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Abstract. The tweakable Even-Mansour construction yields a tweak-
able block cipher from a public random permutation. We prove post-
quantum security of tweakable Even-Mansour when attackers have quan-
tum access to the public random permutation but only classical access
to the secretly-keyed construction, the most relevant setting for most
real-world applications. We then use our results to prove post-quantum
security—in the same model—of three symmetric-key schemes: Elephant
(an AEAD finalist of NIST’s lightweight cryptography standardization
effort), Minalpher (a second-round AEAD candidate of the CAESAR
competition), and Chaskey (an ISO-standardized MAC).

1 Introduction

The development of large-scale quantum computers would have a significant im-
pact on cryptography. For symmetric-key cryptosystems—even ideal ciphers—
one must at least double the key length in order to achieve the same security
against quantum attackers as is enjoyed against classical adversaries, due to the
possibility of using Grover’s search algorithm [9] to carry out a key-recovery at-
tack. In general, however, doubling the key length may not be sufficient [14,15,5],
and it is therefore critical to understand the security of various symmetric-key
constructions against quantum attackers.

One can consider two models of quantum attacks [4]. In the so-called Q2
model, the attacker is given quantum access to any underlying public primitives
(e.g., a block cipher) as well as the secretly keyed construction itself. In contrast,
the Q1 model assumes the adversary has quantum access to all public primitives
but only classical access to the secretly keyed scheme. The distinction between



Q1 and Q2 is significant: for many symmetric-key constructions, polynomial-
query attacks are known in the Q2 model but not in the Q1 model [14,15,13]. At
the same time, the Q2 model appears to be highly unrealistic, particularly for
real-world applications where the honest parties only run the construction on
classical inputs, and do not expose any quantum interface to an attacker (which
is necessarily the case when the honest devices implementing the construction are
entirely classical). The Q1 model is thus a much better fit for realistic quantum
attacks, and several recent works [12,1,5] have focused on that model. From here
on, by “post-quantum security” we will mean the Q1 model by default.

Proving security in the Q1 model is challenging since it requires reasoning
about a combination of related classical and quantum oracles for permutations.
Most results about the “hybrid” classical-quantum query setting deal with or-
acles that are not permutations. In the setting of basic query complexity, for
example, a recent series of results considers unstructured search and collision-
finding by algorithms with a limited budget of classical and quantum queries
to the same function [17,10,6]. In the setting of post-quantum-secure crypto-
graphic primitives, a mix of classical and quantum oracles is common, such as
when proving CCA security of a KEM in the QROM (e.g., for Kyber [2]). In
cases where random permutations are involved, there are few existing results.
Jaeger et al. [12] gave some positive results for the security of the FX construction
(a mechanism for key-length extension). The work of [12] also implies security
for the Even-Mansour construction either for non-adaptive adversaries or for a
variant of the construction based on a public random function. Subsequent work
by Alagic et al. [1] showed post-quantum security of the full Even-Mansour
construction (i.e., based on a random permutation whose inverse can also be
queried) against adaptive adversaries.

1.1 Our Results

We show the post-quantum security of the tweakable Even-Mansour construc-
tion, a tweakable block cipher constructed from a public random permutation.
We then use this result to establish post-quantum security of several symmetric-
key schemes. We stress that post-quantum security of tweakable Even-Mansour
does not follow from post-quantum security of Even-Mansour. Indeed, the tweak
must be incorporated in a way that satisfies several technical conditions; in ad-
dition, incorporating both tweaks and key expansion introduces dependencies
and requires significant technical work to analyze. We also remark that our set-
ting is significantly different from that of [17,10,6]. Those works are focused on
classical-quantum query tradeoffs (for basic query complexity problems) when
both the classical and the quantum oracle are for the same function; moreover,
they do not consider permutations, even in the one-way-accessible setting.

In all of our results, adversaries can make adaptive queries to any permuta-
tions to which they have access (whether quantum or classical, as appropriate)
in both the forward and inverse directions. We now summarize our results.

Tweakable Even-Mansour. Let P : {0, 1}n → {0, 1}n be a permutation. The
tweakable Even-Mansour scheme TEMf1,f2 [P ] : {0, 1}n × T × {0, 1}n → {0, 1}n
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is defined as
TEMf1,f2

k [P ](t, x) = P (x⊕ f1(t, k))⊕ f2(t, k) ,

where the key is of length n, T is a tweak space and f1, f2 are functions satis-
fying some technical conditions we omit here. We consider a generalized variant
TEM-KXf1,f2k [P ] : {0, 1}κ × T × {0, 1}n → {0, 1}n (where κ ≤ n) that combines
tweakable Even-Mansour with a key-expansion step, defined as

TEM-KXf1,f2k [P ](t, x) = P (x⊕ f1(t, P (k‖0n−κ)))⊕ f2(t, P (k‖0n−κ)) .

Our main result is that the above are both secure (post-quantum) tweakable
block ciphers in the random-permutation model.

Theorem 1 (informal). An adaptive adversary making qC classical queries to

TEM-KXf1,f2k [P ] (for uniform k ∈ {0, 1}κ) and qQ quantum queries to a random
permutation P can distinguish the former from a uniform tweakable block cipher
with probability at most O

(
2−κ/2 · (qC

√
qQ + qQ

√
qC)
)
.

(The above is stated formally as Theorem 3 and proved in Section 4.1.) Set-
ting κ = n implies security of TEM as a corollary (since P (k) is uniform when
k ∈ {0, 1}n is uniform, for any permutation P ). It follows that any post-quantum
attack against TEM requires q2C ·qQ+q2Q ·qC ≈ 2n, and hence that Ω(2n/3) queries
are necessary for constant success probability. This matches known attacks [11,4].

We also consider an alternative method of performing key expansion in which
a key k ∈ {0, 1}κ is expanded to an “effective key” of length n by computing
FP (k) = P (k‖0n−κ) ⊕ k‖0n−κ. This gives rise to another variant of tweakable
Even-Mansour, defined as

TEM-KX1f1,f2k [P ](t, x) = P (x⊕ f1(t, FP (k)))⊕ f2(t, FP (k))) .

We show that the key-expansion function FP is a pseudorandom generator (even
for adversaries having quantum access to P ). Using this fact, we are able to
prove a tighter security bound for TEM-KX1 than what we show for TEM-KX
(see Theorem 6 in Section 4.2 for a formal statement):

Theorem 2 (informal). An adaptive adversary making qC classical queries to

TEM-KX1f1,f2k [P ] (for uniform k ∈ {0, 1}κ) and qQ quantum queries to a random
permutation P can distinguish the former from a uniform tweakable block cipher
with probability at most O

(
2−κ/2 · (qC + qQ) + 2−n/2 · (qC

√
qQ + qQ

√
qC)
)
.

A new resampling lemma. As a key technical tool used for our results, we
prove a generalization of existing “resampling lemmas” [8,1] sufficient to handle
tweakable block ciphers, something we believe to be of independent interest. A
resampling lemma controls the success probability of a quantum-query adver-
sary D in an experiment of the following form:

1. D receives quantum oracle access to a random permutation P ;
2. two inputs s0, s1 are sampled from some distribution;
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3. D receives quantum oracle access to either P , or P with inputs s0 and s1
“swapped”; it succeeds if it can correctly guess which is the case.

Prior work considered only the uniform distribution on s0, s1. We give a new
resampling lemma that handles a wider class of (adversarially influenced) dis-
tributions, and even allows the distribution to depend on information D learns
about P during step 1 of the above experiment. This is what allows us to handle
the key expansion of TEM-KX (cf. Lemma 3 in Section 3):

Lemma 1 (informal). In the above experiment, for any D making at most q
quantum queries to P in Step 1, Pr[D succeeds] ≤ 1/2 +

√
qε, where ε is the

min-entropy of s0, s1.

To prove this lemma, we develop a novel permutation variant of the stateful
simulation technique for quantum-accessible random oracles, usually referred to
as the superposition oracle [20]. In this technique, some information about the
input-output pairs learned by the adversary via quantum queries can be read
off directly from the oracle’s internal quantum register. In the original superpo-
sition oracle technique [20], this useful feature is a consequence of the statistical
independence of the function values of a random oracle. Existing generalizations
to invertible random permutations lack this feature [1].

Applications to real schemes. In Section 5 we use our results to derive corol-
laries regarding the post-quantum security of various symmetric-key schemes.
In each case, security can be established in two stages. First, we choose the
tweak space T and the tweak functions f1 and f2 appropriately, and apply our
theorems above to prove security for a certain family of block ciphers. Second,
we invoke existing results to bootstrap the security of this cipher to the secu-
rity of the overall cryptographic scheme in the appropriate security experiment.
Specifically:

1. We show how to specialize TEM so that it captures the three pseudorandom
permutations used in the construction of Chaskey [16], an ISO-standardized
lightweight MAC. We can thus prove post-quantum security of Chaskey using
Theorem 1.

2. We show how to specialize TEM-KX to the tweakable block cipher at the
core of Elephant [3], an authenticated encryption scheme that was a finalist
of NIST’s lightweight standardization process [19]. Theorem 1 then implies
post-quantum security for Elephant. Using Theorem 2, we are also able to
prove a tighter security bound for a variant of Elephant that uses a slightly
different key expansion step.

3. We show how to specialize TEM-KX1 to the tweakable block cipher at the
core of (a slightly simplified variant of) Minalpher [18], an authenticated
encryption scheme that was a second-round candidate of the CAESAR com-
petition. Theorem 1 then implies post-quantum security for this variant.

To our knowledge, these are the first proofs of post-quantum security for any
versions of Chaskey, Elephant, or Minalpher.
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2 Preliminaries

Notation and basic definitions. We let P(n) denote the set of all permu-
tations on {0, 1}n. In the public-permutation model (or random permutation
model), a permutation P ← P(n) is sampled uniformly and then provided as an
oracle (in both the forward and inverse directions) to all parties.

A block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n is a keyed permutation, i.e.,
Ek(·) = E(k, ·) is a permutation of {0, 1}n for all k ∈ {0, 1}κ. We say E is a
pseudorandom permutation if Ek (for uniform k ∈ {0, 1}κ) is indistinguishable
from a uniform permutation in P(n), where indistinguishability is required to
hold even against adversaries who may query their oracle in both the forward
and inverse directions.

For a set T , let E(T , n) be the set of all functions E : T × {0, 1}n → {0, 1}n
such that E(t, ·) is a permutation on {0, 1}n for all t ∈ T . A tweakable block
cipher Ẽ : {0, 1}κ × T × {0, 1}n → {0, 1}n is a family of permutations in-
dexed by both a key k ∈ {0, 1}κ and a tweak t ∈ T , i.e., we now require that
Ẽk(t, ·) = Ẽ(k, t, ·) is a permutation of {0, 1}n for all k ∈ {0, 1}κ and t ∈ T . A
tweakable block cipher Ẽk is secure if Ẽk (for uniform choice of k ∈ {0, 1}κ) is
indistinguishable from a uniform Ẽ ← E(T , n).

In all the security notions mentioned above we consider algorithms having
only classical access to secretly keyed primitives. When we consider constructions
of keyed primitives (e.g., a tweakable block cipher) from public primitives (e.g.,
a random permutation), however, we provide the distinguisher with quantum
oracle access to the public primitive. Thus, for example, a quantum distinguisher
in the public-permutation model can apply the unitary operators

|x〉|y〉 7→ |x〉|x⊕ P (y)〉
|x〉|y〉 7→ |x〉|x⊕ P−1(y)〉

to quantum registers of the adversary’s choice. (We emphasize that this includes
evaluating P/P−1 on arbitrary superpositions of inputs.) This is well-motivated,
as in practice P would be instantiated by a publicly known permutation; ad-
versaries with quantum computers would thus be able to coherently execute the
reversible circuit for computing P/P−1. On the other hand, secretly keyed prim-
itives would be implemented by honest parties; if honest parties only evaluate
the primitive on classical inputs then the attacker has no way to obtain quantum
access to that keyed primitive.

A reprogramming lemma. We recall here a reprogramming lemma from prior
work [1] that applies to the following experiment. A distinguisher D chooses an
arbitrary function F along with a randomized process B for determining a set
of points B at which F should (potentially) be reprogrammed so that it takes
some known value (e.g., a ⊥ symbol). D is then given quantum access to either
F or a reprogrammed version of F ; when it is done making its oracle queries,
D is given B. Roughly, the lemma shows that D cannot determine whether it
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was interacting with F or the reprogrammed version of F as long as no point is
chosen to be reprogrammed with high probability.

Formally, for a function F : {0, 1}m → {0, 1}n and a set B ⊂ {0, 1}m×{0, 1}n
such that each x ∈ {0, 1}m is the first element of at most one tuple in B, define

F (B)(x) :=

{
y if (x, y) ∈ B
F (x) otherwise.

The following is taken verbatim from [1, Lemma 3]:

Lemma 2. Let D be a quantum distinguisher in the following experiment:

Phase 1: D outputs descriptions of a function F0 = F : {0, 1}m → {0, 1}n
and a randomized algorithm B whose output is a set B ⊂ {0, 1}m × {0, 1}n
where each x ∈ {0, 1}m is the first element of at most one tuple in B. Let
B1 = {x | ∃y : (x, y) ∈ B} and ε = maxx∈{0,1}m {PrB←B[x ∈ B1]} .

Phase 2: B is run to obtain B. Let F1 = F (B). A uniform bit b is chosen, and
D is given quantum access to Fb.

Phase 3: D loses access to Fb, and receives the randomness r used to invoke B
in phase 2. Then D outputs a guess b′.

For any D making q queries in expectation when its oracle is F0, it holds that

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 2q ·
√
ε .

3 A New Resampling Lemma

In this section, we describe a new resampling lemma for random permutations
that generalizes earlier results [8,1]. We consider a two-phase experiment in which
a distinguisher D is first given quantum oracle access to a uniform permutation
P : {0, 1}n → {0, 1}n. Then, two points s0, s1 ∈ {0, 1}n are chosen according to
some distribution, and in a second phase D is given access either to the original
permutation P (0) = P or a modified permutation P (1) that is the same as P
except that the values of P (s0) and P (s1) are swapped. (See below for details.)
We show, roughly speaking, that so long as the distribution of s0, s1 has high
min-entropy and D makes only a bounded number of queries in the first phase
of the experiment, D cannot distinguish those possibilities.

Compared to prior work of Alagic et al. [1], our proof is more general in the
following ways:

– it allows for distributions on s0, s1 other than the uniform distribution;
– it allows for the distribution on s0, s1 to be adaptively chosen by D, after D

makes queries to P in the first phase;
– it furthermore allows D to select a sampling algorithm for s0, s1 that will

itself make a query to P .
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In order to achieve these improvements, we use a different technique from that of
Alagic et al. [1]. Instead, our approach is closer in spirit to an earlier technique
of Grilo et al. [8], which was previously only applied to random functions.

We now state the new resampling lemma. For s0, s1 ∈ {0, 1}n, we define

swaps0, s1(x) =


s1 if x = s0

s0 if x = s1

x otherwise.

For H ⊂ {0, 1}n with |H| = 2n−1 and a bijection M : H → {0, 1}n \H, define

〈x〉 =

{
{x,M(x)} if x ∈ H
{x,M−1(x)} if x /∈ H .

(1)

Recall that the min-entropy of a distribution D is

H∞(D)
def
= max

x
Pr

x′←D
[x′ = x].

Lemma 3. Let H ⊂ {0, 1}n with |H| = 2n−1, let M : H → {0, 1}n \ H be a
bijection, and let F ⊂ P(n). Consider the following resampling game involving
a quantum distinguisher D:

Phase 1: Choose uniform P ∈ P(n), and give D quantum access to P . D out-
puts (D, τ), where D is a distribution on {0, 1}n and τ ∈ F .

Phase 2: Sample ŝ← D and compute {s0, s1} = 〈τ ◦ P (ŝ)〉. Let P (0) = P and
define P (1) = P ◦ swaps0, s1 . A uniform bit b ∈ {0, 1} is chosen, and D is

given ŝ and quantum access to P (b). Then D outputs a guess b′.

Let ε = 2 · E(D,τ)←DP [H∞(D)]. For any D making at most q queries to P in
phase 1,

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤
√
ε·

(
1 +

√
q + log

(
11|F |√

ε

))
.

The proof of Lemma 3 is given in Appendix A.

4 Post-Quantum Security of Tweakable Even-Mansour

We use the result of the previous section to prove the post-quantum security
of three different variants of the tweakable Even-Mansour construction. In Sec-
tion 4.1, we prove security of TEM-KX; we can then prove security of TEM as a
simple corollary. In Section 4.2, we prove post-quantum security of TEM-KX1 by
showing that its key-expansion function is a pseudorandom generator (PRG).
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4.1 Security of TEM-KX and TEM

Let P ∈ P(n) be a permutation and T a finite set, and fix two functions f1, f2 :
T × {0, 1}n → {0, 1}n. We consider a key-expanding version of the tweakable
Even-Mansour construction TEM-KXf1,f2 [P ] : {0, 1}κ × T × {0, 1}n → {0, 1}n
defined as

TEMf1,f2
k [P ](t, x) = P (x⊕ f1(t, P (k||0n−κ)))⊕ f2(t, P (k||0n−κ)) .

We assume the tweak functions f1, f2 satisfy some structural properties:

Definition 1. A function f : T × {0, 1}n → {0, 1}n is proper (with respect
to T ) if it satisfies the following two properties:

Uniformity: For all t ∈ T and all y ∈ {0, 1}n,

Prk←{0,1}n [f(t, k) = y] = 2−n.

XOR-uniformity: For all distinct t, t′ ∈ T and all y ∈ {0, 1}n,

Prk←{0,1}n [f(t, k)⊕ f(t′, k) = y] ≤ 2−n.

Theorem 3. Let TEM-KX be as above, and let A be an adversary making qC
classical queries to its first oracle and qQ ≥ max(n, log (11|T |))6 quantum queries
to its second oracle. If f1, f2 are proper with respect to T , then∣∣∣∣∣∣∣ Pr

k←{0,1}κ;
P←P(n)

[
ATEM-KXk,P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 6 · 2−κ/2

(
qC
√
qQ + qQ

√
qC
)
.

Proof. The high-level structure of our proof is similar to the proof of security for
the Even-Mansour construction by Alagic et al. [1], though here relying heavily
on our new resampling lemma. For that reason, we copy some portions of their
proof (with appropriate updates for our setting).

Without loss of generality, we assume A never makes a redundant classical
query; that is, once it learns a triple (t, x, y) of tweak, input and output by
making a query to its classical oracle, it never again submits a query (t, x)
(resp., (t, y)) to the forward (resp., inverse) that oracle.7 We divide an execution
of A into qC + 1 stages 0, . . . , qC , where the jth stage corresponds to the time
between the jth and (j+ 1)st classical queries of A. (The 0th stage is the period
of time before A makes its first classical query, and the qCth stage is the period

6 This mild assumption on the number of queries can be avoided at the expense of an
additive term of C · 2−κ/2(n + log |T |) for some constant C ≤ 24 in the bound.

7 Note that A is able to submit the same tweak, so that essentially means that A
never queries the same x (resp., y) to the forward (resp., inverse) oracle.
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of time after A makes its last classical query.) A may adaptively8 distribute
its qQ quantum queries between these stages arbitrarily, and we let qQ,j be the

expected number of quantum queries that AẼ,P makes in the jth stage, where
the expectation is taken over Ẽ ← E(T , n) and P ← P(n) and any internal
randomness/measurements of A. Note that

∑qC
j=0 qQ,j = qQ.

Fixing f1, f2, we write TEM-KXk for TEM-KXf1,f2k . In a given execution of
A, we denote its jth classical query by (tj , xj , yj , bj), where tj ∈ T is a tweak,
(xj , yj) ∈ {0, 1}n × {0, 1}n is an input/output pair, and bj ∈ {0, 1} indicates
the query direction, i.e., bj = 0 (resp., bj = 1) means that the jth classical
query was in the forward (resp., inverse) direction. We let Tj =

(
(t1, x1, y1, b1),

. . . , (tj , xj , yj , bj)
)

be the ordered list of the first j queries of A.
Our proof involves a sequence of experiments in which A’s oracles are mod-

ified based on the classical queries made by A thus far. We first establish the
appropriate notation. We use the product symbol

∏
to denote sequential com-

position of operations, i.e.,
∏n
i=1 fi = f1 ◦ · · · ◦ fn. Note that order matters,

since function composition is not commutative in general. We use the notation∏1
i=n fi = fn ◦ · · · ◦ f1 to denote the composition in reverse order. For a permu-

tation P , a key k, and a list Tj =
(
(t1, x1, y1, b1), . . . , (tj , xj , yj , bj)

)
as above,

define the operators

−→
S Tj ,P,k =

j∏
i=1

swap1−bi
P (xi⊕f1(ti,P (k||0s))), yi⊕f2(ti,P (k||0s))

−→
QTj ,P,k =

j∏
i=1

swap1−bi
xi⊕f1(ti,P (k||0s)), P−1(yi⊕f2(ti,P (k||0s)))

←−
S Tj ,P,k =

1∏
i=j

swapbiP (xi⊕f1(ti,P (k||0s))), yi⊕f2(ti,P (k||0s))

←−
QTj ,P,k =

1∏
i=j

swapbixi⊕f1(ti,P (k||0s)), P−1(yi⊕f2(ti,P (k||0s)))

where, as usual, f0 is the identity map and f1 = f for any function f . We define
the modified cipher PTj ,K as

PTj ,k(x) =
←−
S Tj ,P,k ◦

−→
S Tj ,P,k ◦ P (x) (2)

Since P ◦ swapx, y = swapP (x), P (y) ◦ P for all x, y, we have

←−
S j,P,k ◦

−→
S Tj ,P,k ◦ P =

←−
S Tj ,P,k ◦ P ◦

−→
QTj ,P,k = P ◦

←−
QTj ,P,k ◦

−→
QTj ,P,k .

Roughly speaking, PTj ,k is the minimal modification of P that is consistent
with the forward (→) and inverse (←) queries from the transcript Tj when post-
composed (S) or pre-composed (Q) with P . For compactness we occasionally
write P j in place of PTj ,k when Tj and k are understood from the context.

8 Alternatively, the techniques of [7] can be used to turn the adversary into one that
uses a fixed query schedule; the overall bound would be unchanged.
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We now define a sequence of hybrid experiments Hj , for j = 0, . . . , qC .

Experiment Hj. Sample uniform Ẽ ∈ E(T , n) and P ∈ P(n), and a uniform
key k ∈ {0, 1}κ. Then:

1. Run A, answering its classical queries using Ẽ and its quantum queries
using P , stopping immediately before its (j + 1)st classical query. Let Tj =(
(t1, x1, y1, b1), . . . , (tj , xj , yj , bj)

)
be the list of classical queries so far.

2. For the remainder of the execution of A, answer its classical queries using
TEM-KXk[PTj ,k] and its quantum queries using PTj ,k.

We can compactly represent Hj as the experiment in which A’s queries are
answered using the oracle sequence

P, Ẽ, P, · · · , Ẽ, P,︸ ︷︷ ︸
j classical queries

TEM-KXk[P j ], P j , · · · ,TEM-KXk[P j ], P j︸ ︷︷ ︸
qC − j classical queries

.

Each instance of Ẽ or TEM-KXk[P j ] represents a single classical query, while
each instance of P or P j represents a stage during which A makes multiple
quantum queries to that oracle but no queries to its classical oracle. Observe
that H0 corresponds to the execution of A in the real world, i.e., ATEM-KXk[P ],P ,

and HqC is the execution of A in the ideal world, i.e., AẼ,P .

For j = 0, . . . , qC − 1, we introduce additional experiments H′j :

Experiment H′j . Sample uniform Ẽ ∈ E(T , n) and P ∈ P(n), and uniform
k ∈ {0, 1}κ. Then:

1. Run A, answering its classical queries using Ẽ and its quantum queries
using P , stopping immediately after its (j+ 1)st classical query. Let Tj+1 =(
(t1, x1, y1, b1), . . . , (tj+1, xj+1, yj+1, bj+1)

)
be the classical queries so far.

2. For the remainder of the execution of A, answer its classical queries using
TEM-KXk[PTj+1,k] and its quantum queries using PTj+1,k.

Thus, H′j corresponds to running A using the oracle sequence

P, Ẽ, P, · · · , Ẽ, P,︸ ︷︷ ︸
j classical queries

Ẽ, P j+1, TEM-KXk[P j+1], P j+1 · · · ,TEM-KXk[P j+1], P j+1︸ ︷︷ ︸
qC − j − 1 classical queries

.

In Lemmas 4 and 5, we establish the following bounds on the distinguisha-
bility of H′j and Hj+1, as well as Hj and H′j , for 0 ≤ j < qC :

∣∣Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]
∣∣ ≤ qQ,j+1

√
2 · (j + 1)/2κ.∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]

∣∣ ≤ 2−κ/2(4 +
√
qQ + log(11|T |) + n+ κ/2) + 3j

2κ .

10



Using the above, we have

|Pr[A(H0) = 1]− Pr[A(HqC ) = 1]|

≤
qC−1∑
j=0

(
2−κ/2 ·

(
(4 +

√
qQ + log(11|T |) + n+ κ/2.+ 2 · qQ,j+1

√
2 · (j + 1)

)
+

3j

2κ

)

≤ 3q2C
2κ

+

qC−1∑
j=0

2−κ/2 ·
(

1 +
√
qQ + log(11|T |) + n+ κ/2 + 2 · qQ,j+1

√
2qC

)

≤ 3q2C
2κ

+ 2−κ/2 ·
(
qC + qC

√
qQ + log(11|T |) + n+ κ/2 + 2

√
2qQ
√
qC

)
. (3)

The above bound can be simplified. By assumption, qQ ≥ n ≥ κ and qQ ≥
log(11|T |). So √

qQ + log(11|T |) + n+ κ/2 ≤
√

7qQ
2
.

We can also assume qC < 2κ/2 since otherwise the bound is larger than 1. Under
these assumptions, we have q2C · 2−n ≤ qC · 2−κ/2 ≤ qC

√
qQ · 2−κ/2 and so

3q2C
2κ

+ 2−κ/2 ·
(
qC + qC

√
qQ + log(11|T |) + n+ κ/2 + 2

√
2qQ
√
qC

)
≤ 2−κ/2 ·

(
4qC +

√
7

2
qC
√
qQ + 2

√
2qQ
√
qC

)

≤ 2−κ/2 ·

((
4 +

√
7

2

)
qC
√
qQ + 2

√
2qQ
√
qC

)
≤ 2−κ/2 ·

(
6qC
√
qQ + 2

√
2qQ
√
qC

)
≤ 6 · 2−κ/2 ·

(
qC
√
qQ + qQ

√
qC
)
,

as claimed.
We now prove Lemmas 4 and 5.

Lemma 4. For j = 0, . . . , qC − 1,

Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]| ≤ 2 · qQ,j+1

√
2 · (j + 1)/2κ ,

where qQ,j+1 is the expected number of queries A makes to P in the (j + 1)st
stage in the ideal world (i.e., in HqC .)

Proof. Let A be a distinguisher between H′j and Hj+1. We construct from A a
distinguisher D for the experiment from Lemma 2:

Phase 1: D samples uniform Ẽ ∈ E(T , n) and P ∈ P(n). It then runs A, an-
swering its quantum queries using P and its classical queries using Ẽ, until af-
ter it responds to A’s (j+1)st classical query. Let Tj+1 =

(
(t1, x1, y1, b1), . . . ,

11



(tj+1, xj+1, yj+1, bj+1)
)

be the list of classical queries byA thus far. D defines
F (a, x) := P a(x) for a ∈ {1,−1}.
It also defines the following randomized algorithm B: sample k ← {0, 1}κ
and then compute the set B of input/output pairs to be reprogrammed so
that F (B)(a, x) = (PTj+1,k)

a
(x) for all a, x. D outputs (F,B).

Phase 2: B is run to generate B, and D is given quantum access to an oracle Fb.
D resumes running A, answering its quantum queries using Fb. Phase 2 ends
before A makes its next (i.e., (j + 2)nd) classical query.

Phase 3: D is given the randomness used by B to generate k. It resumes running
A, answering its classical queries using TEM-KXk[PTj+1,k] and its quantum
queries using PTj+1,k. Finally, it outputs whatever A outputs.

It is immediate that if b = 0 (i.e., D’s oracle in phase 2 is F0 = F ), then A’s
output is identically distributed to its output in Hj+1, whereas if b = 1 (i.e., D’s
oracle in phase 2 is F1 = F (B)), then A’s output is identically distributed to its
output in H′j . It follows that |Pr[A(H′j) = 1]−Pr[A(Hj+1) = 1]| is equal to the
distinguishing advantage of D in the reprogramming experiment of Lemma 2.
To bound this quantity, we bound the parameter ε and the expected number of
queries made by D in phase 2 (when F = F0).

The value of ε can be bounded using the definition of PTj+1,k and the fact
that F (B)(a, x) = (PTj+1,k)

a
(x). Fixing P and Tj+1, the probability that any

particular input (a, x) is reprogrammed is at most the probability (over k) that
it is in the set{

(1, xi ⊕ f1(ti, P (k||0n−κ))), (1, P−1(yi ⊕ f2(ti, P (k||0n−κ)))),
(−1, P (xi ⊕ f1(ti, P (k||0n−κ)))), (−1, yi ⊕ f2(ti, P (k||0n−κ)))

}j+1

i=1

.

We compute the probability that (a, x) = (1, xi ⊕ f1(ti, P (k||0n−κ))) for some
fixed i. P is a permutation, and so is f1(ti, ·). As k is uniform,

Prk[(a, x) = (1, xi ⊕ f1(ti, P (k||0n−κ)))] =

{
2−κ a = 1

0 a = −1.

Similarly,

Prk[(a, x) = (1, P−1(yi ⊕ f2(ti, P (k||0n−κ))))] =

{
2−κ a = 1

0 a = −1.

and

Prk
[
(a, x) = (−1, P (xi ⊕ f1(ti, P (k||0n−κ))))

]
= Prk

[
(a, x) = (−1, yi ⊕ f2(ti, P (k||0n−κ)))

]
=

{
2−κ a = −1

0 a = 1.

Note that the above probabilities hold for any i. By distinguishing the cases
a = 1 and a = −1 and using a union bound, we get ε ≤ 2(j + 1)/2κ.

12



The expected number of queries made by D in phase 2 when F = F0 is equal
to the expected number of queries made by A in its (j + 1)st stage in Hj+1.
Since Hj+1 and HqE are identical until after the (j+ 1)st stage is complete, this
is precisely qQ,j+1. ut

Lemma 5. For j = 0, . . . , qC ,∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ 1

2κ/2
(4 +

√
qQ + log(11|T |) + n+ κ/2) +

3j

2κ
.

Proof. Let H ⊂ {0, 1}n be a uniform set of size |H| = 2n−1, and pick a random
bijection M : H → {0, 1}n \H. We introduce additional hybrids H∗j and H∗∗j .

Experiment H∗j . Sample uniform Ẽ ∈ E(T , n) and P ∈ P(n), and uniform
k ∈ {0, 1}κ. Then

1. Run A, answering its classical queries using Ẽ and its quantum queries using
P , until A makes its (j + 1)st classical query (tj+1, xj+1, bj+1 = 0), which
we assume for concreteness to be in the forward direction.9

2. Define s∗ = f1(tj+1, P (k||0n−κ))⊕ xj+1 and, using the notation introduced

in Equation (1), let s∗∗ ∈ 〈s∗〉, s∗∗ 6= s∗. Sample a bit b̃ ∈ {0, 1} such that
Pr[b̃ = 1] = 2−n. If b̃ = 1, set P (1) = P ; 10 else define P (1) as

P (1)(x) = (P ◦ swaps∗, s∗∗)(x)

Continue running A, answering its remaining classical queries (including the
(j+1)st) using TEM-KXk[(P (1))Tj ,k], and its quantum queries with (P (1))Tj ,k.

Experiment H∗∗j is the same as H∗j , except that the (j+1)st query is answered

using Ẽ. Thus we can write H∗j and H∗∗j as the following oracle sequences:

H∗j : P, Ẽ, P, · · · , Ẽ, P, TEM-KXk[(P (1))j ], (P (1))j , · · · ,TEM-KXk[(P (1))j ], (P (1))j

H∗∗j : P, Ẽ, P, · · · , Ẽ, P︸ ︷︷ ︸
j classical queries

, Ẽ , (P (1))j , · · · ,TEM-KXk[(P (1))j ], (P (1))j︸ ︷︷ ︸
qC − j classical queries

(recall we let (P (1))j denote (P (1))Tj ,k). We have∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ ∣∣Pr[A(Hj) = 1]− Pr[A(H∗j ) = 1]

∣∣
+
∣∣Pr[A(H∗j ) = 1]− Pr[A(H∗∗j ) = 1]

∣∣
+
∣∣Pr[A(H∗∗j ) = 1]− Pr[A(H′j) = 1]

∣∣ ,
and we now bound the three differences on the right-hand side.

Let A be a distinguisher between Hj and H∗j . We construct from A a distin-
guisher D for the resampling experiment of Lemma 3 for H and M as used to
define H∗j and F = {f1(t, ·)⊕ x

∣∣x, t ∈ {0, 1}n}.
9 As in [1], the case of an inverse query is entirely symmetric.

10 b̃ = 1 denotes the event that the j + 1th swap is identity, i.e, for an arbi-
trary (tj+1, xj+1, yj+1), Pr[b̃ = 1] = Pr[P (xj+1 ⊕ f1(tj+1, P (k||0n−κ)) = yj+1 ⊕
f2(tj+1, P (k||0n−κ)].
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Phase 1: D is given quantum access to a uniform permutation P . It samples a
uniform Ẽ ← E(T , n) and then runs A, answering its quantum queries with
P and its classical queries with Ẽ (in the appropriate directions), until A
submits its (j + 1)st classical query (tj+1, xj+1, bj+1 = 0). At that point, D
has a list Tj =

(
(t1, x1, y1, b1), · · · , (tj , xj , yj , bj)

)
of the queries A has made

to its classical oracle thus far. Define the distribution D on {0, 1}n by

D(x) =

{
1
2κ if x has n− κ trailing 0s

0 otherwise.

D chooses τ ∈ F where τ(·) = f1(tj+1, ·)⊕ xj+1 and outputs (D, τ).

Phase 2: The challenger samples ŝ ← D. Parse ŝ as k‖0n−κ. D is given ŝ and
quantum oracle access to the permutation P (b). It continues running A,
answering its remaining classical queries—including the (j + 1)st—using
TEM-KXk[(P (b))Tj ,k], and its remaining quantum queries using (P (b))Tj ,k.
D outputs whatever A does.

Note that in phase 1, distinguisher D perfectly simulates experiments Hj

and H∗j for A until the point where A makes its (j + 1)st classical query. If

b = 0, D gets access to P (0) = P in phase 2. Since D answers all quantum
queries using (P (0))Tj ,k and all classical queries using TEM-KXk[(P (0))Tj ,k], we
see that D perfectly simulates Hj for A in that case. If, on the other hand, b = 1
in phase 2, then D gets access to P (1), where P (1)(x) = P ◦ swaps0, s1(x) and
{s0, s1} = 〈f1(tj+1, P (ŝ) ⊕ xj+1)〉. In this case D perfectly simulates H∗j for A,

conditioned on b̃ = 0. Applying Lemma 3 thus gives

∣∣Pr[A(Hj) = 1]− Pr[A(H∗j ) = 1]
∣∣

≤
∣∣∣Pr[A(Hj) = 1]− Pr[A(H∗j ) = 1|b̃ = 0]

∣∣∣+ 2 · 2−n

≤
√
ε

(
1 +

√
qQ + log

(
11
|F |√
ε

))
+ 2 · 2−n

≤
√

2

2κ/2

(
1 +

√
qQ + log(11|T | · 2n · 2κ/2)

)
+ 2 · 2−n

≤
√

2

2κ/2

(
4 +

√
qQ + log(11|T |) + n+ κ/2

)
. (4)

(Note that |F | = |T | · 2n and ε = 2
2κ .)

Next, we bound the distinguishability of H∗j and H∗∗j . Recall that in H∗j the

(j + 1)st query is answered with TEM-KXk[(P (1))Tj ,k](xj+1), whereas in H∗∗j
that query is answered with Ẽtj+1

(xj+1). We analyze the distribution of yj+1

in H∗j . As swaps0, s1 = swaps1, s0 , we can assume without loss of generality that
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s0 = f1(tj+1, P (ŝ))⊕ xj+1. With probability 2−n we have b̃ = 1 and thus

yj+1
def
= TEM-KXk[(P (1))Tj ,k](tj+1, xj+1)

= PTj ,k(xj+1 ⊕ f1(tj+1, P (k||0n−κ)))⊕ f2(tj+1, P (k||0n−κ))

= PTj ,k(s0)⊕ f2(tj+1, P (k||0n−κ)) .

If on the other hand b̃ = 0 we get

yj+1
def
= TEM-KXk[(P (1))Tj ,k](tj+1, xj+1)

= (P (1))Tj ,k(s0)⊕ f2(tj+1, P (k||0n−κ))

= PTj ,k(s1)⊕ f2(tj+1, P (k||0n−κ)) .

Since H,M were chosen uniformly, s1 is uniform in {0, 1}n \ {s0} (even con-
ditioned on the view of A). As PTj ,k(·)⊕ f2(tj+1, P (k||0n−κ)) is a permutation,
we conclude that yj+1 is uniform. This is not identical to the distribution of yj+1

in H∗∗j , which is uniform subject to the constraint that Ẽtj+1 is a permutation.

Define the set Yj+1 = {yi | ti = tj+1}, i.e., these are the outputs of Ẽ that
A learned from queries with the same tweak tj+1 used in the (j + 1)st query.
Bounding the probability that yj+1 ∈ Yj+1 when yj+1 is uniform gives an upper
bound on the probability that A can distinguish H∗j and H∗∗j . Thus,

∣∣Pr[A(H∗j ) = 1]− Pr[A(H∗∗j ) = 1]
∣∣ ≤ |Yj+1|

2n
≤ j

2n
≤ j

2κ
. (5)

Finally, we bound the distinguishability of H∗∗j and H′j . Recall that the
difference between these experiments is that from the (j + 1)st query onward
the former uses (P (1))Tj ,k while the latter uses PTj+1,k (both for the quantum
queries of A and to instantiate TEM-KX for the classical queries of A). It follows
that the two experiments are identical if (P (1))Tj ,k and PTj+1,k are equal. In
what follows we bound the probability that they are not equal.

If b̃ = 1, the (j + 1)st swap is the identity and thus (P (1))Tj ,k = PTj+1,k. If
b̃ = 0, both (P (1))Tj ,k and PTj+1,k involve j+1 swaps: (P (1))Tj ,k involves j swaps
from the first j queries plus the extra swap by the definition of P (1), whereas
PTj+1,k induces j+ 1 swaps from the first j+ 1 queries. Since the (j+ 1)st query
is a forward query, we have

(P (1))
Tj ,k

(x) =
←−
S Tj ,P (1),k ◦

−→
S Tj ,P (1),k ◦ P (1)(x)

and
(P )Tj+1,k(x) =

←−
S Tj+1,P,k ◦

−→
S Tj+1,P,k ◦ P (x).

Let X = {x1 ⊕ f1(t1, P (k||0n−κ)), . . . , xj ⊕ f1(tj , P (k||0n−κ))}, i.e., it contains
the inputs to P from the first j classical queries by A. Let Bad0 be the event
that xj+1 ⊕ f1(tj+1, P (k||0n−κ)) ∈ X and Bad1 be the event that s1 ∈ X .

We bound the probabilities of Bad0, Bad1, and then show that (P (1))Tj ,k =
PTj+1,k when neither Bad0 nor Bad1 occurs.
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We have observed already that s1 is uniform in {0, 1}n \ s0, so we conclude
that Pr[Bad1] ≤ j

2n−1 We continue with bounding the probability of Bad0, which
is more complex since we have to consider the tweaks from the first j+ 1 queries
of A. Intuitively, when considering a query whose tweak was the same as tj+1,
we rely on the assumption that A does not repeat queries; for queries where the
tweaks are different, we use the XOR-uniformity of f1, f2. Define

X= = {xi ⊕ f1(ti, P (k||0n−κ)) | 1 ≤ i ≤ j, ti = tj+1}
X 6= = {xi ⊕ f1(ti, P (k||0n−κ)) | 1 ≤ i ≤ j, ti 6= tj+1} .

These sets partition X into inputs for the same tweak as the (j + 1)st query
(X=) and those for different tweaks (X 6=). Hence,

Pr[Bad0] = Pr[Bad=
0 ] + Pr[Bad6=0 ] ,

where Bad=
0 is the event that xj+1⊕ f1(tj+1, P (k||0n−κ)) ∈ X= and Bad6=0 is the

event that xj+1 ⊕ f1(tj+1, P (k||0n−κ)) ∈ X 6=.
For Bad=

0 , we have

xj+1 ⊕ f1(tj+1, P (k||0n−κ)) ∈ {xi ⊕ f1(ti, P (k||0n−κ)) | ti = tj+1}
⇔ xj+1 ∈ {xi ⊕ f1(ti, P (k||0n−κ))⊕ f1(tj+1, P (k||0n−κ)) | ti = tj+1}
⇔ xj+1 ∈ {xi | ti = tj+1} ,

i.e., event Bad=
0 is equivalent to xj+1 ∈ {xi | ti = tj+1}. Since A does not repeat

queries, this means Pr[Bad=
0 ] = 0.

For Bad6=0 , rewriting yields

xj+1 ⊕ f1(tj+1, P (k||0n−κ)) ∈ {xi ⊕ f1(ti, P (k||0n−κ)) | ti 6= tj+1}
⇔ xj+1 ∈ {xi ⊕ f1(ti, P (k||0n−κ))⊕ f1(tj+1, P (k||0n−κ)) | ti 6= tj+1} .

XOR-uniformity of f1, together with the fact that f1(t, ·) is a permutation for
all t, implies that gt,t′ : x 7→ f1(t, x)⊕f1(t′, x) is a permutation for all t 6= t′. Thus

gti,tj+1◦P preserves the min-entropy of k‖0n−κ and Pr[Bad6=0 ] ≤ |X 6=|/2κ ≤ j/2κ.
Summarizing,

Pr[Bad0] = Pr[Bad=
0 ] + Pr[Bad6=0 ] ≤ 0 +

|X 6=|
2κ
≤ j

2κ
.

If neither Bad0 or Bad1 happens, then P (1)(xi⊕f1(ti, P (k||0n−κ))) = P (xi⊕
f1(ti, P (k||0n−κ))) for every 1 ≤ i ≤ j. Given that, we have

−→
S Tj ,P (1),k =

j∏
i=1

swap1−bi
P (1)(xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ))

=

j∏
i=1

swap1−bi
P (xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ)) =

−→
S Tj ,P,k
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and

←−
S Tj ,P (1),k =

1∏
i=j

swapbi
P (1)(xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ))

=

1∏
i=j

swapbiP (xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ)) =
←−
S Tj ,P,k .

Therefore,

(P (1))Tj ,k(x) =
←−
S j,P (1),k ◦

−→
S j,P (1),k ◦ P (1)(x)

=
←−
S j,P,k ◦

−→
S j,P,k ◦ swapP (f1(tj+1,P (k||0n−κ))⊕xj+1), yj+1⊕f2(tj+1,P (k||0n−κ)) ◦ P (x)

=
←−
S j+1,P,k ◦

−→
S j+1,P,k ◦ P (x) = PTj+1,k.

Putting everything together, we conclude that∣∣Pr[A(H∗∗j ) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ Pr[b̃ = 0] (Pr[Bad0] + Pr[Bad1])

≤ 2n − 1

2n

(
j

2κ
+

j

2n − 1

)
≤ 2j

2κ
.

Combining this with Equations (4) and (5) concludes the proof. ut

Tweakable Even-Mansour. Recall that the tweakable Even-Mansour con-
struction TEM is defined as

TEMf1,f2
k [P ](t, x) = P (x⊕ f1(t, k))⊕ f2(t, k) .

Setting κ = n and noting that P (k) is uniform when k is uniform (since P is a
permutation), Theorem 3 yields the following as an easy corollary:

Theorem 4. Let A be an adversary making qC classical queries to its first oracle
and qQ ≥ 1 quantum queries to its second oracle. If f1, f2 are proper with respect
to T , then∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
ATEM

f1,f2
k [P ],P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 6 · 2−n/2 ·

(
qC
√
qQ + qQ

√
qC
)
.

We note that this theorem is obtained as a corollary of Theorem 3 only for qQ ≥
max(log(11|T |), n). While small values of qQ are not particularly interesting to
consider, the theorem can be proven for those using a resampling lemma like
Lemma 3, but without key expansion.
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4.2 Security of TEM-KX1

We also consider an alternate method of expanding a key k ∈ {0, 1}κ to an
effective key of length n, in which we compute FP (k) = P (k‖0n−κ) ⊕ k‖0n−κ.
This gives rise to TEM-KX1, a variant of tweakable Even-Mansour defined as

TEM-KX1f1,f2k [P ](t, x) = P (x⊕ f1(t, FP (k)))⊕ f2(t, FP (k))) .

We obtain a tighter security bound for this variant than for TEM-KX; this allows
us to give a tighter bound in the context of our analysis of Elephant in Section 5.2.

We first show that FP is a pseudorandom generator, even against quantum
adversaries with quantum oracle to P and P−1.

Theorem 5. For any quantum algorithm A making at most qQ quantum queries,∣∣∣∣∣∣∣ Pr
r←{0,1}n
P←P(n)

[
AP (r) = 1

]
− Pr
k←{0,1}κ
P←P(n)

[
AP (P (k||0n−κ)⊕ k||0n−κ) = 1

]∣∣∣∣∣∣∣ ≤ 4qQ·2−κ/2.

Proof. Given an adversary A, we construct a distinguisher D for the arbitrary
reprogramming experiment from Lemma 2:

Phase 1: D samples a uniform P ∈ Pn and a uniform r ∈ {0, 1}n, and defines
a randomized algorithm B which proceeds as follows:
1. sample k ∈ {0, 1}κ;
2. output a set of reprogramming pairs B so that P blinded with B is
P (B)(x) = P ◦ swapP−1((k||0n−κ)⊕r), k||0n−κ .

Then D sends P , r, and B to the challenger.
Phase 2: The challenger samples k ∈ {0, 1}κ, and runs B with k and r to

compute B. Then the challenger samples a uniform b ∈ {0, 1}, sets P0 = P
and P1 = P (B), and gives D access to Pb (in both the forward and inverse
directions). D runs A with input r and oracle Pb. This phase ends when A
has made its last query and outputs its guess.

Phase 3: D outputs what A outputs.

Note that there are four reprogramming points. By construction, for all triples
(P, r, x), it holds that Prk←{0,1}κ [x ∈ B1] ≤ 4 · 2−κ. By Lemma 2,

|Pr[D outputs 1 | b = 0]− Pr[D outputs 1 | b = 1]| ≤ 4qQ · 2−κ/2 . (6)

Now consider the distinguisher D in the two cases b = 0 and b = 1. When b = 0,
D simply runs AP (r) for uniform r. When b = 1, D runs AP1(r) for uniform r.
Since P is uniform, so is P1. We have

P1(k||0n−κ)⊕ k||0n−κ = P (P−1((k||0n−κ)⊕ r))⊕ k||0n−κ

= k||0n−κ ⊕ r ⊕ k||0n−κ = r

for a uniform k ∈ {0, 1}κ.
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Next, we prove that P1 is uniform conditioned on P1(k||0n−κ) = r⊕k||0n−κ.
To prove this, let X = {x1, ..., x`} and Y = {y1, ..., y`} be two unique subsets
of {0, 1}n with the conditions that k||0n−κ 6∈ X and r ⊕ k||0n−κ 6∈ Y . Let
L = {(x1, y1), ..., (x`, y`)} be the set of ` corresponding pairs. We show that

Pr[∀i = 1, ..., ` : P1(xi) = yi] =
1

(2n − 1) · · · (2n − `)
.

Letting

A = Pr[P−1((k||0n−κ)⊕ r) /∈ X]

·Pr[∀i = 1, .., ` : P1(x1) = yi | P−1((k||0n−κ)⊕ r) /∈ X]

=
2n − `

2n
1

(2n − 1) · · · (2n − `)
and

B =
∑̀
j=1

Pr[P−1((k||0n−κ)⊕ r) = xj ]

·Pr[∀i 6= j : P (k||0n−κ) = yj ∧ P1(xi) = yi | P−1((k||0n−κ)⊕ r) = xj ]

=
∑̀
j=1

1

2n
1

(2n − 1) · · · (2n − `)
=

`

2n · · · (2n − `)
,

we have

Pr[∀i = 1, ..., ` : P1(xi) = yi] = A + B =
1

(2n − 1) · · · (2n − `)
. (7)

Equation (7) shows that the distribution of P1 is uniform, conditioned on P1(k||0n−κ) =
r ⊕ k||0n−κ. It follows that the b = 1 case is identical to an execution of
AP (k||0n−κ ⊕ P (k||0n−κ)). The result then follows directly from Equation (6).

ut
The following is an immediate corollary of Theorem 4 and Lemma 5.

Theorem 6. Let A be an adversary making qC classical queries to its first oracle
and qQ ≥ 1 quantum queries to its second oracle. If f1, f2 are proper with respect
to T , then ∣∣∣∣∣∣∣ Pr

k←{0,1}κ;
P←P(n)

[
ATEM-KX1f1,f2k [P ],P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 4qQ2−κ/2 + 6 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

5 Applications

In this section we use our results of Section 4 to show post-quantum security
of several lightweight symmetric-key schemes: Chaskey [16], Elephant [3], and a
variant of Minalpher [18].
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5.1 Chaskey

Chaskey [16] is an ISO-standardized lightweight MAC whose construction is
based on a specific public permutation. We will show security in the random per-
mutation model; we thus replace the public permutation at the core of Chaskey
with a uniform P ← P(n). Define FPk,k′(x) = P (x ⊕ k) ⊕ k′, i.e., the Even-
Mansour cipher based on P . Evaluating Chaskey using key k involves evaluat-
ing FPk,k, FPk⊕k1,k1 , and FPk⊕k2,k2 , where k1 = 2k, k2 = 4k, and multiplication
is in the field GF (2n) with respect to a particular representation of field ele-
ments as n-bit strings. Prior work [16] shows that Chaskey is a secure MAC if
these three instances of FP are indistinguishable from three independent random
permutations—a notion called 3PRP security—and also proves 3PRP security
of F when P is modeled as a public random permutation. Although this prior
work considered classical adversaries only, it is not hard to verify that the proofs
carry through to imply security of Chaskey against quantum adversaries making
classical MAC queries, so long as 3PRP security of F holds against adversaries
making classical queries to the secretly keyed ciphers and quantum queries to P .

As we now show, Theorem 4 readily implies 3PRP security of F in the post-
quantum setting.

Theorem 7. Let A be a quantum algorithm making qC classical queries to its
first three oracles and qQ ≥ 1 quantum queries to its fourth oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n,
P←P(n)

[
AFPk,k,F

P
k⊕k1,k1

,FPk⊕k2,k2 ,P = 1
]
− Pr
R1,R2,R3,P←P(n)

[
AR1,R2,R3,P = 1

]∣∣∣∣∣∣∣
≤ 6 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
,

where k ∈ {0, 1}n is uniform, k1 = 2k, and k2 = 4k.

Proof. Letting T = {0, 1, 2} ⊂ GF (2n) and defining f1(t, k) = k ⊕ (2tk) and
f2(t, k) = 2t · k, we see that

TEMf1,f2
k [P ](0, x) = P (x⊕ k)⊕ k = Fk,k(x)

TEMf1,f2
k [P ](1, x) = P (x⊕ k ⊕ 2k)⊕ 2k = Fk⊕k1,k1(x)

TEMf1,f2
k [P ](2, x) = P (x⊕ k ⊕ 4k)⊕ 4k = Fk⊕k2,k2(x).

The theorem thus follows from Theorem 4 once we verify that f1, f2 satisfy the
required properties. Uniformity of f1 and f2 follow readily from invertibility of
non-zero elements in GF (2n). Finally, note that

f1(t, k)⊕ f1(t′, k) = 2 · (t⊕ t′) · k and f2(t, k)⊕ f2(t′, k) = (2t ⊕ 2t
′
) · k,

with t⊕ t′ and 2t ⊕ 2t
′

non-zero for distinct t, t′; XOR-uniformity follows. This
concludes the proof of the theorem. ut
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As discussed earlier, the above theorem in combination with [16, Theorem 1,2]
implies post-quantum security (in the public random permutation model) of
Chaskey. Below we state a simple version of the theorem, leaving out some de-
tails and parameters. We formulate MAC unforgeability in terms of a distin-
guishing game, in which the adversary is equipped with the Mack oracle, and
must distinguish the oracle implementing Verk from the oracle that always re-
jects. Clearly, the adversary needs to produce a valid tag as otherwise the oracles
are indistinguishable. (To exclude trivial wins, the adversary cannot forward a
message-tag pair from the first oracle to the second oracle—which corresponds
to the common requirement of forging a tag on a “fresh” message.)

Theorem 8. Let k ← {0, 1}n and let (Mac,Ver) be the Chaskey MAC. Let A be
a quantum algorithm making qC classical queries to its first two oracles and qQ
quantum queries to its third oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
AMack,Verk,P = 1

]
− Pr
k←{0,1}n
P←P(n)

[
AMack,⊥,P = 1

]∣∣∣∣∣∣∣
≤ O(2−n · qC) + 6 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)

5.2 Elephant

Elephant [3] is a lightweight authenticated encryption scheme (with associated
data) that was a finalist in the lightweight cryptography standardization effort
of NIST [19]. It is based on a tweakable block cipher we call ELE, which is con-
structed from a specific public permutation. Prior work [3] proves—in the purely
classical setting—that Elephant is a secure authenticated encryption scheme if
ELE is a secure tweakable block cipher, and that ELE is a secure tweakable block
cipher if P is modeled as a public random permutation. Just as with Chaskey, it
is straightforward to verify that this proof carries over to the setting of quantum
adversaries with classical access to Elephant, provided that ELE is post-quantum
secure.

For a public permutation P , the tweakable block cipher ELE[P ] : {0, 1}n−s×
T × {0, 1}n → {0, 1}n used by Elephant is defined as

ELE[P ]k(t, x) = P (x⊕ f(t, P (k‖0s)))⊕ f(t, P (k‖0s)), (8)

where f : T × {0, 1}n → {0, 1}n is a function that is proper with respect to T .
The particular structure of f and T is not relevant for us. Since ELE is a special
case of TEM-KX where f1 = f2 = f , post-quantum security of ELE follows
directly from Theorem 3:
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Theorem 9. Let ELE be as above and let A be an adversary making qC classical
queries to its first oracle and qQ ≥ 1 quantum queries to its second oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
AELE[P ]k,P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 6 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

As discussed earlier, the above theorem in combination with [3, Theorem B.3]
implies post-quantum security (in the public random permutation model) of
Elephant. Recall that, in the authenticated encryption security experiment, the
adversary is tasked with distinguishing the (Enck,Deck) oracle pair from the pair
of oracles in which the first outputs random ciphertexts and the second always
rejects. (Note that typical restrictions have to be imposed on the adversary to
avoid trivial wins by composing their oracles; we do not state these here explic-
itly.) A fully flexible security theorem for Elephant involves many parameters
and details; for simplicity, we record only a simple version below.

Theorem 10. Consider a quantum adversary making a total of qC classical
queries to its first two oracles and qQ quantum queries to its third oracle in the
post-quantum AEAD security for Elephant. The distinguishing advantage of such
an adversary is∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
AEnck,Deck,P = 1

]
− Pr
P←P(n)

[
A$,⊥,P = 1

]∣∣∣∣∣∣∣
≤ O(2−n · qC) + 6 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

A variant with a tighter security bound. Next, we consider a slight variant
of Elephant, for which we can give a tighter security bound. Recall that ELE
expands the key via k‖0s 7→ P (k‖0s). Here we instead consider expand the key
via k 7→ k||0s ⊕ P (k||0s). The tweakable block cipher then becomes

ELE-KX1[P ]k(t, x) = P (x⊕ f(t, P (k‖0s)⊕ k||0s))⊕ f(t, P (k‖0s)⊕ k||0s) (9)

The security of the above is then a direct consequence of Theorem 6.

Theorem 11. Let ELE-KX1 be as above and let A be an adversary making qC
classical queries to its first oracle and qQ quantum queries to its second oracle.
Then ∣∣∣∣∣∣∣ Pr

k←{0,1}m;
P←P(n)

[
AELE-KX1[P ]k,P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 2(qQ + qC) ·

√
2/2n−s + 6 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

As before, the above theorem implies post-quantum security of the vari-
ant of Elephant constructed from the cipher in Eq. (9) (in place of the cipher
from Eq. (8)).
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5.3 (A variant of) Minalpher

Minalpher is an authenticated encryption scheme with associated data (AEAD);
it was a second-round candidate in the CAESAR competition [18]. The mode of
Minalpher is a nonce-based encrypt-then-MAC construction based on a single-
round tweakable Even-Mansour cipher MA, which is constructed from a specific
permutation. Prior work in the purely classical setting [18] first proves that MA
is a secure tweakable block cipher when P is a public random permutation, and
then proves that, as a consequence, Minalpher is a secure AEAD scheme. Just as
with Elephant and Chaskey, the latter step easily translates to the post-quantum
setting. It thus remains to show that MA is secure in this model.

We first recall the tweak function of Minalpher. Let n and s be positive
integers such that n/2− s ≥ 1, and d1 and d2 be two integers. Define the tweak
space T as follows.

T := {t = (flag, N, i, j) ∈ {0, 1}s × {0, 1}n/2−s × Zd1 × Zd2} . (10)

The flags are specific bit strings of length s which specify whether the tweaked
cipher will be used to process message blocks or associated data blocks.11 Mi-
nalpher imposes some restrictions on the tweak space in order to prevent trivial
attacks. Specifically, we require that the following conditions hold over GF(2n):

– yi(y + 1)j 6= 1
– yi(y + 1)j 6= yi

′
(y + 1)j

′
for any distinct (i, j) and (i′, j′).

The tweak function L : T × {0, 1}n/2 → {0, 1}n is then defined as

L(t, k) = yi(y + 1)j(k||flag||N)⊕ P (k||flag||N) .

Then the tweakable block cipher MA : {0, 1}n/2×T ×{0, 1}n → {0, 1}n used by
Minalpher is defined as

MAk(t, x) = P (x⊕ L(t, k)))⊕ L(t, k).

Note that Minalpher pads the key with a flag and the nonce—which are both
part of the tweak—while Elephant pads the key with just 0s. This prevents us
from simply using Theorem 3 to analyze MA, as the flag and nonce have to affect
the tweaked keys.

To arrive at an (arguably close) variant of Minalpher for which we can prove
post-quantum security, we modify the tweak function as follows. Instead of ex-
panding the key using the nonce, we only expand by appending 0s (as done in
TEM-KX and Elephant) and move the nonce part entirely to the tweak function.
Instead of expanding the key via the mapping k 7→ (k||flag||N)⊕ P (k||flag||N),
we expand the key via the mapping k 7→ (k||0n/2) ⊕ P (k||0n/2). At the same
time, to ensure that flag||N still affects the key, we also make it part of the

11 There is also a flag for the MAC mode for Minalpher, but we are mainly interested
in the mode for authenticated encryption.
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tweak function by setting flag||N to be n bits and append it to the original
tweak function. With those changes, the tweak space becomes

T ′ := {t = (flag, N, i, j) ∈ {0, 1}s × {0, 1}n−s × Zd1 × Zd2} ,

and the new tweak function L′ : {0, 1}n/2 × T ′ → {0, 1}n is defined as

L′(t, k) = yi(y + 1)j(flag||N)(k||0n/2)⊕ P (k||0n/2) .

Let Minalpher′ be the variant of Minalpher constructed by using the tweakable
block cipher

MA′k(t, x) = P (x⊕ L′(t, k))⊕ L′(t, k)

in place of MA. We can then apply Theorem 6.

Theorem 12. Let MA′ be as above and let A be an adversary making qC classi-
cal queries to its first oracle and qQ quantum queries to its second oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n/2;
P←P(n)

[
AMA′k,P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 2(qQ + qC) ·

√
2/2n/2 + 6 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

Similarly to the case of Elephant, we can combine the above with classical
results about the security of Minalpher ([18, Theorem 1] and [18, Theorem 2]) to
arrive at a proof of post-quantum security of Minalpher′.

Theorem 13. Consider a quantum adversary making a total of qC classical
queries to its first two oracles and qQ quantum queries to its third oracle in
the post-quantum AEAD security for Minalpher′ (constructed from MA′). The
distinguishing advantage of such an adversary is∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
AEnck,Deck,P = 1

]
− Pr
P←P(n)

[
A$,⊥,P = 1

]∣∣∣∣∣∣∣
≤ O(2−n · qC) + 2(qQ + qC) ·

√
2/2n/2

+6 · 2−n/2
(
qC
√
qQ + qQ

√
qC
)

Acknowledgments

Work of Gorjan Alagic, Chen Bai, and Jonathan Katz was supported in part
by NSF award CNS-2154705. Gorjan Alagic also acknowledges support from the
U.S. Army Research Office under Grant Number W911NF-20-1-0015, the U.S.
Department of Energy under Award Number DE-SC0020312, and the AFOSR
under Award Number FA9550-20-1-0108. Work of Christian Majenz was funded
by a NWO VENI grant (Project No. VI.Veni.192.159). Work of Patrick Struck

24



was funded by the Bavarian State Ministry of Science and the Arts in the frame-
work of the bidt Graduate Center for Postdocs (while working at University of
Regensburg) and supported by the Hector Foundation II.

Gorjan would like to thank Yu Sasaki for suggesting to analyze Minalpher
using the techniques of this paper.

References

1. Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz. Post-quantum
security of the Even-Mansour cipher. In Advances in Cryptology—Eurocrypt 2022,
Part III, volume 13277 of LNCS, pages 458–487. Springer, 2022.
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A Proof of New Resampling Lemma

We now restate and prove Lemma 3 from Section 3.

Lemma 6. Let H ⊂ {0, 1}n with |H| = 2n−1, let M : H → {0, 1}n \ H be a
bijection, and let F ⊂ P(n). Consider the following resampling game involving
a quantum distinguisher D:

Phase 1: Choose uniform P ∈ P(n), and give D quantum access to P . D out-
puts (D, τ), where D is a distribution on {0, 1}n and τ ∈ F .

Phase 2: Sample ŝ← D and compute {s0, s1} = 〈τ ◦ P (ŝ)〉. Let P (0) = P and
define P (1) = P ◦ swaps0, s1 . A uniform bit b ∈ {0, 1} is chosen, and D is

given ŝ and quantum access to P (b). Then D outputs a guess b′.

Let ε = 2 · E(D,τ)←DP [H∞(D)]. For any D making at most q queries to P in
phase 1,

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤
√
ε·

(
1 +

√
q + log

(
11|F |√

ε

))
.

Proof. We use the plain superposition oracle for permutations as defined, e.g.,
in [1] to simulate the permutation P . The resampling game with a superposition
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in place of P acts on quantum registers X (query input), Y (query output), E
(adversary memory), and F (the oracle simulation’s internal register). The oracle
register F is partitioned into 2n registers Fx, indexed by permutation inputs x.
The initial state is

|η〉F = (2n!)
−1/2 ∑

π∈P(n)

|π〉F ,

where |π〉F =
⊗

x|π(x)〉Fx .
We begin by defining a basis BM of CP(n) = span{|π〉 : π ∈ P(n)}. Define

the relation RM ⊂ P(n)× P(n) such that

(π, σ) ∈ RM ⇔ {π(x), π(M(x))} = {σ(x), σ(M(x))} for all x ∈ H,

with the corresponding equivalence classes

[π]M = {σ ∈ P(n) : (π, σ) ∈ RM} .

We denote the set of all equivalence classes by P(n)/RM . For any x, x′ ∈ {0, 1}n
and c ∈ {0, 1}, define the quantum state

|Ψ cx,x′ 〉 =
1√
2

(|x〉|x′〉+ (−1)c|x′〉|x〉) .

Define ΓM = P(n)/RM × {0, 1}H . While ΓM and the equivalence classes [π]M
do depend on M , we will sometimes suppress this in the notation.

For each pair ([π], y) ∈ Γ we define a vector |([π], y)〉F as follows. Let π be
such that π(x) > π(M(x)) for all x ∈ H, where “<” denotes lexicographic order;
we call this π the canonical representative of [π]. We define

|([π], y)〉F :=
⊗
x∈H

∣∣∣Ψyxπ(x),π(M(x))

〉
FxFM(x)

.

Observe that if [π] = [σ] and y = y′ then 〈([π], y) | ([σ], y′)〉 = 1, and otherwise
〈([π], y) | ([σ], y′)〉 = 0. The set

BM = {|([π], y)〉 : ([π], y) ∈ Γ}

is thus an orthonormal set. To see that it forms a basis of CP(n), observe that
|BM | = |P(n)|.It follows that, given a fixed M , any state |ϕ〉XYEF can be
decomposed as

|ϕ〉XYEF =
∑

([π],y)∈Γ

|ϕ([π], y)〉XYE ⊗ |([π], y)〉F ,

where |ϕ([π], y)〉 are subnormalized such that∑
([π],y)∈Γ

‖|ϕ([π], y)〉‖2 = 1.

Define Γj = {([π], y) ∈ Γ : |y| ≤ j}, where |y| denotes Hamming weight.
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Claim. Let |φq〉XYEF be the global state after the (unitary part of the) distin-
guisher has made q queries in Phase 1 to a superposition oracle initialized in any
state |τ̃ 〉 such that 〈([π], y) | τ̃〉 = 0 for all y 6= 0. Then for all y with |y| > q, we
have | φq([π]M , y) 〉 = 0.

Proof. We prove the claim by induction on q. The base case q = 0 holds by
assumption. For the inductive step, say the claim holds for q−1, and recall that

|φq〉XYEF = UXYEOXY F |φq−1〉XYEF .

By the induction hypothesis we can decompose

|φq−1〉XYEF =
∑

([π],y)∈Γq−1

|ψq−1([π], y)〉XYE ⊗ |([π], y)〉F .

Using this decomposition and a linearity argument, it suffices to show that for
|y| ≤ q − 1, the state OXY F |x〉X |y〉Y |([π], y)〉F is supported on basis vectors
|([π′], y′)〉F with |y′| ≤ q. This follows from the fact that

OXY F |x〉X = |x〉X ⊗O(x)
Y Fx

.

for some operator O(x). This establishes the claim. ut

Next, define the projector

Π≤qF :=
∑

([π],y)∈Γq

|([π], y)〉〈([π], y)|F

and let Π± = 1
2 (1 ± Swap) be the projectors onto the symmetric and antisym-

metric subspaces of C2n ⊗ C2n .
We will rely on the following claim:

Claim.

Pr
σ←P(n)

[∃τ ∈ F, S ⊂ {0, 1}n ∀x ∈ S : |S| = m ∧ τ ◦ σ(x) ∈ 〈x〉] ≤ 11 · 2−m · |F |,

Proof. For fixed τ ∈ F and S ⊂ {0, 1}n of size m, the number of permutations
P for which P (x) ∈ 〈x〉 is at most 2m · (2n −m)!. Thus,

Pr
σ←P(n)

[∀x ∈ S : τ ◦ σ(x) ∈ 〈x〉] ≤ 2m
(2n −m)!

2n!
.

A union bound over all τ and S yields

Pr
σ←P(n)

[S ⊂ {0, 1}n with |S| = m,∀τ ∈ F,∀x ∈ S : τ ◦ σ(x) ∈ 〈x〉] ≤ |F |2
m

m!
.

Using 11m! ≥ 4m proves the claim. ut
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We now return to the proof of Lemma 3. Let Σ≤mF be the projector onto the
subspace of CP(n) spanned by the permutations π such that∣∣{x ∈ {0, 1}n∣∣∀τ ∈ F : τ ◦ π(x) ∈ 〈x〉

}∣∣ ≤ m.
The claim implies∥∥∥∥∥∥|η〉 − 1√

‖Σ≤mF |η〉‖
Σ≤mF |η〉

∥∥∥∥∥∥ ≤ 2 ·
√

11 · 2−m|F |.

Note that Π≤0Σ≤m|η〉 = Σ≤m|η〉. We analyze the resampling game where
the random permutation is replaced by a superposition oracle initialized with

1√
‖Σ≤mF |η〉‖

Σ≤mF |η〉F .

Let |ψ〉XYEF denote the global state after phase 1, conditioned on a particu-
lar pair (D, τ) output by the distinguisher. As done in [8], we can relax the task
of the distinguisher as follows. Instead of merely providing access to an oracle
interface acting on |ψ〉XYEF for b = 0 and SwapFs0Fs1 |ψ〉XYEF for b = 1, we
can give the distinguisher arbitrary access to all registers. After this relaxation,
the task is simply that of distinguishing the two quantum states.

For x ∈ {0, 1}n, define the projector Q〈x〉 =
∑
y∈〈x〉 |y〉〈y|. Setting

Πψ,ŝ,z =
1

‖|z〉〈z|Fŝ |ψ〉XYEF ‖
2 |z〉〈z|Fŝ |ψ〉〈ψ|XYEF |z〉〈z|Fŝ ,

it follows that

2 Pr[b = b′ | (D,H,M), s0]− 1

≤ 1

2

∥∥∥Πψ,ŝ,z − SwapF〈z〉Πψ,ŝ,zSwap〈z〉

∥∥∥
1

=
1

2

∥∥∥Πψ,ŝ,z (1− Swap)〈z〉 + (1− Swap)〈z〉Πψ,ŝ,zSwap〈z〉

∥∥∥
1

≤
∥∥∥Πψ,ŝ,zΠ

−
〈τ(z)〉

∥∥∥
1

+
∥∥∥Π−〈τ(z)〉Πψ,ŝ,zSwap〈z〉

∥∥∥
1

=
2

‖|z〉〈z|Fŝ |ψ〉XYEF ‖

∥∥∥Π−〈τ(z)〉|z〉〈z|Fŝ |ψ〉XYEF∥∥∥
2
. (11)

(The second inequality is the triangle inequality.) Taking the expectation over
ŝ← D and z, we get

2 Pr[b = b′ | (D,H,M)]− 1 ≤ 2Eŝ,z
1

‖|z〉〈z|Fŝ |ψ〉XYEF ‖

∥∥∥Π−〈τ(z)〉|z〉〈z|Fŝ |ψ〉XYEF∥∥∥
2

≤ 2

√
Eŝ,z

1

‖|z〉〈z|Fŝ |ψ〉XYEF ‖

∥∥∥Π−〈τ(z)〉|z〉〈z|Fŝ |ψ〉XYEF∥∥∥2
(12)

= 2

√∑
ŝ,z

D(ŝ)
∥∥∥Π−〈τ(z)〉|z〉〈z|Fŝ |ψ〉XYEF∥∥∥2 (13)
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where the first inequality is Jensen’s inequality.
It remains to prove the following claim:

Claim. For any pair (D, τ) and any normalized state |ϕ〉XYEF such that

Π≤qF |ϕ〉XYEF = |ϕ〉XYEF and Σ≤mF |ϕ〉XYEF = |ϕ〉XYEF ,

we have ∑
ŝ,z

D(ŝ)
∥∥∥Π−〈τ(z)〉|z〉〈z|Fŝ |ψ〉XYEF∥∥∥2 ≤ (m+ q)εD . (14)

Proof. Observe that

Π−
∣∣∣Ψ0
π(x),π(M(x))

〉
= 0 and Π−

∣∣∣Ψ1
π(x),π(M(x))

〉
= 1

for all x and all canonical representatives π. It follows that

Π−Fs0Fs1
|ϕ〉XYEF =

∑
([π],y)∈Γq :
ys0=1

|ϕ([π], y)〉XYE ⊗ |([π], y)〉F .

We can now bound∑
ŝ,z

D(ŝ)
∥∥∥Π−〈τ(z)〉|z〉〈z|Fŝ |ψ〉XYEF∥∥∥2

≤
∑
ŝ

∑
z:ŝ∈〈τ̂(z)〉

D(ŝ) ‖|z〉〈z|Fŝ |ψ〉XYEF ‖
2

+
∑
ŝ

∑
z:ŝ/∈〈τ̂(z)〉

D(ŝ)
∥∥∥(Π−〈τ(z)〉 ⊗ |z〉〈z|Fŝ) |ψ〉XYEF∥∥∥2 . (15)

We bound the two terms separately, beginning with the second. We decompose

|ψ〉XYEF =
∑

([π],y)∈Γq

|ψ([π], y)〉XYE ⊗ |([π], y)〉F (16)

and denote the only element of 〈x〉 ∩H by x̃. and bound∑
ŝ

∑
z:ŝ/∈〈τ̂(z)〉

D(ŝ)
∥∥∥(Π−〈τ(z)〉 ⊗ |z〉〈z|Fŝ) |ψ〉XYEF∥∥∥2

=
∑
ŝ

∑
z:ŝ/∈〈τ̂(z)〉

D(ŝ)
∑

([π],y)∈Γq

∥∥∥(Π−〈τ(z)〉 ⊗ |z〉〈z|Fŝ) |ψ([π], y)〉XYE ⊗ |([π], y)〉F
∥∥∥2

=
∑

([π],y)∈Γq

∑
ŝ/∈〈τ◦π(x)〉:
y ˜π(x)

=1

D(ŝ) ‖|ψ([π], y)〉XYE‖2

≤
∑

([π],y)∈Γq

qεD ‖|ψ([π], y)〉XYE‖2 = q · εD. (17)
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For the first term, we have Σ≤mF |ϕ〉XYEF = |ϕ〉XYEF , i.e. for any permutation π
in the support of this state there are at most m values x such that τ ◦π(x) ∈ 〈x〉.
For the second term, we have Σ≤mF |ϕ〉XYEF = |ϕ〉XYEF , i.e., |ϕ〉 is supported
on basis states |[π], y〉 where π has at most m fixed points.

Using essentially the same chain of inequalities as for the second term, we
get ∑

ŝ

∑
z:ŝ∈〈τ̂(z)〉

D(ŝ) ‖|z〉〈z|Fŝ |ψ〉XYEF ‖
2 ≤ mεD.

This completes the proof. ut

Combining the above claim with eq. (13), taking the expectation over (D, τ)
and applying Jensen’s inequality one more time results in the bound

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤
√

(q +m)ε

for the modified resampling game and thus

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤
√

(q +m)ε+ 11 · 2−m|F |.

Setting m = log
(

11|F |√
ε

)
we get

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]|

≤
√
ε

(
1 +

√
q + log

(
11
|F |√
ε

))
,

matching the lemma. ut
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