
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 1

HPKA: A High-Performance CRYSTALS-Kyber
Accelerator Exploring Efficient Pipelining

Ziying Ni, Student Member, IEEE, Ayesha Khalid, Senior Member, IEEE, Dur-e-Shahwar Kundi,
Máire O’Neill, Senior Member, IEEE, and Weiqiang Liu, Senior Member, IEEE

Abstract—CRYSTALS-Kyber (Kyber) was recently chosen as the first quantum resistant Key Encapsulation Mechanism (KEM) scheme
for standardisation, after three rounds of the National Institute of Standards and Technology (NIST) initiated PQC competition which
begin in 2016 and search of the best quantum resistant KEMs and digital signatures. Kyber is based on the Module-Learning with Errors
(M-LWE) class of Lattice-based Cryptography, that is known to manifest efficiently on FPGAs. This work explores several architectural
optimizations and proposes a high-performance and area-time (AT) product efficient hardware accelerator for Kyber. The proposed
architectural optimizations include inter-module and intra-module pipelining, that are designed and balanced via FIFO based buffering to
ensure maximum parallelisation. The implementation results show that compared to state-of-the-art designs, the proposed architecture
delivers 25-51% speedups for Kyber’s three different security levels on Artix-7 and Zynq UltraScale+ devices, and a 50-75% reduction
in DSPs at comparable security level. Consequently, the proposed design achieve higher AT product efficiencies of 19-33%.

Index Terms—Post-quantum Cryptography (PQC), Lattice-based Cryptography (LBC), Module-Learning with Errors (M-LWE),
CRYSTALS-Kyber, Hardware Accelerator.

✦

1 INTRODUCTION

The advent of quantum computers threatens the security
of all existing cryptosystems. A quantum algorithm, called
Shor’s algorithm [1], is capable of completely breaking all
currently deployed Public-key Cryptography (PKC), includ-
ing RSA [2] and Elliptic Curve Cryptography (ECC) [3]. In
addition, Grover’s search quantum algorithm [4] reduces
the complexity of the search space of a brute force attack
on symmetric-key encryption schemes (e.g., AES [5]) and
hashing (e.g., SHA-3 [6]) to half. The National Institute
of Standards and Technology (NIST) announced a formal
global call in 2016, to standardize new Post-quantum Cryp-
tography (PQC) based Public-key Encryption (PKE) and
digital signature schemes [7]. In 2017, 69 proposals were se-
lected in Round 1 of the NIST PQC and four candidates and
five alternatives were shortlisted in Round 3 in July 2020.
Three out of these four candidate algorithms were lattice-
based cryptographic (LBC) schemes, namely CRYSTALS-
Kyber [8], SABER [9], and NTRU [10]. NIST intended to
standardize no more than one of these lattice-based Public-

Manuscript received X XX, 2023; revised X XX, 2023. This work is supported
by the National Natural Science Foundation of China (62022041) and the
Fundamental Research Funds for the Central Universities (NP2022103), and
grants from the Engineering and Physical Sciences Research Council (EPSRC)
Quantum Communications Hub (EP/T001011/1).
Z. Ni is with the Centre for Secure Information Technologies (CSIT), Queens
University Belfast, UK and College of Electronic and Information Engineer-
ing, Nanjing University of Aeronautics and Astronautics, Nanjing. E-mail:
zni03@qub.ac.uk.
A. Khalid and M. O’Neill are with the Centre for Secure Information Technolo-
gies (CSIT), Queens University Belfast, UK. E-mail: {a.khalid}@qub.ac.uk,
m.oneill@ecit.qub.ac.uk.
D.-S. Kundi is with the PQShield, E-mail: {dur-e-
shahwar.kundi@pqshield.com.
W. Liu is with College of Electronic and Information Engineering, Nan-
jing University of Aeronautics and Astronautics, Nanjing, China. E-mail:
liuweiqiang@nuaa.edu.cn.

key Encryption and Key-encapsulation algorithms and on
July 5, 2022, NIST announced the first group of winners
from its six-year competition. CRYSTALS-Kyber was an-
nounced as the first PQC algorithm to be standardized as
a Key-encapsulation Mechanism (KEM) [11].

CRYSTALS-Kyber (hereafter called Kyber) [8] KEM is
based on the module learning with errors (M-LWE) prob-
lem, which is a lattice based hard problem. M-LWE is an
“algebraic” LWE with a tight formal mathematical security
reduction of the ring-LWE (R-LWE) problem [12]. Schemes
based on the M-LWE problem have a more elaborate al-
gebraic structure and consequently, higher security than
R-LWE schemes while achieving higher performance than
LWE schemes. In the M-LWE scheme, a parameter k is intro-
duced to restrict the dimensions of the public-key matrix A,
but all elements of the matrix are on the ring Zq[x]/(x

n+1).
Unlike the lattice-based scheme SABER [9], the polynomial
operations in Kyber can be computed using the Number
Theoretic Transform (NTT), which allows Kyber to gain a
high throughput performance. For round 2 of the NIST PQC
submission, the Kyber team adopted a technique to reduce
the parameter q of Kyber from 7, 681 to 3, 329, further
reducing the complexity of the modular reduction and area
resources.

High speed implementations of Kyber, as the first stan-
dardized KEM scheme, are desired for high-performance
applications. However, the current Kyber architecture’s
reuse of the main computational modules, influenced by
the storage resources for large amounts of polynomial
data, limits further speedups. To the best of the authors’
knowledge, this is the first work to present an inter- and
intra-module pipelined hardware accelerator for the IND-
Chosen-ciphertext Attack-2 (IND-CCA2) secure Kyber KEM
scheme that speeds up the operation time. The accelerator
comprises Key Generation, Encapsulation, and Decapsu-

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 2

lation modules for the three NIST specific security levels
1/3/5. The proposed architecture has high speed and high
Area-Time (AT) product efficiency. The major contributions
of this work are summarized as follows:

• Our Kyber accelerator aggressively exploits architec-
tural parallelisation via optimal inter-module and
intra-module pipelines. To balance the pipeline,
buffering is provided at the interface of several mod-
ules. The computation order of the modules is re-
arranged to facilitate an optimal usage of pipeline.

• A fully pipelined Radix-2-Multipath Delay Commuta-
tor (MDC)-NTT core is presented that multiplexes the
resources for both the NTT and inverse-NTT (INTT)
computations. By using different delay units, the bit
reversal operation in the NTT/INTT calculation is
completely eliminated. Due to pipelining, a single
NTT/INTT computation requires only 128 clock cy-
cles, once the pipeline is full.

• Resource utilization is reduced in terms of DSPs and
BRAMs by several strategies. The hardware for
NTT/INTT is shared. To balance the pipeline, buffer-
ing is done via FIFOs (restricting first in first out
data access) instead of BRAMs that allow more
flexible access but are more expensive in resource
consumption. The data input order of the FIFOs for
the NTT/INTT module has been organized so as not
to require the use of any BRAM in our proposed
architecture.

• Our proposed Kyber accelerator surpasses all pre-
viously reported FPGA based implementations with
comparable security levels in terms of execution time
and design efficiency (i.e., Area-Time (AT) product).
Compared to the state-of-the-art design, the pro-
posed architecture has a speedup of ×1.25-1.44 at the
three security levels on an Artix-7 and ×1.26-1.51 on
a Zynq-UltraSale+. In terms of hardware efficiency,
the proposed architecture improves the AT efficiency
by 33.3%, 26.9%, and 18.9% for the three different
security levels, respectively.

Intra module architectural pipelining in hardware de-
signs is not a novel acceleration technique. However, con-
sidering simultaneously the intra and the inter module
parallelization maximization and consequently balancing
and orchestrating the whole data buffering and data flow
based on that is not considered in previous research for ultra
high speed PQC hardware (especially Kyber).

This paper is organized as follows. Section II introduces
the Kyber protocol and NTT, and Section III presents the
proposed overall architecture including various modules. A
fast pipelined scheduling scheme and memory approaches
for the Kyber hardware architecture are presented in Section
IV. Implementation results and a comparison with previous
designs are provided in Section V, and Section VI concludes
our work.

2 PRELIMINARIES

In this section, the Kyber KEM is explained, describing the
main NTT construct in Kyber.

2.1 Kyber.v3 (NIST PQC Round 3)

Kyber KEM is the first lattice based PQC algorithm chosen
by NIST for standardisation. The relative balance between
performance and security can be directly adjusted by tweak-
ing the size of the matrix k; the choice of k varies between
2, 3, or 4 for security levels 1 (Kyber512), 3 (Kyber768) and
5 (Kyber1024), respectively. The noise parameter η is ad-
justed according to the security level. The IND-CCA2 secure
Kyber KEM, submitted to NIST PQC Round 3 referred to
as Kyber.CCA consists of three main steps: key generation
(Kyber.CCA.KeyGen), key encapsulation (Kyber.CCA.Enc),
and key decapsulation (Kyber.CCA.Dec). The prime used in
Kyber, p is changed from 7, 681 to 3, 329, which enables the
polynomial multiplication in Kyber to be accelerated using
NTT. The Kyber.CCA implementation is built on top of
the Kyber.CPA, using the Fujisaki-Okamoto transform [13].
Kyber.CPA comprises three components: key generation
(Kyber.CPA.KeyGen), encryption (Kyber.CPA.Enc), and de-
cryption (Kyber.CPA.Dec). A functional description of the
three constituent functions of Kyber.CPA are described as
follows, and for more details of Kyber, the reader is kindly
referred to [8].

Kyber.CPA.KeyGen(): Before a communication can be
established between Alice and Bob, the Key generation
function generates a public key pk and secret key sk. First,
a matrix A is generated directly in the NTT domain by
uniform sampling; vectors s and e are generated by binomial
distribution sampling. Then, the polynomial t̂ = Â◦NTT(s)
+ NTT(e) is computed, and the key pair is generated by
sk = (NTT(s)) and pk = (t̂, ρ), where ρ is from a random
number.

Kyber.CPA.Enc(pk,m, r): First, the matrix AT is gener-
ated in the NTT domain by uniform sampling, other vectors
generated are r, e1 and polynomial e2 by seed r. The vector
u and v are then computed by u = NTT−1(ÂT ◦r̂)+e1 and v
= NTT−1(t̂T ◦r̂)+e2 + Decompressq(Decode1(m), 1). Next,
u and v are compressed and encoded to produce c1 and c2.
Finally, the Ciphertext c = (c1||c2) is returned.

Kyber.CPA.Dec(sk, c): The vectors u and v from the
input c are compressed. Then the message m′ is cal-
culated from m′ = Encode1(Compressq(v−NTT−1(ŝT ◦
NTT(u), 1))). The m′ is returned as the output of the func-
tion.

Algo. 1, 2, and 3 show the Kyber.CCA.KeyGen,
Kyber.CCA.Enc and Kyber.CCA.Dec functions in Ky-
ber.CCA, respectively. Kyber.CCA.KeyGen() calls Ky-
ber.CPA.KeyGen() function to generate public key pk
and sk′. The secret key sk is then generated by
sk=(sk′||pk||H(pk)||z), where H represents SHA3-256. Ky-
ber.CCA.Enc() receives the public key pk and calls the
Kyber.CPA.Enc(pk, m, r) function to generate the ciphertext
c. The shared secret ss is then generated by SHAKE-256.
The output includes the ciphertext c and shared secret ss.
Kyber.CCA.Dec() takes the ciphertext c and the secret key sk
as inputs. First the Kyber.CPA.Enc(sk,c) function is called to
recover the message m, and then Kyber.CPA.Dec(pk,m′,r′)
computes the new ciphertext c′. If the comparison between
c and c′ returns a success, the encryption is successful.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 3

Algorithm 1 Kyber.CCA.KeyGen()
1: Output: Public key pk, Secret key sk
2: z = B32

3: (pk, sk′) := Kyber.CPA.KeyGen()
4: sk := (sk′||pk||H(pk)||z)
5: return (pk, sk)

Algorithm 2 Kyber.CCA.Enc(pk)
1: Input: Public key pk
2: Output: Ciphertext c, Shared key ss
3: m = B32

4: m =H(m)
5: (K̄, r) := G(m||H(pk))
6: c:= Kyber.CPA.Enc(pk,m, r)
7: ss := KDF(K̄||H(c))
8: return(c, ss)

Algorithm 3 Kyber.CCA.Dec(c, sk)
1: Input: Ciphertext c, Secret key sk
2: Output: Shared key ss
3: m′ := Kyber.CPA.Dec(sk,c)
4: (K̄ ′,r′) := G(m′||h)
5: c′ := Kyber.CPA.Enc(pk,m′,r′)
6: if c = c′ then
7: ss := KDF(K̄ ′||H(c))
8: else
9: ss := KDF(z||H(c))

10: end if
11: return ss

2.2 NTT in Kyber
The NTT algorithm is derived from the Fast Fourier Trans-
form (FFT) algorithm. Compared to standard schoolbook
polynomial multiplication, the complexity of the NTT al-
gorithm is reduced from O(n2) to O(nlogn). The choice of
modulus in the construction of Kyber satisfies the modulus
restriction for the NTT, and polynomial multiplication calcu-
lations in Kyber can be accelerated using NTT. Table 1 shows
the number of times the NTT/INTT (single NTT/INTT for
256 points) is needed during the key generation, encapsu-
lation and decapsulation functions in Kyber, under three
different security levels.

For NTT transformations, polynomials are expressed
in terms of a vector of coefficients, e.g., the polynomial
a(x) = a0 + a1x+ ...+ an−1x

n−1 + anx
n is represented as

a set of n points a(xi) = {(x0, y0), (x1, y1), ..., }. The NTT
computation can be substantially improved when using n
special points, i.e. n powers of the twiddle factor w.

TABLE 1
Number of Calls for The NTT/INTT Operation in The Key Generation,

Encapsulation and Decapsulation, For The Three Security Levels.

Functions Number of NTT calls
Security Levels: 1/3/5

Number of INTT calls
Security Levels: 1/3/5

Key Generation 4/6/8 0/0/0
Encapsulation 2/3/4 3/4/5
Decapsulation 4/6/8 4/5/6

Given a polynomial with n elements, k is an integer
ranging from 0 to n − 1, w is the square of ψ, where ψ
is the primitive root of unity in NTT, the NTT and INTT
transformations are shown as follows:

âm =
n−1∑
k=0

akψ
(2m+1)k =

n−1∑
k=0

(akψ
k)wmkmod q (1)

ak =
1

n

n−1∑
m=0

âmψ
−(2m+1)k = ψ−k · 1

n

n−1∑
m=0

âmw
−mkmod q

(2)

There are some differences between the NTT defined in
Kyber [8] and the classical NTT. In Kyber, the base field
Zq contains the primitive 256th root of unity but not the
primitive 512th root of unity. Let ζ = 17 be the first prim-
itive 256th root of unity modulo q. Therefore, the defining
polynomial x256 + 1 of R factors into 128 polynomials of
degree 2 modulo q. NTT in Kyber is defined in Eq. (3), br7 in
Eq. (3) means bit reversal of the unsigned 7-bit integer i and
k ∈ {0, 1}. In addition, when performing NTT calculations,
these two parity polynomials are calculated independently.

f̂2i+k =
127∑
j=0

f2i+kζ
(2br7i+1)j (3)

The polynomial multiplication NTT(f) ◦ NTT(g) = ĥ
mod x2 − ζ2br7i+1, where f̂ , ĝ, and ĥ are polynomials in
NTT representation, can be expressed as:

ĥ2i + ĥ2i+1x = f̂2iĝ2i + ζ2br7i+1f̂2i+1ĝ2i+1

+ x(f̂2if̂2i+1 + ĝ2iĝ2i+1) (4)

2.3 Related Work
Hardware based Kyber KEM accelerator designs have pri-
marily focused on the optimizations of its most computa-
tionally intensive constituent component, i.e., the polyno-
mial multiplication module (implemented via the NTT mod-
ule) [14]–[18]. Several recent works on Kyber focus on im-
proving the NTT memory access and modulo multiplication
units. In 2020, Chen et al. proposed a pipelined processor
for the vector of polynomials using two-column sequen-
tial storage and bit-inverted addressing access for Kyber
(p = 7, 681) [19]. Zhang et al. in 2021 proposed an effective
NTT structure for the prime in Round 2 (p = 3, 329) [15].
In the same year, Bisheh-Niasar et al. proposed the K2-
RED module algorithm based on the prime p = 3, 329 of
Kyber, and using four parallel-computing NTT butterfly
units to achieve a high-speed polynomial multiplication
accelerator [18]. Yaman et al. implemented different archi-
tectures of multiplication units by increasing the number of
butterfly units in the NTT based on a unified butterfly struc-
ture [16], with lightweight, balanced, and high-performance
hardware architectures, using 1, 4, and 16 parallel butterfly
units, respectively. Resistance to attacks on the NTT has also
received attention, with some work focusing on the error
detection capabilities of the NTT [20], [21]. These NTT-based
error detection architectures are compact and are suitable for
deeply embedded NTT architectures.

Several hardware-only complete Kyber implementations
have also been reported in the literature [18], [22]–[25]. The

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 4

first full hardware implementation of Kyber was presented
by Huang et al. in 2020 [22]. In 2021, Xing et al. proposed a
low-cost, high-performance Kyber processor on the Artix-7
platform [23]. This architecture utilized a predefined control
order table with short control codes for the scheduling of
various NTT processes and used different sized FIFOs for
data transmission/ reception to achieve good throughput
performance with limited computational resources. Bisheh-
Niasar et al. proposed a polynomial multiplier for Kyber
in 2021, using a 2×2 reconfigurable butterfly cell with pure
combinational logic referred to as K2-RED modulo subtrac-
tion cells [18]. The same reconfigurable butterfly module
was used in an instruction set processor for Kyber [24],
whose overall operating frequency was limited. In addition,
Dang et al. implemented three different lattice-based de-
signs of NIST Round 3 candidates (Kyber, SABER, NTRU)
in hardware [25] and achieved a 52.5%, 65.7%, 76.2% im-
provement in speed of Kyber at the three different security
levels compared to earlier high performance Kyber imple-
mentations [23]. In addition, some Kyber accelerator designs
implemented on other devices are also worthy of reference.
In 2020, Viet Ba Dang et al. summarized the advantages of
SW/HW joint designs of the candidates in the second round
of NIST PQC [26]. Software-hardware co-design offers a
rapid deployment of cryptographic algorithms and can re-
sult in faster performance compared to pure software de-
sign. However, the hardware only accelerators can optimize
each component within the accelerator, generally achieving
superior throughput performance. In 2021, Bisheh et al.
optimized the Kyber accelerator and NTT unit on an ASIC,
which greatly reduced the calculation speed of the Kyber
accelerator [27]. In the same year, the Kyber512 accelerator

designed by Sanal et al. on ARM Cortex-A processor carried
out several optimizations for NTT, noise sampling, improve
the speed of the accelerator [28].

HPKA (the proposed high-performance Kyber accelera-
tor) is designed to improve the AT-efficiency of CRYSTALS-
Kyber FPGA based hardware implementations. While coun-
termeasures against side channel analysis (SCA) attacks,
more generally including fault attacks and power attacks,
are not currently incorporated in HPKA, all of the com-
ponents in our design, including of both the server-side
and client-side for all the three security levels, are constant
time in execution, and are consequently resistant against the
timing attacks.

3 THE PROPOSED KYBER HARDWARE ACCELER-
ATOR

The proposed Kyber accelerator comprises server and client
side implementations. The server-side accelerator includes
the key generation and decapsulation functions while the
client-side implementation consists of a sub-set of compo-
nents, performing only the key encapsulation function. An
overall design of the server-side Kyber accelerator is shown
in Fig. 1. Our primary goal is to use pipelining to the maxi-
mum extent possible to reduce latency in all three functions.
The architecture is only multiplexed when considering that
separate modules would significantly reduce the hardware
efficiency of the accelerator, e.g. NTT/INTT units. The accel-
erator comprises a controller, computational units and stor-
age units. The storage unit consists of multiple FIFOs and
ROMs (in the NTT/INTT and polynomial multiplication
unit). In Fig. 1, the black, green, and purple colors indicate
the data flow for Kyber.CPA.KeyGen, Kyber.CPA.Dec and

ss

36

48

Sampling Unit

Binomial

Distribution

 Sampling (2)

Uniform Sampling

SHA3-512

SHA3-256

SHAKE-256
SHAKE-128

Hash

Input

FIFO

HASH

rr

FIFO1

FIFO2

e1

e2e2

First StageFirst Stage

Sixth StageSixth Stage

Seventh StageSeventh Stage

MDC-NTT/INTT

First Stage

Sixth Stage

Seventh Stage

MDC-NTT/INTT FIFOSP1FIFOSP1

FIFOEP1

FIFOEP2

FIFOSP2FIFOSP2

FIFOSP1

FIFOEP1

FIFOEP2

FIFOSP2

sss

ee

Keccak-

f [1600]

Keccak-

f [1600]

Hash

Output

sss

PWM0 PWM1

FIFOADD ADDs1

(4)

PWM0 PWM1

FIFOADD ADDs1

(4)

rrrAA

sss

ttt

pkpk

Decode12

sTsTsT

uuu

uu

Encode12
pkpk

Decodedv

Decompressq

c

FIFOA

Padding

Datapkpk mmm

FIFO3

FIFO4

FIFO5

NTT

NTT

INTT

Hash

Results

ATAT

000

tTtTtT

FIFOpk

INTT

Encodedv

Compressq

u/vu/v

Encode1

c`c`

FIFOv

Controller
cc

Polynomial

Multiplication

vvv

s/es/e

pkpk

vvv

FIFOe2

FIFOev

ADDs2

(2)

Hash Module

256

e1 Second StageSecond Stage

Fig. 1. The overall server-side Kyber768 architecture. The black, green, and purple colored arrows indicate the data flow for Kyber.CPA.KeyGen,
Kyber.CPA.Dec and Kyber.CPA.Enc functions, respectively. The dashed line in the figure is the data flow after the solid line of the same color is
complete.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 5

FIFO

Register

(1344-bit)

Hashinit

Keccak

Core

Hashin

Absorb

<<<
Hashout

Input Stage Keccak Stage

Output Stage

64

64

1344

FIFO

Register

(1344-bit)

Hashinit

Keccak

Core

Hashin

Absorb

<<<
Hashout

Input Stage Keccak Stage

Output Stage

64

64

1344

Fig. 2. Hash module comprising of input/ output stages and a Keccak
core.

Kyber.CPA.Enc functions, respectively. The dashed lines
indicate the data flow through INTT, which is computed
after the solid line of the same color.

In our HPKA, four parallel data blocks (totalling 48-bits
for 12-bit blocks) are simultaneously processed. Therefore,
two Point-wise Multiplication (PWM) units and four groups
of parallel adders (ADDs1) are used after the NTT compu-
tation. A finite state machine based controller controls the
execution of the hash module, until enough random samples
are generated. Then the Kyber accelerator enters a pipelined
state for computational units until the hash function compu-
tation is needed again. The controller assembles the padding
for the hash module, based on the hash function needed
for the current state and feeds it into the hash module. In
addition, the controller includes four 256-bit registers for
storing and distributing the results generated by the hash
module. There are several differences in the accelerator’s
execution for the three different security levels of Kyber.
For Kyber512, the centered-3 binomial distribution (CBD3)
sampling module is added to the overall architecture. For
Kyber1024, the compress/ decompress modules differ from
the other two security levels. Various modules are shared
between the key generation and decapsulation functions on
the server-side for area minimization.

In the rest of this section, we present the main mod-
ules used in the Kyber accelerator, i.e., the hash module,
the sampling module, the NTT/INTT module, the PWM
module, and the compression and encoding modules. All
descriptions are based on the Kyber768 implementation
(e.g., FIFO sizes, k = 3 etc.), while differences for Kyber512
and Kyber1024 are mentioned.

3.1 SHA-3 Based Hash Module

The hash module generates the random distribution sam-
ples to the sampling modules, to provide the coefficients of
the noise polynomial and consequently can become the po-
tential computational bottle-neck of the design. Hence con-
sideration is given to match the Hash module throughput
with other modules. Our HPKA uses one Keccak core [29]
that is implemented serially for different SHA-3 functions.
The Keccak core needs significant hardware resources, e.g.,
54.2% of the total LUTs used in the Kyber design [23].

Kyber uses four different SHA-3 functions, i.e., SHA3-
256, SHA3-512, SHAKE128, and SHAKE256. While the Kec-
cak core computations remain identical for these functions,

the padding method differs for all of them. The maximum
size of data output in a single computation is also different,
i.e., 1,344, 1,088 and 576 bits for SHA3-128, SHA3-256, and
SHA3-512, respectively.

The hash module receives up to 1,344-bits of data, in
64-bit chunks (in 21 cycles). This data is fed to the Keccak
core, after the controller has added the SHA-3 function
appropriate padding, e.g., the SHA3-512 function takes 64-
bit data inputs in 9 cycles and in the subsequent 12 cycles
64-bit ‘0’ values are padded to get 1,344-bits of data. The
Hash module defaults to the squeeze stage from the second
round of computation and automatically feeds the results of
the first round into the Keccak core for a further 24 rounds of
computations; However the Hash module also contains an
absorb signal for cases when the amount of data is greater
than the maximum amount of data that can be carried in a
single round.

The architecture of the Hash module comprises the in-
put/output stages and a Keccak core, as shown in Fig. 2.
These three stages are independently buffered and operate
in a fully pipelined manner ensuring substantial accelera-
tion. It has a 64×64 FIFO to cache-in large volumes of input
data. The FIFO output is fed as 64-bit words into the 1,344-
bit shift register in big-endian format (in 21 cycles). The
Keccak core takes the data and applies 24 rounds of iterative
operations on it. The internal state of the Keccak core is
1,600 bits in length, out of which the 1,344 most significant
bits (MSBs) are taken for data output or absorbing after
the 24 round calculations. At the output stage of the Hash
module, the data is loaded into the 256-bit registers in the
controller, 64-bit per cycle. Although 36-bit or 48-bit inputs
are generally used in the sampling module in the proposed
architecture, going from high-bit-width data to low-bit-
width data, i.e., 48/32-bit will not cause discontinuities for
input to the sampling module. For the absorbing stage, in
the proposed architecture, the 1,344 MSBs of the output
from the Hash module are selected to be XORed with the
subsequent input.

3.2 Sampling of Noise
Kyber uses two types of sampling, namely uniform distri-
bution sampling (Parse) and central binomial distribution

(b)

64To48

Buf

fer

FIFOAMatrix

64

48

12

48

48

[23:0]

[23:16]

[11:8]<<8

[15:12]

[7:0]<<4 +

+

>p?

0

12

12

>p?>p?

[23:0]

[23:16]

[11:8]<<8

[15:12]

[7:0]<<4 +

+

>p?

0

12

12

>p?Parse

[23:0]

[23:16]

[11:8]<<8

[15:12]

[7:0]<<4 +

+

>p?

0

12

12

>p?Parse

64To48
D

CBD3

48

CBD2

32

32

48 48 48 48
Odd Even Odd Even

(a) (c)

16 32 48 0

Output

Temp

Input

16 32 48 0

Output

Temp

Input

FIFOGETA

12

12

12

Parse

Parse

64 FIFOHASHO

(b)

64To48

Buf

fer

FIFOAMatrix

64

48

12

48

48

[23:0]

[23:16]

[11:8]<<8

[15:12]

[7:0]<<4 +

+

>p?

0

12

12

>p?Parse

64To48
D

CBD3

48

CBD2

32

32

48 48 48 48
Odd Even Odd Even

(a) (c)

16 32 48 0

Output

Temp

Input

FIFOGETA

12

12

12

Parse

Parse

64 FIFOHASHO

16

Fig. 3. Sampling modules: (a) Parse module, (b) CBDη module, and
(c) The output stage of FIFOGETA and FIFOHASHO .

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 6

Switch

ai

ai+n/2

ROM

Butterfly Unit (BF2)

32D

1D C2

First Stage

32D

1D BF2

ROM

Second Stage

16D

2D

16D

2D C2 BF2BF2

ROM

1D

32D

1D

32D C2

Sixth Stage

1D

32D

ai+1

Seventh Stage

BF2BF2

Fig. 4. The switch Radix-2 multipath delay commutator (MDC) NTT/INTT pipelined architecture with seven stages.

sampling (CBDη, η = 2, 3). All three security levels of Ky-
ber need Parse to get polyvector matrix Â (as well as ÂT).
For Kyber512, two different CBD modules (CBD2, CBD3)
are used, the other two security levels use only CBD2.
Fig. 3(a) and (b) represent the Parse and CBDη modules,
respectively, where Fig. 3(c) shows the state of the FIFO
when a 64-bit to 48-bit data conversion is performed.

While the hash module takes 21 clock cycles to output
1,344-bit of data (64-bit per cycle) and a single computa-
tion of Keccak takes 24 cycles, there is always meant to
be a waiting interval even if pipelining is employed. The
sampled data is stored in 64 × 32 FIFO called FIFOGETA,
converted to 48 bits, and fed into the sampling module. For
the 64To48 module, as shown in Fig.3 (c), 64-bit data blocks
are fed three times every four cycles. The data is internally
registered to enable a consecutive stream of 48-bit outputs in
4 consecutive cycles. The results of Parse do not need to be
stored and can be multiplied directly with the NTT results
at output. As the results of Parse greater than 3,329 are
discarded, a 48 × 256 FIFO is required, called FIFOAMatrix,
to filter out the Parse data Â. For each set of matrix Â
data, it is packaged into 64 48-bit data outputs (64 × 4) for
subsequent polynomial multiplication.

The CBD2 and CBD3 modules require 32 and 48 bits
of data, respectively, to generate eight output results. Data
output from the Hash module is stored in a 64 × 32 FIFO
called FIFOHASHO. The CBD3 requires a 64To48 module
before sampling whileCBD2 does not need this conversion.
The FIFOHASHO pops out 64-bits of data once in alternate
clock cycles. The upper and lower halves of this data (32 bits
each) are processed in two consecutive cycles.

3.3 NTT/INTT Module

The polynomial multiplication is both a resource hungry
and a computational bottle neck in a lattice based cryp-
tography design. The Kyber parameters were tweaked to
be more ‘NTT-friendly’ in the 3rd round submission to
the NIST PQC and the use of NTT/INTT for polynomial
multiplication is now part of Kyber specifications [8]. For
polynomial multiplication via NTT, first the NTT of the
multiplicand and multiplier polynomials is computed, a
multiplication of the two vectors is carried out and then
the inverse NTT (INTT) is computed to complete the poly-
nomial multiplication. Since NTT/INTT calculations are not
simultaneously performed, the same architecture is reused
to minimize resource consumption. To balance area and
speed and match the throughput of data in the subsequent

modules, the Radix-2 multipath delay commutator (MDC)-
based architecture turns out to be the optimal choice [30].

The proposed switch-MDC-NTT (S-NTT) architecture is
shown in Fig. 4. Similar to previous research [31], [32], the
S-NTT consists of only seven general processing units. The
first six general processing units contain a radix-2 butterfly
unit (BF2), a modulo multiplier, a delay unit (D), and a two-
channel commutator (C2), while the 7th general processing
unit only contains a BF2 unit and a delay unit. The pro-
posed MDC architecture employs pipelining, significantly
reducing the computation time by enabling simultaneous
execution of multiple consecutive NTT/INTT calculations.
The BF2 modules in the processing unit are floating com-
binations, this is to accommodate the different order of
calculations within the BF in NTT and INTT. C2 is used to
select the appropriate data for the next level. For example,
in NTT, the first stage output coefficient pair is (a0, a64),
then (a64, a65, ..., a127) is deferred by 32D. At the beginning
of the second stage, (a0, a1, ..., a31) is deferred by 32D to
obtain the coefficient pair (a0, a32), at which point (a64, a65,
..., a95) is deferred by 32D. After the coefficient pair (a31,
a63), the coefficient pair changes to (a64, a96). The internal
architecture of the modulo multipliers follows Algorithm
4 in [23], which uses an optimized Barrett reduction [33]
algorithm with multiple partitioning and addition opera-
tions. The traditional Barrett algorithm uses two constant
multiplications and a shift instead of a division operation.
In Kyber, it is obvious that the use of shifts for constant
multiplication will be more resource and computation time
efficient due to the shorter multiplication bit width. The
modulo multiplier is pipelined and requires six cycles for
completion, the first two perform the 12-bit multiplication
and the last four perform the reduction operation.

The improved architecture eliminates the pre-processing
and post-processing modulo multiplier units compared to
the architecture of [30], but adds a modulo multiplier unit
in the seventh stage, so that the computation time is similar
to [30] (the prime in [30] is 7,681). However, despite the ad-
dition of a Div2 unit in each stage, the module contains only
one adder, which is insignificant compared to the reduced
number of four multipliers, so the optimised NTT/INTT
unit has a lower hardware overhead. In addition, the rota-
tion factors in the INTT are all stored as ζ/2 to eliminate the
Div2 unit for half of the path.

Cooley-Tukey (CT) is a common structure for NTT com-
putation which allows the NTT to have natural order inputs
and bit-reversed order outputs, while Gentleman-Sande
(GS) used for INTT does the opposite. As shown in Fig. 5,

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 7

CT-FFT for NTT

Input in Natural Order

Point-wise Multiplication

Input in Bit-reversed Order

Input in Bit-reversed Order

GS-FFT for INTT

Output in Natural Order

Fig. 5. NTT and INTT are computed using different flow graph-topologies
to avoid bit reversal operation.

using different flow graph-topologies in NTT and INTT can
completely avoid bit reversal operations in polynomial mul-
tiplication calculations. Thus, for NTT/INTT calculations,
the CT and GS butterfly structures correspond to NTT and
INTT calculations, respectively. The data flow of NTT/INTT
is the same in the proposed architecture. In order to ensure
that the output order of INTT is the natural order, the INTT
in S-NTT is input in a bit-reversed order. Thus the result
obtained from the polynomial multiplier can be directly
input into the INTT in order. The calculation units in S-NTT,
such as BF2 and modular multiplier, are all reused, but the
delay unit (D) in each stage cannot be reused due to the
different input order. In addition, the 12-bit multiplication in
NTT/INTT uses two 6×12 multipliers composed of LUTs to
further reduce resources. The bit-inverted order of the INTT
input is used in Kyber, therefore for INTT, a independent
delay unit is used, as shown in the blue line and block
diagram in Fig. 4. The result of NTT/INTT is sequential
data separated by parity and even, no BRAM unit is used
to store data in the input and output of S-NTT. The start-
up time for the very first NTT and INTT calculation (when
the pipeline is not full) is 119 cycles. The cycle time for a
single 256-point-wise calculation after full pipelining is 128.
Hence the first NTT/INTT computation requires 119+128
cycles but the subsequent NTT/INTT computations require
only 128 cycles.

3.4 Point-wise Multiplications (PWMs) and ADDs
The point-wise multiplication (PWM) in Kyber is not as
straightforward as required in Ring-LWE. It requires differ-
ent computations for even and odd values of the point-wise

sum0

sum1

12

12

13
12

f2i+1f2i+1

g2i+1g2i+1

12 ×12 Multi

12 ×13 Multi

6

24

LSB

MSB

12

12

18
6

12 ×12 Multi

f2if2i

g2ig2i
LSB

MSB

12

12

18
6

12 ×12 Multi

f2i

g2i 6

24

LSB

MSB

12

12

18
6

12 ×12 Multi

f2i

g2i

CLK

BR

BR

Shift

ζ
2br(i)+1

DSP

Shift

BR
h2ih2i12

12

h2i+1h2i+1
sum0

sum1

12

12

13
12

f2i+1

g2i+1

12 ×12 Multi

12 ×13 Multi

6

24

LSB

MSB

12

12

18
6

12 ×12 Multi

f2i

g2i

CLK

BR

BR

Shift

ζ
2br(i)+1

DSP

Shift

BR
h2i12

12

h2i+1

CLK CLK CLK

CLK

Fig. 6. The piplined point-wise multiplication modules.

multiplication product. For Kyber, assume that polynomials
f̂ and ĝ are multiplied, and the result is ĥ, root of unity ζ ,
then an optimized PWM calculation formula based on the
Karatsuba algorithm from Eq.(4) was proposed in 2020 [23]
as follows:

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1 · ζ2br(i)+1 (5)

ĥ2i+1 = (f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1)− (f̂2iĝ2i + f̂2i+1ĝ2i+1)
(6)

Thus, the result of h2i comes from the sum of f̂2iĝ2i
and f̂2i+1ĝ2i+1 · ζ2br(i)+1 and f̂2i+1ĝ2i+1 · ζ2br(i)+1 comes
from multiplying three 12-bit data (ζ2br(i)+1 can be stored
in ROM by precomputation). If f̂2i+1ĝ2i+1 is not reduced
in time, it will cause the bit width of the addition to
increase. Also, note that the results of f̂2iĝ2i and f̂2i+1ĝ2i+1

are directly usable in the calculation of ĥ2i+1, and only
one additional multiplication is needed when calculating
ĥ2i+1. Since the pipeline length has minimal impact on the
overall design calculation time, the proposed PWM design
matches the frequency of the other modules. As shown in
Fig. 6, the PWM module requires eleven cycles to provide
a full pipeline operation. In the first two cycles two 12-bit
multiplications and one 13×12 bit multiplication is carried
out. sum0 and sum1 in Fig. 6 are derived from f̂2i + f̂2i+1

and ĝ2i + ĝ2i+1, respectively; However sum1 is reduced to
modulo p to ensure that sum0 × sum1 does not exceed
25 bits first. During the calculation of h2i+1 if the result
becomes negative, 24′hd01000 is added to ensure that the
data in the input of Barrett reduction (BR) is positive. In the
3rd cycle, the result of ĥ2i+1 is reduced to 12-bit using the
Barrett reduction (BR) module, which is the same as the BR
used in the NTT module. Thereafter, ĥ2i+1 passes through
a shift register until ĥ2i is output at the same time. After
f̂2i+1ĝ2i+1 is output from the BR module, the 12-bit result is
calculated with the value of ζ , added to f̂2iĝ2i and the final
result is reduced in one pass in the BR module.

Two PWM units are used in the overall design, allowing
simultaneous calculation of the four polynomial coefficients.
A 24 × 64 distributed ROM is pre-computed to provide ζ
values to two channels of PWMs (ζ[23 : 12] and ζ[11 : 0]).
Four 12-bit adders with three input (ADDs1) units are used
in the design for the adder. This unit will perform the final
addition for the 256 point-wise polynomial multiplication.

3.5 Storage: FIFOs and ROMs

The polynomials in lattice based cryptography schemes are
large in dimension with low bit-width components, e.g., a
single polynomial of Kyber has 256 elements, each of 12-
bit size. High speed simultaneous access to several low bit-
width data elements is critical to ensure high throughput
performance but also dictates the amount of on-chip re-
sources. The FPGA storage structures include Look-up-table
RAM (LUTRAM) and Block RAMs (BRAMs). While BRAMs
are dual ported, allowing fast and dual read/write access,
they can be under-utilized due to their limited width-depth
configurations, resulting in a waste of resources. FIFOs
instead are much more resource efficient in comparison and
can be custom sized as needed. However, they only access

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 8

data in the order that is pushed into the FIFO. There are dis-
tributed ROMs and two types of FIFOs in our Kyber accel-
erator. All pre-computed data in the design uses distributed
ROM, e.g., twiddle factors in NTT/INTT and PWMs. Two
types of FIFOs are used in the proposed architecture, one for
buffering large amounts of data that cannot be computed
on-the-fly. The depth in this type of FIFO does not need to
match the total amount of data but just enough to meet the
current pipeline speed. Another type of FIFO is used for
the complete storage of data. Since the FIFO restricts first
in first out access only, for NTT computations, the order of
input data is adjusted before it is input into the FIFOs. In a
fully pipelined architecture, the data is continuously pushed
forward. Therefore, in many cases the computation modules
can also be treated as a kind of storage module, which saves
a lot of storage units. Benefiting from the ability of INTT
to directly use bit-reversal sequential inputs and to output
data in a natural order, the proposed architecture does not
use BRAM to store data at all.

3.6 Decode Modules

In Kyber KEM, data in the Kyber.CPA function must be
compressed before encoding. Compression is relatively easy
to implement, with the quotient being output by shifting the
polynomial addition and reducing. Decompression does not
require a reduction module, but all the data is multiplied by
⌊3, 329/2⌋, using a constant multiplier composed of LUTs to
reduce DSP consumption. The encode module takes data
input from the INTT output. Various encoding modules
are obtained by shifting the input data and performing
arithmetic operations. The bit width of the encoded output
depends on the need of subsequent calculations. For exam-
ple, the encoded output of v and u is 64 bits per cycle, and
the m output in Kyber.CPA.Dec generates 8 bits per cycle.

4040

4040

4040

4040

4040

CLK 1

CLK 2

CLK 3

CLK 4

CLK 5

CLK 6

244040

4848

8

3232

4040 565640 56

CLK 7

CLK 8

16

4040 4040 40

40

40

40

40

40

CLK 1

CLK 2

CLK 3

CLK 4

CLK 5

CLK 6

2440

48

8

32

40 56

CLK 7

CLK 8

16

40 40

(a)

INPUT

CNT

FLAG

INPUT

0 8 16 5 13 10 18

OUTPUT

(b)

40

40

40

40

40

CLK 1

CLK 2

CLK 3

CLK 4

CLK 5

CLK 6

2440

48

8

32

40 56

CLK 7

CLK 8

16

40 40

(a)

INPUT

CNT

FLAG

INPUT

0 8 16 5 13 10 18

OUTPUT

(b)

Fig. 7. Decodedv in different security levels. (a) Decodedv of Kyber512
and Kyber768. (b) Decodedv of Kyber1024.

The Decode module is more complex, with different
methods for the v vector and u polyvector for different
security levels in Decodedv . The same Decode method is

used in Kyber512 and Kyber768, and it takes only eight
cycles to complete a round of computation for v and u
with 64 bit inputs. Fig. 7(a) shows the computation flow
for the u decoding under Kyber512 and Kyber768. For the
u polyvector, a single cycle produces 48 bits of data after
processing 40 bits (4 groups) of data, and the 8 data blocks
both generated in two consecutive cycles are separated by
odd and even positions and fed into the FIFO in the same
way as the sampled data. Fig. 7(a) represents the data
processed in the current cycle, where the white block is the
40-bit output data, the grey block is the data that cannot
be output in the current cycle and needs to be processed
in the next cycle, and the red block represents the data
from the previous cycle. In addition, the grey block of the
Input signal represents read data blocks from the FIFO in
the current cycle. Thus, five 64-bit data blocks are fetched in
eight consecutive cycles, generating the 32 polyvector data
of u.

The decoding in Kyber1024 is more complicated than the
other two security levels due to the irregularity of individual
data block (11 bits) in the decoding of the u polyvector. If the
shifting method in Kyber768 is followed in Kyber1024, the
generated single-round states reach more than 25. Therefore,
an adaptive feedback (AF) scheme is proposed using the
output control of the FIFO by the Decode module. In the AF
scheme, the output of the FIFO is controlled by the decode
module, whose internal counter is constantly updated with
the current amount of unprocessed data to guide the output
data and the FIFO read data. Each time the decode module
receives 64 bits of data, the internal counter is increased by
8. As shown in Fig. 7(b), in the case of the decode u vector,
when the counter is greater than 11 (88 bits), the feedback
FIFO pauses to take out the data and uses the 88 bits of
data to generate eight u coefficients in the subsequent two
cycles. For decoding the v vector coefficients, the feedback is
performed and calculated when the counter is greater than
5.

4 DATA FLOW IN THE PROPOSED KYBER ACCEL-
ERATOR

In order to ensure simultaneous execution of various mod-
ules of the Kyber accelerator, its modules are designed to
support pipelining. The modules in Kyber vary greatly in
terms of their input/output word sizes and speeds and
need to be thoughtfully scheduled so that data flow does
not halt. This is ensured by using storage units whenever
needed. For example, in CBD2, a single 36 bit input results
in eight 12-bit polynomial coefficients, while in the NTT
module, only 24 bits of data are input and 24 bits are
output in a single clock cycle. This section walks through the
primary data flow for the main modules of Kyber.CPA.Enc
(Kyber768) as an example, as shown in Fig. 8. The pri-
mary data flow consists of the Hash module, NTT/INTT
module, PWM modules, and the data compression module.
All cycles represent the total cycles of the current module
calculation, except for the NTT/INTT, which represent the
cycles needed to write the output data.

The Hash function computation time is critical to the
data sampling time. For example, SHA3-256 takes 21 cycles
to receive input data, 24 cycles for the internal Keccak core

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 9

r[0]r[0]Hash

7070Cycles 5353 5353

e1[0]e1[0]

5353

e1[1]e1[1]

5353

e1[2]e1[2]

5353

AT
00AT
00

127127 115115 115115 115115 115115

e2e2

5353 115115 115115 115115 115115

Comp.(v)Comp.(v) Comp.(u0)Comp.(u0) Comp.(u1)Comp.(u1)

128128 128128 128128

Comp.(u2)Comp.(u2)

128128

Compress

Cycles

PWM t0r[0]t0r[0]

6464Cycles

t1r[1]t1r[1]

6464

t2r[2]t2r[2]

6464

A00r[0]

6464

A00r[0]

64 646464 646464 646464 646464 646464 646464 646464 64646464 64 64

A00r[0]

64 64 64 64 64 64 64 64 64

r

r[0] r[1] r[2]

NTT NTT(r[0])NTT(r[0]) NTT(r[1])NTT(r[1]) NTT(r[2])NTT(r[2])

128128 128128 128128Cycles 128128 128128 128128 128128

r[1] r[2]

INTT(A0 r) INTT(A1 r) INTT(A2 r)INTT(t r)

A01r[1]A01r[1] A02r[2]A02r[2] A10r[0] A11r[1] A12r[2] A20r[0] A21r[1] A22r[2]

r[0]Hash

70Cycles 53 53

e1[0]

53

e1[1]

53

e1[2]

53

AT
00

127 115 115 115 115

e2

53 115 115 115 115

Comp.(v) Comp.(u0) Comp.(u1)

128 128 128

Comp.(u2)

128

Compress

Cycles

PWM t0r[0]

64Cycles

t1r[1]

64

t2r[2]

64

A00r[0]

64 64 64 64 64 64 64 64 64

r

r[0] r[1] r[2]

NTT NTT(r[0]) NTT(r[1]) NTT(r[2])

128 128 128Cycles 128 128 128 128

r[1] r[2]

INTT(A0 r) INTT(A1 r) INTT(A2 r)INTT(t r)

A01r[1] A02r[2] A10r[0] A11r[1] A12r[2] A20r[0] A21r[1] A22r[2]

AT
01 AT

02 AT
10 AT

11 AT
12 AT

20 AT
21 AT

22

T

T T TT T
T

T T T T T T

T T T T

After

Polynomial

Addition

r[0]Hash

70Cycles 53 53

e1[0]

53

e1[1]

53

e1[2]

53

AT
00

127 115 115 115 115

e2

53 115 115 115 115

Comp.(v) Comp.(u0) Comp.(u1)

128 128 128

Comp.(u2)

128

Compress

Cycles

PWM t0r[0]

64Cycles

t1r[1]

64

t2r[2]

64

A00r[0]

64 64 64 64 64 64 64 64 64

r

r[0] r[1] r[2]

NTT NTT(r[0]) NTT(r[1]) NTT(r[2])

128 128 128Cycles 128 128 128 128

r[1] r[2]

INTT(A0 r) INTT(A1 r) INTT(A2 r)INTT(t r)

A01r[1] A02r[2] A10r[0] A11r[1] A12r[2] A20r[0] A21r[1] A22r[2]

AT
01 AT

02 AT
10 AT

11 AT
12 AT

20 AT
21 AT

22

T

T T TT T
T

T T T T T T

T T T T

After

Polynomial

Addition

Fig. 8. Execution order and clock cycles for main modules in Kyber.CPA.Enc of Kyber768.

computations, and up to 17 cycles (64-bit data each) can be
output in one squeeze. Adding the time for data to pass
through modules, a total of 70 cycles is needed for one hash
calculation. However, the overhead of input and out can be
made negligible by pipelining. In the Hash module, cycles
for r[0] are computed from the start of data input, and the
70 cycles include the output stage of the previous parallel
computation of the Hash module. The input data from r[1]
is fed into the Hash module simultaneously with r[0] gener-
ating the output. Thus the computation cycles of the single
Hash module are reduced to 53 cycles for CBD2 sampling.
To ensure that the matrix ÂT gets the 256 data points from
the sampling module, the Hash module calculates SHAKE-
128 by squeezing four times. Due to pipelining, the single
calculation cycle is only 115 cycles.

The NTT/INTT computation is also pipelined, gener-
ating a complete set of 256 coefficients every 128 cycles.
During NTT computation, the first 64 cycles of data for
each output set are delayed by 64 cycles of output using
shift registers to meet t̂T starting at the NTT output stage.
The compress module takes the polynomial addition output
after INTT calculation and generates a pair of data in a
single pass, taking 512 cycles. The data flow of Fig. 8
consumes 1.9k cycles in total.

4.1 Primary Data Flow in Kyber768

The primary data flow starts with the sampling modules. A
portion of the data generated by the Hash module is stored
in four 256-bit registers for re-entry into the Hash module,
while the rest is sampled data and is fed into the uniform
Parse and binomial sampling CBD2/3. A 64-bit data is
fed into the Parse sampler every cycle, but the polyvector
matrix ÂT samples are not immediately generated. The 64-
bit data is first input into a 64 × 32 FIFOGETA for caching
before sampling. To match the 48-bit input per cycle of
Parse sampling, the FIFOGETA outputs 64 bits of data three
times in four consecutive cycles. The 64To48 module reads
192 bits of data every four cycles and splits and reassembles
it into 48 bit blocks per cycle. Each sampling cycle of Parse
produces four results, but not all are valid. This uncertainty
in the generation of the matrix ÂT can cause difficulties
in matching data in subsequent polynomial multiplications.

FIFO1 Write

FIFO2 Write

FIFO1 Read

FIFO2 Read

32 16

0
2
4
6

248
250
252
254

1
3
5
7

249
251
253
255

Shift Register

0
2
4
6

120
122
124
126

121
123
125
127

1
3
5
7

0
2
4
6

120
122
124
126

121
123
125
127

1
3
5
7

128
130
132
134

248
250
252
254

128
130
132
134

248
250
252
254

129
131
133
135

129
131
133
135

249
251
253
255

32 16

0
2
4
6

248
250
252
254

1
3
5
7

249
251
253
255

Shift Register

0
2
4
6

120
122
124
126

121
123
125
127

1
3
5
7

0
2
4
6

120
122
124
126

121
123
125
127

1
3
5
7

128
130
132
134

248
250
252
254

128
130
132
134

248
250
252
254

129
131
133
135

129
131
133
135

249
251
253
255

11

11

11

11

11

11

248
249

254
255

0
1

6
7

CBD2 Output
0
1

6
7

CBD2 Output
248
249

254
255

0
1

6
7

CBD2 Output

248
249

254
255

0
1

6
7

CBD2 Output
0
1

6
7

CBD2 Output
248
249

254
255

0
1

6
7

CBD2 Output

FIFO1 Write

FIFO2 Write

FIFO1 Read

FIFO2 Read

32 16

0
2
4
6

248
250
252
254

1
3
5
7

249
251
253
255

Shift Register

0
2
4
6

120
122
124
126

121
123
125
127

1
3
5
7

128
130
132
134

248
250
252
254

129
131
133
135

249
251
253
255

32 16

0
2
4
6

248
250
252
254

1
3
5
7

249
251
253
255

Shift Register

0
2
4
6

120
122
124
126

121
123
125
127

1
3
5
7

128
130
132
134

248
250
252
254

129
131
133
135

249
251
253
255

1

1

1

1

1

1

248
249

254
255

0
1

6
7

CBD2 Output

248
249

254
255

0
1

6
7

CBD2 Output

Fig. 9. The access process of CBD2 and FIFOs (FIFO1 and FIFO2). 8
data blocks per cycle in CBD output and 4 data blocks per cycle input
into FIFO1 and FIFO2.

The 12 bits of valid results by Parse are stitched together
as 48 bits and fed into a 48 × 256 FIFOAMatrix. Due to the
late timing of the output of r̂ after the NTT calculation, the
FIFOAMatrix waits for the complete output of r̂ from the
NTT module before generating the output data to ensure
that the polynomial multiplication of t̂T does not conflict
with matrix ÂT in the Kyber.CPA.Enc calculation.

The binomial distribution sampler comprises CBD2 and
CBD3 that take 32-bit and 48-bit inputs every cycle, re-
spectively, to generate 8 results. The NTT module takes the
CBD2 output as odd/ even samples of 256 data points
separately, and only a pair of data inputs is taken in each
cycle. Hence the data generated by a single CBD2 cycle (8
× 12 bits) is much more than what the NTT module can
accommodate. Therefore, the data of r at the odd positions
from CBD2/3 is shifted back by 16 cycles, after which two
FIFOs (FIFO1 and FIFO2, 48 × 128 FIFO) are utilized to store
the sampling data. e1 and e2 do not need to perform a NTT
calculation, the data output from CBD2 is directly stored in
FIFO1, FIFO2 and FIFOe2 (96 × 32 FIFO).

As shown in Fig. 9, four consecutive even position data
blocks in the order {0, 2, 4, 6} are combined and written

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 10

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

64

r[0]
r[1] r[2]

A00A00

64

TA00

64

T A01A01

64

TA01

64

T A02A02

64

TA02

64

T

0

2

252

254

0

2

252

254

1

3

253

255

1

3

253

255

0

2

252

254

0

2

252

254

1

3

253

255

1

3

253

255

0

2

252

254

0

2

252

254

1

3

253

255

1

3

253

255

0

2

252

254

0

2

252

254

1

3

253

255

1

3

253

255

0

2

252

254

0

2

252

254

1

3

253

255

1

3

253

255

0

2

252

254

0

2

252

254

1

3

253

255

1

3

253

255

FIFOSP1 Data In

FIFOSP2 Data In

FIFOSP1 Write

FIFOSP2 Write

FIFOSP1 Read

FIFOSP2 Read

11

11

11 11

11 11

11 11 11

11 11 11

11 11 11

11 11 11

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

NTT

Output

64

r[0]
r[1] r[2]

A00

64

T A01

64

T A02

64

T

0

2

252

254

1

3

253

255

0

2

252

254

1

3

253

255

0

2

252

254

1

3

253

255

0

2

252

254

1

3

253

255

0

2

252

254

1

3

253

255

0

2

252

254

1

3

253

255

FIFOSP1 Data In

FIFOSP2 Data In

FIFOSP1 Write

FIFOSP2 Write

FIFOSP1 Read

FIFOSP2 Read

1

1

1 1

1 1

1 1 1

1 1 1

1 1 1

1 1 1

Fig. 10. The access process of NTT results.

to FIFO1 in the first cycle. During the first 16 write cycles,
only FIFO1 is used to store the even positioned data blocks.
Starting from the 17th cycle of the CBD2 output, the FIFO1

data is replaced with the data output from the shift register,
i.e., the CBD2/3 odd results {1, 3, 5, 7}, and the even
position data blocks from CBD2/3 {128, 130, 132, 134}
are stored in FIFO2, simultaneously. Therefore, eight data
locations stored at the lowest part of these two FIFOs are
{0, 128, 2, 130, 4, 132, 6, 134}. After that, the output signals
(shown as greyed out in bottom of the Fig. 9, the FIFO(1/2)

Read) are generated every four cycles to ensure that the
FIFO data is read in order ({(0, 128), (2, 130), (4, 132), (6,
134)}). FIFO1 and FIFO2 continue to take in the results of
the CBD while generating output data until the FIFO1

and FIFO2 signal that they are empty. The data storage
mechanism does not change for higher security levels but
the depth of FIFO1 and FIFO2 is increased to match the
higher data size to be cached.

The polynomial multiplication module multiplies the
data, i.e., matrix ÂT and vector t̂T , by the vector r̂, gen-
erated by the NTT. The operation carried out is ÂT

ji =

ÂT [j][i] · r̂[i] or t̂Ti = t̂T [i] · r̂[i] (i, j ∈ 0, 1, 2 in Kyber768).
The polynomial t̂T is the output of the key generation
function and is stored in the FIFOPK (48 × 256 FIFO)
and fed into the PWM modules simultaneously as the NTT
produces its output. The r̂[i] generated by the NTT is fed
directly into the PWM module and also stored in two FIFOs
(FIFOSP1 and FIFOSP2 as well as FIFOEP1 and FIFOEP2

for Kyber.CPA.KeyGen, 24 × 256 FIFO). The order of the
NTT outputs in continuous data separated by parity is {0,
2, 4, 6, ..., 1, 3, 5, 7, ...}. Fig. 10 shows the relationship
between NTT results and FIFOs during the polynomial
multiplication stage. A different approach is used for the
FIFOSP1 and FIFOSP2 input to ensure that the order of the
PWM module input is {0, 1, 2, 3...}. In the first 64 cycles
of the NTT operation, its two 12-bit results will be spliced
and input into FIFOSP1. Starting from the 65th cycle, the
results of the NTT will be input into FIFOSP2, thus ensuring
that the order of the lowest part in these two FIFOs is {0,
1, 2, 3}. As the security level increases, more data can be
accommodated simply by increasing the depth of the FIFOs.
The data in FIFOSP1 and FIFOSP2 will be used multiple

times. Therefore, the data output by current FIFOs will be
stored in the same FIFOs again to reduce the use of storage
resources. Since r̂[0], r̂[1], ..., r̂[n] are computed sequentially,
the output data is restored at the top of the FIFOs and does
not affect the polynomial multiplication computation of the
current stage. In Kyber.CCA.KeyGen, all CBD sampling
results are required for the NTT calculation. Therefore, e
from CBD is also stored in FIFO1 and FIFO2, waiting to be
fed into the NTT module as s and r.

4/cycle
Poly_Mult

Output

Poly_Mult

Output

64

A01

Poly_Mult

Output

Poly_Mult

Output

64

A02

Poly_Mult

Output

Poly_Mult

Output

64

A00

FIFOADD Write

FIFOADD Read

FIFOADD Data In

11

2-Input

Adder

2-Input

Adder

2-Input

Adder

2-Input

Adder

2-Input

Adder

2-Input

Adder

11

11 11

4/cycle
Poly_Mult

Output

64

A01

Poly_Mult

Output

64

A02

Poly_Mult

Output

64

A00

FIFOADD Write

FIFOADD Read

FIFOADD Data In

1

2-Input

Adder

2-Input

Adder

2-Input

Adder

1

1 1

T T T

0

1

2

3

252

253

254

255

0

1

2

3

252

253

254

255

0

1

2

3

252

253

254

255

0

1

2

3

252

253

254

255

0

1

2

3

252

253

254

255

0

1

2

3

252

253

254

255

Fig. 11. The access process of final ADDs (ADDs1) in polynomial
multiplication of Kyber768.

The final step of the polynomial multiplication cal-
culation should add up the different dimensional data
({ÂT

00,...,ÂT
22}) to the same dimension, in the Kyber768 case,

i.e. to compute Â′T [j] = ÂT
j0 + ÂT

j1 + ÂT
j2 (j ∈ 0, 1, 2) and in

Kyber.CCA.Enc and Kyber.CCA.Dec also should calculate
ˆt′T = t̂T0 + t̂T1 + t̂T2 . The output of PWM is spaced, and

the number of cycles between data in t̂Ti and ÂT
ji is not

the same, although it is possible to combine ÂT
j0, ÂT

j1, ÂT
j2

using shift registers to perform additions, the area will
increase dramatically as the security level increases with the
addition of shift registers. Therefore, using a FIFO to access
sequential results of ADDs (ADDs1) is still the best option.
FIFOADD (48 × 64 FIFO) is set up to write and read data
from the ADDs module. Fig. 11 shows the data flow of the
ÂT

00 + ÂT
01 + ÂT

02 computation and the states of FIFOADD

in Kyber768. There are three states in FIFOADD: store-only,

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 11

store-read, and read-only. For Kyber512, only store-only
and read-only states are included, while for Kyber768 and
Kyber1024, the three states are all included, and the store-
read state will be performed twice in Kyber1024. In the
store-only state, the FIFOADD is used to collect the result
of the ADDs sequentially; in the store-read state, the data
stored in the FIFOADD is output sequentially first, and when
the ADDs produces the result, the calculation result is stored
in the FIFOADD at the same time; in the read-only state, the
FIFOADD no longer accepts input, and all the data currently
stored in the FIFO is output.

The ADDs1 in the polynomial multiplication module
generates four 12-bit data per cycle, which needs to be
separated and buffered in odd and even positions before
the INTT calculation. Therefore, two FIFOs of the same size
(24 × 256, FIFO3 and FIFO4) store the data in odd and even
positions, respectively. The S-NTT module reads the data
stored in FIFO3 FIFO4 directly in sequence and calculates
them. The order of INTT results is close to the sequential
order {(0, 128), (2, 130), ... (1, 129), ...}. Firstly using a shift
register to delay INTT results in 64 cycles, then the output of
the shift register is combined with the output of the current
INTT results into four 12-bit data blocks in the order {(0,
1, 128, 129), (2, 3, 130, 131), ...}. Two data with order {0, 1}
of these four are fed directly into ADDs2 to complete the
polynomial adder calculation and the last two data blocks
with order {128, 129} are stored in a FIFO (24 × 64, FIFO5).
When S-NTT starts to output the second set of INTT results,
the input of ADDs2 is from FIFO5, and the second set of
INTT results will be shifted by 64 cycles.

4.2 Additional Data Flow in Key Decapsulation

Kyber.CCA.Dec contains both single Kyber.CPA.Enc and
Kyber.CPA.Dec functions, while Kyber.CPA.Dec is more
like a reduced Kyber main data flow. Fig. 12 shows the
data flow in a single Kyber.CPA.Dec and contains mainly
NTT/INTT, polynomial multiplication, and encode mod-
ules. In Kyber.CPA.Dec, when the server-side receives the
cipher-text c from the client-side, it uses the decompress and
decode module to process the data first, e.g., in Kyber768,
it takes 64 × 4 cycles to decompress and decode all the
data to polyvector u and vector v. The u and v output
from the decompress and decode modules perform different
operations when fed into the computation unit. Polyvector u
will be fed into FIFO1 and FIFO2, and since every two cycles
form 8 sets of data blocks, the NTT starts the calculation
after 32 cycles. v is stored in the FIFO (48 × 64 FIFO, FIFOev)
and then output when ADDs2 is running. When the NTT
calculation is complete, results from the S-NTT module are
only multiplied with sT , which is stored in FIFOSP1 and
FIFOSP2. Thus the NTT results do not need to be stored
in FIFOs again. The sT output from Kyber.CPA.KeyGen
is still stored in FIFOSP1 and FFIFOSP2, and no longer
uses separate resource storage. In this case, the NTT result
is shifted back 64 bits using a shift register, enabling a
succession of coefficients in the order {(0, 1, 2, 3),...} to be
calculated simultaneously by the PWM unit for all four sets
of data.

In addition, when the service-side architecture accepts
the ciphertext c value, the c value is stored in FIFOA

Decompress

Cycles

NTT NTT(u0)NTT(u0) NTT(u1)NTT(u1) NTT(u2)NTT(u2)

128128 128128 128128Cycles

PWM
u0sT0u0sT0

6464Cycles 6464 6464

Encode

Cycles

v

64

u1sT1u1sT1

INTT(u sT)INTT(u sT)

128128

m

128128

u

u

v

CPA.ENC

m

6464

u0 u1 u2

64

u2sT2

Fig. 12. Cycles and order in Kyber.CPA.Dec (Kyber768).

(64× 128 FIFO) and FIFOv (48× 256 FIFO) according to the
difference between the u vector and v vector, respectively.

When Kyber.CPA.Enc generates c′ = (c′1||c′2), they are
compared with the data blocks from FIFOA and FIFOv

respectively to define if the decapsulation results are correct.

5 IMPLEMENTATION AND RESULTS

The proposed Kyber hardware architecture has been synthe-
sized and implemented using Xilinx Vivado 2020.1 suite tar-
geting two different devices, e.g., Artix XC7A200 and Zynq
UltraScale+ XCZU7EV. The designs proposed in this paper
have passed the post-place & route (post-PAR) simulation
and functional verification. The main modules of the Kyber
accelerator are the same under the three different security
levels, except for the increase in FIFO depth due to the need
of higher amounts of data.

Table 2 shows the speed and area of our Kyber ac-
celerator architecture, compared against the state-of-the-art
architectures, for the three different security levels it offers.
Since the server side needs more computational processing,
it consumes more resources than the client-side. We specify
the resources for the client-side and the server side respec-
tively in Table 2, as done in [23]. In Table 2, the hardware
resources (LUT, FF, DSP, BRAM) consumption is indicated
for both the client/server-side, but for the number of slices
column, only the slices for server side core are indicated
since the server-side contains essentially all the constituent
modules of Kyber. The total operation cycle count of the
server and client accelerator under the same security level
is constant, thus providing protection against timing attacks.

The DSPs are mainly used in the PWM module. In the
S-NTT module, one pipeline cycle is added to each stage
to perform the 12-bit multiplication use LUTs. Therefore,
the proposed architecture uses only one DSP in each of
the two PWM units, and only two DSPs are used for all
security levels of the design. In addition, all storage units
including distributed FIFO and distributed ROM using LUT
resources and no BRAM resources are used in the proposed
architecture. The accelerators at the three different security
levels run at almost the same frequency as the critical paths
are the same.

A comparison with related work focuses only on the
hardware implementation of Kyber Round 3. Key, Enc,
and Dec in Table 2 represent the Kyber.CCA.KeyGen, Ky-
ber.CCA.Enc, and Kyber.CCA.Dec, respectively. Exploiting

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 12

TABLE 2
Post-PAR Implementation Results for our Kyber Accelerator (Area and Timing) and Comparison with The state-of-the-art Designs.

Design LUT FF DSP BRAM Slices ENS1 F.
[MHz]

Key/Enc./Dec.
[K Cycles]

Key/Enc./Dec./Total2

[us]
Improv.

(Total Time)
AT3

(ENS×s)
FPGA
Device

Kyber-512 NIST PQC Security level 1

[24] 18,000 5,000 6 15 5,000 8,540 115 4.0/7.0/10.0 34.8/60.9/86.9/182.6 87.6% 1.56 Artix-7
XC7A100

[23] 6,785/7,412 3,981/4,644 2/2 3/3 2,126 2,914 161/167 3.8/5.1/6.7 23.4/30.5/41.3/95.2 75.9% 0.28 Artix-7
XC7A12

[18] 10,502 9,859 8 13 3,549 6,897 200 1.9/2.4/3.7 9.4/12.0/18.8/40.2 43.8% 0.28 Artix-7
XC7A100

[25]4 9,347 8,186 4 6 2,337 3,913 220 2.1/3.3/4.5 9.7/14.8/20.3/44.8 49.6% 0.18 Artix-7
XC7A200

Ours 13,999/16,147 12,503/13,868 2/2 0/0 5,273 5,473 208 1.1/1.5/2.1 5.3/7.2/10.1/22.6 - 0.12 Artix-7
XC7A200

[25] 9,435 8,605 4 6 - - 450 2.1/3.3/4.5 4.8/7.2/9.9/21.9 51.1% - Zynq-UltraScale+
XCZU7EV

Ours 13,300/16,004 12,533/13,890 2/2 0/0 - - 435 1.1/1.5/2.1 2.5/3.4/4.8/10.7 - - Zynq-UltraScale+
XCZU7EV

Kyber-768 NIST PQC Security level 3

[24] 16,000 6,000 9 16 4,000 8,036 115 7.0/10.0/14.0 60.9/86.9/121.7/269.5 87.3% 2.2 Artix-7
XC7A100

[23] 6,785/7,412 3,981/4,644 2/2 3/3 2,126 2,914 161/167 6.3/7.9/10.0 39.2/47.6/62.3/149.1 77.1% 0.43 Artix-7
XC7A12

[18] 11,783 10,424 12 14 3,952 7,896 200 2.7/3.2/4.8 13.3/16.3/24.0/53.6 36.4% 0.42 Artix-7
XC7A100

[25]4 10,434 9,473 6 8.5 2,609 4,875 220 2.7/3.9/5.0 12.3/17.7/22.9/52.9 35.5% 0.26 Artix-7
XC7A200

Ours 15,246/16,834 12,482/13,722 2/2 0/0 5,393 5,593 208 1.7/2.4/3.0 8.2/11.5/14.4/34.1 - 0.19 Artix-7
XC7A200

[25] 10,512 10,105 6 8.5 - - 450 2.7/3.9/5.0 6.0/8.6/11.2/25.8 36.8% - Zynq-UltraScale+
XCZU7EV

Ours 15,196/16,797 12,443/13,705 2/2 0/0 - - 435 1.7/2.4/3.0 3.9/5.5/6.9/16.3 - - Zynq-UltraScale+
XCZU7EV

Kyber-1024 NIST PQC Security level 5

[24] 16,000 6,000 12 17 5,000 9,532 112 10.0/14.0/18.0 86.9/121.7/156.5/365.1 86.6% 3.48 Artix-7
XC7A100

[23] 6,785/7,412 3,981/4,644 2/2 3/3 2,126 2,914 161/167 9.4/11.3/13.9 58.2/67.9/86.2/212.3 76.9% 0.62 Artix-7
XC7A12

[18] 13,347 11,639 16 16 4,585 9,321 185 3.5/4.1/6.2 17.3/20.6/31.3/69.2 29.2% 0.65 Artix-7
XC7A100

[25]4 11,527 11,767 8 10.5 2,882 5,740 220 3.6/4.8/6.0 16.3/21.8/27.1/65.2 24.8% 0.37 Artix-7
XC7A200

Ours 15,666/17,827 12,476/13,979 2/2 0/0 6,022 6,222 208 2.7/3.4/4.1 13.0/16.3/19.7/49.0 - 0.30 Artix-7
XC7A200

[25] 11,598 11,606 8 10.5 - - 450 3.6/4.8/6.0 8.0/10.6/13.2/31.8 26.4% - Zynq-UltraScale+
XCZU7EV

Ours 15,544/17,812 12,510/14,002 2/2 0/0 - - 435 2.7/3.4/4.1 6.2/7.8/9.4/23.4 - - Zynq-UltraScale+
XCZU7EV

1. ENS (equivalent number of slices) = DSP × 100 +BRAM × 196 + Slices [30]
2. Time(Total) = Time(Key+Enc+Dec)
3. Area and time product (AT) = ENS × Time (Total)
4. The slices in Ref [25] are estimated by formula #LUTs/4 as one slice consists of 4 LUTs in Artix-7 [34].

a fully pipelined implementation enables simultaneous ex-
ecution of several modules, resulting in a 49.6% higher
speed performance for Kyber512 compared to [25] (Artix-
7). Compared with [18], which also uses a high-speed NTT
architecture, the speedup for Kyber512 is 44% for Key, 40%
for Enc, and 46% for Dec (Artix-7). With faster devices
(Zynq-UltraScale+) with larger resources, the speedup is
51.1% compared with [25] for Kyber512. As the security
level increases, the speedup is reduced as the proposed
architecture uses the same computational architecture. Com-
pared with the state-of-the-art architecture [25], the total
time for Key, Enc, and Dec is reduced by 35.5% and 24.8%
for Kyber768 and Kyber1024, respectively (Artix-7). For
Kyber1024, using the faster hardware architecture (Zynq-
UltraScale+), it takes 6.2, 7.8, and 9.4 us for Key, Enc,
and Dec, respectively. Compared with the designs in [23]

and [24], the proposed architecture achieves a speedup of
4-7.5x for all three different security levels (Artix-7).

In terms of area, the proposed design is higher in LUTs
than the previous design due to the use of more FIFO
cells. However, for other on-chip resources, the proposed
design uses significantly less. For Kyber512, compared
with [24], [18], and [25], the number of DSP is reduced by
4, 6, and 2 blocks, and the number of BRAM is reduced
by 15, 13, and 6 blocks, respectively. For a fairer com-
parison of resource consumption, we estimate the equiv-
alent number of slices (ENS), as undertaken in [30]. One
DSP is taken as equivalent to 100 Slices, a 36K BRAM is
equivalent to 196 Slices, resulting in the ENS computation,
ENS = DSP × 100 + BRAM × 196 + Slices. Compared
with [24] and [18], the proposed architecture reduces ENS
by 30.4-34.7% and 20.6-33.2% for the three different security

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 13

levels, respectively. Compared with [23], which implements
a lightweight design, the proposed architecture uses more
resources, but the speed increase outweighs the resource
consumption. Compared with [25], the proposed architec-
ture uses more LUT resources but less DSP and BRAM
resources. The number of DSPs is reduced by 50.0%, 66.7%,
and 75.0% for the three different security levels, respectively.
To better balance the advantages of area and speed, we
utilise the AT (area and time product) metric, where AT
= ENS × Time (Total). As can be seen from Table 2,
the proposed architecture reduces the AT in 57.1%, 54.8%,
and 51.6% for the three different security levels compared
with [23] and [18], respectively. Compared with [25], the
proposed architecture reduces the AT by 33.3%, 26.9%, and
18.9%, where the slices in [25] is estimated by the formula
#LUTs/4, as a single slice in a Xilinx FPGA consists of 4
LUTs and 8 FFs [34]. Therefore, the proposed Kyber accel-
erator significantly improves speed and hardware efficiency
compared to the state-of-the-art at all three different security
levels.

While Kyber was the only KEM scheme taken up for
standardized by NIST PQC [11], we compare the results
of our hardware accelerator implementation with several
R-LWE based Round 2 candidates and a Mod-LWR based
Round 3 candidate. Compared with the Round 3 PQC
candidate SABER [25], which is based on the Mod-LWR
scheme, our proposed Kyber hardware architecture offers
nearly double throughput performance with a comparable
area at the security level 5. Compared to the Round 2
PQC candidate NewHope, our Kyber core offers nearly 2.5
times higher throughput for security level 5 [35]. Compared
with the R-LWE hardware core [36], the proposed Kyber
accelerator does not use BRAM units and achieves faster
speed. Considering another Round 2 PQC candidate LAC,
our proposed Kyber accelerator requires nearly 2.5 times
fewer LUT resources [37] and speeded up by 59.7% for
security level 5. In conclusion, our HPKA Kyber accelerators
are marginally superior with significantly faster throughput
performance, and use fewer resources than R-LWE based
designs.

6 CONCLUSION

This work presents an ultra high-performance FPGA based
Kyber accelerator that undertakes an optimally designed
pipelined architecture for parallel execution of various mod-
ules in the design. The accelerator uses a pipelined MDC-
NTT to speed up operations but to keep the area efficiency
high, resource reuse is orchestrated during NTT/INTT. Mul-
tiple FIFOs are used to buffer data for pipeline balancing.
We performed a hardware implementation of the proposed
architecture using two different devices, the Artix-7 and
the Zynq-UltraScale+. The results show that the proposed
Kyber accelerator on the Artix-7 is 1.44×, 1.36×, and 1.25×
faster than previous research for security levels 1/3/5, re-
spectively. In terms of equivalent slice count, the proposed
architecture reduces AT (area and time product) by 18.9-
33.3% for the three different security levels. In addition,
in the Zynq-UltraScale+ device, the proposed architecture
achieves a speedup of 1.26-1.51× compared to the state-of-
the-art designs reported to date.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM review,
vol. 41, no. 2, pp. 303–332, 1999.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications
of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[3] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc.
Advances in Cryptology (CRYPTO’85), pp. 417–426, Springer, 1985.

[4] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th Annu. ACM Symp. Theory Comput., pp. 212–
219, 1996.

[5] J. Daemen and V. Rijmen, “Reijndael: The advanced encryption
standard,” Dr. Dobb’s Journal: Software Tools for the Professional
Programmer, vol. 26, no. 3, pp. 137–139, 2001.

[6] M. J. Dworkin, “SHA-3 standard: Permutation-based hash and
extendable-output functions.” 2015. [Online]. Available: https:
//doi.org/10.6028/NIST.FIPS.202.

[7] D. Moody, “Post-quantum cryptography: NIST’s plan for the
future,” in Talk given at PQCrypto’16 Conference, 2016.

[8] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-
Kyber algorithm specifications and supporting documentation,”
NIST PQC Round 3, 2020.

[9] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei,
and L. Liu, “LWRpro: An energy-efficient configurable crypto-
processor for module-LWR,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 3, pp. 1146–1159, 2021.

[10] A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe, “NTRU-
KEM-HRSS17: Algorithm specification and supporting documen-
tation.” Submission to the NIST Post-Quantum Cryptography
Standardization Project, 2017.

[11] A. Gorjan et al., “Status report on the third round of the NIST post-
quantum cryptography standardization process.” 2022. [Online].
Available: https://csrc.nist.gov/publications/detail/nistir/8413/
final.

[12] C. Peikert and Z. Pepin, “Algebraically structured LWE, revisited,”
in The 17th Theory of Cryptography Conf. (TCC), pp. 1–23, Springer,
2019.

[13] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Proc. Advances in Cryptology
(CRYPTO’99), pp. 537–554, Springer, 1999.

[14] W. Guo and S. Li, “Area-efficient modular reduction structure and
memory access scheme for NTT,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), pp. 1–5, 2021.

[15] C. Zhang, D. Liu, X. Liu, X. Zou, G. Niu, B. Liu, and Q. Jiang,
“Towards efficient hardware implementation of NTT for Kyber on
FPGAs,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1–5,
2021.

[16] F. Yaman, A. C. Mert, E. Öztürk, and E. Savaş, “A hardware
accelerator for polynomial multiplication operation of CRYSTALS-
Kyber PQC scheme,” in Proc. Design, Automat. Test Eur. Conf. Exhib.
(DATE), pp. 1020–1025, IEEE, 2021.

[17] W. Tan, B. M. Case, A. Wang, S. Gao, and Y. Lao, “High-speed
modular multiplier for lattice-based cryptosystems,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 68, no. 8,
pp. 2927–2931, 2021.

[18] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“High-speed NTT-based polynomial multiplication accelerator for
post-quantum cryptography,” in Proc. IEEE 28th Symp. Comput.
Arithmetic (ARITH), pp. 94–101, 2021.

[19] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “Towards Efficient
Kyber on FPGAs: A Processor for Vector of Polynomials,” in
in Proc. 25th Asia South Pacific Design Autom. Conf. (ASP-DAC),
pp. 247–252, 2020.

[20] A. Sarker, A. C. Canto, M. M. Kermani, and R. Azarderakhsh,
“Error detection architectures for hardware/software co-design
approaches of number-theoretic transform,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2022.

[21] A. Sarker, M. Mozaffari-Kermani, and R. Azarderakhsh, “Hard-
ware constructions for error detection of number-theoretic trans-
form utilized in secure cryptographic architectures,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 3,
pp. 738–741, 2018.

[22] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware imple-
mentation of CRYSTALS-Kyber PQC algorithm through resource
reuse,” IEICE Electronics Express, vol. 17, no. 17, pp. 1–6, 2020.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, JANUARY 2023 14

[23] Y. Xing and S. Li, “A compact hardware implementation of CCA-
secure key exchange mechanism CRYSTALS-Kyber on FPGA,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 328–356, 2021.

[24] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Instruction-set accelerated implementation of CRYSTALS-
Kyber,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 11, pp. 4648–4659, 2021.

[25] V. B. Dang, K. Mohajerani, and K. Gaj, “High-speed hardware ar-
chitectures and FPGA benchmarking of CRYSTALS-Kyber, NTRU,
and Saber,” IEEE Transactions on Computers, vol. 72, no. 2, pp. 306–
320, 2023.

[26] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T.
Nguyen, and K. Gaj, “Implementation and benchmarking of
round 2 candidates in the NIST post-quantum cryptography
standardization process using hardware and software/hardware
co-design approaches,” Cryptology ePrint Archive: Report 2020/795,
2020.

[27] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“A monolithic hardware implementation of kyber: Comparing
apples to apples in PQC candidates,” in Proc. 7th Int. Conf. Cryptol.
Inf. Secur. Latin Amer. (LATINCRYPT), pp. 108–126, Springer, 2021.

[28] P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, and M. Mozaffari-
Kermani, “Kyber on ARM64: Compact implementations of Kyber
on 64-bit ARM Cortex-A processors,” in Proc. Int. Conf. Secur.
Privacy Commun. Syst., pp. 424–440, Springer, 2021.

[29] K. Team, “Keccak in VHDL.” 2020. [Online]. Available: https://
keccak.team/hardware.html.

[30] D.-e.-S. Kundi, Y. Zhang, C. Wang, A. Khalid, M. O’Neill, and
W. Liu, “Ultra high-speed polynomial multiplications for lattice-
based cryptography on FPGAs,” IEEE Transactions on Emerging
Topics in Computing, pp. 1–1, 2022.

[31] G. Seiler, “Faster AVX2 optimized NTT multiplication for Ring-
LWE lattice cryptography,” IACR Cryptology ePrint Archive: report
2018/039, 2018.

[32] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly
efficient architecture of NewHope-NIST on FPGA using low-
complexity NTT/INTT,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 49–72, 2020.

[33] P. Barrett, “Implementing the rivest shamir and adleman public
key encryption algorithm on a standard digital signal proces-
sor,” in Proc. Conf. Theory Appl. Cryptographic Techn., pp. 311–323,
Springer, 1986.

[34] Xilinx, “7 series FPGAs configurable logic block: User guide,”
UG474 (v1.8), September 27, 2016.

[35] Y. Xing and S. Li, “An efficient implementation of the NewHope
key exchange on FPGAs,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 67, no. 3, pp. 866–878, 2020.

[36] P.-C. Kuo, Y.-W. Chen, Y.-C. Hsu, C.-M. Cheng, W.-D. Li, and
B.-Y. Yang, “High performance post-quantum key exchange on
FPGAs.,” Journal of Information Science and Engineering, vol. 37,
no. 5, pp. 1211–1229, 2021.

[37] R. Tong, Y. Yin, L. Wu, X. Zhang, Z. Qin, X. Wu, and L. Su, “High-
speed hardware implementation of PQC algorithm LAC,” in 2020
IEEE 14th International Conference on Anti-counterfeiting, Security,
and Identification (ASID), pp. 104–108, 2020.

Ziying Ni is currently working toward the Ph.D
degree in Electronics and Electrical Engineer-
ing at Queen’s University Belfast (QUB), Belfast,
UK. He received the M.S. degree in Electron-
ics and Communication Engineering from Nan-
jing University of Aeronautics and Astronau-
tics (NUAA), Nanjing, China, in 2021. His re-
search interests include hardware security, cryp-
tographic engineering.

Ayesha Khalid (M’18-SM’22) received the BE
and MS degrees from the National University of
Sciences and Technology (NUST, Pakistan) and
the University of Engineering and Technology,
(UET-Taxila, Pakistan), respectively. She is cur-
rently a lecturer with Queen’s University Belfast,
NI, U.K. She won a DAAD Scholarship Award
for her PhD(’15) from RWTH Aachen, Germany.
She is a member of VAS Technical Committee
of IEEE ISCAS. Her research interests include
lattice-based cryptography, embedded systems

security, side channel attacks, and cryptographic hardware.

Dur-e-Shahwar Kundi recently joined PQShield
Ltd as a Cryptography Architect in 2023. Pre-
viously, she served as a research fellow at
CSIT, a division of ECIT Global Research Insti-
tute of Queen’s University, Belfast in PQC Re-
search Group. She has 12 years of experience
in Hardware security, designing hardware archi-
tectures and implementing efficient designs for
Symmetric-key Cryptography and Hash, includ-
ing 4 years of expertise in Post-quantum Cryp-
tography field. Her research interests include

hardware security, cryptographic engineering and reconfigurable com-
puting.

Máire O’Neill (M’03-SM’11) is currently a
Regius Professor in Electronics and Computer
Engineering, Director of Institute of Electronics,
Communications and Information Technology
(ECIT) and Director of the UK Research Institute
in Secure Hardware and Embedded Systems
(RISE). She obtained an M.Eng. with distinction
and a Ph.D. in Electrical and Electronic Engi-
neering from Queen’s University Belfast (QUB)
in 1999 and 2002 respectively. She has au-
thored two research books and has over 190

international peer-reviewed conference and journal publications. She
was previously Associate Editor for IEEE ToC and IEEE TETC and
Guest Editor for several journals. She has been a technical program
committee member for many international conferences, including DAC,
CHES, DATE et al. She is a Fellow of Royal Academy of Engineering,
Fellow of the Irish Academy of Engineering, and Member of the Royal
Irish Academy.

Weiqiang Liu (M’12-SM’15) received the B.Sc.
degree in Information Engineering from Nan-
jing University of Aeronautics and Astronautics
(NUAA), China and the Ph.D. degree in Elec-
tronic Engineering from the Queens University
Belfast, UK, in 2006 and 2012, respectively. He
is currently a Professor and the Vice Dean of
College of Electronic and Information Engineer-
ing, NUAA. He has published 2 research books
and over 200 leading journal and conference
papers. He has been awarded the prestigious

Excellent Young Scholar Award by NSFC in 2020. He serves as the
Associate Editors for IEEE TC, TCAS-I, and TETC, the Steering Com-
mittee Member of TVLSI, Guest Editor of Proceedings of the IEEE. He is
the program co-chair of IEEE ARITH 2020 and NANOARCH 2022, and
also TPC members for DAC, DATE, ARITH et al. His research interest
focuses on energy efficient and secure computing circuits and systems.

