
Programmable Distributed Point Functions∗

Elette Boyle† Niv Gilboa‡ Yuval Ishai§ Victor I. Kolobov¶

April 16, 2023

Abstract

A distributed point function (DPF) is a cryptographic primitive that enables compressed additive
sharing of a secret unit vector across two or more parties. Despite growing ubiquity within applica-
tions and notable research efforts, the best 2-party DPF construction to date remains the tree-based
construction from (Boyle et al, CCS’16), with no significantly new approaches since.

We present a new framework for 2-party DPF construction, which applies in the setting of feasible
(polynomial-size) domains. This captures in particular all DPF applications in which the keys are
expanded to the full domain. Our approach is motivated by a strengthened notion we put forth, of
programmable DPF (PDPF), in which a short, input-independent “offline” key can be reused for sharing
many point functions. We obtain the following results on PDPFs and their applications.

• PDPF from OWF. We construct a PDPF for feasible domains from the minimal assumption that
one-way functions exist, where the second “online” key size is polylogarithmic in the domain size
N .

Our approach offers multiple new efficiency features and applications:

• Privately puncturable PRFs. Our PDPF gives the first OWF-based privately puncturable
PRFs (for feasible domains) with sublinear keys.

• O(1)-round distributed DPF Gen. We obtain a (standard) DPF with polylog-size keys that
admits an analog of Doerner-shelat (CCS’17) distributed key generation, requiring only O(1) rounds
(versus logN).

• PCG with 1 short key. Compressing useful correlations for secure computation, where one key
is of minimal size. This provides up to exponential communication savings in some application
scenarios.

1 Introduction

A distributed point function (DPF) [30, 14] is a cryptographic primitive that enables compressed sharing
of a secret unit vector across two or more parties. More concretely, a two-party DPF allows one to split
any point function fα (i.e., for which fα(x) = 1 if x = α, and 0 otherwise1) into succinctly described
functions f0, f1, that individually hide fα, and which support a simple additive per-input reconstruction
fα(x) = f0(x) + f1(x).

DPFs with function share fi size (sometimes referred to as “key size”) comparable to the truth table of
fα are trivially achievable, by simply taking the function shares fi to be an additive secret sharing of the
full truth table itself. Efficient constructions with small key size, roughly logarithmic in the domain size of
fα, have been built from one-way functions [30, 14].

∗This is a full version of [16].
†IDC Herzliya, Israel and NTT Research, USA, elette.boyle@idc.ac.il.
‡Ben-Gurion University, Israel, gilboan@bgu.ac.il.
§Technion, Israel, yuvali@cs.technion.ac.il.
¶Technion, Israel, tkolobov@cs.technion.ac.il.
1Slightly more generally, fα,β with fα,β(α) = β for β ∈ {0, 1}.

1

The appealing compressing structure of DPF constructions has enabled a wide range of cryptographic ap-
plications, ranging from Private Information Retrieval (PIR) [21, 30], to anonymous messaging systems [23],
secure computation for RAM programs [28] and programs with mixed-mode operations [15, 8], and recently
Pseudorandom Correlation Generators [9, 15, 13] for expanding small correlated seeds into large pseudoran-
dom instances of cryptographic correlations, with applications to secure computation and beyond.

In many (if not most) of these applications, the parties perform a full evaluation of the DPF function
shares, on every input within the domain of the function fα. This means that, in particular, the necessary
DPF constructions are only relevant for relatively small, polynomial-size domains.

The growing list of applications has provided significant motivation for deeper study of the DPF primitive,
including alternative constructions and careful fine-tuning of efficiency. However, despite notable research
efforts, the best 2-party DPF construction to date (even concrete constants) remains the tree-based con-
struction from [14]. In addition, no significantly new approaches toward construction have emerged since
this time.

1.1 Our Results

We present a new approach for DPF construction, whose structure dramatically differs from existing DPFs,
and which offers new efficiency features and applications in the setting of feasible (polynomial)-size domains.

1.1.1 Programmable DPF.

Perhaps the primary downside of DPFs is that their security guarantees inherently require the existence of
two or more non-colluding parties who receive shares f0 and f1 of the secret function. For example, DPFs
yield solutions to the problem of two-server PIR, but seem useless for single-server PIR. Unfortunately,
this non-collusion trust assumption is to some degree unavoidable for efficient solutions. For problems like
PIR, for example, it is known that single-server cheap (symmetric-key) solutions simply cannot exist [27].
However, the two-server state of affairs has a further downside beyond the assumption of trust. Given two
servers operating, DPF-based solutions incur twice as much computation, communication, and coordination
costs between parties than if a single server could suffice.

Given the barrier of efficient single-server solutions, we consider a next best alternative: a form of “1.5-
server” DPF, or what we will refer to as a programmable DPF. The idea is that participation and cost
to one of the two servers will be pushed to minimum, thus incurring the burden of only “half” a server.
Concretely, in a programmable DPF scheme, the share f0 given to the first server is simply a random (i.e.,
“programmed”) 128-bit string,2 independent of the choice of—or in some cases, even the parameters of—the
secret point function being shared. For example, one can execute the role of the first server across several
applications via a public service.

Naive PDPF. As a baseline, consider a naive construction of PDPF: The offline key is a standard PRF
key, and the online key is simply a domain-size string which together with the full-doman expansion of the
PRF form additive secret shares of the desired truth table. The runtime of key generation is linear in the
domain size N (which, looking ahead, will match that of our construction). However, the online key size
is also linear in N , which we will succeed to compress exponentially. In addition, for the case of sharing a
random point function, we will also obtain exponential improvement in the online key generation.

Related notions. Our PDPF goal is related to two existing notions from the literature: privately punc-
turable PRFs [6], and two-server PIR in an offline/online model recently studied by Corrigan-Gibbs and
Kogan [24].

Privately puncturable PRFs are pseudorandom functions (PRFs) that support generation of punctured
keys which enable evaluation of the PRF on all but a single punctured input x∗, and which further hide the
identity of x∗. (Single-key) privately puncturable PRFs are in fact implied by programmable DPFs, by taking

2Or rather, λ bits, where λ is the security parameter.

2

the master PRF key to be the first-server DPF share, and generating a punctured key at x∗ by computing
a second-server DPF share for the function fα,β with α = x∗ and β ← {0, 1} selected at random. In
turn, privately punctured PRF constructions can provide a direction toward programmable DPFs. However,
the only existing instantiations of privately puncturable PRFs make use of heavy public-key cryptography
machinery, and provide heavy costs for concrete applications [5, 20, 19, 42]. There is also no clear way “scale
down” these constructions to a polynomial-size domain in a way that circumvents these issues.

Analogous to the “half server” of programmable DPF, the offline/online 2-server PIR protocols of [24, 44]
consider a setting where first server’s query and response (analogous to our first-server DPF key) can be
computed offline, before the target input (analogous to the punctured point x∗) is specified. However,
the resulting schemes do not yield the stronger target of a DPF. Indeed, the closest object they construct
supports a nonlinear reconstruction procedure more complex than simple addition, which precludes a large
subset of DPF applications requiring this structure (such as secure aggregation). In addition, [44] uses
public-key cryptography.

Given the collective state of the art, no solutions exist for nontrivial programmable DPF without public-
key cryptography, even for the restricted case of polynomial-size domains.

1.1.2 Programmable DPF on small domains from OWF.

We present a 2-party programmable DPF (PDPF) construction for polynomial-size domains, relying on the
minimal assumption that one-way functions exist.

We begin with a basic construction which has a non-negligible privacy error ϵ, which appears as a factor of
log(1/ϵ2) in the key size and 1/ϵ2 in full-domain evaluation, and which provides appealing concrete efficiency.
For this reason, we express the result statement in terms of a length-doubling pseudorandom generator (whose
existence is equivalent to one-way functions). We remark that small constant privacy error is motivated in
many applications in the context of concrete efficiency, such as those anyway offering differential privacy
guarantees (e.g., use of DPFs for private aggregate statistics in [4]).

For the final feasibility result, we then reduce this to negligible error via a nontrivial amplification
procedure. Combining these two theorems provides a construction of PDPF with polylogarithmic online key
size, from one-way functions.

Theorem 1 (1/poly-secure PDPF on small domains - Informal). Given length doubling PRG G : {0, 1}λ →
{0, 1}2λ, there exists a computationally ϵ-secure Programmable DPF for point functions fα : [N] → {0, 1}
over output group G = Z, with online key size |k1| = λ log(N/ϵ2). Moreover:

• Key generation makes (2N log(N/ϵ2))/λ invocations of G, and

• Full domain evaluation makes (2N logN)/(ϵ2λ) invocations of G.

Theorem 2 (Security amplification - Informal). Suppose there exists a small-domain computationally 1/P (λ)-
secure PDPF for any polynomial P . Then there exists a small-domain PDPF with negligible security error.

Corollary 1 (PDPF from OWF - Informal). Assuming the existence of OWF, there exists a PDPF for point
functions fα : [N]→ {0, 1} with online key size poly(λ, logN), where the runtime of key generation and full
domain evaluation is nearly linear in N .

We turn to discuss the advantages and limitations of our PDPF constructions.

Small domains: Applications and non-applications. Note that the since the running time of the
PDPF key generation and evaluation algorithms is comparable to the domain size N , we are restricted to
polynomial-sized domains. As an additional point of interest, our techniques do not admit a more efficient
single-point evaluation algorithm than a full-domain evaluation. We leave open the existence of a OWF-based
PDPF construction where the running time of key generation and single-point evaluation is only poly logN .

On the bright side, many DPF applications only require a small (polynomial-size) domain. This captures
a motivated range of applications and implemented systems, including:

3

1. Private “reading” applications, such as PIR, or private tag-based search for tag space of modest size.
For example, the Popcorn system [32] ran 2-server PIR on N = 8, 000 Netflix movies.

2. Private “writing” applications, such as secure distributed storage [41], voting, and aggregation. This
includes Prio-style [22] applications for private collection of aggregate statistics, and Riposte [23],
Blinder [1] and Spectrum [40] for anonymous messaging.

3. Pseudorandom correlation generators (PCGs) for useful correlations. Relevant correlation examples
include “silent” generation of permuted one-time truth table correlations, oblivious linear evaluation
(OLE), or authenticated multiplication triples [13, 11] (for some simpler correlations the full power of
DPF is not needed – see below).

4. Mixed-mode secure computation with small-domain gates. DPFs and their derivatives, most notably
distributed comparison functions (DCF) (i.e. secret sharing functions of the form f≤α that evaluate to
1 on all inputs x ≤ α), yield a method for highly efficient secure computation of certain types of non-
arithmetic gates in the preprocessing model [15]. A DCF can be implemented by a logarithmic number
of DPF invocations, one for each prefix of the shared point. However, in our small-domain construction
the communication and computation for this DCF implementation essentially match those of a single
DPF since both require full domain evaluation. Small-domain DPFs and DCFs suffice, e.g., for secure
evaluation of zero-test, comparison/threshold, ReLU, splines, or finite-precision fixed-point arithmetic
gates, on moderate-size inputs [15, 8]. We remark that small domain sizes often arise naturally in
settings such as privacy-preserving machine learning, where computations are frequently run in low
precision.

Aside from the last (Item 4), each of the above application frameworks further requires the parties to perform
a full-domain evaluation of the corresponding DPF function shares, inherently limiting the desired DPF tools
to small domains.

The programmable feature of our PDPF, where the offline key is short and reusable, offers beneficial
properties in the above settings. For example, for pseudorandom correlation generation, this enables a
central server to have a single short PCG key for generating authenticated multiplication triples or truth-
table correlations with many different users, requiring total storage of only 128 bits improving over present
solutions that require the server to store approximately 1MB per user. Such a “short-key PCG” can make
a big difference in certain applications of secure two-party computation. For instance, this is the case when
during a setup phase one of the two parties can be temporarily trusted. In this case, she can generate a
pair of PCG seeds, send the short (128-bit) seed to the other party, and keep the longer one to herself. We
discuss this application in more detail in Section 1.1.3.

There are, of course, application settings in which small-domain DPFs are not relevant. Prominent
examples include:

1. Private keyword search, corresponding to PIR-type private queries where the space of possible inputs
(e.g., universe of keywords) is large.

2. Simpler pseudorandom correlation generators, such as “silent” oblivious transfer, vector OLE, or (unau-
thenticated) multiplication triples, do not require the full 2-sided guarantees (so-called “puncturable
PRFs” suffice).

3. Mixed-mode secure computation with large-domain gates. The above mixed-mode application is viable
also for large domains, in which case our small-domain DPFs do not provide a solution. This includes
instances of the above gates over large inputs.

Concrete efficiency. In Table 1 we compare the efficiency of our programmable DPF construction to a
“naive” construction with O(N) key size, for domain size N (see Section 5 for more details). The comparison

4

is done with output group Z and with payloads in {0, 1}, capturing a typical aggregation scenario. We com-
pare these solutions with respect to key size, and estimate the running time of an AES-based implementation
by using a standard benchmark of 1.8 · 108 length-doubling PRG calls per second on a single core.

To give one data point, for a domain of sizeN = 100, 000 and security error ϵ = 2−8, the naive construction
has 97.7KB key size, and the running time for either key generation or full domain evaluation is 72.1µs, while
our construction achieves 0.5KB key size, 548.3µs running time for key generation, and 1.6sec running time
for full domain evaluation3. In another data point, where N = 20, 000 and ϵ = 2−6, the naive construction
yields 14.7 KB key size and running time of 12.4 µs for both key generation and full domain evaluation,
while our constructions has 0.4KB key size, 68.7 µs running time for key generation, and 17.3ms running
time for full domain evaluation. Note that in applications that only require a random point α, the cost of
Gen can be substantially smaller: 0.006µs for a domain of size N = 100, 000 and security error ϵ = 2−8, and
0.005 µs for N = 20, 000 and ϵ = 2−6.

To conclude, for small input domains and small (but non-negligible) privacy levels ϵ, our construction
offers a big advantage in key size, a moderate slowdown on the client side (running the key generation), and
a more significant slowdown on the server side (running the full domain evaluation). Overall, we expect it
to be attractive for applications where the client’s communication is the most expensive resource.

Comparison to standard DPF. Compared to a standard two-party DPF, our PDPF construction offers
several qualitative advantages which can be appealing in the following settings:

• When simplifying the interaction pattern is important. For some DPF applications, the “1.5-server”
feature means that online interaction only involves a single message from the client to the online
server (and no interaction between servers). This offers several advantages for practical systems such
as avoiding the dependence on two online, synchronised servers, reducing network latency, and also
hiding the identity of the offline server, rendering the non-collusion assumption more realistic.

• When the client can play the role of the online server, as in the “trusted-offline PCG” application
discussed in Section 4.3. In such cases, a PDPF yields a near-exponential improvement in the total
communication cost, since it only requires a one-time communication of an offline key which is reused
many times without further interaction.

• When distributed key generation is carried out over a high-latency network, the constant-round black-
box protocol from Section 4.2 can offer significant speedup.

All of the above advantages seem relevant for practical use cases. Our PDPF construction has a reasonable
concrete overhead (to be discussed below) when settling for small but non-negligible values of ϵ, comparable
to the acceptable practices for differential privacy.

Other than the application scenarios described above, our current PDPF construction is less practical
than existing DPF constructions. First, it cannot offer negligible privacy error ϵ with good concrete efficiency;
second, the running time of Gen and (single-point) Eval scale linearly (rather than logarithmically) with the
domain size; finally, it has worse dependence (multiplicative rather than additive) on the size of the payload
β. These gaps are smaller in applications that require a full-domain evaluation EvalAll, or alternatively only
require key generation for a random point α (see below).

Comparing the key size of the two constructions, note that the size of the keys in PDPF is log(N/ϵ2)
PRG seeds for the online party and just a single PRG seed for the offline party, while the key size of both
parties in standard DPF is roughly log(N) PRG seeds. Ignoring the qualitative advantages of PDPF over
DPF, the total client communication, or total key size, of PDPF is smaller by almost a factor of two for
concretely relevant parameters.

In the case of a random-input PDPF, the client computation becomes roughly equal to that of a standard
DPF, i.e. dominated by log(N) calls to a PRG, since the client generates one key which is a seed of a GGM

3In fact, the naive construction, as mentioned in Section 1.1.1, can provide a negligible privacy error for small output groups.
Nevertheless, in aggregation-type applications, over output group Z, we get a constant privacy error. See Remark 4 for more
details.

5

PRF and another key which is the same PRF punctured at a random point. A random-input PDPF is
good enough for some applications, such as distributed key generation, on which we elaborate in Section 4.2.
There, a random-input PDPF and can be converted to a chosen-input DPF by sending a log(N)-bit offset
to the offline server.

While our PDPF construction has higher overhead as the output size grows compared to a standard
DPF, in Proposition 3 we provide an optimization to our construction for big payloads beyond the naive
approach of executing a separate PDPF instance for every bit of the payload.

1.1.3 Applications.

We explore three applications of our programmable DPF construction and associated techniques: (1) Pri-
vately Puncturable PRFs (on polynomial size domains); (2) (Standard) Distributed Point Functions that
admit particularly efficient secure distributed key generation protocols; and (3) A new application regime of
trusted-offline pseudorandom correlation generators. We additionally explore an optimization toward DPFs
with larger payloads.

Privately puncturable PRFs (on small domains). As discussed, our construction directly implies the
first nontrivial privately puncturable PRF for domain size N = poly(λ) under the minimal one-way function
assumption. Here, nontriviality corresponds to requiring the key size of a (privately) punctured key that is
sublinear in the truth table output size.

Even given the restriction to feasible domain sizes, this constitutes the first such construction without
relying on structured public-key assumptions such as the Learning with Errors assumption or multi-linear
maps [5, 20, 19, 42].

Proposition 1 (Privately puncturable PRF - Informal). Assuming the existence of OWF, there exist (se-
lectively secure, 1-key) privately puncturable PRF (P-PPRF), where the runtime of punctured key generation
and evaluation is quasilinear in the domain size M , and with punctured key size poly(λ, logM).

DPF with constant-round black-box distributed key generation. In any application of (standard)
DPFs where the role of “client” is jointly executed across parties—including secure computation for RAM
programs [28] or mixed-mode operations [15, 8], use of pseudorandom correlation generators for secure
computation preprocessing [9, 15, 13], and more—the Gen algorithm of the DPF must in turn be executed
distributedly via a secure computation protocol. Minimizing the costs of this procedure is a highly desirable
target.

This was highlighted by the work of Doerner and shelat [28], which identified that the low cost of
distributed DPF Gen makes it a strong approach for secure computation of RAM programs. They presented
a distributed DPF Gen protocol, which remains the most efficient to date, requiring computation time linear
in the DPF domain size N , and runs in logN sequential communication rounds, but which crucially makes
only black-box use of oblivious transfer and a pseudorandom generator. In contrast, alternative approaches
each require the expensive secure evaluation of (many instances of) a circuit evaluating the PRG.

In particular, for any DPF with key size polylogarithmic in the domain size N ,4 no protocol exists for
distributed Gen which is black-box in the underlying cryptographic tools and lower than O(logN) round
complexity.

The techniques behind our PDPF give the first DPF (for feasible domains) which simultaneously achieves
key size polylogarithmic in N , and admits a distributed Gen protocol that makes only black-box use of OT
and a PRG, executing in constant round complexity. More concretely, we show that 5 rounds suffice.

Proposition 2 (Constant-round distributed Gen - Informal). There exists a small-domain DPF (Gen,Eval),
with key size poly(λ, logN), where Gen on secret-shared α, β can be implemented by a constant-round (5-
round) protocol making only a black-box use of oblivious transfer and a pseudorandom generator.

4DPFs with significantly worse key size Nϵ for constant ϵ > 0 can be built with lower depth Gen, e.g. by “flattening” the
tree structure of current best DPF constructions.

6

As with our PDPF constructions, the runtime of our DPF Eval algorithm will be linear in the domain
size N . Note, however, that the application of DPF within secure computation of RAM programs anyway
requires EvalAll as opposed to individual Eval operations (where we achieve the same linear complexity). In
addition, our resulting DPF Gen procedure will only be logarithmic in N . This will be result of modifying
the PDPF, adding a short second “offset” message to be added to the key k0 after the choice of the secret
point function f̂α,β . This extra step adds minor cost in regard to computation and key size, but means the
resulting construction is a DPF and not a programmable DPF which in particular requires the first key k0
to be independent of the point function to be shared.

Compressing DPF corelations. Standard DPFs have a variety of applications in the context of secure
2-party computation (2PC). For instance, they serve as crucial building blocks for concretely efficient 2PC
of RAM programs [28] or for pseudorandom correlation generators (PCGs) of truth-table correlations [12]
and (authenticated) multiplication triples [11]. Evaluating large circuits or multiple instances necessitates
several DPF correlations. In particular, this strongly motivates the goal of generating many independent
instances of a random DPF correlation with low communication cost. However, there are no known practical
methods for achieving this.

We observe that PDPF inherently provides a solution for generating many such instances, where the size
of one key scales with the number of instances, but one key is short.

In turn, our PDPF provides a solution to the above problem within a subset of interesting applications,
captured by the following “trusted-offline” setting for 2PC. In an offline phase, Alice owns a long-term
secret s (say, a secret key for encryption, identification, or signature). To eliminate a single point of failure,
she splits s into two shares, sA and sB , sending sB to Bob and keeping sA to herself. She then erases all
information except sA. In the online phase, the parties receive online inputs Pi (resp., ciphertexts to decrypt,
nonces for identification, or messages to sign) and wish to securely compute f(s, Pi) for i = 1, 2, . . . , t.

The key observation is that in the above setting, Alice can be fully trusted during the offline phase, since
if she is corrupted at this phase (before erasing s) then the long-term secret is entirely compromised. In fact,
if Pi is public, then s is the only secret in the system. For this reason, we can also trust Alice to generate
pairs of DPF keys (kj0, k

j
1) in the offline phase, offload the keys kj0 to Bob, and keep ki1 to herself. However,

when Alice wants to generate many DPF instances for the purpose of evaluating many g-gates, this has high
communication cost.

A PDPF can provide a dramatic efficiency improvement in this scenario, where Alice needs only to send
the single short PDPF key to Bob, and simply store the longer key locally. This reduces the communication
requirements of existing solutions within this setting by an exponential factor.

Big payload optimization. Some applications of DPF explicitly require the point function payload to
be larger than a single bit, e.g. an element in Z2ℓ , and to be random. A natural adaptation of our technique
to this setting is to repeat the programmable DPF scheme with binary outputs ℓ times, once for each bit,
and then locally map the outputs to elements in Z2ℓ . However, evaluation using this approach suffers from
an O(ℓ3) computational overhead compared to a binary programmable DPF achieving the same security5.

We propose an optimization which maintains key size and reduces the computational overhead by O(ℓ)
compared to the repetition method. In more detail, each PRF value is a pair of a point x in the input
domain [N] and a value y ∈ Z2ℓ . One key of the programmable DPF is again the short PRF key, while the
second key is punctured at O(ℓ) points which evaluate to (α, yi), i = 1, . . . , O(ℓ). The DPF evaluation at
each point x is the sum of all yi such that the PRF (or punctured PRF) evaluate to (x, yi) at some point.
This approach leads to the following:

Proposition 3 (Big payload optimization - Informal). Given length doubling PRG G : {0, 1}λ → {0, 1}2λ,
there exists a computationally ϵ-secure PDPF for point functions fα : [N] → Z2ℓ , with online key size

5In this approach, to get statistical error of ϵ we need to reduce the value of ϵ in each of the ℓ instances by a factor of ℓ.
Since the computational cost per instance depends quadratically on 1/ϵ, this results in a total slowdown (compared to the 1-bit
baseline) of ℓ · ℓ2 = ℓ3.

7

|k1| = O
(
λt log tN

ϵ2

)
for t = ℓ + 2log 1

ϵ . The number of invocations of G in the key generation algorithm is

O(tN log t
ϵ2), and in the full domain evaluation algorithm it is O(Nt2

ϵ2).

1.2 Overview of Techniques

We now proceed to describe our techniques in greater detail. We focus here on the core construction of
programmable DPF from OWF. We refer the reader to the main body for further detail on the related
applications.

1/poly-Secure PDPF. We begin by describing our construction of a computationally secure PDPF,
which takes inspiration from the puncturable pseudorandom sets of Corrigan-Gibbs and Kogan [24].

Our construction relies on an underlying tool of Punctuarable Pseudorandom Functions (PPRF) [7, 36,
17]. Puncturable PRFs are an earlier-dating, weaker variant of privately puncturable PRFs discussed above,
which similarly have the ability of generating punctured keys kp from a master PRF key k enabling evaluation
on all but a punctured input xp. Even given the punctured key kp, the output of the PRF at input xp remains
pseudorandom. Unlike privately puncturable PRFs, no hiding requirement is made for the identity of the
punctured input xp given the punctured key kp, which makes the goal significantly easier to achieve. Such
primitives can be constructed in a simple manner based on one-way functions via a GGM [31] tree [7, 36, 17].

Our construction proceeds roughly as follows. Consider the first party in the programmable DPF. The
first (programmable) key of the DPF is simply the master key k for a PPRF whose output space is the input
space for the DPF, [N]. The PRF input space D will be selected in the discussion following, as a function
of the desired privacy error. (In particular, larger domain will yield smaller error, but higher complexity.)

In order to expand its DPF key to a full-domain evaluation on the input domain [N], the first party
begins by evaluating its PRF tree on all inputs. Recall that each leaf of the PRF evaluation tree is now
labeled by some element of [N]. For each x ∈ [N], the corresponding DPF output evaluation f1(x) is defined
to be the integer number of occurrences of the value x within the leaves of the PRF tree: i.e., the number of
values ζ in the input space D of the PRF for which PRFk(ζ) = x.

Pictorially, each PRF leaf evaluation can be viewed as a “ball” thrown into one of N bins, labeled
1, . . . , N . Evaluating on the complete PRF tree (given the master key k) results in a histogram, of number
of balls per bin, which constitutes the evaluated DPF output share values.

The second key in the programmable DPF is generated given the target point function fα∗ we wish to
share. Observe that (for payload β = 1) the goal is to recreate the same “balls in bins” histogram as above,
but with 1 less ball in the α∗ ∈ [N] bucket.6 Indeed, if this can be achieved, then the parties’ shares differ
by 0 in all places apart from α∗, and precisely by 1 at α∗. To do so, the second server will be given the PRF
key punctured at a random input xp whose PRF output is α∗. In effect, one (random) ball is removed from
the α∗ bin.

Correctness of the construction holds as above. But, we find ourselves encountering a serious security
challenge. While clearly the first party’s share is independent of the secret function fα∗ , security against the
second party must somehow rely on hiding the punctured PRF evaluation given access to a punctured key.
However, in a puncturable PRF, pseudorandomness is only guaranteed when the punctured input is chosen
independently of the PRF evaluation values. In contrast, the input we puncture is selected based on the PRF
evaluations. In fact, the issue is even worse. Even the stronger notion of adaptive security of PPRF does
not suffice, where the punctured input can be selected as function of the PRF evaluations on other inputs.
In our construction the punctured input is chosen as function of its own evaluation—in general, one cannot
hope to achieve this kind of security.

Indeed, the resulting construction does not provide negligible leakage in privacy. This corresponds to
the (non-negligible, efficiently identifiable) statistical difference in the N histogram counts when throwing
a polynomial number of balls and then removing a ball from one bin. This statistical difference can be

6To account for the fact that the payload could be β = 0, we actually introduce dummy bucket N + 1 to the PRF output
space; removing a ball from this bucket means that all [N] buckets remain equal across parties.

8

decreased by increasing the total number of balls thrown: this corresponds directly to a larger choice of the
puncturable PRF domain D. Roughly, increasing D by a factor of c > 1 cuts the error by a factor of 1/

√
c.

We provide a tight analysis of privacy error via a careful sequence of hybrid experiments, where the
α∗-output-punctured key is ultimately replaced by a key punctured at a random independent input. Each
step within the proof introduces negligible error, aside from one: in which we move from a PRF key where
we puncture an input with a random output value (i.e., the DPF construction for a random α∗, to one where
we puncture a random input.

It is interesting to observe that the construction is sensitive to specific design choices. For example,
slightly modifying the above procedure to instead puncture the first input whose output α∗ (instead of a
random such input) yields a serious attack: given the punctured PRF key, the second party can directly
infer for all values α′ ∈ [N] appearing as PRF evaluations before the punctured point that fα′ is not the
secret shared point function.

Amplification. To amplify a DPF with 1/poly privacy error into one with negligible error, we apply a
privacy amplification technique based on a locally random reduction. The idea is to lift the input domain
to a codeword in a Reed-Muller code and decode along a random low-degree curve. This effectively reduces
a single DPF with secret input α to a small number of instances of DPF with secret inputs αi, where
the αi are poly log λ-wise independent. By combining a “statistical-to-perfect” lemma from [37, 29] with a
computational hardcore lemma of [38], the 1/poly leakage on each αi can be argued to be no worse than
completely leaking each αi with small probability, which by poly log λ-wise independence suffices to hide α
except with negligible probability.

2 Preliminaries

Notation. For N ∈ N we let [N] = {1, . . . , N}. We denote the inner product of two vectors u and v of the
same length by ⟨u, v⟩ =

∑
i uivi. We denote by negl a negligible function.

Probability. For two distributions D1, D2 we denote by d(D1, D2) = 1
2

∑
ω |PrD1

[ω] − PrD2
[ω]| their

statistical distance. We denote by Uℓ uniformly distributed random strings of length ℓ.

Groups. We represent an Abelian group G of the form G = Zq1 × · · · ×Zqℓ , for prime powers q1, . . . , qℓ by

Ĝ = (q1, . . . , qℓ) and represent a group element of G by a sequence of ℓ non-negative integers. Unlike previous
DPF definitions, here we will also consider infinite groups, using qi =∞ for the group of integers Z.

Point functions. Given a domain size N and Abelian group G, a point function fα,β : [N]→ G for α ∈ [N]
and β ∈ G evaluates to β on input α and to 0 ∈ G on all other inputs. Unlike previous DPF definitions, here
we will also consider the case where the output β is guaranteed to be taken from a subset G′ ⊆ G, where the
subset G′ can be leaked. This extension is especially useful when G = Z, in which case we will typically let
G′ = {0, 1}. When G′ is omitted, we assume G′ = G. We denote by f̂α,β = (N, Ĝ, Ĝ′, α, β) the representation
of such a point function.

2.1 Distributed Point Functions

We begin by defining a slightly generalized notion of distributed point functions (DPFs), which accounts for
the extra parameter G′.

Definition 1 (DPF [30, 14]). A (2-party) distributed point function (DPF) is a triple of algorithms Π =
(Gen,Eval0,Eval1) with the following syntax:

9

• Gen(1λ, f̂α,β) → (k0, k1): On input security parameter λ ∈ N and point function description f̂α,β =

(N, Ĝ, Ĝ′, α, β), the (randomized) key generation algorithm Gen returns a pair of keys k0, k1 ∈ {0, 1}∗.
We assume that N and G are determined by each key.

• Evali(ki, x)→ yi: On input key ki ∈ {0, 1}∗ and input x ∈ [N] the (deterministic) evaluation algorithm
of server i, Evali returns yi ∈ G.

We require Π to satisfy the following requirements:

• Correctness: For every λ, f̂ = f̂α,β = (N, Ĝ, Ĝ′, α, β) such that β ∈ G′, and x ∈ [N], if (k0, k1) ←
Gen(1λ, f̂), then Pr

[∑1
i=0 Evali(ki, x) = fα,β(x)

]
= 1.

• Security: Consider the following semantic security challenge experiment for corrupted server i ∈
{0, 1}:

1. The adversary produces two point function descriptions (f̂0 = (N, Ĝ, Ĝ′, α0, β0), f̂
1 = (N, Ĝ, Ĝ′, α1, β1))←

A(1λ), where αi ∈ [N] and βi ∈ G′.

2. The challenger samples b
$← {0, 1} and (k0, k1)← Gen(1λ, f̂ b).

3. The adversary outputs a guess b′ ← A(ki).

Denote by Adv(1λ,A, i) = Pr[b = b′]−1/2 the advantage of A in guessing b in the above experiment. For
circuit size bound S = S(λ) and advantage bound ϵ(λ), we say that Π is (S, ϵ)-secure if for all i ∈ {0, 1}
and all non-uniform adversaries A of size S(λ) and sufficiently large λ, we have Adv(1λ,A, i) ≤ ϵ(λ).
We say that Π is:

– Computationally ϵ-secure if it is (S, ϵ)-secure for all polynomials S.

– Computationally secure if it is (S, 1/S)-secure for all polynomials S.

We will also be interested in applying the evaluation algorithm on all inputs. Given a DPF (Gen,Eval0,Eval1),
we denote by EvalAlli an algorithm which computes Evali on every input x. Hence, EvalAlli receives only a
key ki as input.

DPF efficieny measures. We will pay attention to the following efficiency measures of a DPF:

• The key sizes |k0|, |k1|.

• The running time of Gen,Eval0,Eval1.

Small-domain and large-domain DPF. We say that a DPF is small-domain (resp., large-domain) if
Gen,Eval0,Eval1 have running time polynomial in N (resp., logN) and their input length.

Next, we introduce our new notion of programmable DPF.

Definition 2 (PDPF). We say that a DPF Π = (Gen,Eval0,Eval1) is a programmable DPF, or PDPF for
short, if Gen can be decomposed into a pair of algorithms (Gen0,Gen1) with the following syntax:

• Gen0(1
λ, N, Ĝ, Ĝ′)→ k0: On input security parameter λ, domain size N and output group description

Ĝ, returns a key k0 = (k∗, N, Ĝ, Ĝ′) where k∗ ∈ {0, 1}λ.

• Gen1(k0, f̂α,β)→ k1: On input key k0 = (k∗, N, Ĝ, Ĝ′) and point function description f̂α,β = (N, Ĝ, Ĝ′, α, β),
returns a key k1 ∈ {0, 1}∗.

By default, we assume Π to be a small-domain DPF and require (without loss of generality) that k∗, returned

by Gen0 as part of k0, is a uniform random string, namely, k∗
$← {0, 1}λ.

10

Since Gen0 is a fixed algorithm that outputs a uniformly random k0 of length λ, in our PDPF constructions
we will omit the description of Gen0. Finally, since our constructions will realize EvalAll at essentially the
same cost as Eval, we will directly describe the EvalAll algorithm.

In Appendix A we define the reusability feature for DPFs discussed in the Introduction, and show an
easy construction of reusable DPF from PDPF (and vice versa).

Simulation-based security. While for both DPF and PDPF we use a definition with indistinguishability-
based security, there is an equivalent definition using simulation-based security [14]. There, the simulator is
given “leakage” which is the description of the DPF function class, which in our case is specified by N, Ĝ, Ĝ′.
Simulation takes place by simply generating a key for an arbitrary function in the function class.

2.2 Pseudorandom Generators and Functions

Below we recall the definitions of pseudorandom generators and pseudorandom functions.

Definition 3 (PRG [3, 45]). A pseudorandom generator (PRG) with expansion ℓ(λ) > λ is a function
G : {0, 1}∗ → {0, 1}∗, such that:

• For all x ∈ {0, 1}λ, G(x) ∈ {0, 1}ℓ(λ).

• G is computable in deterministic polynomial time.

For advantage bound ϵ(λ) and polynomial circuit size bound S(λ), we say that the PRG G is (S, ϵ)-secure if
for any non-uniform adversary A of size S(λ), its distinguishing advantage between G(Uλ) and Uℓ(λ) is at
most ϵ(λ).

We simply call it a PRG if it is (S, 1/S)-secure for any polynomial S.

Definition 4 (PRF [31]). A pseudorandom function (PRF) is a polynomial-time algorithm Eval with the
following syntax:

• Eval(k,M,N, x)→ y: On input key k ∈ {0, 1}λ, input domain size M ∈ N, output domain size N ∈ N,
and point x ∈ [M], the algorithm returns an output y ∈ [N].

For advantage bound ϵ(λ) and polynomial circuit size bound S(λ), we say that the PRF Eval is (S(λ), ϵ(λ))-
secure if for any non-uniform oracle adversary A of size S(λ),∣∣∣∣∣ Pr

k
$←{0,1}λ

[
AEval(k,M,N,·)(1λ) = 1

]
− Pr

f
$←[N][M]

[
Af(·)(1λ) = 1

]∣∣∣∣∣ ≤ ϵ(λ),

where [N][M] denotes the set of all functions from [M] to [N].
We simply call it a PRF if it is (S, 1/S)-secure for any polynomial S.

Definition 5 (PPRF). [7, 36, 17] A PRF Eval is a puncturable PRF (PPRF) if there exist additional
polynomial time algorithms:

• Punc(k,M,N, x): On input key k ∈ {0, 1}λ, input domain size M ∈ N, output domain size N ∈ N,
and point x ∈ [M], and punctured point x ∈ [M], the algorithm returns a punctured key kp ∈ {0, 1}∗.

• PuncEval(kp, x): On input punctured key kp ∈ {0, 1}∗ and point x ∈ [M], the algorithm returns a value
y ∈ [N].

The algorithms (Eval,Punc,PuncEval) should satisfy the following additional requirements:

• Correctness: For every λ,M,N ∈ N and x ̸= xp ∈ [M] it holds that

Pr

[
k

$← {0, 1}λ,
kp ← Punc(k,M,N, xp)

: PuncEval(kp, x) = Eval(k,M,N, x)

]
= 1.

11

• Security: Consider the following experiment for some adversary A:

– The adversary gives challenge domain sizes and input

(M,N, xp)← A(1λ).

– The challenger draws b
$← {0, 1} and computes

k
$← {0, 1}λ, kp ← Punc(k,M,N, xp),

y0
$← [N], y1 ← Eval(k,M,N, xp).

– The adversary outputs a guess b′ ← A(kp, yb).

For advantage bound ϵ(λ) and circuit size bound S(λ), we say that the PPRF (Eval,Punc,PuncEval) is
(Sλ), ϵ(λ))-secure if for any non-uniform adversary A of size S(λ) and sufficiently large λ, it holds in
the above experiment that Pr[b = b′]− 1/N ≤ ϵ(λ).

We simply call it a PPRF if it is (S, 1/S)-secure for any polynomial S.

Note that Definition 5 does not specify the output value PuncEval(kp, xp). When not discussing privately
puncturable PRFs (see Section 4.1 for more details) we will assume by default that the value of xp is known
from kp, in which case PuncEval returns a default value on the punctured point, that is PuncEval(kp, xp) = ⊥.

Theorem 3 ((P)PRF from OWFs [7, 36, 17]). If OWFs exist, there exists a PPRF. More concretely, given
a black-box access to a PRG G : {0, 1}λ → {0, 1}2λ, a PPRF, PPRF = (Eval,Punc,PuncEval), with input
domain [M] and output domain [N], can be implemented with punctured key length |kp| = λ log2 M , such
that Eval,Punc,PuncEval make (log2(M/N) log2 N)/2λ calls to G.

Furthermore, if Eval or PuncEval is computed on all points in [M], it requires only ((2M − 1) log2 N)/2λ
calls to G.

3 Small-Domain PDPF from One-Way Functions

In this section we construct small-domain PDPFs. We will first obtain a construction with inverse-polynomial
security. Then, in Section 3.1, we will show how to amplify security and get negligible security error.

As was discussed in the introduction, our construction relies on analyzing the statistical distance between
balls-and-bins experiments, where, after throwing M balls into N bins, we remove a single ball (randomly)
from either bin i or bin j. The following lemma gives an exact expression for the statistical distance between
these two distributions, and also provides an estimate which, numerically, is close up to a multiplicative
factor of ≈ 0.564 (see Section 5).

Lemma 1. For integers M > N > 0 and i, j ∈ [N], let Di and Dj be distributions over {1, . . . , N,⊥}M ∪
{faili, failj} of the locations of M balls independently and randomly thrown into N bins, such that we then
change the position of a single ball, chosen randomly from bin i and bin j, respectively, to ⊥ (this corresponds
to the ball’s “removal” from the bin). If there is no ball in bin i, then the output of Di is faili. Then

d(Di, Dj) =

M∑
w=0

(
M

w

)(
1− 2

N

)M−w
(

w
⌊w/2⌋

)
Nw

≤
√

N

M
+ 2−Ω(M/N)

Proof. In the following we prove the inequality part directly by analyzing the probabilistic experiment. This
argument generalizes to the computational setting, hence we present it here as a warm-up. The equality
part of the lemma, which is useful for empirically approximating the exact statistical distance, is proven
Appendix B.

12

First, we want to prove an upper bound on d(Di, Dj). To this end, let D̃ be the distribution where after
throwing M balls into N bins, the position of a random ball (regardless of bin) is changed to ⊥. Denote by

r
$← [N] an independently chosen random element. We first claim that d(Di, Dj) ≤ 2d((Dr, r), (D̃, r)). This

holds because
d(Di, Dj) ≤ d((Di, i), (D̃, i)) + d((Dj , j), (D̃, j)) = 2d((Dr, r), (D̃, r)),

where the equality follows by symmetry. In addition, denote by r̃ the original bin of the removed ball in
D̃. Because r̃ is independent of D̃ and uniformly random, we have that (D̃, r) = (D̃, r̃). Next, let H be
distribution of configurations of throwing M balls into N bins without removing any ball. In addition, denote
by ℓr the index of the removed ball in Dr, which is set as ℓr = undefined whenever Dr = failr. In addition,
denote by ℓ̃ the index of the removed ball in D̃. Then, because both (Dr, r) can be simulated knowing only
(H, ℓr), and (D̃, r̃) can be simulated knowing only (H, ℓ̃), with the same randomized simulator7, we have
that

d((Dr, r), (D̃, r̃)) ≤ d((H, ℓr), (H, ℓ̃))

=
1

2

∑
h

Pr[H = h]
∑

ℓ̸=undefined

|Pr[ℓr = ℓ|H = h]− Pr[ℓ̃ = ℓ|H = h]| (∗)

+
1

2

∑
h

Pr[H = h]
∣∣∣Pr[ℓr = undefined|H = h]− Pr[ℓ̃ = undefined|H = h]

∣∣∣ . (∗∗)

Next, we note that Pr[ℓ̃ = undefined|H = h] = 0. In addition, because r is chosen randomly, Pr[ℓr =
undefined|H = h] is exactly the fraction of empty bins in h. Hence (∗∗) equals the expectation of the fraction
of empty bins in H. The probability of each individual bin being empty is (1 − 1/N)M , which by linearity
of expectation equals the expected fraction of empty bins in H. Hence

(∗∗) ≤
(
1− 1

N

)M

= 2−Ω(M/N)

To bound (∗), first let Sy be the set of balls in bin y in configuration H. Thus (∗) can be bounded as follows:

(∗) =
∑
h

Pr[H = h]
1

2

∑
y:|Sy|≥1

∑
ℓ∈Sy

∣∣∣∣ 1

|Sy|
· 1
N
− 1

M

∣∣∣∣
=
∑
h

Pr[H = h]
1

2

∑
y:|Sy|≥1

∣∣∣∣ 1N − |Sy|
M

∣∣∣∣
≤
∑
h

Pr[H = h]
1

2

N∑
y=1

∣∣∣∣ 1N − |Sy|
M

∣∣∣∣
= EH

[
d

((
1

N
, . . . ,

1

N

)
,

(
|S1|
M

, . . . ,
|SN |
M

))]
,

Our proof will be complete by demonstrating that EHd
((

1
N , . . . , 1

N

)
,
(
|S1|
M , . . . , |SN |

M

))
≤ 1

2

√
N
M . We have

that |Sy| ∼ Binomial(M ; 1/N). Therefore,(
EH

[∣∣∣∣|Sy| −
M

N

∣∣∣∣])2

≤ EH

[∣∣∣∣|Sy| −
M

N

∣∣∣∣2
]
=

M

N

(
1− 1

N

)
≤ M

N
.

7Whenever ℓr is not undefined, simply remove this ball from H. Otherwise, pick a random empty bin r from H and output
(failr, r). The same simulation is used for ℓ̃, with the exception of ℓ̃ = undefined not happening.

13

Then, by the previous estimate and Cauchy-Schwarz,

EH

[
d

((
1

N
, . . . ,

1

N

)
,

(
|S1|
M

, . . . ,
|SN |
M

))]
=

1

2M

N∑
y=1

EH

[∣∣∣∣|Sy| −
M

N

∣∣∣∣]

≤ 1

2M

N∑
y=1

√
M

N

≤ 1

2M

√√√√ N∑
y=1

M

√√√√ N∑
y=1

1

N

=

1

2

√
N

M
.

Next, we prove the theorem below, which constructs a PDPF (Figure 1), restricted for the output group
Z and to payloads β ∈ {0, 1}. Later, we extend this PDPF in Theorem 5 to work over any finite Abelian
group G and any payload β ∈ G. The proof of the theorem below essentially mirrors that of Lemma 1
in the computational world by replacing the random configuration of M balls thrown into N bins by a
pseudorandom one, using the truth table of a PPRF. Compared to Lemma 1, this yields an additive error
term negligble in λ.

Theorem 4 (Small-domain PDPF with 1/poly privacy error). Suppose that there is a secure PPRF,
PPRF = (PPRF.Eval, PPRF.Punc,PPRF.PuncEval), for input domain size M and output domain size N ,
with punctured key size Kp(λ,M,N). In addition, let G : {0, 1}λ → [N + 1]× {0, 1}λ be a PRG. Then, the
construction in Figure 1 is a small-domain computationally ϵ-secure PDPF,

ϵ(λ,M,N) =

√
(N + 1)

M
+ 2−Ω(M/N) + negl(λ)

for point functions with output group G = Z, G′ = {0, 1}, domain size N , and key size |k1| = Kp(λ,M,N+1).
The number of invocations to PPRF in Gen1,EvalAll0,EvalAll1 is at most O(M).

Proof of Theorem 4.

Efficiency: The key length assertion, as well as the estimate on the number of invocations to PPRF in all
algorithms, follows by construction.

Correctness: Note that the algorithm Gen1 does not account for the cases where L = ∅, however, in this
case we can make Gen1 to reveal kPPRF and f̂α,β to still achieve perfect correctness at the cost of negligible
privacy error. To this end, in similar fashion to Lemma 1, suppose that we output failα in the case of β = 1
or failN+1 in the case of β = 0. Otherwise, correctness follows from the definition of PPRF.

Security: By the PRG security of G, we may view s, up to ϵPRG = negl(λ) security error, as uniformly
random and independent from all other values of PPRF, determined by kPPRF.

Denote by Di the output distribution of Gen1 on α = i and β = 1. In addition, denote by DN+1

the output distribution of Gen1 on β = 0. Furthermore, throughout the proof denote by r
$← [N + 1] an

independently chosen random element, and by D̃ a modified output distribution of Gen1, where ℓ
$← [M]

instead of ℓ
$← L. For all polynomial size adversaries A, denote δi = maxAAdv[A, (Di, i), (D̃, i)].

14

Gen1(k0 = (k∗, N, Ĝ, Ĝ′), f̂α,β = (N, Ĝ, α, β)):

• Compute (s, kPPRF) = G(k∗), where s, kPPRF ∈ {0, 1}λ.
• If β = 1 then find all indices

L← {ℓ ∈ [M] : PPRF.Eval(kPPRF,M,N + 1, ℓ) + s = α} .

• Else, if β = 0 then find all indices

L← {ℓ ∈ [M] : PPRF.Eval(kPPRF,M,N + 1, ℓ) + s = N + 1} .

• Pick a random ℓ ∈ L, compute kp ← PPRF.Punc(kPPRF,M,N + 1, ℓ), and output k1 = (kp, s).

EvalAll0(k0 = (kPPRF, N, Ĝ, Ĝ′)):

• Compute (s, kPPRF) = G(k∗), where s, kPPRF ∈ {0, 1}λ.
• For every α ∈ [N], simultaneously compute

Yα ← |{ℓ ∈ [M] : PPRF.Eval(kPPRF,M,N + 1, ℓ) + s = α}| .

• Output Y = (Yα)α∈[N].

EvalAll1(k1 = (kp, s)):

• For every α ∈ [N], simultaneously compute

Yα ← (− |{ℓ ∈ [M] : PPRF.PuncEval(kp, ℓ) + s = α}|) .

• Output Y = (Yα)α∈[N].

Figure 1: Small-domain computationally 1/poly-secure PDPF for point functions with output group G = Z,
payload set G′ = {0, 1}, and domain size N . Here M is a parameter corresponding to the input space of the
PPRF.

15

In similar fashion to Lemma 1, we want to show that ϵ ≤ 2δr. In other words, we want to argue that
ϵ ≤ δi+δj = 2δi = 2δr. Here, the first equality is not immediate. We will argue that δi ≤ δj , which will imply

the claim from the arbitrariness of i and j. Indeed, suppose that Ai is such that δi = Adv[Ai, (Di, i), (D̃, i)].
Let c1, c2 be the two components of either Di or D̃. We will construct an adversary Aj as follows: On input
((c1, c2), j), output Ai((c1, c2 − (i − j)), i)). Since (c1, c2) being distributed according to Dj implies that

(c1, c2 − (i − j)) is distributed according to Di, and (c1, c2) being distributed according to D̃ implies that
(c1, c2 − (i− j)) is also distributed according to D̃, we have that ϵ ≤ 2δr.

Next, we will bound δr ≤
√

(N + 1)/M + ϵPRF + ϵPPRF, where ϵPRF and ϵPPRF are the PRF and PPRF

security errors, respectively. Denote by r̃ the distribution of PPRF.Eval(kPPRF,M,N + 1, ℓ), where ℓ
$← [M]

(in similar fashion to how it was defined in the proof Lemma 1). Note that by PPRF security we have that
maxAAdv[A, (D̃, r), (D̃, r̃)] ≤ ϵPPRF, implying that

max
A

Adv[A, (D̃r, r), (D̃, r)] ≤ max
A

Adv[A, (Dr, r), (D̃, r̃)] + ϵPPRF,

so, as in Lemma 1, we are left with bounding maxAAdv[A, (Dr, r), (D̃, r̃)]. Recall that we view all values of
PPRF as being drawn uniformly, and the punctured point ℓ is chosen depending on kPPRF and s. Denote by
ℓr the distribution where ℓ is chosen uniformly such that the output is r (ℓr = undefined in the case a PPRF

output r is absent), and by ℓ̃
$← [M] a uniformly random punctured point. Then, because both (Dr, r) can

be simulated knowing only (kPPRF, ℓr), and (D̃, r̃) can be simulated knowing only (kPPRF, ℓ̃), with the same
randomized simulator (as in Lemma 1 where kPPRF is replaced by H), it holds that

max
A

Adv[A, (Dr, r), (D̃, r̃)] ≤ 2−Ω(M/N) + EkPPRF

[
d

((
1

N + 1
, . . . ,

1

N + 1

)
,

(
S̃1

M
, . . . ,

S̃N+1

M

))]
,

where S̃y = |{ℓ : PPRF.Eval(kPPRF,M,N + 1, ℓ) = y}|. Next, we claim that by PRF security we have that if

ϵ̄ = EkPPRF

[
d

((
1

N + 1
, . . . ,

1

N + 1

)
,

(
S̃1

M
, . . . ,

S̃N+1

M

))]

− EH

[
d

((
1

N + 1
, . . . ,

1

N + 1

)
,

(
S1

M
, . . . ,

SN+1

M

))]
then |ϵ̄| ≤ ϵPRF where, as in the proof of Lemma 1, H is the distribution of configurations of throwing M
balls into N + 1 bins without removing any ball and Sy is the number of balls in bin y in configuration
H. Indeed, this holds because there is an efficient adversary A∗, that, given sets T1, . . . , TN+1, outputs 1

with probability d
((

1
N+1 , . . . ,

1
N+1

)
,
(

T1

M , . . . , TN+1

M

))
. This follows since the statistical distance can be

efficiently computed given the sets T1, . . . , TN+1. Hence, we conclude that

Pr
kPPRF

[A∗(S̃1, . . . , S̃N+1) = 1] = EkPPRF

[
d

((
1

N + 1
, . . . ,

1

N + 1

)
,

(
S̃1

M
, . . . ,

S̃N+1

M

))]
,

Pr
H
[A∗(S1, . . . , SN+1) = 1] = EH

[
d

((
1

N + 1
, . . . ,

1

N + 1

)
,

(
S1

M
, . . . ,

SN+1

M

))]
,

which, by PRF security, implies that∣∣∣∣ PrkPPRF

[A∗(S̃1, . . . , S̃N+1) = 1]− Pr
H
[A∗(S1, . . . , SN+1) = 1]

∣∣∣∣ ≤ ϵPRF.

As in the proof of Lemma 1, we can thus conclude that

max
A

Adv[A, (Dr, r), (D̃, r̃)] ≤ 1

2

√
N + 1

M
+ 2−Ω(M/N) + ϵPRF

16

This gives an overall bound δr ≤ 1
2

√
N+1
M + 2−Ω(M/N) + ϵPRF + ϵPPRF. By noting that ϵPRF and ϵPPRF are

negligible in λ, we are done.

Theorem 5 (Small-domain PDPF over any payload set G′). Let P be a polynomial. If OWFs exists, there
exists a small-domain computationally 1/p(λ)-secure PDPF for point functions with any allowed payload set
G′, Abelian output group G ⊇ G′, domain size N , and key size |k1| = poly(log |G′|, λ, logN).

More concretely, the key size is given by |k1| = O(log |G′|λ(logN + logP (λ) + log log |G′|)).

Proof. It is possible to extend the construction in Theorem 4 to any β ∈ Zq, or, generally, a set S ⊆ Z, by
bit decomposition, which will incur a multiplicative factor of log |S| in privacy loss, computational cost, and
key length. Furthermore, it is possible to extend it to any Abelian group G by decomposing G as a product
of cyclic subgroups G = Zq1 × · · · × Zqℓ × Zr, making the key k1 a concatenation of the corresponding keys
for each subgroup, which overall incurs a multiplicative factor of log |G′| in privacy loss, computation cost,
and key length. By choosing M = O(N(P (λ) log |G′|)2) and using Theorem 3 we are done.

We finish this section with an optimization to Theorem 4.

Proposition 4 (Lazy Gen computation). When instantiated with a PPRF from Theorem 3, the computation
of Gen1 in Figure 1 can be done in just ((N + 1) log2 M)/λ calls to a PRG, at the expense of an additional
2−(N+1) error in correctness or privacy.

Proof. Instead of having Gen1 compute the entire set L and picking ℓ ∈ L at random, it is sufficient to keep
trying values ℓ ∈ [M] at random until one is found such that PPRF.Eval(k∗,M,N +1, ℓ)+s takes the correct
value. This has a 1/(N +1) probability of success. By making T queries, the chance of failure is 1/(N +1)T .
If we pick T = (N + 1)/ log2(N + 1), the failure chance becomes 2−(N+1), which we can attribute to either
correctness or privacy. Since each PPRF evaluation takes (log2 M log2(N + 1))/λ calls to the PRG, we are
done.

3.1 Security Amplification

To amplify security we rely on Locally Decodable Codes (LDC). Theorem 4 gives us a PDPF with 1/poly
leakage of α, which as we argue later (see Lemma 3), is no worse than α leaking completely with probability
1/poly, and staying (computationally) hidden otherwise. By utilizing a locally decodable code with additive
decoding we can essentially secret share α into shares α1, . . . , αq which are λ-wise independent. Since every
αi leaks independently with small probability, by using a Chernoff bound, α leaks with negligible probability.

To describe the main idea of the security amplification construction (Figure 2) in more detail, note first
that fα(x) = ⟨ex, TT (fα)⟩, where ex is a unit vector with 1 at index x, and TT (fα) is the truth table of a
point function fα (also a unit vector). Now, we utilize a q-query LDC C with additive reconstruction and
choose α1, . . . , αq to be the queries to C for coordinate α, which by the additive decoding of C yields

⟨C(ex), TT (fα1
) + . . .+ TT (fαq

)⟩ = ⟨ex, TT (fα)⟩ = fα(x).

Next, using the additive reconstruction of the PDPF, implying TT (fαj
) = TT (f0

αj
) + TT (f1

αj
), j = 1, . . . , q,

each server i = 0, 1 can locally compute zi = ⟨C(ex), TT (f
i
α1
) + . . .+ TT (f i

αq
)⟩ using EvalAll of each of the

q PDPF keys, such that z0 + z1 = fα(x) (hence yielding a PDPF). Here, the offline server will receive a
single offline key, which it can expand to q offline keys using a PRF, while the online server will receive the
q matching online keys.

The following lemma provides the locally decodable code (LDC) with the parameters we require (c.f. [18,
Section 4]).

Lemma 2. Fix integers σ,w, r,N > 0, such that N ≤
(
r+w
r

)
and let p be a prime. There exist a deterministic

mapping C : ZN
p → ZL

p and a randomized mapping d : [N]→ [L]q, L, q ∈ N, such that for every z ∈ ZN
p and

α ∈ [N] it holds that

Pr

[
∆← d(α) :

q∑
ℓ=1

C(z)∆ℓ
= zα

]
= 1.

17

Moreover, the following properties hold:

1. q = O(σ2r) and L = O(pw+1σw+1rw+1).

2. C, d are computable in polynomial time.

3. For every α ∈ [N], the random variables ∆1, . . . ,∆q are σ-wise independent.

Intuitively, C corresponds to the LDC encoder taking N symbols to L > N , the randomized mapping
d determines the set of q queried symbols of the codeword given a target index α ∈ [N] of the “message”
vector z ∈ ZN

p , and the decoding procedure is simply the sum of the queried symbols
∑q

ℓ=1 C(z)∆ℓ
= zα. For

example, these requirements can be met by a form of Reed-Muller code, where the distribution of queried
points ∆← d(α) corresponds to random σ-degree polynomial evaluations through the desired point (namely,
Shamir secret sharing of α).

Proof of Lemma 2. Choose q = (σ + 1)(rσ + 1) and let F = Fpc , c ≥ 1, be the smallest finite field such that
|F| > rσ + 1, hence |F| = O(prσ). Fix a canonical set of N points in Fw in general position, denoted by xα

for α ∈ [N]. We choose L = |F|w+1 = O(pw+1σw+1rw+1).

Encoding. To encode z = (z1, . . . , zN) ∈ ZN
p , define the corresponding w-variable r-degree polynomial

Pz ∈ F[X1, . . . , Xq] as the low-degree interpolation of evaluations Pz(xα) = zα, α ∈ [N]. Let φ : F → Zp

be an additive homomorphism. The codeword C(z) at point (ρ, x) ∈ F× Fw (we can alternatively index by
elements of [L]) takes the value

C(z)(ρ,x) = φ(ρ · Pz(x)).

Decoding. To decode zα, α ∈ [N], from C(z), sample a random degree-σ parametric curve {γ(s) : s ∈
F} ⊆ Fw that intersects xα at s = 0, that is γ(0) = xα. Select a random sequence (s0, . . . , srσ) ∈ Frσ+1 of
distinct nonzero parameter values, and let c0, . . . , crσ be Lagrange coefficients corresponding to a choice of
parameter values. The values (d(α))(σ+1)ℓ, . . . , (d(α))(σ+1)(ℓ−1)+1 ∈ F×Fw, α ∈ [N], ℓ ∈ [rσ+1] are defined
to be

(d(α))(σ+1)ℓ = (uσ+1
ℓ , γ(sℓ)), . . . , (d(α))(σ+1)(ℓ−1)+1 = (u1

ℓ , γ(sℓ))

where u1
ℓ , . . . , u

σ+1
ℓ ∈ F satisfy

∑σ+1
j=1 uj

ℓ = cℓ, and are otherwise random.

Correctness. It holds that

q∑
ℓ=1

C(z)(d(α))ℓ =

rσ+1∑
ℓ=1

σ+1∑
j=1

C(z)(γ(sℓ),uj
ℓ)

= φ

rσ+1∑
ℓ=1

σ+1∑
j=1

uj
ℓ · Pz(γ(sℓ))

= φ

(
rσ+1∑
ℓ=1

cℓ · Pz(γ(sℓ))

)
= Pz(γ(0)) = Pz(xα) = zα

σ-wise independence. By construction, {γ(sℓ)}ℓ and {uj
ℓ}ℓ,j are cross independent. In addition, both

{γ(sℓ)}ℓ and {uj
ℓ}ℓ,j are σ-wise independent. Hence {d(α)ℓ}ℓ are also σ-wise independent.

Next, we show that any small-domain computationally 1/poly-secure PDPF can be transformed into a
small-domain PDPF.

18

Notation: Let C : ZN
p → ZL

p and d : [N] → [L]q be the mappings from Lemma 2. In addition, let
(PDPF.Gen1,PDPF.EvalAll0,PDPF.EvalAll1) be a small-domain computationally O(1/q)-secure PDPF for point
functions with Abelian output group Zp, domain size L, and let PRF.Eval be a PRF.

Gen1(k0 = (k∗, N, Ĝ), f̂α,β = (N, Ĝ = Ẑp, α, β)):

• Compute ∆← d(α).

• For ℓ = 1, . . . , q let kℓ
∗ = PRF.Eval(k∗, q, λ, ℓ), k

ℓ
0 = (kℓ

∗, L, Ẑp), and

kℓ
1 ← PDPF.Gen1(k

ℓ
0, (L, Ẑp,∆ℓ, β)).

• Output k1 = (k1
1 . . . , k

q
1).

Eval0(k0 = (k∗, N, Ĝ = Ẑp), x):

• For ℓ = 1, . . . , q let kℓ
∗ = PRF.Eval(k∗, q, λ, ℓ) and kℓ

0 = (kℓ
∗, L, Ẑp).

• Compute and output 〈
C(ex),

q∑
ℓ=1

PDPF.EvalAll0(k
ℓ
0)

〉
,

where ex ∈ {0, 1}L is a unit vector with 1 at index x.

Eval1(k1 = (k1
1 . . . , k

q
1), x):

• Compute and output 〈
C(ex),

q∑
ℓ=1

PDPF.EvalAll1(k
ℓ
1)

〉
,

where ex ∈ {0, 1}L is a unit vector with 1 at index x.

Figure 2: Security amplification via LDC

Theorem 6. Fix integers σ,w, r,N ,be integers such that N ≤
(
r+w
r

)
, and let p be a prime. Furthermore,

let L = L(w, σ,N), q = q(w, σ,N) be as in Lemma 2. Suppose there exists a small-domain computationally
O(1/q)-secure PDPF for point functions with Abelian output group Zp, domain size L, and key size |k1| = K.
Then, the construction in Figure 2 gives a (2−Ω(σ) +negl(λ))-secure PDPF for point functions with Abelian
output group Zp, domain size N , and key size |k1| = q ·K, and where the running time of Gen1 and EvalAll
is L · poly(q, λ,N, log p).

Corollary 2. Let p = poly logN be a prime and suppose that λ ≤ N . If OWFs exist, there exists a
small-domain PDPF for point functions with Abelian output group Zp, domain size N , and key size |k1| =
poly(logN).

Proof. Let w = logN/ log logN , r = log2 N , σ = log2 λ. Then q = poly logN and

L = O(pw+1σw+1rw+1) = (poly logN)(logN+log log λ)/ log logN = poly(N),

where the last equality follows because λ ≤ N . Furthermore, 2−Ω(σ) = 2−Ω(log2 λ) = negl(λ). Thus, the
PDPF is computationally secure, requires poly(N) computational cost for Gen and EvalAll, and has key size
poly(logN).

Remark 1. Via CRT Corollary 2 can be generalized to handle any smooth integer characteristic. By
introducing a small correctness error and converting it to privacy error Corollary 2 can be generalized to
handle any Abelian group.

19

Theorem 5 and Corollary 2 have the downside that their key length grows multiplicatively with log |G|.
We show in Section 4.4 that this can be reduced to an additive term whenever log |G| ≫ λ, at the cost of
losing programmability, which still has the benefit of a DPF with one short (λ+ log |G|)-length key.

3.1.1 Proof of Theorem 6

Before proving Theorem 6, we formally capture in Lemma 3 in which sense ϵ-leaking a secret is not worse
than completely leaking the secret with probability ϵ, and completely hiding it with probability 1− ϵ.

Lemma 3. Let L = L(λ) be a function of the security parameter λ and let ρ1 = ρ1,λ : [L] → {0, 1}∗ be
an efficiently computable randomized function. In addition, let δ = δ(λ) be a function such that for every
polynomial distingisher A it holds for sufficiently large λ that maxi∈[L] Adv[A, ρ1(i), ρ1(0)] ≤ δ(λ).

Then, there exist randomized functions, τδ = τδ,λ : [L]→ [L] ∪ {⊥}, such that for every i ∈ L

Pr[τδ(i) = i] ≤ δ, Pr[τδ(i) = ⊥] = 1− Pr[τδ(i) = i],

and ρ2 = ρ2,λ : [L] ∪ {⊥} → {0, 1}∗, which is efficiently computable, such that for every i ∈ [L]

ρ1(i)
c
≈ ρ2(τδ(i)),

where τδ and ρ2 depend on the same random coins.

For this we require the hardcore lemma result of [38].

Lemma 4 ([38, Theorem 4]). Let F1, F2 : [R] → {0, 1}∗ be functions, and let δ, ϵ ∈ (0, 1) and T > 0 be
given. If for all distinguishers A with size T we have

Adv[A, F1(r), F2(r)] ≤ δ

whenever r
$← [R], then there exists a set Q ⊆ [R] with |Q| ≥ (1− δ)R such that

Adv[A′, F1(r
′), F2(r

′)] ≤ ϵ,

r′
$← Q, for all distinguishers A′ with size T ′ = Tϵ2

128(2 logR)+1 .

We are now ready to prove Lemma 3.

Proof of Lemma 3. In the proof we will view ρ1 as a deterministic function of its input and randomness,
namely, ρ1 : [L] × [R] → {0, 1}∗. Because ρ1 is efficiently computable, R = R(λ) is polynomial in λ. For
every ℓ ∈ [L] ∪ {⊥} and r ∈ [R] define

ρ2(ℓ; r) =

{
ρ1(ℓ; r), ℓ ̸= ⊥
ρ1(0; r), ℓ = ⊥.

Let A be a distinguisher of size T = T (λ), where T is a polynomial to be set later. In addition, let ϵ = ϵ(λ)
also be set later. Assuming λ is sufficiently large, applying Lemma 4 to F1(·) = ρ1(ℓ; ·) and F2 = ρ1(0; ·)
implies the existence of a set Qℓ ⊆ [R], |Qℓ| ≥ (1− δ)R such that

Adv[A′, ρ1(ℓ; r′), ρ1(0; r′)] ≤ ϵ,

r′
$← Qℓ, for all distinguishers A′ of size T ′ = (Tϵ2)/(128(2 logR) + 1). Next, define τδ : [L]× [R]→ {0, 1}∗

for ℓ ∈ [L] and r ∈ [R] as follows

τδ(ℓ, r) =

{
ℓ, r /∈ Qℓ

⊥, r ∈ Qℓ.

20

Denote by Eℓ the event that A(ρ1(ℓ; r)) = 1. Hence, denoting r′
$← Qℓ, we have for every distinguisher A′

of size T ′ and ℓ ∈ [L] that

Adv[A′, ρ1(ℓ; r), ρ2(τδ(ℓ; r); r)] ≤ Pr[r ∈ Qℓ] · |Pr[Eℓ|r ∈ Qℓ]− Pr[E0|r ∈ Qℓ]|
+ Pr[r /∈ Qℓ] · |Pr[Eℓ|r /∈ Qℓ]− Pr[Eℓ|r /∈ Qℓ]|
= Pr[r ∈ Qℓ]Adv[A′, ρ1(ℓ; r′), ρ1(0; r′)]
+ Pr[r ̸∈ Qℓ] · 0
≤ Adv[A′, ρ1(ℓ; r′), ρ1(0; r′)] ≤ ϵ,

where the equality follows because Adv[A, ρ1(ℓ; r′), ρ1(0; r′)] = |Pr[Eℓ|r ∈ Qℓ]− Pr[E0|r ∈ Qℓ]| holds by
definition. Hence, for all adversaries A′ of size T ′ we have Adv[A′, ρ1(ℓ; r), ρ2(τδ(ℓ; r); r)] ≤ ϵ.

To finish the proof, let P1(λ), P2(λ) be two arbitrary polynomials. Then, by setting ϵ(λ) = 1/P1(λ) and
T (λ) = P2(λ) · (128(2 logR(λ) + 1) + 1)/ϵ2(λ) we conclude that for all adversaries A′ of size T ′(λ) = P2(λ)
it holds that

Adv[A′, ρ1(ℓ; r), ρ2(τδ(ℓ; r); r)] ≤
1

P1(λ)
.

This is the definition of computational indistinguishability, hence ρ1(ℓ)
c
≈ ρ2(τδ(ℓ)).

We are ready to prove Theorem 6, where the security will follow by applying Lemma 3 to argue that each
of the q instances, which are σ-wise independent, independently completely leaks with small probability, and
thus the chance of at least σ of them completely leaking is negligible.

Proof of Theorem 6.
Efficiency: The key size of k1 follows by construction. The running time of Gen1 is poly(λ,N, log p) ·q. The
running time of Evali, i = 0, 1, is L · q · poly(λ,N, log p).

Correctness: By correctness of the PDPF it holds that

PDPF.EvalAll0(k
ℓ
0) + PDPF.EvalAll1(k

ℓ
1) = βe∆ℓ

,

where e∆ℓ
∈ {0, 1}L is a unit vector with 1 at index ∆ℓ, and so〈

C(ex),

q∑
ℓ=1

βe∆ℓ

〉
=

q∑
ℓ=1

βC(ex)∆ℓ

=

{
β, x = α

0, x ̸= α

where the last equality follows by Lemma 2 as ∆← d(α).

Security: To show security we need to show that for every α and α′, the keys k1 = (kq1, . . . , k
q
1) and k′1 =

((k11)
′, . . . , (kq1)

′), obtained by running Gen1 on α and α′, respectively, are computationally indistinguishable.

For ℓ = 1, . . . , q let ρℓ1 be the function which maps a query ∆ℓ ∈ [L] to PDPF.Gen1(k
ℓ
0, (L, Ẑp,∆ℓ, β)). Then,

by Lemma 3, there is a randomized function ρℓ2 and real number δℓ such that, for every i ∈ [L], ρℓ1(i) is
computationally indistinguishable from ρℓ2(τδℓ(i)), where δℓ = O(1/q) follows from the assumption that for
every i ∈ [L] we have Adv[A, ρℓ1(i), ρℓ1(0)] = O(1/q) for all polynomial adversaries A, because PDPF is
O(1/q)-secure. Denoting rℓ = τδℓ(d(α)ℓ) and r′ℓ = τδℓ(d(α

′)ℓ) we conclude that

max
A

Adv[A, k1, k′1] ≤ max
A

Adv
[
A, (ρ12(r1), . . . , ρ

q
2(rq)), (ρ

1
2(r
′
1), . . . , ρ

q
2(r
′
q))
]
+ negl(λ)

≤ d
(
(ρ12(r1), . . . , ρ

q
2(rq)), (ρ

1
2(r
′
1), . . . , ρ

q
2(r
′
q))
)
+ negl(λ)

≤ d
(
(r1, . . . , rq), (r

′
1, . . . , r

′
q)
)
+ negl(λ)

21

Let Xi be the indicator to the event that rℓ = d(α)ℓ, and define X ′i similarly with respect to α′ instead of
α. Let E be the event that

∑q
i=1 Xi ≤ σ, and define E′ similarly. Then, because in the hybrid world all

values {PRF.Eval(k∗, q, λ, ℓ)}qℓ=1 are uniformly random and independent, we also have that {Xi, X
′
i}

q
i=1 are

all independent, and so by Chernoff’s inequality and the fact that E[Xi] = E[X ′i] = O(1/q), we conclude that

max
A

Adv [A, k1, k′1] ≤ d
(
(r1, . . . , rq)|E , (r′1, . . . , r′q)|E′

)
+ Pr

k1

[¬E] + Pr
k′
1

[¬E′] + negl(λ)

= Pr
k1

[
q∑

i=1

Xi > σ

]
+ Pr

k′
1

[
q∑

i=1

X ′i > σ

]
+ negl(λ)

≤ 2 · 2−Ω(σ) + negl(λ),

where the equality follows because (α1, . . . , αq) and (α′1, . . . , α
′
q) are σ-wise independent and so

d
(
(r1, . . . , rq)|E , (r′1, . . . , r′q)|E′

)
= 0.

4 Applications

In this section, we present three applications of our programmable DPF construction and associated tech-
niques: (1) Privately Puncturable PRFs (on polynomial-size domains) from the minimal assumption of one-
way functions; (2) (Standard) Distributed Point Functions that admit particularly efficient secure distributed
key generation protocols, namely the first to achieve constant round complexity while making only black-box
use of oblivious transfer and a pseudorandom generator; and (3) A new application regime of trusted-offline
pseudorandom correlation generators. We discuss each in turn within the following subsections.

4.1 Privately Puncturable PRFs

Our programmable DPF construction makes use of puncturable pseudorandom functions (PRFs); namely,
PRFs supporting generation of punctured keys that enable evaluation of the PRF on all but a single punc-
tured input x∗. Puncturable PRFs are lightweight objects, with simple constructions known from one-way
functions [7, 36, 17] (for example, in a GGM-tree PRF on n-bit inputs, simply give the n co-path PRG
evaluations). However, all such known simple constructions inherently reveal the identity of the punctured
input x∗.

Interestingly, if one wishes to obtain the same functionality, while hiding the identity of x∗, the corre-
sponding object becomes much more challenging to obtain. Such notion is known as a privately puncturable
PRF [6]. In contrast to the simple puncturable PRF constructions, despite significant effort, the only known
instantiations of privately puncturable PRFs make use of heavy public-key cryptography machinery, and
rely on structured public-key assumptions such as the Learning with Errors assumption or multi-linear
maps [5, 20, 19, 42].

This challenging state of affairs remains the situation even for the case where the domain of the PRF is
of feasible size. Indeed, there is no clear way “scale down” the constructions from above to a polynomial-size
domain in a way that lessens the computational assumption, without reverting to trivial constructions where
the key size grows to the entire truth table. Placing a requirement that the key size be sublinear in the
domain size (or polylogarithmic, to more closely match the large-domain case), then the resulting notion
falls in the same state of knowledge as in the general case: necessitating one-way functions, but only known
to be achievable from the heavy public-key cryptography as above.

We observe that our notion of programmable DPF in fact directly implies privately puncturable PRFs
with the same parameters. In turn, we provide the first construction of privately puncturable PRFs (on
polynomial-size domains) from the minimal assumption of one-way functions.

We next present the definition of privately puncturable PRFs, together with our new feasibility result.
We adapt the definition to mirror our PRF syntax, where Eval and Punc explicitly take the input domain

22

size M ∈ N as input. For simplicity, we focus on the case of output space Z2, and thus omit output domain
size from the syntax (we can, however, support more general output spaces as in Corollary 2). As with
essentially all known constructions of privately constrained PRFs, we consider a setting of selective security,
with security against 1 key query. We remark that in this setting, it was shown that indistinguishability-based
and simulation-based definitions are equivalent [20].

Definition 6 (Privately Puncturable PRF (1-Key, Selective Security)). A puncturable PRF (Gen,Punc,Eval,
PuncEval) as in Definition 5 is a (selectively secure, 1-key) privately puncturable PRF family if for every
non-uniform polynomial-time stateful adversary A, there exists a polynomial-time simulator Sim such that
the following are computationally indistinguishable:

{REALA(1λ)}λ∈N

c∼= {IDEALA,Sim(1
λ)}λ∈N,

where the real and ideal experiments are defined as follows:

Experiment REALA(1
λ) Experiment IDEALA,Sim(1

λ)
x∗ ← A(1λ) x∗ ← A(1λ)
k ← Gen(1λ) k∗ ← Sim(1λ)
k∗ ← Punc(k,M, x∗) b← A(k∗); Output b
b← A(k∗); Output b

Intuitively, this notion of privately puncturable PRFs are directly implied by programmable DPFs, by
taking the master PRF key to be the first-server DPF share, and generating a punctured key at x∗ by
computing a second-server DPF share for the function fα,β with α = x∗ and β ← {0, 1} selected at random.

Proposition 5 (Small-Domain Privately Puncturable PRF from OWF). Assume the existence of a length-
doubling PRG (implied by OWF). Then there exists a (selectively secure, 1-key) privately puncturable PRF
(Gen,Punc,Eval,PuncEval), with the following complexity properties:

• Gen(1λ) outputs a master PRF key of size λ bits; PuncEval on domain size M outputs a punctured key
of size poly(λ, log(M)) bits.

• The runtime of Punc and PuncEval on domain size M consists of O(N) PRG evaluations. In particular,
for polynomial-size domain M = M(λ), then Punc and PuncEval each run in probabilistic polynomial
time.

Proof. By Corollary 2, taking parameter w = logM (note that the PRF input domain size M plays the role
of the PDPF input domain size N), we know that the existence of a length-doubling PRG implies a PDPF
construction (Gen,Eval0,Eval1) for output space Z2 with key size poly(λ, logM), and where the runtime
of Gen1 and Eval1 on domain size M consists of O(M) PRG evaluations. Consider the following privately
puncturable PRF construction:

• Gen(1λ): Execute Gen0 of the PDPF.

• Punc(k,M, x∗): Execute Gen1(k, f̂α,β), where α = x∗ ∈ [M], and β ← Z2 is selected at random.

• Eval(k,M, x) and PuncEval(k∗, x): Execute Eval0 and Eval1, respectively.

Correctness of the construction follows immediately from correctness of the PDPF. Regarding privacy of the
punctured point given a punctured key, consider the following simulator. Sim(1λ) runs k0 ← Gen0(1

λ,M, Ẑ2),

followed by k∗ ← Gen1(k0, f̂0,0), for a fixed point function f̂0,0. By the security of the PDPF, it holds that this

simulated punctured key (i.e., DPF key for f̂0,0 is computationally indistinguishable from the true punctured

key (i.e., DPF key for f̂α,β), as desired. Note further that given the punctured input x∗, pseudorandomness

on input x∗ additionally follows by the PDPF key security, as the true punctured key (DPF key on f̂α,β)

cannot be distinguished from an alternative key for f̂α,β′ with independently sampled offset β′ ← Z2.

23

Remark 2 (Privately Puncturable PRF⇔ PDPF). We note that in regard to feasibility, this implication in
fact goes in both directions. That is, existence of a privately puncturable PRF (P-PPRF) additionally implies
the existence of a PDPF. Intuitively, a P-PPRF is precisely a PDPF but with random, versus chosen, payload.
For small output domains (such as Z2), however, this can be addressed, e.g., by rejection sampling.

Namely, given a P-PPRF, the corresponding Gen0(1
λ,M, Ẑ2) will sample a random (“master”) PRF

key k0. The algorithm Gen1(k0, f̂α,β) for a given point function f̂α,β will run independent executions of the
randomized procedure Punc(k0,M, α) to generate a PRF key punctured at α, repeating until the resulting
punctured key k1 ← Punc(k0,M, α) yields the desired target offset Eval(k0,M, α)+PuncEval(k1, α) = β. The
algorithms Eval0 and Eval1 of the PDPF then become the corresponding executions of Eval and PuncEval
of the P-PPRF. Security follows from the privacy of the identity of the punctured input (intuitively, hiding
α) together with pseudorandomness of the punctured evaluation on feasible output domain (intuitively, a
punctured key for the real offset β is indistinguishable from a key for random β′ ← Z2, since there are
polynomially many possible offsets). And, since the output domain size is feasible, these algorithms remain
polynomial time.

Overall, this close connection to P-PPRFs provides yet another motivation for the study of PDPFs.

4.2 DPF with Constant-Round Black-Box Distributed Gen

In this section we demonstrate that the techniques behind our PDPF construction can be used to give the
first (standard) DPF construction (for feasible domain sizes) in which the key size is polylogarithmic in the
domain size N , and whose key generation Gen admits a particularly efficient secure distributed generation
procedure. Namely, the distributed Gen protocol makes only black-box use of OT and a PRG, and executes
in a fixed constant round complexity. Concretely, we show that 5 rounds suffice.

As with the previous sections, the runtime of our DPF Eval algorithm (as well as EvalAll) will be linear
in the domain size N . Note that in this section, however, our DPF Gen procedure will only be logarithmic
in N .

Concretely, by “distributed Gen,” we refer to a secure computation protocol between two parties. We
consider only security against a semi-honest adversary (i.e., who follows the protocol as prescribed but
attempts to extrapolate information beyond its own input and output). The input consists of the desired
security parameter 1λ and input/output domain descriptions of the desired point function as common input,
as well as secret shares of the desired point function values α and β over the respective spaces. The output
is a randomly sampled key pair (k0, k1)← Gen(1λ, f̂α,β), where each party learns its corresponding key.

Theorem 7 (Constant-round distributed Gen). There exists a small-domain DPF (Gen,Eval), with key size
poly(λ, logN), where Gen on secret-shared α, β can be implemented by a 5-round protocol making only a
black-box use of oblivious transfer and a pseudorandom generator.

The DPF is based on our PDPF construction from Corollary 2: Given a point function f̂α,β , the DPF keys

are formed via poly(λ, logN) punctured PRFs, each serving as a ϵ-secure PDPF for some related f̂αi,βi
. The

choice of the values (αi, βi) is computable via a small non-cryptographic randomized circuit as a function
of α, β. For simplicity we present the results for fixed payload β = 1 and output space Z; however, our
construction extends naturally.

The main departure from our PDPF is that for each ϵ-secure DPF, instead of puncturing the corre-
sponding PRF key ki at a random input x∗i with the desired evaluation PRF.Eval(ki, x

∗
i) = αi, we will

instead simply puncture the PRF at a completely random x∗i , and provide both parties with the off-
set ∆i = (PRF.Eval(ki, x

∗
i) − αi). Recall that puncturing at x∗i corresponds to an ϵ-secure DPF for

α′ = PRF.Eval(ki, x
∗
i). Thus the parties will simply “shift” all evaluations by this offset ∆i, effectively

converting it to a DPF on αi. This is possible due to the communication with both parties, which leads to
computation being only logarithmic in N , as opposed to being linear in N in “1.5-server” regime, where we
cannot afford online communication with both parties.

Consider the security of this modified scheme. Since the PPRF is now punctured at a random input,
independent of any of its PRF evaluations, the punctured key (corresponding to DPF key k1) now directly

24

hides the punctured evaluation; thus, the offset ∆i completely hides the secret value αi. On the other hand,
given the PRF key (corresponding to DPF key k0), the evaluation of the PRF on a random input has a
close-to-uniform, but biased distribution, corresponding to the unequal representation of different output
values. This will yield the inverse-polynomial ϵ security for the corresponding DPF (where αi is masked by a
biased one-time pad). Here the bias ϵ is precisely as in the statistical balls and bins analysis from Lemma 1
in the PDPF analysis.

Note that this offset-to-random simplifies the key generation procedure (e.g., the cost of Gen no longer
scales with the full domain size N), and adds only minor cost in regard to computation and key size. The
reason this was not used in the prior sections is because the resulting construction is no longer a programmable
DPF, which in particular requires the first key k0 to be completely independent of the point function to be
shared. However, this intermediate version is also a compelling construction offering alternative complexity
tradeoffs.

Given this modified DPF construction, the new Gen procedure takes the following form. We mark by
(*) those steps whose computation requires evaluation of a cryptographic PRG; all other computations are
non-cryptographic.

Gen(1λ, f̂α), where α ∈ [N]:

1. Compute the randomized mapping (α1, . . . , αq) ← d(α), where d : [N] → [L]q is as in Lemma 2
(security amplification).8

2. Sample q random PPRF keys: k1, . . . , kq ← {0, 1}λ.

3. For each i ∈ [q]:

(a) (*) Generate a punctured key k∗i ← Punc(ki, x
∗
i), for random input x∗i .

(b) (*) Compute the punctured evaluation α′i = PRF.Eval(ki, x
∗
i).

(c) Compute offset ∆i = α′i − αi

4. Output DPF keys K0 = ((k1,∆1), . . . , (kq,∆q)) and K1 = ((k∗1 ,∆1), . . . , (k
∗
q ,∆q)).

Consider now a protocol ΠGen for securely evaluating distributed Gen, where parties know only secret
shares of α and must learn only their own resulting DPF key. Note that each non-cryptographic computation
step can be securely evaluated in constant rounds and making only black-box use of oblivious transfer by
using generic secure computation techniques.

This leaves two additional steps to address: puncturing the PPRF keys, and computing (secret shares
of) the evaluations of the PRFs at the punctured inputs. Note that the latter can be done directly if one
party holds the full PRF key ki and the other party holds the punctured PRF key k∗i , by each simply
computing the sum of all computable PRF output values, which differ precisely by the punctured output.
For the former step, of puncturing the PPRF keys, we observe that a two-round protocol for precisely this
task were presented in the works of [10, 43] (within the context of an application of PPRFs to pseudorandom
correlation generators for the OT correlation), applying the techniques of the Doerner-shelat protocol for
DPFs [28] to the simpler setting of PPRFs. Intuitively, in order to puncture one PPRF key, the protocol
consists of a collection of string OTs executed in parallel, one for each level in the evaluation tree of the
PPRF, where the selection bits correspond to the bits of the punctured input x∗, and the message strings
are computable as a function of the partial PRF evaluations at the given level. In particular, the protocol
supports direct secure parallel composition of multiple instances.

Theorem 8 ([10, 43]). Consider the GGM-based PPRF construction of [7, 36, 17]. There exists a two-
round secure two-party protocol ΠPunc making only a black-box use of oblivious transfer and a pseudorandom
generator, for evaluating the functionality with parties’ inputs ((ki)i∈[q], (x

∗
i)i∈[q]) and outputs (⊥, (k∗i)i∈[q]),

where each k∗i = Punc(ki, x
∗
i).

8Note that d is non-cryptographic. Concretely, for the case of Reed-Muller locally decodable codes, the mapping d corresponds
to effectively generating Shamir secret shares of the input value α.

25

We next describe the constant-round distributed Gen protocol, making use of ΠPunc (and, in turn, the
GGM-based PPRF). In the protocol description we refer to the two parties as P0 and P1.

Distributed Gen protocol, ΠGen:

Inputs: Common: 1λ, domain size N . P0, P1 hold secret shares α0, α1 of α ∈ [N].9

1. Party P0 locally samples q random PPRF keys: k1, . . . , kq ← {0, 1}λ.

2. Party P1 locally samples q random PPRF inputs x∗1, . . . , x
∗
q .

3. Parties P0, P1 jointly execute q parallel executions of protocol ΠPunc, on respective inputs (ki)i∈[q] and
(x∗i)i∈[q]. As output, party P1 learns q punctured keys (k∗i)i∈[q].

4. For each i ∈ [q], each party locally computes the sum of all its computable PPRF evaluations: For P0,
this is σ0

i =
∑

x PPRF.Eval(ki, x). For P1, this is σ1
i =

∑
x ̸=x∗

i
PPRF.PuncEval(k∗i , x), where sums are

taken over ZN (the domain space of the DPF).

5. The parties jointly perform a (generic) secure computation protocol for evaluating the following func-
tionality:

• Input: Each party Pb holds its original input share αb and (σb
i)i∈[q].

• Computation:

(a) Evaluate the randomized mapping (α1, . . . , αq) ← d(α0 + α1) ∈ [L]q from Lemma 2, where
α0 + α1 represents the reconstructed value of the secret shared α (e.g., sum over ZN).

(b) For each i ∈ [q], compute ∆i = (σ0
i −σ1

i)−αi. Recall σ
0
i is equal to σ1

i plus the ith punctured
evaluation.

• Output: To both parties: (∆i)i∈[q].

Security of the protocol ΠGen follows by the security of the underlying ΠPunc and generic constant-round
secure computation protocols. The round complexity of ΠGen consists of (1) an execution of ΠPunc, in 2
rounds, followed by (2) the generic secure computation of a non-cryptographic functionality, in 3 rounds
(note that both parties receive output). Thus, the combined round complexity is bounded by 5 rounds.

Comparison to Doerner-shelat[28]. As stated, the round complexity of our DPF distributed gener-
ation protocol is constant (5 rounds), as opposed to logN as in [28]. The communication complexity of
our distributed Gen is also better than [28], due to the roughly 2× improvement in our key size and an
additive communication overhead in [28]. To give some data points, for N = 105, and 2−10 ≤ ϵ ≤ 2−4 the
communication complexity of a single data access in our scheme is in the range of 48-122 KB, while in [28]
it is ∼ 240KB.

The computational complexity of a data access is better than [28] for small values of N and large errors,
but the situation is reversed as N grows and the linear scan of N data items in [28] vs. the M data items
in our scheme dominates. In [28] the access time for 103 ≤ N ≤ 105 is in the range 15-20 ms, while in our
scheme the access time is lower for the pairs (N = 103, ϵ = 10−8), (N = 20 · 104, ϵ = 2−6), and (N = 105,
ϵ = 2−4), but is higher for each N when ϵ is lower than the quoted figure.

4.3 Compressing DPF Correlations

In this section we discuss an application of PDPFs for compressing correlated randomness in certain secure
computation applications.

9This secret sharing can be over ZN , bitwise over Z2, or otherwise, with insignificant effect for the given protocol. We
describe w.r.t. shares over ZN for simplicity.

26

Standard DPFs have a variety of applications in the context of secure 2-party computation (2PC). For
instance, they serve as crucial building blocks for concretely efficient 2PC of RAM programs [28] or for pseu-
dorandom correlation generators (PCGs) of truth-table correlations [12] and (authenticated) multiplication
triples [11].

As an example, suppose the two parties would like to securely evaluate a circuit which consists of arbitrary
n-gates g : {0, 1}n → {0, 1} (e.g., computing the AND or the majority of the n input bits). Using instances of
a random OT correlation, the communication complexity of mapping a secret-shared input to a secret-shared
output is linear in the circuit size of g and and the round complexity is linear in the circuit depth. But given
a random DPF correlation, this only requires n communication bits per party and a single communication
round [35, 26]. Concretely, a random DPF correlation consists of secret-sharing of a random α ∈ ZN , for

N = 2n, and a pair of keys (k0, k1) ← Gen(1λ, f̂α,1) where f̂α,1 : ZN → Z2. The idea is that the DPF
correlation can be locally expanded into a truth-table correlation [12], which can in turn be used to evaluate
a g-gate with minimal online communication and round complexity.

Given many independent instances of a DPF correlation, one can obtain a generic speedup for 2PC of
Boolean circuits by grouping small sets of Boolean gates into bigger g-gates [25]. This strongly motivates
the goal of generating many independent instances of a random DPF correlation with low communication
cost. However, there are no known practical methods for achieving this.

We observe that PDPF can be used to solve this problem in the following “trusted-offline” setting for
2PC. In an offline phase, Alice owns a long-term secret s (say, a secret key for encryption, identification, or
signature). To eliminate a single point of failure, she splits s into two shares, sA and sB , sending sB to Bob
and keeping sA to herself. She then erases all information except sA. In the online phase, the parties receive
online inputs Pi (resp., ciphertexts to decrypt, nonces for identification, or messages to sign) and wish to
securely compute f(s, Pi) for i = 1, 2, . . . , t.

The key observation is that Alice can be fully trusted in the offline phase, since if she is corrupted before
erasing s then the long-term secret is entirely compromised. In fact, if Pi is public, then s is the only secret
in the system. Consequently, we trust Alice to generate pairs of DPF keys (kj0, k

j
1) in the offline phase,

offload the keys kj0 to Bob, and keep ki1. However, the communication cost of generating DPF instances for
evaluating many g-gates is high.

A PDPF can provide a dramatic efficiency improvement in this scenario. To generate T independent
instances of a DPF correlation, Alice generates and communicates only a single reusable offline key k0 to Bob
(128 communication bits in practice). Then, for each j, she generates an online key kj1 for a point function
fαj ,1 using the PDPF algorithm Gen1. She also derives Bob’s (fresh) ZN -share of αj from the offline key and

computes its own share αj
1. In the end of the silent generation process, Alice erases all information except

her DPF correlation entries (kj1, α
j
i). Now the two parties hold T compressed instances of a truth-table

correlation that can be silently expanded just when needed.
Viewed more abstractly, the above PDPF-based solution yields a PCG for generating T instances of a

size-N truth-table correlation, where one of the keys is of size λ and the other is of size ≈ T · λ logN . Thus,
if Alice acts as a PCG dealer (who is only trusted during the offline phase), the communication cost is
constant in T and N and the storage cost grows logarithmically with N . This should be contrasted with
two alternative solutions: (1) using a standard DPF, both PCG keys are of size ≈ T · λ logN , and so the
communication cost is high when T is large; (2) using a naive PDPF, with online key linear in the domain
size, keeps Bob’s key (communication) small, but requires Alice’s key (storage) to grow linearly with T ·N
instead of T · logN . A similar improvement is relevant to other applications of DPF in 2PC, including silent
generation of multiplication triples [11] or low-communication simulation of RAM programs [28].

Concrete efficiency. We make a few remarks about the concrete efficiency of using PDPF to generate
truth-table correlations. First, because the above applications only require random DPF instances (where α
is chosen at random), the computational cost of the PDPF key generation is comparable to a standard DPF.
Second, while the PDPF evaluation of our constructions is only concretely efficient for moderate values of N
and ϵ (see Section 5), this can be good enough for applications. In particular, even a relatively high value of
ϵ (say ϵ = 2−6) only amounts to a tiny (and easily quantifiable) leakage in the spirit of differential privacy,

27

which is often considered tolerable. Functions with a small truth-table size N arise in many application
scenarios, including S-box computations in distributed evaluation of block ciphers (cf. [26]) or nonlinear
activation functions in low-precision Machine Learning algorithms (cf. [2]).

PDPF correlations vs. FSS correlations. The truth-table correlations we generate via PDPF are
quite broadly applicable, since they effectively allow using a richer set of (small-domain) gates instead of just
standard Boolean or arithmetic gates (see [25, 26]). Their main disadvantage is the computational overhead
inherited from the evaluation algorithm of our PDPF, which scales linearly with the truth-table size N .
This should be contrasted with the recent use of FSS correlations for secure computation with preprocessing
[15, 8], in which the computation cost scales logarithmically with N . However, in applications where the
value of N is moderate, this computation overhead may not form an efficiency bottleneck.

4.4 Big Payload Optimization

The PDPF in Figure 1 has binary output, which is insufficient for certain applications. In this section, we
construct a PDPF with a random output in Z2ℓ for some parameter ℓ, which easily extends to random output
in Zm for any 1 ≤ m ≤ 2ℓ. Applications of PDPF that work in an offline-online mode can either directly
use random output values or correct a random value to a specified value at very low cost in the online stage,
see Section 4.

Compared to the scheme for binary output this new construction increases the key size by roughly O(ℓ)
and server computation time by roughly O(ℓ2), improving over the natural alternatives that have either a
much longer Nℓ-bit key or a similar-sized key but server computation time that is O(ℓ3) greater than the
time required in the binary case.

The first of the natural alternatives that we mentioned is to provide the offline party with the entire
truth-table of the function, and to give the online party the punctured truth-table. The key size in this
case is Nℓ. The second alternative is to repeat the scheme of Figure 1 ℓ times independently and then
locally convert the secret-shared bits to secret-shared elements in Z2ℓ . The downside of this scheme is that
to achieve error probability ϵ it is necessary to increase the GGM tree size and thus the overall evaluation
time by a factor of O(ℓ3) compared to the tree size of the scheme with binary output and the same error
probability.

In our optimized PDPF scheme with large, random output, each output of the PRF is a pair of pseu-
dorandom values (x, y) such that x ∈ [N] and y ∈ Z2ℓ . The offline party again receives a short key that
describes the PRF, while the online party receives a key that describes the PRF with t punctured points
(α, y). Consider the value

∑T
j=1 yij mod 2ℓ, where the PRF (or PPRF) evaluation of the whole input domain

resulted in T values of the form (x, yij). The difference of these values between the two parties is 0 mod 2ℓ

for all x ̸= α and is equal to the sum of yij in the t punctured points for x = α.
To give some intuition on the security of the construction we first note that if the point function is fα,β

then the offline party should have no information on α, since it does not know which points are punctured,
and the online party should have no information on β due to the security of punctured PRFs. Hiding α
from the online party is achieved by exploiting the difference between the expected number of leaves with
first value α in the full tree, which we denote by T , and the number of punctured points which we denote
by t. For a large enough T , the probability of distinguishing between the number of leaves with value α and
the number of with value α′ decreases below a required security threshold. Statistically hiding β from the
offline party requires both that there is sufficient entropy in the random choice of t punctured points out of
T possible points to ensure that the sum of yij is close to a uniformly random element in Z2ℓ .

The scheme uses a Multi-Punctured PRF at t points, which is a natural generalization of PPRF.

Definition 7. We say that a PPRF is a t-puncturable PRF if there exist additional polynomial time al-
gorithms MPunc(k,M,N, x1, . . . , xt) and MPuncEval(kp, x1, . . . , xt), which generalize Punc and PuncEval in
the natural way. (Eval,Punc,PuncEval) should satisfy the following additional requirements:

28

• Correctness: For every λ,M,N ∈ N and x ̸= x1, . . . , xt ∈ [M] it holds that

Pr

[
k

$← {0, 1}λ,
kp ← MPunc(k,M,N, x1, . . . , xt)

: MPuncEval(kp, x) = Eval(k,M,N, x)

]
= 1.

• Security: The adversary gives challenge domain sizes and input (M,N, x1, . . . , xt), the challenger

draws b
$← {0, 1} and computes

k
$← {0, 1}λ, kp ← MPunc(k,M,N, x1, . . . , xt),

(y0,1, . . . , y0,t)
$← [N]t, (y1,1, . . . , y1,t)← Eval(k,M,N, x1, . . . , xt).

• The adversary outputs a guess b′ ← A(kp, yb).

For advantage bound ϵ(λ) and polynomial circuit size bound S(λ), we say that the PPRF (Eval,Punc,PuncEval)
is ϵ(λ)-secure if for any non-uniform adversary A of size S(λ), it holds in the above experiment that
Pr[b = b′]− 1/N ≤ ϵ(λ).

The following proposition which generalizes Theorem 3 is implicit in the literature.

Proposition 6. Given black-box access to a length-doubling PRG with seed length λ, there exists a secure t-
puncturable PRF scheme, with input domain [M] and output domain [N], N ≤ 2λ, which can be implemented
with punctured key length |kp| = λt log M

t .

Proof. The PRF is generated from a seed to the PRG via the GGM tree construction. The punctured key k1
includes every sibling of a node on one of the t paths. The number of these nodes is t log M

t , see for example
the analysis in [39] Theorem 2.

Theorem 9 (Big-payload optimization). Assume either an ideal PPRF or black-box access to a length-
doubling PRG with λ-bit seed in the CRS model. There exists an ϵ-secure PDPF for sharing fα,β : [N]→ Z2ℓ

for a specified α and a random β, with the following efficiency costs:

• Online key size |k1| = O
(
λt log tN

ϵ2

)
, for t = ℓ+ 2 log 1

ϵ .

• Gen makes O(tN log t
ϵ2) PRG invocations on average.

• EvalAll makes O(Nt2

ϵ2) PRG invocations in the worst case.

Proof. Consider the PDPF in Figure 3. Its correctness is immediate, and to prove its ϵ-security we separately
analyze the security for the two parties.

The offline party has no information on α. To bound the information leakage on β, note that β ≡∑t
j=1 yit mod 2ℓ, where i1, . . . , it are chosen at random out of all the points i1, . . . , iTα

∈ [M] on which the
PRF evaluates to (α, y), y ∈ Z2ℓ . Even given α, the offline party doesn’t have information on which t points
were punctured out of the Tα possible points.

For the offline party this is exactly a subset-sum problem. [34] proves that the mapping from a subset
of random values to its sum defines a family of universal hash functions on Z2ℓ , and therefore the Leftover
Hash Lemma [33] applies. In other words, if the min-entropy of the random variable that chooses the subsets
is at least ℓ+ 2log 1

ϵ then there is at most ϵ probability to distinguish β from a random element in Z2ℓ .
In the ideal PRF model the values y1, . . . , yTα are sampled uniformly and independently in Z2ℓ and

assuming the existence of a PRG, these values are computationally indistinguishable from uniformly random
elements. Therefore, the min-entropy of the random variable that models the selection of the punctured
points is log

(
Tα

t

)
. The average value of Tα is M/N ≥ t2. It follows from the choice of t, that log

(
Tα

t

)
≥

log tt = t log t ≥ ℓ+ 2log 1
ϵ , which proves the security for the offline party.

29

Gen1(k0 = (k∗, N, ℓ, Ĝ = Z2ℓ), αϵ):
Let G : {0, 1}λ → {0, 1}max{2λ,λ+ℓ} be a PRG.

• Find minimal t such that t log t ≥ ℓ+ 2 log 1
ϵ

• Compute M = Nt2/ϵ2

• Let
I ← {m ∈ [M] : PPRF.Eval(k∗,M,N + 1,m) = (α, y), y ∈ Z2ℓ}

• Choose random i1, . . . , it ∈ I

• Let kp ← PPRF.MPunc(k∗,M,N + 1, i1, . . . , it)

• output k1 = kp.

EvalAll0(k0 = (k∗, N, ℓ, Ĝ = Z2ℓ)):

• For every x ∈ [N], simultaneously compute

– Sx ← {m ∈ [M] : PPRF.Eval(k∗,M,N + 1,m) = (x, y), y ∈ Z2ℓ}
– Compute Hx,0 =

∑
(x,y)∈Sx

y mod 2ℓ

• Output H0 = (Hx,0)x∈[N].

EvalAll1(k1):

• For every x ∈ [N], simultaneously compute

– Sx ← {m ∈ [M] : PPRF.MPuncEval(k1) = (x, y), y ∈ Z2ℓ}
– Compute Hx,1 = −

∑
(x,y)∈Sx

y mod 2ℓ

• Output H1 = (Hx,1)x∈[N].

Figure 3: Small-domain and large output computationally 1/poly(λ,N)-secure PDPF for point functions
with output β ∈ Z2ℓ and domain size N . The leaves of the PRF are pairs (x, y) ∈ [N]× Z2ℓ .

30

The online party does not get information on β, either unconditionally in the ideal PRF model or
computationally, assuming the existence of a PRG. To bound the information it gets on α, consider the
bound of Lemma 6 on a balls and bins experiment, which exactly reflects the security game for the online
party. The experiment is requires to determine which of two designated values α and α′ are punctured in
the PPRF, given only their relative frequencies in the points that weren’t punctured.

The expected sum of the number of α and α′ “balls” in the punctured key is 2T −t for T = M/N = t2/ϵ2.
The event that the actual number of balls is too far from the expected value has negligible probability and
we discount it in the rest of the analysis. Concretely, we assume that the actual number of balls is within

(2 − 4/π)t2/ϵ2 − t of the expected t2/ϵ2. Therefore, if the actual number of balls is w then w ≥ 4t2

πϵ2 and if
A(w) ∼ Binomial(w; 1/2) then by a well-known approximation Pr[A(w) = w] ≈ 1√

πw
and therefore,

Pr

[
A(w) ∈

{
w − t

2
,
w − t+ 1

2
, . . . ,

w + t− 1

2

}]
≤ 2t√

πw
≤ ϵ.

It follows that the statistical distance between the two distributions of α or α′ being the punctured point, is
at most ϵ.

The length of the punctured key k1 is λt log M
t by Proposition 6, which is λt log tN

ϵ2 . EvalAll constructs

the whole tree and therefore the number of PRG invocations it makes is 2M = Nt2

ϵ2 . Gen can use the same
probabilistic “lazy” approach used in the binary case of evaluating the PRF on random input points in [M]
until t of them have first coordinate α. Since the probability that each point m evaluates to α is 1/N (up
to a negligible difference in the CRS model), the expected number of points that needs to be evaluated is
tN . The expected number of PRG invocations in Gen is thus the sum of the nodes along the paths to tN ,
which is identical to the length of a key for tN punctured points (divided by the node description length, λ).
Therefore, by Proposition 6 the expected number of PRG invocations in Gen is O(tN log M

tN = tn log t
ϵ2).

Remark 3. Theorem 9 highlights the asymptotic advantage in key size of the optimized construction com-
pared to the trivial PDPF, in which key size is |k1| = Nℓ. However, in concrete terms that advantage becomes
apparent as N grows and with current techniques the full evaluation time is relatively high, even though it
is an improvement over repeating the binary PDPF ℓ times. To give two data points on the performance of
our construction, for N = 20000, ϵ = 2−6 and ℓ = 10, the key length is |k1| = 10 KB, Gen time is 3.8 ms,
but EvalAll time is 13.3 sec. In the same setting but with ℓ = 20 the key size is 14.8 KB, Gen time is 8.1
and EvalAll time is 39.7 sec.

The PDPF scheme in Figure 3 has the disadvantage that it outputs a sharing of a point function fα,β for
a specified α, but a random β. We next show how to convert that that scheme to a DPF scheme in which
both α and β are deterministic. Note that this is a DPF rather than a PDPF scheme, i.e. both α and β are
specified during Gen.

The idea is to provide both parties with an additional correction word CW that is a function of β and
the punctured values yi1 , . . . , yit . CW will be applied by each party with opposite signs in the evaluation of
x ̸= α, but will exactly shift the evaluation of the DPF at α to share β.

In more detail, first let t be odd, so that it has an inverse modulo 2ℓ (t can always be increased). Then,
set CW = t−1[β −

∑t
j=1 yij] mod 2ℓ and provide CW to both parties together with the keys.

Let all the PRF values with first coordinate x be (x, y1), . . . , (x, yTα
) for every x ∈ [N]. When evaluating

x, both parties compute Wx =
∑Tx

i=1 yi + Tx · CW mod 2ℓ. The offline party outputs Wx and the online
party outputs −Wx mod 2ℓ. This ensures that the difference between the output values is 0 for x ̸= α and
is β for x = α.

5 Concrete Efficiency

In this section we compare the concrete efficiency of our construction from Theorem 4 to a naive PDPF
construction. For our comparison we will consider PDPFs over G = Z and β ∈ G′ = {0, 1}. Throughout the

31

section we model the PPRF as an ideal PPRF, see Appendix C for further analysis.
While Theorem 4 gives a ϵ ≈

√
N/M security bound, we empirically find that the real statistical distance

in the statistical variant of the balls-and-bins experiment, as in Lemma 1 is ϵ ≈ 0.564
√

N/M , and we use
this estimate in the tables below. For estimating the running time of EvalAll in our construction we use
Theorem 3, by which EvalAll makes (M log2(N +1)/λ PRG calls. In addition, by Proposition 4, Gen1 makes
((N + 1) log2 M)/λ PRG calls.

The naive PDPF construction is obtained by having EvalAll0 treat k∗ (obtained by running Gen0) as a
PRF key, expanding it to a truth table of length N over {0, . . . , ⌈1/ϵ⌉ − 1} for an integer 1/ϵ. Denote by
f0 : [N]→ Z the function with this truth table. Then, Gen1 will generate k1 by simply computing the truth
table of the function f1 = fα,β − f0 (hence |k1| = N⌈log2(1/ϵ)⌉), and EvalAll1 will output the truth table it
got. Note that this naive PDPF construction is ϵ-secure. Because both Gen and EvalAll compute the PRF
on all points, by Theorem 3, they make (2N − 1)(logN)/(2λ) PRG calls.

Remark 4 (Privacy and key length for the naive PDPF). The naive construction provides negligible privacy
error and online key of N · log |G| for output group G. In aggregation-type applications, one either needs to
pick a very large finite G or use the group of integers Z with key size N · c and settle for 2−c-privacy. To
make the comparison meaningful, we went for the latter option with ϵ = 2−c.

In Table 1 we compare the key size and running time of Gen and EvalAll of our PDPF to the naive
PDPF, for fixed λ = 128. Our time unit is PRG evaluations, assuming 1.8 · 108 evaluations per second of
G : {0, 1}128 → {0, 1}256.

Acknowledgements

We thank the CRYPTO reviewers for many useful comments and suggestions, including a simplification
of the proof of Theorem 4. We thank Katharina Boudgoust and Mark Simkin for their helpful comments.
Elette Boyle was supported by AFOSR Award FA9550-21-1-0046, ERC Project HSS (852952), ERC Project
NTSC (742754), and a Google Research Scholar Award. Niv Gilboa was supported by ISF grant 2951/20,
ERC grant 876110, and a grant by the BGU Cyber Center. Yuval Ishai was supported by ERC Project
NTSC (742754), BSF grant 2018393, and ISF grant 2774/20. Victor I. Kolobov was supported by ERC
Project NTSC (742754) and ISF grant 2774/20.

References

[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder - scalable, robust anonymous committed
broadcast. In CCS ’20, pages 1233–1252, 2020.

[2] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adrià Gascón. QUOTIENT: two-party
secure neural network training and prediction. In ACM CCS 2019, pages 1231–1247, 2019.

[3] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM J. Comput., page 850–864, November 1984.

[4] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight techniques
for private heavy hitters. pages 762–776, 2021.

[5] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable prfs from standard lattice
assumptions. In EUROCRYPT 2017, pages 415–445, 2017.

[6] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately. In PKC
2017, 2017.

[7] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, pages 280–300, 2013.

32

ϵ/N 1000 20000 100000

2−4
0.3 KB/0.5KB

1.5 µs,0.002 µs/0.4 µs
38.8 µs/0.4 µs

0.3 KB/9.8KB
42.1 µs,0.005 µs/12.4 µs

1.1ms/12.4 µs

0.4 KB/48.8KB
242.6 µs,0.006 µs/72.1 µs

6.2ms/72.1 µs

2−6
0.3 KB/0.7KB

2.5 µs,0.002 µs/0.4 µs
621.2 µs/0.4 µs

0.4 KB/14.7KB
68.7 µs,0.005 µs/12.4 µs

17.3ms/12.4 µs

0.4 KB/73.2KB
395.5 µs,0.006 µs/72.1 µs

99.7ms/72.1 µs

2−8
0.4 KB/1.0KB

3.4 µs,0.002 µs/0.4 µs
9.9ms/0.4 µs

0.5 KB/19.5KB
95.2 µs,0.005 µs/12.4 µs

276.8ms/12.4 µs

0.5 KB/97.7KB
548.3 µs,0.006 µs/72.1 µs

1.6 sec/72.1 µs

2−10
0.4 KB/1.2KB

4.4 µs,0.002 µs/0.4 µs
159.0ms/0.4 µs

0.5 KB/24.4KB
121.8 µs,0.005 µs/12.4 µs

4.4 sec/12.4 µs

0.6 KB/122.1KB
701.2 µs,0.006 µs/72.1 µs

25.5 sec/72.1 µs

Table 1: Key size, running time of Gen1 and EvalAll of our PDPF construction from Theorem 4 (left)
compared to the naive one (right). For the PDPF from Theorem 4 there are two Gen1 running times, the
smaller one corresponding to time needed to generate a key for a random point function. Running times are
based on an AES-based PRG implementation benchmarked at 1.8 · 108 PRG calls per second on a single
core. For M = 0.318 · N/ϵ2 and λ = 128, in our construction, the key size is λ log2 M , EvalAll makes
(2M − 1)(logN)/(2λ) calls to the PRG, and Gen1 makes (N + 1)(log(M/N))(logN)/(2λ) calls to the PRG
(and (log(N))2/(2λ) PRG calls for the random point function). In the naive construction, the key size is
N log2(1/ϵ), and EvalAll and Gen1 both make (2N − 1)(logN)/(2λ) calls to the PRG.

[8] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant Kumar, and Mayank
Rathee. Function secret sharing for mixed-mode and fixed-point secure computation. In EUROCRYPT
2021, Part II, pages 871–900, 2021.

[9] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector ole. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 896–912, 2018.

[10] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl.
Efficient two-round OT extension and silent non-interactive secure computation. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS. ACM, 2019.

[11] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseudo-
random correlation generators from ring-lpn. In CRYPTO 2020, Part II, pages 387–416.

[12] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseudo-
random correlation generators: Silent OT extension and more. In CRYPTO 2019, 2019.

[13] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseu-
dorandom correlation generators from ring-lpn. In Annual International Cryptology Conference, pages
387–416. Springer, 2020.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In
CCS, 2016.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing via function secret
sharing. In Theory of Cryptography Conference, pages 341–371, 2019.

[16] Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Programmable distributed point functions.
In CRYPTO 2022, 2022.

[17] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
PKC 2014, pages 501–519.

33

[18] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database both locally and
privately? In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, pages 662–693.

[19] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained prfs
(and more) from LWE. In TCC 2017, Part I, pages 264–302.

[20] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from LWE. In EUROCRYPT
2017, Part I, pages 446–476, 2017.

[21] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In
Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 41–50. IEEE, 1995.

[22] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate
statistics. In 14th USENIX symposium on networked systems design and implementation (NSDI 17),
pages 259–282, 2017.

[23] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging system
handling millions of users. In 2015 IEEE Symposium on Security and Privacy, pages 321–338. IEEE,
2015.

[24] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sublinear online time. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,Part I, 2020.

[25] Geoffroy Couteau. A note on the communication complexity of multiparty computation in the correlated
randomness model. In EUROCRYPT 2019, pages 473–503, 2019.

[26] Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The tinytable protocol
for 2-party secure computation, or: Gate-scrambling revisited. In CRYPTO 2017.

[27] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single database private information retrieval
implies oblivious transfer. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 122–138. Springer, 2000.

[28] Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 523–535, 2017.

[29] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing
attacks to noisy leakage. In EUROCRYPT 2014, pages 423–440, 2014.

[30] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In EUROCRYPT, 2014.

[31] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, August 1986.

[32] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath T. V. Setty, Lorenzo Alvisi, and Michael
Walfish. Scalable and private media consumption with popcorn. In USENIX, 2016.

[33] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation from one-way
functions. In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
12–24, 1989.

[34] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as subset sum.
Journal of cryptology, 9(4):199–216, 1996.

[35] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-Cherniavsky. On
the power of correlated randomness in secure computation. In TCC 2013, 2013.

34

[36] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In CCS 2013, pages 669–684.

[37] Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability amplification. In
CRYPTO, pages 130–149, 2007.

[38] Ueli M. Maurer and Stefano Tessaro. A hardcore lemma for computational indistinguishability: Security
amplification for arbitrarily weak prgs with optimal stretch. In TCC 2010, pages 237–254, 2010.

[39] Dalit Naor, Moni Naor, and Jeff Lotspiech. Revocation and tracing schemes for stateless receivers. In
Crypto, pages 41–62. Springer, 2001.

[40] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. Spectrum: High-bandwidth anony-
mous broadcast with malicious security. IACR Cryptol. ePrint Arch., page 325, 2021.

[41] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In STOC 1997,
pages 294–303, 1997.

[42] Chris Peikert and Sina Shiehian. Privately constraining and programming prfs, the LWE way. In PKC
2018, Part II, pages 675–701, 2018.

[43] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Distributed vector-ole:
Improved constructions and implementation. In ACM CCS, pages 1055–1072, 2019.

[44] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce M. Maggs. Puncturable pseudoran-
dom sets and private information retrieval with near-optimal online bandwidth and time. In CRYPTO,
pages 641–669, 2021.

[45] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In FOCS
1982, pages 80–91.

35

Supplementary Material

A Reusable DPF

Definition 8. We say that a (2, 1)-DPF (Gen,Eval0,Eval1) is a reusable DPF, or RDPF for short, if Gen
can be decomposed into a pair of algorithms Π = (Gen0,Gen1) with the following syntax:

• Gen0(1
λ, N, Ĝ)→ k0: On input security parameter λ, domain size N and output group description Ĝ,

returns a key k0 = (k∗, N, Ĝ), where k∗ ∈ {0, 1}λ.

• Gen1(k0, f̂α,β , L, ℓ)→ k1: On input key k0 = (k∗, N, Ĝ), point function description f̂α,β = (N, Ĝ, α, β),
ID space size L, and ID ℓ ∈ [L], returns a key kℓ1 ∈ {0, 1}∗.

Moreover, we require that k∗, returned by Gen0 as part of k0, is a uniform random string, namely, k∗
$←

{0, 1}λ. The algorithm Gen1 should satisfy the following (multi-message) security requirement instead of the
one in Definition 2:

• Security: Consider the following semantic security challenge experiment:

1. The adversary gives ID space size L ← A(1λ), followed by challenge point function descriptions

(f̂0,ℓ = (N ℓ
0 , Ĝ

ℓ
0, α

ℓ
0, β

ℓ
0), f̂

1,ℓ = (N ℓ
1 , Ĝ

ℓ
1, α

ℓ
1, β

ℓ
1)) ← A(1λ) with N ℓ

0 = N ℓ
1 and Ĝℓ

0 = Ĝℓ
1, for every

ℓ ∈ [L].

2. The challenger samples b
$← {0, 1}, k∗

$← {0, 1}λ and also, for every ℓ ∈ [L], assigns kℓ1 ←
Gen1(k

ℓ
∗, f̂

b,ℓ, ℓ).

3. The adversary outputs a guess b′ ← A((kℓ1)ℓ∈[L]).

Denote by Adv(1λ,A) = Pr[b = b′] − 1/2 the advantage of A in guessing b in the above experiment.
The notions of security are defined similarly to Definition 2 with respect to Adv(1λ,A).

Lemma 5. A PDPF exists if and only if an RDPF exists.

Proof. It is not difficult to see that an RDPF implies a PDPF by choosing ℓ = L = 1.
Now, let PDPF = (PDPF.Gen0,PDPF.Gen1,PDPF.Eval0,PDPF.Eval1) be a PDPF. To construct an RDPF,

RDPF, let Gen0, and Eval1 be identical to that of PDPF. The existence of a PDPF implies OWFs [30],

and consequently also the existence of a PRF, PRF.Eval. RDPF.Gen1 on input k0 = (k∗, N, Ĝ), f̂α,β , L, ℓ

will compute kℓ∗ = PRF.Eval(k∗, 2
λ, L, ℓ) and output PDPF.Gen1((k

ℓ
∗, N, Ĝ), f̂α,β). RDPF.Eval0 on input

k0 = (k∗, N, Ĝ), x, will first compute kℓ∗ = PRF.Eval(k∗, 2
λ, L, ℓ) and then output PDPF.Eval0((k

ℓ
∗, N, Ĝ), x).

The DPF correctness of PDPF implies the correctness of RDPF, because RDPF.Eval0 and RDPF.Eval1 es-
sentialy compute PDPF.Eval0 and PDPF.Eval1 applied to the keys (kℓ∗, N, Ĝ) and PDPF.Gen1((k

ℓ
∗, N, Ĝ), f̂α,β),

respectively, which are valid keys of PDPF.
Security follows because the truth table of the PRF is indistinguishable from random to polynomial sized

adversaries, and so in the hybrid world all kℓ∗ are independently and uniformly random. In this hybrid world
the security game is played with respect to L independent instances of PDPF, which is secure if PDPF is
secure.

B Balls-and-bins experiment analysis

The following lemma generalizes the equality part of Lemma 1 to multiple balls removed from a single bin.

Lemma 6. For integers M > N > 0, an integer t, and i, j ∈ [N], let Di and Dj be distributions over
{1, . . . , N,⊥}M ∪ {faili, failj} of the locations of M balls independently and randomly thrown into N bins,
such that we then change the position of a t balls, chosen randomly from bin i and bin j, respectively, to ⊥

36

(this corresponds to the ball’s “removal” from the bin). If there is no ball in bin i, then the output of Di is
faili. Then

d(Di, Dj) =

M∑
w=0

(
M

w

)(
1− 2

N

)M−w (
2

N

)w

Pr

[
A(w) ∈

{
w − t

2
,
w − t+ 1

2
, . . . ,

w + t− 1

2

}]
where A(w) ∼ Binomial(w; 1/2).

Proof. For a configuration of balls into bins C ∈ {1, . . . , N,⊥}M denote by #bini(C) the number of balls in
bin i in this configratuion. Define the event E = {C ∈ {1, . . . , N,⊥}M : #bini(C) ≤ #binj(C)} ∪ {faili}.
We first argue that

Pr
Di

[E]− Pr
Dj

[E] = d(Di, Dj).

Indeed, define the event E′ = {C ∈ {1, . . . , N,⊥}M : PrDi
[C] ≥ PrDj

[C]} ∪ {faili}. It is not difficult to
see that PrDi

[E′] − PrDj
[E′] = d(Di, Dj). Hence, it is sufficient to prove that E = E′. For a configuration

C ̸= faili, failj we have that

Pr
Di

[C] =
1

NM
(
#bini(C)+t

t

)
because we first need to throw M balls into N bins, and then the probability a specific t-sized set of balls is
chosen is 1/

(
#bini(C)+t

t

)
. The same equality holds with respect to PrDj [C]. Thus,

Pr
Di

[C] ≥ Pr
Dj

[C] ⇐⇒ #bini(C) ≤ #binj(C),

and so E = E′. Hence, it is sufficient to calculate PrDi
[E] − PrDj

[E] to estimate d(Di, Dj). We achieve
this by coupling. To this end, let (X,Y, Z) ∼ Trinomial(M ; 1/N, 1/N ; 1 − 2/N). Then PrDi

[E] = Pr[X −
t ≤ Y ∨ X ≤ t − 1] = Pr[X − t ≤ Y] (second equality holds because X ≤ t − 1 ⇒ X − t ≤ Y) and
PrDj

[E] = Pr[X ≤ Y − t]. Therefore,

d(Di, Dj) = Pr[Y −X ∈ {−t, . . . , t− 1}

=

M∑
w=0

Pr[Z = M − w] Pr[Y −X ∈ {−t, . . . , t− 1}|X + Y = w]

=

M∑
w=0

(
M

w

)(
1− 2

N

)M−w (
2

N

)w

Pr

[
A(w) ∈

{
w − t

2
, . . .

w + t− 1

2

}]

C Realizing Ideal PPRF

In this section we prove that a modification of the PDPF from Figure 1 in the CRS model is as secure (up
to a negligible term) as the scheme where the PPRF is replaced by an ideal PPRF, which is a functionality
that provides the online party with the result of a balls-and-bins experiment, where one ball is removed from
a bin at random, and the bin is chosen according to the same strategy as Gen1 in Figure 1.

In other words, for a given α, an algorithm that chooses the point to puncture Choose, and algorithm that
evaluates the PRF on all points EvalAll, and an algorithm which punctures the key Punc, the distribution of
the real PDPF key together with the CRS, denoted by Realα, is as follows:

1. k ← {0, 1}λ

2. CRS← ZM
N

3. x← Choose (CRS+ EvalAll(k), α)

37

Gen1(k0 = (k∗, N, Ĝ, Ĝ′), f̂α,β = (N, Ĝ, α, β),CRS ∈ ZM
N+1):

• If β = 1 then find all indices

L← {ℓ ∈ [M] : PPRF.Eval(k∗,M,N + 1, ℓ) + CRSℓ = α} .

• Else, if β = 0 then find all indices

L← {ℓ ∈ [M] : PPRF.Eval(k∗,M,N + 1, ℓ) + CRSℓ = N + 1} .

• Pick a random ℓ ∈ L, compute kp ← PPRF.Punc(k∗,M,N + 1, ℓ), and output kp.

EvalAll0(k0 = (k∗, N, Ĝ, Ĝ′),CRS ∈ ZM
N+1):

• For every α ∈ [N], simultaneously compute

Yα ← |{ℓ ∈ [M] : PPRF.Eval(k∗,M,N + 1, ℓ) + CRSℓ = α}| .

• Output Y = (Yα)α∈[N].

EvalAll1(kp,CRS ∈ ZM
N+1):

• For every α ∈ [N], simultaneously compute

Yα ← (− |{ℓ ∈ [M] : PPRF.PuncEval(kp, ℓ) + CRSℓ = α}|) .

• Output Y = (Yα)α∈[N].

Figure 4: A modification of the PDPF in Figure 1 in the CRS model. As before, the PDPF is for point
functions with output group G = Z, β ∈ {0, 1}, and domain size N . Here M is a parameter corresponding
to the input space of the PPRF.

4. kp ← Punc(k, x)

5. Output (CRS, kp)

The distribution with an ideal PPRF, in which the punctured point x is completely hidden, and all other
points are independent and uniform on ZN , denoted by Idealα, is as follows:

1. CRS← ZM
N

2. x← Choose (CRS, α)

3. ∀z : CRS∗z =

{
CRSz, z ̸= x

⊥, z = x

4. Output CRS∗

We want to argue that the view of an adversary of Realα can be simulated by an adversary only having
access to Idealα. This will in particular imply that for any α, α′, and any adversary A against which the
PPRF assumption holds, Adv[A,Realα,Realα′] is close to d(Idealα, Idealα′).

As a final note, while Proposition 7 applies to the statistical experiment where a single index is punctured,
an almost identical proof applies to the multi-puncturing case.

Proposition 7. There exists an algorithm Sim such that, for any α and any adversary A against which the
PPRF assumption holds, we have that Adv[A,Realα,Sim(Idealα)] is negligible.

38

Proof. Because CRS is uniform, Realα is equivalent to the distribution:

1. k ← {0, 1}λ

2. CRS← ZM
N

3. x← Choose (CRS, α)

4. kp ← Punc(k, x)

5. Output (CRS+ EvalAll(k), kp)

By the PPRF assumption, because x is chosen independent of k, we have that EvalAll(k)x is indistinguishable
from a random value r ← ZN , given the knowledge of kp. Therefore, the above distribution is equivalent to
the following distribution:

1. CRS← ZM
N

2. x← Choose (CRS, α)

3. k ← {0, 1}λ

4. r ← ZN

5. ∀z : τz =

{
CRSz + EvalAll(k)z, z ̸= x

r, z = x

6. kp ← Punc(k, x)

7. Output (τ, kp)

Next, we want to formulate the above distribution as a function Sim applied to a distribution Idealα. Sim on
input CRS∗ computes the following:

1. Let x be such that CRS∗x = ⊥

2. k ← {0, 1}λ

3. r ← ZN

4. ∀z : τz =

{
CRS∗z + EvalAll(k)z, z ̸= x

r, z = x

5. kp ← Punc(k, x)

6. Output (τ, kp)

Since Sim(Idealα) has the same distribution as above, we conclude that Realα
ϵ
≈ Sim(Idealα), where ϵ is the

PPRF security error.

39

	Introduction
	Our Results
	Programmable DPF.
	Programmable DPF on small domains from OWF.
	Applications.

	Overview of Techniques

	Preliminaries
	Distributed Point Functions
	Pseudorandom Generators and Functions

	Small-Domain PDPF from One-Way Functions
	Security Amplification
	Proof of Theorem 6

	Applications
	Privately Puncturable PRFs
	DPF with Constant-Round Black-Box Distributed Gen
	Compressing DPF Correlations
	Big Payload Optimization

	Concrete Efficiency
	Reusable DPF
	Balls-and-bins experiment analysis
	Realizing Ideal PPRF

