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Abstract. Arithmetic to Boolean masking (A2B) conversion is a crucial technique in the
masking of lattice-based post-quantum cryptography. It is also a crucial part of building
amasked comparisonwhich is one of the hardest tomask building blocks for active secure
lattice-based encryption. We first present a new method, called one-hot conversion,
to efficiently convert from higher-order arithmetic masking to Boolean masking using a
variant of the higher-order table-based conversion of Coron et al. Secondly, we specialize
our method to perform arithmetic to 1-bit Boolean functions. Our one-hot function
can be applied to masking lattice-based encryption building blocks such as masked
comparison or to determine the most significant bit of an arithmetically masked variable.
In our benchmarks, a speedup of 40 to 66 times is achieved over state-of-the-art table-
based A2B conversions, bringing table-based A2B conversions in the performance range
of the Boolean circuit-based A2B conversions by only a slowdown of factor 1.2 to 2.
Keywords: Masking · A2B conversion · Side-Channel Protection · Post-Quantum
Cryptography · Lattice-based Cryptography

1 Introduction
A majority of public key cryptographic algorithms are based on factoring or the discrete
logarithm problem. These algorithms are no longer secure in the presence of a large-scale
quantum computer. The field of Post-Quantum Cryptography (PQC) researches alternative
cryptographic algorithms that remain secure in the presence of quantum computers. To
replace the soon-to-be-insecure public-key standards, the National Institute of Standards and
Technology (NIST) launched a standardization effort in 2016 [NIS16]. At the moment we are
in the third round of this standardization process, with 4 encryption finalists and 3 signature
finalists. Interestingly, out of these 7 schemes, 3 encryption schemes (Kyber [SAB+20],
Saber [DKR+20] and NTRU [CDH+20]) and 2 signature schemes (Dilithium [LDK+20] and
Falcon [PFH+20]) belong to the same family: lattice-based cryptography.

One of the challenges in replacing the current standards with post-quantum standards is
protecting their implementations against side-channel attacks. Side-channel attacks are at-
tacks on a cryptographic implementation that use unwanted effects of computation leaking in-
formation, such as power usage, electromagnetic radiation and timing. Several side-channel at-
tacks on lattice-based cryptographic implementations have been demonstrated, including tim-
ing attacks [SW07, DTVV19, GJN20] or power consumption and electromagnetic radiation
attacks [ABGV08,WZW13, PPM17, ACLZ20, RRCB20, XPRO20, UXT+21]. These works
illustrate the importance of protectionmechanisms against side-channel attacks, and in its lat-
est report NIST has emphasized the importance of these protection mechanisms [AASA+20],
including them as a major evaluation criterion in the standardization process.

Masking is a popular tool to protect against side-channel attacks. The idea of masking is
to split a sensitive variable into two or more shares, in such a way that an adversary that is
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able to see all but one share still can not infer any information about the sensitive value. The
ideas behind masking were introduced by Chari et al. [CJRR99] and later extended by Barthe
et al. [BBD+16] to include the notions of Non-Inference (NI) and Strong Non-Inference
(SNI), which allow easier composition of building blocks.

To give an example of masking, a sensitive value x can be split into x(1) and x(2) so that
x=x(1)�x(2) where � is a mathematical operation that depends on the type of masking.
For Boolean masking � is the XOR operation ⊕, while arithmetic masking chooses � to
be addition modulo a predefined integer q. In first-order masking, the sensitive value is split
into 2 shares (i.e., an adversary can probe at most 1 share without compromised security),
while higher-order masking splits the sensitive variable into more shares. One observation
is that some efficient techniques have been developed specifically for first-order masking,
which do not scale to higher masking orders.

Several masked implementations of lattice-based cryptographic schemes have been pre-
sented. For signature schemes, a masked implementation of the GLP signature scheme
was presented by Barthe [BBE+18], followed by a Dilithium implementation by Migliore
et al. [MGTF19]. Passively secure lattice-based encryption was first masked in [RRVV15],
followed by an active secure scheme by Oder et al. [OSPG18] for first-order and Bache et
al. [BPO+20] for higher-order. Van Beirendonck et al. [VDK+21] provided a first-order
masked implementation of the NIST PQC finalist Saber, and Coron et al. [CGMZ21b],
and later Kundu et al. [KDB+22] discussed a higher-order implementation. Kyber was
implemented at arbitrary order by Bos et al. [BGR+21] and for first-order by Heinz et
al. [HKL+22]. Fritzmann et al. [FVR+21] looked at making masked implementations of
Saber and Kyber more effective using instruction set extensions.

A2B conversion One recurring property of most masked implementations of lattice-based
cryptography is that both Boolean masking and arithmetic masking are used. To integrate
both masking domains, arithmetic to Boolean (A2B) and Boolean to arithmetic (B2A)
conversions are needed. In this paper, we are specifically interested in arithmetic to Boolean
conversion. The first secure A2B conversion was proposed by Goubin [Gou01], which was
later extended by Coron et al. [CGTV15]. Both methods are focused on first-order and are
based on writing the conversion as a Boolean circuit and implementing this Boolean circuit
in a secure fashion.

A different approach to first-order A2B conversion is table-based conversion, where the
Boolean result is stored in a table that is manipulated based on the arithmetic input. Coron
andTchulkine [CT03] were the first to propose such a conversion. Debraize [Deb12] discovered
a flaw in their algorithm and improved the overall efficiency of the Coron and Tchulkine
approach. Later, Van Beirendonck et al. [VDV21] discovered a security problem in one of the
conversions of Debraize, and proposed two new A2B conversions to circumvent this problem.

Higher-order conversions were proposed in [CGV14, CGTV15] for arithmetic masking
modulo a power-of-two q = 2k. These techniques were extended for arbitrary modulus
by Barthe et al [BBE+18], which was later refined in [SPOG19]. Similar to the first A2B
conversion algorithm by Goubin [Gou01], the above techniques rely on a Boolean circuit
methodology to perform the conversion.

Coron et al. [CGMZ21b] adapted the first-order table-based approach for higher orders
both for A2B and B2A conversion. For large modulus q, the authors split the inputs into
different chunks which are converted individually using A2B conversion, and the carries
between the chunks are taken into account using an additional arithmetic to arithmetic (A2A
with different moduli) conversion. While the B2A conversions in this work are generally
efficient, the overall A2B conversions are only efficient in specific applications.

The increased importance of these conversions due to the rise of lattice-based cryp-
tography is emphasized by the CHES 2021 Test of Time Award, which was awarded to
Goubin [Gou01] for introducing the first A2B and B2A conversion techniques.
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Masked comparison One important application of A2B conversions is masked comparison,
which is a vital building block in actively secure implementations of lattice-based cryptog-
raphy. The goal of such a comparison is to validate an input ciphertext by comparing it with
a recomputed ciphertext as part of the Fujisaki-Okamoto transformation [FO99].

For first-order masking, a hash-based approach was proposed by Oder et al. [OSPG18].
The main idea of this approach is to check if a sensitive array is zero by hashing both
shares separately and checking the equality of the hash outputs. For schemes that perform
ciphertext compression, this comparison additionally needs an arithmetic to arithmetic
(A2A) conversion (i.e., a conversion between two arithmetic masking domains with different
modulus). Such an A2A conversion can be implemented as a modified A2B conversion,
where a table-based conversion is most efficient for first-order. A problem in the security
of the hash-based method of [OSPG18] was discovered and fixed by Bhasin et al. [BDH+21].

Higher-order masked comparisons have to rely on different techniques, as the hash-based
method is limited to two shares. The state-of-the-art conversion techniques to perform higher-
order masked comparison first perform A2B conversion and then do the comparison in the
Boolean domain. The different approaches differ in pre- and postprocessing of the A2B conver-
sion. Barthe et al. [BBE+18] perform a masked comparison by a simple approach: A2B con-
version followed by amasked bitwise comparison. Bache et al. [BPO+20] introduced amethod
based on a random sum to reduce the number of coefficients. This method was broken by
Bhasin et al. [BDH+21], who introduced a variant random sum compression that is secure but
only applicable for cryptographic schemes without compression and with prime order moduli.

D’Anvers et al. [DHP+21] adapted the random sum method as a postprocessing method
to reduce the cost of the final Boolean circuit. Bos et al. [BGR+21] looked at the prepro-
cessing stage and proposed to decompress the input ciphertext instead of compressing the
masked recomputed ciphertext. This approach was later adapted by Coron et al. [CGMZ21a]
by combining the decompression idea, the random sum method, and some extra masked
gadget into a new comparison. These methods were compared and improved in a later work
by D’Anvers et al. [DVV22], which we refer to to get an overview of higher-order masked
comparison algorithms.

1.1 Our contributions
In this paper, we introduce a new strategy to perform arithmetic to Boolean conversion.
Although it is not exactly table-based, our method falls in the table-based category and is
indebted to the higher-order table-based A2B conversions of [CGMZ21b], and more specif-
ically to the register-based optimized arithmetic to 1-bit Boolean conversion. We start with
introducing an arithmetic to Boolean conversion, and later introduce optimizations to more
efficiently perform specific masked operations used in lattice-based cryptography.

Our method works on a register (which can be seen as a table with 1-bit entries). In
contrast to previous table-based methods, where the table is used to encode the output values,
our register is used as a one-hot encoding of the input values, with which we mean that a value
x is represented with a register where the xth bit is 1 and all others are 0. A first advantage of
a one-hot encoding is that the register/table size does not grow with the output length, which
would be the case in a table-based approach where all possible outputs are stored in the table.
Secondly, the input has to be processed only once, and the result can be used to determine
both a carry value (as a result of the arithmetic masking) and a Boolean masked output
value. Thirdly, we introduce an efficient method to propagate carries by using the properties
of the one-hot encoding. An intuitive introduction to these ideas is given in Section 3.

In Section 4 we formalize our arithmetic to Boolean conversion, followed by generalization
of our method and a security proof. In Section 5 we introduce an arithmetic to 1-bit Boolean
function calculation. This is a generalization of the aforementioned register-based optimized
arithmetic to 1-bit Boolean conversion of [CGMZ21b] in two ways: we allow an arbitrarily
large arithmetic masking modulus (instead of 5 or 6 bits in previous works) and we allow
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multiple masked coefficients to be the input of the function. One of the use-cases of this
algorithm is masked comparison, where multiple masked coefficients need to be compared
with publicly known reference values and only one bit is returned that indicates whether
all coefficients match their reference value(s).

Section 6 details how to obtain a more efficient implementation and how to achieve
parallelism in our inherently sequential design at low cost. The resulting A2B implementation
is then compared to the state-of-the-art algorithms in Section 7. Our measurements show
a speedup of approximately a factor of 40 to 66 compared to the state-of-the-art table-based
comparison. This brings higher-order table-based conversion close to Boolean circuit-based
A2B conversions, which are only 1.2 to 2 times faster in our benchmarks.

2 Preliminaries

2.1 Notation

Lists and matrices are denoted in bold text. These are indexed using a subscript, where Xi

indicates the ith element of the list X and where Xi,j indicates the element on the ith row
and jth column of a matrix X. We write |X| to denote the number of coefficients in the list
X. We denote with bxc a flooring of a number x to the nearest integer less or equal to x, with
dxe ceiling x to the nearest integer greater or equal to x, and with bxe rounding to the nearest
integer with ties rounded upwards. These operations are extended coefficient-wise to lists.

Positive integers are represented in unsigned binary representation unless stated otherwise,
with the most significant bit (MSB) at the leftmost position and the least significant bit (LSB)
at the rightmost position. x[i] indicates the ith bit of the binary representation of x starting
from the least significant bit and |R| indicates the number of bits in the representation of R.

The concatenation operator x1‖x0 concatenates the bitstrings x1 and x0. This repre-
sentation is extended for non-power-of-two p-ary numbers y1,y2 (i.e., numbers represented
with an integer value between 0 and p− 1) as y = y1‖y0. More precisely, the value of y
equals y1 ·p+y0. In its most generalized sense we can concatenate numbers with different
representations: for a p2-ary number y2, a p1-ary number y1 and a p0-ary number y0, we
write y=y2‖y1‖y0 to signify y=y2 ·(p0 ·p1)+y1 ·p0+y0.

We denote with:
x1︸︷︷︸
b1

‖ x0︸︷︷︸
b0

←x, (1)

splitting the binary representation of x in parts x1 with bitsize b1 and x0 with bitsize b0 so
that x=x1‖x0. This is generalized for p-ary numbers as:

x1︸︷︷︸
p1-ary

‖ x0︸︷︷︸
p0-ary

←x, (2)

where x is split into a p0-ary symbol x0 and a p1-ary symbol x1 so that x=x1‖x0. Note that
this is a unique way of splitting a number x.

We denote with x� i a shift of the binary representation of x to the left with i positions
(which equals to x·2i), and with x� i a shift to the right with i positions (which equals to

bx/2ic). A circular shift to the left with i positions is written as x
|R|
≪ i, with |R| the number

of bits involved in the shift. More specifically, x
|R|
≪ i=(x� i)‖(x�(|R|−i)).

Sampling a random value x from a distribution χ is denoted x←χ. Furthermore, U(S)
denotes the uniform distribution over a set S.
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2.2 Masking
In Boolean masking, a sensitive variable x is split into S shares x[0] to x[S−1], so that the XOR
of the shares results in the original variable x (i.e., x=⊕S−1

i=0 x
[i]). We write x[i] to denote the

value of the ith share of a masked variable x, and x[·] to denote the value of x while explicitly
making clear that x is shared. As such, the value x[·] will not be physically represented in
a secure implementation and is only implicitly present by combining the different shares.

One can perform Boolean operations on a Boolean masked variable: z[·] =x[·]⊕y[·] is
calculated by an XOR on the corresponding shares as z[i] = x[i]⊕y[i]. An AND with an
unmasked variable z[·] = x[·] &m is calculated by applying m to each share individually
z[i] =x[i] &m. Similarly, shifts, rotations and concatenations on a Boolean masked variable
are applied to each share individually.

Arithmetic masking splits a sensitive variable x in S shares x(0) to x(S−1) so that the sum
of the shares modulo a given integer q equals the sensitive value (x(·) =x(0) +x(1) mod q).
As before we denote with x(i) the ith share of a masked variable, and with x(·) the value of
x while stressing that this value is not physically present in the implementation.

Arithmetic masking allows easy computation of arithmetic operations, where a sum
z(·) =x(·)+y can be calculated by summing y to the zeroth share of x(·) (i.e., z(0) =x(0)+y
and z(i) =x(i) for other shares). Multiplication with an unmasked constant is performed on
each share individually (i.e., z(·) =c·x(·) can be calculated as z(i) =c·x(i)). Concatenation,
flooring and rounding are calculated on each share individually. It is important to note that
for arithmetic masking bx(·)c is not necessarily equal to bxc as the former is calculated on
each share individually, while the latter is calculated on the unmasked variable. This is also
true for rounding and concatenation.

3 Intuitive introduction to one-hot conversion
The goal of our algorithm is to perform arithmetic to Boolean conversion. More specifically,
the input is an arithmetically masked number D(·), with masking modulus q. The output is
a Boolean masked number B[·] so that B[·] =D(·). For the sake of simplicity, we will assume
that the arithmetic masking modulus is a power of two unless stated otherwise. It is trivial
to extend our method for different masking moduli and we will later show how to extend
the method to non-power-of-two moduli.

We will first give an intuitive explanation of the algorithm before explaining the details
in Section 4. In this intuitive explanation, we will largely ignore the masking aspect of the
algorithm and consider working on unmasked variables.

The algorithm starts by preparing a Boolean masked registerR[·] with value 1, i.e., with a
one in the zeroth bit and zeros in all other bits. The algorithm then iteratively processes parts
ofD(·), modifying the register R[·] in two steps: in the first step, the register is converted to a
one-hot encoding of the input coefficient D(·)

i and in the second step, the relevant information
is extracted from the register in a sharewise fashion.

A simple example: q = |R| First, imagine that the modulus q equals the number of bits
in the register |R|. The algorithm first rotates the register with

∑
kD

(k) positions using
a variant of the secure rotation algorithm described in [CGMZ21b]. This corresponds in
practice to a rotation of the register with

∑
kD

(k) mod |R|=
∑

kD
(k) mod q=D(·) positions,

where the mod |R| operation is present due to the limited size of the register and the resulting
wraparound. The output of this step can be seen as a one-hot encoding of the input D(·),
where the 1 in the register can be found on the D(·)th position.

After this operation we effectively associated each position in the register with one value
of D(·) (i.e., if the 1 is in the tth position, then D(·) = t and vice versa). We then process the
shares of the register individually to obtain the required result. For each share, we take the
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1000000000000000

0001000000000000

x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16

⊕

Rotate with
∑

kD
(k) (includes remasking)

Sharewise operations

Figure 1: Overview of the three steps in InnerLoop for D(·) =3 and q=16.

bit at position p (i.e., D(i)[t]) and multiply it with t. The results are all XOR’ed together
into a share of the output. The output is thus calculated as:

B[i] =
|R|−1⊕

t=0
t·R[i][t]. (3)

Now remembering that R[·][t]=1 at position t=D(·), but R[·][u]=0 at all other positions
u 6= t, we can see that:

B[·] =
S−1⊕
i=0

B[i] (4)

=
S−1⊕
i=0

|R|−1⊕
t=0

t·R[i][t]

=
|R|−1⊕

t=0
t·

(
S−1⊕
i=0

R[i][t]
)

(5)

=
|R|−1⊕

t=0
t·R[·][t] (6)

=D(·). (7)

Thus confirming that the output is indeedB[·] =D(·) as required. In terms of masking security,
the first operation can be instantiated as a variant of the secure rotation of [CGMZ21b],
while the second operation is performed on each share separately and is thus inherently
secure in the masking framework.

This simple example is depicted in Figure 1 where in the first step the register is rotated
with

∑
kD

(k) mod |R|=3 positions, and in the second step the output is calculated following
Equation 3. Note that it is possible to implement the second operation as given in Equation 3
more efficiently as will be discussed in Section 6.

More complicated: q > |R| The problem with the simple approach is that it is typically
not efficient to allow an arbitrarily large register size. Therefore, we will adapt the previous
algorithm to allow q to be bigger than the register size. We will do this by chopping the
input coefficientsD(·) with bitlength log2(q) in several smaller chunks with bitlength log2(p),
with p < |R|< q. These smaller chunks are then processed iteratively, starting with the
least significant chunk D0

(·). Note that these chunks are not independent as the arithmetic
masking entails that there are carries that need to be propagated from the less significant
chunks to the more significant chunks. We will have to take care of these carries in our method.
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First we choose the smaller power-of-two modulus p so that p·S< |R|, with S the number
of shares, and split the coefficients of D(·) in chunks D̂(·)

j of log2(p) bits. These chunks
are then processed iteratively, starting with the least significant chunk. A depiction of the
processing of the first chunk is given in Figure 2.

To process a chunk D̂(·)
j we perform the following three operations: first, we rotate the

register, then we compute the relevant output bits and finally we prepare the carry for the
next iteration.

In the first operation, the register is rotated with
∑

kD̂
(k)
j positions. Note that in contrast

to the previous method
∑

kD̂
(k)
j mod |R| 6=D̂

(·)
j , more specifically, the modulo operation is

no longer relevant and can be ignored as long as we choose p to be small enough to avoid
any possible wrap-around of the 1 in the register.

The position of the one in the register can now be described in function of two components:
the value of the chunk, D̂(·)

j =
∑

kD̂
(k)
j mod p, and the carry cj = b

∑
kD̂

(k)
j /pc that needs

to be propagated to the next chunk. These two components are represented in the position
as follows: the register can be subdivided into multiple ‘carry parts’ of log2(p) bits as given
in Figure 2 with the red lines. The carry is then encoded by the part containing the 1 (in
Figure 2, c=2), while the chunk value is encoded as the relative position of the one in its
part (in Figure 2, D̂(·)

j =1).
In the second operation, the relevant output bits corresponding to the chunk D̂(·)

j are
calculated. Similar to the above technique, we perform a sharewise calculation, but this
time multiplying with the value (t mod p):

B̂
[i]
j =

|R|−1⊕
t=0

(t mod p)·R[i][t], (8)

where analogous to before we can check our method for the first chunk as:

B̂
[·]
0 =

S−1⊕
i=0

B̂
[i]
0 =

|R|−1⊕
t=0

(t mod p)·R[·][t] (9)

=D̂
(·)
0 mod p, (10)

which means that the first log2(p) bits are converted correctly. However, for subsequent
iterations, we will have to take into account the carry cj that needs to be propagated from
chunk j to chunk j+1. This is done in the third operation.

The third operation propagates the carry and is again performed on each share separately.
At the end of the third operation, the register contains a one-hot encoding of the carry cj

that needs to be propagated. This register is then used as the starting register in the next
rotation. This means that the rotation already has an initial rotation with cj , before the
rotation with

∑
kD̂

(k)
j+1 is applied. The total rotation is then cj +

∑
kD̂

(k)
j+1, thus effectively

taking the carry into account.
The method to obtain the one-hot encoding of the carry can be best understood using

Figure 2. For each share of the register, we xor together all bits within the same carry bin
c, and place it at position c in the register. Or more specifically, for each possible carry value
c and each share k we calculate:

R[k][c]=
p−1⊕
m=0

Rtmp
[k][c·p+m] (11)

The last iteration is slightly different, as the last chunk to be processed does not need
to take into account further propagation of the carries. This case can thus be performed
analogous to the simple example above (see Figure 1) and can use any bitsize log2(pL) as
long as pL≤|R| (assuming the register size is also a power of two).
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1000000000000000

0000000001000000

0010

0010000000000000

Rotate with
∑

kD̂
(k)
j

Compute output

Compute carry

Carry = 0Carry = 1Carry = 2Carry = 3

x0x0x0x0 x1x1x1x1 x2x2x2x2 x3x3x3x3 ⊕

Figure 2: Overview of an iteration of the A2B conversion for D̂(·)
j =1, with modulus p=4, a

carry value c=b
∑

kD̂
(k)
j /pc=2 and S=4 shares.

4 Arithmetic to Boolean conversion
In this section, we will go into detail on the arithmetic to Boolean conversion technique,
as well as generalize the technique and formulate a security proof. Algorithm 1 gives a
generalized algorithm to perform A2B conversion using the secure rotation method, which
is given in Algorithm 2. Remember that operations on R[·] are performed sharewise. A
graphical overview of one iteration of the loop is given in Figure 2, while the last iteration
only performs the operations in Figure 1.

For the parameter setting, we need to choose a register size |R|, which should be an
integer of size at least S2, with S the number of shares. For software implementations, one
would typically choose |R| to be the bit width of the processor. From |R|, we can derive
the chunk modulus p as the largest power of two such that p·S≤|R|. The final chunk size
pL can be computed as the largest power of two under the conditions that pL ≤ |R| and
log2(pL)=log2(q)−L·log2(p) for L a positive integer. In this case, L+1 will be the number
of chunks into which a coefficient is split.

We will first provide a t-SNI security proof of our method, and then explain how to
generalize our method to non-powers of two, or to calculate arbitrary functions. Our security
proof extends the table-based conversion proofs of [CRZ18, CGMZ21b].

Theorem 1 ((S−1)-SNI of Algorithm 1). For any set of tc<S intermediate variables and
for any subset O∈ [1,n] where tc + |O|<S, we can perfectly simulate the output variables
R[O] and the tc intermediate values using the input values D(i) for each i∈I, with |I|≤ tc.

Proof. Within this proof we will refer to line x of Algorithm 1 with lx, and to line x of
Algorithm 2 with lrx. Before we delve into the details we choose which input coefficients
will be used to simulate the intermediate values. All operations described in Algorithm 1 are
performed sharewise, and so at most one share of the registersR[·] andRtmp

[·] is involved; and
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Algorithm 1: A2B(D(·))
// Setup

1 R[0] =1;B[0] =0
2 for i=1,...,S−1 do R[i] =0;B[i] =0
3 D̂

(·)
L︸︷︷︸

<log2|R|

‖...‖ D̂(·)
1︸︷︷︸

log2(p)

‖ D̂(·)
0︸︷︷︸

log2(p)

←D(·)

// calculate
4 for j=0,...,L−1 do
5 Rtmp

[·] =SecureRotate(R[·],D̂
(·)
j )

6 R[·] =0
7 for c = 0 to S−1 do
8 R[·][c]=

⊕p−1
m=0Rtmp

[·][c·p+m]
9 Btmp

[·] =
⊕|R|−1

t=0 (t mod p)·R[·][t]
10 B[·] =Btmp

[·]‖B[·]

11 Rtmp
[·] =SecureRotate(R[·],D̂

(·)
L )

12 Btmp
[·] =

⊕|R|−1
t=0 t·R[·][t]

13 B[·] =Btmp
[·]‖B[·]

14 return B[·]

Algorithm 2: SecureRotate(R[·],D̂(·))
// Rotate + remask

1 for shD = 0 to S−1 do

2 R[0] =R[0] |R|≪D̂(shD)

3 for shR = 1 to S−1 do

4 R[shR] =R[shR] |R|≪D̂(shD)

5 U←U(2|R|)
6 R[shR] =R[shR]⊕U
7 R[0] =R[0]⊕U

atmost one share ofD(·) and D̂(·)
j is involved. For each probe during these lines, wewill add the

share number shR of the involved share of R[·] or Rtmp
[·] (if applicable) to the set SHR; and

similarly add the share number shD to the set SHD, if a share ofD(·) or D̂(·)
j is involved. For

the intermediate values in the rotation (Algorithm 2) we make the sets as described in Table 1.
After building the sets SHD and SHR we know that |SHD| ≤ tc and |SHR| ≤ tc, as

each intermediate probe adds at most one item to each set. We then choose the input set
to simulate all probed values as D(shD) for each share shD∈SHD. The set SHD then acts
as the input set I and as such we have the asked condition |I|≤ tc. Now rests to show that
we can perfectly simulate all probed values.

The general overview of our proof will proceed as follows: first, we will argue thatR[·] and
all other variables are simulatable during the setup of the algorithm, then we will argue that
all asked intermediate values in the subblocks are simulatable if the input R[·] is simulatable,
and finally, we will show that R[·] at the output of the block is simulatable if R[·] at the input
of the block (further denoted Rin

(·)) is simulatable.
Simulatability of variables during the setup of the algorithm (l1 to l3): This first step is
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Table 1: List of variables and their simulatability.

Variable: Action: add ··· Simulated by:

lr2/lr4: D̂(shD) shD to SHD Corresponding bits of: D(shD)

lr2: R[0] shD to SHD; 0 to SHR Rin
(0) q·C

≪D̂(shD)

lr4: R[shR] shD to SHD; shR to SHR Rin
(shR) q·C

≪D̂(shD)

lr5: UshD,shR
shD to SHD; shR to SHR UshD,shR

lr6: R[shR] shD to SHD; shR to SHR (Rin
(shR) q·C

≪D̂(shD))⊕UshD,shR

lr7: R[0] shD to SHD; 0 to SHR (Rin
(0) q·C

≪D̂(shD))⊕shR

k=1UshR,k

easy, as R[·] is deterministic and can thus be easily simulated by the adversary. The probed
D̂

(shD)
i,j values can be simulated as shD∈SHD due to our construction of SHD.
Simulatability of variables during SecureRotate: This part will perform induction on

the outer loop shD in SecureRotate. We will show that if we can simulate the values at the
start of one loop iteration, we can also simulate the output variables of that loop iteration
and all probed variables.

If shD /∈SHD, then the adversary has no information on the UshD,shR
and as such the

output will look uniformly random, thus renderingR[·] simulatable at the end of the iteration
(i.e., it can be simulated by drawing from a uniformly random distribution U({0,1}|R|)).

If shD∈SHD, then we can simulate any probed intermediate variable as given in Table 1,
where Rin

[·] is the value at the start of that outer loop iteration. For the latter two variables
in the table, if the corresponding UshD,shR

is not probed we can replace it with a uniformly
random value.

We have shown that if we can simulate the intermediate values at the start of the first
loop iteration, then we can also simulate the intermediate values in following loop iterations
and therefore also at the end of the SecureRotate operation.

Simulatability of variables after SecureRotate (l6-l10 and l12-13): Next we will show
that if the register Rtmp

[·] is simulatable at the end of the SecureRotate then all variables
at l6-l10 and l12-13 are simulatable. Note that the operations on these lines only work on
one share at a time and are perfectly deterministic if the input Rtmp

[·] is known. As such,
if Rtmp

[·] can be simulated, then any intermediate variable in these lines can be simulated.
To conclude, we have shown that R[·] is simulatable at the start of the algorithm, that

it is simulatable at the end of each block if it is simulatable at the start, and that all probed
intermediate values can be simulated ifR[·] is simulatable at the start of the block. This means
that both the probed intermediate values as the probed output variables are simulatable.

4.1 Generalization
The algorithm presented above can be generalized to have broader applicability. Firstly, the
algorithm is not bound by calculating the identity function (i.e., A(·) =B[·]). Instead one
can replace the multiplications with the value (t mod p) in Equation 8, which calculates a
unity function, with any function f() as:

B̂
[i]
j =

|R|−1⊕
t=0

f(t mod p)·R[i][t], (12)

thus creating a more elaborate A2B conversion that allows calculating upon the data for free.
Secondly, the modulus does not need to be a power of two but can be any positive integer

q. In this case, we select different modulus p for each chunk. The selection of the pi needs
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to fulfill the following conditions:
L∏

i=0
pi =q (13)

∀L
i=0 pi ·S≤|R| (14)

Note that the latter condition can be relaxed for pL, as we don’t need to determine the carry
location and can thus allow an overflow at positions that are a multiple of pL. As such, a
pL value is also valid if pL divides |R|.

Similar as before Di
(·) is split into chunks. However, this time we represent D(·) as a

series of pi-ary numbers:
D̂

(·)
L︸︷︷︸

pL-ary

‖...‖ D̂(·)
1︸︷︷︸

p1-ary

‖ D̂(·)
0︸︷︷︸

p0-ary

←Di
(·) (15)

This representation immediately gives us the different chunks, as each symbol corresponds
to a chunk D̂(·)

j , with D̂(·)
0 the least significant symbol.

5 Arithmetic to 1-bit Boolean
In this section, we will specialize our method toward calculating a function f() that takes one
or more arithmetically masked variables and outputs one Boolean masked bit. Theoretically,
our method can calculate any such function, however, when the input modulo q is split into
smaller chunks modulo p (i.e. L>0), only functions that can be described as:

f(D(·))=fL(D̂(·)
L ) & ... & f0(D̂(·)

0 ), (16)

are implementable. However, as we will show in Subsection 5.3, this restriction does not pose
a problem for typical applications in lattice-based encryption, such as masked comparison
or extraction of the MSB.

Our method is similar to the arithmetic to Boolean conversion described above, where the
calculation of B[·] is not performed. The main idea is that in iteration i, if fi(D̂(·)

i )=1, the
register is propagated as before, while if fi(D̂(·)

i )=0, a register with only zero is propagated.
This can be achieved during a ‘compute carry’ step, by only propagating positions t where:

fi(t mod p)=1. (17)

This means that if the 1 in the register is at a location where fi(t mod p)=0, the 1 in the
register is not propagated and the register will have only 0’s for the rest of the algorithm.
At the end of the algorithm, we can check if the one is still present in the algorithm, which
is the case if and only if f(D(·))=1. Note that the register remains masked throughout the
algorithm and thus it is not revealed if and during which iteration the one is discarded.

5.1 Method description
More specifically, the input is a list of arithmetically masked numbers D(·), with correspond-
ing masking modulus q. The output is a boolean masked bit 1 if ∀i : f(D(·)

i ) = 1, and 0
otherwise. The parameter setting (i.e., setting |R|, p, L and pL) proceeds identical to the
procedure explained in Section 4.

The setup phase of the algorithm similarly consists of two steps: initializing the Boolean
masked register R[·] to the value 1 and dividing each coefficient of D(·) into chunks of log2(p)
bits (with exception of the most significant chunk, which has log2(pL) bits).

The algorithm then iterates over all coefficients, and for each coefficient over all chunks
starting with the least significant chunk. For each chunk first a secure rotation [CGMZ21b]
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is performed, as depicted in Algorithm 2. Then, instead of propagating all positions as in the
full A2B conversion, only positions t where fi(t mod p)=1, are propagated to the output
register in a step we will refer to as bit selection. More specifically, for each possible carry
value c and each share k we calculate:

R[k][c]=
⊕

t:f(t)=1

Rtmp
[k][c·p+t]. (18)

The bit selection operation performs two functions: first, for all values of D̂(·)
i,j mod p

where f(D̂(·)
i,j)=1, the 1 in the register is passed to the next iteration (othwerwise, the 1 is

not passed to the next iteration). Secondly, the value of the carry (i.e., c=b
∑

kD̂i,j
(k)
/pc)

is represented in the fact that the 1, if still present in the register, can be found at the cth

position of the output register.
In the final iteration of a coefficient Di,L

(·), the carry is no longer relevant. We thus map
all allowed positions to the zeroth bit of R[·] without distinguishing between the different
carry values. Then the algorithm proceeds with the next coefficient in the input array. At
the end of the algorithm, the zeroth bit of R[·] contains a Boolean masking of the output.

Algorithm 3: A→ 1-bit B(D(·),M)
// Setup

1 R[0] =1
2 for i=1,...,S−1 do R[i] =0
3 for i = 1 to N−1 do
4 D̂(·)

i,L︸︷︷︸
<log2|R|

‖...‖ D̂(·)
i,1︸︷︷︸

log2(p)

‖ D̂(·)
i,0︸︷︷︸

log2(p)

←Di
(·)

// calculate
5 for i=0,...,N−1 do
6 for j=0,...,L−1 do
7 Rtmp

[·] =SecureRotate(R[·],D̂(·)
i,j)

8 R[·] =0
9 for c = 0 to S−1 do

10 R[·][c]=
⊕

∀t:fi(t)=1
Rtmp

[·][c·p+t]

11 Rtmp
[·] =SecureRotate(R[·],D̂(·)

i,L)
12 R[·] =0
13 R[·][0]=

⊕
∀t:fi(t)=1

∀c∈[0,...,|R|/pL)

Rtmp
[·][c·pL+t]

14 return R[·]

Side-Channel Security
Theorem 2 ((S−1)-SNI of Algorithm 3). For any set of tc<S intermediate variables and
for any subset O∈ [1,n] where tc + |O|<S, we can perfectly simulate the output variables
R[O] and the tc intermediate values using the input values D(i) for each i∈I, with |I|≤ tc.
Proof. The t-SNI security proof of the Arithmetic to 1-bit Boolean function method is similar
to the proof of the Arithmetic to Boolean conversion. The difference in both algorithms is only
in the sharewise parts (l8 to l10 and l12-l13), which can be simulated deterministicly using the
knowledge on Rtmp

[·]. As such one can essentially reuse the security proof of Theorem 1.
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5.2 Generalization
As with the arithmetic to Boolean conversion, our method can be generalized. First, the
masking modulus q is not required to be a power of two. This generalization is similar to
the non-power-of-two modulus generalization in Subsection 4.1 and we refer to this section
for an explanation on how to achieve this.

Secondly, the masking modulus q does not have to be equal for all coefficients. To allow
different masking moduli qi associated with their respective coefficients Di

(·), one performs
the determination of the parameters p,L,pL for each coefficient separately. The rest of the
algorithm then proceeds as usual, with each coefficient using its specific set of p,L,pL.

5.3 Applications to Lattice-Based Encryption
The method presented above can be used as a building block for the masking of lattice-based
encryption. In this section we will specifically look into two building blocks for lattice-based
encryption: comparison of the (uncompressed) recomputed ciphertext with the input cipher-
text in the Fujisaki-Okamoto transformation, and A2B for extraction of the most significant
bit(s) during decryption. We will show how both these functionalities can be achieved using
our methodology by choosing the appropriate input parameters.

5.3.1 Comparison

The comparison is an essential part of the Fujisaki-Okamoto transformation. The goal of
this comparison is to validate the input ciphertext against a recomputed ciphertext. Sev-
eral works have looked at optimizing higher-order masked comparison [BPO+20, BDH+21,
DHP+21, CGMZ21b, DVV22]. We will consider a recomputed ciphertext that has not been
compressed, as the compression is generally expensive and we can include the compression
in our solution at almost no cost. This is the same setup as used in previous works.

In previous works, the comparison is typically done in at least two steps containing an
A2B conversion and the comparison itself. In this work, the comparison itself is already
performed in the A2B conversion. Moreover, the adaptation of the A2B conversion even
makes the A2B conversion more efficient as the Boolean output is not calculated.

The first input to the comparison is the input ciphertext, which consists of two arrays
(B,C), with coefficients modulo qb and qc respectively. The second input is an uncom-
pressed recomputed masked ciphertext (B∗(·),C∗(·)), both with coefficients modulo q. The
comparison then should return true if and only if:

∀i :bqb/q ·B∗i
(·)e=Bi and ∀i :bqc/q ·C∗i

(·)e=Ci (19)

Power of two q For q,qb and qc powers of two, such a function can be instantiated by
calculating the list with coefficients Di

(·):

∀
i∈0,...,|B|−1

:Di
(0) =B∗i

(0)+ q

2qb
− q

qb
·Bi ; ∀

i∈0,...,|B|−1
j>0

:Di
(j) =B∗i

(j) ; (20)

∀
i∈0,...,|C|−1

:Di+|B|
(·) =C∗i

(0)+ q

2qc
− q

qc
·Ci and ∀

i∈0,...,|C|−1
j>0

:Di+|B|
(j) =C∗i

(j), (21)

where the q
2qb

and q
2qc

terms are used to convert the rounding operation into a flooring
operation. Note that this is the same input preparation as step 0 of Algorithm 7 in [DHP+21].

We furthermore prepare the functions f0,...,fL as:

fb,i(x)=
{

1 if: x≤( q
qb
−1)/pi

0 otherwise and: fc,i(x)=
{

1 if: x≤( q
qc
−1)/pi

0 otherwise , (22)

for the coefficients of B and C respectively.
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Prime q For prime moduli conversion we follow the approach of Fritzmann et al. [FVR+21],
where the compression is explicitly calculated for each share individually. This would result
in an infinitely long bitstring, but Fritzmann et al. showed that it is sufficient to take into
account a certain number of bits f > log2(S)+log2

(
dq/2e

q −0.5
)
, with S the number of shares.

We end up with the following inputs:

∀
i∈0,...,|B|−1

:Di
(0) =bqb ·2f

q
B∗i

(0)c+ 2f

2 −2f ·Bi ; ∀
i∈0,...,|B|−1

j>0

:Di
(0) =bqb ·2f

q
B∗i

(j)c ; (23)

∀
i∈0,...,|C|−1

:Di+|B|
(·) =bqc ·2f

q
C∗i

(0)c+ 2f

2 −2f ·Ci and ∀
i∈0,...,|C|−1

j>0

:Di+|B|
(0) =bqc ·2f

q
C∗i

(j)c, (24)

and moduli qb ·2f and qc ·2f respectively. The functions are constructed as:

fb,i(x)=
{

1 if: x≤(2f−1)/pi

0 otherwise and: fc,i(x)=
{

1 if: x≤(2f−1)/pi

0 otherwise , (25)

Again note that this is the same input preparation as step 0 of Algorithm 7 in [DHP+21].

5.3.2 A2B compression / MSB extraction

Our arithmetic to 1-bit Boolean can also be used to securely implement the A2B conversion
in lattice-based encryption schemes. To be more precise, it can replace the A2B conversion
where one is only interested in the most significant bit, which is typically the case in the
decoding for schemes like Saber and Kyber. To find the most significant bit of a number
A(·) in case of a power of two moduli, one inputs D0

(·) =A(·) with the modulus q equal to
the arithmetic sharing modulus. The functions f0(),...,fL() can be constructed as fi(x)=1,
with the exception of fL(), which equals:

fb,i(x)=
{

0 if: x<pL/2
1 otherwise (26)

Note that the input D(·) is in this case an array with only one coefficient.
Again, for prime moduli, we can perform a similar technique. The goal is to calculate the

modulus switching function b 2
qxc on a masked variable. To do this, one also has the option

to convert to power-of-two moduli using a trick similar to D’Anvers et al. [DVV22] inspired
by the technique of Fritzmann et al. [FVR+21]. In this case we have:

D0
(·) =b2

f+1

q
B(·)+Sc (27)

with modulus 2f+1. The function is calculated similar to before as fi(x)=1, again with the
exception of fL(), which equals:

fb,i(x)=
{

0 if: x<pL/2
1 otherwise (28)

The reason for the multiplication with 2f+1 and addition of S is to preserve correctness
even in the presence of flooring errors. The division with q creates an infinitely long fractional
part, which the subsequent operation floors down. This means that an error in (−1,0] is
introduced to all shares:

D0
(·) = 2f+1

q
B(·)+S ·(1+e) (29)
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To prove that this operation always gives the correct result, we investigate the border
cases B(·) =0 and B(·) =bq/2c, which should result in D0

(·)∈ [0,2f ); and B(·) =dq/2e and
B(·) = q−1, which should result in D0

(·) ∈ [2f ,2f+1). If these conditions are fulfilled the
top bit is correct and the value of D0

(·) will be valid. Note that since q is uneven we have
bq/2c=(q−1)/2 and dq/2e=(q+1)/2.

The cases of B(·) =0 and B(·) =dq/2e can only go wrong in negative wrap around, and
so the worst-case scenario is e=−1. This results in:

D0
(·) =S ·(1−1)≥0 and D0

(·) =2f q+1
q

+S ·(1−1)≥2f (30)

which is always fulfilled.
The cases of B(·) =q−1 and B(·) =bq/2c can only go wrong in positive wrap around, and

so the worst-case scenario is e=0. This results in:

D0
(·) =2f+1 q−1

q
+S<2f+1 and D0

(·) =2f q−1
q

+S<2f (31)

which results in conditions S< 2f+1

q and S< 2f

q , of which the latter is the most restrictive.
Therefore, as long as f > log2(S)+log2(q) we have a correct most significant bit and thus
a correct MSB extraction.

6 Implementation aspects
The algorithms given above are not necessarily the most efficient way to implement one-hot
conversions on a variety of computing platforms. In this section, we detail methods to speed
up these conversion algorithms. We first look at possible tweaks in software implementations
and then look at parallelization possibilities, which are typically more useful in hardware.

6.1 Software optimizations
The inner loop of our technique consists of two parts: secure rotation and bit selection. The
secure rotation itself consists of two main instructions: a rotation and an XOR operation
on the register. As such it is relatively easy to optimize in both software and hardware. The
bit selection warrants a more in-depth look, and we will first look into the bit selection of
the arithmetic to 1-bit Boolean conversion, and then look into the A2B conversion.

Bit selection In this paragraph we will specifically look at the bit selection of R[·] (line
11, and line 14 in Algorithm 3). In a hardware implementation, one can implement these
operations using a simple Boolean hardware circuit.

For software implementations, as we are working within a register, an efficient implementa-
tion is more challenging. To get a feel for the cost we will describe the cost of algorithms in the
number of XOR that needs to be performed, taking this measure because it is the main opera-
tion in the innermost loop in the code. We will specifically look at the power-of-two q case and
a subfunction that considers each bit individually, i.e. a function fi(x) that can be written as:

fi(x)=f∗i,0(x[0]) AND f∗i,1(x[1]) AND ... AND f∗i,|X|−1(x[|X|−1]). (32)

This is the case that covers the typical applications from Subsection 5.3.
A straightforward approach would be to perform the XORs one by one, which would lead

to S2 ·(|fi|−1) XOR operations, where |fi| denotes the number of inputs to which the function
fi returns 1. This can be brought back to less than S2+S ·log2(|fi|) XOR operations using
two tricks: exploiting inherent parallelism and a divide-and-conquer combination approach.
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Firstly, the inherent parallelism comes from the fact that the XOR for positions in
different carry bits but with the relative position can be calculated at the same time, by
exploiting the fact that the different carry bins are exactly p positions separated. As such,
when performing the XOR operation on the full register on line 11 and line 14, one is not
only calculating the result for carry c=0, but also for all other carries c, the result of which
can be found c·p positions further in the register.

Secondly, one can speed up the calculations using a divide-and-conquer strategy. There
are three possible instantiations for f∗i (x):

f∗i (x)=x, f∗i (x)=NOT (x), f∗i (x)=1 (33)

Note that f∗i (x) = 0 is not an option, as this would mean that f(x) = 0 which is a useless
function to implement. The number of positions that needs to be propagated during bit
selection in loop l can be calculated as:

log2(p)−1∏
i=0

|f∗i (x[i])| (34)

For the functions f∗i (x[i])=x and f∗i (x[i])=NOT (x), |f∗i (x[i])| is one and thus the number
of positions to be considered is not increased. However, for function of the form f∗i (x)=1,
the number of positions is doubled. More specifically, for each position that is propagated,
a position exactly 2i further is also propagated.

We address such an instance by shifting the register R[·] with 2i positions and XORing
it with the original register. This operation essentially combines the scenario where x[i]=0,
with the scenario where x[i]=1, and puts both options at the position as if x[i]=0. Thus,
after this operation, the original function f∗i (x) = 1 needs to be replaced with f∗i (x) = x
to obtain the same result. Once all f∗i (x) = 1 are replaced by f∗i (x) =x, there is only one
position left to be considered, more specifically this is position F =

∑log2(p)−1
i=0 2i ·f∗i (0)

Algorithm 4 gives a faster implementation of the bit selection, where in lines 1-6 the
inherent parallelism and the divide-and-conquer combination are exploited. Line 7 is a
cleanup where the XORed value for each carry c is placed at the c·pth position and all other
positions are set to zero, after which lines 8-11 copy the carry bits to their final position c.

Postprocessing A2B The bit selection in the A2B conversion can be optimized in the
same ways as in the arithmetic to 1-bit Boolean conversion detailed above. However, for
the A2B conversion, there is an additional step to calculate Btmp

[·] which can be optimized
significantly. In this paragraph, we will discuss two optimizations.

The first algorithm uses the same divide-and-conquer combination to combine the differ-
ent carry bins, after which the multiplication operation is calculated p times. This algorithm
is depicted in Algorithm 5 and is efficient as long as p is a small value. It takes S ·(p−1)
multiplications and S ·(S+p−2) XOR operations.

The second algorithm is aimed at higher value p. For this, we take a step back at the
bits of Btmp

[·], which are calculated as:

Btmp
[·] =

p−1⊕
t=0

t·

|R|/p−1⊕
c=0

Rtmp
[·][c·pL+t]

 (35)

Note that the second term of the multiplication is a single bit with a value 0 or 1. When
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Algorithm 4:
// Get valid positions

1 F =0
2 for i = 0 to log2(p)−1 do
3 if f∗i (x)=1 then
4 R[·]⊕=R[·]�2i

5 else if f∗i (x)=NOT (x) then
6 F =F+2i

7 R[·] =(R[·]�F )&
∑S−1

i=0 2i·p

// Set carries
8 for i = 1 to log2(S−1) do
9 R[·]⊕=R[·]�(p−1)·i

10 R[·] =R[·] &(2S−1)

Algorithm 5:
1 for i = 1 to log2(S−1) do
2 R[·]⊕=R[·]�2i ·p
3 for i = 1 to p−1 do
4 R[·]⊕= i·R[·][i]

Algorithm 6:
1 for i = 0 to log2(p)−1 do
2 B[·][i]=parity(R[·] &Fi)

looking at a specific bit of the output Btmp
[·][i], this equation can be further simplified:

Btmp
[·][i]=

⊕
∀t=0,...,p−1:t[i]=1
c=0,...,|R|/pL−1

Rtmp
[·][c·p+t] (36)

=parity(R[·] &Fi) with: Fi =
⊕

∀t=0,...,p−1:t[i]=1
c=0,...,|R|/pL−1

2c·p+t. (37)

In essence, Fi is a mask that selects all terms involved in the XOR operation. For example,
for i= 0, Fi = 0101...01 and for i= 1, Fi = 00110011...0011. The resulting algorithm is
depicted in Algorithm 6.

The cost of this second algorithm heavily depends on the instruction set of the processor.
If a parity instruction (or Hamming weight instruction) is present, the algorithm takes
S ·log2(p) parity instructions. If this instruction is not present, one can compute the parity
with a divide-and-conquer strategy which would cost dlog2(S ·p)e operations.

6.2 Parallelization
Our algorithm is inherently serial, as the output R[·] of the previous chunk is necessary
to start the calculations on the next chunk. This is might be a bottleneck for the masked
comparison operation as used in lattice-based cryptography as described in Subsection 5.3.
In such a scenario one has typically an input array D(·) that has between 768 and 1280
coefficients that need to be validated. In this section, we will show how to make a parallel
implementation on n ‘cores’ with minimal overhead.

At the start, one divides the array D(·) in n arrays of approximately |D(·)|/n elements.
These sub-arrays are then validated separately on the n cores, which results in n registers
R0

[·] to Rn−1
[·]. The LSB of each of these registers is a Boolean masked bit representing the

result of the comparison of the corresponding sub-array (i.e., Ri
[·][0]=1 if the corresponding

sub-array was valid, and 0 if it was invalid).
To combine these registers, one can use the fact that one Boolean masked bit is essentially

an arithmetic masked bit modulo 2. To combine R0
[·] and R1

[·] we perform another iteration
of the arithmetic to 1-bit Boolean with these inputs: ∀kD(k) = R1

[k][0] with arithmetic
masking modulus 2, R[·] =R0

[·] and f(x)=NOT (x). The output of this iteration is a register
R[·] that is 1 if both R0

[·] and R1
[·] were 1, and 0 otherwise.

Taking a step back we can see that the above paragraph uses the arithmetic to 1-bit
Boolean technique to construct a masked AND gate on Boolean masked bits. By applying
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Table 2: Cost to perform A2B conversion in cycles.

bits 8-bit 16-bit 32-bit
order 2 3 2 3 2 3

Bool. circ. [CGV14] 608 902 1,079 1,650 2,027 3.167
Bool. circ. (bitsl. 64x) [DVV22] 142∗ 269∗ 276∗ 529∗ 548∗ 1,096∗
Bool. circ. (bitsl. 32x) [DVV22] 186∗ 350∗ 366∗ 697∗ 733∗ 1,438∗

Table-based [CGMZ21b] 13,224 26,384 26,396 52,801 52,779 105,613
One-hot (64-bit register) [ours] 300 401 637 849 1,337 1,814
One-hot (32-bit register) [ours] 230 430 585 1,107 1,136 2,169
∗ Cost per coefficient.

Table 3: Randomness cost to perform A2B conversion in number of 32-bit randomness calls.

bits 8-bit 16-bit 32-bit
order 2 3 2 3 2 3

Bool. circ. [CGV14] 27 54 51 102 99 198
Bool. circ. (bitsl. 64x) [DVV22] 3.6∗ 7.3∗ 7.6∗ 15.3∗ 15.6∗ 31.3∗
Bool. circ. (bitsl. 32x) [DVV22] 3.6∗ 7.3∗ 7.6∗ 15.3∗ 15.6∗ 31.3∗

Table-based [CGMZ21b] 208 432 416 864 832 1728
One-hot (64-bit register) [ours] 24 48 48 96 96 192
One-hot (32-bit register) [ours] 12 24 30 60 60 120
∗ Cost per coefficient.

this AND gate on all R0
[·] to Rn−1

[·] we end up with one register denoting the result of the
masked comparison.

In a serial implementation, given |D(·)| coefficients and L chunks for each coefficient, the
masked comparison takes L·|D(·)| iterations (we count SecureRotate and the bit selection
as one iteration). In the parallelized method we additionally have to perform n−1 iterations
to combine the sub-array Ri

[·], which increases the cost only slightly to L · |D(·)|+n−1
iterations. For masked comparison of Saber, where |D(·)|=1024 and L=4, performing the
calculations in parallel on 4 cores would increase the cost from 4096 to 4099 iterations.

7 Validation
In this section, we compare our one-hot A2B conversion to state-of-the-art alternatives. We
benchmarked the algorithms on an Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz using gcc
version 8.5.0 with optimization level -O2. Note that these implementations are only for
reference and are not side-channel secured, as such implementations are outside the scope
of this work but would be interesting for future work.

In Table 3, our one-hot A2B algorithm is compared with the Boolean circuit-based A2B
algorithm by Coron et al. [CGV14], and a bitsliced version (64 and 32 parallel coefficients)
as implemented in [DHP+21]. For the bitsliced conversion, the corresponding cost of one
conversion is given (i.e., the total conversion time is divided by 64 and 32 respectively). We
also compare with the best table-based conversion by Coron et al. [CGMZ21b], using their
publicly available code. We implemented the one-hot conversion both using a 64-bit register
(i.e., |R|=64) and a 32-bit register (i.e., |R|=32).

Comparing the one-hot conversion using a 64-bit register and a 32-bit register, we can
see that the cycle count is similar. For second-order the 32-bit register is more efficient, while
for third-order the 64-bit variant is more efficient. However, in both cases, the cycle counts
are relatively close. When looking at the randomness consumption, the 32-bit is much more
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efficient with a randomness reduction of a factor of 1.6x to 2x.
We then compare our one-hot conversion to the state-of-the-art table-based conversion,

as they are in the same family. As you can see from Table 3, our new conversion improves the
state-of-the-art conversion with a factor of between 40x to 66x. The reason is that the number
of memory accesses is greatly reduced. In the table-based approach, the full masked table
in memory is read out multiple times, while the one-hot conversion stores all information
in one masked register. For similar reasons, the randomness usage is reduced with a factor of
9x to 17x in the one-hot encoding. From this, we can conclude that the one-hot conversion
is clearly an improved version of the table-based conversion of Coron [CGMZ21b] in both
cycle count (x40 to 66x) and randomness usage (x9 to 17x), and as such it is the fastest
table-based A2B conversion algorithm available at the moment.

When compared to the A2B conversion family of Boolean circuit-based A2B, the picture
becomes more complicated. Our method outperforms the Boolean circuit A2B conversion
of [CGV14], with a cycle count reduction of x1.5 to x2.5 and a randomness reduction of x1.1
to x2.25. However, when comparing bitsliced implementations, our method is approximately
2x slower in the 64-bit case and 1.2x to 1.5x slower in the 32-bit case. The randomness usage
is about x6 in the 64-bit case and x4 in the 32-bit case.

One advantage of our method over a Boolean circuit-based A2B is that the security
critical non-linear part is fully contained in the small and elegant SecureRotate function, as
all other operations are linear and thus can be performed share-wise. As such, implementors
have a more clear view of the security-critical parts of the algorithm, which should make
side-channel secure implementations easier.

8 Conclusions and Future work

In this paper, we first introduced a new table-based arithmetic to Boolean conversion. One
interesting property of our conversion is that we can perform a wide range of functions on
the underlying data during the transformation at low to no cost. We then constructed a
specialized circuit to more efficiently perform arithmetic to Boolean conversion and showed
its applicability to the masking of lattice-based cryptographic schemes.

Our A2B method is 40 to 66 times faster than state-of-the-art table-based conversions,
and 1.5 to 2.5 times faster than non-bitsliced Boolean circuit basedA2B, but still 2 to 1.2 times
slower than the Boolean circuit based A2B if these can be bitsliced. Given that higher-order
A2B conversion algorithms using Boolean circuit-based A2B have been around for longer and
that they have undergone more optimizations both on an algorithmic and implementation
level, it is reasonable to assume that the relatively new higher-order table-based A2B
conversions might be able to bridge the remaining performance gap in the future.

Future work could include looking at adaptations to make one-hot conversions more
efficient, or to apply them in different contexts and for different types of conversions. In terms
of extending the reach of the algorithm, one could look into applying the one-hot conversion
ideas to improve Boolean to arithmetic conversion or first-order comparison methods. In
the future, other more exotic functions might be implementable using the technique (e.g.,
checking smallness of a vector). It would also be interesting to integrate the one-hot conversion
algorithms in post-quantum schemes such as Saber, Kyber, NTRU and Frodo.

Reduction of the randomness usage by the one-hot conversion might also be an interesting
research topic. One could also look at implementation optimizations, or how to make secure
implementations. Note that possible optimizations to the algorithm will be different on
different platforms, for example in a microprocessor the register size is typically fixed by the
bitwidth of the processor, while hardware implementation has more slack in choosing the size.
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