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Abstract. Both multi-user PRFs and sponge-based constructions have
generated a lot of research interest lately. Dedicated analyses for multi-
user security have improved the bounds a long distance from the early
generic bounds obtained through hybrid arguments, yet the bounds gen-
erally don’t allow the number of users to be more than birthday-bound
in key-size. Similarly, known sponge constructions suffer from being only
birthday-bound secure in terms of their capacity. We present in this paper
Muffler, a multi-user PRF built from a random permutation using a full-
state sponge with feed-forward, which uses a combination of the user keys
and unique user IDs to solve both the problems mentioned by improving
the security bounds for multi-user constructions and sponge construc-
tions. For D construction query blocks and T permutation queries, with
key-size κ = n/2 and tag-size τ = n/2 (where n is the state-size or the
size of the underlying permutation), both D and T must touch birthday
bound in n in order to distinguish Muffler from a random function.

Keywords: Sponge, Multi-User, PRF, public permutation

1 Introduction

Multi-User Security. The study of provably secure symmetric-key modes has
traditionally revolved around the single-user setting, where a single user gen-
erates the keys of the various underlying primitives and uses them to respond
to all subsequent adversary queries. However, it has long been recognised that
often a more practically relevant scenario is the multi-user setting, where several
users generate their own keys independently, and the adversary can query any
or all of them. The notion of multi-user security was first introduced by Bellare,
Boldyreva and Micali [BBM00].

One of the possible reasons why research in this direction did not garner
sufficient interest is that it was established quite at the outset that when µ
users are involved, the security bound does not degrade by more than a factor
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of µ. This generic bound looked like a satisfactory conclusion to the problem
at that time; however, with the rapidly increasing expected number of users in
practice, it has been evident for some time now that this degradation can be
quite significant.

This realisation has led to a growing interest in recent times in dedicated
security analyses of modes for the multi-user settings, which has been shown to
yield bounds much better than the generic one.

Multi-user degradation. As noted by Biham [Bih02], there exists a faster generic
key-recovery attack on any block cipher in the multi-key setting compared to
the single-key setting. In this work Biham established the key-recovery trade-off
µT = 2κ where µ denotes the number of users, κ is the key-size of a symmetric-
key algorithm and T is the time (mainly the number of primitive calls used in
the target algorithm).

As shown by Hong and Sarkar [HS05], and by Biryukov et al. [BMS05], the
stream cipher time-memory-data tradeoffs can be applied to the block cipher
setting as well, assuming that a plaintext is encrypted under multiple keys. Their
work generalizes the findings of Biham. The observation that recovering one key
out of a large group of keys can often be easier is applicable to any deterministic
symmetric-key algorithm, as is done for MACs by Chatterjee, Menezes, and
Sarkar [CMS11a].

By using standard hybrid argument the above trade-off can be shown to be
tight [ML15]. Whenever the number of users increased rapidly, the multi-user
security is no longer κ bits (which is usually a desirable level of security). In this
paper, one of the main motivations is to recover κ-bit security even in the multi-
user model. Previously there were some attempts based on randomization (e.g.,
randomized GCM in TLS 1.3 [BT16]). However, it still suffers from the high key-
collision probability among users which adds a term like µ2/2κ to the bound.
Thus, for a large number of users, this construction is still birthday bound on
the key-size.

Sponge-based Constructions. A popular and useful design paradigm for modes
in recent years has been the sponge-based constructions [BDPVA07], which was
used in the SHA3 hash function Keccak. In the sponge mode the internal state of
the public permutation is split into an r-bit part to be released to the adversary
and a hidden c-bit part; r and c are called the rate and capacity of the con-
struction respectively. With the rise in popularity of permutation-based designs,
the efficiency and security of sponges have increasingly drawn the attention of
researchers. Till now all sponge constructions have been limited to the birth-
day bound in terms of its capacity [ADMVA15,BDPVA11b,BDPVA11a]. This
is mainly due to the length-extension of sponge construction. In other words,
the security bound of the sponge-based PRF is mostly determined by the term
D2/2c, where D is the data available to the adversary (measured by the number
of construction queries).

Our second motivation of the paper is to improve this bound for sponge
constructions by introducing a simple variant. Our variant enables to obtain
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min{(c+r)/2, c} bit security. When we consider the multi-user model, our bound
turns out to be roughly min{(c+ r)/2, c, κ}. With appropriate choice of param-
eters of c and r, we can achieve almost optimal security.

1.1 Our Contributions.

We present in this paper Muffler, a multi-user PRF built from a random per-
mutation using a full-state sponge with feed-forward, which uses a combination
of the user keys and unique user IDs to improve the security bounds both for
multi-user constructions and sponge constructions. For D construction query
blocks and T permutation queries, with key-size κ = n/2 and tag-size τ = n/2,
both D and T must touch birthday bound in n in order to distinguish Muffler
from a random function.

Comparison to Full-State Keyed Duplex [DMA17]. Our proposed construction
is similar to the full-state Duplex, with an added feed forward of the processed
key into the final permutation call. We also replace the IV used in Duplex with
a unique ID assigned to each user. The bound we obtain for the multi-user case
is better than the bound in [DMA17]. Eqn. 2 in [DMA17] suggests that the
dominating terms in their bound is qivT/2

κ and LT/2c, where κ is the key-
length, c is the capacity, qiv is the maximum number of keys which are called on
the same IV, T is the offline complexity, and L is the number of repeated paths,
i.e., repeated message prefix to the same key; unless IV is refreshed for every
user (or for every t users for a small t), we can expect qiv to be of the order
of u, the number of users, and if IV is used as an ID, L is of the order of D,
so their security term always has either a uT/2κ term (multi-user degradation
of the single-user T/2κ term) or a DT/2c term (signifying birthday-bound in
capacity). Our design solves both these problems.

1.2 Related Work.

Initial works can be traced back to Biham [Bih02] in symmetric cryptanalysis
and Bellare et al. [BBM00] in public-key encryption. Biham [Bih02] considered
the security of block ciphers in the multi-target setting and later Biryukov et
al. [BMS05] refined it as a time-memory-data trade-off to demonstrate how one
can take advantage of the fact that recovering a block cipher key out of a large
group of keys is much easier than targeting a specific key. The same observation
can be applied to any deterministic symmetric-key algorithm, as done for MACs
by Chatterjee et al. [CMS11b]. Bellare et al. [BT16] first formalized a multi-
user secure authenticated encryption scheme and also analyzed countermeasures
against multi-key attacks in the context of TLS 1.3. Andreeva et al. [ADMVA15]
considered the security of the outer and inner keyed sponge in the multi-user
setting, a proof which internally featured a security analysis of the Even-Mansour
block cipher in the multi-user setting. The direction of multi-user security got
subsequently popularized by Mouha et al. [ML15], leading to various multi-user
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security results [BBT16,HT16a] with security bounds almost independent of the
number of users involved.

Since Chatterjee et al. [CMS11b], multi-user security of MACs has been stud-
ied by Morgan et al. [MPS20] and Bellare et al. [BKR98]. The security of Db-
HtS (Double-block Hash-then-Sum) in the multi-user setting has been analysed
by Shen et al. [SWGW21], Guo et al. [GW22] and Datta et al. [DDNT22].
Multi-user security of XORP[3] (bitwise-xor of 3 outputs of n-bit pseudoran-
dom random permutations with domain separated inputs) has been analysed
by Bhattacharya et al. [BN21]. Various other related works can also be found
[Ber05,BHT18,HT17,HS05,LMP17].

The multi-user security of various other modes has been of significant re-
search interest in recent years. One such class of functions is the cascade fam-
ily [BCK96]; Bellare, Bernstein and Tessaro have studied the multi-user se-
curity of AMAC [BBT16], a cascade-based MAC function. Some other con-
structions of interest in the context of multi-user security have been the key-
alternating ciphers [HT16a], Tweakable Even-Mansour [GWLZ17], and double
encryption [HT17]. Bose, Hoang and Tessaro presented a multi-user security
analysis of AES-GCM-SIV [BHT18]. Another direction of research for sponge
constructions has been that of indifferentiability [BDPVA08].

2 Preliminaries

Mathematical and Notational Preliminaries. For integers i, j with i ≤ j, [i..j]
will denote the set {k | i ≤ k ≤ j}. The notation for [1..j] will be abbreviated to
[j]. {0, 1}m will denote the set of all binary strings of length m, and {0, 1}≥m
will denote all binary strings of size at least m. For a finite set S, |S| will denote
its size. Thus,

|{0, 1}m| = 2m.

For a binary string x of length m, and i, j such that i ≤ j ≤ m, x[i..j] will denote
the contiguous substring of x starting at the i-th bit and ending at the j-th bit.
For a finite set S and a random variable X, we say X is uniformly sampled from

S, denoted X
$←− S, if for each x ∈ S,

Pr [X = x] =
1

|S|
.

Thus, when a binary string of length m is uniformly sampled, every string is
picked with a probability 1/2m. A random function f : S −→ {0, 1}m samples
f(x) uniformly from {0, 1}m for each x ∈ S. A function f : S1 −→ S2 is called
injective if for any distinct x1, x2 ∈ S1, f(x1) ̸= f(x2). An injective function
from S to S is called a permutation over S. For two binary strings x, y, x||y will
denote their concatenation. For b ∈ {0, 1} and m ≥ 0, bm will denote the m-bit
string with each bit identical and equal to b. We fix n to be the block-size for
the rest of this paper, and each member of {0, 1}n is considered a block. The
function fixl (·, ·) fixes the last bit of a block, i.e., for a block x and a bit b,

fixl (x, b) := x[1..n− 1]||b.
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For m ∈ [0..n− 1] and x ∈ {0, 1}m, x||10∗ denotes the block x||1||0n−m−1. (We
will sometimes use the term incomplete block to describe an m-bit string with
m ∈ [0..n − 1].) X ←− x denotes the assignment of the value x to the variable
X.

Sampling a Random Permutation. We say P is a partially-determined permuta-
tion if for two subsets dom (P ) and ran (P ) of {0, 1}n of equal size P is an injective
function from dom (P ) to ran (P ). We take |P | = |dom (P ) | = |ran (P ) |. For a
partially-determined permutation P and a pair (x, y) with

x ∈ {0, 1}n \ dom (P ) , y ∈ {0, 1}n \ ran (P ) ,

we can add (x, y) to P , by extending the definition of P to include

P (x) := y.

Note that this adds x to dom (P ) and y to ran (P ). When sampling a random
permutation P , queries to P or P−1 are answered while keeping track of the
partially-determined P . For any forward query x (i.e., a query to P ), if x ∈
dom (P ), P (x) is returned; else a y is sampled uniformly from {0, 1}n \ ran (P )
and returned, and (x, y) is added to P . Similarly, for any backward query y (i.e., a
query to P−1), if y ∈ ran (P ), P−1(y) is returned; else an x is sampled uniformly
from {0, 1}n \ dom (P ) and returned, and (x, y) is added to P . Thus, for any
x /∈ dom (P ) and y /∈ ran (P ), the probability that a forward query x will return
y or a backward query y will return x is 1/(2n− |P |). As long as |P | ≤ 2n−1, we
can use the simpler bound 1/2n−1.

Single-User PRF Game in the Public Permutation Model. Let f1[P ] : S −→
{0, 1}m be a function which uses a permutation P as an underlying primitive
(we assume all its components other than P and the secret key are publicly
computable), and f0 : S −→ {0, 1}m be a random function. In the Single-User
PRF Game in the Public Permutation Model, an adversary A makes a series of
forward and backward queries to P , called the permutation queries (or the offline
queries), and a series of queries to an oracleO, called the construction queries (or
the online queries). O is either the real oracle O1, which returns f1[P ](x) when
x is queried; or it is the ideal oracle O0, which returns f0(x) when x is queried.
In the post-query phase, i.e., after all the permutation queries and construction
queries have been answered, the oracle O may decide to reveal certain additional
information to A. Finally, A returns a bit b, and wins if O = Ob. Note that the
permutation queries and responses are visible to O, so we can assume that all
queries are handled by O itself. The advantage of A against f1[P ] when it makes
D blocks of construction queries and T blocks of permutation queries is defined
as

AdvAf1[P ](D,T ) := |Pr1 [A wins]− Pr0 [A loses] |,
where Pr1 [·] denotes probability under the real oracle and Pr0 [·] denotes prob-
ability under the ideal oracle. The (D,T )-PRF-advantage of f1[P ] is defined
as

AdvPRF
f1[P ](D,T ) := max

A
AdvAf1[P ](D,T ).
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The Multi-User Version of the Game. We consider the case where A can access
f1[P ] as µ different users. Each user has an independently sampled secret key,
and a unique public ID of variable length. The adversary’s construction queries
can specify an user index u ∈ [µ], specifying which user’s key-ID pair to use
for evaluating the call. The domain of the random function f0 (that the ideal
oracle uses) is [µ]×S in this game. With D and T as before, the advantage of A
against f1[P ] is defined identically as in the single-user version, except with the
additional parameter µ in the notation. The (µ,D, T )-multi-user-PRF-advantage
of f1[P ] is defined as

AdvMU-PRF
f1[P ] (µ,D, T ) := max

A
AdvAf1[P ](µ,D, T ).

We will also call the Multi-User PRF game with the parameters µ,D, T as
described above a (µ,D, T )-MU-PRF-game.

Coefficients H Technique. For bounding the MU-PRF-advantage of a func-
tion f1[P ], we can use a result called the Coefficients H Technique. It is a
proof method by Patarin [Pat09] that was modernized by Chen and Steinberger
[CS14,CS13] and generalized by Hoang and Tessaro [HT16b] in their expecta-
tion method. Suppose the partially-determined P at the end of the query phase
is revealed to the adversary by the real oracle. Note that this P contains the
history of both the permutation queries and the calls to P or P−1 by the oracle
itself while evaluating f1[P ] at the construction queries. Since all the other parts
of the construction calls are publicly computable, this partially-determined P
includes complete information about the game. We will call it a transcript of
the game and denote it as P̃ . Suppose we can define a simulator for the ideal
oracle, which can produce a valid transcript P̃ which looks like it comes from
the real oracle, unless it encounters certain bad events. If for some ϵ > 0 for any
(µ,D, T )-MU-PRF-game we can show that

Pr0 [a bad event is encountered] ≤ ϵ,

and that for a valid transcript P̃ ,

Pr0

[
P̃
]
≤ Pr1

[
P̃
]
,

then the Coefficients H Technique tells us that

AdvMU-PRF
f1[P ] (µ,D, T ) ≤ ϵ.

(Note that when we talk of the probability of a transcript P̃ , what we really

refer to is the probability that a game ends up with transcript P̃ .) The original
result of the Coefficients H Technique is slightly more general, but in this paper
we will only be interested in the special case of it described above.
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Module hashID

input : t− 1 complete ID blocks id1, id2, . . . , idt−1 and one incomplete
(possibly empty) ID block id∗t

output: hashed ID H

begin
V←− 0
for j ←− 1 to t− 1 do

U←− V⊕ idj
V←− P (U)

end for
U←− fixl(V⊕ pad(id∗t ), 1)
H←− P (U)

end

Module PRF

input : hashed ID H, κ-bit user key K, ℓ− 1 complete message blocks
M1,M2, . . . ,Mℓ−1 and one incomplete (possibly empty) message
block M∗

ℓ

output: τ -bit tag T

begin
X←− K || 0n−κ

Z←− P (X)
X←− Z⊕ H
Y←− P (X)
for j ←− 1 to ℓ− 1 do

X←− Y⊕Mj

Y←− P (X)
end for
X←− Y⊕ pad(M∗

ℓ )⊕ Z
Y←− P (X)
T←− chop(Y)

end

Algorithm 1: The algorithm for the Muffler[P ] construction. pad(x) de-
notes x||10∗; chop(x) denotes x[1..τ ].
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K P P

M1

P · · · P

Mℓ−1

P

M∗
ℓ || 10∗

P T || B

P Pfixl

1

id∗t || 10∗0

· · · P

id2

P id1

Fig. 1. The Muffler construction. P is a public random permutation; K := K||0n−κ;
id1, . . . , id

∗
t is the ID corresponding to key K, where id∗t may have less than n bits

(when id∗t has n or n − 1 bits, the final block being added after fixl () in the figure is
the padding block); M1, . . . ,M

∗
ℓ is the message where M∗

ℓ may have less than n bits;
tag T is obtained by chopping off the last n − τ bits of the final output. The dotted
lines represent offline computations.

3 A PRF with Multi-User Security

The Muffler[P ] Construction. Muffler[P ] is a multi-user PRF based on a public
random permutation P . Each user, in addition to having an independent random
key of κ bits, for some κ ∈ [n], also has a unique public ID. A user’s ID is first
hashed to a single block, which the adversary can compute by querying the
public permutation, but cannot control. The key and hashed ID of an user are
prefixed to each message queried to her, and the entire sequence of blocks is
absorbed into a full-state sponge. The output of the first P call is squeezed out
and fed-forward into the input of the last P call, and the top τ bits (for some
τ ∈ [n]) are squeezed out of the sponge at the end and released as the τ -bit
output. The working of Muffler[P ] is illustrated in Figure 1, and the algorithm
is described in algorithm 1.

Notation for Security Game. In this game there are µ users U1, . . . ,Uµ. We

denote the key and ID for Uu as K(u) and id(u) respectively. We let

H(u) := H[P ]
(
id(u)

)
,

where H[P ] is the hash function to be defined shortly. The adversary A makes
T permutation queries. For i ∈ [T ], we say i ∈ Pf when the i-th permutation
query is made to P , (i.e., it’s a forward query); then the query is denoted Ui

and the response is denoted Vi; we say i ∈ Pb when the i-th permutation query
is made to P−1, (i.e., it’s a backward query); then the query is denoted Vi and
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the response is denoted Ui. Thus for each i ∈ [T ],

P (Ui) = Vi.

For u ∈ [µ], A further makes qu construction queries to Uu, with

q :=
∑
u∈[µ]

qu;

for i ∈ [qu], the i-th query to Uu is denoted M(u,i). There are ℓ(u,i) blocks in

M(u,i), with

Du :=
∑
i∈[qu]

ℓ(u,i);

for j ∈ [ℓ(u,i)] the j-th block of M(u,i) is denote M
(u,i)
j , where M

(u,i)

ℓ(u,i) just denotes

the final incomplete (possibly empty) block of M(u,i) after 10∗ padding. Finally,
we let

D :=
∑
u∈[µ]

Du,

which denotes the total number of blocks queries to the construction. The total
number of query blocks including construction queries and permutation queries
is D + T . Let

Q := {(u, i) | u ∈ [µ], i ∈ [qu]}

be the set of all construction query indices, and let

I :=
{
(u, i, j) | (u, i) ∈ Q, j ∈

[
ℓ(u,i)

]}
be the set of all construction query block indices. In addition, we define a slightly
different set of construction query block indices, to be useful in the subsequent
analysis:

I± :=
{
(u, i, j) | (u, i) ∈ Q, j ∈

[
2..ℓ(u,i) + 1

]}
.

Padding the IDs. We use a 10∗0 padding on the IDs to bring their length up
to a multiple of n bits. This injective padding scheme ensures that the last bit
is always 0, and the first bit following the un-padded ID is always 1, with a
variable number of 0 bits inserted in between to adjust the length. (Note that
when the final ID block is of length n bits or n − 1 bits, this padding scheme
appends an entire padding block to the ID.)

Hashing the IDs. The hashing of the IDs consists of a series of chained calls to
the permutation, with one bit tweaked before the final call. We assume that these
calls are made as part of the forward permutation queries by the adversary. Let
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t(u) be the number of blocks in id(u) after padding, and let the blocks be id
(u)
1 ,

. . . , id
(u)

t(u) . Then we assume for each u ∈ [µ] there are indices i
(u)
1 , . . . , i

(u)

t(u) ∈ Pf

such that

Ui
(u)
1 = id

(u)
1 ,

Ui
(u)
j = Vi

(u)
j−1 + id

(u)
j when 2 ≤ j ≤ t(u) − 1,

U
i
(u)

t(u) = fixl

(
V
i
(u)

t(u)−1 + id
(u)

t(u) , 1

)
.

4 Main Security Result

Main Theorem. We now state the main result of this paper.

Theorem 1 (Security Bound). Let A be a PRF adversary, trying to differen-
tiate a Muffler[P ](κ, τ) construction for µ users from an ideal random function
f : [µ] × {0, 1}≥n −→ {0, 1}τ . Suppose A makes q construction queries, con-
sisting of D blocks in all, and T permutation queries, including forward and
backward queries. Then, for integer parameters θ1 and θ2,

AdvPRF
A ≤ θ1T

2n−τ
+

θ2T

2κ
+

2τ

θ1!
·
(
D

2τ

)θ1

+
2n

θ2!
·
(
D2

2n

)θ2

+
µ2

22κ

+
D2 + 2DT + 2qD + 2µD + µ2 + 6µT

2n
+

µ2T + µ3

2n+κ
.

Making Sense of the Bound. The bound above is rather complicated for taking in
at a glance, so we now simplify it a bit by substituting certain typical parameter
values we have in mind. First we assume that µ and q are of the same order as
D, which gives the bound.

AdvPRF
A ≤ θ1T

2n−τ
+

θ2T

2κ
+

2τ

θ1!
·
(
D

2τ

)θ1

+
2n

θ2!
·
(
D2

2n

)θ2

+
D2

22κ
+

6D2 + 8DT

2n
+

D2T +D3

2n+κ
.

Typical values for κ and τ would be about n/2 each, so substituting that gives
us

AdvPRF
A ≤ θ1T + θ2T

2n/2
+

2n/2

θ1!
·
(

D

2n/2

)θ1

+
2n

θ2!
·
(
D2

2n

)θ2

+
7D2 + 8DT

2n
+

D2T +D3

23n/2
.

We choose the parameters θ1 and θ2 large enough so that the coefficients 2n/2/θ1!
and 2n/θ2! are small. For example, when n = 128, choosing θ1 ≥ 21 and θ2 ≥ 34
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PUi
(u)
j Vi

(u)
j

(b)

PUi Vi

(a)

PX
(u,i)
j Y

(u,i)
j

(c)

Fig. 2. Notation for real oracle computations. (a) i-th call to public permutation P ;
(b) j-th (offline) call to P while hashing the ID of user u; (c) j-th (online) call to P
while processing i-th construction query to user u.

ensures that either coefficient is less than 1. For further simplification, we can
choose θ1 ≈ 2n/3 and θ1 ≈ n/3 to get

AdvPRF
A ≤ nT

2n/2
+ 2

(
D

2n/2

)2n/3

+
7D2 + 8DT

2n
+

D2T +D3

23n/2
.

This shows that we can allow both D and T to go up to the birthday-bound in
n without breaking the security of Muffler[P ]. The only degradation is a factor
of n in the first term of the simplified bound.

5 Proof of Security

Real Oracle. We begin by describing in detail the specific oracles we choose
for this game. In the real oracle, the user key K(u) for each u ∈ [µ] is initially
sampled uniformly from {0, 1}κ. For each i ∈ [qu], we first set

X
(u,i)
0 = K(u) || 0n−κ,

Y
(u,i)
0 = P

(
X
(u,i)
0

)
.

Next we incorporate the hashed user ID by setting

X
(u,i)
1 = Y

(u,i)
0 + H(u),

Y
(u,i)
1 = P

(
X
(u,i)
1

)
.

Then comes the message blocks: for each j ∈ [2..ℓ(u,i)] we set

X
(u,i)
j = Y

(u,i)
j−1 +M

(u,i)
j−1 ,

Y
(u,i)
j = P

(
X
(u,i)
j

)
.

For the final call to P , we feed forward the output of the first call by setting

X
(u,i)

ℓ(u,i)+1
= Y

(u,i)

ℓ(u,i) + Y
(u,i)
0 +M

(u,i)

ℓ(u,i) ,

Y
(u,i)

ℓ(u,i)+1
= P

(
X
(u,i)

ℓ(u,i)+1

)
.
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The output is

T(u,i) := Y
(u,i)

ℓ(u,i)+1
[1..τ ].

Additionally we denote

B(u,i) := Y
(u,i)

ℓ(u,i)+1
[τ + 1..n].

T(u,i) is returned immediately to the adversary at the end of the i-th query to
Uu. Note that all the P calls above are executed in the random permutation
model. The partially determined P is revealed to the adversary at the end of the
query phase.

Ideal Oracle. The sampling mechanism of the ideal oracle is described below.
Certain bad events can be encountered during the sampling process. Once a
bad event is encountered, the subsequent behaviour of the ideal oracle is left
undefined. (One can for instance imagine that after encountering a bad event,
the ideal oracle only outputs random bits for the rest of the game.)

– Construction Queries [online]: The queries are resolved in the random oracle

model: for each u ∈ [µ], i ∈ [qu], we sample Y
(u,i)

ℓ(u,i)+1
uniformly from {0, 1}n,

and define

T(u,i) := Y
(u,i)

ℓ(u,i)+1
[1..τ ],

B(u,i) := Y
(u,i)

ℓ(u,i)+1
[τ + 1..n].

T(u,i) is returned to the adversary in response to the i-th query to Uu.
• badCC occurs if we can find θ1 distinct pairs (u1, i1), . . . , (uθ1 , iθ1) ∈ Q
such that

T(u1,i1) = . . . = T(uθ1
,vθ1 ).

– Permutation Queries [offline]: The offline queries to P or P−1 are resolved
in the random permutation model, as described before. (These include the

calls required for determining H(1), . . . ,H(µ).) This part is identical for the
two oracles, and leaves us with a partially-determined P at the end of the
query phase.
• badCP occurs if we can find (u, i) ∈ Q, i′ ∈ [T ] such that

Y
(u,i)

ℓ(u,i)+1
= Vi′ .

• badPE occurs if we can find θ2 distinct pairs (u1, i1), . . . , (uθ2 , iθ2) ∈ Q ∈
[µ]× Pf such that

H(u1) + Vi1 = . . . = H(uθ2
) + Viθ2 .

– Internal Sampling: A triple (u, i, j) ∈ I is called fresh if one of the following
is true:
• i = 1;
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• i ≥ 2, j = ℓ(u,i);
• i ≥ 2, j ∈

[
2..ℓ(u,i) − 1

]
and for each i′ ∈ [i − 1] with ℓ(u,i

′) ≥ j + 1 we

can find j′ ∈ [j − 1] such that M
(u,i)
j′ ̸= M

(u,i′)
j′ , i.e., the (j − 1)-block

prefix of the i-th query to user u was not a proper prefix of an earlier
query to the same user.

Let F denote the set of all fresh (u, i, j) triples. For (u, i, j) ∈ I, the (u, j)-

ancestor of i is the smallest i0 such that for each j′ ∈ [j−1], M(u,i)
j′ = M

(u,i0)
j′ .

Note that this automatically implies that (u, i0, j) ∈ F . Now we describe the
sampling order of the internal inputs and outputs of P , which is done at the
end of the query phase:

Step 1: For each (u, i, j) ∈ F , sample Y
(u,i)
j uniformly from {0, 1}n.

• badYC occurs if we can find (u, i, j) ∈ F , (u′, i′) ∈ Q such that

Y
(u,i)
j = Y

(u′,i′)

ℓ(u′,i′) ;

• badYP occurs if we can find (u, i, j) ∈ F , i′ ∈ [T ] such that

Y
(u,i)
j = Vi′ ;

• badYY occurs if we can find distinct (u, i, j), (u′, i′, j′) ∈ F such that

Y
(u,i)
j = Y

(u′,i′)
j′ .

Step 2: For each (u, i, j) ∈ I \ F , set

Y
(u,i)
j := Y

(u,i0)
j ,

where i0 is the (u, j)-ancestor of i.
Step 3: For each (u, i, j) ∈ I±, set

X
(u,i)
j := M

(u,i)
j−1 + Y

(u,i)
j−1 , j ≤ ℓ(u,i),

:= M
(u,i)
j−1 + Y

(u,i)
j−1 + Y

(u,i)
1 , j = ℓ(u,i) + 1.

• badXP occurs if we can find (u, i, j) ∈ I±, i′ ∈ [T ] such that

X
(u,i)
j = Ui′ ;

• badXX occurs if we can find (u, i, j), (u′, i′, j′) ∈ I± such that

X
(u,i)
j = X

(u′,i′)
j′ .

Step 4: For each (u, i, j) ∈ I±, add
(
X
(u,i)
j ,Y

(u,i)
j

)
to P .

Step 5: For each u ∈ [µ] sample K(u) uniformly from {0, 1}κ and set X
(u,1)
0 :=

K(u)|| 0n−κ.
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Step 6: For each u ∈ [µ], if X
(u,1)
0 ∈ dom (P ) set Y

(u,1)
0 := P

(
X
(u,1)
0

)
, else sample

Y
(u,1)
0 uniformly from {0, 1}n \ ran (P ) and add

(
X
(u,1)
0 ,Y

(u,1)
0

)
to P .

Step 7: For each u ∈ [µ] set

X
(u,1)
1 := Y

(u,1)
0 + H(u).

• badHP occurs if we can find u ∈ [µ], i ∈ [T ] such that

X
(u,1)
1 = Ui;

• badHX occurs if we can find (u′, i′, j′) ∈ I± such that

X
(u,1)
1 = X

(u′,i)
j ;

• badHH occurs if we can find distinct u, u′ ∈ [µ] such that

X
(u,1)
1 = X

(u′,1)
1 .

• badHK occurs if we can find u, u′ ∈ [µ] such that

X
(u,1)
1 = X

(u′,1)
0 .

Step 8: For each u ∈ [µ] add
(
X
(u,1)
1 ,Y

(u,1)
1

)
to P .

Step 9: For each (u, i) ∈ Q with i > 1 set

X
(u,i)
0 := X

(u,1)
0 ,

Y
(u,i)
0 := Y

(u,1)
0 ,

X
(u,i)
1 := X

(u,1)
1 .

At the end of the internal sampling phase, the partially-determined P is revealed
to the adversary. (Note that the last step of the ideal oracle does not affect the
game, and is only included for the convenience of our analysis.)

Proof of Theorem. Let P̃ denote the partially-revealed P at the end of the in-
teraction of A with the chosen oracle. When obtained from the real oracle, P̃
contains all the probabilistic information of the game; when obtained from the
ideal oracle, in the absence of bad events (which could result in unpredictable,
inconsistent or incomplete transcripts), it also contains all the probabilistic in-

formation of the game. Let σ be the size of dom
(
P̃
)
. Since all P -responses are

sampled in the random permutation model in the real oracle,

Pr1

[
P̃
]
=

1

2n · (2n − 1) · . . . · (2n − σ + 1)
.

In the ideal oracle, some of the P -responses are sampled in the random permu-
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Fig. 3. Behaviour of Ideal Oracle

Query-Response Phase

Online

for (u, i) ∈ Q :

Y
(u,i)

ℓ(u,i)+1

$←− {0, 1}n

T(u,i) ←− Y
(u,i)

ℓ(u,i)+1
[1..τ ]

B(u,i) ←− Y
(u,i)

ℓ(u,i)+1
[τ + 1..n]

T(u,i) −→ A
check for badCC

Offline

for i ∈ Ep :

Vi $←− {0, 1}n \ ran (P )

P ←− P ∪
{(

Ui
,Vi

)}
Vi −→ A
check for badCP, badPE

for i ∈ Dp :

Ui $←− {0, 1}n \ ran (P )

P ←− P ∪
{(

Ui
,Vi

)}
Ui −→ A

Internal Sampling Phase

for (u, i, j) ∈ F :

Y
(u,i)
j

$←− {0, 1}n

check for badYC, badYP, badYY

for (u, i, j) ∈ I \ F :

i0 ←− (u, j)-ancestor of i

Y
(u,i)
j ←− Y

(u,i0)
j

for (u, i, j) ∈ I− :

X
(u,i)
j ←− M

(u,i)
j−1 + Y

(u,i)
j−1

for (u, i) ∈ Q :

X
(u,i)

ℓ(u,i)+1
←− M

(u,i)

ℓ(u,i)
+ Y

(u,i)

ℓ(u,i)
+ Y

(u,i)
1

check for badXP, badXX

for (u, i, j) ∈ I± :

P ←− P ∪
{(

X
(u,i)
j ,Y

(u,i)
j

)}

for u ∈ [µ] :

K
(u) $←− {0, 1}κ

X
(u,1)
0 ←− K

(u) || 0n−κ

if X
(u,1)
0 ∈ dom (P ) :

Y
(u,1)
0 ←− P

(
X
(u,1)
0

)
else :

Y
(u,1)
0

$←− {0, 1}n \ ran (P )

P ←− P ∪
{(

X
(u,1)
0 ,Y

(u,1)
0

)}

X
(u,1)
1 ←− Y

(u,1)
0 + H(u)

check for badHP, badHX, badHH, badHK

P ←− P ∪
{(

X
(u,1)
1 ,Y

(u,1)
1

)}

P −→ A



16

Table 1. Classification table of bad events.

Event Definition Range of Indices Bound

badCC θ1-collision in T(u,i) (u, i) ∈ Q (2τ/θ1!) · (q/2τ )θ1

badCP Y
(u,i)

ℓ(u,i)+1
= Vi′ (u, i) ∈ Q, i′ ∈ [T ] θ1T/2

n−τ

badPE θ2-collision in H(u) + Vi u ∈ [µ], i ∈ Pf (2n/θ2!) · (µD/2n)θ2

badYC Y
(u,i)
j = Y

(u′,i′)

ℓ(u
′,i′) (u, i, j) ∈ F , (u′, i′) ∈ Q qD/2n

badYP Y
(u,i)
j = Vi′ (u, i, j) ∈ F , i′ ∈ [T ] DT/2n

badYY Y
(u,i)
j = Y

(u′,i′)
j′ (u, i, j), (u′, i′, j′) ∈ F D2/2n+1

badXP X
(u,i)
j = Ui′ (u, i, j) ∈ I±, i′ ∈ [T ] DT/2n

badXX X
(u,i)
j = X

(u′,i′)
j′ (u, i, j), (u′, i′, j′) ∈ I± D2/2n+1

badHP X
(u,1)
1 = Ui u ∈ [µ], i ∈ [T ] µT/2n−1 + µD/2n+

µ2T/2n+κ + θ2T/2
κ

+µT/2n−1

badHX X
(u,1)
1 = X

(u′,i)
j (u′, i′, j′) ∈ I± qD/2n

badHH X
(u,1)
1 = X

(u′,1)
1 u, u′ ∈ [µ] µ2/2n+1

badHK X
(u,1)
1 = Ui u ∈ [µ], i ∈ [T ] µT/2n + µD/2n+

µ3/2n+κ + µ2/22κ

tation model, and some are sampled uniformly. Suppose σ1 of the P -responses
are sampled uniformly. Then

Pr0

[
P̃
]
≤ 1

(2n − σ1) · (2n − σ1 − 1) · . . . · (2n − σ + 1)
·
(

1

2n

)σ1

.

Thus, Pr0

[
P̃
]
≤ Pr1

[
P̃
]
, given that no bad event occurs. Coefficient H Tech-

nique tells us then that
AdvPRF

A ≤ Pr0 [bad] ,

where bad is the event that one of the twelve events badCC, badCP, badPE,
badYC, badYP, badYY, badXP, badXX, badHP, badHX, badHH and badHK is
encountered by the ideal oracle. If we rename them bad1, . . . , bad12, we have by
the union-bound

AdvPRF
A ≤

12∑
i=1

Pr0 [badi] .
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We shall show that the twelve probability terms on the right-hand side can be
bounded as shown in Table 1. The bound in the theorem is obtained simply by
adding them up.

6 Bounding the Bad Probabilities

Probability of badHP. Recall from Section 4 that badHP occurs if we can find
(u, i) ∈ Q such that

X
(u,1)
1 = Ui.

We can rewrite this as

Y
(u,1)
0 + V

i
(u)

t(u) = Ui.

Now we consider several cases:

Case 1: X
(u,1)
0 /∈ dom (P ). For fixed u, by the randomness of Y

(u,1)
0 the col-

lision has a probability ≤ 1/2n−1. There are at most µ choices for u and at
most T choices for i. Thus,

Pr0 [badHP : Case 1] ≤ µT

2n−1
.

For each of the other cases, we need two simultaneous collisions, so we bound
the joint probability by looking at one or the other or both, as needed.

Case 2: X
(u,1)
0 = X

(u′,i′)
j′ for some (u′, i′, j′) ∈ I±. We can rewrite this second

collision equation as

X
(u,1)
0 = M

(u′,i′)
j′−1 + Y

(u′,i′)
j′−1

when j′ ≤ ℓ(u
′,i′), and as

X
(u,1)
0 = M

(u′,i′)
j′−1 + Y

(u′,i′)
j′−1 + Y

(u′,i′)
0

when j′ = ℓ(u
′,i′) +1. Fix u, u′, i′, j′, and let i′0 be the (u′, j′− 1)-ancestor of

i′. Then we can further rewrite this collision equation as

X
(u,1)
0 = M

(u′,i′)
j′−1 + Y

(u′,i′0)
j′−1 or

X
(u,1)
0 = M

(u′,i′)
j′−1 + Y

(u′,i′0)
j′−1 + Y

(u′,i′)
0 ,

depending on whether j ≤ ℓ(u,i) or j = ℓ(u,i) + 1. By the randomness of

Y
(u′,i′0)
j′−1 this collision has a probability of 1/2n. There are µ choices for u and

D choices for (u′, i′, j′). Thus,

Pr0 [badHP : Case 2] ≤ µD

2n
.
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Case 3: X
(u,1)
0 = X

(u′,1)
0 for some u′ < u such that X

(u′,1)
0 was not in dom (P )

when it was sampled. Then we can rewrite the first collision equation as

Y
(u′,1)
0 + V

i
(u)

t(u) = Ui.

For fixed u, u′, i, by the randomness of Y
(u′,1)
0 this collision has a probability

≤ 1/2n−1. We can rewrite the second collision equation as

K(u) = K(u′).

For fixed u, u′, this collision has a probability of 1/2κ. Thus the joint collision
has a probability ≤ 1/2n+κ−1. There are at most

(
µ
2

)
choices for u, u′ and T

choices for i. Thus,

Pr0 [badHP : Case 3] ≤
(
µ
2

)
· T

2n+κ−1 ≤
µ2T

2n+κ
.

Case 4: X
(u,1)
0 = Ui′ for some i′ ∈ Pf . Note that i′ cannot be i

(u)

t(u) , since

X
(u,1)
0 and U

i
(u)

t(u) differ in the last bit. For fixed u, i′, by the randomness of

K(u), this second collision has a probability of 1/2κ if Ui′ [κ+ 1..n] = 0n−κ,
and 0 otherwise. We can rewrite the first collision equation as

Vi′ + V
i
(u)

t(u) = Ui.

Since badPE has not occurred, for each choice of i, there are at most θ2
choices of (u, i′), which makes the total number of choices for (u, i, i′) at
most θ2T . Thus,

Pr0 [badHP : Case 4] ≤ θ2T

2κ
.

Case 5: X
(u,1)
0 = Ui′ for some i′ ∈ Pb. For fixed u, i′, by the randomness of

Ui′ , this second collision has a probability ≤ 1/2n−1. As in the previous case,
we can rewrite the collision equation as

Vi′ + V
i
(u)

t(u) = Ui.

Since choosing i and u fixes i′, there are at most µT choices for u, i, i′. Thus,

Pr0 [badHP : Case 5] ≤ µT

2n−1
.

Taking union-bound over the four cases, we have

Pr0 [badHP] ≤
µT

2n−1
+

µD

2n
+

µ2T

2n+κ
+

θ2T

2κ
+

µT

2n−1
.
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Probability of badCC. Recall from Section 4 that badCC occurs if we can find θ1
distinct pairs (u1, i1), . . . , (uθ1 , iθ1) ∈ Q such that

T(u1,i1) = . . . = T(uθ1
,iθ1 ).

For fixed (u1, i1), . . . , (uθ1 , iθ1),

Pr0

[
T(u1,i1) = . . . = T(uθ1

,iθ1 )
]
=

1

2τ(θ1−1)
.

There are
(
q
θ1

)
choices for (u1, i1), . . . , (uθ1 , iθ1). Thus,

Pr0 [badCC] =

(
q
θ1

)
2τ(θ1−1)

≤ q

θ1!
·
( q

2τ

)θ1−1
.

Probability of badCP. Recall from Section 4 that badCP occurs if we can find
u ∈ [µ], i ∈ [qu], i

′ ∈ [T ] such that

Y
(u,i)

ℓ(u,i)+1
= Vi′ .

For this to happen, we need the collision

B(u,i) = Vi′ [τ + 1..n]

with u, i, i′ satisfying

T(u,i) = Vi′ [1..τ ].

By randomness of B(u,i), the probability of the collision for fixed u, i, i′ is 1/2n−τ .
Since badCC has not occurred, for each choice of i′, there are at most θ1 choices
for (u, i). It follows that there are at most θ1T choices in all for u, i, i′. Thus,

Pr0 [badCC] ≤
θ1T

2n−τ
.

Probability of badPE. Recall from Section 4 that badPE occurs if we can find θ2
distinct pairs (u1, i1), . . . (uθ2 , iθ2) in [µ]× Pf such that

H(u1) + Vi1 = . . . = H(uθ2
) + Viθ2 .

For fixed (u1, i1), . . . , (uθ1 , iθ1),

Pr0

[
H(u1) + Vi1 = . . . = H(uθ2

) + Viθ2

]
=

(
1

2n

)θ2−1

.

There are
(
µD
θ2

)
choices for (u1, i1), . . . , (uθ2 , iθ2). Thus,

Pr0 [badPE] =

(
µD
θ2

)
(2n)

θ2−1 =
µD

θ2!
· (µD − 1)

θ2−1

(2n)
θ2−1 ≤ µD

θ2!
·
(
µD

2n

)θ2−1

.
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Probability of badYC. Recall from Section 4 that badYC occurs if we can find
(u, i, j) ∈ F , (u′, i′) ∈ Q such that

Y
(u,i)
j = Y

(u′,i′)

ℓ(u′,i′) .

For fixed u, i, j, i′, j′, by the randomness of Y
(u,i)

ℓ(u,i)+1
, this collision has a proba-

bility of 1/2n. There are at most D choices for (u, i, j) and at most q choices for
(u′, i′). Thus,

Pr0 [badYC] ≤
qD

2n
.

Probability of badYP. Recall from Section 4 that badYP occurs if we can find
(u, i, j) ∈ F , i′ ∈ [T ] such that

Y
(u,i)
j = Vi′ .

Fix u, i, j, i′, and let i0 be the (u, j)-ancestor of i. Then we can rewrite the
collision as

Y
(u,i0)
j = Vi′ .

By the randomness of Y
(u,i0)
j , this collision has a probability of 1/2n. There are

at most D choices for (u, i, j) and at most T choices for i′. Thus,

Pr0 [badYP] ≤
DT

2n
.

Probability of badYY. Recall from Section 4 that badYY occurs if we can find
distinct (u, i, j), (u′, i′, j′) ∈ F such that

Y
(u,i)
j = Y

(u′,i′)
j′ .

Fix u, i, j, u′, i′, j′, and let i0 be the (u, j)-ancestor of i. Then we can rewrite the
collision as

Y
(u,i0)
j = Y

(u′,i′)
j′ .

By the randomness of Y
(u,i0)
j , this collision has a probability of 1/2n. There are

at most
(
D
2

)
choices for (u, i, j), (u′, i′, j′). Thus,

Pr0 [badYY] ≤
(
D
2

)
2n
≤ D2

2n+1
.

Probability of badXP. Recall from Section 4 that badXP occurs if we can find
(u, i, j) ∈ I±, i′ ∈ [T ] such that

X
(u,i)
j = Ui′ .

We can rewrite this as
M

(u,i)
j−1 + Y

(u,i)
j−1 = Ui′
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when j ≤ ℓ(u,i), and as

M
(u,i)
j−1 + Y

(u,i)
j−1 + Y

(u,i)
1 = Ui′

when j = ℓ(u,i) + 1. Fix u, i, j, i′ and let i0 be the (u, j − 1)-ancestor of i. Then
we can rewrite the collision as

M
(u,i)
j−1 + Y

(u,i0)
j−1 = Ui′ or

M
(u,i)
j−1 + Y

(u,i0)
j−1 + Y

(u,i)
1 = Ui′

depending on whether j ≤ ℓ(u,i) or j = ℓ(u,i) + 1. In either case, by the ran-

domness of Y
(u,i0)
j−1 , the probability of the collision is 1/2n. There are at most D

choices for (u, i, j) and at most T choices for i′. Thus,

Pr0 [badXP] ≤
DT

2n
.

Probability of badXX. Recall from Section 4 that badXX occurs if we can find
distinct (u, i, j), (u′, i′, j′) ∈ I± such that

X
(u,i)
j = X

(u′,i′)
j′ .

Again, we can rewrite this as

M
(u,i)
j−1 + Y

(u,i)
j−1 = X

(u′,i′)
j′

when j ≤ ℓ(u,i), and as

M
(u,i)
j−1 + Y

(u,i)
j−1 + Y

(u,i)
1 = X

(u′,i′)
j′

when j = ℓ(u,i) + 1. Fix u, i, j, u′, i′, j′, and let i0 be the (u, j − 1)-ancestor of i.
Then we can rewrite the collision as

M
(u,i)
j−1 + Y

(u,i0)
j−1 = X

(u′,i′)
j′ or

M
(u,i)
j−1 + Y

(u,i0)
j−1 + Y

(u,i)
1 = X

(u′,i′)
j′

depending on whether j ≤ ℓ(u,i) or j = ℓ(u,i) +1. In either case, by the random-

ness of Y
(u,i0)
j−1 , the probability of the collision is 1/2n. There are at most

(
D
2

)
choices for (u, i, j), (u′, i′, j′). As in the case of badYY,

Pr0 [badXX] ≤
D2

2n+1
.

Probability of badHX. Recall from Section 4 that badHX occurs if we can find
u ∈ [µ], (u′, i, j) ∈ I± such that

X
(u,1)
1 = X

(u′,i)
j .
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We can rewrite this as

X
(u,1)
1 = M

(u′,i)
j−1 + Y

(u′,i)
j−1

when j ≤ ℓ(u
′,i), and as

X
(u,1)
1 = M

(u′,i)
j−1 + Y

(u′,i)
j−1 + Y

(u′,i)
1

when j = ℓ(u
′,i)+1. Fix u, u′, i, j, and let i0 be the (u′, j−1)-ancestor of i. Then

we can rewrite the collision as

X
(u,1)
1 = M

(u′,i)
j−1 + Y

(u′,i0)
j−1 or

X
(u,1)
1 = M

(u′,i)
j−1 + Y

(u′,i0)
j−1 + Y

(u,i)
1

depending on whether j ≤ ℓ(u
′,i) or j = ℓ(u

′,i). In either case, by the randomness

of Y
(u′,i0)
j−1 , the probability of the collision is 1/2n. There are at most µ choices

for u and at most D choices for (u′, i′, j′). Thus,

Pr0 [badHX] ≤
qD

2n
.

Probability of badHH. Recall from Section 4 that badHH occurs if we can find
distinct u, u′ ∈ [µ] such that

X
(u,1)
1 = X

(u′,1)
1 .

We can rewrite this as

Y
(u,1)
0 + V

i
(u)

t(u) = Y
(u′,1)
0 + V

i
(u′)

t(u
′) .

Fix u and u′. Without loss of generality, assume i
(u)

t(u) > i
(u′)

t(u′) . Since i
(u)

t(u) ∈ Pf ,

by the randomness of V
i
(u)

t(u) , the equation has a probability ≤ 1/2n−1. There are
at most

(
µ
2

)
choices for u, u′. Thus,

Pr0 [badHH] ≤
µ2

2n
.

Probability of badHK. Recall from Section 4 that badHK occurs if we can find
u ∈ [µ], u′ ∈ [µ] such that

X
(u,1)
1 = X

(u′,1)
0 .

We can rewrite this as

Y
(u,1)
0 + V

i
(u)

t(u) = X
(u′,1)
0 .

Now we consider several cases:
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Case 1: X
(u,1)
0 /∈ dom (P ). Then by the randomness of Y

(u,1)
0 the collision has

a probability ≤ 1/2n−1. There are at most µ choices for u and at most T
choices for i. Thus,

Pr0 [badHK : Case 1] ≤ µT

2n−1
.

For each of the other cases, we need two simultaneous collisions, so we bound
the joint probability by looking at one or the other or both, as needed.

Case 2: X
(u,1)
0 = X

(u′,i′)
j′ for some (u′, i′, j′) ∈ I±. We can rewrite this second

collision equation as

X
(u,1)
0 = M

(u′,i′)
j′−1 + Y

(u′,i′)
j′−1

when j′ ≤ ℓ(u
′,i′), and as

X
(u,1)
0 = M

(u′,i′)
j′−1 + Y

(u′,i′)
j′−1 + Y

(u′,i′)
0

when j′ = ℓ(u
′,i′) +1. Fix u, u′, i′, j′, and let i′0 be the (u′, j′− 1)-ancestor of

i′. Then we can further rewrite this collision equation as

X
(u,1)
0 = M

(u′,i′)
j′−1 + Y

(u′,i′0)
j′−1 or

X
(u,1)
0 = M

(u′,i′)
j′−1 + Y

(u′,i′0)
j′−1 + Y

(u′,i′)
0 ,

depending on whether j ≤ ℓ(u,i) or j = ℓ(u,i) + 1. By the randomness of

Y
(u′,i′0)
j′−1 this collision has a probability of 1/2n. There are µ choices for u and

D choices for (u′, i′, j′). Thus,

Pr0 [badHK : Case 2] ≤ µD

2n
.

Case 3: X
(u,1)
0 = X

(u′′,1)
0 for some u′′ < u such that X

(u′′,1)
0 was not in dom (P )

when it was sampled. Then we can rewrite the first collision equation as

Y
(u′′,1)
0 + V

i
(u)

t(u) = X
(u′,1)
0 .

For fixed u, u′, u′′, by the randomness of Y
(u′′,1)
0 this collision has a proba-

bility ≤ 1/2n−1. We can rewrite the second collision equation as

K(u) = K(u′′).

For fixed u, u′′, this collision has a probability of 1/2κ. Thus the joint collision
has a probability ≤ 1/2n+κ−1. There are at most

(
µ
2

)
choices for u, u′′ and

µ choices for u. Thus,

Pr0 [badHK : Case 3] ≤
(
µ
2

)
· µ

2n+κ−1 ≤
µ3

2n+κ
.
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Case 4: X
(u,1)
0 = Ui for some i ∈ [T ]. As in badHP, i′ cannot be i

(u)

t(u) , since

X
(u,1)
0 and U

i
(u)

t(u) differ in the last bit. For fixed u, i, by the randomness of
K(u), this second collision has a probability of 1/2κ if Ui[κ + 1..n] = 0n−κ,
and 0 otherwise. We can rewrite the first collision equation as

Vi + V
i
(u)

t(u) = X
(u′,1)
0 .

Again, for fixed u, i, u′, by the randomness of K(u′), this collision has a

probability of 1/2κ if

(
Vi + V

i
(u)

t(u)

)
[κ+1..n] = 0n−κ, and 0 otherwise. Since

choosing u and u′ fixes i, there are at most µ2 choices for u, u′, i. Thus,

Pr0 [badHK : Case 4] ≤ µ2

22κ
.

Taking union-bound over the four cases, we have

Pr0 [badHK] ≤
µT

2n−1
+

µD

2n
+

µ3

2n+κ
+

µ2

22κ
.

7 Conclusion and Future Works

This paper proposed a simple variant of the full-state absorption sponge PRF.
This variant provides higher security than existing constructions which were
birthday-bound in the capacity. In addition we consider the multi-user security
which is stifled by the Tµ/2k bound (for all basic constructions). To get some-
thing close to k-bit security, nonce-based or randomized constructions have been
considered in the past. In this paper we consider a completely different and more
realistic approach, based on a user-id (which is assumed to be unique for each
user). We use this approach to bypass the need to maintain nonce or generate
random salts. Our construction also allows arbitrary lengths of ID. To the best
of our knowledge, it is the first deterministic stateless construction to achieve
k-bit security in the multi-user security game. There are some natural follow up
research questions which could be studied in future:

1. We prove the security in the known ID model in which user-IDs are given to
an adversary. Can we consider a stronger adversary in which adversary can
choose an ID adaptively (chosen-ID model)?

2. For the sake of simplicity of proof, we keep tag output to be at most n/2. Can
we consider multiple squeezing phase to generate larger tag output (without
degrading the security)?

3. Is it possible to analyse the security of this construction eliminating the
multicollision factor? This would help us to obtain some matching attack.
In other words, can we prove that our bound is tight?

4. Can we find another efficient design which can solve all above problems and
may give better security results?
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