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ABSTRACT
Observation and manipulation of physical characteristics are well-
known and powerful threats to cryptographic devices. While coun-
termeasures against passive side-channel and active fault-injection
attacks are well understood individually, combined attacks, i.e.,
the combination of fault injection and side-channel analysis, is a
mostly unexplored area. Naturally, the complexity of analysis and
secure construction increases with the sophistication of the ad-
versary, making the combined scenario especially challenging. To
tackle complexity, the side-channel community has converged on
the construction of small building blocks, which maintain security
properties even when composed. In this regard, Probe-Isolating
Non-Interference (PINI) is a widely used notion for secure composi-
tion in the presence of side-channel attacks due to its efficiency and
elegance. In this work, we transfer the core ideas behind PINI to
the context of fault and combined security and, from that, construct
the first trivially composable gadgets in the presence of a combined
adversary.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures.

KEYWORDS
Side-Channel Analysis; Fault-Injection Analysis; Combined At-
tacks; Gadgets; Probe-Isolating Non-Interference

1 INTRODUCTION
In contrast to standard assumptions in theoretical models of cryp-
tography, physical devices are not black boxes that perfectly hide
internal computations. Instead, an adversary can observe and ma-
nipulate physical characteristics to reveal and determine interme-
diates, ultimately violating given security guarantees. To capture
passive Side-Channel Analysis (SCA), which exploits dependencies
between secrets and characteristics such as timing [29], instanta-
neous power consumption [30], or electromagnetic emanations [23],
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the theoretical models were extended with access to intermedi-
ates [11, 18, 25]. A well researched countermeasure against SCA
is masking [11] that randomizes intermediate values via secret
sharing and benefits from a broad theoretical and formal founda-
tion. In contrast, for active Fault Injection Analysis (FIA), which
manipulates physical characteristics for example through clock
glitches [16], voltage glitches [44], electromagnetic pulses [14, 19],
or focused laser beams [42], theoretical models were extended with
the ability to manipulate internal computations [38]. Here, a well
researched countermeasure is redundancy, either in time, space, or
information [1, 32].

Combined Attacks. After reaching a deep understanding of theo-
retical models for both passive and active attacks separately, the
research community is now ready to combine both models and
consider an adversary able to launch SCA and FIA simultaneously,
denoted by the term Combined Analysis (CA). Already existing
research in this area has shown that the trivial combination of
masking and redundancy is insufficient to protect against such a
powerful adversary [35] and, hence, dedicated and formal meth-
ods are required that consider reciprocal effects, e.g., inspired by
Multi-Party Computation (MPC) [34].

Composable Gadgets. The complexity of security analysis and
verification increases with the power of the adversary and the
size of the design under consideration and rapidly becomes pro-
hibitive. Nevertheless, to construct formally proven systems, the
research community in SCA focuses on the construction of secure
building blocks, so called gadgets, that maintain their security prop-
erties when composed to larger circuits. Unfortunately, the broadly
used security guarantees of Ishai-Sahai-Wagner (ISW) probing se-
curity [25] are not sufficient for secure composition and additional
notions needed to be introduced. In essence, those composability
notions restrict the propagation of leakage by a combination of iso-
lation and re-randomization. For this, Barthe et al. introduced Non-
Interference (NI) [3] and Strong Non-Interference (SNI) [4] which
achieve composition by preventing the propagation of leakage be-
tween different gadgets. Later, Cassiers and Standaert proposed
Probe-Isolating Non-Interference (PINI) [10] which introduces and
isolates so called share domains. For most cases, PINI has proven
to be more efficient, as it allows the trivial implementation and
composition of linear functions.
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Table 1. Notations used throughout this work.
Notation Description

SC
A 𝑑 Security order of a masking scheme (countermeasure).

𝑠 Number of shares used by a masking scheme.
𝑖, 𝑗 Index of share domain

FI
A

𝑘 Security order of redundancy scheme (countermeasure).
𝑛 Number of duplications used by a redundancy scheme.

ℓ, ℓ′ Index of redundancy domain
𝑡 Fault type

M
isc

C, G Represents a digital logic circuit or gadget, respectively.
F Functions are written in sans serif font.
𝒮 Sets are denoted as upper-case characters in calligraphic font.

Reg[𝑎] Hardware register with input 𝑎.

Similarly, definitions of composability notions for FIA and CA,
based on NI and SNI, were proposed by Dhooghe and Nikova [15]
and later refined by Richter-Brockmann et al. [35]. Those notions
come in different variants, a simpler version where the order of FIA
security is dependent on the order of SCA protection and a stronger
variant with independence between SCA and FIA. However, there
are currently no composable hardware gadgets for CA as the first
proposal by Dhooghe and Nikova is not transferable to hardware
and their second proposal has been shown to be flawed by Richter-
Brockmann et al. [35].

Contributions. In this work, we provide multiple composability
notions, inspired by PINI, for both FIA and CA. As a warm-up, we
introduce Fault-Isolating Non-Interference (FINI) (Section 3) for
FIA that formalizes the well known security and composability
guarantees from spacial replication. For CA, we define a Shared Re-
dundancy Domain (SRD) and introduce two different composability
notions based on the isolation of both share domains and SRDs.
While the first notion, Combined-Isolating Non-Interference (CINI)
(Section 4), introduces a dependency between the order of SCA and
FIA security, the stronger Independent Combined-Isolating Non-
Interference (CINIind) (Section 5) eventually achieves independence
between SCA and FIA security.

For all three composability notions we provide practical gadgets
and formally prove their security. Here, we focus on the combi-
nation of masking with spacial replication in the context of CA.
Further, we integrated our notions into a state-of-the-art verifica-
tion tool for CA [35] and provide an easily extendable tool for the
transformation of unprotected to protected circuits (Section 6)1.
Finally, we provide a rigorous evaluation of all proposed gadgets
both for security and implementation costs in hardware (Section 7).

2 PRELIMINARIES
2.1 Notation
Important notations are given in Table 1. We use subscripts to
denote the share index and superscripts to denote the replication
index. Further, we use the notion of a faulty value as shorthand for a
fault that was injected in the gate that produces the corresponding
value.

1We provide both tools in the supplementary material for review and will make them
publicly available on GitHub after publication.

2.2 Circuit Model
For the sake of simplicity, but without loss of generality, we restrict
the set of combinational gates to 𝒢c = {not, and, nand, xor, xnor}
and the set of memory gates to clocked registers 𝒢m = {reg}. In
addition, we define a randomness gate 𝒢rand = {rand} that has
no input and for each clock cycle outputs an independent and
uniformly chosen random value.

Then, we model a digital logic circuit C as a directed acyclic
graph 𝒟 = {𝒱, ℰ}, where vertices 𝑣 ∈ 𝒱 represent logical gates
𝑔 ∈ 𝒢c ∪ 𝒢m ∪ 𝒢rand and edges 𝑒 ∈ ℰ represent wires connecting
two gates and carrying an element of the finite field F2. Please note,
as we do not consider leakage from transitions2, it is sufficient to
analyze unrolled implementations even when there are loops in a
circuit.

2.3 Security via Simulation
Simulation is a proof technique for security arguments that is useful
for statements about composability [8, 33]. For that, we define a
real and an ideal game, where the ideal game is trivially secure
(under some adversary model). The real game is secure iff there
exists no adversary who can distinguish the real from the ideal
game with a probability higher than 1

2 . We will define the ideal
game as a probabilistic polynomial-time simulator that reproduces
the view of the adversary without access to any secret.

2.4 Side-Channel Security
Adversary Model. An adversary 𝒜𝑝 in the context of stateless

probing security [25], is given access to a circuit C that can be
invoked multiple times. Prior to each invocation, 𝒜𝑝 can select up
to 𝑑 wires of C, so called probes. The view of the adversary 𝒜𝑝 is
defined by the glitch-extended probes [20], i.e., by the exact values
of all registers a probed wire directly depends on3. Further, a probe
propagates into another wire whenever this wire is required for
simulation of the probe [10].

Probing Security. In this context, probing security [25] is defined
as the view of the adversary 𝒜𝑝 always being independent of any
secret, i.e., all probes can be simulated without any knowledge apart
from the structure of C. Please note, that probing security does not
capture horizontal attacks [5].

Masking. A promising and well studied countermeasure against
SCA is Boolean masking [11], where each value 𝑥 ∈ F2 is replaced
by a vector ⟨𝑥0, . . . 𝑥𝑠−1⟩ ∈ F𝑠2 such that each 𝑥𝑖 is uniform random
from F2 for 𝑖 ≤ 𝑠 − 2 and 𝑥𝑠−1 =

⊕𝑠−2
𝑖=0 𝑥𝑖 ⊕ 𝑥 . We call 𝑥𝑖 a share of

𝑥 with share index 𝑖 . The construction ensures that all subsets of up
to 𝑠 − 1 shares are independent of 𝑥 . We say a share 𝑥𝑖 violates the
independence property of Boolean sharing iff the subset of all other
shares is not independent of 𝑥 . Similarly, a circuit is transformed to
a shared circuit by transferring each operation to a representation
that operates over the share vector of its inputs and outputs a share
vector of its output. Hence, the initial sharing and final unsharing

2Transitions are physical defaults that occur due to switching activities within a circuit.
3Glitches are physical defaults that occur when there are timing differences in the
propagation path of signals. Hence, providing𝒜𝑝 with all stable inputs of a probed
wire captures all possible leakage via glitches [20].
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operation is not part of the shared circuit and cannot be probed by
𝒜𝑝 [2, 25].

Probe-Isolating Non-Interference. The notation of probing secu-
rity is not composable on its own, i.e., combining two probing secure
circuits does not necessarily result in a probing secure circuit itself.
For this, additional composability notations are introduced that
define how to construct atomic building blocks, so called gadgets,
that can be securely combined to larger circuits. PINI [10] ensures
composability by dividing the circuit into share domains:

Definition 2.1 (Share Domain). The share domain 𝑖 of a shared
circuit is defined by all wires with share index 𝑖 .

Given this, PINI ensures that information leakage cannot propa-
gate from one share domain into another, i.e., isolating share do-
mains and, hence, allows trivial composition as long as the inputs
and outputs are a valid Boolean sharing. The efficiency of PINI
comes from the fact that the share-wise implementation of the
addition (xor) is PINI.

Definition 2.2 (Probe-Isolating Non-Interference [10]). A gadget
G is 𝑑-PINI iff for any set of 𝑑1 internal probes and any set 𝒮2 of
𝑑2 share domains, such that 𝑑1 + 𝑑2 ≤ 𝑑 , there exists a set 𝒮1 of at
most 𝑑1 share domains such that the outputs of the share domains
in 𝒮2 and the probes can be simulated with the inputs of the share
domains in 𝒮1 ∪ 𝒮2.

Hardware Private Circuits. Cassiers et al. [9] propose two mul-
tiplication gadgets fulfilling PINI, namely HPC1 and HPC2 (Algo-
rithm 2 and 4 without highlighted parts, respectively). Intuitively,
both gadgets stop cross-domain leakage by refreshing the masked
input 𝑏 before performing a shared multiplication. However, HPC2
requires less randomness as it avoids a refreshing in the multiplica-
tion step via the masked shares multiplication trick [10], computing
(𝑎𝑖 + 1) · 𝑟𝑖, 𝑗 +𝑎𝑖 · (𝑏 𝑗 +𝑟𝑖, 𝑗 ) instead of 𝑎𝑖 · (𝑏 𝑗 +𝑟𝑖, 𝑗 ) +𝑟𝑖, 𝑗 , as is done
in HPC1 (cf. Algorithm 2). For that, the security of HPC2 rests on
the fact that if 𝑎𝑖 = 0 then 𝑟𝑖, 𝑗 is only observable in (𝑎𝑖 + 1) · 𝑟𝑖, 𝑗
(as 𝑎𝑖 · (𝑏 𝑗 + 𝑟𝑖, 𝑗 ) = 0) and otherwise 𝑟𝑖, 𝑗 is only observable in
𝑎𝑖 · (𝑏 𝑗 + 𝑟𝑖, 𝑗 ), which ensures a proper masking of 𝑏 𝑗 . Recently,
Knichel and Moradi [27] proposed HPC3 as a latency optimized
alternative, similarly based on the masked shares multiplication
trick.

2.5 Fault-Injection Security
Adversary Model. An adversary 𝒜𝑓 in the context of fault secu-

rity [35] is given access to a circuit C that can be invoked multiple
times. Prior to each invocation, 𝒜𝑓 selects up to 𝑘 gates in C and a
fault type from the set of allowed fault types 𝒯 for each gate. Faults
are modeled by transforming the selected gates to a different gate
type which is specified by the fault type 𝑡 ∈ 𝒯 [38]. Typical fault
types are set, reset (replacing the targeted gate with a constant one
or zero, respectively), or bit flips (inversion of the gate). A fault
propagates into another wire whenever the value of the wire is
influenced by the fault. The view of the adversary 𝒜𝑓 is defined
by the abort signal (if existent) and the correctness of the outputs.
Correctness is defined by equivalence to the golden circuit, which
is a fault-free version of C.

Fault Security. Let G𝐷 be a circuit realizing a fault detection
or correction mechanism for up to 𝑘 faults. Then fault security is
defined as the output of the concatenation GD (C(·)) always being
equal to the output of the golden circuit of C or aborting [35]. Please
note, that fault security is not composable on its own.

Redundancy. Protection mechanisms against fault attacks usu-
ally depend on redundancy (e.g., in time, space, or information).
The simplest form of redundancy is replication, where all data and
operations are implemented multiple times in parallel. When using
𝑘 + 1 instances of a circuit C, up to 𝑘 faults can be detected by com-
paring all instances and aborting when one instance is different.
Similarly, 2𝑘 + 1 instances allow the correction of up to 𝑘 faults via
a majority function correcting to the value that occurs most often
in the different instances. Again, the initial replication and final
error detection/correction is not part of the replicated circuit and
cannot be faulted by𝒜𝑓 [35]. Naturally, redundancy can be applied
at the level of single bits. Please note, that all replications share the
same random values wherever fresh randomness is required.

2.6 Combined Security
Adversary Model. An adversary 𝒜𝑐 in the context of combined

security [35] is the combination of the adversaries 𝒜𝑝 and 𝒜𝑓 .
Hence, 𝒜𝑐 is given access to a circuit C that can be invoked multi-
ple times and prior to each invocation𝒜𝑐 can select up to 𝑑 wires of
C that are probed and up to 𝑘 gates of C that are faulted according
to a fault type 𝑡 ∈ 𝒯 . The view of the adversary 𝒜𝑐 is defined by
the glitch-extended probes, the abort signal (if existent), and the
correctness of the outputs of the concatenation GD (C(·)), where
G𝐷 is a circuit realizing a fault detection or correction mechanism
for up to 𝑘 faults. Correctness is again defined by equivalence to
the golden circuit of C. Here, however, the golden circuit of C in-
corporates the faults targeting randomness gates 𝑔 ∈ 𝒢rand, i.e.,
𝑔 ∈ 𝒢rand are replaced by some 𝑔′ according to the fault model
(see [35] for more details). Please note, that faulting some gates
gives A𝑐 knowledge about the changed distribution of the depen-
dent values, however, not necessarily the concrete values. This
knowledge of changed distributions can cause additional probes
that need to be simulated when the independence property of an
intermediate Boolean sharing is violated. In general, value distri-
butions are sufficient for simulation and the changed distribution
is given to 𝒜𝑐 for faulty gadget inputs. A detailed discussion and
justification of this model is given by Richter-Brockmann et al. [35].

Combined Security. Given some adversary 𝒜𝑐 combined security
is defined as the view of 𝒜𝑐 being independent of any secret, i.e.,
the abort signal and the probes can be simulated only with the
knowledge of the faults and the structure of C (privacy), and the
concatenation GD (C(·)) always being equal to the output of the
golden circuit of C or aborting (correctness) [35]. In accordance
with probing and fault security, 𝒜𝑐 is not allowed to probe or fault
the initial sharing and replication nor the final unsharing and error
detection/correction. Again, combined security is not sufficient for
composition.
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ℓ = 0

E
𝐹0

ℓ = 1 ℓ = 2
Figure 1. Isolation of fault propagation within redundancy domains.

3 Fault-Isolating Non-Interference
When considering circuits, hardened against fault attacks by repli-
cation, we can observe that each injected fault can only propagate
within the affected redundant part. Then, having more replications
than allowed adversarial faults (maximum fault cardinality) can
ensure the desired level of fault security. In addition, we observe
that this property is inherently composable as long as the isolation
of different redundant parts remains intact. Breaking this down to
the core principles, namely the isolation of domains with regard to
faults, replication reveals a strong similarity with PINI [10]. While
PINI isolates probe propagation within share domains, replication
isolates fault propagation within redundancy domains.

Definition 3.1 (Redundancy Domain). The redundancy domain ℓ of
a redundant circuit is defined by all gates and wires with replication
index ℓ .

In order to generalize the core principle of replication and allow
a formal treatment, we now introduce the notion of Fault-Isolating
Non-Interference. FINI is the dual to PINI in that it introduces
redundancy domains and requires them to be isolated in terms
of fault propagation (as illustrated in Figure 1). Then, assuming
sufficient redundancy domains, detection or correction is always
possible by comparing the values in different redundancy domains,
regardless of the fault propagation within a single redundancy
domain.

In this work, we focus on a realization of FINI via replication
since it is an obvious match and transports the ideas and principles
more easily. However, we intentionally construct FINI as a general
notion that can be applied to other redundancy-based countermea-
sures with an appropriate definition of redundancy domains. When
considering replication, the redundancy domain is defined by the
replication index, i.e., all values with replication index ℓ belong to
the redundancy domain ℓ .

As FINI, similar to PINI, introduces an isolation between differ-
ent redundancy domains instead of an isolation between gadgets,
faults at inputs are allowed to propagate to outputs of the same
redundancy domain. Further, faults injected inside the gadget are
restricted to only propagate to outputs belonging to a single redun-
dancy domain. We now give a more formal definition in Defini-
tion 3.2.

Definition 3.2 (Fault-Isolating Non-Interference). A gadget G is
𝑘-FINI iff the following holds:

(i) For any set ℱ1 of 𝑘1 faulty redundancy domains and every
set of 𝑘2 faults injected in gates of G, with 𝑘1 +𝑘2 ≤ 𝑘 , there
exists a set of at most 𝑘2 redundancy domains ℱ2, such that
the gadget either aborts or gives an output where all values,
except those belonging to the redundancy domains ℱ1 ∪ℱ2,
are equal to the values of the golden circuit.

Algorithm 1: FINI-secure correction gadget.
1 function Correct𝐹𝐼𝑁 𝐼 (𝑎

0, . . . , 𝑎𝑛−1):
Require: 𝑛 = 2𝑘 + 1

2 for ℓ = 0 to 𝑛 − 1 do
3 𝑏ℓ ← maj(𝑎0, . . . , 𝑎𝑛−1)
4 return 𝑏0, . . . , 𝑏𝑛−1

(ii) There exists a decoding gadget GD, such that given an input
with at most 𝑘 faulty redundancy domains and an abort
signal, GD either aborts or outputs a correct result.

3.1 FINI Security and Composition
FINI formalizes the intuitive security and compositional properties
of replication codes. Here, the main argument for fault security
comes from the fact that at most 𝑘 redundancy domains can be
manipulated while up to 𝑘 manipulated redundancy domains can
be detected or corrected by the corresponding decoding function.

Theorem 3.3. A 𝑘-FINI gadget is 𝑘-fault secure.

The proof is given in Appendix A. Now we argue that an arbi-
trary composition of FINI gadgets results in a (larger) FINI gadget.
Again, this follows from the properties of replication codes, which
introduce a natural isolation of different replications, i.e., a fault
injected to one redundancy domain cannot propagate to another
redundancy domain. This ensures that the upper bound of faulty
redundancy domains remains unchanged after composition. Again
we give a formal proof of this statement in Appendix A.

Theorem 3.4. The composition of two 𝑘-FINI gadgets is 𝑘-FINI.

Remark 1. The connection of gadgets has do be consistent, i.e.,
redundancy domain ℓ of a gadget is connected only to redundancy
domain ℓ of subsequent gadgets. However, we can permute the index
of domains when necessary.

3.2 FINI Gadgets
The construction of FINI gadgets for combinational gates follows
a simple method: replication of the gate. By applying the compo-
sitional property of Theorem 3.4, the construction method can be
generalized to all combinational or sequential circuits (which also
includes the simple case of a single gate).

Theorem 3.5. The (𝑘+1)-times replication of any circuit is 𝑘-FINI.

The proof is given in Appendix A. In Theorem 3.5 we instanti-
ate the number of replications with 𝑘 + 1, which is the minimum
number required for fault detection via comparison. It is trivial
to see that the same claim is true for implementations with more
then 𝑘 + 1 replications, as the comparison still detects faulty values.
Similar, when using at least 2𝑘 + 1 replications, we can use a ma-
jority function as decoding gadget additionally resulting in error
correction.

The only gadgets that cannot be trivially constructed according
to Theorem 3.5 are gadgets that combine different redundancy do-
mains. The most prominent examples of this category are detection
and correction modules. Here, the logic for detection/correction
needs to be replicated for each redundancy domain, such that faults

4
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Figure 2. Insecure fault propagation in combined attack model. If
all shares within one redundancy domain are faulty with a known
biased distribution then the error flag indicates whether the faults
represent a valid guess of the shares.

injected into this logic only affect one redundancy domain at the
output [1, 41]. We show an example for this in Algorithm 1 consid-
ering a correction module4.

4 Combined-Isolating Non-Interference
Combining both PINI and FINI is an obvious step to construct a
composability notation for CA that is based on the isolation of
domains. However, due to reciprocal effects and the dual nature
of faults, which can both manipulate internal values and serve as
a probe [12, 43], it is insufficient to isolate faults in redundancy
domains (FINI) and probes in share domains (PINI) and a more
complex notion is required. Those reciprocal effects can be easily
seen when considering any HPC gadget where some randomness
is faulted to a known value which nullifies the provided security
guarantees. Similarly, with known faults, identifying correct guesses
of shares becomes possible. Consider the example illustrated in
Figure 2, where a gadget G with three shares and three redundancy
domains is connected to a detection module. Further, assume that
all shares in the first redundancy domain are faulty with a known
and biased distribution (e.g., set/reset), representing an implicit
guess on those shares. Then the error flag leaks information about
all faulted shares, since it indicates the correctness of the guess,
regardless of how the detection module is realized.

As a result the domain definition for fault propagation in the CA
setting has to be more restrictive than given pure fault attacks. In
particular, faults are restricted to propagate only in the combination
of both share and redundancy domain. This ensures that a fault can
leak at most one share domain even in circumstances where it can
be used to learn values (similar to placing a probe).

Definition 4.1 (Shared Redundancy Domain). The Shared Redun-
dancy Domain (SRD) (𝑖, ℓ) of a replicated and shared circuit is de-
fined by all gates and wires with share index 𝑖 and replication index
ℓ .

Here, in contrast to faults, it is not necessary to further restrict
the propagation of probes. On the contrary, as all replicated wires
carry the same value, it is sufficient to probe one of those wires to
learn all those values. Hence, each share domain (Definition 2.1)
consists of multiple SRDs.

We now define CINI as a composability property for combined
security, where faults are isolated within SRDs and probes within
share domains. That is, for every set of probes and faults the number
of input share domains 𝒜𝑐 can learn is bounded by the sum of the
cardinality and position of the probes and faults, and the number

4The actual implementation of the function maj is irrelevant for the FINI property.
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Figure 3. Propagation of probes and faults in the CINI context. While
probes leak entire share domains (all inputs with same share index),
faults are restricted to influence at most one output SRD. Further,
probes at outputs restrict the leaked share domain of the inputs to
be the same. Similar, input faults are restricted to affect the same
SRD at the output.

of faulty output SRDs is bounded by the cardinality and position of
the faults, as visualized in Figure 3.

Definition 4.2 (Combined-Isolating Non-Interference). A gadget
G is (𝑑, 𝑘)-CINI iff for any set ℱ1 of 𝑘1 faulty SRDs, every set of
𝑘2 faults injected in gates of G, any set of 𝑑1 probes placed on
intermediate values, and any set 𝒮2 of 𝑑2 share domains, such that
𝑘1 + 𝑘2 ≤ 𝑘 and 𝑑1 + 𝑑2 + 𝑘1 + 𝑘2 ≤ 𝑑 , there exists a set ℱ2 of at
most 𝑘2 SRDs and a set 𝒮1 of at most 𝑑1 + 𝑘2 share domains such
that the following holds:
Correctness: The gadget either aborts or gives an output where

all values, except those belonging to the SRDs ℱ1 ∪
ℱ2, are equal to the golden circuit, and there exists
a decoding gadget GD, such that given an input
with at most 𝑘 faulty SRDs and an abort signal, GD

either aborts or outputs a correct result.
Privacy: The abort signal, the outputs of the share domains

in 𝒮2, the outputs violating the independence prop-
erty of Boolean sharing, and the probes can be simu-
lated with the inputs of the share domains in𝒮1∪𝒮2
and knowledge of the faults both injected and on
inputs in ℱ1.

Please note, that CINI restricts the number of probes and faults
together to be smaller than or equal to the order of probing security
𝑑 . Hence, the order of fault security is always dependent on the
order of probing security. In Section 5 we show how to achieve
independence between fault and probing security.

4.1 CINI Security and Composition
Intuitively, the security of CINI comes from the fact, that there
are always more share domains than the amount of probes and
faults an adversary is allowed to place or inject. This is sufficient
for security, as the isolation of probe and fault propagation within
share domains and SRDs, respectively, restricts the possible leakage.

Theorem 4.3. A (𝑑, 𝑘)-CINI gadget is (𝑑, 𝑘)-combined secure.

Proof. Let G be a (𝑑, 𝑘)-CINI gadget, with notation as in Defini-
tion 4.2. Further, letGD be a gadget realizing a decoding function D,

5
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such that, given an input with at most 𝑘 faults and an abort signal,
GD either aborts or outputs a correct result.

Correctness: By definition of CINI, G either aborts or outputs a
result where all values are correct, except for those belonging to
the SRDs ℱ1 ∪ ℱ2. Further, by definition it holds that |ℱ1 ∪ ℱ2 | ≤
𝑘1 + 𝑘2 ≤ 𝑘 . Hence, the concatenation GD (G(·)) either aborts or
outputs a correct result.

Privacy: By definition of CINI the abort signal, the outputs of
the share domains in 𝒮2, and the probes can be simulated with the
inputs in the share domains in 𝒮1 ∪𝒮2 and knowledge of the faults
injected and on inputs in ℱ1. Knowledge of the input faults does
not reveal any additional information about the corresponding non-
faulted value, as only distributions are leaked (a fault with biased
distribution erases the original value and non-biased faults leak
nothing on its own). It holds that |𝒮1 ∪ 𝒮2 | ≤ 𝑑1 + 𝑑2 + 𝑘2 ≤ 𝑑 < 𝑠 .
Therefore, due to the independence of the input encoding of the
shares, the inputs in the share domains 𝒮1 ∪ 𝒮2 are independent of
any sensitive signals. □

We continue by showing that the arbitrary combination of CINI
gadgets again construct a CINI gadget, as long as there is no loop
in the design. This is trivially true for all combinational circuits.
Sequential logic with potential loops can be reduced to this case by
unrolling the design for the analysis, which is valid when transi-
tional leakage [20] is not considered (as for this work).

Theorem 4.4. The loop-free composition of two (𝑑, 𝑘)-CINI gad-
gets is (𝑑, 𝑘)-CINI.

Proof. Let G1 and G2 be arbitrary (𝑑, 𝑘)-CINI gadgets and G3
an arbitrary composition of G1 and G2, such that there is no loop
within G3. Without loss of generality, we say no output of G2 is
connected to an input of G1 (as there is no loop).

Let ℱ1 be a set of 𝑘1 SRDs with faulty inputs to G3 and 𝒮2 a set
of 𝑑2 share domains with probed outputs of G3. Further, let there be
𝑘2 faults injected in gates of G3, of which 𝑘12 target gates in G1 and
𝑘22 target gates in G2. In addition, assume 𝑑1 probes placed on wires
in G3, of which 𝑑11 target wires in G1 and 𝑑21 target wires in G2. As
the gadgets G1 and G2 are disjoint it holds that 𝑘12 + 𝑘22 = 𝑘2 and
𝑑11 + 𝑑21 = 𝑑2. We chose 𝑑1, 𝑑2, 𝑘1, and 𝑘2 such that 𝑘1 + 𝑘2 ≤ 𝑘 and
𝑑1 + 𝑑2 + 𝑘1 + 𝑘2 ≤ 𝑑 . We first prove correctness and then privacy
of G3.

Correctness: As no output of G2 is connected to an input of G1,
the set ℱ1 contains all SRDs with faulty inputs to G1 and there are
𝑘12 faults injected in gates of G1. It holds that 𝑘1 + 𝑘12 ≤ 𝑘1 + 𝑘2 ≤ 𝑘 .
Hence, with CINI of 𝐺1 it follows that G1 either aborts or there
exists a set ℱ1

2 of 𝑘12 SRDs, such that at most the outputs belonging
to the SRDs ℱ1 ∪ ℱ1

2 are faulty.
Outputs of G1 can be connected to inputs of G2, thus, the set of

SRDs with possible faulty inputs to G2 is the set ℱ1 ∪ ℱ1
2 . Further,

there are 𝑘22 faults injected in gates ofG2. It holds that 𝑘1+𝑘12 +𝑘22 =

𝑘1 +𝑘2 ≤ 𝑘 . Hence, with CINI of G2 it follows that G2 either aborts
or there exists a set ℱ2

2 of 𝑘22 SRDs, such that at most the outputs
belonging to the SRDs ℱ1 ∪ ℱ1

2 ∪ ℱ2
2 are faulty.

The outputs of G3 can be both outputs of G1 and G2 and, there-
fore, at most the SRDs in ℱ1 ∪ ℱ1

2 ∪ ℱ2
2 carry faulty outputs or

G3 aborts (if G1 or G2 abort). It holds that |ℱ1 ∪ ℱ1
2 ∪ ℱ2

2 | ≤

𝑘1 +𝑘12 +𝑘22 = 𝑘1 +𝑘2 ≤ 𝑘 . In addition, as G1 and G2 are (𝑑, 𝑘)-CINI
there exists a decoding gadget GD, such that given an input with at
most 𝑘 faulty SRDs and an abort signal,GD either aborts or outputs
a correct result. From this follows correction of G3.

Privacy: As all outputs of G2 are outputs of G3 the set of probed
output share domains of G2 is 𝒮2. In addition, there are 𝑑21 probes
placed on wires inG2, 𝑘1+𝑘12 SRDs with faulty inputs, and 𝑘22 faults
injected toG2. It holds that𝑑21+𝑑2+𝑘1+𝑘12+𝑘22 ≤ 𝑑1+𝑑2+𝑘1+𝑘2 ≤ 𝑑 .
Hence, with CINI ofG2 there exists a set𝒮2

1 of𝑑
2
1+𝑘22 share domains,

such that the abort signal of G2, the outputs of G2 belonging to
𝒮2, and the probes placed on wires in G2 can be simulated with
the inputs of G2 belonging to the share domains 𝒮2

1 ∪ 𝒮2 and
knowledge of the faults. Denote this simulator with S2. Please note,
the knowledge of the faults at inputs to G2 can be derived by fault
propagation.

Outputs of G1 can be connected to inputs of G2 and a simulator
for G1 needs to simulate all inputs of G2 required for S2. Hence, the
set of probed output share domains is 𝒮2

1 ∪𝒮2. In addition, there are
𝑑11 probes placed on wires within G1, 𝑘1 SRDs with faulty inputs,
and 𝑘12 faults injected to G1. It holds that 𝑑11 +𝑑21 +𝑘22 +𝑑2 +𝑘1 +𝑘12 =

𝑑1 + 𝑑2 + 𝑘1 + 𝑘2 ≤ 𝑑 . Hence, with CINI of G1 there exists a set
𝒮1
1 of 𝑑11 + 𝑘12 share domains, such that the abort signal of G1, the

outputs of G1 belonging to the share domains 𝒮2
1 ∪ 𝒮2, and the

probes placed on wires in G1 can be simulated with inputs of G1 in
the share domains 𝒮1

1 ∪ 𝒮2
1 ∪ 𝒮2 and knowledge of the faults. We

call this simulator S1.
Together, S1 and S2 build a simulator such that the abort signal of

G3, the outputs of G3 belonging to the share domains in 𝒮2, and the
probes placed on wires in G3 can be simulated with the inputs of
G3 belonging to the share domains in 𝒮1

1 ∪𝒮2
1 ∪𝒮2 and knowledge

of the faults. It holds that |𝒮1
1 ∪𝒮2

1 | ≤ 𝑑11 +𝑘12 +𝑑21 +𝑘22 = 𝑑1+𝑘2. □

4.2 CINI Gadgets
One explicit goal of CINI is the trivial implementation of linear func-
tions, e.g., addition, by simply sharing and replicating them. This is
possible, as replication and Boolean sharing are linear themselves.

Theorem 4.5. An implementation with 𝑑 + 1 shares and (𝑘 + 1)-
times replication of a linear function is (𝑑, 𝑘)-CINI in the glitch-robust
probing model.

Proof. Let G be the trivial gadget implementation of a linear
function, i.e., the linear function is replicated both in the dimen-
sion of fault and share domains. Then it holds that each SRD is
functionally separated.

Correctness: Due to the separation of SRDs, a fault in a SRD (𝑖, ℓ)
can only propagate to an output in the SRD (𝑖, ℓ). Hence, ℱ2 is the
union of all SRDs a fault is injected in and it always holds that
|ℱ2 | ≤ 𝑘2. As input faults can also only propagate within the same
SRD, all outputs are correct except for those belonging to the SRDs
ℱ1∪ℱ2. In addition, as there are 𝑘 +1 replications up to 𝑘 faults can
be detected by a equivalence check and, hence, a decoding gadget
exists.

Privacy: Due to the separation of SRDs, each probe and output is
only dependent on inputs of one SRD. As a SRD is a part of a share
domain, the same is true for share domains. Hence, the outputs
belonging to 𝒮2 can be simulated with the inputs belonging to 𝒮2.
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Figure 4. CINI requires all values crossing a domain boundary to be
both correct and blinded.

Similarly, the probes can be simulated with the inputs belonging to
the probed share domain. Hence, the simulator requires the inputs
in 𝒮1∪𝒮2 and knowledge of the faults, where 𝒮1 is the set of probed
share domains (it trivially holds that |𝒮1 | ≤ 𝑑1 ≤ 𝑑1 + 𝑘2). □

Implementing non-linear functions, e.g., multiplication, is more
complex since values need to be combined across share-domain
boundaries. Hence, similar to PINI, we have to ensure that themasks
of such terms are refreshed beforehand. In addition, a faulty value is
not allowed to cross SRD boundaries, which requires fault detection
or correction for terms combining different share domains. Both
principles are illustrated in Figure 4. As no fault is allowed to affect
more than one SRD, each intermediate value is only allowed to
be used in one SRD (except for generated randomness), requiring
detection/correction within gadgets for values that are used across
SRD boundaries.

Based on those design principles, we can extend the refresh-then-
multiply technique, used in the HPC1 gadget [9] (originally PINI),
to a refresh-and-correct-then-multiply technique to construct a
CINI gadget (given in Algorithm 2). The major difference to the
originalHPC1 gadget is the replication of the logic and the majority
function for correction in Line 12. Also, and in contrast toHPC1, all
intermediate values are only allowed to be used once (see Remark 3).
In the following we prove CINI for the derived gadget.

Theorem 4.6. The gadget HPCC
1 as defined in Algorithm 2 with

a register-free majority function is (𝑑, 𝑘)-CINI in the glitch-robust
probing model.

Proof. Let ℱ1 be a set of 𝑘1 SRDs and 𝒮2 a set of 𝑑2 share
domains. Further, let there be 𝑘2 faults injected to the gates of the
gadget and 𝑑1 probes placed on internal wires. Without loss of
generality, we restrict the probes to only capture 𝑣ℓ

𝑖, 𝑗
,𝑤 ℓ

𝑖
, 𝑧ℓ

𝑖, 𝑗
, and

𝑐ℓ
𝑖
as other glitch-extended probes are less powerful. In particular,

all probes within the majority function (Line 12) are less powerful
than probes on 𝑣ℓ

𝑖, 𝑗
as the majority function is implemented register

free. We first show correctness and then privacy of the gadget.
Correctness: For correctness, faults in a random value 𝑟𝑖, 𝑗 can

be ignored, as otherwise the correctness without any fault would
depend on the concrete value of 𝑟𝑖, 𝑗 and the gadget would output a
wrong result half of the time. By construction of the gadget each
value with three indices 𝑖 , 𝑗 , and ℓ only influences the output 𝑐ℓ

𝑖
and, hence, faults injected to those values can only influence the
SRD (𝑖, ℓ). This is true for 𝑣ℓ

𝑖, 𝑗
, 𝑧ℓ

𝑖, 𝑗
, and each intermediate value in

maj(𝑣0
𝑖
. . . 𝑣𝑛−1

𝑖
) (regardless of the implementation of the majority

Algorithm 2: HPCC
1 : CINI multiplication

(with difference to HPC1 highlighted).
1 function HPCC

1 (𝑎
0
0, . . . , 𝑎

𝑛
𝑑 , 𝑏

0
0, . . . , 𝑏

𝑛
𝑑):

Require: 𝑛 = 2𝑘 + 1
Require: 𝑎ℓ𝑖 = 𝑎ℓ

′
𝑖 and 𝑏ℓ𝑖 = 𝑏ℓ

′
𝑖 for 0 ≤ ℓ, ℓ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Require:
∑𝑑

𝑗=0 𝑎
ℓ
𝑗 = 𝑎 and

∑𝑑
𝑗=0 𝑏

ℓ
𝑗 = 𝑏 for 0 ≤ ℓ ≤ 𝑛

// Initialize randomness

2 for 𝑖 = 0 to 𝑑 do
3 for 𝑗 = 𝑖 + 1 to 𝑑 do

4 𝑟𝑖,𝑗
$← F2; 𝑟 𝑗,𝑖 ← 𝑟𝑖,𝑗

5 𝑟𝑖,𝑗
$← F2; 𝑟 𝑗,𝑖 ← 𝑟𝑖,𝑗

// Refreshing

6 for ℓ = 0 to 𝑛 − 1 do
7 for 𝑗 = 0 to 𝑑 do
8 𝑣̃ℓ𝑗 ← 𝑏ℓ𝑗 +

∑𝑑
𝑖=0,𝑖≠𝑗 𝑟𝑖,𝑗

// Correction

9 for ℓ = 0 to 𝑛 − 1 do
10 for 𝑖 = 0 to 𝑑 do
11 for 𝑗 = 0 to 𝑑 do
12 𝑣ℓ𝑖,𝑗 ← maj(𝑣̃0𝑖 . . . 𝑣̃𝑛−1𝑖 )

// Multiplication

13 for ℓ = 0 to 𝑛 − 1 do
14 for 𝑖 = 0 to 𝑑 do
15 𝑤ℓ

𝑖 ← 𝑎ℓ𝑖 · Reg[𝑣ℓ𝑖,𝑖 ]
16 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
17 𝑧ℓ𝑖,𝑗 ← 𝑎ℓ𝑖 · Reg[𝑣ℓ𝑗,𝑖 ] + 𝑟𝑖,𝑗
18 𝑐ℓ𝑖 ← Reg[𝑤ℓ

𝑖 ] +
∑𝑑

𝑗=0;𝑗≠𝑖 Reg[𝑧ℓ𝑖,𝑗 ]

Ensures: 𝑐ℓ𝑖 = 𝑐ℓ
′

𝑖 for 0 ≤ ℓ, ℓ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Ensures:
∑𝑑

𝑖=0 𝑐
ℓ
𝑖 = 𝑎 · 𝑏 for 0 ≤ ℓ ≤ 𝑛

19 return 𝑐00, . . . , 𝑐
𝑛
𝑑

as it is true for 𝑣ℓ
𝑖, 𝑗
). Similar, the values 𝑎ℓ

𝑖
,𝑤 ℓ

𝑖
, and 𝑐ℓ

𝑖
are only used

for the computation of 𝑐ℓ
𝑖
and can only influence the SRD (𝑖, ℓ). The

only values influencing more than one SRD are 𝑏ℓ
𝑗
and 𝑣ℓ

𝑗
. However

at most 𝑘 of those values can be faulted and, hence, are corrected by
the majority function. Therefore, the only way how a fault in 𝑏ℓ

𝑗
or

𝑣ℓ
𝑗
can have an impact on a SRD (𝑖, ℓ), with 𝑖 ≠ 𝑗 , is by manipulating

the computation of 𝑣ℓ
𝑖, 𝑗

in which case there is an additional fault
for the SRD (𝑖, ℓ).

In conclusion, each fault in a SRD at the input can cause a fault
at the same SRD at the output. In addition, the set ℱ2 is the union
of all SRDs (𝑖, ℓ) such that the computation of an intermediate
value containing the indices 𝑖 and ℓ was faulted. Then it holds that
|ℱ2 | ≤ 𝑘2 as each faulty intermediate value can influence at most
one SRD. As there are 2𝑘+1 repetitions of each output, the decoding
gadget GD can be constructed as a majority function.

Privacy: Algorithm 3, given a set of probes 𝒫 , a set of share
domains 𝒮2, and a set of faults ℱ returns a set of share domains 𝒳
required for the simulation of the probes, the outputs belonging
to 𝒮2, and the outputs that violate the independence property of

7



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu

Algorithm 3: Share-Domain Chooser for the Simulator of
HPCC

1 .

1 function DomainChooserHPC
C
1 (𝒫,𝒮2,ℱ2):

2 𝒳 ← ∅
3 for ℓ = 0 to 𝑛 − 1 do
4 for 𝑖 = 0 to 𝑑 do
5 if 𝑤ℓ

𝑖 or 𝑐ℓ𝑖 is probed or 𝑖 ∈ 𝒮2 then
6 𝒳 ← 𝒳 ∪ {𝑖 }
7 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
8 if 𝑧ℓ𝑖,𝑗 is probed then
9 𝒳 ← 𝒳 ∪ {𝑖 }

10 if 𝑣𝑖,𝑗 is probed ∧ (𝑖 ∈ 𝒳 or 𝑗 ∈ 𝒳 ) then
11 𝒳 ← 𝒳 ∪ {𝑖, 𝑗 }
12 else if 𝑣ℓ𝑖,𝑗 is probed then
13 𝒳 ← 𝒳 ∪ {𝑖 }
14 if 𝑟𝑖,𝑗 is faulted ∧ (𝑖 ∈ 𝒳 or 𝑗 ∈ 𝒳 ) then
15 𝒳 ← 𝒳 ∪ {𝑖, 𝑗 }

16 if ∀𝑗 : 𝑟𝑖,𝑗 is faulted then
17 𝒳 ← 𝒳 ∪ {𝑖 }

18 return 𝒳

Boolean sharing. We set 𝒮1 ← 𝒳 \𝒮2. Then all required intermedi-
ate values and outputs (with manipulation according to faults) can
be computed exactly as in Algorithm 2 using the inputs belonging
to the share domains in 𝒳 , except for some 𝑣ℓ

𝑗
.

First, we see that Algorithm 3 adds at most one share domain per
probe, share domain in 𝒮2, and internal fault. Therefore, it always
holds that |𝒮1 | ≤ 𝑑1 + 𝑘2. We continue, by showing that the share
domains in 𝒳 and knowledge of the faults are sufficient to simulate
the probes in 𝒫 , the outputs in 𝒮2, and the outputs that violate
the independence property of Boolean sharing. (Please note, that
Algorithm 2 has no abort signal).

We define a simulator that computes all required values exactly as
defined in Algorithm 2 (required randomness is generated), except
for 𝑣ℓ

𝑗
. For this value, we distinguish between the following cases:

(i) if 𝑗 ∈ 𝒳 compute 𝑣ℓ
𝑗
according to Algorithm 2. (ii) if 𝑗 ∉ 𝒳 then

draw a fresh random value 𝑟 and set ∀ℓ : 𝑣ℓ
𝑗
← 𝑟 . Afterwards, all

values are manipulated according to the given faults.
Please note, if some 𝑣ℓ

𝑗
is replaced by randomness then there

is no fault injected in 𝑟𝑖, 𝑗 , since then 𝑗 ∉ 𝒳 and there is a probe
dependent on 𝑣ℓ

𝑗
. Faults in 𝑏ℓ

′
𝑗
or 𝑣ℓ′

𝑗
, for ∀ℓ ′, have no impact on

𝑣ℓ
𝑖, 𝑗
, since there can be at most 𝑘 faults and there are at least 𝑘 + 1

correct values. All other faults are either not observable by the
probes or the faulted values are used exactly as in Algorithm 2
and the simulator can do the same manipulation as the fault in the
gadget.

This simulator results in the same output distribution as the
probes for the following reason: All values are computed exactly
as in the gadget (Algorithm 2) except for 𝑣ℓ

𝑗
in Case (ii). In this

case, we argue that 𝑟𝑖, 𝑗 is only observable through one intermediate
value and, hence, the simulation is correct. This is true for the
following reason: Assume some 𝑣ℓ

𝑗
is replaced by some randomness.

This means 𝑗 ∉ 𝒳 and some value dependent on 𝑣ℓ
𝑗
is probed (i.e.,

𝑣ℓ
𝑗
, 𝑣ℓ

𝑖, 𝑗
, 𝑤 ℓ

𝑖
, 𝑧ℓ

𝑖, 𝑗
, or 𝑐ℓ

𝑖
). From 𝑗 ∉ 𝒳 follows that there is no probe

placed on any 𝑣ℓ
′
𝑗
, 𝑣ℓ′

𝑗,𝑖
, 𝑤 ℓ′

𝑗
, 𝑧ℓ′

𝑗,𝑖
, or 𝑐ℓ′

𝑗
, for ∀𝑖, ℓ ′ and, hence, 𝑟𝑖, 𝑗 is

only observable through 𝑣ℓ
𝑗
and the simulation is correct.

Note that the output of Algorithm 2 is always a valid Boolean
sharing due to the mask refreshing in Line 17 except when all
random values 𝑟𝑖, 𝑗 ,∀𝑗 are faulted. In this case 𝑐ℓ

𝑖
,∀ℓ violate the

independence property, however, can be simulated as 𝑖 ∈ 𝒳 . With
the given simulator follows privacy of Algorithm 2. □

Remark 2. We emphasize that faults targeted at randomness count
as internal faults, i.e., contribute to 𝑘2.

Remark 3. For security it is essential, that the majority function
(Line 12) is computed for each SRD individually.

Remark 4. For security it is also essential that the mask refreshing
in Line 8 is done one by one, i.e., 𝑣ℓ

𝑗
← (((𝑏ℓ

𝑗
+ 𝑟 𝑗,0) + . . .) + 𝑟 𝑗,𝑑 ).

Remark 5. The assumption that the majority function is imple-
mented register free is done for simplicity and readability of the proof.
In fact, when there are register inmaj then probes on 𝑣ℓ

𝑖, 𝑗
and potential

probes within maj are strictly less powerful as a probe on 𝑣ℓ
𝑖, 𝑗

without
registers in maj.

As mentioned, the security of HPC2 [9] relies on the fact that
cross-domain leakage is prevented by some 𝑟𝑖, 𝑗 that is observable in
only one of (𝑎𝑖 +1) ·𝑟𝑖, 𝑗 or 𝑎𝑖 · (𝑏 𝑗 +𝑟𝑖, 𝑗 ) and, hence, ensures a proper
masking of 𝑏 𝑗 (if 𝑏 𝑗 is not an input to the simulator). However,
this only holds because both terms get the same 𝑎𝑖 as input and
one of them is using the negated form. Now, when replicating the
gadget there exist some terms (𝑎0

𝑖
+ 1) · 𝑟𝑖, 𝑗 and 𝑎1𝑖 · (𝑏1𝑗 + 𝑟𝑖, 𝑗 ) such

that 𝑎ℓ
𝑖
comes from different replications. Hence, by faulting 𝑎0

𝑖

or 𝑎1
𝑖
it is possible to force both (𝑎0

𝑖
+ 1) and 𝑎1

𝑖
to be true and,

hence, 𝑟𝑖, 𝑗 is observable in both corresponding terms. However, in a
combined attack setting this flaw cannot be exploited for 𝑑 ≤ 3 and
𝑘 ≤ 3, as the corresponding attack requires one fault (at 𝑎0

𝑖
) and two

probes (at 𝑐0
𝑖
and 𝑐1

𝑖
). Hence, for the remaining cases, we describe

an HPC2-based CINI gadget in Algorithm 4 and prove the security
in Section 7.1 via a tool-based analysis. As HPC3 [27] also depends
on the masked shares multiplication trick it suffers from the same
limitations. Interestingly,HPCC

2 achieves a tight realization of CINI,
meaning that a well placed fault indeed reduces the order of probing
security by one (cf. Section 7.3). In contrast,HPCC

1 actually achieves
a higher security level than strictly required for some orders, e.g.,
the (2, 2)-HPCC

1 gadget is also (2, 1)-CINIind and (1, 2)-CINIind (see
Section 5). This indicates some overhead in terms of randomness
for HPCC

1 .
While potentially more efficient, gadgets based on detection have

to avoid SCA leakage caused by fault propagation and construct a
SCA-secure tree of detection flags. Both are non-trivial problems
that we leave for future work.

5 Independent Combined-Isolating
Non-Interference

The presented CINI definition requires that the number of probes
and faults together is smaller than or equal to the order of probing

8
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Algorithm 4: HPCC
2 : CINI multiplication for 𝑑 ≤ 2, 𝑘 ≤ 2

(with difference to HPC2 highlighted).
1 function HPCC

2 (𝑎
0
0, . . . , 𝑎

𝑛
𝑑 , 𝑏

0
0, . . . , 𝑏

𝑛
𝑑):

Require: 𝑑 ≤ 2, 𝑘 ≤ 2, 𝑛 = 2𝑘 + 1
Require: 𝑎ℓ𝑖 = 𝑎ℓ

′
𝑖 and 𝑏ℓ𝑖 = 𝑏ℓ

′
𝑖 for 0 ≤ ℓ, ℓ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Require:
∑𝑑

𝑗=0 𝑎
ℓ
𝑗 = 𝑎 and

∑𝑑
𝑗=0 𝑏

ℓ
𝑗 = 𝑏 for 0 ≤ ℓ ≤ 𝑛

// Initialize randomness

2 for 𝑖 = 0 to 𝑑 do
3 for 𝑗 = 𝑖 + 1 to 𝑑 do

4 𝑟𝑖,𝑗
$← F2; 𝑟 𝑗,𝑖 ← 𝑟𝑖,𝑗

// Masking

5 for ℓ = 0 to 𝑛 − 1 do
6 for 𝑖 = 0 to 𝑑 do
7 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
8 𝑣̃ℓ𝑖,𝑗 ← 𝑏ℓ𝑗 + 𝑟𝑖,𝑗

9 for ℓ = 0 to 𝑛 − 1 do
// Correction and partial products

10 for 𝑖 = 0 to 𝑑 do
11 𝑤ℓ

𝑖 ← 𝑎ℓ𝑖 · Reg[𝑏ℓ𝑖 ]
12 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
13 𝑢ℓ

𝑖,𝑗 ← (𝑎ℓ𝑖 + 1) · Reg[𝑟𝑖,𝑗 ]
14 𝑣ℓ𝑖,𝑗 ← maj(𝑣̃0𝑖,𝑗 . . . 𝑣̃𝑛−1𝑖,𝑗 )
15 𝑧ℓ𝑖,𝑗 ← 𝑎ℓ𝑖 · Reg[𝑣ℓ𝑖,𝑗 ]

// Reduction

16 for 𝑖 = 0 to 𝑑 do
17 𝑐ℓ𝑖 ← Reg[𝑤ℓ

𝑖 ] +
∑𝑑

𝑗=0, 𝑗≠𝑖 (Reg[𝑢ℓ
𝑖,𝑗 ] + Reg[𝑧ℓ𝑖,𝑗 ])

18 Ensures: 𝑐ℓ𝑖 = 𝑐ℓ
′

𝑖 for 0 ≤ ℓ, ℓ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Ensures:
∑𝑑

𝑗=0 𝑐
ℓ
𝑗 = 𝑎 · 𝑏 for 0 ≤ ℓ ≤ 𝑛

19 return 𝑐00, . . . , 𝑐
𝑛
𝑑

security 𝑑 . This means that it is of course possible to build a gadget
that can resist 𝑑 ′ probes together with 𝑘 ′ faults for arbitrary 𝑑 ′, and
𝑘 ′, however, it requires an implementation with at least 𝑑 ′ + 𝑘 ′ + 1
shares and is, hence, effectively a (𝑑 ′+𝑘 ′, 𝑘 ′) gadget. This results in
a significant overhead in the number of shares and in consequence
also in other metrics.

To avoid this overhead, we define CINIind, a composability notion
for CA security where the order of probing and fault security can
be selected independently. This independence requires only a small
change compared to the CINI definition, namely that we now have
𝑑1 + 𝑑2 ≤ 𝑑 instead of 𝑑1 + 𝑑2 + 𝑘1 + 𝑘2 ≤ 𝑑 , separating the number
of injected faults and the order of probing security.

Definition 5.1 (Independent Combined-Isolating Non-Interference).
A gadget G is (𝑑, 𝑘)-CINIind iff for any set ℱ1 of 𝑘1 faulty SRDs,
every set of 𝑘2 faults injected in gates of G, any set of 𝑑1 probes
placed on intermediate values, and any set 𝒮2 of 𝑑2 share domains,
such that 𝑘1 + 𝑘2 ≤ 𝑘 and 𝑑1 + 𝑑2 ≤ 𝑑 , there exists a set ℱ2 of at
most 𝑘2 SRDs and a set 𝒮1 of at most 𝑑1 share domains such that
the following holds:
Correctness: The gadget either aborts or gives an output where

all values, except those belonging to the SRDs ℱ1 ∪
ℱ2, are equal to the golden circuit, and there exists

a decoding gadget GD, such that given an input
with at most 𝑘 faulty SRDs, GD outputs a correct
result.

Privacy: The outputs of the share domains in 𝒮2 and the
probes can be simulated with the inputs of the share
domains in𝒮1∪𝒮2 and knowledge of the faults both
injected and on inputs in ℱ1.

Please note, that in contrast to CINI the parameters for probing
and fault security are now clearly separated. This also requires
the use of correction countermeasures, as detection violates this
separation [15]. To see this, assume an intermediate value that gets
randomized by some randomness, i.e., 𝑥 ℓ

𝑖
+ 𝑟 , where a reset fault is

injected on 𝑥 ℓ
𝑖
. The detection then removes the 𝑟 in some other fault

domain ℓ ′ and an appropriate probe leaks 𝑥𝑖 (cf. Figure 5 in [35]).

5.1 CINIind Security and Composition
The security and composition of CINIind relies on the same fun-
damental properties as for CINI, i.e., more domains than allowed
attack points and isolation of probe and fault propagation within
the respective domains.

Theorem 5.2. A (𝑑, 𝑘)-CINIind gadget is (𝑑, 𝑘)-combined secure.

Theorem 5.3. The loop-free composition of two (𝑑, 𝑘)-CINIind
gadgets is (𝑑, 𝑘)-CINIind.

The proofs of both theorems follow closely the argumentation for
their CINI counterparts (Theorem 4.3 and Theorem 4.4), where for
privacy aspects related to injected faults are removed. We, therefore,
omit the proofs here and refer the interested reader to Appendix B
for more details.

5.2 CINIind Gadgets
One can observe that the provided CINI gadget for linear functions
already adheres to the more restrictive CINIind property. The reason
is the natural isolation of each SRDwhen implementing the function
for each share and replication individually.

Theorem 5.4. An implementation with 𝑑 + 1 shares and (2𝑘 + 1)-
times replication of a linear function is (𝑑, 𝑘)-CINIind in the glitch-
robust probing model.

Again, the proof follows closely the argumentation from Theo-
rem 4.5 and we refer the reader to Appendix B for details.

As with PINI and CINI, implementing a non-linear gadget is
more complex and requires careful separation of probe and fault
propagation. Of course, the same design principles as for CINI apply
also for CINIind, namely (i) the masking of values crossing share-do-
main boundaries need to be refreshed, and (ii) values crossing SRD
boundaries need to be corrected. In addition CINIind requires (iii) re-
masking is done with more than 𝑘 random values. This ensures
that an attacker cannot remove the randomness from a refreshed
value.

Interestingly, increasing the amount of randomness is sufficient
to make the CINI multiplication gadget CINIind in the case ofHPCC

1 .

Theorem 5.5. The gadget HPCI
1 as defined in Algorithm 5 with a

register-free majority function is (𝑑, 𝑘)-CINIind in the glitch-robust
probing model.

9
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Algorithm 5: HPCI
1: CINIind multiplication.

1 function HPCI
1(𝑎

0
0, . . . , 𝑎

𝑛
𝑑 , 𝑏

0
0, . . . , 𝑏

𝑛
𝑑):

Require: 𝑛 = 2𝑘 + 1
Require: 𝑎ℓ𝑖 = 𝑎ℓ

′
𝑖 and 𝑏ℓ𝑖 = 𝑏ℓ

′
𝑖 for 0 ≤ ℓ, ℓ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Require:
∑𝑑

𝑗=0 𝑎
ℓ
𝑗 = 𝑎 and

∑𝑑
𝑗=0 𝑏

ℓ
𝑗 = 𝑏 for 0 ≤ ℓ ≤ 𝑛

// Initialize randomness

2 for 𝑖 = 0 to 𝑑 do
3 for 𝑗 = 𝑖 + 1 to 𝑑 do
4 for𝑚 = 0 to 𝑘 − 1 do
5 𝑟𝑖,𝑗,𝑚

$← F2; 𝑟 𝑗,𝑖,𝑚 ← 𝑟𝑖,𝑗,𝑚

6 𝑟𝑖,𝑗,𝑚
$← F2; 𝑟 𝑗,𝑖,𝑚 ← 𝑟𝑖,𝑗,𝑚

// Refreshing

7 for ℓ = 0 to 𝑛 − 1 do
8 for 𝑗 = 0 to 𝑑 do
9 𝑣̃ℓ𝑗 ← 𝑏ℓ𝑗 +

∑𝑑
𝑖=0,𝑖≠𝑗

∑𝑘−1
𝑚=0 𝑟𝑖,𝑗,𝑚

// Correction

10 for ℓ = 0 to 𝑛 − 1 do
11 for 𝑖 = 0 to 𝑑 do
12 for 𝑗 = 0 to 𝑑 do
13 𝑣ℓ𝑖,𝑗 ← maj(𝑣̃0𝑖 . . . 𝑣̃𝑛−1𝑖 )

// Multiplication

14 for ℓ = 0 to 𝑛 − 1 do
15 for 𝑖 = 0 to 𝑑 do
16 𝑤ℓ

𝑖 ← 𝑎ℓ𝑖 · Reg[𝑣ℓ𝑖,𝑖 ]
17 for 𝑗 = 0 to 𝑑, 𝑗 ≠ 𝑖 do
18 𝑧ℓ𝑖,𝑗 ← 𝑎ℓ𝑖 · Reg[𝑣ℓ𝑗,𝑖 ] +

∑𝑘−1
𝑚=0 𝑟𝑖,𝑗,𝑚

19 𝑐ℓ𝑖 ← Reg[𝑤ℓ
𝑖 ] +

∑𝑑
𝑗=0;𝑗≠𝑖 Reg[𝑧ℓ𝑖,𝑗 ]

Ensures: 𝑐ℓ𝑖 = 𝑐ℓ
′

𝑖 for 0 ≤ ℓ, ℓ′ ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑑

Ensures:
∑𝑑

𝑖=0 𝑐
ℓ
𝑖 = 𝑎 · 𝑏 for 0 ≤ ℓ ≤ 𝑛

20 return 𝑐00, . . . , 𝑐
𝑛
𝑑

The proof can be found in Appendix B.
Remark 3, Remark 4, and Remark 5 also hold for the CINIind

gadget in Algorithm 5 with the majority function in Line 13 and the
masking in Line 9 and 19. Please note, the gadget HPCC

2 can not be
easily transferred to CINIind since the contradiction mentioned in
Section 4.2 then also occurs for smaller orders (𝑑 ≥ 2 and 𝑘 ≥ 1).

6 TOOL SUPPORT
In the last years, many tools supporting the verification and con-
struction of circuits were presented in the literature. We extend
the recently published tool VERICA5 [35] with our novel compos-
ability notions. Additionally, we added support for our gadgets to
SAIREDA6 to construct secure cryptographic primitives from inse-
cure implementations using the proposed comparability notions.

Integration into a Verification Tool. VERICA is a verification tool
for combined countermeasures which has been coalesced from the
SCA verification tool SILVER [28] and the FIA verification tool
FIVER [37]. Hence, the tool analyzes a given gate-level netlist with
5Available at https://github.com/Chair-for-Security-Engineering/VERICA
6Available at https://github.com/Chair-for-Security-Engineering/SAIREDA

respect to the protection against physical attacks. More precisely,
VERICA can verify stand-alone protection against SCA and FIA but
also combined protection considering reciprocal effects between
fault-injections and side-channel analysis. These reciprocal effects
are analyzed by applying a active-then-passive verification approach
meaning that the tool injects a valid fault combination followed by
a passive side-channel analysis. In this context, VERICA is limited
to analyze combined composability only for the C-NI, C-SNI, and
C-SNIind security notions [35]. In order to extend VERICA to sup-
port our novel security notion, we first extend the fault verification
strategies (i.e., error detection and error correction) with a feature
to support verification of the FINI notion. Hence, the inputs and
outputs require an additional annotation to identify the different
redundancy domains. This information is used to track the redun-
dancy domains of erroneous outputs and faulted inputs of a design
under test. Based on Definition 3.2, we remove all input redundancy
domains from the set of output redundancy domains and check if
the cardinality of the resulting set exceeds the number of internal
faults (if not, the design is FINI). So far, VERICA only supported two
fault composability notions relying on ideas of non-accumulation
(see [15, 35] for more details).

Similarly, we extend VERICA to support the verification of the
CINI notion introduced in Section 4. In order to check the correct-
ness, we implemented a similar strategy as for FINI but instead of
relying on redundancy domains, we use SRDs as defined in Defini-
tion 4.1. Note that all faults on randomness are treated as internal
faults, as discussed before. To verify the privacy, we modify the in-
tegrated PINI strategy of VERICA such that the number of allowed
probes depends on the number of injected faults (cf. Definition 4.2).

For the integration of the CINIind notion, we independently in-
ject faults and subsequently check the the composability in the PINI
model. The composability with respect to fault injections is accom-
plished by applying the same checks as for CINI (i.e., determining
the number of faults in different SRDs).

Gadget Insertion. To automate the process of integrating the
proposed gadgets into a hardware netlist, we added support for the
gadgets to the SAIREDA project, which is based on the Multi-Level
Intermediate Representation (MLIR) compiler framework [31]. As
input serves an unprotected Flexible Internal Representation for
RTL (FIRRTL) [26] design restricted to netlist operations (which
can be derived from Chisel or Verilog) while the tool produces a
protected Verilog description. Here, we support the composability
notions of FINI, PINI, CINI, and CINIind.

In a preparation phase, we first transfer the design into an XOR-
AND Graph (XAG). Afterwards, the tool operates in two steps:
(i) The tool identifies all non-linear and gates and replaces them
with abstract gadget operations. All majority functions are realized
via the median of a sorting network. In addition, it assigns the
required random elements to the gadgets. This is done for all gadget
types except for FINI, which does not require additional randomness
and only results in a simple replication. (ii) Then, the tool replaces
all operations with their secure implementation, i.e., replicating the
logic and replacing the abstract gadget operations with their actual
logic. Thereby, it adds additional input/output ports for shares,
replication, and randomness to the design.

10
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Table 2. Number of elements (without implementation of maj).

HPCC
1 HPCI

1

and (2𝑘 + 1) (𝑑 + 1)2 (2𝑘 + 1) (𝑑 + 1)2
xor 3(2𝑘 + 1)𝑑 (𝑑 + 1) (2𝑘 + 1)2𝑑 (𝑑 + 1)
reg (2𝑘 + 1) (𝑑 + 1)2 (2𝑘 + 1) (𝑑 + 1)2
maj (2𝑘 + 1) (𝑑 + 1)2 [input size: 2𝑘 + 1] (2𝑘 + 1) (𝑑 + 1)2 [input size: 2𝑘 + 1]
rand 𝑑 (𝑑 + 1) 𝑑 (𝑑 + 1)𝑘

7 EVALUATION
We continue with a practical evaluation of the proposed designs.
First, we provide implementation and verification results for the
individual gadgets. Afterwards, we use these gadgets to construct
cryptographic primitives (i.e., S-boxes) and analyze their security
and implementation costs. Eventually, we instantiate a protected
PRESENT S-box on an Field-Programmable Gate Array (FPGA) and
confirm our theoretical approaches by practical measurements.

7.1 Gadget Verification
We start our evaluation by describing the different implementations
and highlighting important details that need to be considered when
implementing combined gadgets on hardware.

7.1.1 Implementation. We construct FINI gadgets according to Sec-
tion 3, i.e., the target design is instantiated 𝑘 + 1 times for detection-
based and 2𝑘 + 1 times for correction-based implementations. In
addition, detection and correction gadgets follow the independence
property with respect to redundancy domains by replicating the
respective logic as well (cf. Algorithm 1).

For CINI and CINIind linear functions are constructed by in-
stantiating the function (𝑑 + 1) (2𝑘 + 1) times, i.e., for each SRD
one instance, while multiplications are implemented according to
Algorithm 2, Algorithm 4, and Algorithm 5. Please note, that an
implementation has to adhere to Remark 3 and Remark 4. In Table 2
we provide the number of logic elements, dependent on the order of
fault and probing security, required to instantiate the multiplication
gadgets HPCC

1 and HPCI
1. Those numbers are without considering

the implementation of the majority function, as there is no closed
formula for the related implementation cost. Please note that the
gadgets have the same implementation cost except for required
randomness and the number of xor gates.

7.1.2 Results. The implementations and verification results are
shown in Table 3. We instantiated and analyzed a FINI and gadget
equippedwith a detection and a correction gadget for𝑘 ∈ {1, 2, 3, 4},
respectively. All designs fulfill the FINI security notion while the
evaluation of the correction gadget for 𝑘 = 4 requires a notably
verification time of 6.24 h.

Next, we analyze the introduced CINI gadget from Algorithm 2
for 𝑑 ∈ {1, 2, 3} and 𝑘 ∈ {1, 2, 3} and report the required resources.
We could verify the security for all gadgets except for the (3, 3)-CINI
gadget, as VERICAwas not able to finish the analysis in a reasonable
time. As already discussed in Section 4.2, we can construct for some
parameters 𝑑 and 𝑘 a more tight CINI gadget applying Algorithm 4.
Table 3 verifies the security for 𝑑 ∈ {1, 2} and 𝑘 ∈ {1, 2} while it
reveals security flaws for a (3, 1) configuration. We confirm in

Table 3. Implementation and verification results for FINI, CINI, and
CINIind gadgets synthesized with the 45 nm Open Cell Library.
Gadget Design Verification

𝑑 𝑘 rand. comb. reg. area [GE] Def. (𝑑,𝑘 ) Time

D
et
ec
t – 1 0 3 0 4.7

FI
N
I

(0, 1)✓ 0.387 s
– 2 0 6 0 9 (0, 2)✓ 0.397 s
– 3 0 13 0 15 (0, 3)✓ 0.429 s
– 4 0 18 0 19.7 (0, 4)✓ 1.280 s

C
or
re
ct – 1 0 15 0 17

FI
N
I

(0, 1)✓ 0.383 s
– 2 0 75 0 98.3 (0, 2)✓ 0.445 s
– 3 0 147 0 194.3 (0, 3)✓ 16.501 s
– 4 0 297 0 390 (0, 4)✓ 6.24 h

H
PC

C 1

1 1 2 78 24 238

CI
N
I

(1, 1)✓ 0.409 s
2 1 6 189 54 567 (2, 1)✓ 0.485 s
3 1 12 356 96 1 032 (3, 1)✓ 39.544 s
1 2 2 340 40 685 (1, 2)✓ 1.490 s
2 2 6 795 90 1 595 (2, 2)✓ 6.321 s
3 2 12 1420 160 2 860 (3, 2)✓ 4.662min
1 3 2 590 56 1 087 (1, 3)✓ 16.817min
2 3 6 1362 126 2 502 (2, 3)✓ 3.897 h
3 3 12 2456 224 4 509 * ∞

H
PC

C 2

1 1 1 66 36 294

CI
N
I

(1, 1)✓ 0.389 s
2 1 3 189 90 768 (2, 1)✓ 0.775 s
1 2 1 210 60 640 (1, 2)✓ 0.804 s
2 2 3 615 150 1 730 (2, 2)✓ 5.643 s
3 1 6 372 168 1 460 (3,1)✗/(2,1)✓ 18.386 h

H
PC

I 1
1 1 2 78 24 240

CI
N
I in

d

(1, 1)✓ 0.397 s
2 1 6 189 54 573 (2, 1)✓ 4.329 s
3 1 12 356 96 1 044 * ∞
1 2 4 360 40 728 (1, 2)✓ 7.153 s
2 2 12 855 90 1 725 * ∞
3 2 24 1540 160 3 120 * ∞
1 3 6 646 56 1 203 (1, 3)✓ 4.743 h
2 3 18 1530 126 2 852 * ∞
3 3 36 2792 224 5 209 * ∞

* Due to the extensive amount of combinations, these gadgets could not be verified
with VERICA.

Section 7.3 by a practical evaluation that well placed faults can lead
to a reduced side-channel security order.

Eventually, we instantiated and verified the CINIind gadgets for
𝑑 ∈ {1, 2, 3} and 𝑘 ∈ {1, 2, 3} (cf. Algorithm 5). The verification of
these gadgets is more challenging since the number of faults does
not reduce the number of probes. Therefore, VERICA is not able to
verify several designs in a reasonable time (marked by∞).

7.2 Evaluation of Cryptographic Primitives
To assess the implementation impact of the proposed gadgets, we
evaluate the efficiency in terms of area, required fresh randomness,
and latency for three different cryptographic S-boxes. In particular,
we chose S-box implementations from PRESENT [9], Keccak [6],
and AES [7] with a minimal number of and gates. The results are
given in Table 4, where we also report the respective numbers
for HPC1 and HPC2 (PINI) for comparison. The probing secure
implementations are not pipelined, i.e., we only add registers where
required for probing security, and the area of the Random Number
Generator (RNG) is not included.

Area. We report area in terms of Gate Equivalent (GE). As ex-
pected, FINI increases the area of each S-box by the replication
factor. Even when sharing can be seen as some sort of replica-
tion, PINI has a significantly higher area demand than FINI, as
PINI requires additional logic to securely connect different share
domains and, more importantly, requires additional registers to
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Table 4. Complexity of cryptographic primitives.

Gadget Order PRESENT [9] Keccak [6] AES [7]
𝑑 𝑘 prop. area [GE] rand. lat. area [GE] rand. lat. area [GE] rand. lat.

- - 35 0 0 18 0 0 275 0 0

R
ep
lic
at
es - 1

FI
N
I 112 0 0 53 0 0 823 0 0

- 2 178 0 0 88 0 0 1382 0 0
- 3 255 0 0 124 0 0 1901 0 0

H
PC

1 1 -

PI
N
I 266 8 3 277 10 2 2181 68 6

2 - 551 24 3 603 30 2 4560 204 6
3 - 940 48 3 1057 60 2 7803 408 6

H
PC

2 1 -

PI
N
I 390 4 3 432 5 2 3235 34 6

2 - 919 12 3 1063 15 2 7688 102 6
3 - 1673 24 3 1973 30 2 14048 204 6

H
PC

C 1

1 1

CI
N
I

1246 8 3 1270 10 2 9296 68 6
2 1 2716 24 3 2965 30 2 21182 204 6
2 2 6887 24 3 7892 30 2 55363 204 6
3 1 4727 48 3 5337 60 2 37669 408 6
3 2 12073 48 3 14137 60 2 98429 408 6
3 3 19343 48 3 22843 60 2 158555 408 6

H
PC

C 2 1 1

CI
N
I 1462 4 3 1540 5 2 11132 34 6

2 1 3496 12 3 3940 15 2 27857 102 6
2 2 7435 12 3 8577 15 2 60204 102 6

H
PC

I 1

1 1

CI
N
I in

d

1246 8 3 1270 10 2 9296 68 6
2 1 2716 24 3 2965 30 2 21182 204 6
2 2 7367 36 3 8492 45 2 59443 306 6
3 1 4727 48 3 5337 60 2 37669 408 6
3 2 13033 72 3 15337 90 2 106589 612 6
3 3 22031 96 3 26203 120 2 181403 816 6

prevent leakage from glitches. When considering combined-secure
implementations, the impact for CINI is larger than the replication
of the respective PINI gadget due to the additional correction done
in each multiplication gadget. When comparing HPCC

1 and HPCC
2

we observe the same relation as between HPC1 and HPC2, namely
that theHPC2-based gadgets are always larger. AsHPC2 andHPCC

2
capture the respective compositional notions more tightly, more
registers are required to stop leakage from glitches, which has a high
impact on the area. In general, HPCI

1 is larger than HPCC
1 , except

when 𝑘 = 1, due to the additional logic required for the additional
randomness. However, when comparing the actual security guaran-
tees against combined attacks, we should compare (𝑑, 𝑘)-CINIind
to (𝑑 + 𝑘, 𝑘)-CINI, in which case HPCI

1 is more efficient.

Randomness. We report the required fresh randomness in bits.
Additional randomness is only required to achieve probing security
and, hence, no randomness is required for FINI. For CINI the number
of randomness is only dependent on the order of probing security
𝑑 and equal to the respective PINI implementation. For CINIind the
randomness also increases with the order of fault security 𝑘 .

Latency. We report latency in terms of clock cycles, however,
note that the output is not directly connected to a register (causing
additional delay due to signal propagation). In general, additional
registers are only required for probing security to stop leakage
caused by glitches. Here HPCC

1 , HPC
C
2 , and HPCI

1 inherit the la-
tency properties from the respective PINI gadgets.

Table 5. Comparison with state-of-the-art for an AES S-box.

Method Order Security Performance Approach
𝑑 𝑘 indep. SIFA formal area [GE] rand. lat.

CAPA [34] 1 1 - - ✓ 112 878 64 5 Robust MPC
M&M [13] 1 1 - - - 6 500 116 6 Detection + Infection
This Work 1 1 ✓ ✓ ✓ 9 296 68 6 CINIind

CAPA [34] 2 2 - - ✓ 200 965 1 248 5 Robust MPC
M&M [13] 2 2 - - - 13 500 348 6 Detection + Infection
This Work 2 2 - ✓ ✓ 55 363 204 6 CINI
This Work 2 2 ✓ ✓ ✓ 59 443 306 6 CINIind
indep.: SCA order is independent of injected faults, SIFA: Protection against SIFA,

formal: Provable secure in a formal security model.

7.3 Practical Evaluation
Besides verifying our designs with VERICA, we additionally per-
formed practical measurements. More precisely, we synthesized a
pipelined (2, 2)-CINI PRESENT S-box for the Sakura-G side-channel
evaluation board which is equipped with a Xilinx Spartan 6 FPGA.
As discussed above, we focus our practical evaluation on HPCC

2
gadgets since they tightly fulfill Theorem 4.2. The design requires
twelve bits of fresh randomness which is provided by a KECCAK
core instantiated as PseudorandomNumber Generator (PRNG). The
FPGA was supplied with a 4MHz clock and the current was mea-
sured indirectly via the voltage drop over a shunt in the supply
path. To acquire suitable power traces, we used a ZFL-2000GH+
Low Noise Amplifier (LNA) configured with a 25.5 dB gain and a
Spectrum M4 oscilloscope (8 bit resolution) with a sample rate of
2.5GS/s.

For the first experiment, we instantiated a fault-free design on
the FPGA and evaluated the first three statistical moments using a
univariate Welch’s 𝑡-test as described by Schneider and Moradi [39].
More precisely, the absolute value of the 𝑡-test is commonly com-
pared to a threshold of 4.5. If all 𝑡-values do not exceed this threshold
for all sample points, the design is assumed to be secure with a
confidence higher than 0.9999 against attacks exploiting the statis-
tical order of the corresponding 𝑡-test. Figure 5 depicts the corre-
sponding results while Figure 5a shows a sample trace of the S-box
evaluation. As expected, the 𝑡-test only indicates leakage in the
third statistical moment.

For the second experiment, we injected a persistent stuck-at-zero
fault into one of the randomness gates. The corresponding measure-
ment are shown in Figure 6. As formally noted in Definition 4.2, and
confirmed by our measurements shown in Figure 6c, the one-bit
fault reduces the side-channel security by one order.

Eventually, for our last experiment, we injected two persistent
faults in the randomness gates. We expect that the two injected
faults reduce the side-channel security by two orders which is
confirmed in Figure 7.

8 RELATEDWORK
The first proposals that combine SCA and FIA countermeasures
considered both attacks in isolation and, hence, do not protect
against combined attacks [24, 36, 40]. The first proposal protect-
ing against CA is CAPA [34] which divides a chip architecture
into different tiles and uses robust MPC for secure computation,
using a combination of masking with a Message Authentication
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(d) Third-order 𝑡-test results.
Figure 5. Measurement results of a fault
free PRESENT S-box generated from (2, 2)-
CINI gadgets (100 Million traces).
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(d) Third-order 𝑡-test results.
Figure 6. Measurement results of a
PRESENT S-box generated from (2, 2)-CINI
gadgets with 1-bit fault injection (100
Million traces).
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Figure 7. Measurement results of a
PRESENT S-box generated from (2, 2)-CINI
gadgets with 2-bit fault injection (1 Million
traces).

Code (MAC) for fault detection. The formal security argument is
based on the well-established security guarantees of MPC and the
introduced Tile-Probe-and-Fault model. In this model, the adver-
sary can probe tiles (getting all intermediate values of that tile)
or fault tiles (manipulating all intermediate values of that tile), as
long as the sum of probed and faulted tiles does not exceed the
order 𝑑 . However, using MPC, CAPA suffers from a large area over-
head. In contrast, M&M [13] combines masking with a MAC and
infection quite efficiently, however, without any formal security
guarantees for combined attacks. Similar to our work, they use the
glitch-extended probing model in combination with precise fault-
injection abilities and a gadget-based approach. As with CAPA,
the sum of injected faults and placed probes is bounded by the
probing order 𝑑 . Both CAPA and M&M have a security parameter
𝑚 that determines the unforgeability of the MAC, where the secu-
rity increases with𝑚. Neither CAPA nor M&M protects against
Statistical Ineffective Fault Analysis (SIFA) [17]. However, we argue
that SIFA is always possible in a CA setting, as the adversary can
inject faults and perform enough executions for statistical evalua-
tion. Dhooghe and Nikova [15] provide the work most similar to
ours in that they give security definitions and gadgets based on
the NI and SNI composability notion. However, their first software
gadget (cf. Algorithm 2 in [15]) is not transferable to hardware as
it uses an abort that is hard to implement in hardware, and their
second gadget (cf. Algorithm 5 in [15]) was shown to be flawed
by Richter-Brockmann et al. [35]. While it should be possible to
fix the flaw, we expect the fix to be expensive in terms of area and
randomness. We compare security guarantees and performance
of our work with CAPA and M&M in Table 5. Here, the numbers
for CAPA and M&M are given for𝑚 = 1, as done in the original
papers. While M&M is more efficient in area than our proposal, it
has a high cost in required fresh randomness and suffers from the

lack of formal security guarantees in CA. Therefore, even when
expensive, our work achieves a good balance between provided
security guarantees and implementation costs.

9 CONCLUSION
In this work, we transferred the idea of domain isolation from PINI
to both FIA and CA. Alongside, we introduce a formal treatment
of replication and propose the first gadgets for combined security
in hardware. Arguably, the proposed gadgets inflict a significant
cost, however, also provide security guarantees against a powerful
adversary, for which we provide formal proofs.

Future Work. While PINI-based compositions have proven more
efficient than SNI-based compositions for many metrics [9, 10], SNI
provides independence guarantees between inputs and outputs that
have proven useful, in particular for optimization [21, 22]. Hence,
other gadgets with other properties are a useful addition to our
work. While HPCC

2 captures the definition of CINI tightly for 𝑑 ≤ 2
and 𝑘 ≤ 2 a tight gadget for the general case remains an open
challenge. We also focus entirely on replication to counteract the
effect of faults, however, the literature knows awide variety of linear
codes for that purpose. In general, using linear codes poses new
challenges for composition since it is not always possible to encode
a single bit. However, using other linear codes than replication
could lead to more efficient gadgets, reducing some of the discussed
overhead for combined security. An interesting and open question
is the option of hardware-implemented fault detection mechanisms
in the context of combined security.
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A PROOFS FOR FINI
In the following, we provide the proofs omitted in the main body
of the paper, both for Section 3 and Section 5.

Theorem 3.3. A 𝑘-FINI gadget is 𝑘-fault secure.

Proof. LetG be a 𝑘-FINI gadget and letGD be a gadget realizing
a decoding function D, such that given an input with at most 𝑘
faulty redundancy domains and an abort signal, GD either aborts
or outputs a correct result. Further, let ℱ1 be a set of 𝑘1 redundancy
domains and let there be 𝑘2 faults injected in gates of G, such that
𝑘1 + 𝑘2 ≤ 𝑘 . By definition of FINI there exists a set ℱ2 of at most
𝑘2 redundancy domains, such that at most those outputs belonging
to ℱ1 ∪ ℱ2 are faulty. It holds that |ℱ1 ∪ ℱ2 | ≤ 𝑘1 + 𝑘2 ≤ 𝑘

and, hence, the concatenation GD (G(·)) either aborts or outputs a
correct result. □

Theorem 3.4. The composition of two 𝑘-FINI gadgets is 𝑘-FINI.

Proof. Let G1 and G2 be arbitrary 𝑘-FINI gadgets and G3 an
arbitrary composition of G1 and G2. For the beginning, we assume
there is no loop in G3 and without loss of generality, we say no
output of G2 is connected to an input of G1. Let ℱ1 be a set of 𝑘1
redundancy domains with faulty inputs to G3 and let there are 𝑘2
faults injected to G3, of which 𝑘12 target G1 and 𝑘22 target G2. We
select those values such that 𝑘1 + 𝑘2 ≤ 𝑘 and 𝑘12 + 𝑘22 = 𝑘2.

As there is no output of G2 connected to an input of G1 all faulty
inputs to G1 are in ℱ1. With FINI of G1 it follows, there exists a
set ℱ1

2 of 𝑘12 redundancy domains, such that of all outputs of G1 at
most those belonging to ℱ1 ∪ ℱ1

2 are faulty.
Outputs of G1 can be connected to inputs of G2 and, hence, the

faulty inputs to G2 are inℱ1∪ℱ1
2 . With FINI of G2 it follows, there

exists a set ℱ2
2 of 𝑘22 redundancy domains, such that of all outputs

of G2 at most those belonging to ℱ1 ∪ ℱ1
2 ∪ ℱ2

2 are faulty.
Outputs of G3 can be both outputs of G1 and of G2 and, hence,

the faulty outputs of G3 are described by ℱ1 ∪ℱ1
2 ∪ℱ2

2 . Therefore,
there exits a set ℱ2 = ℱ1

2 ∪ ℱ2
2 of 𝑘 ′2 ≤ 𝑘12 + 𝑘22 = 𝑘2 redundancy

domains, such that the faulty outputs of G3 are in ℱ1 ∪ ℱ2. In
addition, as G1 and G2 are 𝑘-FINI there exists a decoding gadget
GD, such that given an input with at most 𝑘 faulty redundancy
domains and an abort signal, GD either aborts or outputs a correct
result. From this follows FINI of G3.

Please note, that the set ℱ2 does not change even if we con-
nect outputs from G2 to inputs G1, as it would just add the same
redundancy domains again. □

Theorem 3.5. The (𝑘+1)-times replication of any circuit is 𝑘-FINI.

Proof. Let C be a (𝑘 + 1)-times replication of a circuit, where
we assign each duplication 𝑖 to the redundancy domain 𝑖 . By inde-
pendence of the different replications, a fault can only propagate
within one redundancy domain. Hence, the setℱ2 is the unification
of all redundancy domains, in which a fault was injected, resulting
in |ℱ2 | ≤ 𝑘2. Then the faulty outputs are in the redundancy do-
mains belonging to |ℱ1 ∪ ℱ2 |. In addition, a decoding gadget can
be implemented by comparing all redundancy domains and raising
an abort signal if not all values are equal. □

B PROOFS FOR CINIind
Theorem 5.2. A (𝑑, 𝑘)-CINIind gadget is (𝑑, 𝑘)-combined secure.

Proof. LetG be a (𝑑, 𝑘)-CINIind gadget, with notation as in The-
orem 5.1. Further, let GD be a gadget realizing a decoding function
D, such that, given an input with at most 𝑘 faults, GD outputs a
corrected result.

Correctness: By definition of CINIind,G outputs a result where all
values are correct, except for those belonging to the SRDs ℱ1 ∪ℱ2.
Further, by definition it holds that |ℱ1 ∪ℱ2 | ≤ 𝑘1 + 𝑘2 ≤ 𝑘 . Hence,
the concatenation GD (G(·)) outputs a correct result.

Privacy: By definition of CINIind the outputs of the share domains
in 𝒮2, and the probes can be simulated with the inputs in the share
domains in 𝒮1 ∪ 𝒮2 and knowledge of the faults injected and on
inputs in ℱ1. Knowledge of the input faults does not reveal any
additional information about the corresponding non-faulted value,
as only distributions are leaked. It holds that |𝒮1 ∪ 𝒮2 | ≤ 𝑑1 + 𝑑2 ≤
𝑑 < 𝑠 . Therefore, due to the independence if the input encoding of
the shares, the inputs in the share domains 𝒮1∪𝒮2 are independent
of any sensitive signals. □

Theorem 5.3. The loop-free composition of two (𝑑, 𝑘)-CINIind
gadgets is (𝑑, 𝑘)-CINIind.

Proof. Let G1 and G2 be arbitrary (𝑑, 𝑘)-CINIind gadgets and
G3 an arbitrary composition of G1 and G2 such that there is no
loop within G3. Without loss of generality, we assume no output
of G2 is connected to an input of G1 (as there is no loop).

Let ℱ1 be a set of 𝑘1 SRDs with faulty inputs to G3 and 𝒮2 a set
of 𝑑2 share domains with probed outputs of G3. Further, let there
be 𝑘2 faults injected in gates of G3, of which 𝑘12 target gates in G1
and 𝑘22 target gates in G2. In addition, assume 𝑑1 probes placed on
wires in G3, of which 𝑑11 target wires in G1 and 𝑑21 target wires in
G2. As the gadgets G1 and G2 are disjoint it holds that 𝑘12 +𝑘22 = 𝑘2
and 𝑑11 + 𝑑21 = 𝑑2. We chose 𝑑1, 𝑑2, 𝑘1, and 𝑘2 such that 𝑘1 + 𝑘2 ≤ 𝑘

and 𝑑1 + 𝑑2 ≤ 𝑑 . We first prove correctness and then privacy of G3.
Correctness: As no output of G2 is connected to an input of G1,

the set ℱ1 contains all SRDs with faulty inputs to G1 and there are
𝑘12 faults injected in gates of G1. It holds that 𝑘1 + 𝑘12 ≤ 𝑘1 + 𝑘2 ≤ 𝑘 .
Hence, with CINIind of𝐺1 it follows that there exists a set ℱ1

2 of 𝑘12
SRDs, such that at most the outputs belonging to the SRDsℱ1∪ℱ1

2
are faulty.

Outputs of G1 can be connected to inputs of G2, thus, the set of
SRDs with possible faulty inputs to G2 is the set ℱ1 ∪ ℱ1

2 . Further,
there are 𝑘22 faults injected in gates ofG2. It holds that 𝑘1+𝑘12 +𝑘22 =

𝑘1 + 𝑘2 ≤ 𝑘 . Hence, with CINIind of G2 it follows that there exists a
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set ℱ2
2 of 𝑘22 SRDs, such that at most the outputs belonging to the

SRDs ℱ1 ∪ ℱ1
2 ∪ ℱ2

2 are faulty.
The outputs of G3 can be both outputs of G1 and G2 and, there-

fore, at most the SRDs in ℱ1 ∪ ℱ1
2 ∪ ℱ2

2 carry faulty outputs. It
holds that |ℱ1 ∪ ℱ1

2 ∪ ℱ2
2 | ≤ 𝑘1 + 𝑘12 + 𝑘22 = 𝑘1 + 𝑘2 ≤ 𝑘 . In addi-

tion, as G1 and G2 are (𝑑, 𝑘)-CINIind there exists a decoding gadget
GD, such that given an input with at most 𝑘 faulty SRDs and an
abort signal, GD either aborts or outputs a correct result. From this
follows correction of G3.

Privacy: As all outputs of G2 are outputs of G3 the set of probed
output share domains of G2 is 𝒮2. In addition, there are 𝑑21 probes
placed on wires in G2. It holds that 𝑑21 + 𝑑2 ≤ 𝑑1 + 𝑑2 ≤ 𝑑 . Hence,
with CINIind of G2 there exists a set 𝒮2

1 of 𝑑21 share domains, such
that the outputs of G2 belonging to 𝒮2, and the probes placed on
wires in G2 can be simulated with the inputs of G2 belonging to
the share domains 𝒮2

1 ∪ 𝒮2 and knowledge of the faults. Denote
this simulator with S2. Please note, the knowledge of the faults at
inputs to G2 can be derived by fault propagation.

Outputs of G1 can be connected to inputs of G2 and a simulator
for G1 needs to simulate all inputs of G2 required for S2. Hence, the
set of probed output share domains is 𝒮2

1 ∪ 𝒮2. In addition, there
are 𝑑11 probes placed on wires within G1. It holds that 𝑑11 +𝑑21 +𝑑2 =
𝑑1 + 𝑑2 ≤ 𝑑 . Hence, with CINIind of G1 there exists a set 𝒮1

1 of 𝑑11
share domains, such that the outputs of G1 belonging to the share
domains 𝒮2

1 ∪ 𝒮2, and the probes placed on wires in G1 can be
simulated with inputs of G1 in the share domains 𝒮1

1 ∪𝒮2
1 ∪𝒮2 and

knowledge of the faults. We call this simulator S1.
Together, S1 and S2 build a simulator such that the abort signal

of G3, the outputs of G3 belonging to the share domains in 𝒮2,
and the probes placed on wires in G3 can be simulated with the
inputs of G3 belonging to the share domains in 𝒮1

1 ∪ 𝒮2
1 ∪ 𝒮2 and

knowledge of the faults. It holds that |𝒮1
1 ∪𝒮2

1 | ≤ 𝑑11 +𝑑21 = 𝑑1. This
proves privacy of G3, and concludes the proof. □

Theorem 5.4. An implementation with 𝑑 + 1 shares and (2𝑘 + 1)-
times replication of a linear function is (𝑑, 𝑘)-CINIind.

Proof. Let G be the trivial gadget implementation of a linear
function, i.e., the linear function is replicated both in the dimen-
sion of fault and share domains. Then, it holds that each SRD is
functionally separated.

Correctness: Due to the separation of SRDs, fault in a SRD (𝑖, ℓ)
can only propagate to an output in the SRD (𝑖, ℓ). Hence, ℱ2 is the
unification of all SRDs a fault is injected in and it always holds that
|ℱ2 | ≤ 𝑘2. As input faults can also only propagate within the same
SRD, all outputs are correct except for those belonging to the SRDs
ℱ1 ∪ ℱ2. In addition, as there are 2𝑘 + 1 replications up to 𝑘 faults
can be corrected by an majority function and, hence, a decoding
gadget exists.

Privacy: Due to the separation of SRDs, each probe and output is
only dependent on inputs of one SRD. As a SRD is a part of a share
domain, the same is true for share domains. Hence, the outputs
belonging to 𝒮2 can be simulated with the inputs belonging to 𝒮2.
Similarly, the probes can be simulated with the inputs belonging to
the probed share domain. Hence, the simulator requires the inputs
in 𝒮1∪𝒮2 and knowledge of the faults, where 𝒮1 is the set of probed
share domains (it trivially holds that |𝒮1 | ≤ 𝑑1). □

Theorem 5.5. The gadget HPCI
1 as defined in Algorithm 5 with a

register-free majority function is (𝑑, 𝑘)-CINIind in the glitch-robust
probing model.

Proof. Let ℱ1 be a set of 𝑘1 SRDs and 𝒮2 a set of 𝑑2 share
domains. Further, let there be 𝑘2 faults injected to the gates of the
gadget and 𝑑1 probes placed on internal wires. Without loss of
generality, we restrict the probes to only capture 𝑣ℓ

𝑖, 𝑗
,𝑤 ℓ

𝑖
, 𝑧ℓ

𝑖, 𝑗
, and

𝑐ℓ
𝑖
as other glitch-extended probes are less powerful. In particular,

all probes within the majority function (Line 13) are less powerful
than probes on 𝑣ℓ

𝑖, 𝑗
as the majority function is implemented register

free.
Correction: Same argument as for Theorem 4.6.
Privacy: We use the same algorithm to determine the required

share domains for simulation as for Theorem 4.6 (Algorithm 3),
however, without the last two if clauses (Line 14 and 16), i.e., with-
out considering any fault. We again set 𝒮1 ← 𝒳 \ 𝒮2 and, hence,
it always holds that |𝒮1 | ≤ 𝑑1. Then all required intermediate val-
ues and outputs (with manipulation according to faults) can be
computed exactly as in Algorithm 5 using the inputs belonging to
the share domains in 𝒳 , except for some 𝑣ℓ

𝑗
. For this values, we

distinguish between the following cases: (i) if 𝑗 ∈ 𝒳 compute 𝑣ℓ
𝑗

according to Algorithm 5. (ii) if 𝑗 ∉ 𝒳 then find the smallest (𝑖 ′,𝑚′)
(with (𝑖 ′,𝑚′) < (𝑖 ′,𝑚′ + 1) < (𝑖 ′ + 1,𝑚′)) such that 𝑟𝑖′, 𝑗,𝑚′ is not
faulted and set 𝑣ℓ

𝑗
← 𝑟 + ∑𝑑

𝑖=𝑖′
∑𝑘−1
𝑚=𝑚′+1 𝑟𝑖, 𝑗,𝑚 if 𝑚′ < 𝑘 − 1 and

𝑣ℓ
𝑗
← 𝑟 +∑𝑑

𝑖=𝑖′+1
∑𝑘−1
𝑚=0 𝑟𝑖, 𝑗,𝑚 otherwise for all ℓ and some fresh ran-

domness 𝑟 . Afterwards, all values are manipulated according to the
given faults. Faults that cannot be mapped to a computation in the
simulator are ignored, as they have no impact on the probes. This is
also true for faults targeting some value in the computation leading
to some 𝑣ℓ

𝑗
that was replaced by some randomness, as the addition

with 𝑟𝑖′, 𝑗,𝑚′ randomizes the result regardless of the previous value.
In addition, such an 𝑟𝑖′, 𝑗,𝑚′ unaffected by any fault always exist, as
there are 𝑑 · 𝑘 random values for each 𝑗 but at most 𝑘 faults.

This simulator results in the same output distribution as the
probes for the following reason: All values are computed exactly as
in the gadget (Algorithm 5) except for 𝑣ℓ

𝑗
in Case (ii). In this case,

we argue that 𝑟𝑖′, 𝑗,𝑚′ is only observable through one intermediate
value and, hence, the simulation is correct. This is true with the
same argument as for Theorem 4.6, i.e., there can be no probe on
any 𝑣ℓ′

𝑗
, 𝑣ℓ′

𝑗,𝑖
,𝑤 ℓ′

𝑗
, 𝑧ℓ′

𝑗,𝑖
, or 𝑐ℓ′

𝑗
, for ∀𝑖, ℓ ′. Hence, the simulation remains

consistent and correct.
Finally, the output of Algorithm 5 is always a valid sharing as

each 𝑐ℓ
𝑖
is masked with 𝑑 · 𝑘 bits of fresh randomness of which at

most 𝑘 can be faulted. □
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