
MuSig-L: Lattice-Based Multi-Signature
With Single-Round Online Phase?

Cecilia Boschini1 , Akira Takahashi2 , and Mehdi Tibouchi3

1 Technion and Reichman University, Israel
cecilia.bo@cs.technion.ac.il

2 Aarhus University, Denmark
takahashi@cs.au.dk

3 NTT Corporation, Japan
mehdi.tibouchi.br@hco.ntt.co.jp

August 10, 2022

Abstract. Multi-signatures are protocols that allow a group of signers to jointly produce a single
signature on the same message. In recent years, a number of practical multi-signature schemes have
been proposed in the discrete-log setting, such as MuSig2 (CRYPTO’21) and DWMS (CRYPTO’21).
The main technical challenge in constructing a multi-signature scheme is to achieve a set of several
desirable properties, such as (1) security in the plain public-key (PPK) model, (2) concurrent
security, (3) low online round complexity, and (4) key aggregation. However, previous lattice-based,
post-quantum counterparts to Schnorr multi-signatures fail to satisfy these properties.
In this paper, we introduce MuSig-L, a lattice-based multi-signature scheme simultaneously achiev-
ing these design goals for the first time. Unlike the recent, round-efficient proposal of Damgård et
al. (PKC’21), which had to rely on lattice-based trapdoor commitments, we do not require any ad-
ditional primitive in the protocol, while being able to prove security from the standard module-SIS
and LWE assumptions. The resulting output signature of our scheme therefore looks closer to the
usual Fiat–Shamir-with-abort signatures.

? An extended abstract appeared at CRYPTO 2022. This is the full version.

https://orcid.org/0000-0003-0956-1616
https://orcid.org/0000-0001-8556-3053
https://orcid.org/0000-0002-2736-2963

Table of Contents

1 Introduction . 3
1.1 Our contributions . 4
1.2 Our techniques . 4
1.3 Concurrent work . 6
1.4 Other related work . 8

2 Preliminaries . 8
2.1 Discrete Gaussian Distribution . 9
2.2 Assumptions . 12
2.3 Offline-online multi-signature . 12
2.4 General Forking Lemma . 13

3 Our MuSig-L Scheme . 14
3.1 Definition of the Scheme . 14
3.2 Rejection Sampling . 14
3.3 Correctness and Efficiency Analysis . 17

4 Security Proofs . 19
4.1 Reduction to LWE and SIS . 19
4.2 Switching Lemma . 20
4.3 Simulating Nonces via Trapdoor Sampling . 21
4.4 Oracle simulation lemma . 23
4.5 MS-UF-CMA security of MuSig-L . 24

A Concentration of the Squared Norm of Ellipsoidal Gaussians . 29
B Rejection Sampling for Ellipsoidal Gaussians . 31

B.1 Generalized Rejection Sampling . 31
B.2 Technical Lemma. 33
B.3 Proof for Theorem B.1 . 36
B.4 Statistical Honest Verifier Zero Knowledge of the Fiat-Shamir with Aborts Σ-Protocol . . . 37

C Omitted Security Proofs . 37
C.1 Proof for MS-UF-KOA Security (Theorem 4.1) . 37
C.2 Proof for MS-UF-CMA Security (Theorem 4.5) . 41
C.3 Probability that uniform M ∈ Rk×n

q is not full rank . 44
D Correctness and Parameters . 44

1 Introduction

Amulti-signature is a primitive that allows a group of signers holding individual key pairs (sk1, pk1), . . . , (skn, pkn)
to jointly produce a signature on a message µ of their choice. A number of multi-signatures have been
proposed in recent years, mainly motivated by several new real-world applications such as cryptocur-
rencies. Recent developments in the discrete log setting particularly garnered renewed attention among
practitioners, since some of them even serve as a drop-in replacement for ordinary signatures already
deployed in practice [NRS21].

The main technical challenge when constructing a new multi-signature scheme is to achieve a set of
desirable properties, such as (1) security in the plain public-key (PPK) model, (2) concurrent security,
(3) low online round complexity, and (4) key aggregation. The PPK model requires that each signer
publishes its public key in the clear without any dedicated interactive key generation protocol, and
that no adversaries be able to convince a verifier that an honest party P1

1 participated in signing any
messages, unless P1 has ever agreed on it. This is essentially to prevent the well-known rogue-key attacks
(e.g., [MOR01]) in a plain way (i.e., without requiring proof of possession wherein each party must submit
a proof to prove knowledge of their secret key [RY07]). Thus proving security under the PPK model is
often considered ideal in the literature.

Several round-efficient Schnorr-based proposals with proof in the PPK model appeared in the litera-
ture. However, the seminal work of Drijvers et al. [DEF+19] pointed out subtle pitfalls of many existing
interactive schemes, by presenting an adversarial strategy that exploits many concurrent sessions. The
adversary in this scenario may launch multiple instances of the signing protocol with an honest party,
and forge a signature on a new message by carefully combining signature shares from different sessions.
Benhamouda et al. [BLL+21] recently improved the attack and proved that those schemes can be broken
even in polynomial time. Given such devastating attacks, it is crucial to prove security of the scheme in
the model where concurrent sign queries are allowed.

Although some previous schemes, such as BN [BN06], MuSig [MPSW19], MuSig-DN [NRSW20],
mBCJ [DEF+19], and HBMS [BD21], are indeed provably secure against concurrent attacks, they all
require (at least) two rounds of interaction during the online phase, i.e., after parties receive the message
to sign. On the other hand, it is desirable in practice to preprocess part of the interaction and computation
without knowledge of the message to be signed, so that participants can minimize round/communication
complexity later. Such an offline-online trick has become increasingly common in context of general-
purpose multi-party computation (e.g., [DPSZ12]), and therefore it is also another important design goal
when constructing a multi-signature. Recently, Nick, Ruffing, and Seurin [NRS21], and Alper and Bur-
dges [AB21] concurrently proposed near-optimal Schnorr-based multi-signatures in this paradigm. One
remarkable feature of these schemes – MuSig2 and DWMS– is that they only require a single round of
interaction in the online phase while retaining security against concurrent attacks. They also support key
aggregation, an additional optimization technique that takes a set of public keys to produce a single com-
bined Schnorr public key. It is crucial for a multi-signature scheme to support key aggregation, because
it allows verifiers to verify a signature with an ordinary Schnorr public key and thus makes the scheme
interoperable with the existing verification algorithms.
State-of-the-art in the lattice setting. As Schnorr-based constructions do not withstand quan-
tum attacks, it is an interesting question how to construct post-quantum alternatives. Indeed, several
lattice-based counterparts to the aforementioned schemes exist in the literature [ES16,MJ19,FH20,BK20,
DOTT21]. All of these schemes follow the so-called Fiat-Shamir with aborts (FSwA) paradigm [Lyu12],
which shares the basic structure with Schnorr. Hence, it is well-known that many observations in the
DLog setting can be reused to construct similar FSwA-based instantiations, e.g., ES, MJ, BK, and FH
follow the ideas of BN three-round Schnorr multi-signature, and the most recent scheme due to Damgård
et al. [DOTT21,DOTT22] closely follows the mBCJ two-round scheme. There are however several subtle
issues that only arise in the lattice world. For example, one inherent issue with the Fiat-Shamir “with
aborts” multi-signature is simulation of the honest sign oracle. The basic idea of these schemes is to take
the sum of usual FSwA signatures produced by different parties as follows: party P1 first starts a protocol
by sending “commit” messages w1 of the underlying Σ-protocol, and then upon receiving w2, . . . ,wn

from others, P1 locally derives challenge c by hashing w :=
∑n
i=1 wi, together with the message µ to be

signed. It then performs rejection sampling on the response z1, and the protocol must restart as long
as there exists a party who rejected their response. This means that w1 is always revealed, whether
P1 aborts or not. However, there is currently no known general way to simulate (w1, c) for rejected
1 Note in multi-signature every honest party behaves identically and thinks of themselves as “P1” [BN06]. Other
parties P2, . . . , Pn are called co-signers.

3

instances,2 and thus publicly available proofs of ES and MJ are incomplete, and FH had to rely on a
non-standard assumption (which they call “rejected” LWE). Although DOTT managed to circumvent the
issue by having P1 send a [BDL+18]-based trapdoor homomorphic commitment Commit(w1) to keep w1
secret until rejection sampling is successful and to realize the first two-round protocol, their approach
inevitably makes the scheme incompatible with preprocessing: because each w1 must be committed using
message-dependent commitment keys, two rounds of interaction must always happen online. Moreover,
since their scheme has to output combined commitments or randomness as part of the signature, the
verifier also needs to check an aggregated commitment is opened correctly in addition to the usual FSwA
verification operations. These are in fact limitations inherited from mBCJ, and thus it is an interesting
open question whether lattice-based multi-signature can be securely improved while benefiting from the
latest tricks in the DL setting.

1.1 Our contributions

In this paper, we introduce MuSig-L, a lattice-based multi-signature scheme simultaneously achieving
the aforementioned design goals for the first time: concurrent security in the PPK model, single-round
online phase, and key aggregation. In Table 1 we compare ours to previous schemes following the same
paradigm. Just as MuSig2 and DWMS, our MuSig-L allows parties to preprocess the first-round “commit”
messages before receiving the message to be signed. Thus all they have to communicate during the online
phase is the final response value zi. Although the protocol must abort if there is one party that fails in
rejection sampling (which is also the case with other FSwA distributed/multi-signatures), we can mitigate
by executing sufficiently many parallel instances of the protocol at once. Since security against concurrent
attackers is crucial in this setting, we provide detailed security proofs in a suitable model.

Our scheme does not require any additional primitive for instantiating the protocol, unlike the two-
round, provably secure scheme of Damgård et al. This was made possible by our generalized rejection
sampling lemma in combination with trapdoor preimage sampling of [MP12] and several technical lemmas,
as we sketch below. The resulting output signature of our scheme therefore looks much closer to the usual
Fiat–Shamir-with-abort signatures.

Although our MuSig-L partially follows tricks present in MuSig2 and DWMS, the resulting scheme
and our new proof techniques (outlined below) are significantly different from theirs. As a consequence,
we are able to prove security solely based on the standard SIS and LWE assumptions in the ring setting
and in the (classical) random oracle model, while MuSig2 and DWMS are proven secure either under the
“one-more” DL assumption or in the algebraic group model.

1.2 Our techniques

Scheme overview Fig. 1 describes overview of our scheme, executed by P1. In Section 3.1 we will provide
more formal algorithm specifications. In MuSig-L, a key pair is the same as in the usual FSwA: ski = si
and pki = ti = Āsi mod q, where si consists of small elements in a usual power-of-two cyclotomic ring
R = Z[X]/(XN +1). On receiving public keys from the other parties, P1 derives “aggregation coefficients”
by hashing a set of keys and each public key held by Pi. Here the hash function is instantiated by the
random oracle Hagg : {0, 1}∗ → C, where C is the same as the challenge space used by the underlying
FSwA Σ-protocol. It then constructs an aggregated key t̃ by taking the linear combination of all keys.
This is similar to the key aggregation technique introduced in MuSig [MPSW19] (where they choose ai
to be uniform in Zq), but we must carefully choose the size of aggregation coefficients so that it enables
security reduction to the Module-SIS assumption (a strategy similar to [MJ19]).

In the offline phase, parties exchange a bunch of “commit” messages w(1)
i , . . . ,w(m)

i . We then use the
“random linear combination” trick similar to MuSig2 and DWMS, to aggregate the “commit” messages
coming from the offline phase. That is, we force everyone to derive the “nonce” coefficients b(j)’s through
another random oracle Hnon, and these nonces are used for computing a single aggregate commit w̃. This
operation essentially prevents malicious parties from adaptively influencing inputs to the next random
oracle Hsig deriving “joint challenge” c ∈ C that all parties must agree on. Finally, P1 locally performs
rejection sampling on a potential response value z1, such that the distribution of revealed z1 is always
independent of the secret s1.

2 We remark that [BK20] has attempted to simulate rejected transcripts, although, to the best of our under-
standing, they only cover the case where the ring Rq = Zq[X]/(XN + 1) happens to be a field which is not the
case for most existing FSwA schemes.

4

Table 1: Comparison with previous DLog/FSwA-based multi-signatures with concurrent security in the
plain-public key model. The column “#Off” indicates the number of rounds that can be preprocessed
in the offline phase.3 “#On” indicates the number of rounds that must occur online after receiving a
signature to sign. The total number of rounds is thus given as “#Off + #On”. The column “Agg.”
indicates whether a scheme supports key aggregation or not. Except for [FH20] proofs are provided in
the classical ROM.

Assumption #Off #On Agg. Note

BN [BN06] DL 1 2 N Commit and open
MuSig [MPSW19] DL 1 2 Y Commit and open
mBCJ [DEF+19] DL 0 2 Y Trapdoor commitment
MuSig-DN [NRSW20] DL & DDH 0 2 Y NIZK proof of PRF evaluation
MuSig2 [NRS21] AOMDL 1 1 Y Linear combination
DWMS [AB21] AGM 1 1 Y Linear combination
HBMS [BD21] DL 0 2 Y Trapdoor commitment
ES [ES16] DCK 1 2 N Commit and open; proof incomplete4

MJ [MJ19] RSIS 1 3 Y Commit and open; proof incomplete
BK [BK20] RSIS 1 2 N Commit and open; Rq is a field
FH [FH20] MLWE & rMLWE 1 2 N Commit and open; proof in QROM
DOTT [DOTT22] MLWE & MSIS 0 2 N Trapdoor commitment
Our MuSig-L MLWE & MSIS 1 1 Y Linear combination; L must be a set5

Generalized rejection sampling. Not relying on a commitment scheme has a major drawback: we need
to deal with possible leakage, due to both sending the first messages in the clear, and with aggregating
them using random coefficients.

As the w(j)
i are sent in the clear, the adversary A knows before receiving zi that the response will

be sampled from the coset Λ⊥ũ (Ā), where ũ :=
∑
j b

(j)w(j)
1 + c · a1 · t1. This information does not

give A any advantage in case the signing protocol succeeds. However, in case of abort A has gained some
information on z1, that is, it knows that some element of Λ⊥ũ (Ā) has been rejected. This could potentially
leak information about the secret key, a subtle issue avoided in [DOTT22] by opening the commitment
to the first message only in case of a success.

The second issue is related to efficiency. Aggregating the “commit” messages using some random
coefficients implies that the distribution of the response z1 depends on those coefficients. In particular,
the distributions of z1 is a Gaussian with parameter Σ that changes with different choices of the b(j)’s.
This is not just a nuisance: Σ leaks information about the b(j)’s. It is not immediate to see why this is
concerning, as it only becomes an issue when simulating honest signers in the security proof. Essentially,
this requires to generate z1 after generating w(1)

1 , . . . ,w(m)
1 with a trapdoor and before sampling the b(j)’s

using such a trapdoor. Thus, the distribution of z1 has to be independent of the b(j)’s.
Perhaps unsurprisingly, rejection sampling can take care of all the leakage. In particular, we show

that the rejection sampling technique is secure even if: (1) A knows the lattice coset, (2) the secret
and public Gaussian distributions have different centers, and covariance matrices (obviously, for this to
make sense neither difference can be too large). In fact, we prove a more general result than what the
security of MuSig-L needs, allowing not only spherical, but ellipsoidal discrete Gaussians (i.e., Gaussians
whose covariance matrix Σ is not diagonal). The proof of this result required quite the effort: while we
could follow the structure of the proof of the original rejection sampling theorem, the intermediate steps
required to extend many existing results, either to the case of ellipsoidal Gaussians, or to sampling from
lattice cosets, or both. Proofs were simplified by relying on the canonical representation of ring elements,
even though the rest of the algorithms will use the coefficient representation. This is not an issue per se,
as these embeddings are isometric in power-of-2 cyclotomics. The result is a rather powerful extension
3 Although ES, MJ, BK, and FH do not explicitly support an offline-online paradigm, we conjecture the first
round of these schemes can be securely preprocessed since they all follow the same blueprint of BN.

4 We were informed by the authors of [ES16] that a complete security proof would eventually appear in a full
version of their conference paper, although that full version is not available yet at the time of writing.

5 This is because in our scheme each signer explicitly prohibits duplicate keys in the key list L so that the security
proof goes through in the offline-online security model allowing concurrent sessions. The rationale behind this
choice will be detailed in Section 4.5.

5

of the rejection sampling technique, that we believe of independent interest. As a direct consequence of
our generalization, in Appendix B.4 we provide a complete hybrid argument allowing one to simulate
rejected transcripts of the standard Fiat-Shamir with aborts protocols without commitment to w.
Exploiting trapdoor sampling for simulation. As usual, the main technical challenge in proving
security of multi-signature is to simulate the behaviors of an honest party P1 without knowledge of the
actual secret key. Although our rejection sampling lemma allows to simulate the distribution of z1 and
thus the aggregated offline outputs w̃1 = Āz1 − c · a1 · t1, it is not immediately clear how one can
make sure w̃1 is consistent with the offline messages w(j)

1 and nonces b(j). One naive approach would
be to mimic the security proof for MuSig2: they essentially avoid the issue with simulation by relying
on hardness of the one-more DL problem, a stronger assumption that solving DL is still hard even after
making a limited number of queries to a DL solver oracle. Although a similar lattice-based problem was
recently introduced by Agrawal et al. [AKSY21] and it might make an interesting alternative approach
to proving our scheme, it is not a well-studied assumption yet and we’re thus motivated to propose an
entirely different proof strategy.

One crucial observation is that, in the lattice world, a simulator can secretly produce a trapdoor
when creating the offline messages W := [w(1)

1 , . . . ,w(m)
1], using the gadget-based trapdoor generation

algorithm of Micciancio and Peikert [MP12] with m = O(k log q). Once the corresponding trapdoor is
known, the simulator can now sample b = [b(1), . . . , b(m)] from a coset Λ⊥w̃1

(W) using a Gaussian preimage
sampling for the SIS function fW : x 7→W · x mod q. In this way, our simulator can successfully output
a simulated signature, offline messages, and nonces b(j) that are all statistically indistinguishable with
actual outputs of the honest party. In Section 4.4 we realize this idea in the form of oracle simulation
lemma, which is proven by combining the utility lemma in Section 4.2 and instantiation of the trapdoor
in Section 4.3. Finally, Section 4.5 formally states CMA security of our scheme.
Supporting technical lemmas. Our analysis and the security proof of our protocol rely on a number
of technical facts related to discrete Gaussian distributions over module lattices, sometimes with general
covariance matrices. Most of those facts are simple extensions and generalizations of well-known results in
the literature, while others are less easy to come up with. Since a number of them may be of independent
interest, we have tried to state them in a relatively high level of generality, and to provide relatively
self-contained proofs either way.
Caveats and future directions In this work we limited ourselves to constructing the first offline-online
lattice-based multi-signature achieving several important design goals with a rigorous security proof in the
classical ROM, rather than striving for concrete efficiency and proof in the QROM. That is, we showcase
our new proof techniques combined with MuSig2-like tricks lead to minimal online round complexity
and key aggregation, while maintaining the asymptotic signature size and the set of assumptions of
[DOTT22]. Our proof invokes the double-forking technique of [NRS21], causing a quartic loss in the
security reduction and making itself incompatible with the QROM. The former issue is a limitation
inherited from all previous schemes within the same paradigm supporting key aggregation (except for
DWMS only proven in the AGM, and mBCJ not in the PPK). In fact, without key aggregation it is
rather straightforward to prove a variant of our scheme with a usual quadratic loss using the standard
forking lemma, which is comparable to DOTT. We highlight lifting our proof in the QROM using, e.g.,
the lossy ID techniques of [AFLT16,KLS18] as an interesting direction for future work. Although concrete
parameters and implementation are also left for future work, we expect a number of optimizations are
applicable to our basic blueprint construction, e.g., by exploiting (Mod-)NTRU for trapdoor sampling
(which will likely reduce the parameter m and thus σ1 significantly) instead of [MP12], by relying on
the “one-more” SIS assumption of [AKSY21], by applying the bit truncation tricks of Dilithium, etc.
We believe our work serves as a stepping stone towards truly practical multi-signatures with quantum
resiliency.

1.3 Concurrent work
Fleischhacker, Simkin and Zhang [FSZ22] also propose a new lattice-based multi-signature scheme. Both
MuSig-L and their construction (denoted by FSZ below) are provably secure against rogue-key attacks
in the classical ROM and under standard lattice assumptions, and support the offline-online paradigm
allowing the expensive operations to be preprocessed. However, the two works contain significantly dif-
ferent motivations, techniques, and security models, and thus contributions are somewhat incomparable.
We summarize the differences below.
– FSZ combines the one-time signature of [BK20] with their improved homomorphic Merkle tree com-

mitment, while MuSig-L is based on the Fiat-Shamir with aborts paradigm of [Lyu12].

6

P1(Ā = [A|Ik], sk1 = s1, pk1 = t1 = Ā · s1, µ)

// Key aggregation phase

t1

(ti)i∈[2,n]

//Derive aggregation coefficients
For i ∈ [n] : ai := Hagg((ti)i∈[n], ti)

t̃ :=
n∑
i=1

aiti mod q

// Offline phase

y(1)
1 ← D`+k

σ1

For j ∈ [2,m] : y(j)
1 ← D`+k

σy

For j ∈ [1,m] : w(j)
1 := Āy(j)

1 mod q

com1 := (w(j)
1)j∈[m]

pk1||com1

(pki||comi)i∈[2,n]

// Online phase
If ∃i ≥ 2 : pki = pk1: Abort

(r(j))j∈[2,m] := Hnon((pki||comi)i∈[n], µ, t̃)

b(1) := 1

For j ∈ [2,m]: sample b(j) ∼ Dσb using randomness r(j)

w̃ :=
m∑
j=1

b(j) ·

(
n∑
i=1

w(j)
i

)
mod q

ỹ1 :=
m∑
j=1

b(j) · y(j)
1

c := Hsig(w̃, µ, t̃)
z1 := c · a1 · s1 + ỹ1

If RejSamp(c · a1 · s1, z1, (b(j))j∈[m]) = 0 :
z1 := ⊥

z1

If zi = ⊥ for some i, abort (zi)i∈[2,n]

Otherwise, compute z̃ :=
n∑
i=1

zi

Output (w̃, z̃)

Fig. 1: Stylized overview of our two-round lattice-based multi-signature

– The goal of FSZ is to present a concretely efficient scheme in a slightly restricted “synchronized”
model where signers are only allowed to produce a single signature in each time step. They further
provide a proof-of-concept implementation with benchmarks, whereas concrete efficiency estimates
are outside the scope of our work due to the fact that we didn’t try to optimize for parameters. In
contrast, we focus on the feasibility of FSwA multi-signature with minimal online round complexity
in the usual plain public-key model where signers can freely launch many concurrent signing sessions
(as defined in [BN06] and [NRS21]).

– The FSZ scheme is fully non-interactive, while MuSig-L requires one round of interaction in the offline
phase and potentially more in case one of the signers aborts, which however can be mitigated to some
extent using parallel repetitions.

– The FSZ scheme only allows a signer to produce a bounded number of signatures for a given pub-
lic key (corresponding to a Merkle root obtained by hashing many one-time public keys) whereas
MuSig-L relies on a usual Dilithium-like key pair and has no limitation on the number of signatures.
However, they carefully choose parameters to achieve a good balance between the maximum number
of signatures and the key size, allowing instantiation sufficient for a practical scenario.

1.4 Other related work

Multi-signatures belong to a larger family of signatures that support aggregation, its closest relatives
being aggregate signatures and threshold signatures.

There have been a number of results on threshold Schnorr-style signatures [GJKR07,GKMN21,KG20,
NKDM03,SS01] whose techniques are somewhat analogous to multi-signature counterparts. In particular,
FROST [KG20] utilizes the random linear combination trick similar to MuSig2 to realize a two-round
protocol. Threshold signatures can be instantiated from lattices, but the existing t-out-of-n constructions
require either to threshold secret share the signing key of GPV signature [BKP13], or FHE [BGG+18,
ASY22]. The multi-signature of [DOTT21] also gives rise to the n-out-of-n threshold signature, and they
in fact showed that essentially the same tricks work under both security models. We therefore highlight
adapting our techniques in the threshold setting as an interesting direction for future work. The panorama
of aggregate signature from lattices is similar. A three-round construction by Boneh and Kim [BK20]
requires interactive aggregation, which again closely follows the BN Schnorr-based scheme. The recent
aggregate signature by Boudgoust and Roux-Langlois [BRL21] requires no interaction between signers
although the asymptotic signature size grows linearly in the number of signers.

2 Preliminaries

Notations For positive integers a and b such that a < b we use the integer interval notation [a, b] to
denote {a, a+ 1, . . . , b}. We also use [b] as shorthand for [1, b]. We denote by y[j] the j-th component of
vector y, and by In the identity matrix of dimension n. If S is a set we write s←$ S to indicate sampling
s from the uniform distribution defined over S; if D is a probability distribution we write s ← D to
indicate sampling s from D ; if A is a randomized (resp. deterministic) algorithm we write s← A (resp.
s := A) to indicate assigning an output from A to s. For a set S, 〈S〉 denotes a unique encoding of S
(e.g., the sequence of strings in lexicographic order). Throughout, the security parameter is denoted by
λ.
Power-of-two cyclotomics and norms We instantiate the scheme over power-of-two cyclotomics. Let
N be a power of two and ζ be a primitive 2Nth root of unity. The 2Nth cyclotomic number field is
denoted by K := Q(ζ) ∼= Q[X]/(XN + 1) and the corresponding ring of algebraic integers is R := Z[ζ] ∼=
Z[X]/(XN + 1). Both are contained in KR := K ⊗R ∼= R[X]/(XN + 1). Throughout the paper, we fix q
to be a prime satisfying q = 5 mod 8 and let Rq := R/qR ∼= Zq[X]/(XN + 1). An Lp-norm for a module
element v ∈ Rm is given by the coefficient embedding: for v = (

∑N−1
i=0 vi,1X

i, . . . ,
∑N−1
i=0 vi,mX

i)T , we
define

‖v‖p :=
∥∥(v0,1, . . . , vN−1,1, . . . , v0,m, . . . , vN−1,m)T

∥∥
p
.

Elements in R ⊂ K can be also represented through the canonical embedding ϕ : K → CN that
associates to a ∈ K its evaluation over odd powers of ζ. That is, ϕ := (ϕj)j∈Z∗2N where ϕj : a 7→ a(ζj).
The Euclidean norm of a vector v = (v1, . . . , vm)T ∈ Rm in the canonical representation is defined as

‖ϕ(v)‖2 :=
∑

i∈[m],j∈Z∗2N

|ϕj(vi)|2/N,

8

where the scaling factor is needed to ensure that ‖ϕ(1)‖ = 1. For power-of-2 cyclotomics, this choice of
norm yields that the coefficient embedding and the canonical embedding are isometric, thus we denote
the L2-norm by ‖ · ‖ for both representations.

We will need the following results on invertibility.

Lemma 2.1 ([LS18, Corollary 1.2]). Let N ≥ k > 1 be powers of 2 and q = 2k + 1 mod 4k be a
prime. Then any y in Rq that satisfies either 0 < ‖y‖∞ < 1√

k
· q1/k or 0 < ‖y‖ < q1/k has an inverse in

Rq.

Lemma 2.2 ([LN17, Lemma 2.2]). Let N > 1 be a power of 2 and q a prime congruent to 5 mod 8.
The ring Rq has exactly 2qN/2 − 1 elements without an inverse. Moreover, every non-zero polynomial a
in Rq with ‖a‖∞ <

√
q/2 has an inverse.

Singular Values. Given a matrix B ∈ Kn×m
R , let s1(B) (resp., sm(B)) be the largest (resp., least)

singular value of B, i.e., s1(B) = sup{‖Bv‖ : v ∈ Km
R ∧ ‖v‖ = 1} (resp., sm(B) = inf{‖Bv‖ : v ∈

Km
R ∧ ‖v‖ = 1}). For all v, sm(B)‖v‖ ≤ ‖Bv‖ ≤ s1(B)‖v‖ . If B is a diagonal matrix, i.e., B = σiIm

for some σi ∈ KR, we have that s1(B) = maxi ‖σi‖ and sm(B) ≤ mini ‖σi‖ (the proof trivially follows
from standard bounds, cf. [Mic02]).

Lemma 2.3. Given a symmetric positive definite matrix B ∈ Km×m
R , and a nonsingular matrix

√
B ∈

Km×m
R such that B =

√
B
√
B
∗, it holds that si(B) = (si(

√
B))2 for i = 1,m, and s1(B−1) = (sm(B))−1.

Proof. Let
√

B = QSU be the singular value decomposition of
√

B. One can obtain the singular value
decomposition of B from the decomposition of

√
B:

√
B = QSU ⇒ B =

√
B
√

B
∗

= QSU(QSU)∗ = QS2Q ,

thus for all i = 1, . . . ,m it holds si(B) = (si(
√

B))2. Analogously, from B−1 = Q(S2)−1Q it follows that
si(B−1) = si((S2)−1) = (sm−(i−1)(S2))−1 = (sm−(i−1)(B))−1.

2.1 Discrete Gaussian Distribution

Let Σ ∈ Km×m
R be a symmetric positive definite matrix, and let

√
Σ ∈ Km×m

R be a nonsingular matrix
such that Σ =

√
Σ
√
Σ
∗. The discrete Gaussian distribution DΣ,c,Λ over a lattice Λ ⊆ Rm with parameters

c and Σ is defined as

ρ√Σ,c(z) := exp
(
−π‖
√
Σ
−1

(z− c)‖2
)

and Dm√
Σ,c,Λ(z) :=

ρ√Σ,c(z)∑
x∈Λ ρ

√
Σ(x) .

If Σ = σ2 · Im we write Dm
σ,c,Λ. We denote by Dm√

Σ,c the discrete Gaussian over Rm, and omit c when
c = 0. In our signature scheme, signers only carry out spherical Gaussian sampling with σ ∈ R+ in the
coefficient representation. Since the canonical and coefficient embeddings are isometric when N is a power
of 2, a potential response value should be first converted to the canonical representation and then cast to
our generalized rejection sampling technique whose analysis is done w.r.t. the canonical representation
for technical reasons.

The smoothing parameter ηε(Λ) of a lattice for ε > 0 is the smallest s > 0 such that ρ1/sIm(Λ∗\{0}) ≤
ε. For a positive definite matrix

√
Σ, we say that Σ ≥ ηε(Λ) (i.e., sm(Σ) ≥ ηε(Λ)) if ηε(

√
Σ
−1
Λ) ≤ 1,

i.e., if ρ√
Σ
−1(Λ) ≤ ε. Throughout the paper we assume ε = 2−N .

We need a bound on the smoothing parameter of the Module-SIS lattice Λ⊥q (Ā) for a random matrix
Ā modulo q, generalizing [GPV08, Lemma 4.3]. Such a bound is obtained by Langlois and Stehlé [LS15,
Lemma 5.1] as follows. First recall the following standard consequence of Banaszcsyk’s transference.

Lemma 2.4 ([GPV08, Lemma 2.5]). For any full-rank lattice Λ in Rn and any ε > 0, we have:

ηε(Λ) ≤

√
log
(
2n(1 + 1/ε)

)
/π

λ∞1 (Λ∗) ,

where λ∞1 (Λ∗) denotes the length of the shortest vector in the infinity norm in the dual lattice Λ∗.

9

Now for any Ā ∈ Rn×mq , recall that

Λ⊥q (Ā) = {x ∈ Rm : Āx ≡ 0 mod q}

has as its dual lattice 1
qΛq(Ā) where

Λq(Ā) = {x ∈ Rm : x ≡ Ā∗y mod q for some y ∈ Rn},

and Ā∗ denotes the conjugate transpose of Ā. We then have:
Lemma 2.5. Let q be an odd integer and Ā a uniformly random matrix in Rn×mq , m > n. Then, except
with probability at most 2−N on the choice of Ā, we have:

λ∞1
(
Λq(Ā)

)
≥ 1

8
√
N
q1− n

m . (1)

In particular, for any ε > 0, with overwhelming probability on the choice of Ā, we have:

ηε(Λ⊥q (Ā)) ≤ 8√
π
q
n
m

√
N log

(
2mN(1 + 1/ε)

)
.

Proof. The first claim is an immediate consequence of [LS15, Lemma 5.1]. We only need to take into
account the fact that, since we use the coefficient embedding as opposed to the canonical embedding
in [LS15], our definition of Λq(Ā) is scaled by a factor of N compared to that of Langlois and Stehlé
(which is a sublattice of 1

NR
m). On the other hand, the infinity norm on Rm in our case (defined as the

maximum absolute value of all coefficients of all components of a vector) can be up to N times smaller
than the ‖ · ‖∞,2 considered in their setting. Those two factors of N compensate exactly to yield (1).

Then, (1) combined with Lemma 2.4 yields the second claim, taking into account the fact that Λ⊥q (Ā)
is of full Z-rank mN with overwhelming probability. ut

The next lemma extends the classical bound on the norm of a sample from a discrete ellipsoid Gaussian
over the cosets. Its proof is analogous to the original; it essentially follows observing that DΛ+u,

√
Σ(z) =

ρ√Σ(z)/ρ√Σ(Λ+ u) ∝ ρ√Σ(z).

Lemma 2.6 ([AGHS13, Lemma 3] adapted to rings and sampling from cosets). For any
0 < ε < 1, lattice Λ ⊆ Rm, u ∈ Rm, and symmetric positive definite matrix Σ ∈ Km×m

R such that
sm(Σ) ≥ ηε(Λ),

Pr
[
‖z‖ ≥ s1(

√
Σ)
√
mN : z← Dm√

Σ,Λ+u

]
<

1 + ε

1− ε2−mN .

Proof. By [AGHS13, Fact2] one can sample from the distribution Dm
Λ+u,

√
Σ
by sampling t from a spherical

Gaussian with covariance 1 over the lattice coset Λ′ + u′ :=
√
Σ
−1
Λ+
√
Σ
−1u and returning z =

√
Σt.

As s1(
√
Σ
−1) = 1/sm(

√
Σ), the lattice Λ′ is obtained shrinking the vectors of Λ; thus sm(

√
Σ) ≥ ηε(Λ) ≥

ηε(Λ′). Applying [Ban93, Lemma 1.5] and [GPV08, Lemma 2.7] yields

Pr
[
‖t‖ ≥ s

√
mN : t← Dm

Λ′+u′
]

= ρ((Λ′ + u′) \
√
mN · B)

ρ(Λ′ + u′) ≤ ρ(Λ′)
ρ−u′(Λ′)

2−mN ≤ 1 + ε

1− ε2−mN ,

where B is the fundamental parallelepiped of Λ. The thesis follows observing that ‖z‖ = ‖
√
Σt‖ ≤

s1(
√
Σ)‖t‖. ut

The following result is a direct generalization of [MP13, Theorem 3.3] to the ring setting. The proof
is identical, but we include it for the sake of completeness.
Lemma 2.7. Let Λ ⊂ Rn be a full-rank module lattice, z1, . . . , zm ∈ R arbitrary elements, and σ1, . . . , σm ∈
K++

R satisfying σi �
√

2ηε(Λ) ·maxj ‖
√
zjz∗j ‖ for all i. Pick y1, . . . ,ym ∈ Kn

R independently with distri-
butions yi ∼ DΛ+ci,σi for some centers ci ∈ Kn

R , and let y =
∑
i zi · yi. Then, the distribution of y is

statistically close to DI ·Λ+c,σ where I is the ideal generated by the zi’s, c =
∑
i zi · ci and

σ =
√∑

i

ziz∗i · σ2
i .

In particular, if the zi’s are coprime (i.e., I = R), the distribution of y statistically close to DΛ+c,σ.

10

Proof. Clearly, the support of zi·yi is exactly zi(Λ+ci), so the support of y is z1(Λ+c1)+· · ·+zm(Λ+cm) =
I ·Λ+ c as required. Thus, all we have to show is that for y0 ∈ I ·Λ+ c, Pr[y = y0] is proportional to
ρσ(y0), up to negligible variation.

We do so by following the approach of Micciancio–Peikert [MP13, Th. 3.3], and writing S = diag(σ1, . . . ,
σm), S′ = S ⊗ In and Λ′ = (S′)−1 · Λm =

⊕
i σ
−1
i Λ ⊂ Kmn

R . By indepedence of the yi’s, the vector
y′ = (S′)−1 · (y1, . . . ,ym) is distributed as DΛ′+c′ (with parameter 1) where c′ = (S′)−1 · (c1, . . . , cm).
And we have y = Zy′ where Z = ((z1, . . . , zm)T · S) ⊗ In. Hence, we want to prove that Z · DΛ′+c′ is
statistically close to DI ·Λ+c,σ.

Fix x0 ∈ Λ′ + c′ and let y0 = Zx0 ∈ I · Λ + c. Moreover, define the sublattice L (Λ′ given by
L = {v ∈ Λ′ : Zv = 0} = Λ′ ∩ ker(Z). A vector y′ ∈ Λ′ + c′ satisfies Zy′ = y0 if and only if
Z(y′ − x0) = 0, that is, y′ − x0 ∈ L (since the difference is in Λ′). In other words, the set of y′ ∈ Λ′ + c′
such that Zy′ = y0 is exactly L+ x0. Therefore:

Pr[y = y0] = ρ(L+ x0)
ρ(Λ′ + c′) = ρ(x0 − x⊥0) · ρ(L+ x⊥0)

ρ(Λ′ + c′) ,

where x⊥0 denotes the orthogonal projection of x0 on ker(Z) = span(L). The remainder of the proof
consists of two steps: showing that ρ(x0 − x⊥0) = ρσ(y0) on the one hand, and showing that ρ(L + x⊥0)
is negligibly close to ρ(L) and hence essentially independent of x⊥0 on the other hand. This will yield
Pr[y = y0] essentially proportional to ρσ(y0) as required.

First, note that x0 − x⊥0 = Z∗Zx0/σ
2 (where for matrices, the star denotes the conjugate transpose).

Indeed, denoting the right-hand side by w, we have:

Z · (x0 −w) = Z · x0 − ZZ∗ · Z · x0/σ
2 =

(
1− 〈Sz̄,Sz̄〉

σ2

)
Z · x0 = 0,

where we have denoted z̄ = (z∗1 , . . . , z∗m), and the second equality comes from the fact that ZZ∗ =
(z̄∗S ⊗ In) · (Sz̄ ⊗ In) = 〈Sz̄,Sz̄〉In = σ2In. Thus, x0 − w ∈ ker(Z). Moreover, for any u ∈ ker(Z), we
have:

〈w,u〉 = 〈 1
σ2 Z∗Zx0,u〉 = 〈 1

σ2 Zx0,Zu〉 = 0,

therefore w ∈ ker(Z)⊥. This proves that the orthogonal projection x⊥0 of x0 on ker(Z) is indeed equal to
x0 −w as claimed.

As a result, we have:

‖x0 − x⊥0 ‖2 = ‖w‖2 = 〈 1
σ2 Z∗Zx0,

1
σ2 Z∗Zx0〉

= 〈ZZ∗
σ4 · Zx0,Zx0〉 = 〈 1

σ
Zx0,

1
σ

Zx0〉 =
∥∥∥y0

σ

∥∥∥2
.

In particular, ρ(x0 − x⊥0) = ρσ(y0) as required.
Finally, all that remains to prove is that ρ(L + x⊥0) is within negligible deviation of ρ(L) (and in

fact, ρ(L+ x) is within negligible deviation of ρ(L) for all x ∈ span(L)). This results from the fact that
ηε(L) ≤ 1 under the assumptions of the theorem, as we will now show.

Indeed, introduce the lattice Z ⊂ Rm of vectors v ∈ Rm orthogonal to z̄. An R-basis of Z is given
by the vectors (z∗i , 0, . . . , 0,−z∗1 , 0, . . . , 0) for i = 2, . . . ,m, which are all of norm ≤

√
2 · maxi ‖

√
z∗i zi‖.

Now note that (S′)−1(Z ⊗ Λ) =
(
(S)−1Z

)
⊗ Λ is a sublattice of L: this is because it is contained in

Λ′ = (S′)−1(Rm ⊗ Λ), and for all z0 ∈ Z, v0 ∈ Λ, we have:

Z · (S′)−1(z0 ⊗ v0) = (zTSS−1z0)⊗ v0 = 〈z̄, z0〉v0 = 0.

In particular:

ηε(L) ≤ ηε((S′)−1(Z ⊗ Λ)) ≤ ηε(Z ⊗ Λ)
mini ‖σi‖

≤
ηε(Λ) ·

√
2 ·maxi ‖

√
z∗i zi‖

mini ‖σi‖
≤ 1

where the third inequality on the smoothing of a tensor product is given by [MP13, Corollary 2.7], and
the last one by assumption on the σi’s. This concludes the proof. ut

11

2.2 Assumptions
We restate the two lattice problems over a module that are standard in the literature: module short integer
solution (MSIS) and learning with errors (MLWE). Note that the latter k elements of s correspond to
the error term of MLWE. The set Sη is defined in Table 2.
Definition 2.8 (MSISq,k,`,β assumption). Let λ ∈ N be a security parameter. For a prime q(λ), a
bound β = β(λ) > 0 and positive integers k = k(λ), ` = `(λ), the MSISq,k,`,β assumption holds if for any
probabilistic polynomial-time algorithm A, the following advantage is negligible in λ.

AdvMSIS
q,k,`,β(A) := Pr

[
0 < ‖x‖ ≤ β ∧ [A|Ik] · x = 0 mod q : A←$ Rk×`q ; x← A(A)

]
.

Definition 2.9 (MLWEq,k,`,η assumption). Let λ ∈ N be a security parameter. For a prime q(λ), and
positive integers k = k(λ), ` = `(λ), η = η(λ), the MLWEq,k,`,η assumption holds if for any probabilistic
polynomial-time algorithm D, the following advantage is negligible in λ.

AdvMLWE
q,k,`,η(D) := |Pr

[
b = 1 : A←$ Rk×`q ; s←$ S`+kη ; t := [A|Ik] · s mod q; b← D(A, t)

]
Pr
[
b = 1 : A←$ Rk×`q ; s←$ S`+kη ; t←$ Rkq ; b← D(A, t)

]
|.

2.3 Offline-online multi-signature
Following [NRS21], we define a two-round multi-signature scheme tailored to the offline-online paradigm.
A multi-signature MS consists of a tuple of algorithms (Setup,Gen,KAgg,SignOff,SignOn,Agg,Ver).
– Setup(1λ) outputs public parameters pp. Throughout, we assume that pp is given as implicit input

to all other algorithms.
– Gen() outputs a key pair (pk, sk)
– KAgg(L) takes a set of public keys L = {pk1, . . . , pkn} and deterministically outputs an aggregated

public key p̃k.
– SignOff(sk) is an offline signing algorithm that that can be run independently of the message µ to

sign. It outputs an offline message off and some state information st.
– SignOn(st,msgs, sk, µ, {pk2, . . . , pkn}) is an online signing algorithm that takes as input the state

information passed on to by SignOff, offline messages msgs = {off2, . . . , offn} from cosigners, a secret
key sk, a message to sign µ, and cosigner’s public keys {pk2, . . . , pkn}. It outputs an online message
on. Following the convention introduced in [BN06], each signer assign indices 1, . . . , n to the signers,
with itself being signer 1. In particular, these indices are merely local references to each signer and
thus they are not identities.

– Agg(on1, . . . , onn) takes online messages as input, and outputs an aggregated signature σ, which might
potentially contain ⊥.

– Ver(p̃k, µ, σ) takes an aggregated key p̃k, a message µ, and a signature σ as input. It outputs 1 or 0.

Remark 2.10. Nick et al. [NRS21] additionally defines “an aggregator node” in their syntax to further
optimize communication complexity of the protocol. We omit this optimization because as we shall see
later, our security proof relies on each signer’s ability to check individual outputs from co-signers.

In this work, we propose a scheme where cosigners may abort (indicated by on = ⊥ after run-
ning SignOn), which is inherent in the FSwA-based interactive multi-signature [DOTT22] [FH20] [ES16].
Hence, a single run of the protocol fails to output a valid signature with certain probability. To reduce
such a correctness error, we define correctness so that it explicitly handles τ parallel repetitions of the
signing protocol.
Definition 2.11 (MS-COR). A two-round multi-signature scheme MS has correctness error δ if

Pr
[
0← MS-CORMS(λ, n, τ)

]
≤ δ

where the game MS-CORMS is described in Game 1.
The following definition guarantees unforgeability of a multi-signature scheme with two rounds of

interactions. Note that we explicitly allow the adversary to launch many signing sessions in parallel
rather than forcing them to finish every signing attempt before starting the next one. This models real-
world adversarial behaviors that exploit concurrent attacks as observed in Drijvers et al. [DEF+19] It
is also crucial for the offline sign oracle OSignOff to not take any message as inputs, and instead a pair
(µ,L) only gets included in the query set Q once queried to OSignOn.

12

Game 1: MS-CORMS(λ)

1: pp← Setup(1λ)
2: for i ∈ [1, n] do
3: (pki, ski)← Gen()
4: for j ∈ [1, τ] do
5: (offi,j , sti,j)← SignOff(ski)
6: msgsj := (off1,j , . . . , offn,j)
7: L := {pk1, . . . , pkn}

8: for j ∈ [1, τ] do
9: for i ∈ [1, n] do

10: oni,j ← SignOn(sti,j ,msgsj \{offi,j}, ski, µ, L\{pki})
11: σj ← Agg(on1,j , . . . , onn,j)
12: if ∃j ∈ [1, τ] : σj 6= ⊥ then
13: return Ver(KAgg(L), µ, σj)
14: else
15: return 0

Game 2: MS-UF-CMAMS(A, λ)

1: pp← Setup(1λ)
2: (pk1, sk1)← Gen()
3: ctr := 0
4: S := ∅; Q := ∅
5: (L∗, µ∗, σ∗)← AOSignOn,OSignOff,H(pp, pk1)
6: if (pk1 /∈ L∗) ∨ ((L∗, µ∗) ∈ Q) then
7: return 0
8: return Ver(KAgg(L∗), µ∗, σ∗)

OSignOff
1: ctr := ctr + 1
2: sid := ctr; S := S ∪ {sid}
3: (off, stsid)← SignOff(sk1)
4: return off

OSignOn(sid,msgs, µ, {pk2, . . . , pkn})
1: if sid /∈ S then return ⊥
2: on← SignOn(stsid,msgs, sk1, µ, {pk2, . . . , pkn})
3: L := {pk1, . . . , pkn}
4: Q := Q∪ {(L, µ)}
5: S := S \ {sid}
6: return on

Definition 2.12 (MS-UF-CMA). A two-round multi-signature scheme MS is said to be MS-UF-CMA
secure in the random oracle model, if for any PPT adversary A

AdvMS-UF-CMA
MS (A, λ) := Pr

[
1← MS-UF-CMAMS(A, λ)

]
≤ negl(λ)

where the game MS-UF-CMAMS is described in Game 2 and H denotes the random oracle.
As a special case, if the adversary makes no queries to the sign oracles OSignOff and OSignOn in Game 2
and its advantage is negligible, a scheme MS is said to be MS-UF-KOA (unforgeable against key only
attacks).

2.4 General Forking Lemma
We restate the general forking lemma from [BN06].
Lemma 2.13 (General Forking Lemma). Let Q be a number of queries and C be a set of size
|C| > 2. Let B be a randomized algorithm that on input in, h1, . . . , hQ returns an index i ∈ [0, Q] and a
side output out. Let IGen be a randomized algorithm that we call the input generator. Let FB be a forking
algorithm that works as in Alg. 1 given in as input and given black-box access to B. Suppose the following
probabilities.

acc := Pr[i ≥ 1 : in← IGen(1λ);h1, . . . , hQ ←$ C; (i, out)← B(in, h1, . . . , hQ)]
frk := Pr[b = 1 : in← IGen(1λ); (b, out, ˆout)← FB(in)]

Then
frk ≥ acc ·

(
acc
Q
− 1
|C|

)
.

Alternatively,
acc ≤ Q

|C|
+
√
Q · frk.

13

Algorithm 1: FB(in)

1: ρ←$ {0, 1}∗
2: h1, . . . , hQ ←$ C
3: (i, out)← B(in, h1, . . . , hQ; ρ)
4: if i = 0 then
5: return (0,⊥,⊥)
6: ĥi, . . . , ĥQ ←$ C

7: (̂i, ˆout)← B(in, h1, . . . , hi−1, ĥi, . . . , ĥQ; ρ)
8: if i = î ∧ hi 6= ĥi then
9: return (1, out, ˆout)

10: else
11: return (0,⊥,⊥)

3 Our MuSig-L Scheme

3.1 Definition of the Scheme

See Protocol 1 for detailed specifications. The basic algorithms, such as Setup,Gen and Ver closely follow
non-optimized version of the Dilithium-G signature [DLL+17]. In the offline phase each party outputs m
individual “commit” messages, followed by their own public key.

At the beginning of the online phase, a party P1 performs a few sanity checks on the inputs. First,
it checks that the offline messages from other parties do contain a correct set of co-signer’s public keys.
It then checks that its own public key t1 does not appear in the received messages. As we shall see in
the next section, this is crucial for our security proof to go through, although we are not aware of any
attacks in case duplicates are allowed. Finally, it verifies the sum of the mth commit messages w(m) has
an invertible element. This is to prevent the adversary from maliciously choosing their shares of commits
so that the final sum w̃ =

∑m
j=1 b

(j) ·w(j) completely cancels out.
If the inputs look reasonable, P1 proceeds by hashing encoded offline messages to derive randomness

used for sampling Gaussian nonces b(j)’s. Since these are generated from spherical Gaussian, the algorithm
Samp can be efficiently instantiated with existing samplers such as [HPRR20]. It then performs our
generalized rejection sampling detailed in Section 3.2.

3.1.1 Parameters Each element of the secret signing key is chosen from Sη ⊆ R parameterized by
η ≥ 0 consisting of small polynomials:

Sη = {x ∈ R : ‖x‖∞ ≤ η}.

As our scheme is defined over a module of dimension `+ k every signing key belongs to S`+kη .
Moreover the challenge set C ⊆ R parameterized by κ ≥ 0 consists of small and sparse polynomials,

which will be used as the image of random oracles Hsig and Hagg:

C = {c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ}.

In particular, a set of differences C̄ :=
{
c− c′ : c, c′ ∈ C ∧ c 6= c′

}
consists of invertible elements thanks

to Lemma 2.1.
Finally, correctness requires q > 16σ1n (where n is the number of parties, cf. Theorem 3.3) and

αηκ2 < σ1 (cf. Lemma 3.1), and 2kdlog2 qe+ 1 > `+ k is required by security (cf. Section 4.3).

3.2 Rejection Sampling

We now describe the rejection sampling algorithm used in the generation of a partial signature. For the
sake of exposition, in this section we ignore the subscript index i indicating which signer generated a
given vector or element, as we consider the view of only one signer.

14

15

Protocol 1: MuSig-L

The random oracles Hagg : {0, 1}∗ → C, Hsig : {0, 1}∗ → C, Hnon : {0, 1}∗ → {0, 1}l. 〈S〉 denotes unique
encoding of a set S, e.g., lexicographical ordering. || denotes concatenation of two strings.

Setup(1λ)
1: A←$ Rk×`q

2: Ā := [A|Ik]
3: pp := Ā
4: return pp

Gen()
1: s1 ←$ S`+kη

2: t1 := Ās1 mod q
3: (pk, sk) := (t1, s1)
4: return (pk, sk)

Agg(on1, . . . , onn)
1: if ∃i ∈ [1, n] : zi = ⊥ then
2: return ⊥
3: z :=

∑n
i=1 zi

4: σ := (w̃, z)
5: return σ

KAgg(L)
1: {t1, . . . , tn} := L
2: for i ∈ [1, n] do
3: ai := Hagg(〈L〉, ti)
4: t̃ :=

∑n
i=1 aiti mod q

5: return t̃
Ver(pk, σ, µ)

1: (w̃, z) := σ
2: t̃ := pk
3: c := Hsig(w̃, µ, t̃)
4: if Āz− ct̃ = w̃ mod q ∧ ‖z‖2 ≤ Bn then
5: return 1
6: else
7: return 0

Samp(r)
1: Sample b ∼ Dσb using randomness r
2: return b

RejSamp(v, z, (b(j))j∈[m])
1: Σ := (σ2

1 + σ2
y

∑m
j=2(b(j))∗b(j)) · I`+k

2: ρ←$ [0, 1]

3: if ρ ≥ min

 D`+k√
Σ̂

(z)

M ·D`+k√
Σ,v

(z) , 1

 then

4: return 0
5: return 1

SignOff(sk1)
1: s1 := sk1
2: y(1)

1 ← D`+k
σ1

3: For j ∈ [2,m] : y(j)
1 ← D`+k

σy

4: For j ∈ [1,m] : w(j)
1 := Āy(j)

1 mod q
5: com1 := (w(1)

1 , . . . ,w(m)
1)

6: off1 := (t1, com1)
7: st1 := (y(1)

1 , . . . ,y(m)
1 , com1)

8: return (off1, st1)
SignOn(st1,msgs, sk1, µ, (pk2, . . . , pkn))

1: (ti, comi)i∈[2,n] := msgs
2: if 〈(ti)i∈[2,n]〉 6= 〈(pki)i∈[2,n]〉 then
3: return ⊥
4: if ∃i ≥ 2 : ti = t1 then
5: return ⊥
6: L := {t1, . . . , tn}
7: a1 := Hagg(〈L〉, t1)
8: t̃ := KAgg(L)
9: W := {ti||comi}i∈[n]

10: (r(j))j∈[2,m] := Hnon(〈W 〉, µ, t̃)
11: b(1) := 1
12: For j ∈ [2,m] : b(j) := Samp(r(j))
13: For j ∈ [1,m] : w(j) :=

∑n
i=1 w(j)

i mod q
14: [w(m)

1 , . . . , w
(m)
k]T := w(m)

15: if w(m)
1 /∈ R×q then

16: return ⊥
17: w̃ :=

∑m
j=1 b

(j) ·w(j) mod q
18: ỹ1 :=

∑m
j=1 b

(j) · y(j)
1

19: c := Hsig(w̃, µ, t̃)
20: v := c · a1 · s1
21: z1 := v + ỹ1
22: if RejSamp(v, z1, (b(j))j∈[m]) = 0 : then
23: z1 := ⊥
24: on1 := (z1, w̃)
25: return on1

Table 2: Parameters for our multi-signature. Further details can be found in Appendix D.
Parameter Description

n Number of parties
τ Number of parallel repetitions
N = poly(λ) A power of two defining the degree of f(X)

f(X) = XN + 1 The 2N -th cyclotomic polynomial
q = 5 mod 8 Prime modulus
w = dlog2 qe Logarithm of the modulus
R = Z[X]/(f(X)) Cyclotomic ring
Rq = Zq[X]/(f(X)) Ring
k The height of random matrix A
` The width of random matrix A
B = σ1

√
N(`+ k) The maximum L2-norm of signature share zi ∈ R`+k

Bn =
√
nB The maximum L2-norm of combined signature z ∈ R`+k

κ The maximum L1-norm of challenge vector c
C =

{
c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ

}
Challenge space where |C| =

(
N
κ

)
2κ

η The maximum L∞-norm of the secret s
Sη =

{
s ∈ R : ‖s‖∞ ≤ η

}
Set of small secrets

T = κ2η
√
N(`+ k) Chosen to satisfy the hypotheses of Lemma 3.1

σ1 = σbσy
√
N(2kw + 1)(`+ k) Standard deviation of the Gaussian distribution

σy = 29

π
√
π

2 2
Nk q

k
`+kN2

√
(kw + 1) (2 +N + log ((`+ k)N)) Standard deviation of the Gaussian distribution

σb = 25/2
√
π
· 2 2

NkN3/2√kw + 1 Standard deviation of the Gaussian distribution
Σ̂ = diag(σ1, . . . , σ1) Covariance matrix of the target Gaussian distribution
α = σ1−1

T
Parameter defining M

t =
√

N
(π−1) log2 e

Parameter defining M

M = et/α+1/(2α2) The expected number of restarts until a single party can proceed
Mn = Mn The expected number of restarts until all n parties proceed simultaneously
l Output bit lengths of the random oracle Hnon

To understand the distribution of the response z, we start from analyzing the distribution of the
masking vector ỹ =

∑m
j=1 b

(j) ·y(j). The vectors y(j) and the elements b(j) are sampled according different
Gaussian distributions:
– The vectors y(j) ∈ R`+k are sampled from two discrete Gaussians with parameters σ1 > σy > 0 so

that y(1) has higher entropy:

y(1) ← D`+k
σ1

∧ y(j) ← D`+k
σy for all 1 < j ≤ m .

– The elements b(j) ∈ R, j = 1, . . . ,m are all sampled from a discrete Gaussian with parameter σb > 0
but the first, which is constant:

b(1) = 1, b(j) ← Dσb for all 1 < j ≤ m .

Applying Lemma 2.7 with b(j) in the place of the zi and y(j) of yi yields that the masking vector
ỹ = y(1) +

∑m
j=2 b

(j) · y(j) is distributed according to a discrete Gaussian with parameter

Σ = s · I`+k ∈ K(`+k)×(`+k)
R , where s = σ2

1 + σ2
y ·

m∑
j=2

b(j)
∗
b(j) (2)

As the products b(j)∗b(j) are small and σ1 � σy, we have that Σ ≈ σ2
1 · I`+k. Generalizing the rejection

sampling lemma to the case of sampling from ellipsoid discrete Gaussians allows to ensure that the
distribution of z does not depend on the b(j), but it is always statistically close to a spherical Gaussian
with parameter σ1. However, as the first message of the protocol is sent in the clear instead of being
committed to like in [DOTT21], we also need to make sure that in case of aborts this message does not
leak information about the secret. In such a case, an adversary knows that the rejected instance was
sampled from the coset Λ⊥ũ (Ā), where ũ := Ā

(∑
j b

(j)y(j)
)

+ c · a · t. Thus we need to further generalize
the rejection sampling technique, to the case in which the adversary always knows from which coset the
response has been sampled.

Lemma 3.1 summarizes the rejection sampling technique used in MuSig-L; the general result can be
found in Appendix B. Its proof is similar to the proof of the original rejection sampling lemma, but relies
on a new result about the concentration of the squared norm of ellipsoidal Gaussians (cf. Appendix A).

16

This is used in Lemma B.4 to show that the behavior of the two distributions is not that different when
restricted to Gaussian samples from cosets. Finally, we extend the original generalized rejection sampling
lemma [Lyu12, Lemma 4.7] to consider the case of the behavior of a pair of distributions over a subset of
their domain (cf. Lemma B.2). Observe that the latter requires that the measure of the coset does not
change significantly. All results are proved w.r.t. the canonical embedding.

Lemma 3.1 (Rejection Sampling Algorithm). Let Λ ∈ R`+k be a lattice. Let α, T,m > 0, ε ≤ 1/2.
Define σ1, σb, σy > 0 such that σy > ηε(Λ⊥), σb > ηε(R), and σ1 ≥ max{αT, σyσb

√
Nm(`+ k)}.

Consider a set V ⊆ R1×m × Rk × R`+k. Let h : V → [0, 1] be the composition of three probability
distributions h := Db×Du×Dv, where Db returns {1, b(2), . . . , b(m)} for b(j) ← Dσb , Du returns a vector
u ∈ Rk, and Dv returns a vector v ∈ R`+k such that ‖v‖ ≤ T .

Let Σ = (σ2
1 + σ2

y

∑m
j=2 b

(j)∗b(j)) · I`+k, and Σ̂ = diag(σ2
1 , . . . , σ

2
1). Then, for any t > 0, M :=

exp(π/α2 + πt/α), and ε := 2(1 + ε)/(1− ε) exp(−t2(pi− 1)) the distribution of the following algorithm
RejSamp:

– (b(1), . . . , b(m),u,v)← h

– z← D`+k√
Σ,v,Λ⊥u

– with probability 1−min

1,
D`+k√

Σ̂

(z)

M ·D`+k√
Σ,v

(z)

, set z := ⊥

– output (z, b(1), . . . , b(m),u,v)
is within statistical distance ε

2M + 2ε
M of the distribution of:

SimRS:
– (b(1), . . . , b(m),u,v)← h

– z← D`+k√
Σ̂,Λ⊥u

– with probability 1− 1/M , set z := ⊥
– output (z, b(1), . . . , b(m),u,v)

Moreover, RejSamp outputs something with probability larger than 1−ε
M (1− 4ε

(1+ε)2).

Proof. In the following we show that our choice of parameters satisfies the hypotheses of Theorem B.1.
The center trivially satisfies the requirements. Regarding the Gaussian parameters Σ and Σ̂, we have
that:

s1(Σ) = σ2
1

∥∥∥∥∥
(

1 +
σ2
y

∑m
j=2(b(j))∗b(j)

σ2
1

)∥∥∥∥∥
2

≤ σ2
1

(
1 +

σ2
yσ

2
bNm

σ2
1

)
≤ σ2

1

(
1 + 1

(`+ k)

)
where the first inequality follows applying the triangular inequality, and Lemma 2.6 to bound the norm
of the b(j)’s. Setting β := 1/2, yields that trivially s`+k(Σ) > σ2

1/2 and s1(Σ) < (1 + 2
`+k)σ2

1 ; observing
that s1(Σ̂) = s1(Σ̂) = σ2

1 yields the thesis. ut

Observe that efficient sampling from cosets requires a trapdoor for A, which is not compatible with
a reduction from MSIS with the matrix A. However, we only use this lemma in the security reduction to
prove that honest signing can be simulated, thus this sampling does not have to be efficient and we can
carry through the reduction.

Lemma 3.2. The definition of the signing algorithm of MuSig-L in Protocol 1 with the parameters in
Table 2 satisfies the hypotheses of Lemma 3.1.

The proof of Lemma 3.2 is a routine calculation, thus we defer it to Appendix D. Observe that the
statistical distance is negligible, and the probability of returning something is larger than 1/M(1−negl(λ))
as ε = 2−N and t is set so that exp(−t(π − 1) = 2−N = negl(λ).

3.3 Correctness and Efficiency Analysis
Theorem 3.3. MuSig-L has correctness error δ =

(
1− 1

Mn

)τ (1 + negl(λ)) when defined with the param-
eters in Table 2, i.e.,

Pr
[
0← MS-CORMS(λ, n, τ)

]
≤ δ

where the game MS-CORMS is described in Game 1.

17

Proof. The correctness game MS-CORMS returns 0 if for every j ∈ [1, τ] one of the following five events
occurs :
1. The public keys have not been encoded correctly:

bad1 := (〈(ti)i∈[2,n]〉 6= 〈(pki)i∈[2,n]〉) .

By definition of correctness, Pr
[
bad1

]
= 0.

2. There is a collision on the public keys:

bad2 := (∃i1, i2 ∈ [1, n] : ti1 = t12) .

The vectors ti are generated as the product of the public matrix Ā times a secret vector sampled
uniformly at random in the set S`+kη . As Ā = [A|Ik], multiplication by Ā is injective over the last
k coefficients, and by the birthday argument we obtain the bound Pr

[
bad2

]
≤ n(n−1)

|Skη |2
= n(n−1)

ηkN
≤

2−poly(λ).
3. The invertibility condition is not satisfied:

bad3 := (∃i ∈ [1, n] : w(m)
1 /∈ R×q) .

Again, the vector w(m)
1 is the product of the first row of Ā times ȳ :=

∑n
i=1 y(m)

i . As σy ≥ ηε(R)
√

2,
Lemma 2.7 applied component-wise to ȳ guarantees that each of its components is statistically close to
a Gaussian with parameter nσy. Thus, by [LPR13, Corollary 7.5] (i.e., Lemma 4.2) w(m)

1 is statistically
close to uniform over the entire ring, (and the same for all the signers) and Lemma 2.2 ensures that:
Pr
[
bad3

]
= 2

qN/2 − 1
qN

= 2−poly(λ).
4. One of the signers aborts during the RS step:

bad4 := (∃i ∈ [1, n] : RejSamp(v, z1, (b(j))j∈[m]) = 0) .

Lemma 3.2 shows that the hypotheses of Lemma 3.1 are satisfied, thus we have: Pr
[
bad4

]
≤ 1− [1

M +
ε+δ2−εδ2

M]n = 1− 1
Mn + negl(λ).

5. The aggregated signature does not pass verification:

bad5 := (Ver(KAgg(L), µ, σj) = 0) .

The verification includes two checks, the linear relation and the norm bound. The former is trivially
always satisfied, as the output of the hashes is the same for all signers once the ordering of the
components of the input to each hash is set (e.g., to the lexicographical ordering). Analogously, the
sampling of the b(j)’s is deterministic once the nonces are computed, thus all the signers get the same
w̃. One only needs to estimate the probability that a honestly generated z does not satisfy the norm
bound.
By Lemma 3.1 zi is statistically close to a Gaussian with parameter Σ̂ = σ2

1 ·I`+k. Hence by Lemma 2.6
we can bound the norm of zi as: ‖zi‖ ≤ s1(

√
Σ)
√
N(`+ k) = σ1

√
N(`+ k) =: B. Since the sum of

n independent Gaussian samples with parameter σ1 is statistically close to Gaussian with
√
n · σ1

(Lemma 2.7), the norm of the aggregate signature can be bound by Bn =
√
n · B. Finally, we need

to ensure that there is no wrap around when aggregating signatures, i.e., that q/2 > n‖z‖∞. The
norm of z can be bounded as ‖z‖∞ ≤ 8σ1 by substituting m = 1, c = 1, and r = 8σb in Lemma B.6.
The bound holds with probability smaller than 2−195. Hence, q > 16nσ1 is enough to avoid the
wrap around in the aggregation. The bound holds with probability greater than 1 − 2−195. Thus
Pr
[
bad5

]
≤ n2−195.

Putting everything together we get that

Pr
[
0← MS-CORMS(λ, n, τ)

]
=

τ∏
j=1

5∑
i=1

Pr
[
badi

]
=
(

1− 1
Mn

+ n2−195 + negl(λ)
)τ

.

ut

18

3.3.1 Number of Aborts, Round Complexity, and Signature Length. In its standard form,
this protocol requires some repetitions to deal with possible aborts in order to produce a signature. As the
probability that a single signer outputs something is essentially 1/M (cf. Section 3.2), successful signing
requires around Mn rounds, where M = exp(1/(2α2) + t/(2α)). Analogously to [DOTT21], having a
small Mn requires α ∝ n. However, as long as n = o(N−4) this does not imply an increase in the norm
of each signature share, as σ1 = O(N4

√
N). Larger values of n yield an increase of roughly6 O(log(n)) in

the signature size when comparing with Dilithium-G. Standard optimizations are possible. For example,
running parallel executions of the same protocol at once yields at least one instance in which no signer
aborts, thus the protocol is exactly 2-rounds. To this aim λ · log

(
Mn

Mn−1

)
parallel instances suffice.

The length of the signature only depends on Bn, as a standard optimization is for signatures to be
composed by (c, z) instead of (w̃, z). Verification in this case amounts to checking c = Hsig(Āz− ct̃, µ, t̃)
instead of Āz − ct̃ = w̃ in addition to the norm check. With this optimization, signatures output by
our scheme are O(N(` + k) log(σ1

√
n)) bits long. Relying on a trapdoor to simulate the signing oracle

in the security proof affects the length of the signature, as it yields σy = O(N2
√
N) and σb = O(N2)

(cf. Section 4.3). Moreover, our rejection sampling technique requires σ1 to be larger than σy · σb, i.e.,
σ1 = O(N4

√
N). This implies that signature length is in fact O(N(` + k) log(N

√
n)), i.e., larger than a

non-optimized, single-user version of Dilithium-G by a factor O(log(N
√
n)), but equal to [DOTT21]7.

4 Security Proofs

4.1 Reduction to LWE and SIS

For simplicity, we first consider a situation where the adversary does not make any sign oracle queries,
i.e., Qs = 0. Our proof closely follows “the double forking technique” of [MPSW19], except that in our
scheme the aggregation coefficients ai’s are picked from the challenge space C consisting of small and
sparse ring elements.

Theorem 4.1. MuSig-L is MS-UF-KOA-secure under MSISq,k,`+1,β and MLWEq,k,`,η assumptions with
β = 8κ

√
B2
n + κ3. Concretely, for any PPT adversary A against MS-UF-KOA that makes at most Q

queries to the random oracles, there exist PPT adversaries B′ and D such that

AdvMS-UF-KOA
MuSig-L (A) ≤ Q(2Q+ 3)

|C|
+ 2k+1

qkN/2
+ AdvMLWE

q,k,`,η(B′) +

√
Q2

|C|
+Q

√
Q · AdvMSIS

q,k,`+1,β(D) (3)

Proof sketch. We first sketch the high-level ideas of proof. The complete reduction algorithms are
described in Alg. 6. First, we construct a “wrapper” B that internally invokes A to obtain a forged
signature. The wrapper makes sure that a crucial query to Hsig with input t̃∗ is only made after the
corresponding query to Hagg, and aborts otherwise (indicated by the badagg flag). Moreover, it guarantees
that no aggregated keys collide with each other, and aborts otherwise (indicated by the badkcol flag). By
the MLWEq,k,`,η assumption, an honestly generated public key t1 := t∗ = Ās∗ mod q is indistinguishable
with a uniformly random element in Rq. Hence, one can regard the input (A, t∗) as an instance of the
MSISq,k,`+1,β problem.

We then invoke the general forking lemma [BN06] (Lemma 2.13) twice. The first fork happens at the
return value of Hagg : {0, 1}∗ → C (handled by the algorithm D, internally running C); the second fork
happens at the return value of Hsig : {0, 1}∗ → C (handled by C, internally running B). Hence, after
running the wrapper B in total 4 times, we get four forgeries satisfying the equations
6 Observe that to avoid rejecting valid signatures due to arithmetic overflow q has to be larger than the size of
the coefficients in the aggregated signature, i.e., the size of the ring has to grow linearly with

√
n too. This

is inherent to additively aggregating signatures. In general, having a larger q makes MSIS harder, but MLWE
easier. Compensating for it requires increasing N by a factor O

(
1 + logn

log q0

)
, where q0 is the modulus used in

the single party case. However, one usually sets q > 220, which makes logn
log q0

less than 2 even for billions of users,
and allows to neglect this factor in the signature size estimates.

7 This is not immediately evident from their analysis of the signature length. In fact, verifiability requires a
signature to include the randomness used to generate the commitments. Such randomness is sampled from a
discrete Gaussian of parameter s, which has to be large enough to be sampled using a trapdoor, i.e., linear
in N (cf. [DOTT21, Theorem 2]) times square root of the number of parties (since the sum of n Gaussian
randomness is output as a signature). This adds a factor O(log(N

√
n)) to their signature length, making it

equivalent to ours.

19

w̃1 = Āz∗1 − c∗1
∑
i 6=1

aiti − c∗1a1,1t∗ = Āẑ∗1 − ĉ∗1
∑
i 6=1

aiti − ĉ∗1a1,1t∗ mod q (4)

w̃2 = Āz∗2 − c∗2
∑
i 6=1

aiti − c∗2a2,1t∗ = Āẑ∗2 − ĉ∗2
∑
i 6=1

aiti − ĉ∗2a2,1t∗ mod q (5)

where, in particular, c∗1 6= ĉ∗1, c∗2 6= ĉ∗2, and a1,1 6= a2,1 thanks to the forker algorithms FB and FC ,
respectively. Rearranging the above equations, we get that

Āz̄1 − c̄1
∑
i 6=1

aiti − c̄1a1,1t∗ = 0 mod q (6)

Āz̄2 − c̄2
∑
i 6=1

aiti − c̄2a2,1t∗ = 0 mod q (7)

where z̄i = z∗i − ẑ∗i and c̄i = c∗i − ĉ∗i for i = 1, 2, respectively. By multiplying the first equation by c̄2 and
the second by c̄1, the second terms cancel out. This gives us

Ā(c̄2z̄1 − c̄1z̄2)− c̄1c̄2āt∗ = 0. (8)

where ā = a1,1 − a2,1. Since c̄1, c̄2, and ā are all non-zero and none of them are zero-divisors thanks to
Lemma 2.1, c̄1c̄2ā is guaranteed to be non-zero. Moreover, both c̄2z̄1 − c̄1z̄2 and c̄1c̄2ā have relatively
small L2-norms. Thus we obtain a valid solution to SIS w.r.t. the instance matrix [A|Ik|t∗].

4.2 Switching Lemma
Before sketching our CMA security proof, we first prove a simple yet very powerful technical lemma. Let
us first recall a regularity lemma in the ring setting.
Lemma 4.2 (Corollary 7.5 of [LPR13]). Let R be the ring of integers in the mth cyclotomic number
field K of degree N , and q ≥ 2 an integer. For positive integers k ≤ n ≤ poly(N), let Ā = [A|Ik] ∈ Rk×nq ,
where Ik ∈ Rk×kq is the identity matrix and A ∈ Rk×(n−k)

q is uniformly random. Then with probability
1 − 2−Ω(N) over the choice of A, the distribution of Āx ∈ Rkq , where x ← Dn

σ with parameter σ >

2N · qk/n+2/(Nn), satisfies that the probability of each of the qNk possible outcomes is in the interval
(1± 2−Ω(N))q−Nk. In particular, it is within statistical distance 2−Ω(N) of the uniform distribution over
Rkq .

As a consequence, we obtain the following switching lemma. This will make the hybrid arguments for
simulation significantly modular as we shall see soon.
Lemma 4.3 (Switching lemma). Let R,N, q, k, n and σ be as in Lemma 4.2. Consider the following
two algorithms:
A0: A←$ R

k×(n−k)
q ; x← Dn

σ ; u = [A|Ik] · x mod q; output (A,x,u).

A1: A←$ R
k×(n−k)
q ; u←$ Rkq ; x← Dn

Λ⊥u (Ā),σ; output (A,x,u).

Then ∆(A0,A1) = 2−Ω(N).

Proof. Let (Ai, Xi, Ui) be random variables corresponding to outputs of Ai. For any fixed A ∈ Rk×(n−k)
q ,

x ∈ Rnq and u ∈ Rkq , we have

Pr
[
(A0, X0, U0) = (A,x,u)

]
= Pr[A0 = A] · Pr[X0 = x] ·

[
u = Āx mod q

]
= 1
|Rk×(n−k)
q |

·Dn
σ (x) ·

[
x ∈ Λ⊥u (Ā)

]
where we have let Ā = [A|Ik], and

[
u = Āx mod q

]
=
[
x ∈ Λ⊥u (Ā)

]
is the Iverson bracket notation:

it has value 1 if the condition is met and 0 otherwise. Thus, the probability is 0 if x 6∈ Λ⊥u (Ā), and for
x ∈ Λ⊥u (Ā), we have:

Pr
[
(A0, X0, U0) = (A,x,u)

]
= 1
|Rk×(n−k)
q |

· ρσ(x)
ρσ(Rn)

= 1
qNk(n−k) ·

ρσ(x)
ρσ(Λ⊥u) ·

ρσ(Λ⊥u)
ρσ(Rn)

= 1
qNk(n−k) ·DΛ⊥u (Ā),σ(x) · ρσ(Λ⊥u)

ρσ(Rn) .

20

In particular, summing over all possible choices of x for a fixed A, we see that:

ρσ(Λ⊥u)
ρσ(Rn) = Pr

x∼Dn
σ

[
u = Āx mod q

]
.

We denote this probability HA,σ(u). In other words, HA,σ is the probability distribution over Rk
q given

by Ā ·Dn
σ mod q. To sum up, we have shown that for all (A,x,u):

Pr
[
(A0, X0, U0) = (A,x,u)

]
=
{

Dn
Λ⊥u (Ā),σ(x) · HA,σ(u)

qNk(n−k) if x ∈ Λ⊥u (Ā),
0 if x /∈ Λ⊥u (Ā).

On the other hand, still for fixed A,u,x, we have:

Pr
[
(A1, X1, U1) = (A,x,u)

]
= 1
|Rk×(n−k)
q |

· 1
|Rk
q |
·Dn

Λ⊥u (Ā),σ(x)

= 1
qNk(n−k) ·

1
qNk

·Dn
Λ⊥u (Ā),σ(x),

and in particular this probability is non zero only for vectors x ∈ Λ⊥u (Ā). Therefore, the statistical
distance ∆(A0,A1) can be written as:

∆(A0,A1) =
∑

A,u,x

∣∣∣Pr
[
(A0, X0, U0) = (A,x,u)

]
− Pr

[
(A1, X1, U1) = (A,x,u)

]∣∣∣
=

∑
A∈Rk×(n−k)

q ,u∈Rkq

1
qNk(n−k)

∑
x∈Λ⊥u (Ā)

Dn
Λ⊥u (Ā),σ(x) ·

∣∣∣HA,σ(u)− 1
qNk

∣∣∣
=

∑
A∈Rk×(n−k)

q

1
qNk(n−k)

∑
u∈Rkq

∣∣∣HA,σ(u)− 1
qNk

∣∣∣
=

∑
A∈Rk×(n−k)

q

1
qNk(n−k)∆

(
HA,σ,URkq

)
,

for URkq the uniform distribution on Rk
q . Now Lemma 4.2 says that there exists a subset S ⊂ Rk×(n−k)

q

of cardinality at most 2−Ω(N)|Rk×(n−k)
q | such that for all A 6∈ S, we have ∆

(
HA,σ(u),URkq

)
= 2−Ω(N).

As a result:

∆(A0,A1) =
∑
A∈S

1
qNk(n−k)∆

(
HA,σ,URkq

)
+
∑
A6∈S

1
qNk(n−k)∆

(
HA,σ,URkq

)
≤ |S|
qNk(n−k) · 1 + 1 · 2−Ω(N) ≤ 2−Ω(N)

as required. ut

4.3 Simulating Nonces via Trapdoor Sampling

As a first step towards CMA security, recall that our goal is to simulate the view of the adversary
interacting with an honest signer P1. This essentially amounts to simulating the distribution of the offline
messages (w(j)

1)j∈[m], nonces (b(j))j∈[m], challenge c, and z1, such that they satisfy the condition:

Āz1 − c · a1 · t1 =
m∑
j=1

b(j)w(j)
1 mod q. (9)

From our rejection sampling lemma (Lemma 3.1), we can indeed simulate c and z1, and thus they
already determine the sum w̃1 :=

∑m
j=1 b

(j)w(j)
1 mod q. However, since the offline commit messages w(j)

1

must be handed over to the adversary before the simulator sees adversary’s w(j)
i , we are restricted to

generating b(j)’s such that they “explain” the above constraint for already fixed (w(j)
1)j∈[m] and w̃1.

21

More concretely, after OSignOff outputs w(j)
1 , whenever the simulator receives a query to Hnon or

the online oracle OSignOn with adversarially chosen w(j)
i and µ as inputs, the simulator already has to

prepare c, z1 as well as b(j) satisfying (9), and then program the random oracles Hnon and Hsig such that
they output b(j)’s and c, respectively.8 We overcome this technical hurdle by making use of lattice-based
trapdoor sampling. For readability we will drop the party index “1” for the rest of this subsection.

Recall that the first “commit” messages are computed as w(j) := Āy(j) for j = 1, . . . ,m. From the
regularity result (Lemma 4.2), they are statistically indistinguishable with matrices uniformly sampled
from Rk×mq . Now let us define suitable trapdoor generator and sampling algorithms to perform sign oracle
simulation. To sample the vector b := [b(2), . . . , b(m)], we take advantage of the gadget-based trapdoor
(Ring-)SIS inversion algorithm of [MP12]. (Recall that b(1) = 1 so we only need to samplem−1 elements.)
Let W := [w(2), . . . ,w(m)] be the parity check matrix for which we would like to obtain a trapdoor. For
integers k,w = dlog2 qe,m′ = kw + 1, let m = 2kw + 1. Let gT = [1, 2, 4, . . . , 2w−1] be a gadget vector
and G = Ik⊗g ∈ Rk×kw be the corresponding gadget matrix. Then the Micciancio-Peikert trapdoor can
be directly applied as follows.
– TrapGen(1λ): It samples a uniformly random matrix [w(2), . . . ,w(kw+1)] ∈ Rk×kwq . It sets W̄ =

[w(2), . . . ,w(kw+1)] and samples the trapdoor matrix R ∈ Rkw×kw following the Gaussian Dkw×kw
s̄

with parameter s̄. Then the parity check matrix is defined as

W = [W̄|G− W̄R] ∈ Rk×2kw
q . (10)

It outputs (W,R).
– TrapSamp(R,w′, σb): Given a target vector w′ ∈ Rk, it samples a vector b ∈ R2kw = Rm−1, whose

distribution is statistically close the discrete Gaussian Dm−1
Λ⊥w′ (W),σb

supported on the lattice coset

Λ⊥w′(W) :=
{

x ∈ R2kw : W · x = w′ mod q
}
. (11)

This can be instantiated with [MP12, Alg. 3] or its adaptation in the module setting [BEP+21]. Note
that efficiency of the sampler does not matter here, since trapdoor Gaussian sampling operations are
only required by simulation, and parties in the actual protocol are never asked to do so.

4.3.1 Indistinguishability of W output by TrapGen We show that m columns of the parity check
matrix W generated as above is indistinguishable with [w(2), . . . ,w(m)] in the actual protocol. We apply
the regularity lemma twice to argue that w(2), . . . ,w(m) are uniform both in the actual protocol and in
TrapGen, up to an negligible error.
– In the actual protocol, the distribution of w(2) = Āy(2), . . . ,w(m) = Āy(m) is statistically close to

uniform over Rk×2kw
q if

σy > 2N · qk/(`+k)+2/(N(`+k)) (12)

as required by Lemma 4.2. Note that, since the matrix Ā is reused, the statistical distance grows
linearly in m. The same remark applies to W̄R below.

– We now check the distribution of W output by TrapGen. By construction, the distribution of kw
columns W̄ = [w(2), . . . ,w(kw+1)] are uniform over Rk×kwq . As Lemma 4.2 requires a matrix to
contain an identity submatrix, we need to bound the probability that W̄ contains no invertible
submatrix, i.e., W̄ is not full rank. As our scheme assumes q = 5 mod 8, we can use Lemma 2.2 to
argue this only happens with negligible probability (see Appendix C.3 for formal analysis). Hence, we
can indeed apply Lemma 4.2 to guarantee the distribution of W̄ ·R is statistically close to uniform
over Rk×kwq if

s̄ > 2N · q1/w+2/(Nkw). (13)
8 Note that once b(j)’s are simulated, finding corresponding uniform randomness r(j)’s are easy assuming that
the Samp algorithm is “sampleable” [BCI+10]. Such a property can be for example satisfied by simple CDT-
based samplers [Pei10, DDLL13] allowing one to recover a uniformly random coin given the output sample.
Alternatively, one could simplify the description of our scheme by assuming the random oracle Hnon itself
directly outputs Gaussian samples as in [ABB10].

22

Algorithm 2: Simulation of honest signing algorithm

T (Ā, a, s, t)
// Offline

1: for j ∈ [1,m] do
2: if j = 1 then
3: y(1) ← D`+k

σ1

4: b(1) := 1
5: else
6: y(j) ← D`+k

σy

7: b(j) ← Dσb

8: w(j) := Āy(j) mod q
9: ỹ :=

∑m
j=1 b

(j)y(j)

// Online
10: c←$ C
11: v := c · a · s
12: z := v + ỹ
13: ρ←$ [0, 1)

14: if ρ > min

 D`+k√
Σ̂

(z)

M ·D`+k√
Σ,v

(z) , 1

 then

15: z := ⊥
16: return (Ā, a, t, (w(j), b(j))j∈[m], c, z)

S(Ā, a, t)
1: w(1) ←$ Rkq
2: ([w(2), . . . ,w(m)],R)← TrapGen(1λ)
3: z← D`+k√

Σ̂
4: c←$ C
5: w′ := Āz− c · a · t−w(1)

6: b(1) := 1
7: (b(2), . . . , b(m))← TrapSamp(R,w′, σb)
8: ρ←$ [0, 1)
9: if ρ > 1/M then

10: z := ⊥
11: return (Ā, a, t, (w(j), b(j))j∈[m], c, z)

4.3.2 Indistinguishability of b(j)’s output by TrapSamp To sample from spherical Guassian with
parameter σb, the gadget-based TrapSamp algorithm requires σb ≈ s1(R) · s1(

√
ΣG) [MP12, §5.4] where√

ΣG is a parameter used when performing Gaussian sampling from a coset Λ⊥w′(G). As ΣG is a constant,
we only need to evaluate s1(R), which is s̄ · O(

√
Nkw +

√
Nk log2 q) from [MP12, §5.2]. Together with

the condition (13) on s̄ required by regularity, one can bound the parameter σb.

4.4 Oracle simulation lemma

Now let us turn to our main goal: security against adversaries that make concurrent chosen-message
queries. For our honest party oracle simulator to succeed, we need the following lemma. It can proved
via standard hybrid arguments, by invoking the switching lemma multiple times, indistinguishability of
TrapGen and TrapSamp as stated above, and our generalized rejection sampling lemma (Lemma 3.1).
Conditions on the parameters are detailed in Appendix D.

Lemma 4.4. Let σ1, σy, σb, Σ, Σ̂,M be parameters satisfying conditions in Lemma 3.1 and Section 4.3.
Suppose q = 5 mod 8 as in Lemma 2.2. Let A ←$ Rk×`, Ā := [A|Ik], s ∈ S`+kη , t := Ās, a ∈ C. The
output distributions of T and S in Alg. 2 are statistically indistinguishable.

Proof. We prove via standard hybrid arguments. Each hybrid is detailed in Alg. 3.
– Hyb0 is identical to T .
– Hyb1 is identical to Hyb0, except that w(j)’s are sampled uniformly and y(j)’s are sampled from

Gaussian defined over a coset Λ⊥w(j)(Ā) =
{

x ∈ Rk+` : Āx = w(j) mod q
}
. From Lemma 4.3, Hyb0

and Hyb1 are statistically close.
– Hyb2 is identical to Hyb1, except that ỹ, a linear combination of y(j)’s, is directly sampled from

Gaussian over a coset Λ⊥w̃(Ā), where w̃ =
∑
j b

(j)w(j) mod q. From Lemma 2.7, Hyb1 and Hyb2 are
statistically close.

– Hyb3 is identical to Hyb2, except that z is sampled from Gaussian over a coset Λ⊥u centered at v,
where u = w̃ + c · a · t and v = c · a · s. Clearly, the output distributions of Hyb2 and Hyb3 are
equivalent.

23

– Hyb4 is identical to Hyb3, except that z is sampled from Gaussian over a coset Λ⊥u centered at 0 and
it is output with constant probability 1/M . From Lemma 3.1, Hyb3 and Hyb4 are statistically close.

– Hyb5 is identical to Hyb4, except that w′ = w̃ − w(1) is uniformly sampled from Rkq and a vector
[b(2), . . . , b(m)] is sampled from spherical Gaussian over a coset Λ⊥w′(W), where W = [w(2), . . . ,w(m)].
From Lemma 4.3, Hyb4 and Hyb5 are statistically close.

– Hyb6 is identical to Hyb5, except that z is sampled from Gaussian over R`+k and w̃ is defined as
w̃ = Āz− c · a · t. From Lemma 4.3, Hyb5 and Hyb6 are statistically close.

– Hyb7 is identical to Hyb6, except that a matrix [w(2), . . . ,w(m)] is generated with the corresponding
trapdoor R. From indistinguishability of the TrapGen algorithm, Hyb6 and Hyb7 are statistically close.

– Hyb8 is identical to Hyb7, except that a vector [b(2), . . . , b(m)] is sampled using the trapdoor sampling
algorithm. From indistinguishability of the TrapSamp algorithm, Hyb7 and Hyb8 are statistically close.

Note that the distribution output by Hyb8 is identical to one by S. This concludes the proof.

ut

4.5 MS-UF-CMA security of MuSig-L

Given the oracle simulation lemma, we are finally ready to conclude with our main theorem.

Theorem 4.5. If MuSig-L is MS-UF-KOA-secure, then it is MS-UF-CMA-secure. Concretely, for any
PPT adversary X against MS-UF-KOA that makes at most Qh queries to the random oracles and in total
Qs queries to OSignOff and OSignOn, there exists PPT adversary A such that

AdvMS-UF-CMA
MuSig-L (X) ≤ 2(Qh +Qs)2 ·

(
1 + 2−Ω(N)

qkN

)m
+ (2Qh +Qs)2

ρσb(R)

+ e · (Qs + 1) ·
(
Qs · εs + AdvMS-UF-KOA

MuSig-L (A)
)

where εs is determined by the statistical distance of Lemma 4.4.

Proof sketchWe sketch the high-level ideas. The complete reduction algorithms are described in Alg. 7.
We denote by H′agg,H′non,H′sig (resp. Hagg,Hnon,Hsig) the random oracles in the MS-UF-CMA game (resp.
MS-UF-KOA game), respectively.

On a high-level, we simulate the adversary’s view by first producing a trapdoor for the outputs of
OSignOff, and then answer every query to OSignOn and Hnon using a known trapdoor. In a bit more
detail:
– OSignOff: For every concurrent session launched by the adversary, it stores in table WT party 1’s

commit messages [w(j)
1 , . . . ,w(m)

1] with a known trapdoor R produced by the TrapGen algorithm.
– H′non: Whenever it receives a query of the form ({ti||comi}i∈[n], µ, t̃), it first makes sure that (1) there

is no duplicate honest keys in the input, (2) the mth sum of commit message contains an invertible
element, and (3) com1 = [w(j)

1 , . . . ,w(m)
1] (i.e., a commit message appended to the honest party’s

key t1) has been previously produced by OSignOff. It does (3) by looking up the table WT, and if it
finds a suitable trapdoor R associated with the corresponding session ID, H′non internally performs
simulation following the procedures of Alg. 2, and then programs outputs of the random oracles H′sig
and H′non accordingly. A simulated signature is finally stored in the table ST.

– OSignOn: When the online oracle is queried, it always invokes H′non first and checks whether a simu-
lated signature is recorded in ST. The simulation succeeds if that is the case, and aborts otherwise.
The reason for aborts is that H′non must not produce simulated signatures for all queries, because
it might be that the adversary will later submit a forgery based on the challenge c programmed
inside H′non. If that happens, the output of the external RO Hsig is not consistent with that of H′sig
anymore, and thus the reduction cannot win the MS-UF-KOA game. However, this issue can be han-
dled by having H′non perform simulation only probabilistically, a proof technique similar to [DEF+19]
and [DOTT22]. Such “bad challenges” are then kept in the table CT, and we evaluate the probability
that the adversary does not use bad challenge to create a forgery.

– Note that this is exactly where appended public keys come in to play, and interestingly, they are
crucial for proving security in the concurrent setting. Consider a modified scheme where H′non does

24

25

Algorithm 3: Hybrids for Lemma 4.4

Hyb0(Ā, a, s, t)
1: for j ∈ [1,m] do
2: if j = 1 then
3: y(1) ← D`+k

σ1

4: b(1) := 1
5: else
6: y(j) ← D`+k

σy

7: b(j) ← Dσb

8: w(j) := Āy(j)

9: ỹ :=
∑m
j=1 b

(j)y(j)

10: c←$ C
11: v := c · a · s
12: z := v + ỹ
13: ρ←$ [0, 1)

14: if ρ > min

 D`+k√
Σ̂

(z)

M ·D`+k√
Σ,v

(z) , 1

 then

15: z := ⊥
16: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

Hyb1(Ā, a, s, t)
1: for j ∈ [1,m] do
2: w(j) ←$ Rkq
3: if j = 1 then
4: y(1) ← D`+k

Λ⊥
w(1) (Ā),σ1

5: b(1) := 1
6: else
7: y(j) ← D`+k

Λ⊥
w(j) (Ā),σy

8: b(j) ← Dσb

9: ỹ :=
∑m
j=1 b

(j)y(j)

10: c←$ C
11: v := c · a · s
12: z := v + ỹ
13: ρ←$ [0, 1)

14: if ρ > min

 D`+k√
Σ̂

(z)

M ·D`+k√
Σ,v

(z) , 1

 then

15: z := ⊥
16: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

Hyb2(Ā, a, s, t)
1: for j ∈ [1,m] do
2: w(j) ←$ Rkq
3: if j = 1 then
4: b(1) := 1
5: else
6: b(j) ← Dσb

7: w̃ :=
∑m
j=1 b

(j)w(j)

8: ỹ← D`+k
Λ⊥w̃(Ā),

√
Σ

9: c←$ C
10: v := c · a · s
11: z := v + ỹ
12: ρ←$ [0, 1)

13: if ρ > min

 D`+k√
Σ̂

(z)

M ·D`+k√
Σ,v

(z) , 1

 then

14: z := ⊥
15: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

Hyb3(Ā, a, s, t)
1: for j ∈ [1,m] do
2: w(j) ←$ Rkq
3: if j = 1 then
4: b(1) := 1
5: else
6: b(j) ← Dσb

7: w̃ :=
∑m
j=1 b

(j)w(j)

8: c←$ C
9: v := c · a · s

10: u := w̃ + c · a · t
11: z← D`+k

Λ⊥u (Ā),v,
√
Σ

12: ρ←$ [0, 1)

13: if ρ > min

 D`+k√
Σ̂

(z)

M ·D`+k√
Σ,v

(z) , 1

 then

14: z := ⊥
15: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

Hyb4(Ā, a, s, t)
1: for j ∈ [1,m] do
2: w(j) ←$ Rkq
3: if j = 1 then
4: b(1) := 1
5: else
6: b(j) ← Dσb

7: w̃ :=
∑m
j=1 b

(j)w(j)

8: c←$ C
9: v := c · a · s

10: u := w̃ + c · a · t
11: z← D`+k

Λ⊥u (Ā),
√
Σ̂

12: ρ←$ [0, 1)
13: if ρ > 1/M then
14: z := ⊥
15: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

Hyb5(Ā, a, s, t)
1: for j ∈ [1,m] do
2: w(j) ←$ Rkq

3: w̃←$ Rkq
4: w′ := w̃−w(1)

5: W := [w(2), . . . ,w(m)]
6: b(1) := 1
7: [b(2), . . . , b(m)]← Dm−1

Λ⊥w′ (W),σb
8: c←$ C
9: v := c · a · s

10: u := w̃ + c · a · t
11: z← D`+k

Λ⊥u (Ā),
√
Σ̂

12: ρ←$ [0, 1)
13: if ρ > 1/M then
14: z := ⊥
15: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

Hyb6(Ā, a, s, t)
1: for j ∈ [1,m] do
2: w(j) ←$ Rkq

3: W := [w(2), . . . ,w(m)]
4: b(1) := 1
5: c←$ C
6: z← D`+k√

Σ̂
7: v := c · a · s
8: u := Āz
9: w̃ := u− c · a · t

10: w′ := w̃−w(1)

11: [b(2), . . . , b(m)]← Dm−1
Λ⊥w′ (W),σb

12: ρ←$ [0, 1)
13: if ρ > 1/M then
14: z := ⊥
15: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

Hyb7(Ā, a, s, t)
1: w(1) ←$ Rkq
2: (W,R)← TrapGen(1λ)
3: b(1) := 1
4: c←$ C
5: z← D`+k√

Σ̂
6: v := c · a · s
7: u := Āz
8: w̃ := u− c · a · t
9: w′ := w̃−w(1)

10: [b(2), . . . , b(m)]← Dm−1
Λ⊥w′ (W),σb

11: ρ←$ [0, 1)
12: if ρ > 1/M then
13: z := ⊥
14: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

Hyb8(Ā, a, s, t)
1: w(1) ←$ Rkq
2: (W,R)← TrapGen(1λ)
3: b(1) := 1
4: c←$ C
5: z← D`+k√

Σ̂
6: v := c · a · s
7: u := Āz
8: w̃ := u− c · a · t
9: w′ := w̃−w(1)

10: [b(2), . . . , b(m)] ←
TrapSamp(R,w′, σb)

11: ρ←$ [0, 1)
12: if ρ > 1/M then
13: z := ⊥
14: return

(Ā, a, t, (w(j), b(j))j∈[m], c, z)

not take individual public keys, i.e., it simply derives randomness via H′non(〈comi〉i∈[n], µ, t̃). It is easy
to see that the simulator would have a hard time looking up the right trapdoor to perform simulation:
say OSignOff has produced (com1,R) in session 1 and (com′1,R′) in session 2, respectively. Now, if the
adversary queries H′non with input ((com1, com′1), µ, t̃) there is no way for the simulator to determine
which trapdoor should be used for performing simulation to sign a queried message µ. E.g. if the
simulator uses a trapdoor R, and the adversary later queries OSignOn in session 2 with µ and com1
(by malicously claiming com1 to be adversary’s offline commit), a signature previously simulated by
H′non is clearly invalid. Essentially the same issue happens if t1 occurs multiple times in the key list
L.
Since we are not aware of any attacks breaking this modified scheme, or even against simpler hashing
such as H′non(

∑n
i=1 comi, µ, t̃) similar to MuSig2, we highlight proving security of optimized nonce

derivation as an interesting direction for future work. One plausible approach would be hashing the
session ID sid together with (

∑n
i=1 comi, µ, t̃). This way, a simulator can uniquely associate each H′non

query to a particular session and the corresponding trapdoor.

Acknowledgment

The authors are grateful to Claudio Orlandi for discussions in the earlier stages of this work. We thank
Carsten Baum, Katharina Boudgoust, Mark Simkin, and anonymous reviewers of CRYPTO 2022 for
helpful comments and discussions. Cecilia Boschini has been supported by the Università della Svizzera
Italiana under the SNSF project No. 182452, and by the Postdoc.Mobility grant No. P500PT_203075.
Akira Takahashi has been supported by the Carlsberg Foundation under the Semper Ardens Research
Project CF18-112 (BCM); the European Research Council (ERC) under the European Unions’s Horizon
2020 research and innovation programme under grant agreement No. 803096 (SPEC).

References

AB21. H. K. Alper and J. Burdges. Two-round trip schnorr multi-signatures via delinearized witnesses. In
CRYPTO 2021, Part I, vol. 12825 of LNCS, pp. 157–188, Virtual Event, 2021. Springer, Heidelberg.

ABB10. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE. In CRYPTO 2010, vol. 6223 of LNCS, pp. 98–115. Springer, Heidelberg, 2010.

AFLT16. M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly secure signatures from lossy
identification schemes. Journal of Cryptology, 29(3):597–631, 2016.

AGHS13. S. Agrawal, C. Gentry, S. Halevi, and A. Sahai. Discrete Gaussian leftover hash lemma over infinite
domains. In ASIACRYPT 2013, Part I, vol. 8269 of LNCS, pp. 97–116. Springer, Heidelberg, 2013.

AKSY21. S. Agrawal, E. Kirshanova, D. Stehle, and A. Yadav. Can round-optimal lattice-based blind signatures
be practical? Cryptology ePrint Archive, Report 2021/1565, 2021. https://eprint.iacr.org/2021/
1565.

ASY22. S. Agrawal, D. Stehlé, and A. Yadav. Round-optimal lattice-based threshold signatures, revisited.
In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July
4-8, 2022, Paris, France, vol. 229 of LIPIcs, pp. 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

Ban93. W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathema-
tische Annalen, 296(1):625–635, 1993.

BCI+10. E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient indifferentiable
hashing into ordinary elliptic curves. In CRYPTO 2010, vol. 6223 of LNCS, pp. 237–254. Springer,
Heidelberg, 2010.

BD21. M. Bellare and W. Dai. Chain reductions for multi-signatures and the HBMS scheme. In ASI-
ACRYPT 2021, Part IV, vol. 13093 of LNCS, pp. 650–678. Springer, Heidelberg, 2021.

BDL+18. C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert. More efficient commitments from
structured lattice assumptions. In SCN 18, vol. 11035 of LNCS, pp. 368–385. Springer, Heidelberg,
2018.

BEP+21. P. Bert, G. Eberhart, L. Prabel, A. Roux-Langlois, and M. Sabt. Implementation of lattice trap-
doors on modules and applications. In Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021, Daejeon, South Korea, July 20-22, 2021, Proceedings, vol. 12841 of Lecture Notes in
Computer Science, pp. 195–214. Springer, 2021.

BGG+18. D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen, and A. Sahai. Threshold
cryptosystems from threshold fully homomorphic encryption. In CRYPTO 2018, Part I, vol. 10991 of
LNCS, pp. 565–596. Springer, Heidelberg, 2018.

BK20. D. Boneh and S. Kim. One-time and interactive aggregate signatures from lattices. preprint, 2020.

26

https://eprint.iacr.org/2021/1565
https://eprint.iacr.org/2021/1565

BKP13. R. Bendlin, S. Krehbiel, and C. Peikert. How to share a lattice trapdoor: Threshold protocols for
signatures and (H)IBE. In ACNS 13, vol. 7954 of LNCS, pp. 218–236. Springer, Heidelberg, 2013.

BLL+21. F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. On the (in)security of ROS. In
EUROCRYPT 2021, Part I, vol. 12696 of LNCS, pp. 33–53. Springer, Heidelberg, 2021.

BN06. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma.
In ACM CCS 2006, pp. 390–399. ACM Press, 2006.

BRL21. K. Boudgoust and A. Roux-Langlois. Non-interactive half-aggregate signatures based on module
lattices - a first attempt. 2021. https://eprint.iacr.org/2021/263.

Cor00. J.-S. Coron. On the exact security of full domain hash. In CRYPTO 2000, vol. 1880 of LNCS, pp.
229–235. Springer, Heidelberg, 2000.

DDLL13. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal Gaussians.
In CRYPTO 2013, Part I, vol. 8042 of LNCS, pp. 40–56. Springer, Heidelberg, 2013.

DEF+19. M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs. On the security
of two-round multi-signatures. In 2019 IEEE Symposium on Security and Privacy, pp. 1084–1101.
IEEE Computer Society Press, 2019.

DLL+17. L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS - dilithium:
Digital signatures from module lattices. IACR Cryptol. ePrint Arch., p. 633, 2017.

DOTT21. I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n and multi-signatures
and trapdoor commitment from lattices. In PKC 2021, Part I, vol. 12710 of LNCS, pp. 99–130.
Springer, Heidelberg, 2021.

DOTT22. I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n and multi-signatures
and trapdoor commitment from lattices. J. Cryptol., 35(2):14, 2022.

DPSZ12. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In CRYPTO 2012, vol. 7417 of LNCS, pp. 643–662. Springer, Heidelberg,
2012.

ES16. R. El Bansarkhani and J. Sturm. An efficient lattice-based multisignature scheme with applications
to bitcoins. In CANS 16, vol. 10052 of LNCS, pp. 140–155. Springer, Heidelberg, 2016.

FH20. M. Fukumitsu and S. Hasegawa. A lattice-based provably secure multisignature scheme in quantum
random oracle model. In ProvSec 2020, vol. 12505 of LNCS, pp. 45–64. Springer, Heidelberg, 2020.

FSZ22. N. Fleischhacker, M. Simkin, and Z. Zhang. Efficient synchronized multi-signatures from lattices.
IACR Cryptol. ePrint Arch., 2022.

GJKR07. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for discrete-log
based cryptosystems. Journal of Cryptology, 20(1):51–83, 2007.

GKMN21. F. Garillot, Y. Kondi, P. Mohassel, and V. Nikolaenko. Threshold Schnorr with stateless deterministic
signing from standard assumptions. In CRYPTO 2021, Part I, vol. 12825 of LNCS, pp. 127–156,
Virtual Event, 2021. Springer, Heidelberg.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In 40th ACM STOC, pp. 197–206. ACM Press, 2008.

HPRR20. J. Howe, T. Prest, T. Ricosset, and M. Rossi. Isochronous gaussian sampling: From inception to
implementation. In Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020,
pp. 53–71. Springer, Heidelberg, 2020.

KG20. C. Komlo and I. Goldberg. FROST: flexible round-optimized schnorr threshold signatures. In Selected
Areas in Cryptography - SAC 2020 - 27th International Conference, Halifax, NS, Canada (Virtual
Event), October 21-23, 2020, Revised Selected Papers, vol. 12804 of Lecture Notes in Computer Science,
pp. 34–65. Springer, 2020.

KLS18. E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete treatment of Fiat-Shamir signatures in the
quantum random-oracle model. In EUROCRYPT 2018, Part III, vol. 10822 of LNCS, pp. 552–586.
Springer, Heidelberg, 2018.

LN17. V. Lyubashevsky and G. Neven. One-shot verifiable encryption from lattices. In EUROCRYPT 2017,
Part I, vol. 10210 of LNCS, pp. 293–323. Springer, Heidelberg, 2017.

LPR13. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In EURO-
CRYPT 2013, vol. 7881 of LNCS, pp. 35–54. Springer, Heidelberg, 2013.

LS15. A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lattices. Des. Codes
Cryptogr., 75(3):565–599, 2015.

LS18. V. Lyubashevsky and G. Seiler. Short, invertible elements in partially splitting cyclotomic rings and
applications to lattice-based zero-knowledge proofs. In EUROCRYPT 2018, Part I, vol. 10820 of
LNCS, pp. 204–224. Springer, Heidelberg, 2018.

Lyu12. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012, vol. 7237 of LNCS,
pp. 738–755. Springer, Heidelberg, 2012.

Mic02. D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from
worst-case complexity assumptions. In 43rd FOCS, pp. 356–365. IEEE Computer Society Press, 2002.

MJ19. C. Ma and M. Jiang. Practical lattice-based multisignature schemes for blockchains. IEEE Access,
7:179765–179778, 2019.

MOR01. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: Extended abstract. In
ACM CCS 2001, pp. 245–254. ACM Press, 2001.

27

https://eprint.iacr.org/2021/263

MP12. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EURO-
CRYPT 2012, vol. 7237 of LNCS, pp. 700–718. Springer, Heidelberg, 2012.

MP13. D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In CRYPTO 2013,
Part I, vol. 8042 of LNCS, pp. 21–39. Springer, Heidelberg, 2013.

MPSW19. G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-signatures with applications
to bitcoin. Des. Codes Cryptogr., 87(9):2139–2164, 2019.

NKDM03. A. Nicolosi, M. N. Krohn, Y. Dodis, and D. Mazières. Proactive two-party signatures for user authen-
tication. In NDSS 2003. The Internet Society, 2003.

NRS21. J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In
CRYPTO 2021, Part I, vol. 12825 of LNCS, pp. 189–221, Virtual Event, 2021. Springer, Heidelberg.

NRSW20. J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. MuSig-DN: Schnorr multi-signatures with verifiably
deterministic nonces. In ACM CCS 2020, pp. 1717–1731. ACM Press, 2020.

Pei10. C. Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO 2010, vol. 6223 of
LNCS, pp. 80–97. Springer, Heidelberg, 2010.

Reg09. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009.

RY07. T. Ristenpart and S. Yilek. The power of proofs-of-possession: Securing multiparty signatures against
rogue-key attacks. In EUROCRYPT 2007, vol. 4515 of LNCS, pp. 228–245. Springer, Heidelberg,
2007.

SS01. D. R. Stinson and R. Strobl. Provably secure distributed Schnorr signatures and a (t, n) threshold
scheme for implicit certificates. In ACISP 01, vol. 2119 of LNCS, pp. 417–434. Springer, Heidelberg,
2001.

28

A Concentration of the Squared Norm of Ellipsoidal Gaussians

Fix Σ ∈ Km×m
R positive definite (in the sense that its components in all embeddings are positive definite).

One can define its relative determinant and trace detKR Σ and TrKR Σ, which are totally positive, and
its absolute determinant and trace detΣ and TrΣ which are positive real numbers. The latter are the
images of the former under the norm and trace maps KR → R that extend the usual algebraic norm and
trace NK/Q,TrK/Q.

Now the Gaussian weight over Km
R with parameter Σ, defined by:

ρ√Σ(x) = exp
(
− π‖

√
Σ
−1
~x‖
)

= exp
(
− π〈x, Σ−1x〉

)
has at its Fourier transform over Km

R the function ρ̂√Σ =
√

detΣρ√
Σ
−1 . From there, we can deduce the

following generalization of [Reg09, Claim 3.8] with the same proof.

Lemma A.1. For any lattice Λ ⊂ Km
R , any u ∈ Km

R , and any Σ ∈ Km
R symmetric definite positive with

Σ � ηε(Λ), we have:
ρ√Σ(Λ+ u) ∈

√
detΣ vol(Λ∗) · [1− ε, 1 + ε].

Dividing two such relations, we can also infer the following corollary.

Corollary A.2. For any lattice Λ ⊂ Km
R , any u ∈ Km

R , and any Σ,Σ′ ∈ Km
R symmetric definite positive

with Σ,Σ′ � ηε(Λ), we have:

ρ√Σ(Λ+ u)
ρ√Σ′(Λ+ u) ∈

√
detΣ
detΣ′ ·

[1− ε
1 + ε

,
1 + ε

1− ε

]
.

Using these results, we can establish the following concentration bound, which shows that the squared
norm ‖x‖2 of a Gaussian vector x ∼ D√Σ,Λ+u over an arbitrary lattice coset is close to 1

2π TrΣ as long
as Σ � 2ηε(Λ).

Theorem A.3. Fix a lattice Λ ⊂ Km
R , a vector u ∈ Km

R , and a symmetric definite positive Σ ∈ Km
R

with Σ � 2ηε(Λ), and consider a Gaussian vector x ∼ D√Σ,Λ+u. Let furthermore:

ν = mN

2π2 s1(Σ)2 and β = s1(Σ)
π

.

Then for all t ≥ 0, we have:

Pr
[
‖x‖2 ≥ TrΣ

2π + t
]
≤ 1 + ε

1− εe
− t2

2(ν+βt) ,

and:
Pr
[
‖x‖2 ≤ TrΣ

2π − t
]
≤ 1 + ε

1− εe
− t2

2(ν+βt) .

Proof. The idea is to establish a subexponential concentration bound similar to Bernstein’s inequality.
To do so, we estimate the following expectation for a parameter λ to be chosen later:

E
[

exp(λ‖x‖2)
]

= 1
ρ√Σ(Λ+ u)

∑
x∈Λ+u

exp(λ‖x‖2)ρ√Σ(x)

= 1
ρ√Σ(Λ+ u)

∑
x∈Λ+u

exp
(
λ‖x‖2 − π‖

√
Σ
−1

x‖
)

= 1
ρ√Σ(Λ+ u)

∑
x∈Λ+u

exp
(
− π〈x, (Σ−1 − λ

π
Im)x〉

)
=
ρ√Σλ(Λ+ u)
ρ√Σ(Λ+ u) ,

where Σλ is given by Σ−1
λ = Σ−1 − λ

π Im. It is well-defined and symmetric definite positive as long as
Σ−1 � λ

π Im, namely sm(Σ−1) > λ/π, or equivalently λ < 1/β. Moreover, if λ > −1/β, we also have
−λ/π < 1/s1(Σ), and hence:

sm(Σλ) = 1
s1(Σ−1

λ)
= 1
s1(Σ−1)− λ/π >

1
1

sm(Σ) + 1
s1(Σ)

≥ sm(Σ)
2 ≥ ηε(Λ).

29

Thus, for all |λ| < 1/β, Corollary A.2 gives:

∃δ ∈
[1− ε

1 + ε
,

1 + ε

1− ε
]
, E

[
exp(λ‖x‖2)

]
= δ

√
detΣλ
detΣ = δ√

det(Σ−1
λ Σ)

= δ√
det(Im − λ

πΣ)
.

Using a standard diagonalization argument, we have the following series expansion:

log det(Im −
λ

π
Σ) = −

∑
k≥1

λk

kπk
Tr(Σk).

which is absolutely convergent in our domain of interest |λ| < 1/β. Thus:

logE
[

exp(λ‖x‖2)
]

= log δ + 1
2
∑
k≥1

λk

kπk
Tr(Σk) = TrΣ

2π + log δ + 1
2
∑
k≥2

λk

kπk
Tr(Σk).

As a result, for all |λ| < 1/β:

logE
[

exp
(
λ(‖x‖2 − TrΣ

2π)
)]

= log δ + 1
2
∑
k≥2

λk

kπk
Tr(Σk)

logE
[

exp
(
λ(‖x‖2 − TrΣ

2π)
)]
≤ | log δ|+ 1

2
∑
k≥2

|λ|k

kπk
Tr(Σk)

≤ | log δ|+ 1
2
∑
k≥2

|λ|k

2πkmNs1(Σ)k

≤ log 1 + ε

1− ε + mN

4
∑
k≥2

(
β|λ|

)k
= log 1 + ε

1− ε + mN

4
β2λ2

1− β|λ| = log 1 + ε

1− ε + νλ2/2
1− β|λ|

E
[

exp
(
λ(‖x‖2 − TrΣ

2π)
)]
≤ 1 + ε

1− ε exp
(νλ2/2

1− β|λ|

)
.

Therefore, we can apply the Markov inequality to get, for all t ≥ 0 and λ ∈ [0, 1/β):

Pr
[
‖x‖2 ≥ TrΣ

2π + t
]

= Pr
[

exp
(
λ(‖x‖2 − TrΣ

2π)
)
≤ eλt

]
≤ e−λt E

[
exp

(
λ(‖x‖2 − TrΣ

2π)
)]
≤ 1 + ε

1− ε exp
(νλ2/2

1− βλ − λt
)
.

Choosing λ = t
βt+ν gives the required bound:

Pr
[
‖x‖2 ≥ TrΣ

2π + t
]
≤ 1 + ε

1− εe
− t2

2(ν+βt) .

The probability bound for the other inequality is obtained in the same way by considering λ ∈ (−1/β, 0].

Remark A.4. The upper bound on ‖x‖2 is non trivial whenever the covariance matrix is not too skewed.
For example, taking t = TrΣ

4π ≥
mNsm(Σ)

4π , we get:

Pr
[
‖x‖2 ≤ TrΣ

4π

]
≤ 2−Ω

(
mN

sm(Σ)2

s1(Σ)2

)
. (14)

For very skewed Σ, we can at least use the fact that Pry∼D√
Σ0,Λ+u

[‖y‖2 ≤ B] increases when Σ0 decreases
to obtain:

Pr
[
‖x‖2 ≤ mNsm(Σ)

4π

]
≤ Pr

y∼Dsm(
√
Σ),Λ+u

[
‖y‖2 ≤ mNsm(Σ)

4π

]
≤ 2−Ω(mN),

where the second equality is Eq. (14) applied to the diagonal covariance matrix sm(Σ)Im.

30

B Rejection Sampling for Ellipsoidal Gaussians

In this section we prove a more general result than what is needed for MuSig-L. Indeed, we show that
rejection sampling can be used to hide all parameters of a ellipsoidal Gaussian, as long as they are not
too far off from the public ones. Similarly to the proof of the original rejection sampling result [Lyu12,
Theorem 4.6], we split the proof into two steps. First, we prove a rejection sampling lemma for general
probability distributions under some assumptions (Lemma B.2), and then we show that a specific choice
of ellipsoidal Gaussians defined over a coset satisfies such hypotheses (Lemma B.4). In Section 3.2 we
show that this result can be applied to the specific spherical distributions used in the signing algorithm
of MuSig-L. For completeness, in Appendix B.4 we apply our generalized rejection sampling lemma to
simulate rejected transcripts of the standard Fiat-Shamir with aborts protocol. This implies statistical
honest verifier zero knowledge of [Lyu12]-type interactive protocols (as opposed to the no-abort HVZK
often assumed in the literature).
Theorem B.1 (Rejection Sampling for Ellipsoidal Gaussians). Let Λ ∈ R`+k be a lattice. Let
α, T,m > 0, ε ≤ 1/2. Let Σ̂ ∈ Km×m

R be a positive definite matrix such that Σ̂ � max{ηε(Λ), αT}.
Consider a set V ⊆ Km×m

R × Rk × R`+k. Let h : V → [0, 1] be the composition of three probability
distributions h := Ds ×Du ×Dv, where Du returns a vector u ∈ Rk, Dv returns a vector v ∈ R`+k such
that ‖v‖ ≤ T , and Ds returns a positive definite matrix ∆s ∈ Km×m

R such that:

∆s ≺
1
mβ

Σ̂

for some β ∈
[1

2 ,
1
2 + 1

m

]
. Set Σ := Σ̂ + ∆s. Then there exists M > 0, and negligible 0 < ε, δ1, δ2 < 1

such that the distribution of the following algorithm
RejSamp:

– (Σ,u,v)← h

– z← D`+k√
Σ,v,Λ⊥u

– with probability 1−min

1,
D`+k√

Σ̂

(z)

M ·D`+k√
Σ,v

(z)

, set z := ⊥

– output (z, Σ,u,v)
is within statistical distance ε

2M + δ1
M of the distribution of:

SimRS:
– (Σ,u,v)← h

– z← D`+k√
Σ̂,Λ⊥u

– with probability 1− 1/M , set z := ⊥
– output (z, Σ,u,v)

Moreover, the probability that RejSamp outputs something is at least 1−ε
M (1− δ2).

The rest of the section is devoted to proving Theorem B.1.

B.1 Generalized Rejection Sampling
The following expands [Lyu12, Lemma 4.7] to restrict the original rejection sampling technique to a
subset of the domain, as long as its mass does not change significantly.
Lemma B.2. Let V be an arbitrary set, P(Zm) be the set of subsets of Zm, P ⊆ P(Zm), and h : V ×P →
R and f : Zm → R be probability distributions. Let gv : Zm → R be a family of probability distributions
indexed by all v ∈ V with the property that ∃ M ∈ R such that ∀ (v, S) ∈ V × P ,

Pr
[
Mgv(z) ≥ f(z) : z ← fS

]
≥ 1− ε

where fS is the restriction to S of f , i.e., fS(z) = f(z)
f(S) if z ∈ S, and fS(z) = 0 otherwise (gSv is defined

analogously). Assume that

∀ z ∈ Zm, 1− νL ≤
f(S)
gv(S) ≤ 1 + νU

for some 0 ≤ νL < 1 and νU ≥ 0. Then the distribution of the output of the following algorithm

31

RejSamp:
– (v, S)← h

– z ← gSv

– with probability 1−min
(

1, f(z)
M ·gv(z)

)
, set z := ⊥

– output (z, v, S).
is within statistical distance ε

2M + max{νL,νU}
2M of the distribution of the following algorithm:

SimRS:
– (v, S)← h

– z ← fS

– with probability 1− 1/M , set z := ⊥
– output (z, v, S).

Moreover, the probability that RejSamp outputs something is at least (1− νL) 1−ε
M .

Proof. The proof follows the same structure of the proof of [Lyu12, Lemma 4.7]. Fixed v ∈ V , S ∈ P(Zm),
define a set SSv := {z ∈ S : Mgv(z) ≥ f(z)}. One can then bound the measure of such set and of S \SSv
as: fS(SSv) =

∑
z∈SSv

f(z)/f(S) ≥ 1 − ε and fS(S \ SSv) =
∑
z∈S\SSv

f(z)/f(S) ≤ ε. From the definition
of SSv follows also that

∀ z ∈ SSv , Pr
r

[z ← RejSamp(r)] = gSv (z) f(z)
M · gv(z)

= f(z)
M · gv(S)

∀ z /∈ SSv , Pr
r

[z ← RejSamp(r)] = gSv (z) =
{
gv(z)
gv(S) if z ∈ S
0 otherwise

Therefore, the probability that the rejection sampling algorithm returns something can be bounded from
above by

Pr
r

[z ← RejSamp(r)]

=
∑
(v,S)

h(v, S)

∑
z∈SSv

Pr
r

[z ← RejSamp(r)] +
∑
z/∈SSv

Pr
r

[z ← RejSamp(r)]

=
∑
(v,S)

h(v, S)

∑
z∈SSv

f(z)
M · gv(S) +

∑
z∈S\SSv

gSv (z)

=
∑
(v,S)

h(v, S)
gv(S)

∑
z∈SSv

f(z)
M

+
∑

z∈S\SSv

gv(z)

≤
∑
(v,S)

h(v, S)
gv(S)

∑
z∈SSv

f(z)
M

+
∑

z∈S\SSv

f(z)
M

≤ 1
M

∑
(v,S)

h(v, S) f(S)
gv(S) ≤

1 + νU
M

and from below by

Pr
r

[z ← RejSamp(r)]

=
∑
(v,S)

h(v, S)

∑
z∈SSv

Pr
r

[z ← RejSamp(r)] +
∑
z/∈SSv

Pr
r

[z ← RejSamp(r)]

=
∑
(v,S)

h(v, S)

∑
z∈SSv

f(z)
M · gv(S) +

∑
z∈S\SSv

gv(z)
gv(S)

≥
∑
(v,S)

h(v, S)
M

f(S)
gv(S)f

S(SSv) ≥ (1− ε)(1− νL)
M

.

32

The previous computation allows to already estimate the probability that the algorithms abort
for a fixed pair (v, S), i.e., that they return (⊥, v, S). Let NRS = Pr[RejSamp aborts], and NS =
Pr[SimRS aborts]. It follows that 1 − (1 − ε)(1 − νL)/M ≥ NRS ≥ 1 − (1 + νU)/M and NS = 1 − 1/M .
Equipped with these bounds we can finally bound the statistical distance between RejSamp and SimRS:

∆(RejSamp,SimRS)

= 1
2

∑
z,v,S

∣∣∣∣h(v, S)gSv (z) min
{

1, f(z)
Mgv(z)

}
− h(v, S)f

S(z)
M

∣∣∣∣+ |NRS −NS |

= 1

2
∑
v,S

h(v, S)
(∑

z

∣∣∣∣gSv (z) min
{

1, f(z)
M · gv(z)

}
− fS(z)

M

∣∣∣∣+ |NRS −NS |
)

= 1
2
∑
v,S

h(v, S)

∑
z∈SSv

∣∣∣∣ f(z)
M · gv(S) −

fS(z)
M

∣∣∣∣+
∑

z∈S\SSv

∣∣∣∣gSv (z)− fS(z)
M

∣∣∣∣+ |NRS −NS |

= 1

2
∑
v,S

h(v, S)(
∑
z∈SSv

f(z)
M

∣∣∣∣ 1
gv(S) −

1
f(S)

∣∣∣∣+
∑

z∈S\SSv

∣∣∣∣ gv(z)gv(S) −
f(z)

M · f(S)

∣∣∣∣︸ ︷︷ ︸
=:K1

+ |NRS −NS |︸ ︷︷ ︸
=:K2

) . (15)

We now analyze K1, K2 separately:

K1 = f(SSv)
M

∣∣∣∣ 1
gv(S) −

1
f(S)

∣∣∣∣+
∑

z∈S\SSv

f(z)
M

∣∣∣∣ Mgv(z)
f(z)gv(S) −

1
f(S)

∣∣∣∣
≤ f(SSv)

M

∣∣∣∣ 1
gv(S) −

1
f(S)

∣∣∣∣+
∑

z∈S\SSv

f(z)
M

∣∣∣∣ 1
gv(S) −

1
f(S)

∣∣∣∣
= f(S)

M

∣∣∣∣ 1
gv(S) −

1
f(S)

∣∣∣∣ = 1
M

∣∣∣∣ f(S)
gv(S) − 1

∣∣∣∣ ≤ 1
M

max{νL, νU} ,

where the first inequality follows observing that gv(z) ≤ f(z)/M for all z ∈ S \ sSv . Finally,

K3 ≤ max
{∣∣∣∣1− (1− ε)(1− νL)

M
−
(

1− 1
M

)∣∣∣∣ , ∣∣∣∣1− (1 + νU)
M

−
(

1− 1
M

)∣∣∣∣}
= 1
M

max {ε+ νL(1− ε), νU} ≤
ε+ max{νU , νL}

M
.

Plugging these inequalities in Eq. (15) yields

∆(RejSamp,SimRS) ≤ ε

2M + max{νL, νU}
2M .

ut

B.2 Technical Lemma

Before proving the main statement we need to prove a variant of Corollary A.2, namely we show that for
two parameters

√
Σ̂ ≺

√
Σ the Gaussian mass of a lattice changes proportionally to the ratio of their

determinants.

Lemma B.3. Let Λ ⊆ Rm be a lattice, and Σ, Σ̂ ∈ Km×m
R be symmetric positive definite matrices such

that
√
Σ̂ ≺

√
Σ. Then

ρ√Σ(Λ)
ρ√

Σ̂
(Λ) ≤

√
det(Σ)
det(Σ̂)

.

33

Proof. By the properties of the discrete Fourier transform we have that

ρ√Σ(Λ) = ρ(
√
Σ
−1
Λ) = det((

√
Σ
−1
Λ)∗)ρ̂

(
(
√
Σ
−1
Λ)∗
)

= det(
√
ΣΛ∗)ρ√

Σ
−1 (Λ∗) = det(

√
ΣΛ∗) ·

(∑
x∈Λ∗

exp
(
−π〈z, Σ−1z〉

))

≤ det(
√
ΣΛ∗) ·

(∑
x∈Λ∗

exp
(
−π〈z, Σ̂−1z〉

))
≤ det(

√
ΣΛ∗)ρ√

Σ̂
−1 (Λ∗)

where the third equality follows from (
√
Σ
−1
Λ)∗ =

√
ΣΛ∗, and the first inequality Σ̂ ≺ Σ. Observing

that ρ√
Σ̂

(Λ) = det(
√
Σ̂Λ∗) · ρ√

Σ̂
−1 (Λ∗) yields the final bound

ρ√Σ(Λ)
ρ√

Σ̂
(Λ) ≤

det((
√
ΣΛ)∗)ρ√

Σ̂
−1 (Λ∗)

det(
√
Σ̂Λ∗)ρ√

Σ̂
−1 (Λ∗)

=
√

det(Σ)
det(Σ̂)

.

ut

The following shows that if the parameters are not too far off two ellipsoidal discrete Gaussian distri-
butions behave similarly when restricted to a lattice coset. The proof follow somewhat closely the original.

Lemma B.4. Let m > 0, Λ ⊆ Rm be a lattice, and let u ∈ Rm \ {0}. For a set V ⊆ Rm let T =
maxv∈V ‖v‖. Let Σ̂,Σ ∈ Km×m

R be two positive definite matrices such that:
– Σ̂ � max{ηε(Λ), αT} for some α > 0,

– mβ
mβ+1 Σ̂

−1 ≺ Σ−1 ≺ 1
β Σ̂
−1, for some9 β ∈

[1
2 ,

1
2 + 1

m

]
.

Then, for any v ∈ V it holds

Pr

 Dm√
Σ̂

(z)

Dm√
Σ,v

(z) ≤M : z← Dm√
Σ̂,Λ+u

 ≥ 1− ε ,

where M = exp
(
π
α2 + πt

α

)
and ε = 2 1+ε

1−ε exp
(
−t2(π − 1)

)
for every t > 0.

Proof. The ration between Gaussians can be split into three parts that we treat separately in Lemma B.5
and Lemma B.7:

Dm√
Σ̂

(z)

Dm√
Σ,v

(z) =
Dm√

Σ̂
(z)

Dm√
Σ

(z) ·
Dm√

Σ
(z)

Dm√
Σ,v

(z)

= exp
(
−π(‖

√
Σ̂
−1

z‖2 − ‖
√
Σ
−1

z‖2)
)

︸ ︷︷ ︸
=:K1

·
ρ√Σ(Rm)
ρ√

Σ̂
(Rm)︸ ︷︷ ︸

=:K2

·
Dm√

Σ
(z)

Dm√
Σ,v

(z)︸ ︷︷ ︸
=:K3

.

Lemma B.5. Pr
[
K1 ·K2 ≤ 1 : z← Dm√

Σ̂,Λ⊥u

]
≥ 1− negl(λ).

Proof. Let Σ−1
d := Σ̂−1 −Σ−1; Σ−1

d is positive definite,

Σ−1
d � Σ̂−1 −Σ−1 � Σ̂−1 − 1

β
Σ̂−1 = β − 1

β
Σ̂−1 � 0 .

Combining the previous observation with Theorem A.3 yields

K1 = exp
(
−π‖

√
Σd
−1

z‖2
)
≤ exp

(
−β − 1

β
‖Σ̂−1z‖2

)
≤ exp

(
−β − 1

β

)
. (16)

9 The condition β ≤ 1
2 + 1

m
excludes the cases in which the inequality is trivially false, i.e., when β < mβ

mβ+1 . A

tighter value of such upper bound is β ≤
√

4m2+1+1
2m .

34

Finally, Lemma B.3 yields that

K2 ≤

√
det(Σ)
det(Σ̂)

≤
(

1 + 1
mβ

)m/2
≤ exp

(
1

2β

)
. (17)

Putting together Eq. (16) and Eq. (17) we obtain that K1 ·K2 = exp
(

1−2β
2β

)
≤ 1 with probability 1− ε

as β ≥ 2. ut

Before bounding K3 we need to prove a technical lemma.

Lemma B.6 (generalized [Lyu12, Lemma 4.3]). Under the assumptions of Lemma B.2, for any
r > 0 it holds

Pr
[
π
∣∣〈z, Σ−1c〉+ 〈c, Σ−1z〉

∣∣ > r

sm(Σ) : z← Dm√
Σ̂,Λ+u

]
≤ 21 + ε

1− ε exp
(
− (π − 1)r2

‖c‖2sm(Σ)

)
.

Proof. For any t ∈ R it holds

E
[
exp

(
πt · (〈z, Σ−1c〉+ 〈c, Σ−1z〉)

)]
= 1
ρ√

Σ̂
(Λ+ u)

∑
z∈Λ+u

exp
(
−π(‖

√
Σ̂
−1

z‖2 − 〈z, Σ−1c〉 − 〈c, Σ−1z〉)
)

=
exp

(
π‖
√
Σ
−1(tc)‖2

)
ρ√

Σ̂
(Λ+ u)

∑
z∈Λ+u

exp
(
−π(‖

√
Σ
−1

(z− tc)‖2 + ‖
√
Σd
−1

z‖2)
)

≤
ρ√Σ,tc(Λ+ u)
ρ√

Σ̂
(Λ+ u) · exp

(
π‖
√
Σ
−1

(tc)‖2
)

exp
(
−β − 1

β

)
from Eq. (16)

≤
ρ√Σ(Λ)
ρ√

Σ̂
(Λ) ·

1 + ε

1− ε exp
(
π‖
√
Σ
−1

(tc)‖2
)

exp
(
−β − 1

β

)
from Corollary A.2

≤

√
det(Σ)
det(Σ̂)

· 1 + ε

1− ε exp
(
πt2‖c‖2(s1(

√
Σ
−1

))2
)

exp
(
−β − 1

β

)
from Lemma B.3

≤ 1 · 1 + ε

1− ε exp
(
πt2‖c‖2
sm(Σ)

)
from Eq. (17) and β ≥ 2

= 1 + ε

1− ε exp
(
πt2‖c‖2
sm(Σ)

)
from Lemma 2.3

Thus, applying Markov’s inequality yields

Pr
[
π(〈z, Σ−1c〉+ 〈c, Σ−1z〉) > r

sm(Σ) : z← Dm√
Σ̂,Λ+u

]
= Pr

[
exp

(
πt · (〈z, Σ−1c〉+ 〈c, Σ−1z〉)

)
> exp

(
tr

sm(Σ)

)
: z← Dm√

Σ̂,Λ+u

]
≤

E
[
exp

(
πt · (〈z, Σ−1c〉+ 〈c, Σ−1z〉)

)]
exp

(
tr

sm(Σ)

)
≤ 1 + ε

1− ε exp
(
πt2‖c‖2
sm(Σ) −

tr

sm(Σ)

)
= 1 + ε

1− ε exp
(
− (π − 1)r2

‖c‖2sm(Σ)

)
where the last equality follows setting t := r

‖c‖2 . The symmetry of the distribution of z implies

Pr
[
π(〈z, Σ−1c〉+ 〈c, Σ−1z〉) < − r

sm(Σ) : z← Dm√
Σ̂,Λ+u

]
≤ 1 + ε

1− ε exp
(
− (π − 1)r2

‖c‖2sm(Σ)

)
.

Applying the union bound yields the thesis. ut

35

Lemma B.7. Pr
[
K3 ≤ exp

(
π
α2 + πt

α

)
: z← Dm√

Σ̂,Λ+u

]
≥ 1− 2 1+ε

1−ε exp
(
−t2(π − 1)

)
.

Proof. Observe that K3 = ρ√Σ(z)
ρ√Σ,v(z) = exp

(
π(‖
√
Σ
−1v‖2 −D)

)
, where D := 〈z, Σ−1c〉+ 〈c, Σ−1z〉. For

every t > 0, substituting r = t · sm(
√
Σ)‖v‖ in Lemma B.6 yields that |D| ≤ t‖v‖

sm(
√
Σ) with probability

greater than 1− 2 1+ε
1−ε exp

(
−t2(π − 1)

)
for all v ∈ Rm. From the definition of the singular value we have

also that ‖
√
Σ
−1v‖ ≤ s1(

√
Σ
−1)‖v‖ = 1

sm(
√
Σ)‖v‖. Hence,

K3 ≤ exp
(

π‖v‖2

(sm(
√
Σ))2

+ πt‖v‖
sm(
√
Σ)

)
≤ exp

(
π‖v‖2

(sm(
√
Σ̂))2

+ πt‖v‖
sm(
√
Σ̂)

)

= exp
(
π
‖v‖2 + t‖v‖αT

α2T 2

)
≤ exp

(
π

α2 + πt

α

)
,

holds with probability greater than 1− 2 1+ε
1−ε exp

(
−t2(π − 1)

)
. ut

B.3 Proof for Theorem B.1

We are finally ready to prove our main result.

Proof. As already mentioned, it is enough to check that the parameters satisfy the assumptions of
Lemma B.4, and that the Gaussian mass of a lattice coset does not significantly change when switching
from the private to the public parameters. If both conditions hold, Lemma B.2 yields the thesis.

The hypothesis ∆s ≺ 1
mβ Σ̂ yields

Σ ≺ Σ̂
(

1 + 1
mβ

)
⇒ Σ−1 � Σ̂−1

(
1 + 1

mβ

)−1
= Σ̂−1 mβ

mβ + 1

thus the conditions of Lemma B.4 are satisfied.
The bounds on the ratio of the Gaussian masses of a lattice coset follows from these inequalities

obtained applying [GPV08, Lemma 2.7] and Lemma B.3:

ρ√
Σ̂

(Λ⊥u)

ρ√Σ,v(Λ⊥u) ≤
ρ√

Σ̂
(Λ⊥)

ρ√Σ(Λ⊥) ·
1 + ε

1− ε ≤
1 + ε

1− ε

√
det(Σ̂)
det(Σ)

ρ√Σ,v(R`+k)
ρ√

Σ̂
(R`+k) ≤

ρ√Σ(R`+k)
ρ√

Σ̂
(R`+k) ≤

√
det(Σ̂)
det(Σ)

ρ√
Σ̂

(Λ⊥u)

ρ√Σ,v(Λ⊥u) ≥
ρ√

Σ̂
(Λ⊥)

ρ√Σ(Λ⊥) ·
1− ε
1 + ε

≥ 1− ε
1 + ε

ρ√Σ,v(R`+k)
ρ√

Σ̂
(R`+k) ≥

1− ε
1 + ε

·
ρ√Σ(R`+k)
ρ√

Σ̂
(R`+k) ≥

1− ε
1 + ε

where the last lower bound follows observing that ∀ z ∈ Λ⊥,

ρ√Σ(z) ≥ exp
(
−1

2 s1(Σ−1)‖z‖2
)

= exp
(
−1

2
‖z‖2

sm(Σ)

)
≥ exp

(
−1

2
‖z‖2

s1(Σ̂)

)

≥ exp
(
−1

2 sm(Σ̂−1)‖z‖2
)
≥ exp

(
−1

2‖
√
Σ̂
−1
z‖2
)

= ρ√
Σ̂

(z) .

Thus, we can set νL := 4ε
(1+ε)2 and νU := 2ε

1−ε and substitute them in the formulas from Lemma B.2 to
obtain10 δ1 := 2ε ≥ ε/(1− ε) (where the inequality follows from ε < 1/2) and δ2 := 4ε

(1+ε)2 . ut
10 Remark that ε 6= ε, as the factor ε comes from the smoothing parameter of the lattice Λ, while ε comes from

the condition in Lemma B.4.

36

Algorithm 4: Simulation of an honest Fiat-Shamir aborts transcript

T (Ā, s, t)
1: y← D`+k

σ

2: w := Āy mod q
3: c←$ C
4: v := c · s
5: z := v + y
6: ρ←$ [0, 1)
7: if ρ > min

(
D`+k
σ (z)

M ·D`+k
σ,v (z) , 1

)
then

8: z := ⊥
9: return (A, t,w, c, z)

S(Ā, t)
1: z← D`+k

σ

2: u := Āz mod q
3: c←$ C
4: w := u− c · t mod q
5: ρ←$ [0, 1)
6: if ρ > 1/M then
7: z := ⊥
8: return (A, t,w, c, z)

B.4 Statistical Honest Verifier Zero Knowledge of the Fiat-Shamir with Aborts
Σ-Protocol

In the literature HVZK of the usual FSwA interactive proofs are often only assumed to hold for the
non-aborted cases, although there have been attempts to simulate the aborted cases as well [ES16,BK20].
For completeness, we present an explicit hybrid argument to prove statistical HVZK of FSwA as a direct
consequence of our Lemma 4.3 and Theorem B.1. On a high-level, one can replace Āy with a uniform
module element due to the regularity result of [LPR13], which however requires an intermediate hybrid
to perform rejection sampling on z following Gaussian over the coset Λ⊥w+c·t(Ā). This is where our
Theorem B.1 comes into play to take care of a mismatch with the original rejection sampling theorem,
which assumes z to be chosen from the entire space.

Lemma B.8. Suppose R,N, q, k, `, and σ > ηε(Λ⊥(Ā)) satisfy the conditions required by Lemma 4.3
and Theorem B.1 with n = k+ ` and Σ = Σ̂ = σ2 · I`+k, and let M be as in Lemma B.4. Let A←$ Rk×`,
Ā := [A|Ik], s ∈ S`+kη , and t := Ās mod q. The output distributions of T and S in Alg. 4 are statistically
indistinguishable.

Proof. We prove the above lemma via standard hybrid arguments. Each hybrid is detailed in Alg. 5.
– Hyb0 is identical to T above.
– Hyb1 is identical to Hyb0, except that w is sampled uniformly and y is sampled from Gaussian

defined over a coset Λ⊥w(Ā) =
{

x ∈ Rk+` : Āx = w mod q
}
. From Lemma 4.3, Hyb0 and Hyb1 are

statistically close.
– Hyb2 is identical to Hyb1, except that z is sampled from Gaussian over a coset Λ⊥u centered at v,

where u = w + c · t. Clearly, the output distribution of Hyb2 is identical to Hyb1.
– Hyb3 is identical to Hyb2, except that z is sampled from Gaussian over a coset Λ⊥u centered at 0 and

it is output with constant probability 1/M . Applying Theorem B.1, we have that Hyb2 and Hyb3 are
statistically close.

– Hyb4 is identical to Hyb3, except that u is uniformly sampled first and w is set accordingly. Clearly,
the output distribution of Hyb4 is identical to Hyb3.

– Hyb5 is identical to Hyb4, except that z is sampled from Gaussian over the entire space R`+k and w
is defined as w = Āz− ct. From Lemma 4.3, Hyb5 and Hyb4 are statistically close.

The distribution output by Hyb5 is identical to one by S. This concludes the proof.
ut

C Omitted Security Proofs

C.1 Proof for MS-UF-KOA Security (Theorem 4.1)

Proof. We first construct a wrapper B̃ around MS-UF-KOA adversary A.

37

Algorithm 5: Hybrids for Lemma B.8

Hyb0(Ā, s, t)
1: y← D`+k

σ

2: w := Āy mod q
3: c←$ C
4: v := c · s
5: z := v + y
6: ρ←$ [0, 1)
7: if ρ > min

(
D`+k
σ (z)

M ·D`+k
σ,v (z) , 1

)
then

8: z := ⊥
9: return (A, t,w, c, z)

Hyb1(Ā, s, t)
1: w←$ Rkq
2: y← D`+k

Λ⊥w(Ā),σ
3: c←$ C
4: v := c · s
5: z := v + y
6: ρ←$ [0, 1)
7: if ρ > min

(
D`+k
σ (z)

M ·D`+k
σ,v (z) , 1

)
then

8: z := ⊥
9: return (A, t,w, c, z)

Hyb2(Ā, s, t)
1: w←$ Rkq
2: c←$ C
3: v := c · s
4: u := w + c · t
5: z← D`+k

Λ⊥u (Ā),σ,v
6: ρ←$ [0, 1)
7: if ρ > min

(
D`+k
σ (z)

M ·D`+k
σ,v (z) , 1

)
then

8: z := ⊥
9: return (A, t,w, c, z)

Hyb3(Ā, s, t)
1: w←$ Rkq
2: c←$ C
3: v := c · s
4: u := w + c · t
5: z← D`+k

Λ⊥u (Ā),σ
6: ρ←$ [0, 1)
7: if ρ > 1/M then
8: z := ⊥
9: return (A, t,w, c, z)

Hyb4(Ā, s, t)
1: u←$ Rkq
2: z← D`+k

Λ⊥u (Ā),σ
3: c←$ C
4: v := c · s
5: w := u− c · t
6: ρ←$ [0, 1)
7: if ρ > 1/M then
8: z := ⊥
9: return (A, t,w, c, z)

Hyb5(Ā, s, t)
1: z← D`+k

σ

2: u := Āz mod q
3: c←$ C
4: v := c · s
5: w := u− c · t mod q
6: ρ←$ [0, 1)
7: if ρ > 1/M then
8: z := ⊥
9: return (A, t,w, c, z)

Lemma C.1. Let B̃ be as described in Alg. 6. Let IGen0 be an input generator that proceeds as follows:
A←$ Rk×`q ; s∗ ←$ S`+kη ; t∗ := Ās∗ mod q; hagg,1, . . . , hagg,Q ←$ C; output in := (A, t∗, hagg,1, . . . , hagg,Q).
Then we have

acc0(B̃) = AdvMS-UF-KOA
MuSig-L (A) (18)

where

acc0(B̃) := Pr[isig ≥ 1 : in← IGen0(1λ);hsig,1, . . . , hsig,Q ←$ C; (isig, out)← B̃(in, hsig,1, . . . , hsig,Q)].

Proof. This follows by inspection. Notice that B̃ perfectly simulates the view of the adversary A in the
MS-UF-KOA game, by using predetermined random oracle responses. Hence, B̃ outputs 1 if and only if
A succeeds in creating a valid forgery. ut

Next we modify IGen’s behavior, so that it now outputs a uniformly sampled public key t∗ instead of
generating it as an honest signer would.

Lemma C.2. Let B̃ be as described in Alg. 6. Let IGen1 be an input generator that proceeds as follows:
A ←$ Rk×`q ; t∗ ←$ Rkq ; hagg,1, . . . , hagg,Q ←$ C; output in := (A, t∗, hagg,1, . . . , hagg,Q). Then there exists
a PPT algorithm B′ such that

|acc1(B̃)− acc0(B̃)| ≤ AdvMLWE
q,k,`,η(B′) (19)

where

acc1(B̃) := Pr[isig ≥ 1 : in← IGen1(1λ);hsig,1, . . . , hsig,Q ←$ C; (isig, out)← B̃(in, hsig,1, . . . , hsig,Q)].

Proof. We construct a distinguisher B′ against the MLWEq,k,`,η problem. Given an MLWEq,k,`,η instance
(A, t∗) ∈ Rk×`q ×Rkq as input, B′ samples hsig,1, . . . , hsig,Q, hagg,1, . . . , hagg,Q ∈ C as in acc0() and acc1().
Then B′ constructs inputs to B̃ and outputs 1 if the return value of B̃ satisfies isig ≥ 1 and 0 otherwise.
By construction, we get the bound in the statement. ut

Next we construct a slightly modified wrapper B. Unlike B̃, it aborts whenever either of the flags
badagg or badkcol is set to true.

Lemma C.3. Let B be as described in Alg. 6. Let IGen1 and acc1() be as described in Lemma C.2. Then
we have

|acc1(B)− acc1(B̃)| ≤ Pr[badagg] + Pr[badkcol]. (20)

38

Proof. By construction, the view of the adversary A in an execution of B and B̃ is identical unless either
badagg or badkcol is set. By the union bound, we obtain the statement. ut

Let us bound the probability that each bad event occurs.

Lemma C.4. Pr[badagg] ≤ Q(Q+1)
|C| +

(
2

qN/2

)k
Proof. We consider two cases: (1) for all 1 ≤ i ≤ k, t∗i /∈ R×q , and (2) there exists 1 ≤ i ≤ k such
that t∗i ∈ R×q , where t∗ := [t∗1, . . . , t∗k]T is uniformly generated honest party’s key. From Lemma 2.2, the
probability that k uniform ring elements are simultaneously non-invertible is at most (2/qN/2)k. Hence,
the Pr[badagg ∧ ∀i ∈ [1, k] : t∗i /∈ R×q] is bounded by (2/qN/2)k.

Let us consider the latter case. As the flag badagg is set only if the adversary has queried Hsig with t̃
before querying Hagg, it amounts to bounding the following probability for a given uniform key t1 = t∗.

max
t̃,t2,...,tn

Pr
[

t̃ =
n∑
i=1

aiti mod q : a1, . . . , an ←$ C

]

= max
t̃,t2,...,tn

Pr
[
a1t1 = t̃−

n∑
i=2

aiti mod q : a1, . . . , an ←$ C

]

≤ max
t̃,t2,...,tn,a2,...,an

Pr
[
a1t1 = t̃−

n∑
i=2

aiti mod q : a1 ←$ C

]

Now, given that the honest public key t1 = t∗ has at least one invertible element, the above probability
can be bounded by the probability that uniform a1 hits a specific ring element, which is at most 1/|C|.
The adversary A queries Hagg at most Q times and one of the additional calls to Hagg at the end
made by B may potentially set badagg to true. Since the bad event occurs if the aggregated public key
derived inside Hagg hits any of at most Q entries already present in HTsig, by the union bound we get
Pr[badagg ∧ ∃i ∈ [1, k] : t∗i /∈ R×q] ≤ Q(Q+1)

|C| . ut

Lemma C.5. Pr[badkcol] ≤ Q(Q+1)
|C| +

(
2

qN/2

)k
Proof. The proof is analogous to one for badagg. The probability that all elements in t∗ are simultaneously
non-invertible is again at most (2/qN/2)k thanks to Lemma 2.2. Assuming there exists some invertible
entry in t∗, it amounts to finding the probability that the aggregated public key derived inside Hagg hits
any of at most Q entries already present in KT. By the same argument as above, and by the union bound,
we get Pr[badkcol ∧ ∃i ∈ [1, k] : t∗i /∈ R×q] ≤ Q(Q+1)

|C| . ut

Now we construct another wrapper C, which internally invokes the forker algorithm FB (Alg. 1) from
Lemma 2.13. FB takes care of rewinding B and outputs two forgeries with distinct challenges.

Lemma C.6. Let C be as described in Alg. 6. Let IGen2 be an input generator that works as follows:
A←$ Rk×`q ; t∗ ←$ Rk; output inC := (A, t∗). Then we have

acc1(B) ≤ Q

|C|
+
√
Q · acc2(C) (21)

where

acc2(C) := Pr[iagg ≥ 1 : inC ← IGen2(1λ);hagg,1, . . . , hagg,Q ←$ C; (iagg, outC)← C(inC , hagg,1, . . . , hagg,Q)].

Moreover, if C halts with output iagg ≥ 1 and outC = (L∗,~a, c∗, z∗, ĉ∗, ẑ∗), where L = {t1 = t∗, t2, . . . , tn∗},
it holds that

Āz∗ − c∗
∑
i 6=1

aiti − c∗a1t∗ = Āẑ∗ − ĉ∗
∑
i 6=1

aiti − ĉ∗a1t∗ mod q ∧ ‖z∗‖2 ≤ Bn ∧ ‖ẑ
∗‖2 ≤ Bn (22)

39

Proof. Until the forking point, i.e., when the adversary receives the isigth challenge from Hsig, the forker
FB uses the same random coin and the same random oracle responses hsig,1, . . . , hsig,isig−1 to answer the
queries made by B. Therefore, the view of the adversary B in both runs is identical, implying that the
inputs to the isigth query are identical in both runs: w̃∗ = ˆ̃w∗, µ∗ = µ̂∗, and t̃∗ = ˆ̃t∗.

We argue that, as long as neither of badagg nor badkcol is set, it holds that iagg = îagg, L∗ = L̂∗,
and ~a = ~̂a. First, it must be that L∗ = L̂∗ because otherwise two different public key lists would lead to
the same aggregated key t̃∗, contradicting the assumption that badkcol was not set. If badagg is not set,
then a query to Hsig with input (w̃∗, µ, t̃∗) must have been made after the corresponding query to Hagg
with input (L∗, t∗) leading to t̃∗. Since all the value assigned before the forking point are identical in
both runs, we have that iagg = îagg and ~a = ~̂a. Because outputs from both runs satisfy the verification
conditions, we get (22).

Finally, by the general forking lemma (Lemma 2.13), we find the upper bound for acc1(B) as stated
in the lemma. ut

Finally, we construct yet another wrapper D, which internally invokes the forker algorithm FC (Alg. 1)
from Lemma 2.13. FC takes care of rewinding C and outputs two four forgeries with distinct challenges
and distinct aggregation coefficients for the honest public key.

Lemma C.7. Let D as described in Alg. 6 and define

acc3(D) := Pr
[
outD 6= ⊥ : A←$ Rk×`q ; t∗ ←$ Rkq ; outD ← D(A||t∗)

]
.

Then we have

acc2(C) ≤ Q

|C|
+
√
Q · acc3(D) (23)

Moreover, if D halts with output outD = x ∈ R`+k+1, it holds that

[A|Ik|t∗]x = 0 mod q ∧ x 6= 0 ∧ ‖x‖2 ≤ 8κ
√
B2
n + κ3. (24)

Proof. Until the forking point, i.e., when Hagg uses the iaggth aggregation coefficient hagg,iagg to define
the entry HTagg[L∗, t∗], the view of the adversary is identical in 4 runs. Hence, we have L∗ := L∗1 = L∗2.
Since the coefficients corresponding to ti ∈ L∗ for i ≥ 2 are assigned before the one for t1, we also have
a2 := a1,2 = a2,2, . . . , an∗ := a1,n∗ = a2,n∗ . Hence, from Lemma C.6, the values in outC and ˆoutC satisfy
the following equations

Āz∗1 − c∗1
∑
i 6=1

aiti − c∗1a1,1t∗ = Āẑ∗1 − ĉ∗1
∑
i6=1

aiti − ĉ∗1a1,1t∗ mod q (25)

Āz∗2 − c∗2
∑
i 6=1

aiti − c∗2a2,1t∗ = Āẑ∗2 − ĉ∗2
∑
i 6=1

aiti − ĉ∗2a2,1t∗ mod q (26)

where, in particular, c∗1 6= ĉ∗1, c∗2 6= ĉ∗2, and a1,1 6= a2,1 thanks to the forker algorithms FB and FC ,
respectively. Rearranging the above equations, we get that

Āz̄1 − c̄1
∑
i 6=1

aiti − c̄1a1,1t∗ = 0 mod q (27)

Āz̄2 − c̄2
∑
i 6=1

aiti − c̄2a2,1t∗ = 0 mod q (28)

where z̄i = z∗i − ẑ∗i and c̄i = c∗i − ĉ∗i for i = 1, 2. By multiplying the former by c̄2 and the latter by c̄1,
respectively, we eventually have

Ā(c̄2z̄1 − c̄1z̄2)− c̄1c̄2āt∗ = 0 mod q (29)
(30)

where ā = a1,1 − a2,1. Since c̄1, c̄2, and ā are all non-zero and none of them are zero-divisors due to
Lemma 2.1, the solution x output by D is guaranteed to be non-zero.

Let us bound L2-norm of x. By the verification conditions, we have ‖z̄i‖2 ≤ 2Bn for i = 1, 2. Since
c̄i ∈ C̄, it also holds that ‖c̄i‖1 ≤ 2κ. Therefore, we obtain ‖c̄2z̄1‖2 ≤ ‖c̄2‖1‖z̄1‖2 ≤ 4Bnκ. As ‖c̄1z̄2‖2
has the same bound, the difference c̄2z̄1 − c̄1z̄2 has L2-norm bounded by 8Bnκ. Since ā ∈ C̄, we also

40

have ‖ā‖2 ≤ 2
√
κ and thus ‖c̄1c̄2ā‖2 ≤ ‖c̄1‖1‖c̄2‖1‖ā‖2 ≤ 8κ2√κ. Putting them together, we obtain

‖x‖2 ≤ 8κ
√
B2
n + κ3.

Finally, by the general forking lemma (Lemma 2.13), we find the upper bound for acc2(C) as stated
in the lemma. ut

Now we are ready to derive the statement of Theorem 4.1. From Lemmas C.1 to C.3, we get

AdvMS-UF-KOA
MuSig-L (A) ≤ acc1(B) + 2Q(Q+ 1)

|C|
+ 2k+1

qkN/2
+ AdvMLWE

q,k,`,η(B′).

By plugging the inequalities of Lemma C.6 and Lemma C.7 into the above,

AdvMS-UF-KOA
MuSig-L (A) ≤ Q(2Q+ 3)

|C|
+ 2k+1

qkN/2
+ AdvMLWE

q,k,`,η(B′) +

√
Q2

|C|
+Q

√
Q · acc3(D).

The statement of Lemma C.7 tells that whenever D halts with some output x 6= ⊥, it is a valid solution
to the MSISq,k,`,β problem with norm bound β = 8κ

√
B2
n + κ3. Therefore acc3(D) = AdvMSIS

q,k,`+1,β(D).
Putting together, we get the bound in the statement. ut

C.2 Proof for MS-UF-CMA Security (Theorem 4.5)

Proof. We prove via several game hops. We denote by Pr[Gi(X)] the probability that Gi(X) halts
with output 1. The random oracles in the MS-UF-CMA game (resp. MS-UF-KOA game) are denoted by
H′agg,H′non,H′sig (resp. Hagg,Hnon,Hsig), respectively.
G0 This game is identical to the MS-UF-CMA game:

Pr[G0(X)] = AdvMS-UF-CMA
MuSig-L (X). (31)

G1 This game is identical to G0, except that OSignOff keeps all the commit messages and their preimages
in the table WT for each session ID and aborts if WT has identical entries associated to different session
IDs: it performs WT[sid] := ((w(j)

1)j∈[m], (y
(j)
1)j∈[m]) after generating w(j)

1 ’s, and sets badwcol to true if
there exists sid′ 6= sid such that WT[sid′] = WT[sid].

Since the adversary X makes at most Qs queries to OSignOff and each w(j)
1 is statistically close to

U (Rkq) from Lemma 4.2, by the union bound, we get

|Pr[G1(X)]− Pr[G0(X)]| ≤ Pr[badwcol] ≤ Q2
s ·
(

1 + 2−Ω(N)

qkN

)m
. (32)

G2 This game is identical to G1, except that OSignOff aborts if X has previously queried H′non with input
containing (w(j)

1)j∈[m]: it sets badnon to true if there exists ({ti||comi}i∈[n], µ, t̃) such that HT′non[〈{ti||comi}i∈[n]〉, µ, t̃] 6=
⊥ and com1 = (w(j)

1)j∈[m].
Since the adversary X makes at most Qh queries to H′non and Qs queries to OSignOn (which internally

invokes H′non), by the union bound, we get

|Pr[G2(X)]− Pr[G1(X)] ≤ Pr[badnon] ≤ (Qh +Qs)2 ·
(

1 + 2−Ω(N)

qkN

)m
. (33)

G3 This game is identical to G2, except H′non takes care of generating the online output (z1, w̃) and
keeps it in the table ST, as soon as it receives a valid input for which OSignOn may potentially generate
a signature later. Then OSignOn simply looks up the table ST associated with a set of (ti, comi), µ, and
t̃ to answer queries. Concretely, it proceeds as in Alg. 7. As this is equivalent to the previous game, we
have

Pr[G3(X)] = Pr[G2(X)] (34)

G4 This game is identical to G3, except that, if H′non receives a valid input for which OSignOn may poten-
tially generate a signature later, it samples challenge c and tries to program H′sig such that H′sig(w̃, µ, t̃) =

41

42

Algorithm 6: Reduction to MSISq,k,`+1,β and MLWEq,k,`,η

B̃(in, hsig,1, . . . , hsig,Q; ρ)/B(in, hsig,1, . . . , hsig,Q; ρ)
// Lines highlighted in orange are only executed in B

1: (A, t∗, hagg,1, . . . , hagg,Q) := in
2: ctragg := 0; ctrsig := 0;
3: pp := Ā = [A|Ik]; pk1 := t∗
4: (L∗, µ∗, (w̃∗, z∗))← AHagg,Hnon,Hsig(pp, pk1)
5: if t∗ /∈ L∗ then
6: return (0,⊥)
7: n∗ := |L∗|
8: {t1 = t∗, t2, . . . , tn∗} := L∗

9: for i ∈ [1, n∗] do
10: ai := Hagg(L∗, ti)
11: ~a := (a1, . . . , an∗)
12: t̃∗ :=

∑n∗

i=1 aiti mod q
13: c∗ := Hsig(w̃∗, µ∗, t̃∗)
14: if Āz∗ − c∗t̃∗ mod q 6= w̃ ∨ ‖z∗‖2 > Bn then
15: return (0,⊥)
16: Find iagg such that HTagg[L∗, t∗] = hagg,iagg

17: Find isig such that HTsig[w̃∗, µ∗, t̃∗] = hsig,isig

18: out := (iagg, w̃∗, µ∗, L∗,~a, c∗, z∗)
19: return (isig, out)

C(inC , hagg,1, . . . , hagg,Q; ρC)
1: (A, t∗) := inC
2: inB := (A, t∗, hagg,1, . . . , hagg,Q)
3: (b, outB, ˆoutB)← FB(inB)
4: (iagg, w̃∗, µ∗, L∗,~a, c∗, z∗) := outB
5: (̂iagg, ˆ̃w∗, µ̂∗, L̂∗, ~̂a, ĉ∗, ẑ∗) := ˆoutB
6: if b = 0 then
7: return (0,⊥)
8: outC := (L∗,~a, c∗, z∗, ĉ∗, ẑ∗)
9: return (iagg, outC)

D(A′)
1: [A|t∗] := A′
2: inC := (A, t∗)
3: (b, outC , ˆoutC)← FC(inC)
4: (L∗1,~a1, c

∗
1, z∗1, ĉ∗1, ẑ∗1) := outC

5: (L∗2,~a2, c
∗
2, z∗2, ĉ∗2, ẑ∗2) := ˆoutC

6: {t1 := t∗, t2, . . . , tn∗} := L∗1
7: (a1,1, a1,2, . . . , a1,n∗) := ~a1
8: (a2,1, a2,2, . . . , a2,n∗) := ~a2
9: if b = 0 then

10: return ⊥
11: c̄1 := c∗1 − ĉ∗1; c̄2 := c∗2 − ĉ∗2
12: z̄1 := z∗1 − ẑ∗1; z̄2 := z∗2 − ẑ∗2
13: ā := a1,1 − a2,1

14: x :=
[
c̄2z̄1 − c̄1z̄2
−c̄1c̄2ā

]
15: return x

B′(A, t∗)
1: hsig,1, . . . , hsig,Q, hagg,1, . . . , hagg,Q ←$ C
2: in := (A, t∗, hagg,1, . . . , hagg,Q)
3: (isig, out)← B̃(in, hsig,1, . . . , hsig,Q)
4: if isig ≥ 1 then
5: return 1
6: else
7: return 0

Hagg(L, t)
1: if HTagg[L, t] 6= ⊥ then
2: return HTagg[L, t]
3: if t∗ /∈ L ∨ t /∈ L then
4: HTagg[L, t]←$ C
5: return HTagg[L, t]
6: for t′ ∈ L \ {t∗} do
7: HTagg[L, t′]←$ C

8: ctragg + +
9: HTagg[L, t∗] := hagg,ctragg

10: {t1 = t∗, t2, . . . , tn} := L
11: for i ∈ [1, n] do
12: ai := HTagg[L, ti]
13: t̃ :=

∑n
i=1 aiti mod q

14: KT[L] := t̃
15: if ∃(w̃, µ) : HTsig[w̃, µ, t̃] 6= ⊥ then
16: badagg := true
17: if ∃L′ : L′ 6= L ∧KT[L′] = t̃ then
18: badkcol := true
19: return HTagg[L, t]

Hsig(w̃, µ, t̃)
1: if HTsig[w̃, µ, t̃] = ⊥ then
2: ctrsig + +
3: HTsig[w̃, µ, t̃] := hsig,ctrsig

4: return HTsig[w̃, µ, t̃]

Hnon(W,µ, t̃)
1: if HTnon[W,µ, t̃] = ⊥ then
2: HTnon[W,µ, t̃]←$ {0, 1}l

3: return HTnon[W,µ, t̃]

c. It then aborts with badsig = true if w̃ has been previously queried to H′sig by the adversary. The
additional operations are highlighted in green in Alg. 7.

Let us bound Pr[badsig]. It amounts to bounding the following probability.

max
w̃,w(1),...,w(m)

Pr
[

w̃ =
m∑
j=1

b(j)w(j) mod q : b(2), . . . , b(m) ← Dσb ; b(1) = 1

]

≤ max
w̃,w(1),...,w(m)

Pr
[
b(m)w(m) = w̃−

m−1∑
j=1

b(j)w(j) mod q : b(2), . . . , b(m) ← Dσb ; b(1) = 1

]

≤ max
w̃,w(1),...,w(m),b(2),...,b(m−1)

Pr
[
b(m)w(m) = w̃−

m−1∑
j=1

b(j)w(j) mod q : b(m) ← Dσb ; b(1) = 1

]

Since the first element of w(m) is guaranteed to be invertible in Rq, the above probability is at most

max
b′∈R

Pr
[
b(m) = b′ : b(m) ← Dσb

]
= Pr

[
b(m) = 0 : b(m) ← Dσb

]
= 1
ρσb(R) .

The adversary X makes at most Qh queries to H′sig, Qh queries to H′non, and Qs queries to OSignOn
(which internally calls H′non and thus H′sig as well). Since for every query to H′non and OSignOn, there is
a chance of setting the badsig flag, by the union bound we get

|G4(X)−G3(X)| ≤ Pr[badsig] ≤ (2Qh +Qs)2

ρσb(R) (35)

G5 This game is identical to G4, except that H′non internally tosses a biased coin that comes out heads
with probability $ and tails with 1−$11. The additional operations are highlighted in orange in Alg. 7.
If the coin comes out heads, H′non performs generation of the online output as in the previous game and
then stores the challenge c in the table CT[w̃, µ, t̃]; if the coin comes out tails, H′non merely samples
randomness (r(j))j∈[2,m] and skips generation of the online output entirely. Note that, in the latter case,
if the adversary X later makes a query to OSignOn with the same input, OSignOn fails to return an online
output (z1, w̃). If this happens, the oracle sets badsim to true. Moreover, when the adversary returns a
forgery (w̃∗, z̃∗) on µ∗ that satisfies verification conditions w.r.t. an aggregated key t̃∗, the game aborts
with badchal = true if the table entry CT[w̃∗, µ∗, t̃∗] is defined.

Observe that the adversary X defines the table CT at most Qs times, because the relevant branch
inside H′non is only executed if the corresponding offline messages have been already generated by OSignOff.
Moreover, X makes at most Qs queries to the online oracle OSignOn in which badsim gets potentially
set. Hence, G5 outputs 1 whenever the coin comes out heads for at most Qs queries to H′non used by
OSignOn, and it comes out tail for one crucial query associated with the forgery (w̃∗, µ∗, t̃∗), i.e.,

$Qs · (1−$) · Pr[G4(X)] ≤ Pr[G5(X)] (36)

By setting $ = Qs/(Qs + 1), since (1/(1 + 1/Qs))Qs ≥ 1/e for Qs ≥ 0, we get

1
e(Qs + 1) · Pr[G4(X)] ≤ Pr[G5(X)]. (37)

G6 This game is identical to G5, except that H′non internally proceed as in S of Lemma 4.4 to generate the
online messages, and OSignOn later obtains a signature share z1 simulated inside H′non. The additional
operations are highlighted in purple in Alg. 7. Note that RevSamp indicates a suitable “reverse sampling
algorithm” corresponding to the original Gaussian sampler Samp. In fact, once b(j)’s are simulated, finding
corresponding uniform randomness r(j)’s are easy assuming that the Samp algorithm is “sampleable”
[BCI+10]. Such a property can be for example satisfied by simple CDT-based samplers.
11 This game hop closely follows proofs for the RSA-FDH [Cor00], mBCJ [DEF+19], and DOTT [DOTT22]

schemes.

43

Since the adversary X makes at most Qs queries to OSignOff and OSignOn, and X observes at most
Qs simulated (r(j))j∈[2,m]’s through queries to H′non (recall that H′non only performs simulation if it finds
the corresponding trapdoor recorded in WT), from the oracle simulation lemma (Lemma 4.4), the view
of X in G5 and G6 is statistically indistinguishable. That is,

|Pr[G6(X)]− Pr[G5(X)]| ≤ Qs · εs (38)

Reduction to the MS-UF-KOA game We are now ready to construct another adversary A break-
ing the MS-UF-KOA game. A runs X by simulating G6, but by querying the external random oracles
Hagg,Hnon,Hsig in the MS-UF-KOA game, when responding to queries to H′agg,H′non,H′sig in G6, respec-
tively. The complete reduction algorithms are described in Alg. 7 with additional operations being high-
lighted in blue. Note that, unless the table of simulated challenges CT[w̃, µ, t̃] is defined, the output of
H′sig(w̃, µ, t̃) is consistent with the external oracle Hsig(w̃, µ, t̃). Therefore, as long as X wins the game
G6, A can also output a forgery that is valid in the MS-UF-KOA game, i.e.,

AdvMS-UF-KOA
MuSig-L (A) = Pr[G6(X)]. (39)

Putting the bounds together, we obtain the theorem statement. ut

C.3 Probability that uniform M ∈ Rk×n
q is not full rank

Suppose k ≤ n and let M ∈ Rk×n
q be a uniform random matrix. We want to prove that, except with

negligible probability, it is what we will call “full rank”, namely, equivalent over Rq to a matrix of the
form [A|Ik] for some A ∈ Rk×(n−k)

q : in other words, there exists invertible matrices P ∈ GLk(Rq),
Q ∈ GLk(Rq) and a matrix A such that PMQ = [A|Ik].

Since q ≡ 5 mod 8, the ring Rq = R/qR is isomorphic to FqN/2×FqN/2 , and clearly, a matrix P ∈ Rk×kq

is invertible if and only if its two components under this decomposition are invertible matrices over the
field FqN/2 . Therefore, the matrix M is full rank if and only if both of its components M0,M1 ∈ Fk×n

qN/2

are full rank. In particular, by the union bound, the probability that it is not full rank is bounded by
2pk,n(qN/2), where pk,n(qN/2) is the probability that a uniformly random matrix in Fk×n

qN/2 is not full rank.
It therefore suffices to prove that this probability is negligible.

Write Q = qN/2. Since FQ is a field, a matrix M0 ∈ Fk×nQ is not full rank if and only if there exists
x ∈ FkQ a non zero vector such that xtM0 = 0. Now fix X an arbitrary subset of FkQ \ {0} containing
exactly one vector in each subspace of dimension 1 (i.e., one element in each equivalence class of FkQ \{0}
for the relation of colinearity). Then it also holds that M0 ∈ Fk×nQ is not full rank if and only if there
exists x ∈ X with xtM0 = 0. Indeed, if such an x exists, M0 is not full rank, and conversely, if M0 is
not full rank, there exists y with ytM0 = 0, and we can find x ∈ X with x = λy for some λ 6= 0, which
also yields xtM0 = 0.

Now, for a fixed x ∈ X and a uniformly random M0 ∈ Fk×nQ , xtM0 is uniformly distributed in FnQ.
In particular, it is zero with probability exactly 1/Qn. Taking a union bound over all X, we get:

pk,n(Q) ≤
∑
x∈X

Pr
M0

[
xtM0 = 0

]
= |X|
Qn

= (Qk − 1)/(Q− 1)
Qn

= 1 +O(1/Q)
Qn−k+1 = O(1/Q)

since n− k + 1 ≥ 1. Now 1/Q = q−N/2 is negligible, so this concludes the proof.

D Correctness and Parameters

This section aims to clarify the choice of the parameters in Table 2, and serves as proof of Lemma 3.2.
Parameters are determined by the requirements of the two main techniques in this paper: generalized

rejection sampling (cf. Section 3.2) and the trapdoor construction used in the simulation (cf. Section 4.3).
The most complicated to compute are σ1, σb, and σy, as the core idea of the construction relies on
combining samples from the three discrete Gaussians having them as parameters. In particular, the
simulation algorithm requires σy to be large enough to hide the trapdoor (cf. (12)), and σb to be large
enough to allow sampling using a trapdoor (cf. Section 4.3.2) and prevent Adv from guessing the b(j)’s

44

45Algorithm 7: Reduction to MS-UF-KOA

G3 / G4/ G5 / G6 / AHagg,Hnon,Hsig(pp, t1)
// Procedures highlighted in green, orange, purple, blue are
only executed in G4, G5, G6, A onwards, respectively.

1: ctr := 0
2: S := ∅; Q := ∅
3: pp← Setup(1λ) // Not executed in A
4: (t1, s1)← Gen() // Not executed in A
5: (L∗, µ∗, (w̃∗, z∗))← XOSignOff,OSignOn,H′agg,H

′
non,H

′
sig(pp, t1)

6: if t1 /∈ L∗ ∨ (L∗, µ∗) ∈ Q then
7: return 0
8: n∗ := |L∗|
9: {t1, . . . , tn∗} := L∗

10: for i ∈ [1, n∗] do
11: ai := H′agg(〈L∗〉, ti)
12: t̃∗ :=

∑n∗

i=1 aiti mod q
13: c∗ := H′sig(w̃∗, µ∗, t̃∗)
14: if Āz∗ − c∗t̃∗ mod q 6= w̃ ∨ ‖z∗‖2 > Bn then
15: return 0
16: if CT[w̃∗, µ∗, t̃∗] = c then
17: badchal := true
18: return (L∗, µ∗, (w̃∗, z∗))
19: return 1

OSignOff(s1)
1: ctr := ctr + 1
2: sid := ctr;S := S ∪ {sid}
3: y(1)

1 ←$ D`+k
σ1

4: For j ∈ [2,m] : y(j)
1 ←$ D`+k

σy

5: For j ∈ [1,m] : w(j)
1 := Ay(j)

1
6: w(1)

1 ←$ Rkq

7: (w(2)
1 , . . . ,w(m)

1 ,R)← TrapGen(1λ)
8: if ∃sid′ 6= sid : WT[sid′] = ((w(j)

1)j∈[m], ∗) then
9: badwcol := true

10: WT[sid] := ((w(j)
1)j∈[m], (y

(j)
1)∈[m])

11: WT[sid] := ((w(j)
1)j∈[m],R)

12: com1 := (w(j)
1)j∈[m]

13: if ∃((ti, comi)i6=1, µ, t̃) : HT′non[〈{ti||comi}i∈[n]〉, µ, t̃] 6= ⊥
then

14: badnon := true
15: return (t1, com1)

OSignOn(sid,msgs, µ, (pk2, . . . , pkn))
1: if sid /∈ S then
2: return ⊥
3: (ti, comi)i∈[2,n] := msgs
4: if 〈(ti)i∈[2,n]〉 6= 〈(pki)i∈[2,n]〉 then
5: return ⊥
6: if ∃i ≥ 2 : pki = t1 then
7: return ⊥
8: (com1 = (w(1)

1 ,w(2)
1 , . . . ,w(m)

1), (y(j)
1)j∈[m]) := WT[sid]

9: (com1 = (w(1)
1 ,w(2)

1 , . . . ,w(m)
1),R) := WT[sid]

10: [w(m)
1 , . . . , w

(m)
k]T = w(m) :=

∑n
i=1 w(m)

i

11: if w(m)
1 /∈ R×q then

12: return ⊥
13: L := {t1, . . . , tn}
14: for i ∈ [n] do
15: ai := H′agg(〈L〉, ti)
16: t̃ :=

∑n
i=1 aiti mod q

17: W := {ti||comi}i∈[n]
18: Call H′non(〈W 〉, µ, t̃) with ρnon = 0
19: if ST[〈W 〉, µ, t̃] = ⊥ then
20: badsim := true
21: (z1, w̃) := ST[〈W 〉, µ, t̃]
22: Q := Q∪ {(L, µ)}
23: S := S \ {sid}
24: return (z1, w̃)

H′agg(〈L〉, t)
1: if HT′agg[L, t] = ⊥ then
2: a←$ C
3: a := Hagg(〈L〉, t)
4: HT′agg[L, t] := a

5: return HT′agg[L, t]

H′sig(w̃, µ, t̃)
1: if HT′sig[w̃, µ, t̃] = ⊥ then
2: c←$ C
3: c := Hsig(w̃, µ, t̃)
4: HT′sig[w̃, µ, t̃] := c

5: return HT′sig[w̃, µ, t̃]

H′non(〈W 〉, µ, t̃)
// Wlog assume the input contains honest signer’s key t1

1: if HT′non[〈W 〉, µ, t̃] 6= ⊥ then
2: return HT′non[〈W 〉, µ, t̃]
3: {ti||comi}i∈[n] := W

4: for i ∈ [n] do
5: (w(1)

i , . . . ,w(m)
i) := comi

6: for j ∈ [m] do
7: w(j) :=

∑n
i=1 w(j)

i

8: [w(m)
1 , . . . , w

(m)
k]T := w(m)

9: L := {t1, . . . , tn}
10: a1 := H′agg(〈L〉, t1)
11: ρnon ←$ [0, 1)
12: if (@i ≥ 2 : ti = t1) ∧ (∃sid : WT[sid] = (com1, ∗)) ∧ (w(m)

1 ∈
R×q) ∧ (KAgg(L) = t̃) ∧ (ρnon ≤ $) then

13: (z1, w̃, (r(j))j∈[2,m]) ← GenSig(sid, s1, a1, µ, t̃, (w(j))j∈[m]) //
Not executed in G6

14: (z1, w̃, (r(j))j∈[2,m])← Sim(sid, t1, a1, µ, t̃, (w(j))j∈[m])
15: else
16: (r(j))j∈[2,m] ←$ {0, 1}l
17: (r(j))j∈[2,m] := Hnon(〈W 〉, µ, t̃)
18: ST[〈W 〉, µ, t̃] := (z1, w̃)
19: HT′non[〈W 〉, µ, t̃] := (r(j))j∈[2,m]
20: return (r(j))j∈[2,m]

GenSig(sid, s1, a1, µ, t̃, (w(j))j∈[m])
1: ((w(j)

1)j∈[m], (y
(j)
1)j∈[m]) := WT[sid]

2: (r(j))j∈[2,m] ←$ {0, 1}l
3: for j ∈ [2,m] do
4: b(j) := Samp(r(j))
5: w̃ :=

∑m
j=1 b

(j)w(j) mod q
6: c←$ C
7: if HT′sig[w̃, µ, t̃] 6= ⊥ then
8: badsig := true
9: HT′sig[w̃, µ, t̃] := c

10: c := H′sig(w̃, µ, t̃)
11: CT[w̃, µ, t̃] := c

12: ỹ1 :=
∑m
j=1 b

(j)y(j)
1

13: v := c · a1 · s1
14: z1 := v + ỹ1
15: if RejSamp(v, z1, (b(j))j∈[m]) = 0 then
16: z1 := ⊥
17: return (z1, w̃, (r(j))j∈[2,m])

Sim(sid, t1, a1, µ, t̃, (w(j))j∈[m])
1: ((w(j)

1)j∈[m],R) := WT[sid]
2: c←$ C
3: z1 ← D`+k√

Σ̂

4: w′1 := Āz1 − c · a1 · t1 −w(1)
1 mod q

5: (b(2), . . . , b(m))← TrapSamp(R,w′1, σb)
6: (r(2), . . . , r(m))← RevSamp(b(2), . . . , b(m))
7: ρ←$ [0, 1]
8: if ρ > 1/M then
9: z1 := ⊥.

10: w̃ :=
∑m
j=1 b

(j)w(j) mod q
11: if HT′sig[w̃, µ, t̃] 6= ⊥ then
12: badsig := true
13: HT′sig[w̃, µ, t̃] := c

14: CT[w̃, µ, t̃] := c
15: return (z1, w̃, (r(j))j∈[2,m])

in advance. Applying rejection sampling to hide the secret and the b(j)’s requires then that σ1 is larger
than σb, σy, and, of course, than the norm of the secret (cf. Lemma 3.1).
Bounding σb. As we already mentioned, requirements on σb come mostly from the security proof, as σb
is pivotal to have only 2 rounds of interaction: it should have enough entropy to prevent an adversary
to guess the final ỹ, and be large enough to allow sampling using a trapdoor. In particular, Theorem 4.5
requires σb to be such that (2qh+qs+1)2

ρσb (R) = negl(λ). By [Reg09, Claim 3.8] we know that σb ≥ ηε(R) implies

ρσb(R) = σNb (1+δ), where δ ≤ ε. As N = poly(λ) and σb > 1, it trivially holds that (2qh+qs+1)2

σN
b

(1+δ) = negl(λ).
Then, the simulation (cf. Lemma 4.4) requires that

σb ≥ 2N · q 1
w+ 2

Nkw ·O(
√
N(kw + 1) +

√
kN log2 q) ,

for w = dlog2 qe and a parameter m > 2k log2 q that depends on the choice of the trapdoor. As q1/w ≤ 2
and the constant hidden by the O(·) expression is ≈ 1/

√
2π (cf. [MP12, Lemma 2.9]), it is enough to set

σb := 25/2
√
π
· 2 2

NkN3/2
√

(kw + 1) .

As Lemma 2.4 guarantees that ηε(R) ≤
√

log(2N(1 + 1/ε))/π, we have that σb ≥ ηε(R). Finally,
Lemma 4.4 requires that σb > 2N · qk/(m−1)+2/(N(m−1)). Observe that qk/(m−1)+2/(N(m−1)) ≤ 21/(Nk)√2,
and 21/(Nk) = 1 + ν for some negligible ν > 0 when N = poly(λ). Hence the inequality is satisfied.
Bounding σy. Bounding the last two parameters requires to estimate the distribution of y. In particular,
to apply Lemma 2.7 in the simulation we need σy �

√
2 · ηε(Λ⊥(Ā)) ·maxj ‖

√
b(j)(b(j))∗‖ for a random

Ā ∈ R(`+k)×m; this is enough to ensure that the inequality holds for σ1 too, as σ1 > σy by construction.
Observe that for all j it holds that

∥∥∥∥√b(j)(b(j))∗∥∥∥∥ = 1√
N

√√√√ N∑
i=1

φi(b(j))(φi(b(j)))∗ ≤
1√
N

√
N · (8σb)2 = 8σb

where the inequality follows from Lemma B.6 by substituting m = 1, c = 1, and r = 8σb, and it holds
with probability smaller than 2−195. Set Tb := 8σb = 211/2

√
π
· 2 2

NkN3/2
√

(kw + 1). Lemma 2.5 ensures that
ηε(Λ⊥(Ā)) ≤ 8

π q
k
`+k
√
N log(2(`+ k)N(1 + 1/ε)) holds with probability 1− 2−N . Now, recall that we set

ε = 2−N . Hence, log(2(`+ k)N(1 + 1/ε)) =≤ 2 +N + log((`+ k)N). Thus setting

σy :=
√

2Tb ·
8
π
q

k
`+k
√
N (2 +N + log ((`+ k)N)) = 29

π
√
π

2 2
Nk q

k
`+kN2

√
(kw + 1) (2 +N + log ((`+ k)N))

allows to finally apply Lemma 2.7 to show that the distribution of each ỹi is statistically close to a
Gaussian with covariance matrix Σ as in Eq. (2). Remark that σy trivially satisfies the bound σ1 > σy >
2N · qk/(`+k)+2/(N(`+k)) required in Lemma 4.4.
Bounding σ1. Now that everything else is taken care of, we can finally bound σ1. To ensure that σ1 is
large enough (i.e., it satisfies the bound in Lemma 3.1) we need σ1 ≥ max{αT, σyσb

√
Nm(`+ k)}. The

norm of c · a1 · s1 can be easily bounded as:

max
a,c∈C, s∈Sη

‖acs‖ ≤
√

(`+ k)N max
a,c∈C, i∈[`+k]

‖a‖21‖c‖21‖si‖2∞ ≤ ηκ2
√

(`+ k)N =: T .

Thus αT = αηκ2
√

(`+ k)N .
From αT

σyσb
√
Nm(`+k)

= αηκ2

σyσb
√

2kw+1 it is clear that ensuring that σ1 ≥ σyσb
√
Nm(`+ k) is enough to

satisfy the requirements of Lemma 3.1, as η, α, and κ are much smaller than the parameters. Hence we
set

σ1 := σyσb
√
Nm(`+ k) = 223/2

π2 · 2 4
NkN4q

k
`+k (kw + 1)

√
(2kw + 1)(`+ k) (2 +N + log(N(`+ k)))

Again, the inequality σ1 > 2N · qk/(`+k)+2/(N(`+k)) needed in Lemma 4.4 is trivially satisfied.

46

	Introduction
	Our contributions
	Our techniques
	Concurrent work
	Other related work

	Preliminaries
	Discrete Gaussian Distribution
	Assumptions
	Offline-online multi-signature
	General Forking Lemma

	Our MuSig-L Scheme
	Definition of the Scheme
	Rejection Sampling
	Correctness and Efficiency Analysis

	Security Proofs
	Reduction to LWE and SIS
	Switching Lemma
	Simulating Nonces via Trapdoor Sampling
	Oracle simulation lemma
	MS-UF-CMA security of MuSig-L

	Concentration of the Squared Norm of Ellipsoidal Gaussians
	Rejection Sampling for Ellipsoidal Gaussians
	Generalized Rejection Sampling
	Technical Lemma
	Proof for thm:RSgeneral
	Statistical Honest Verifier Zero Knowledge of the Fiat-Shamir with Aborts -Protocol

	Omitted Security Proofs
	Proof for MS-UF-KOA Security (theorem:koa)
	Proof for MS-UF-CMA Security (theorem:cma)
	Probability that uniform MR _qkn is not full rank

	Correctness and Parameters

