1(x′)=⊥

∑
γ

(D1∪(x′,γ),D2,DF): bad

∣∣∣∣∣ ∑
α

(D1∪(x′,α),D2,DF): good
D2(x′

1)=⊥∨
(

D2(x′
1) ̸=⊥∧[DF]3(x′

2)=⊥
)

1
2n/2 a

(j)
x,y,z,D1∪(x′,α),D2,DF

|x, y, z⟩

∣∣∣∣∣
2

28 Quantum Security of FOX Construction

≤
∑

x,y,z,D1,D2,DF

D1(x′)=⊥

∑
γ

(D1∪(x′,γ),D2,DF): bad

∑
α

(D1∪(x′,α),D2,DF): good
D2(x′

1)=⊥∨
(

D2(x′
1) ̸=⊥∧[DF]3(x′

2)=⊥
)

∣∣∣a(j)
x,y,z,D1,D2,DF

|x, y, z⟩
∣∣∣2

2n/2

=
∑

x,y,z,D1∪(x′,α),D2,DF

D1(x′)=⊥

∑
α

(D1∪(x′,α),D2,DF): good
D2(x′

1)=⊥∨
(

D2(x′
1) ̸=⊥∧[DF]3(x′

2)=⊥
)

∣∣∣a(j)
x,y,z,D1∪(x′,α),D2,DF

|x, y, z⟩
∣∣∣2 ∑

γ
(D1∪(x′,γ),D2,DF): bad

1
2n/2

≤
∑

x,y,z,D1,D2,DF

D1(x′)=⊥

∑
α

(D1∪(x′,α),D2,DF): good
D2(x′

1)=⊥∨
(

D2(x′
1)̸=⊥∧[DF]3(x′

2)=⊥
)

∣∣∣a(j)
x,y,z,D1∪(x′,α),D2,DF

|x, y, z⟩
∣∣∣2 ∑

γ
(D1∪(x′,γ),D2,DF): bad

(j − 1)
2n/2

≤ (j − 1)
2n/2 , (51)

where we used the convexity of the function X 7→ X2 for the first inequality.
From (48)-(51), we have∥∥∥∥∥Πbad

∑
x,y,z,γ,D1,D2,DF

(D1,D2,DF): good
D1(x′)̸=⊥

1
2n/2 a

(j)
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1\(x′, D1(x′)) ∪ (x′, γ), D2, DF ⟩

⊗ |xLR ⊕ γ2, xLL ⊕ xLR ⊕ γ1 ⊕ γ2, xRL ⊕ γ1, xRR ⊕ γ2⟩

∥∥∥∥∥
≤ O

(√
j

2n/2

)
, (52)

follows.
In addition, on the third term of the right-hand side of (46), we have∥∥∥∥∥Πbad

∑
x,y,z,D1,D2,DF ,α

(D1,D2,DF): good,D1(x′)=⊥

√
1

2n/2 a
(j)
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1 ∪ (x′, α), D2, DF ⟩

⊗ |xLR ⊕ α2, xLL ⊕ xLR ⊕ α1 ⊕ α2, xRL ⊕ α1, xRR ⊕ α2⟩

∥∥∥∥∥
2

=
∑

x,y,z,D1,D2,DF

(D1,D2,DF): good,D1(x′)=⊥

∣∣∣∣∣a(j)
x,y,z,D1,D2,DF

∣∣∣∣∣
2 ∑

α:(D1∪(x′,α),D2,DF) is bad

1
2n/2

=
∑

x,y,z,D1,D2,DF

(D1,D2,DF): good,D1(x′)=⊥

∣∣∣∣∣a(j)
x,y,z,D1,D2,DF

∣∣∣∣∣
2

·O
(

j

2n/2

)

≤ O
(

j

2n/2

)
. (53)

From (47), (52), (53), we have∥∥∥Πbad

(
ΠvalidOUP.1 |ψ

′good
j ⟩ − |ϵ′⟩

)∥∥∥ ≤ O(√ j

2n/2

)
(54)

Amit Kumar Chauhan and Somitra Kumar Sanadhya 29

follows. Since ΠvalidOUP.1 |ψ′
j⟩ = OUP.1 |ψ′

j⟩, we have∥∥∥ |ψ′bad,1
j ⟩

∥∥∥ =
∥∥∥OUP.1 |ψ′

j⟩ − |ψ
′good,1
j ⟩

∥∥∥
=
∥∥∥ΠvalidOUP.1(|ψ

′good
j ⟩+ |ψ

′bad
j ⟩)− |ψ

′good,1
j ⟩

∥∥∥
=
∥∥∥ΠvalidOUP.1 |ψ

′good
j ⟩ − |ψ

′good,1
j ⟩

∥∥∥+
∥∥∥ΠvalidOUP.1 |ψ

′bad
j ⟩

∥∥∥
=
∥∥∥ΠvalidOUP.1 |ψ

′good
j ⟩ − Πgood

(
ΠvalidOUP.1 |ψ

′good
j ⟩ − |ϵ′⟩

)∥∥∥+
∥∥∥ |ψ′bad

j ⟩
∥∥∥

=
∥∥∥Πbad

(
ΠvalidOUP.1 |ψ

′good
j ⟩ − |ϵ′⟩

)∥∥∥+
∥∥∥ |ψ′bad

j ⟩
∥∥∥

≤ O

(√
j

2n/2

)
+
∥∥∥ |ψ′bad

j ⟩
∥∥∥.

Similarly, we can also show that
∥∥ |ψbad,1

j ⟩
∥∥ ≤ O

(√
j

2n/2

)
+
∥∥ |ψbad

j ⟩
∥∥. Therefore, the

fourth property of the lemma also holds.

The following lemma shows how the states OUP.1 |ψj⟩ and OUP.1 |ψ′
j⟩ change when

OUP.2 acts on them.

Lemma 5 (Action of the first OUP.2). Suppose that there exist j and vectors |ψgood
i ⟩,

|ψbad
i ⟩, |ψ

′good
i ⟩ and |ψ′bad

i ⟩ that satisfy Proposition 7 for i = 1, . . . , j. Then, there exists
vectors |ψgood,2

j ⟩, |ψbad,2
j ⟩, |ψ

′good,2
j ⟩ and |ψ

′bad,2
j ⟩ that satisfy the following properties:

1. OUP.2 ·OUP.1 |ψj⟩ = |ψgood,2
j ⟩+ |ψbad,2

j ⟩, and OUP.2 ·OUP.1 |ψ′
j⟩ = |ψ

′good,2
j ⟩+ |ψ

′bad,2
j ⟩.

2. There exists complex numbers a(j),2
x,y,z,D1,D2,DF

such that

|ψgood,2
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′) ̸=⊥,D2(x′

1) ̸=⊥

a
(j),2
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |x2LL, x2LR, x2RL, x2RR⟩ ,

|ψ
′good,2
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′) ̸=⊥,D2(x′

1) ̸=⊥

a
(j),2
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, DF ⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |x2LL, x2LR, x2RL, x2RR⟩ .

3. The vector |D1, D2, DF ⟩ in |ψ
′good,2
j ⟩ (resp., |D1, D2, [DF]3⟩ in |ψgood,2

j ⟩) has non-zero
quantum amplitude only if |D1| ≤ 2(j−1)+1, |D2| ≤ 2(j−1)+1, and |DF | ≤ (j−1).

4. ∥ |ψbad,2
j ⟩ ∥ and ∥ |ψ

′bad,2
j ⟩ ∥ are upper bounded as

∥ |ψbad,2
j ⟩ ∥ ≤ ∥ |ψbad

j ⟩ ∥+O

(√
j

2n/2

)
, ∥ |ψ

′bad,2
j ⟩ ∥ ≤ ∥ |ψ

′bad
j ⟩ ∥+O

(√
j

2n/2

)
,

where x1LL = D1R(x′) ⊕ xLR, x1LR = D1L(x′) ⊕ D1R(x′) ⊕ xLL ⊕ xLR,
x1RL = D1L(x′) ⊕ xRL, x1RR = D1R(x′) ⊕ xRR, x2LL = D2R(x′

1) ⊕ x1LR,
x2LR = D2L(x′

1) ⊕ D2R(x′
1) ⊕ x1LL ⊕ x1LR, x2RL = D2L(x′

1) ⊕ x1RL, and
x2RR = D2R(x′

1)⊕ x1RR for each summand of |ψgood,2
j ⟩ and |ψ

′good,2
j ⟩.

30 Quantum Security of FOX Construction

This lemma can be proved in the same manner as Lemma 4, and hence we skip the details
of the proof.

The next lemma shows how the states changes when OUP.3 and O′
UP.3 act on the states

OUP.2 ·OUP.1 |ψj⟩ and OUP.2 ·OUP.1 |ψ′
j⟩, respectively.

Lemma 6 (Action of OUP.3 and O′
UP.3). Suppose that there exist j and vectors |ψgood

i ⟩,
|ψbad

i ⟩, |ψ
′good
i ⟩ and |ψ′bad

i ⟩ that satisfy Proposition 7 for i = 1, . . . , j. Then, there exists
vectors |ψgood,3

j ⟩, |ψbad,3
j ⟩, |ψ

′good,3
j ⟩ and |ψ

′bad,3
j ⟩ that satisfy following properties:

1. OUP.3 ·OUP.2 ·OUP.1 |ψj⟩ = |ψgood,2
j ⟩+ |ψbad,2

j ⟩, and
O′

UP.3 ·OUP.2 ·OUP.1 |ψ′
j⟩ = |ψ

′good,2
j ⟩+ |ψ

′bad,2
j ⟩.

2. There exists complex numbers a(j),3
x,y,z,D1,D2,DF

such that

|ψgood,3
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′) ̸=⊥,D2(x′

1) ̸=⊥

a
(j),3
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |x2LL, x2LR, x2RL, x2RR⟩ ,

|ψ
′good,3
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′) ̸=⊥,D2(x′

1) ̸=⊥

a
(j),3
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, DF ⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |x2LL, x2LR, x2RL, x2RR⟩ .

3. The vector |D1, D2, DF ⟩ in |ψ
′good,3
j ⟩ (resp., |D1, D2, [DF]3⟩ in |ψgood,3

j ⟩) has non-zero
quantum amplitude only if |D1| ≤ 2(j − 1) + 1, |D2| ≤ 2(j − 1) + 1, and |DF | ≤
(j − 1) + 1.

4. ∥ |ψbad,3
j ⟩ ∥ and ∥ |ψ

′bad,3
j ⟩ ∥ are upper bounded as

∥ |ψbad,3
j ⟩ ∥ ≤ ∥ |ψbad

j ⟩ ∥+O

(√
j

2n/2

)
, ∥ |ψ

′bad,3
j ⟩ ∥ ≤ ∥ |ψ

′bad
j ⟩ ∥+O

(√
j

2n/2

)
,

where x1LL = D1R(x′)⊕xLR, x1LR = D1L(x′)⊕D1R(x′)⊕xLL⊕xLR, x1RL = D1L(x′)⊕
xRL, x1RR = D1R(x′) ⊕ xRR, x2LL = D2R(x′

1) ⊕ x1LR, x2LR = D2L(x′
1) ⊕ D2R(x′

1) ⊕
x1LL ⊕ x1LR, x2RL = D2L(x′

1)⊕ x1RL, and x2RR = D2R(x′
1)⊕ x1RR for each summand

of |ψgood,3
j ⟩ and |ψ

′good,3
j ⟩.

Proof. From Lemma 5, it follows that there exists vectors |ψgood,2
j ⟩, |ψbad,2

j ⟩, |ψ
′good,2
j ⟩ and

|ψ
′bad,2
j ⟩ that satisfy the four properties in Lemma 5.
Define |ψgood,3

j ⟩ := ΠvalidOUP.3 |ψgood,2
j ⟩, |ψbad,3

j ⟩ := OUP.3OUP.2OUP.1 |ψj⟩ − |ψgood,2
j ⟩,

|ψ
′good,3
j ⟩ := ΠvalidO

′
UP.3 |ψ

′good,2
j ⟩, and |ψ

′bad,3
j ⟩ := O′

UP.3OUP.2OUP.1 |ψ′
j⟩ − |ψ

′good,2
j ⟩.

Note that, for each summand |x, y, z⟩ ⊗ |D1, D2, DF ⟩ ⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗
|x2LL, x2LR, x2RL, x2RR⟩ of |ψ

′good,2
j ⟩, we have that

ΠbadΠvalidO
′
UP.3 |x, y, z⟩ ⊗ |D1, D2, DF ⟩ ⊗ |x1LL, x1LR, x1RL, x1RR⟩

⊗ |x2LL, x2LR, x2RL, x2RR⟩ = 0

by definition of good databases. Therefore, we have

Πbad |ψ
′good,3
j ⟩ = ΠbadΠvalidO

′
UP.3 |ψ

′good,2
j ⟩ = 0,

Amit Kumar Chauhan and Somitra Kumar Sanadhya 31

which implies |ψ
′good,3
j ⟩ = Πgood |ψ

′good,3
j ⟩.

Similarly, |ψgood,3
j ⟩ = Πgood |ψgood,3

j ⟩ holds.
Now the first property obviously holds. The second property immediately follows from

Lemma 3 and the second property in Lemma 5. Third property follows from the third
property in Lemma 5. For the fourth property, we have∥∥∥ |ψbad,3

j ⟩
∥∥∥ =

∥∥∥OUP.3OUP.2OUP.1 |ψj⟩ − |ψgood,3
j ⟩

∥∥∥
=
∥∥∥ΠvalidOUP.3OUP.2OUP.1 |ψj⟩ − ΠvalidOUP.2 |ψgood,2

j ⟩
∥∥∥

=
∥∥∥ΠvalidOUP.3 |ψbad,2

j ⟩
∥∥∥

≤
∥∥∥ |ψbad,2

j ⟩
∥∥∥

≤
∥∥∥ |ψbad

j ⟩
∥∥∥+O

(√
j

2n/2

)
. (55)

Similarly,
∥∥∥ |ψ′bad,3

j ⟩
∥∥∥ ≤ ∥∥∥ |ψ′bad

j ⟩
∥∥∥+O

(√
j

2n/2

)
follows. Therefore, the fourth property

of the lemma holds.

The next lemma shows how the states OUP.3 · OUP.2 · OUP.1 |ψj⟩ and O′
UP.3 · OUP.2 ·

OUP.1 |ψ′
j⟩ change when OUP.2 acts on them.

Lemma 7 (Action of the second OUP.2). Suppose that there exist j and vectors |ψgood
i ⟩,

|ψbad
i ⟩, |ψ

′good
i ⟩ and |ψ′bad

i ⟩ that satisfy Proposition 7 for i = 1, . . . , j. Then, there exists
vectors |ψgood,4

j ⟩, |ψbad,4
j ⟩, |ψ

′good,4
j ⟩ and |ψ

′bad,4
j ⟩ that satisfy following properties:

1. OUP.2 ·OUP.3 ·OUP.2 ·OUP.1 |ψj⟩ = |ψgood,4
j ⟩+ |ψbad,4

j ⟩, and
OUP.2 ·O′

UP.3 ·OUP.2 ·OUP.1 |ψ′
j⟩ = |ψ

′good,4
j ⟩+ |ψ

′bad,4
j ⟩.

2. There exists complex numbers a(j),4
x,y,z,D1,D2,DF

such that

|ψgood,4
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′)̸=⊥

a
(j),4
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ,

|ψ
′good,4
j ⟩ =

∑
x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′)̸=⊥

a
(j),4
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, DF ⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ .

3. The vector |D1, D2, DF ⟩ in |ψ
′good,4
j ⟩ (resp., |D1, D2, [DF]3⟩ in |ψgood,4

j ⟩) has non-zero
quantum amplitude only if |D1| ≤ 2(j − 1) + 1, |D2| ≤ 2(j − 1) + 2, and |DF | ≤
(j − 1) + 1.

4. ∥ |ψbad,4
j ⟩ ∥ and ∥ |ψ

′bad,4
j ⟩ ∥ are upper bounded as

∥ |ψbad,4
j ⟩ ∥ ≤ ∥ |ψbad

j ⟩ ∥+O

(√
j

2n/2

)
, ∥ |ψ

′bad,4
j ⟩ ∥ ≤ ∥ |ψ

′bad
j ⟩ ∥+O

(√
j

2n/2

)
,

32 Quantum Security of FOX Construction

where x1LL = D1R(x′)⊕xLR, x1LR = D1L(x′)⊕D1R(x′)⊕xLL⊕xLR, x1RL = D1L(x′)⊕
xRL, x1RR = D1R(x′)⊕ xRR for each summand of |ψgood,4

j ⟩ and |ψ
′good,4
j ⟩.

Proof. From Lemma 6, it follows that there exists vectors |ψgood,3
j ⟩, |ψbad,3

j ⟩, |ψ
′good,3
j ⟩ and

|ψ
′bad,3
j ⟩ that satisfy the four properties in Lemma 6.

Let Πprereg denote the projection onto the space spanned by the vectors that correspond
to preregular states. Note that, when we measure the states OUP.2 ·OUP.3 ·OUP.2 ·OUP.1 |ψj⟩
and OUP.2 ·O′

UP.3 ·OUP.2 ·OUP.1 |ψ′
j⟩, we always obtain preregular states.

Define |ψgood,4
j ⟩ := ΠgoodΠpreregOUP.2 |ψgood,3

j ⟩, |ψbad,4
j ⟩ := OUP.2OUP.3OUP.2OUP.1 |ψj⟩ −

|ψgood,4
j ⟩. Similarly, we define |ψ

′good,4
j ⟩ := ΠgoodΠpreregOUP.2 |ψ

′good,3
j ⟩, and |ψ

′bad,4
j ⟩ :=

OUP.2O
′
UP.3OUP.2OUP.1 |ψ′

j⟩−|ψ
′good,4
j ⟩. Then the first property obviously holds. In addition,

the second and third properties follows from the second and third properties of Lemma 6.
Below we show the fourth property.

Furthermore, let ΠD3 :̸⊥ and ΠD3:⊥ be the projections onto the spaces spanned by
the vectors |x, y, z⟩ ⊗ |D1, D2, D3⟩ ⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |x2LL, x2LR, x2RL, x2RR⟩
such that D3(x2LL ⊕ x2RL, x2LR ⊕ x2RR) ̸=⊥ and D3(x2LL ⊕ x2RL, x2LR ⊕ x2RR) =⊥,
respectively. Then, we have

ΠD3 :̸⊥ |ψgood,3
j ⟩

=
∑

x,y,z,D1,D2,DF

(D1,D2,DF): good
D1(x′)̸=⊥,D2(x′

1)̸=⊥,[DF]3(x′
2)̸=⊥

a
(j),3
x,y,z,D1,D2,DF

|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |x2LL, x2LR, x2RL, x2RR⟩

=
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |x2LL, x2LR, x2RL, x2RR⟩

where x1LL := D1R(x′)⊕xLR, x1LR := D1L(x′)⊕D1R(x′)⊕xLL⊕xLR, x1RL := D1L(x′)⊕
xRL, and x1RR := D1R(x′)⊕ xRR for each summand in the right hand side.

By applying the first property of Proposition 4 to f2, we have

ΠbadΠpreregOUP.2ΠD3: ̸⊥ |ψgood,3
j ⟩

= ΠbadΠpreregOUP.2
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |x2LL, x2LR, x2RL, x2RR⟩

= ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

+ ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1⟩ ,

(
|D2⟩ −

∑
γ

1√
2n/2

|D2 ∪ (x′
1, γ)⟩

)
, |[DF]3⟩

Amit Kumar Chauhan and Somitra Kumar Sanadhya 33

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

− ΠbadΠprereg
∑

x,y,z,α,γ,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1⟩ ,
(
|D2 ∪ (x′

1, γ)⟩ − |Dinvalid
γ ⟩

)
, |[DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, α1 ⊕ γ1, α2 ⊕ γ2⟩

+ ΠbadΠprereg
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1⟩ ,

(
2
∑

δ

1√
2n/2

|D2 ∪ (x′
1, δ)⟩ − |D2⟩

)
, |[DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0̂n/4, 0̂n/4⟩

= Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (56)

+ Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (57)

− Πbad
∑

x,y,z,α,γ,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, γ), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (58)

− Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (59)

+ Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1
23n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1⟩

(
2
∑

δ

1√
2n/2

|D2 ∪ (x′
1, δ)⟩ − |D2⟩

)
, |[DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (60)

On the term (56), we have

Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′) ̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2) ̸=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

34 Quantum Security of FOX Construction

⊗ |D1, D2 ∪ (x′
1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩
= 0 (61)

since all databases are good.
On the term (57), we have∥∥∥∥∥Πbad

∑
x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′) ̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2) ̸=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

=
∥∥∥∥∥ ∑

x,y,z,D1,D2,DF

D1(x′)̸=⊥,D2(x′
1)=⊥

∑
α

(D1,D2∪(x′
1,α),DF): good

[DF]3(x′
2) ̸=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

=
∑

x,y,z,D1,D2,DF

D1(x′)̸=⊥,D2(x′
1)=⊥

1
2n/2 ·

∣∣∣∣∣ ∑
α

(D1,D2∪(x′
1,α),DF): good

[DF]3(x′
2) ̸=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

∣∣∣∣∣
2

Now, for each (x, y, z,D1, D2, DF) such that D1(x′) ̸=⊥ and D2(x′
1) =⊥ (recall that

x1LL := xLR⊕D1R(x′), x1LR := xLL⊕xLR⊕D1L(x′)⊕D1R(x′), x1RL := xRL⊕D1L(x′),
x1RR := xRR ⊕D1R(x′)), the number of α such that [DF]3(x′

2) ̸=⊥ (recall that x2LL :=
x1LR ⊕D2R(x′

1), x2LR := x1LL ⊕ x1LR ⊕D2L(x′
1) ⊕D2R(x′

1), x2RL := x1RL ⊕D2L(x1),
x2RR := x1RR ⊕D2R(x′

1)), and (D1, D2 ∪ (x′
1, α), DF) becomes good is at most |DF | ≤ j.

Hence, from the convexity of the function X 7→ X2, we have∣∣∣∣∣ ∑
α

(D1,D2∪(x′
1,α),DF): good

[DF]3(x′
2)̸=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

∣∣∣∣∣
2

≤ j ·
∑

α
(D1,D2∪(x′

1,α),DF): good
[DF]3(x′

2) ̸=⊥

∣∣∣∣∣a(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

∣∣∣∣∣
2

holds, which further implies that following holds:

∥∥∥∥∥Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

Amit Kumar Chauhan and Somitra Kumar Sanadhya 35

=
∑

x,y,z,D1,D2,DF

D1(x′)̸=⊥,D2(x′
1)=⊥

j

2n/2 ·

∣∣∣∣∣ ∑
α

(D1,D2∪(x′
1,α),DF): good

[DF]3(x′
2) ̸=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

∣∣∣∣∣
2

≤ O
(

j

2n/2

)
. (62)

We now give an upper bound of the norm of the term (58). Note that, if a tuple
(x, (D1, D2 ∪ ((x′

1), γ), DF)) satisfies the conditions

(1) D1(x′) ̸=⊥, (2) (D1, D2 ∪ (x′
1, γ), DF) is bad,

then the number of α such that

(1) (D1, D2 ∪ (x′
1, α), DF) becomes good, (2) D2(x′

1) =⊥, and (3) [DF]3(x′
2) ̸=⊥,

is at most |DF | ≤ j. Therefore, we can show∥∥∥∥∥Πbad
∑

x,y,z,α,γ,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, γ), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

=
∥∥∥∥∥ ∑

x,y,z,α,γ,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1, D2 ∪ (x′
1, γ), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

≤ O
(

j

2n/2

)
(63)

in the same way as we showed (51).
On the term (58), we have∥∥∥∥∥Πbad

∑
x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)̸=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1, D2 ∪ (x′
1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

= 0, (64)

since all databases are good.
On the term (59), we have

36 Quantum Security of FOX Construction

∥∥∥∥∥Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′) ̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2) ̸=⊥

1
23n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1⟩

(
2
∑

δ

1√
2n/2

|D2 ∪ (x′
1, δ)⟩ − |D2⟩

)
, |[DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

= O

(
j

2n/2

)
(65)

follows from (62) and (63).
From (56)-(65),

ΠbadΠpreregOUP.2ΠD3 :̸⊥ |ψgood,3
j ⟩ ≤ O

(√
j

2n/2

)
(66)

follows.
In the same way as we obtained (56)-(60), by applying the first property of Proposition 4

to f2, we have

ΠbadΠpreregOUP.2ΠD3:⊥ |ψgood,3
j ⟩

= Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (67)

+ Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (68)

− Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1, D2 ∪ (x′
1, γ), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (69)

− Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1, D2 ∪ (x′
1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (70)

+ Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)=⊥

1
23n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

Amit Kumar Chauhan and Somitra Kumar Sanadhya 37

⊗ |D1⟩

(
2
∑

δ

1√
2n/2

|D2 ∪ (x′
1, δ)⟩ − |D2⟩

)
, |[DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩ (71)

On the term (67), we have

Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)=⊥

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩
= 0, (72)

since all databases are good.
On the term (68), we have

Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′) ̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)=⊥

1√
2n/2

a
(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2, [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩
= 0, (73)

since all databases are good.
Next, we give an upper bound of the norm of the term (69). Note that, for each tuple

(x, α, (D1, D2, DF)) that satisfies

(1) D1(x′) ̸=⊥, (2) (D1, D2 ∪ (x′
1, α), DF) is good, and (3) [DF]3(x′

2) ̸=⊥,

the number of γ such that (D1, D2 ∪ (x′
1, γ), DF) becomes bad is at most |DF | ≤ j.

Therefore, we have∥∥∥∥∥Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x′
1)=⊥,[DF]3(x′

2)=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, γ), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

=
∑

x,y,z,D1,D2,DF

D1(x′)̸=⊥,D2(x′
1)=⊥

∑
γ

(D1,D2∪(x′
1,α),DF): bad

·

∣∣∣∣∣ ∑
α

(D1,D2∪(x′
1,α),DF): good

[DF]3(x′
2)=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

∣∣∣∣∣
2

=
∑

x,y,z,D1,D2,DF

D1(x′)̸=⊥,D2(x′
1)=⊥

∑
γ

(D1,D2∪(x′
1,α),DF): bad

1
2n/2

·
∑

α
(D1,D2∪(x′

1,α),DF): good
[DF]3(x′

2)=⊥

∣∣∣∣∣a(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

∣∣∣∣∣
2

38 Quantum Security of FOX Construction

≤ O
(

j

2n/2

)
, (74)

where we used the convexity of the function X 7→ X2 for the inequality.
On the term (70), we have

Πbad
∑

x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′)̸=⊥,D2(x1)=⊥,[DF]3(x2)=⊥

1
2n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩ ⊗ |D1, D2 ∪ (x′

1, α), [DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩
= 0, (75)

since all databases are good.
On the term (71), we have∥∥∥∥∥Πbad

∑
x,y,z,α,D1,D2,DF

(D1,D2∪(x′
1,α),DF): good

D1(x′) ̸=⊥,D2(x1)=⊥,[DF]3(x2)=⊥

1
23n/2 a

(j),3
x,y,z,D1,D2∪(x′

1,α),DF
|x, y, z⟩

⊗ |D1⟩

(
2
∑

δ

1√
2n/2

|D2 ∪ (x′
1, δ)⟩ − |D2⟩

)
, |[DF]3⟩

⊗ |x1LL, x1LR, x1RL, x1RR⟩ ⊗ |0n/4, 0n/4, 0n/4, 0n/4⟩

∥∥∥∥∥
2

≤ O
(

j

2n/2

)
(76)

follows from (73) and (74).
From (67)-(74), it follows that

ΠbadΠpreregOUP.2ΠD3:⊥ |ψgood,3
j ⟩ ≤ O

(√
j

2n/2

)
. (77)

Therefore, we have∥∥∥ΠbadΠpreregOUP.2 |ψgood,3
j ⟩

∥∥∥
≤
∥∥∥ΠbadΠpreregOUP.2ΠDF : ̸⊥ |ψgood,3

j ⟩
∥∥∥+

∥∥∥ΠbadΠpreregOUP.2ΠDF :⊥ |ψgood,3
j ⟩

∥∥∥
≤ O

(√
j

2n/2

)
(78)

follows from (66) and (77).
Since we have

OUP.2OUP.3OUP.2OUP.1 |ψj⟩ = ΠpreregOUP.2OUP.3OUP.2OUP.1 |ψj⟩ ,

which implies that∥∥∥ψbad,4
j

∥∥∥ =
∥∥∥OUP.2OUP.3OUP.2OUP.1 |ψj⟩ − ΠgoodΠpreregOUP.2 |ψgood,3

j ⟩
∥∥∥

=
∥∥∥ΠpreregOUP.2OUP.3OUP.2OUP.1 |ψj⟩ − ΠgoodΠpreregOUP.2 |ψgood,3

j ⟩
∥∥∥

Amit Kumar Chauhan and Somitra Kumar Sanadhya 39

=
∥∥∥ΠpreregOUP.2

(
|ψgood,3

j ⟩+ |ψbad,3
j ⟩

)
− ΠgoodΠpreregOUP.2 |ψgood,3

j ⟩
∥∥∥

=
∥∥∥ΠbadΠpreregOUP.2 |ψgood,3

j ⟩
∥∥∥+

∥∥∥ΠpreregOUP.2 |ψbad,3
j ⟩

∥∥∥
≤ O

(√
j

2n/2

)
+
∥∥∥ |ψbad,3

j ⟩
∥∥∥

≤ O

(√
j

2n/2

)
+
∥∥∥ |ψbad

j ⟩
∥∥∥ (79)

follows from Lemma 6 on the action of OUP.3 and O′
UP.3. Similarly, we can show

∥∥∥ |ψ′bad,4
j ⟩

∥∥∥ ≤ O(√ j

2n/2

)
+
∥∥∥ |ψ′bad

j ⟩
∥∥∥ (80)

in the same way, and the fourth property of the lemma also holds.

Action of the second OUP.1 : Let |ψgood
j+1 ⟩ := ΠgoodΠregOUP.1 |ψgood,4

j ⟩, |ψbad
j+1⟩ := |ψj+1⟩−

|ψgood
j+1 ⟩, |ψ

′good
j+1 ⟩ := ΠgoodΠregOUP.1 |ψ

′good,4
j ⟩, |ψ′bad

j+1⟩ := |ψ′
j+1⟩ − |ψ

′good
j+1 ⟩. Then we can

show the desired properties in Proposition 7, in the same way as we showed Lemma 7 on
the action of the second OUP.2.

Finishing the Proof of Proposition 6. Let |ψgood
j ⟩, |ψbad

j ⟩, |ψ
′good
j ⟩, and |ψ′bad

j ⟩ be the
vectors as defined in the Proposition 7. From (44) of Proposition 7, it follows that

∥ |ψbad
q+1⟩ ∥ ≤

∑
1≤i≤q

O

(√
j/2n/2

)
≤ O

(√
q3/2n/2

)
.

Similarly, it holds that ∥ |ψ′bad
q+1⟩ ∥ ≤ O

(√
q3/2n/2

)
.

Now, let trD123 and trD12F
be the partial trace operations over the databases for FOX3

and FOX′
3, respectively. From (42) and (43) of Proposition 7, it follows that

td
(

trD123

(
|ψgood

q+1 ⟩ , ⟨ψ
good
q+1 |

)
, trD12F

(
|ψ

′good
q+1 ⟩ , ⟨ψ

′good
q+1 |

))
= 0.

Therefore, we have that

Advdist
FOX3,FOX′

3
(A) ≤ td (trD123 (|ψq+1⟩ , ⟨ψq+1|) , trD12F

(|ψq+1⟩ , ⟨ψq+1|))

≤ td
(

trD123

(
|ψgood

q+1 ⟩ , ⟨ψ
good
q+1 |

)
, trD12F

(
|ψ

′good
q+1 ⟩ , ⟨ψ

′good
q+1 |

))
+ 2∥ |ψbad

q+1⟩ ∥+ 2∥ |ψ
′bad
q+1⟩ ∥

≤ O
(√

q3/2n/2
)
,

which completes the proof of Proposition 6.

6.2 Hardness of Distinguishing FOX′
2 from RF

Proposition 8. Let A be an adversary that makes at most q quantum queries. Then, it
holds that Advdist

FOX′
2,RF(A) ≤ O(

√
q6/2n/2).

40 Quantum Security of FOX Construction

Let us modify FOX′
2(F1, F2) in such a way that F1 is replaced with a family of random

permutations P , and denote the resulting function by FOX′
2(P, F2) (see Figure 7b).

Further, let us modify FOX′
2(P, F2) again in such a way that F2 is replaced with a new

random function F ′
2, and denote the resulting function by RF′ (see Figure 7c). The random

function F ′
2 : {0, 1}n/4×{0, 1}n/4×{0, 1}n/4×{0, 1}n/4×{0, 1}n/4×{0, 1}n/4 → {0, 1}n/2

is defined as follows:

(x1LL ⊕ x1RL, x1LR ⊕ x1RR, x1RL, x1RR, xRL, xRR) 7→ (x2LL, x2LR, x2RL, x2RR),

where x1LL := xLR ⊕ P1R(xLL ⊕ xRL, xLR ⊕ xRR), x1LR := xLL ⊕ xLR ⊕ P1L(xLL ⊕
xRL, xLR ⊕ xRR) ⊕ P1R(xLL ⊕ xRL, xLR ⊕ xRR), x1RL := P1L(xLL ⊕ xRL, xLR ⊕ xRR),
and x1RR := P1R(xLL ⊕ xRL, xLR ⊕ xRR).

F1

σ

F2

σ

(a) FOX′
2(F1, F2).

P

σ

F2

σ

(b) FOX′
2(P, F2).

P

σ

F ′
2

σ

(c) RF′ := FOX′
2(P, F ′

2).

Figure 7: The modified versions of FOX2.

Our goal is confined to show the following 2 properties:

• FOX′
2(F1, F2) is hard to distinguish from FOX′

2(P, F2), and

• FOX′
2(P, F2) is hard to distinguish from RF′ .

In what follows, we show

Advdist
FOX′

2(F1,F2),RF′(A) ≤ O
(√

q6/2n/2
)

instead of showing Advdist
FOX′

2(F1,F2),RF(A) ≤ O
(√

q6/2n/2
)

.

Hardness of Distinguishing FOX′
2(F1, F2) from FOX′

2(P, F2). This can be shown by
using Proposition 2 which says that it is hard to distinguish FRP from RF. Note that in
FOX′

2(F1, F2), F1 and F2 are independent random functions, whereas in FOX′
2(P, F2), P is

a FRP. Hence, using Proposition 2, it follows that

Advdist
FOX′

2(F1,F2),FOX′
2(P,F2)(q) ≤ O(

√
q6/2n/2). (81)

Amit Kumar Chauhan and Somitra Kumar Sanadhya 41

Hardness of Distinguishing FOX′
2(P, F2) from RF′. Observe that the function

distribution of FOX2(P, F ′
2) is same as that of RF′. (Note that P (xLL ⊕ xRL, xLR ⊕

xRR, xRL, xRR) ̸= P (xLL ⊕ x′
RL, xLR ⊕ x′

RR, x
′
RL, x

′
RR) always holds if xRL ̸= x′

RL

and xRR ̸= x′
RR. Thus, if (xLL, xLR, xRL, xRR) ̸= (x′

LL, x
′
LR, x

′
RL, x

′
RR), then the

corresponding inputs to F ′
2 will be distinct.) Therefore, we have that

Advdist
FOX′

2(P,F ′
2),RF′(q) = 0. (82)

Finally, by combining the results given in Equations (81) and (82), it follows that

Advdist
FOX′

2(F1,F2),RF′(q) ≤ O
(√

q6/2n/2
)
, (83)

which completes the proof of Proposition 8.

6.3 Proof of Theorem 1
We are in a position to complete the proof for Theorem 1, by using the results presented
in Subsection 6.1 and Subsection 6.2.

Proof of Theorem 1. First, we modify FOX4 in such a way that the state update operation
of the third round is modified as

(x3LL, x3LR, x3RL, x3RR) :=
(
x2LR ⊕ FR(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR),
x2LL ⊕ x2LR ⊕ FL(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR)

⊕ FR(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR),
FL(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR),
FR(x2LL ⊕ x2RL, x2LR ⊕ x2RR, x2RL, x2RR)

)
and the state update operation of fourth round is modified as

(x4LL, x4LR, x4RL, x4RR) :=
(
x3LR ⊕ F ′

R(x3LL ⊕ x3RL, x3LR ⊕ x3RR, x3RL, x3RR),
x3LL ⊕ x3LR ⊕ F ′

L(x3LL ⊕ x3RL, x3LR ⊕ x3RR, x3RL, x3RR)
⊕ F ′

R(x3LL ⊕ x3RL, x3LR ⊕ x3RR, x3RL, x3RR),
F ′

L(x3LL ⊕ x3RL, x3LR ⊕ x3RR, x3RL, x3RR),
F ′

R(x3LL ⊕ x3RL, x3LR ⊕ x3RR, x3RL, x3RR)
)
,

where F, F ′ : {0, 1}n/4×{0, 1}n/4×{0, 1}n/4×{0, 1}n/4 → {0, 1}n/2 are random functions.
Let us denote the modified function by FOX′′

4 . In addition, let FOX′′′
4 be the composition

of FOX2 with a random function RF : {0, 1}n → {0, 1}n (see Figure 8).

f1

σ

f2

σ

F

σ

F ′

σ

f1

σ

f2

σ

RF

Figure 8: FOX′′
4 and FOX′′′

4

42 Quantum Security of FOX Construction

Then, by applying Proposition 6 twice, it follows that

Advdist
FOX4,FOX′′

4
(q) ≤ O

(√
q3/2n/2

)
. (84)

In addition, by applying Proposition 8, it holds that

Advdist
FOX′′

4 ,FOX′′′
4

(q) ≤ O
(√

q6/2n/2
)
. (85)

Furthermore, it holds that Advdist
FOX′′′

4 ,RF(q) = 0 since FOX2 is a permutation. From
the quantum version of the PRP-PRF switching lemma (Proposition 1) and all the above
inequalities (84)-(85), we have

Advdist
FOX4,RP(q) ≤ Advdist

FOX4,FOX′′
4
(q) + Advdist

FOX′′
4 ,FOX′′′

4
(q) + Advdist

FOX′′′
4 ,RF(q) + Advdist

RF,RP(q)

≤ O

(√
q6

2n/2

)
,

which completes the proof of Theorem 1.

7 Conclusions
We showed that the 3- and 4-round FOX constructions are not PRP against qCPAs,
and qCCAs, respectively. We also showed that O(2n/12) quantum queries are required to
distinguish the 4-round FOX construction with block size n bits from a random permutation
by qCPAs. That is, the 4-round FOX construction becomes a quantumly secure PRP
against qCPAs if the round functions are quantumly secure PRFs. We used an alternative
formalization of Zhandry’s compressed oracle technique introduced by Hosoyamada and
Iwata for the security proofs.

As a future work, it would be interesting to derive tighter security bounds for the
4-round FOX construction against qCPAs. Another important future work would be to
analyze the security of FOX construction against qCCAs. Since the compressed oracle
technique can be used for random functions but cannot be used for random permutations
that allow inverse queries, qCCA security remains a challenging problem.

Acknowledgment
We would like to thank the anonymous reviewers for their insightful comments and
suggestions, which has significantly improved the presentation and technical quality of
this work. The second author would also like to thank MATRICS grant 2019/1514 by the
Science and Engineering Research Board (SERB), Dept. of Science and Technology, Govt.
of India for supporting the research carried out in this work.

Timeline
This version of the manuscript was submitted to a venue on April 8, 2022. A previous
version of the manuscript, which was submitted earlier on March 1, 2022, had a minor
flaw in the proof of Proposition 8 which has been rectified in the current version.

Amit Kumar Chauhan and Somitra Kumar Sanadhya 43

References
[AG07] MediaCrypt AG. IDEA-NXT description. http://www.mediacrypt.com,

2007.

[BBC+21] Ritam Bhaumik, Xavier Bonnetain, André Chailloux, Gaëtan Leurent, María
Naya-Plasencia, André Schrottenloher, and Yannick Seurin. QCB: efficient
quantum-secure authenticated encryption. In Advances in Cryptology -
ASIACRYPT, volume 13090, pages 668–698. Springer, 2021.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Advances in Cryptology - ASIACRYPT, volume 7073, pages 41–69. Springer,
2011.

[BGLP21] Zhenzhen Bao, Jian Guo, Shun Li, and Phuong Pham. Quantum multi-collision
distinguishers. Cryptology ePrint Archive, Report 2021/703, 2021. https:
//ia.cr/2021/703.

[BNS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. On
quantum slide attacks. In Selected Areas in Cryptography - SAC, volume
11959, pages 492–519. Springer, 2019.

[Bon17] Xavier Bonnetain. Quantum key-recovery on full AEZ. In Selected Areas in
Cryptography - SAC, volume 10719, pages 394–406. Springer, 2017.

[CKS21] Amit Kumar Chauhan, Abhishek Kumar, and Somitra Kumar Sanadhya.
Quantum free-start collision attacks on double block length hashing with
round-reduced AES-256. IACR Trans. Symmetric Cryptol., 2021(1):316–336,
2021.

[DDW20] Xiaoyang Dong, Bingyou Dong, and Xiaoyun Wang. Quantum attacks on
some Feistel block ciphers. Des. Codes Cryptography, 88(6):1179–1203, 2020.

[DSS+20] Xiaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang, and Lei Hu.
Quantum collision attacks on AES-like hashing with low quantum random
access memories. In Advances in Cryptology - ASIACRYPT, volume 12492,
pages 727–757. Springer, 2020.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
ACM Symposium on the Theory of Computing, pages 212–219. ACM, 1996.

[HI19] Akinori Hosoyamada and Tetsu Iwata. 4-Round Luby-Rackoff Construction is
a qPRP. In Advances in Cryptology - ASIACRYPT, pages 145–174. Springer,
2019.

[HI20] Akinori Hosoyamada and Tetsu Iwata. Tight quantum security bound of the
4-round Luby-Rackoff construction. IACR Cryptol. ePrint Arch., 2019:243,
2020.

[HS18] Akinori Hosoyamada and Yu Sasaki. Quantum demiric-selçuk
meet-in-the-middle attacks: Applications to 6-round generic feistel
constructions. In Security and Cryptography for Networks - SCN, volume
11035, pages 386–403. Springer, 2018.

[HS20] Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum
computers by using differential trails with smaller probability than birthday
bound. In Advances in Cryptology - EUROCRYPT, volume 12106, pages
249–279. Springer, 2020.

http://www.mediacrypt.com
https://ia.cr/2021/703
https://ia.cr/2021/703

44 Quantum Security of FOX Construction

[IHM+19] Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and Tetsu
Iwata. Quantum chosen-ciphertext attacks against Feistel ciphers. In Topics
in Cryptology - CT-RSA, volume 11405, pages 391–411. Springer, 2019.

[JV04] Pascal Junod and Serge Vaudenay. FOX : A new family of block ciphers. In
SAC, volume 3357, pages 114–129. Springer, 2004.

[KLLN16a] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In CRYPTO,
volume 9815, pages 207–237. Springer, 2016.

[KLLN16b] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Quantum differential and linear cryptanalysis. IACR Trans. Symmetric
Cryptol., 2016(1):71–94, 2016.

[KM10] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the
3-round Feistel cipher and the random permutation. In IEEE International
Symposium on Information Theory, pages 2682–2685. IEEE, 2010.

[LLH15] Yiyuan Luo, Xuejia Lai, and Jing Hu. The pseudorandomness of many-round
lai-massey scheme. J. Inf. Sci. Eng., 31(3):1085–1096, 2015.

[LM90] Xuejia Lai and James L. Massey. A proposal for a new block encryption
standard. In EUROCRYPT, volume 473, pages 389–404. Springer, 1990.

[LM17] Gregor Leander and Alexander May. Grover meets Simon - quantumly
attacking the FX-construction. In Advances in Cryptology - ASIACRYPT,
volume 10625, pages 161–178. Springer, 2017.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom
permutations from pseudorandom functions. SIAM J. Comput., 17(2):373–386,
1988.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Edition. Cambridge University Press, USA, 2011.

[NDJY21] Boyu Ni, Xiaoyang Dong, Keting Jia, and Qidi You. (quantum) collision attacks
on reduced simpira v2. IACR Trans. Symmetric Cryptol., 2021(2):222–248,
2021.

[Sho94] Peter W. Shor. Polynominal time algorithms for discrete logarithms and
factoring on a quantum computer. In Algorithmic Number Theory, ANTS-I,
volume 877, page 289. Springer, 1994.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput.,
26(5):1474–1483, 1997.

[SS17] Thomas Santoli and Christian Schaffner. Using simon’s algorithm to
attack symmetric-key cryptographic primitives. Quantum Inf. Comput.,
17(1&2):65–78, 2017.

[Vau99] Serge Vaudenay. On the Lai-Massey scheme. In Advances in Cryptology -
ASIACRYPT, volume 1716, pages 8–19. Springer, 1999.

[WLLZ09] Zhongming Wu, Yiyuan Luo, Xuejia Lai, and Bo Zhu. Improved cryptanalysis
of the FOX block cipher. In Trusted Systems INTRUST, volume 6163, pages
236–249. Springer, 2009.

Amit Kumar Chauhan and Somitra Kumar Sanadhya 45

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems.
Quantum Inf. Comput., 15(7&8):557–567, 2015.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum
indifferentiability. In Advances in Cryptology - CRYPTO, volume 11693, pages
239–268. Springer, 2019.

Appendices

A Detailed View of qCPA Distinguisher against FOX3

This section provides a detailed view of quantum CPA distinguisher against FOX3, which
is given in Section 4. In Figure 9, we give details of all intermediate calculations for an
easy verification of the given qCPA attack against FOX3.

x0LL = x ⊕ αb

y1LR = y ⊕ g1R

y1LL = x ⊕ αb ⊕ g1L

x1LR = y1LL ⊕ y1LR = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R

x1LL = y1LR = y ⊕ g1R x1RL = x ⊕ g1L
x1RR = y ⊕ αb ⊕ g1R

f3((y ⊕ αb ⊕ g1R ⊕ g2L ⊕ g2R)||(x ⊕ y ⊕ g1L ⊕ g1R ⊕ g2L)) = g3 = g3L||g3R

x2RL = x ⊕ g1L ⊕ g2L
x2RR = y ⊕ αb ⊕ g1R ⊕ g2R

f2((x ⊕ y ⊕ g1L ⊕ g1R)||(x ⊕ g1L)) = g2 = g2L||g2R

x2LL = y2LR = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R

x0LR = y

x0RL = x

x0RR = y ⊕ αb

x0RL = x

x0RR = y ⊕ αb

x0LL = x ⊕ αb
x0LR = y

f1

f2

f3

f1(αb||αb) = g1 = g1L||g1R

x2LR = y2LL ⊕ y2LR = x ⊕ αb ⊕ g1L ⊕ g2L ⊕ g2R

y2LL = y ⊕ g1R ⊕ g2L
y2LR = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R

σ

σ

σ

x3RL = x ⊕ g1L ⊕ g2L ⊕ g3L
x3RR = y ⊕ αb ⊕ g1R ⊕ g2R ⊕ g3Rx3LR = y3LL ⊕ y3LR = y ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R

x3LL = y3LR = x ⊕ αb ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R

0||αb

GO = x3LR ⊕ x3RL ⊕ (x3RR ⊕ αb) = x⊕ g1L ⊕ g2R

y3LR = x ⊕ αb ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R

y3LL = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L

Figure 9: A detailed view of GO with O = FOX3, and fi ∈ Func({0, 1}n/2, {0, 1}n/2).

46 Quantum Security of FOX Construction

B Detailed View of qCCA Distinguishers against FOX4

This section provides a detailed view of quantum CCA distinguisher against FOX4. In
Figure 10, we give details of all intermediate calculations for FOX4.

x0LL = x ⊕ αb

x1LR = y ⊕ g1R

y1LL = x ⊕ αb ⊕ g1L

x1LR = y1LL ⊕ y1LR = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R

x1LL = y1LR = y ⊕ g1R x1RL = x ⊕ g1L
x1RR = y ⊕ αb ⊕ g1R

x2RL = x ⊕ g1L ⊕ g2L
x2RR = y ⊕ αb ⊕ g1R ⊕ g2R

f2((x ⊕ y ⊕ g1L ⊕ g1R)||(x ⊕ g1L)) = g2 = g2L||g2R

x2LL = y2LR = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R

y1LL = y ⊕ g1R ⊕ g2L
y2LL = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R

x0LR = y

x0RL = x
x0RR = y ⊕ αb

x0RL = x
x0RR = y ⊕ αb

x0LL = x ⊕ αb
x0LR = y

f1

f2

f3

σ

σ

f1(αb||αb) = g = g1L||g1R

x2LR = y2LL ⊕ y2LR = x ⊕ αb ⊕ g1L ⊕ g2L ⊕ g2R

f3((y ⊕ αb ⊕ g1R ⊕ g2L ⊕ g2R)||(x ⊕ y ⊕ g1L ⊕ g1R ⊕ g2L)) = g3 = g3L||g3R

f4

σ

f4

f3

f2

σ−1

σ−1

f1

σ−1

y3LL = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L
y3LR = x ⊕ αb ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R

x3RL = x ⊕ g1L ⊕ g2L ⊕ g3L
x3RR = y ⊕ αb ⊕ g1R ⊕ g2R ⊕ g3R

x3LL = y3LR = x ⊕ αb ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R
x3LR = y3LL ⊕ x3LR = y ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R

(α0 ⊕ α1)||0

x′
4RL

= x ⊕ α0 ⊕ α1 ⊕ g1L ⊕ g2L ⊕ g3L ⊕ g4L

x′
4RR

= y ⊕ αb⊕1 ⊕ g1R ⊕ g2R ⊕ g3R ⊕ g4R

y′
4LL

= x′
4LL

⊕ x′
4LR

= x ⊕ αb⊕1 ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R ⊕ g4L
y′
4LR

= x′
4LL

= y ⊕ α0 ⊕ α1 ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g4R

(α0 ⊕ α1)||(α0 ⊕ α1)

x′
2LL

= x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L ⊕ g
′
3L

x′
2LR

= x ⊕ αb⊕1 ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R ⊕ g
′
3R

y′
2LR

= x′
2LL

= x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L ⊕ g
′
3L

y′
2LL

= x′
2LL

⊕ x′
2LR

= y ⊕ α0 ⊕ α1 ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g
′
3L
⊕ g′

3R

y′
3LL

= x′
3LL

⊕ x′
3LR

= x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L
y′
3LR

= x′
3LL

= x ⊕ αb⊕1 ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R

x′
3LL

= x ⊕ αb⊕1 ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R
x′
3LR

= y ⊕ α0 ⊕ α1 ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R

x′
3RL

= x ⊕ α0 ⊕ α1 ⊕ g1L ⊕ g2L ⊕ g3L

x′
3RR

= y ⊕ αb⊕1 ⊕ g1R ⊕ g2R ⊕ g3R

x′
2RL

= x ⊕ α0 ⊕ α1 ⊕ g1L ⊕ g2L ⊕ g3L ⊕ g
′
3L

x′
2RR

= y ⊕ αb⊕1 ⊕ g1R ⊕ g2R ⊕ g3R ⊕ g
′
3R

x′
1RL

= x ⊕ α0 ⊕ α1 ⊕ g1L ⊕ g2L ⊕ g3L ⊕ g
′
3L
⊕ g′

2L

x′
1RR

= y ⊕ αb⊕1 ⊕ g1R ⊕ g2R ⊕ g3R ⊕ g
′
3R
⊕ g′

2R

x′
1LR

= x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L ⊕ g
′
3L
⊕ g′

2R

x′
1LL

= y ⊕ α0 ⊕ α1 ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g
′
3L
⊕ g′

3R
⊕ g′

2L

y′
1LL

= x′
1LL

⊕ x′
1LR

= x ⊕ αb⊕1 ⊕ g1L ⊕ g2L ⊕ g
′
2L
⊕ g2R ⊕ g

′
2R
⊕ g3L ⊕ g3R ⊕ g

′
3L
⊕ g′

3R

y′
1LR

= x′
1LL

= y ⊕ α0 ⊕ α1 ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g
′
3L
⊕ g′

3R
⊕ g′

2L

f1((αb ⊕ g2R ⊕ g
′
2R
⊕ g3R ⊕ g

′
3R

)||(αb ⊕ g2L ⊕ g2R ⊕ g
′
2L
⊕ g′

2R
⊕ g3L ⊕ g3R ⊕ g

′
3L
⊕ g′

3R
)) = g′

1L
||g′

1R

x′
0LL

= x ⊕ αb⊕1 ⊕ g1L ⊕ g2L ⊕ g
′
2L
⊕ g2R ⊕ g

′
2R
⊕ g3L ⊕ g3R ⊕ g

′
3L
⊕ g′

3R
⊕ g′

1L

x′
0LR

= y ⊕ α0 ⊕ α1 ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g
′
3L
⊕ g′

3R
⊕ g′

2L
⊕ g′

1R

x′
0RL

= x ⊕ α0 ⊕ α1 ⊕ g1L ⊕ g1L ⊕ g3L ⊕ g
′
3L
⊕ g′

2L
⊕ g′

1L

x′
0RR

= y ⊕ αb⊕1 ⊕ g1R ⊕ g2R ⊕ g3R ⊕ g
′
3R
⊕ g′

2R
⊕ g′

1R

f4((αb ⊕ g2R ⊕ g3L ⊕ g3R)||(αb ⊕ g2L ⊕ g2R ⊕ g3L)) = g4 = g4L||g4R

x4RL = x ⊕ g1L ⊕ g2L ⊕ g3L ⊕ g4L
x4RR = y ⊕ αb ⊕ g1R ⊕ g2R ⊕ g3R ⊕ g4R

x4LL = y4LR = y ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g4R
x4LR = y4LL ⊕ y4LR = x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L ⊕ g4L ⊕ g4R

f4((αb ⊕ g2R ⊕ g3L ⊕ g3R)||(αb ⊕ g2L ⊕ g2R ⊕ g3L)) = g4 = g4L||g4R

f2((x ⊕ y ⊕ g1L ⊕ g1R ⊕ g3R ⊕ g
′
3R

)||(x ⊕ α0 ⊕ α1 ⊕ g1L ⊕ g3L ⊕ g
′
3L
⊕ g3R ⊕ g

′
3R

)) = g′
2L
||g′

2R

f3((y ⊕ αb⊕1 ⊕ g1R ⊕ g2L ⊕ g2R)||(x ⊕ y ⊕ g1L ⊕ g1R ⊕ g2L)) = g′
3L
||g′

3R

GO = x′0LL ⊕ x
′
0LR ⊕ x

′
0RL ⊕ x

′
0RR = g2L ⊕ g′2L ⊕ g3L ⊕ g

′
3L ⊕ g3R ⊕ g

′
3R

σ−1

σ

y4LL = x ⊕ αb ⊕ g1L ⊕ g2L ⊕ g2R ⊕ g3R ⊕ g4L
y4LR = y ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g4R

x′
4LL

= y ⊕ α0 ⊕ α1 ⊕ g1R ⊕ g2L ⊕ g3L ⊕ g3R ⊕ g4R
x′
4LR

= x ⊕ y ⊕ αb ⊕ g1L ⊕ g1R ⊕ g2R ⊕ g3L ⊕ g4L ⊕ g4R

Figure 10: A detailed view of GO with O = FOX4, and fi ∈ Func({0, 1}n/2, {0, 1}n/2).

	Introduction
	Our Contributions
	Organization of the Paper

	Preliminaries
	Basic Notations
	Quantum Computation
	Quantum Algorithms and Quantum Oracles
	Security Definitions
	Simon's Algorithm
	Quantum Security Tools

	Overview of Recording Standard Oracle with Errors
	Standard Oracle.
	Recording Standard Oracle with Errors

	Quantum CPA Distinguisher against 3-Round FOX
	Quantum CCA Distinguisher against the 4-Round FOX
	Security Proof: 4-round FOX is a PRP against qCPAs
	Hardness of Distinguishing FOX3' from FOX3
	Hardness of Distinguishing FOX2' from RF
	Proof of Theorem 1

	Conclusions
	Detailed View of qCPA Distinguisher against FOX3
	Detailed View of qCCA Distinguishers against FOX4

