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Abstract. We propose Designated-Verifier Linkable Ring Signatures
with unconditional anonymity, a cryptographic primitive that protects
the privacy of signers in two ways: Firstly, it allows them to hide inside
a ring (i.e. an anonymity set) they can create by collecting a set of pub-
lic keys all of which must be used for verification. Secondly, it allows a
designated entity to simulate signatures thus making it difficult for an
adversary to deduce their identity from the content of the exchanged
messages. Our scheme differs from similar proposals since the anonymity
guarantees are unconditional.
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1 Introduction

Ring signatures (RS) [14] provide anonymity to the signer of a message by al-
lowing them to hide within a crowd of peers. While an RS is created by a single
private key, it is verified using a set of public keys. This set is called a ring
and can be created ad-hoc. In RS constructions, anonymity can be uncondi-
tional, which means that the signer can be revealed with probability no better
than that of a random guess. However, anonymity can be a double-edged sword;
while it is necessary for some applications, it may be a thwarting factor in oth-
ers. For instance, in e-voting, it allows voters to freely express their preferences.
If left uncontrolled, though, it can be an enabler for an attacker e.g. by fa-
cilitating double-voting. Linkable Ring Signatures (LRS) [10] limit anonymity
while preserving its essence; signatures can be grouped by signer (i.e. linked)
without giving away its identity. To achieve this, LRS embed a linking tag or
pseudoidentity in the signature which can be used for linking. This tag, however,
downgrades LRS anonymity from unconditional to computational. This allows
a strong (e.g. quantum) adversary to learn the identity of the signer.
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The protection offered by RS is also vulnerable to a side-channel attack
against anonymity; the messages exchanged. Indeed, they may contain informa-
tion that ‘leaks’ the signer identity. To thwart such an attack, an additional
entity able to simulate signatures can be used. Designated-Verifier signatures
(DVS) [5] facilitate this scenario, by including the verifier’s public key during
signing. As a result, a signature effectively states that it originates either from
the original signer or the designated verifier (DV). When the DV receives a sig-
nature it did not create, only the DV can be sure of its authenticity. This does
not apply to the public, as a signature verifies successfully, both when created
by the DV (a simulation) or by the original signer.

Designated-Verifier Linkable Ring Signatures (DVLRS) [2], a recent proposal,
combines LRS and DVS. Its aim is to increase the privacy of the ring members
by also allowing a DV to add noise through messages with simulated signatures.
Therefore, it is more difficult to identify a ring member by the content of their
messages, because one cannot tell if they are original or simulations. However,
DVLRS provide only computational anonymity, a feature inherited from LRS.

Our contribution. This work solves an open problem of [2] by enhancing DVLRS
with unconditional anonymity. Our proposed primitive is called UDVLRS (
Designated-Verifier Linkable Ring Signatures with Unconditional anonymity).
Our construction yields a smaller signature than [2]. We formally define the
security model of UDVLRS, propose an instantiation and prove its security.

Related work. Liu et al. [10] provide the first LRS construction and define its
security properties: unforgeability, linkability and anonymity. They prove that
the former two properties hold if the Discrete Logarithm Problem (DLOG) is
hard, while the latter rests on the Decisional Diffie Hellman (DDH) assumption.
These security properties were refined in [12, 11, 4]. Liu et al. [9] proposed the
first unconditionally anonymous LRS scheme. Based upon their construction we
introduce a more realistic model for anonymity, by allowing the adversary to
access previously known signatures and corrupted public keys. Their work also
defined a new security property, non - slanderability, which aimed to prevent
an adversary from arbitrarily linking signatures to signers that did not create
them. DVLRS combined this property with linkability, thus making the security
model of the primitive simpler. We find however that this stronger definition of
linkability is not compatible with anonymity.

The pseudoidentity in [10] is a function of the ring and the secret signing
key. As a result, linking can be performed only to signatures originating from
the same ring. In [9] the pseudoidentity is generalized, since it is a function of the
secret signing key and a commonly shared string called event (ev). As a result,
signatures from different rings can also be linked.

The essential security property for DVS, besides unforgeability, is non - trans-
ferability. It was formalized in [15] and states that no party except the DV can
be convinced that a signature is not a simulation. DVS can be either publicly or
privately verifiable. In the latter case they are called strong designated-verifier
signatures and require the secret key of the DV for verification.



Designated-Verifier Linkable Ring Signatures with unconditional anonymity 3

RS and DVS share a similarity [14] facilitated by anonymity. In both cases
the public cannot tell who created a signature. Therefore, a ring of two mem-
bers provides in effect designated-verifier signatures. However, as stated in [2],
linkability breaks this connection, because the pseudoidentity can be used to
prove that a particular signature is not a simulation. As a result, there have
been some attempts in the literature to combine LRS and DVS, but none of
them employs the semantics of DVLRS and UDVLRS. In [16, 6] only private
verifiability is provided, while in [6, 7] linkability is not considered. DVLRS was
the first scheme to combine linkability with a designated verifier and public veri-
fiability, thus achieving noise via simulated signatures. UDVLRS extend DVLRS
with unconditional anonymity, while keeping public verifiability and perfect non-
transferability. Unforgeability and linkability remain conditional to the hardness
of DLOG. Lastly, UDVLRS generalize linking by allowing signatures to be linked
from different rings and different designated verifiers.

2 Preliminaries

2.1 Notation

We denote by λ the security parameter. L is a ring consisting of n public keys.
L is a subset of the set of all possible public keys U , the size of which is µ(λ).
As usual, [n] is the set {1, . . . , n}. Equality is denoted with =, assignment with
←, definition with ≜, while ←$ denotes a selection of an item from a set uni-
formly at random. Our security definitions are in the form of games between a
challenger C and an adversary A. Their input is always the security parameter
and their output is the truth value of the condition that will make A win the
game; for brevity, our games return the condition itself. The absence of an out-
put is denoted by ⊥. Values of no interest in a particular context are denoted
by ‘·’. A has state which is maintained throughout successive operations but is
always omitted. We refer to the cryptographic parameters of our constructions
as params. They are required in all our algorithms, but we do not include them
for conciseness. We denote a public key as pk and a secret key as sk. The pseu-
doidentity is denoted by pid and the set of all possible pid’s by PID. Linking
is based on a common string ev which originates from a set EID. The index
of the designated verifier is D, while the index of the signer in the ring is π.
Most of the algorithms that constitute our primitive take as common input the
values ev, L, m, pkD to denote respectively an event, a ring, a message, and the
public key of the designated verifier. We collectively refer to these values as the
signature parameters.

2.2 Security Assumptions

The security of some facets of our construction rests on a variation of the Discrete
Logarithm Problem (DLOG), which is more easy to use. It was first defined in
[9] and it was used as a computationally equivalent problem to DLOG. A similar
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version was introduced in [1] as the Discrete Logarithm Relation. We will be
using [9]’s version, which we reintroduce as the Modified Discrete Logarithm
Relation (MDLR):

Definition 1. Modified Discrete Logarithm Relation (MDLR). Let G be a cyclic
group of prime order q generated by g and Y1, Y2, . . . , Yn ←$ G, Y1 ̸= 1G. A
solution to the MDLR problem is a tuple (ϕ1, ϕ2, . . . , ϕn) ∈ Znq such that Y1 ·
Y ϕ2

2 · · · Y ϕn
n = gϕ1 and

∑n
i=1 ϕi ̸= 0 (mod q).

Note that for n = 1, MDLR is the standard DLOG problem.

Proposition 1. DLOG is computationally equivalent to MDLR.

Proof. Assuming a DLOG oracle and a MDLR instance Y1, Y2, . . . , Yn compute
x1, x2, . . . , xn such that Yi = gxi , i ∈ [n]. Select {ϕi ∈ Zq}ni=2 and set ϕ1 ←
x1+

∑n
i=2 ϕixi mod q. In (the negligible) case that

∑n
i=1 ϕi = 0 (mod q) repeat

the process. Clearly, gϕ1 = gx1+
∑n

i=2 ϕixi = Y1 · Y ϕ2

2 · · · Y ϕn
n .

Assuming a MDLR oracle and a DLOG instance Y = gx, select x2, . . . , xn and
compute {Yi ← gxi}ni=2. Query the MDLR oracle with Y, Y2, . . . , Yn and receive

ϕ1, ϕ2, . . . , ϕn ∈ Zq such that Y · Y ϕ2

2 · · · Y ϕn
n = gϕ1 and

∑n
i=1 ϕi ̸= 0 (mod q).

Thus Y = gϕ1−
∑n

i=2 ϕixi and the DLOG of Y is x = ϕ1−
∑n
i=2 ϕixi (mod q). ⊓⊔

3 UDVLRS definition and security model

3.1 UDVLRS definition

Our definition of UDVLRS is a combination of the respective ones in [2, 9]:

Definition 2. A UDVLRS scheme is a tuple of PPT algorithms Π = (Setup, KGen,
Sign, Extract, Sim, Vrfy, Link) where:

– params← Setup(λ). The Setup algorithm generates the cryptographic groups
for UDVLRS operations as well as the message, signature, pseudoidentity
and event spaces (MSG,SG,PID, EID respectively).

– (sk, pk)← KGen(). The key generation algorithm.
– σ ← Sign(ev, L, m, pkD, skπ). Sign is the algorithm that is used to sign a

message m by some π ∈ [n] for event ev, ring L, and designated verifier D.
– pid← Extract(σ). Extract is an algorithm that can obtain the pseudoidentity

pid from a signature. It is publicly executable.
– σ ← Sim(ev, L, m, pkD, skD, pid). Sim is the signature simulation algorithm

that allows the designated verifier D to produce indistinguishable signatures
for pseudoidentity pid.

– {0, 1} ← Vrfy(ev, L, m, pkD, σ). Vrfy is the public verification algorithm which
outputs 1 if the signature is valid or 0 if it is not.

– {0, 1} ← Link(σ1, ev1, σ2, ev2). Link is the public linking algorithm which
outputs 1 if σ1 and σ2 originate from the same signer or if they are simulated
to look like they originate from the same signer.
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Note that the Sim algorithm requires a pid for a linkable simulation. Thus, it
must have seen a signature before. This does not restrict the applications of our
primitive, since an initialization phase could be designed where each signer would
publish a signed registration message, without sensitive data. Alternatively, sig-
natures with a random pid could be used before or during the registration phase.
These would not be linked to any signer.

3.2 Correctness

The completeness of UDVLRS rests on the following two properties:
Verification Correctness. A signature or simulation, for a specific event, ring,

message and designated verifier is valid if and only if it was honestly generated
(i.e. Vrfy(ev, L, m, pkD, σ) = 1 ⇔ σ = Sign(ev, L, m, pkD, skπ), pkπ ∈ L or σ =
Sim(ev, L, m, pkD, skD, pid), (skD, pkD) = KGen(), pid ∈ PID).

Linking Correctness. Two valid signatures σ1, σ2 are linked, (Link(σ1, ev1, σ2, ev2) =
1), if and only if ev1 = ev2 and one of the following conditions hold:

i σ1 = Sign(ev1, L1, m1, pkD1
, skπ), pkπ ∈ L1 and σ2 = Sign(ev2, L2, m2, pkD2

, skπ),
pkπ ∈ L2. Both signatures are honestly generated by the same signer π.

ii σ1 = Sign(ev1, L1, m1, pkD1
, skπ), σ2 = Sim(ev2, L2, m2, pkD2

, skD2
,Extract(σ1)),

pkπ ∈ L1, (skD2
, pkD2

) ← KGen(). σ1 is honestly generated by signer π and
σ2 by designated verifier D2 using the pseudoidentity extracted by σ1.

iii σ1 = Sim(ev1, L1, m1, pkD1
, skD1

, pid), (skD1
, pkD1

) = KGen(), pid ∈ PID
and σ2 = Sim(ev2, L2, m2, pkD2

, skD2
, pid), (skD2

, pkD2
) = KGen(). Both σ1, σ2

are simulated by designated verifiers D1, D2 using the same pid.

3.3 Adversarial Capabilities

To model the security UDVLRS, we consider a strong adaptive adversary that
has the ability to add new users, corrupt any set of users, and request signatures
and simulations from any user and designated verifier. To formally model the
capabilities of A we use the following oracles similar to [9, 8, 2]:

– pk← JO(). The Joining Oracle, adds a public key to the list of public keys
U , and returns it.

– sk ← CO(pk). The Corruption Oracle, receives a public key pk that is an
output of JO and returns the corresponding secret key sk. It models the
ability of A to control some members of U .

– σ ← SO(ev, L, m, pkD, pkπ). The Signing Oracle receives the signature pa-
rameters and public key pkπ ∈ L and outputs a signature σ such that
σ ← Sign(ev, L, m, pkD, skπ) and (pkπ, skπ)← KGen().

– σ ← MO(ev, L, m, pkD, pid). The Simulation Oracle receives the signature
parameters and a pseudoidentity pid and outputs a signature σ such that
σ ← Sim(ev, L, m, pkD, skD, pid) and (pkD, skD)← KGen().

We model hash functions as random oracles [3] denoted as RO. For simplicity,
we abuse notation, and also denote the set of an oracle’s answers by its name.
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3.4 Unforgeability

Unforgeability requires that only a ring member or the designated verifier can
produce signatures or simulations that verify successfully. To formally define it
for a UDVLRS scheme Π, we consider the experiment ExpunfA,Π in Game 1.1. The
adversary queries all the oracles according to any adaptive strategy. Then A
chooses the signature parameters and creates a forged signature σ∗. The adver-
sary succeeds if the signature verifies, and none of the keys of L, nor pkD, have
been queried to CO and if the signature is not a query output of SO orMO.

Definition 3. Unforgeability. A UDVLRS scheme Π is unforgeable if for any

PPT adversary A: AdvunfA (λ) ≜ Pr
[
ExpunfA,Π(λ) = 1

]
≤ negl(λ).

3.5 Anonymity

Unconditional anonymity means that for any (unbounded) adversary A it should
be impossible to find the public key of the signer of a specific signature for a
ring L with probability greater than that of random sampling.

More formally, consider the interaction between an unbounded adversary A
and a challenger C in Game 1.2. The adversary queries the JO, CO,SO,MO
according to any adaptive strategy, sets pkD, and forms a ring L with any subset
of n private keys.MO does not give any advantage to A that cannot be obtained
with the calls to SO since the signatures are not constructed with any key from
the ring, but are simulations. Assume that from the calls of the CO, A has
obtained m1 private keys. Using its unlimited computational power and the
pseudoidentity, A might also obtain m2 private keys using signatures from SO,
where the signer is known. The public keys obtained in this way may be contained
in L, but n > m1 +m2 +1 should hold. A gives C an event ev, a message m, the
set of public keys L, and the designated verifier public key pkD. C picks π ←$ [n]
and constructs a challenge signature σc = Sign(ev, L, m, pkD, skπ) and gives it to
A, who must guess π. The adversary wins the game if it correctly guesses the
signer, and its private key has not been obtained through the CO or SO.

Definition 4. Anonymity. A UDVLRS scheme Π is unconditionally anony-
mous if for any unbounded adversary A: AdvanonA (λ) ≜ |Pr[ExpanonA,Π (λ) = 1] −

1
n−m1−m2

| = 0.

Note that in schemes like [10, 2], where there is one-to-one correspondence be-
tween private and public key, unconditional anonymity is unattainable, since an
unbounded adversary might recover the key from the linking tag by ‘reversing’
the function that connects them. Our construction avoids this pitfall.

3.6 Non-Transferability

Non-Transferability means that the public cannot tell if a valid signature origi-
nates from the Sign or the Sim algorithm. In essence, this property ensures that
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a simulation is only distinguishable by the designated verifier and the owner of
the pseudoidentity used to create it. The formal definition is given in Game 1.3.

The adversary is considered to be computationally unbounded, and it is given
access to CO,SO,MO for the same reasons as in subsection 3.5. It may query
them with any adaptive strategy at any point. The adversary A chooses the
signature parameters. The challenger then produces the signature σ and the
simulation σ′ with the same pseudoidentity pid and one of the two is given ran-
domly to A, who must now guess whether it received a signature or a simulation.

Definition 5. Non-transferability. A UDVLRS scheme Π is perfectly non-transferable
if for any unbounded adversary A: AdvtransA (λ) ≜ Pr

[
ExptransA,Π (λ) = 1

]
− 1

2 = 0.

3.7 Linkability

Linkability means that all signatures of the same signer should be linked, while
all other security properties are preserved. Simulated signatures generated by the
designated verifier for a specific pid are linked to this pid’s signatures. Game 1.4
captures the definition of linkability. In this game, the adversary A tries to
generate two unlinked signatures with a single secret key. A queries all the
oracles according to any adaptive strategy to generate two signatures σ1 and σ2.
The adversary can pick the public keys from two separate rings and select two
different designated verifiers. A wins if both signatures verify and are not linked.

Definition 6. Linkability. A UDVLRS scheme Π is linkable if for any PPT

adversary A: AdvlinkA (λ) ≜ Pr
[
ExplinkA,Π(λ) = 1

]
≤ negl(λ).

Note that our model in Game 1.4 differs from the corresponding one in [2]
which stated that A could not produce k + 1 pairwise unlinked signatures by
having access to k signing keys. In our case, A can only have access to a single
private key instead of more. This restriction of linkability allows our scheme to
have unconditional anonymity, but has the downside that the scheme is prone to
linkability attacks, if there is collusion of signers or if the adversary has access
to more than one private keys. As a result, this weaker linkability together with
the unforgeability property do not imply non-slanderability as in [2]. In the next
section we define the notion of non-slanderability.

3.8 Non-Slanderability

Non-slanderability prevents framing, by not allowing adversarial attempts to link
signatures to a specific ring member. Therefore, if a signature is linked to another
one, it is either generated by the same signer or by the corresponding designated
verifier. This is captured in Game 1.5. The adversary queries all the oracles,
according to any adaptive strategy, and chooses the signature parameters and
the public key of a selected signer pkπ, and gives them to challenger C. Then, C
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using the Sign algorithm for the private key skπ, produces a signature σ1. Note
that pkπ - chosen by A - should not have been asked to CO or included as public
key of any query to SO. Then, A queries the oracles with the same restrictions
for pkπ and produces new signature parameters (except for ev) and σ2, different
from σ1. A wins if σ2 verifies and σ1 and σ2 are linked.

Definition 7. Non-Slanderability. A UDVLRS scheme Π is non-slanderable if

for any PPT adversary A: AdvslandA (λ) ≜ Pr
[
ExpslandA,Π (λ) = 1

]
≤ negl(λ).

4 Our construction

Our proposed construction that implements the functionalities of section 3 is
depicted in Figure 1. Our signatures (excluding the linking tag) consist of 2n+4
elements in contrast with [2] that consist of 3n + 1. Thus, while they remain
linear to the size of the ring they are in practice shorter.

5 Security Analysis

The completeness of our construction is straightforward. We now prove that
both an honestly generated plain and simulated signatures verify correctly and
that the scheme has linking correctness.

Lemma 1. An honestly generated UDVLRS σ verifies correctly.

Proof. The completeness of the signature scheme follows from Eq. 1 since:

gx̃hỹ
n∏
i=1

Zci+wi
i = grx−(cπ+wπ)xπhry−(cπ+wπ)yπ

n∏
i=1

Zci+wi
i =

grxhry (gxπhyπ )−(cπ+wπ)
n∏
i=1

Zci+wi
i = grxhryZ−(cπ+w)

π Z(cπ+w)
π

∏
i∈[n]
i ̸=π

Zci+wi
i = K

Similarly:

ex̃t
∑n

i=1 ci+wi = erx−(cπ+wπ)xπ tcπ+wπ t

∑
i∈[n]
i̸=π

ci+wi

=

erxt−(cπ+wπ)tcπ+wπ t

∑
i∈[n]
i ̸=π

ci+wi

= erxt

∑
i∈[n]
i ̸=π

ci+wi

= K ′

It is also clear by construction that for an honestly generated signature indeed:

hspkrD

n∏
i=1

gwi = K ′′

Therefore Vrfy(ev, L, m, pkD, σ) = 1 ⊓⊔
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Game 1.1: Unforgeability experiment ExpunfA,Π

params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}µ(λ)
i=1

(σ∗, ev, L = {pki}
n
i=1, m, pkD)← A

RO,JO,CO,SO,MO(U)
return Vrfy(ev, σ, L, m, pkD) = 1 AND ∀i ∈ CO, pki /∈ LANDD /∈ CO AND
σ∗ /∈ SO AND σ∗ /∈MO

Game 1.2: Anonymity experiment ExpanonA,Π

params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}µ(λ)
i=1

(ev, L = {pki}
n
i=1, m, pkD)← A

JO,CO,SO,MO(U)
π ←$ [n]
σc ← Π.Sign(ev, L, m, pkD, skπ)

ξ ← ACO,SO,MO(L, m, σc)
return ξ ̸= ⊥AND ξ = πANDπ /∈ COANDπ cannot be obtained from σ ∈ SO

Game 1.3: Non-transferability experiment ExptransA,Π

params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}µ(λ)
i=1

(ev, L = {pki}
n
i=1, m, pkD, pkπ)← A

JO,CO,SO,MO(U)
σ0 ← Π.Sign(ev, L, m, pkD, skπ)
pid← Π.Extract(σ0)
σ1 ← Π.Sim(ev, L, m, pkD, skD, pid)
b←$ {0, 1}
b′ ← ACO,SO,MO(L, m, σb)
return b = b′

Game 1.4: Linkability experiment ExplinkA,Π

params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}µ(λ)
i=1

(σ1, σ2, ev, L1 = {pki}
n1
i=1, L2 = {pki}

n2
i=1, m1, m2, pkD1

, pkD2
)←

ARO,JO,CO,SO,MO(U)
return |CO| = 1 AND σ1, σ2 ̸∈ SO AND Vrfy(ev, σ1, L1, m1, pkD1

) =
1 AND Vrfy(ev, σ2, L2, m2, pkD2

) = 1 AND Link(σ1, ev, σ2, ev) = 0

Game 1.5: Non-slanderability experiment ExpslandA,Π

params← Π.Setup(1λ)

U ←
{
(pki, ski)← Π.KGen()

}µ(λ)
i=1

(ev, L1 = {pki}
n1
i=1, m1, pkD1

, pkπ)← ARO,JO,CO,SO,MO(U)
σ1 ← Π.Sign(ev, L1, m1, pkD1

, skπ)

(σ2, L2 = {pki}
n2
i=1, m2, pkD2

)← ARO,JO,CO,SO,MO(U)
return σ2 ̸= σ1 AND Vrfy(ev, σ2, L2, m2, pkD2

) = 1 AND σ2 /∈ SO AND σ2 /∈
MO AND π /∈ CO AND D2 /∈ CO AND Link(σ1, ev, σ2, ev) = 1
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– params← Setup(λ):
Return G of order q, where the DLOG problem is hard, two random generators
g, h ∈ G and two hash functions HG : {0, 1}∗ → G and Hq : {0, 1}∗ → Zq. Also
return MSG = {0, 1}∗, SG = G × Z2n+4

q , PID = G, EID = {0, 1}∗. Note that
the signature space is related to the size of the ring and that the relative discrete
logarithms of g, h should not be known.

– (sk, pk)← KGen():
Each user i samples xi, yi ←$ Zq, computes Zi ← gxihyi and sets ski ←
(xi, yi), pki = Zi. The designated verifier sets skD ← (xD, yD), pkD ← ZD.

– σ ← Sign(ev, L, m, pkD, skπ):
The signer π picks rx, ry, r, s, {ci}i∈[n]

i̸=π

, {wi}i∈[n] ←$ Zq and computes:

e← HG(ev), t← exπ , K ← grxhry ·
∏
i∈[n]
i ̸=π

Zci+wi
i ,

K′ ← erx · t

∑
i∈[n]
i ̸=π

ci+wi

, K′′ ← hspkrD ·
n∏
i=1

gwi

Then it computes cπ such that
∑n
i=1 ci mod q = Hq(m, L, ev, t,K,K

′,K′′) and
computes:

x̃← (rx − (cπ + wπ)xπ) mod q, ỹ ← (ry − (cπ + wπ)yπ) mod q

The signature is the tuple σ = (t, x̃, ỹ, r, s, {ci}ni=1, {wi}
n
i=1).

– pid← Extract(σ)
Parse σ as the tuple (t, x̃, ỹ, r, s, {ci}ni=1, {wi}

n
i=1) and return t.

– σ ← Sim(ev, L, m, pkD, skD, pid): The designated verifier picks χ, ψ, α, β, γ, {ci}ni=2,
{wi}ni=2 ←$ Zq, and t = pid as pseudoidentity and then computes:

KD ← gχ · hψ · Zα1 ·
n∏
i=2

Zci+wi
i ,

K′
D ← eχtα+

∑n
i=2 ci+wi , K′′

D ← gβhγ ·
n∏
i=2

gwi

Computes c1 such that
∑n
i=1 ci mod q = Hq(m, L, ev, t,KD,K

′
D,K

′′
D) and sets:

x̃← χ, ỹ ← ψ, w1 ← α− c1 mod q,

r ← (β − w1)x
−1
D mod q, s← γ − ryD mod q

The simulated signature is the tuple σ = (t, x̃, ỹ, r, s, {ci}ni=1, {wi}
n
i=1).

Note that Sim can use any ck, wk for any k ∈ [n] instead of c1, w1.
– {0, 1} ← Vrfy(ev, L, m, pkD, σ):

Parse σ as the tuple (t, x̃, ỹ, r, s, {ci}ni=1, {wi}
n
i=1) and compute the value:

c0 ← Hq(m, L, ev, t, g
x̃hỹ ·

n∏
i=1

Zci+wi
i , ex̃ · t

∑n
i=1 ci+wi , hspkrD ·

n∏
i=1

gwi) (1)

Return 1 (valid) if c0 =
∑n
i=1 ci (mod q) else return 0 (invalid).

– {0, 1} ← Link(σ1, ev1, σ2, ev2):
Return 1 (linked) if ev1 = ev2 AND Extract(σ1) = Extract(σ2) and both signatures
verify otherwise return 0 (unlinked).

Fig. 1. The UDVLRS construction
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Lemma 2. A simulated UDVLRS σ verifies correctly.

Proof. A simulated signature verifies since by Eq. 1:

gx̃hỹ
n∏
i=1

Zci+wi
i = gχhψZc1+w1

1

n∏
i=2

Zci+wi
i = gχhψZα1

n∏
i=2

Zci+wi
i = KD

Similarly:

ex̃t
∑n

i=1 ci+wi = eχtc1+w1t
∑n

i=2 ci+wi = eχtα+
∑n

i=2 ci+wi = K ′
D

For the final part of the signature:

hspkrD

n∏
i=1

gwi = hspkrDg
w1

n∏
i=2

gwi =

gβ−rxDhγ−ryDpkrD

n∏
i=2

gwi = gβhγ(gxDhyD )−rpkrD

n∏
i=2

gwi = K ′′
D

Therefore Vrfy(ev, L, m, pkD, σ) = 1 ⊓⊔

Lemma 3. UDVLRS have the verification correctness property.

Proof. The proof is a direct consequence of Lemma 1 and Lemma 2. ⊓⊔

Lemma 4. UDVLRS have the linking correctness property.

Proof. Assume two signatures σ1, σ2 generated on the same event ev.

– If both were honestly created by the same signer π with skπ = (xπ, yπ) then
Extract(σ1) = Extract(σ2) = (HG(ev))

xπ . Thus Link(σ1, ev, σ2, ev) = 1.
– If σ1 is honestly generated by signer π and σ2 is a simulation with linking

tag t = Extract(σ1) then Link(σ1, ev, σ2, ev) = 1.
– If σ1, σ2 are simulations with the same linking tag, Link(σ1, ev, σ2, ev) = 1.

⊓⊔

The Security properties are proved by the following theorems.

Theorem 1 (Unforgeability). Our UDVLRS scheme is unforgeable in the
random oracle model if DLOG is hard in G.

Proof. Assume a PPT adversary A that manages to output a forgery, i.e. a valid
signature σ = (t, x̃, ỹ, r, s, {ci}ni=1, {wi}

n
i=1) for some event ev, ring of n members

L = {Zi}ni=1 with non-negligible probability. We will construct a PPT adversary
B that usingA will either break the DLOG instance {XD ∈ G : XD = gxD , xD ∈ Zq}
or solve theMDLR problem for a non-empty subset of {Xi ∈ G : Xi = gxi , xi ∈ Zq}ni=1
with non-negligible probability.

The input of B consists of G, g, q, {Xi}ni=1 ∪ {XD}. B simulates the environ-
ment for A:
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– B returns G, g, q when A executes Setup.
– Upon the execution of KGen, B selects x′ ←$ Zq, sets h = gx

′
and provides

g, h to A.
– Simulation of RO oracle. B simulates the HG random oracle by returning ga

for some a←$ Zq and Hq by returning b for some b←$ Zq.
– Simulation of JO oracle. Since A is PPT, the maximum number of queries

to JO will be n′ = poly(λ) where n′ ≥ n+1. B selects uniformly at random
a subset of indices In+1 ⊆ [n′]. W.l.o.g. In+1 = [n+ 1]. The i-th JO query
is answered as follows 1:

• If i ∈ In+1, B selects yi ∈ Zq and returns Zi = Xih
yi .

• If i ̸∈ In+1, B selects xi, yi ∈ Zq and returns gxihyi .

– Simulation of CO oracle.

• If i ∈ In+1, B halts, as it does not know the discrete logarithm of Xi.

• If i ̸∈ In+1, B returns xi, yi ∈ Zq as they were returned when answering
the respective JO query.

– Simulation of SO oracle. The input to this oracle is a message m, event ev,
some ring L = {Zi}ni=1, the public key of the designated verifier pkD, and an
index π which indicates that the signer must use the secret key corresponding
to Zπ. If π ̸∈ In then B knows the full private key (xi, yi) and as a result it
signs by executing the Sign algorithm. If π ∈ In, then B must simulate the
signature as it only knows yπ:

• B sets t← Xa
π where e = ga was the answer to HG(ev). This means that

t = exπ .

• B picks x̃, ỹ, r, s, {ci}ni=1, {wi}
n
i=1 ←$ Zq and programs the random or-

acle to answer Hq(m, L, ev, t, g
x̃hỹ ·

∏n
i=1 Z

ci+wi
i , ex̃ · t

∑n
i=1 ci+wi , hspkrD ·∏n

i=1 g
wi) with the value

∑n
i=1 ci.

• By construction, the simulated signature σ = (t, x̃, ỹ, r, s, {ci}ni=1, {wi}
n
i=1)

is valid and indistinguishable from the output of the Sign algorithm.

– Simulation ofMO oracle. Assume that iD was the query to JO that asked
the pkD. If iD ̸∈ In+1 then B knows the full designated-verifier private key
(xD, yD) and as a result it can simulate using the Sim algorithm. If iD ∈
In+1, then B must program the random oracle to produce indistinguishable
simulated signatures. This is easier to accomplish than the SO oracle, since
in Sim that tag is a random group element:

• B selects t←$ G.

• B picks x̃, ỹ, r, s, {ci}ni=1, {wi}
n
i=1 ←$ Zq and programs the random ora-

cle to answer with the value
∑n
i=1 ci to the query Hq(m, L, ev, t, g

x̃hỹ ·∏n
i=1 Z

ci+wi
i , ex̃ · t

∑n
i=1 ci+wi , hspkrD ·

∏n
i=1 g

wi).

• By construction, the simulated signature σ = (t, x̃, ỹ, r, s, {ci}ni=1, {wi}
n
i=1)

is valid and indistinguishable from the output of the Sim algorithm.

The unforgeability adversary A manages after interactions with the ora-
cles RO,JO, CO,SO,MO controlled by B to output a signature forgery σ∗

1 =

1 We assume w.l.o.g that XD = Xn+1
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(t1, x̃1, ỹ1, r1, s1, {ci1}ni=1, {wi1}
n
i=1) for some event ev, ring L. In order to pro-

duce the signature A must have queried Hq on ev, L, some message m, some
t ∈ G, i.e. Hq(m, L, ev, t,K1,K

′
1,K

′′
1 ). Since σ∗

1 is a valid forgery:

K1 = gx̃1hỹ1 ·
n∏
i=1

Zci1+wi1
i

Assume that the value K1 was asked during the l-th query and B replied with
c01. Again, since σ∗

1 is valid:

c01 =

n∑
i=1

ci1 (mod q)

We will prove that B can either recover the discrete logarithm of XD =
gxD or solve the MDLR problem for a subset of {Xi ∈ G : Xi = gxi , xi ∈ Zq}ni=1
using the rewinding technique [13]. B rewinds A and answers all queries up to
l consistently, but answers the l-th query with c02 ̸= c01. By the forking lemma
[13], A will produce another forgery σ∗

2 = (t2, x̃2, ỹ2, r2, s2, {ci2}ni=1, {wi2}
n
i=1)

with non-negligible probability in polynomial time. HoweverK1 = K2,K
′
1 = K ′

2,
K ′′

1 = K ′′
2 for both l-th queries. This means that:

gx̃1hỹ1 ·
n∏
i=1

Zci1+wi1
i = gx̃2hỹ2 ·

n∏
i=1

Zci2+wi2
i and (2)

hs1 · pkr1D · g
∑n

i=1 wi1 = hs2 · pkr2D · g
∑n

i=1 wi2 (3)

By Eq. 3, we have that:

gr1·xD+
∑n

i=1 wi1 · hs1+r1·yD = gr2·xD+
∑n

i=1 wi2 · hs2+r2·yD ⇒

r1 · xD +

n∑
i=1

wi1 = r2 · xD +

n∑
i=1

wi2

If r1 ̸= r2 :

xD =

∑n
i=1 wi1 −

∑n
i=1 wi2

r2 − r1

Therefore, B has successfully computed the discrete logarithm of XD.
In the second case, if r1 = r2 then

∑n
i=1 wi1 =

∑n
i=1 wi2 and since K1 = K2,

by equation 2 we get the system of equations:

gx̃1 · hỹ1 ·
n∏
i=1

Zci1+wi1
i = gx̃2 · hỹ2 ·

n∏
i=1

Zci2+wi2
i ⇒

gx̃1+
∑n

i=1 xi(ci1+wi1) · hỹ1+
∑n

i=1 yi(ci1+wi1) = gx̃2+
∑n

i=1 xi(ci2+wi2) · hỹ2+
∑n

i=1 yi(ci2+wi2) ⇒

gx̃1 ·
n∏
i=1

Xci1+wi1
i = gx̃2 ·

n∏
i=1

Xci2+wi2
i ⇒

n∏
i=1

X
ci1+wi1−(ci2+wi2)
i = gx̃2−x̃1 (4)



14 D. Balla et al.

We note that there exists i ∈ [n] such that ci1+wi1 ̸= ci2+wi2, since if ci1+

wi1 = ci2+wi2, ∀i ∈ [n] then
∑n
i=1 ci1+wi1 =

∑n
i=1 ci2+wi2

∑
i∈[n] wi1=

∑
i∈[n] wi2

==========⇒∑n
i=1 ci1 =

∑n
i=1 ci2 ⇒ c01 = c02 which yields a contradiction.

Assume that there are exactly k indices, i1, i2, . . . , ik 1 ≤ k ≤ n, such that
cij1 + wij1 ̸= cij2 + wij2, j ∈ [k]. Then by Eq. 4 we have that:

Xi1 ·X
ϕ2
i2
· · ·Xϕk

ik
= gϕ1

where ϕ1 = x̃2−x̃1

ci11+wi11−ci12−wi12
and ϕj =

cij1+wij1
−cij2−wij2

cij1+wij1
−cij2−wij2

, j ∈ [k]. As a result,

we have found a solution ϕ1, . . . ϕk for theMDLR problem for {Xi ∈ G : Xi = gxi , xi ∈ Zq}ki=1.
The forking lemma guarantees that the running time of B is polynomial and

that its success probability is non-negligible, thus arriving at a contradiction. ⊓⊔

Theorem 2 (Anonymity). Our UDVLRS scheme is unconditionally anony-
mous.

Proof. We will prove that our scheme is unconditionally anonymous following the
techniques used in [9], properly augmented to accommodate for the introduction
of the designated verifier. More specifically, we will show that a signature gen-
erated using a non-corrupted public key is equally possible to have been created
by any uncompromised signer. In addition the usage of the map f(x, y) = gxhy,
which is a q-to-one function whose image is uniformly distributed over G, since
g, h are generators, protects against an unbounded adversary. This is due to the
fact that even if A is capable of solving the DLOG problem and thus find the
x component of sk, it still cannot find to which public key it corresponds to,
without extra information, due to the fact that every public key is possible to
be produced using that x value.

For every query that the adversary A makes to the JO, a value Z = gxhy is
returned for some random pair (x, y). The challenger, C, generates a challenge
signature σc = (t, x̃, ỹ, r, s, {ci}, {wi}) using the key of a random signer from the
given ring. The proof is going to show that for any adversary A, the advantage
that it has is zero under no computational assumption. Assume w.l.o.g that
the private keys, A has not obtained through CO or SO are the first items in
[n−m1 −m2].

First we prove that for every signer π ∈ [n −m1 −m2] and every possible
public key Z = gxπhyπ there exists a pair (xπ, yπ) such that t = exπ . Furthermore
we show that for every such pair there exists randomness (rxπ

, ryπ ) such that σc
is constructed using that randomness and lastly we prove that these four values
(xπ, yπ, rxπ , ryπ ) are uniformly distributed and as such the challenge signature
can come from any signer in the ring.
A can obtain a value x from t = ex and a value l from g = hl. Thus,

Zi = hzi , i ∈ [n−m1 −m2] and for all π ∈ [n−m1 −m2]:

xπ = x (mod q)

yπ = zπ − xπl (mod q)
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We see that Zπ = hzπ = hyπ+xπl = gxπhyπ , that is the pair (xπ, yπ) constitutes
a private key pair that corresponds to the public key Zπ, and that t = ex = exπ .

For every private key (xπ, yπ), consider the following values:

rxπ
= x̃− (cπ + wπ)xπ (mod q)

ryπ = ỹ − (cπ + wπ)yπ (mod q)

It is easy to see that σc can be constructed by the private key (xπ, yπ) using
randomness (rxπ

, ryπ ), by any signer π ∈ [n−m1 −m2].
We will now show that the elements constituting every tuple (xπ, yπ, rxπ

, ryπ )
follow the same distribution over Zq. Since xπ = x (mod q) and x←$ Zq we have
that xπ is uniformly distributed over Zq. By the definition of yπ it follows that it
is also uniformly distributed over Zq. For rxπ

, and by the same argument for ryπ ,
we have that it follows the uniform distribution over Zq since it is calculated using
the value wπ which is chosen at random from Zq when creating the signature σc.
As a result we have that every tuple (xπ, yπ, rxπ , ryπ ) consists of elements that
are distributed uniformly over Zq for any signer π ∈ [n−m1 −m2]. ⊓⊔

Theorem 3 (Non-Transferability). Our UDVLRS scheme is perfectly non-
transferable in the random oracle model.

Proof. Let σ and σ′ be a legitimate signature and simulation respectively, on
the same message m, ring L, designated verifier key pkD = gxDhyD , same linking
tag t, and same signer π. We will go over every part of the signatures and prove
that they follow the same distribution.

– Linking tag t. Since σ′ is simulating σ they will be the same value and
therefore follow the same distribution.

– x̃ and ỹ. In the case of σ, x̃ and ỹ are calculated using randomness rx and
ry respectively and, as a result, will be uniformly distributed over Zq. In the
case of σ′, x̃ and ỹ are sampled at random from Zq, and as such will also be
uniformly distributed over Zq.

– {ci}ni=1. For σ we have that {ci}i∈[n]
i ̸=π
←$ Zq and cπ is calculated as

cπ ← Hq(m, L, ev, t,K,K ′,K ′′)−
∑
i∈[n]
i ̸=π

ci mod q

So it is the result of the output of a random hash value minus a sum of
random values over the same set, and therefore it is uniformly distributed
over Zq.
For σ′ we have that {ci}ni=2 ←$ Zq, and for c1 we have that:

c1 = Hq(m, L, ev, t,KD,K
′
D,K

′′
D)−

∑
i∈[n]
i ̸=1

ci (mod q)

and by the same argument as before, we have that c1 is also uniformly
random over Zq. Therefore for every index i in [n] we have that {ci}ni=1

follow the same distribution in both cases.
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– {wi}ni=1. For σ we choose every wi at random from Zq. For σ′ we choose at
random every wi from Zq except for w1. For w1 we have the following:

w1 = α− c1 (mod q)

Since α is a random element of Zq we have that w1 is also distributed uni-
formly over Zq. As a result, we see that in both cases, again as it was the
case for {ci}ni=1, for every index i, wi follows the same distribution.

– r and s. In the case of σ we have that r and s are chosen at random from
Zq. For σ′ we have that:

r = (β − w1)x
−1
D (mod q), s = γ − ryD (mod q)

Since they both contain random elements, β and γ respectively, from Zq it
holds that r, s are both random elements from Zq. Thus in both signatures
these two values follow the same distribution.

By the previous observations we can conclude that a signature from a signer in
the ring and a simulation from a designated verifier on the same ring message,
designated verifier public key and linking tag for the same signer π both follow
the same distribution and are therefore indistinguishable, even to an unbounded
adversary, thus making a random choice the best, and only, option. ⊓⊔

Next, we state Lemma 5 which will be used in the proof of Theorem 4.

Lemma 5. If an adversary A knows only one private key skπ = (xπ, yπ) where
π ∈ [n] and produces a valid signature σ = (t, x̃, ỹ, r, s, {ci}ni=1, {wi}

n
i=1) for an

event ev, then t = exπ , where e = HG(ev), provided that DLOG is hard, in the
random oracle model.

Proof. Suppose thatA produces a valid signature σ1 = (t, x̃1, ỹ1, r1, s1, {ci1}ni=1, {wi1}
n
i=1),

where t = HG(ev)
x̂ for some x̂ ∈ Zq. We rewind A and give a different value

for the random oracle query Hq, and A produces a second valid signature σ2 =
(t, x̃2, ỹ2, r2, s2, {ci2}ni=1, {wi2}

n
i=1).

In both runs, the query of A to Hq is

Hq(m, L, ev,HG(ev)
x̂, gηhη

′
,HG(ev)

κ, gθhθ
′
)

and in both runs the list of public keys L, the event ev, the message m, the
values η, η′, κ, θ, θ′, x̂ ∈ Zq are fixed. Suppose that in the first query of A to Hq
we return a value c01 and in the second query we return a value c02 ̸= c01.

From the two valid signatures σ1 and σ2 by using the same reasoning as in
Theorem 1 (Eq. 2 and Eq. 3) we get the following equations:

c01 = c11 + · · ·+ cn1,

c02 = c12 + · · ·+ cn2,
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η = x̃1 +

n∑
i=1

xi(ci1 + wi1) = x̃2 +

n∑
i=1

xi(ci2 + wi2) (5)

κ = x̃1 + x̂

n∑
i=1

(ci1 + wi1) = x̃2 + x̂

n∑
i=1

(ci2 + wi2) (6)

θ = r1xD +

n∑
i=1

wi1 = r2xD +

n∑
i=1

wi2 (7)

From (Eq. 7) we conclude that either A knows xD, which is a contradiction,
or

∑n
i=1 wi1 =

∑n
i=1 wi2. So, similarly to the proof of Theorem 1 we can conclude

that there exists at least one j ∈ [n] such that (cj1 + wj1)− (cj2 + wj2) ̸= 0.
We now evaluate the possible values of x̂ so that A can generate two such

signatures having only one private key. We split into two cases:

1. Suppose that (ci1 + wi1) = (ci2 + wi2) for all i ∈ [n] except when i = j for
some j ∈ [n], that is, (cj1 + wj1) ̸= (cj2 + wj2).
Then from (Eq. 5) we have

x̃1 + xj(cj1 + wj1) = x̃2 + xj(cj2 + wj2)

and from (Eq. 6) we have

x̃1 + x̂(cj1 + wj1) = x̃2 + x̂(cj2 + wj2)

Thus x̂ = xj =
x̃2−x̃1

cj1+wj1−cj2−wj2
. The value x̂ is known by A, and since A is

assumed to know only one private key, we have j = π.
2. Suppose that (ci1 + wi1) = (ci2 + wi2) for all i ∈ [n] except when i = j

for j ∈ {j1, j2}. That is, (cj11 + wj11) ̸= (cj12 + wj12) and (cj21 + wj21) ̸=
(cj22 + wj22). Also x̃1 ̸= x̃2. From (Eq. 5) we have

x̃1+xj1(cj11+wj11)+xj2(cj21+wj21) = x̃2+xj1(cj12+wj12)+xj2(cj22+wj22) (8)

• If π ∈ {j1, j2} then from Eq. 8, A knows both xj1 and xj2 , which is a
contradiction since A knows only one private key.

• Else, if π ̸∈ {j1, j2} then we have the following:

xj1 + xj2ϕ2 = ϕ1,

where ϕ2 =
cj21+wj21−cj22−wj22

cj11+wj11−cj12−wj12
and ϕ1 = x̃2−x̃1

cj11+wj11−cj12−wj12
.

This implies that A can solve the MDLR problem. From Proposition 1,
this problem is computationally equivalent to DLOG, and since we as-
sumed DLOG is hard in G, this case should not exist.

The same argument can be generalized to have three or more ci1 + wi1 be
not equal to the corresponding ci2 + wi2.

Concluding, only case 1(a) is possible. That is, if A knows only one private
key (xπ, yπ), we have t = HG(ev)

xπ . ⊓⊔
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Theorem 4 (Linkability). Our UDVLRS scheme is linkable in the random
oracle model if DLOG is hard in G.

Proof. We assume that A, knowing only one private key, can produce two valid
signatures that are unlinked, that is, for the linking tags of the two signatures t1
and t2 it holds that t1 ̸= t2. Then, by Lemma 5, it should hold that ti = exi , i =
1, 2 where e = HG(ev). This means that A knows two different private keys or
that it can solve the DLOG problem, both of which are a contradiction. ⊓⊔

Theorem 5 (Non-Slanderability). Our UDVLRS scheme is non-slanderable
in the random oracle model if DLOG is hard in G.

Proof. Suppose that there exists a PPT adversary A that given a valid signature
σ1 = (t1, ·) manages to produce a valid signature σ2 = (t2, ·) such that t1 = t2
without knowing the private key used to produce σ1. We will construct a PPT
adversary B that given two DLOG instances can solve one of them using A.

The input of B consists of G, g, q,Xπ, XD. The adversary B simulates the
environment for A as in the proof of Theorem 1. At some point in the execution,
A chooses a public key pkπ′ of a user π′ and gives it to B.

– If π′ = π then B programs the oracles as in the proof of Theorem 1 and
creates a signature σ1 = (t1, ·) where t1 = HG(ev)

xπ and xπ is the discrete
logarithm of Xπ. As in the proof of Theorem 1, B manages to create such
a signature without knowing xπ by setting t1 = Xa

π , where e = ga was the
answer to the query HG(ev). The adversary B returns σ1 to A.

– If π′ ̸= π then B halts.

The adversaryAmanages after interactions with the oraclesRO,JO, CO,SO,MO
controlled by B to output a signature σ2 = (t2, x̃2, ỹ2, r2, s2, {ci2}ni=1, {wi2}

n
i=1).

B rewinds A and for the same input for the random oracle query Hq returns a dif-
ferent value toA, andA produces another signature σ∗

2 = (t∗2, x̃
∗
2, ỹ

∗
2 , r

∗
2 , s

∗
2, {c∗i2}

n
i=1, {w∗

i2}
n
i=1).

Similarly to the proof of Theorem 1 and since H(ev)xπ = t1 = t2 = t∗2 and
K ′

2 = K∗
2
′, we obtain the following equation:

x̃2 + xπ

n∑
i=1

(ci2 + wi2) = x̃∗
2 + xπ

n∑
i=1

(c∗i2 + w∗
i2) (9)

We split into two cases:

1. If
∑n
i=1(ci2+wi2) =

∑n
i=1(c

∗
i2+w∗

i2) and since
∑n
i=1 ci2 ̸=

∑n
i=1 c

∗
i2, we have∑n

i=1 wi2 ̸=
∑n
i=1 w

∗
i2. By using a similar relation to Eq. 3 of Theorem 1, B

can find xD, the discrete logarithm of XD.

2. If
∑n
i=1(ci2 +wi2) ̸=

∑n
i=1(c

∗
i2 +w∗

i2) then B can solve Eq. 9 and obtain xπ.

This means that B can find the discrete logarithm of Xπ or XD, which is a
contradiction since we assumed that DLOG is hard in G. ⊓⊔
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6 Conclusion and Future Work

In this work we defined UDVLRS, a signature construction that provides pub-
lic verifiability, unconditional anonymity and non-transferability, unforgeability,
non-sladerability, and linkability - the latter conditional to the hardness of DLOG.
This is an improvement on its predecessor DVLRS, the anonymity of which was
computational. We formally defined its security model and proved its properties.
While a UDVLR signature consists of fewer elements than a DVLR signature,
the size of both schemes is linear to the number of ring members. As a result,
the goal of shorter signatures set in [2] remains an open problem.
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