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Abstract

Multi-input functional encryption, MIFE, is a powerful generalization of functional encryption that
allows computation on encrypted data coming from multiple different data sources. In a recent work,
Agrawal, Goyal, and Tomida (CRYPTO 2021) constructed MIFE for the class of quadratic functions.
This was the first MIFE construction from bilinear maps that went beyond inner product computation.
We advance the state-of-the-art in MIFE, and propose new constructions with stronger security and
broader functionality.

• Stronger Security: In the typical formulation of MIFE security, an attacker is allowed to either
corrupt all or none of the users who can encrypt the data. In this work, we study MIFE security
in a stronger and more natural model where we allow an attacker to corrupt any subset of the
users, instead of only permitting all-or-nothing corruption. We formalize the model by providing
each user a unique encryption key, and letting the attacker corrupt all non-trivial subsets of the
encryption keys, while still maintaining the MIFE security for ciphertexts generated using honest
keys. We construct a secure MIFE system for quadratic functions in this fine-grained corruption
model from bilinear maps. Our construction departs significantly from the existing MIFE schemes
as we need to tackle a more general class of attackers.

• Broader Functionality: The notion of multi-client functional encryption, MCFE, is a useful extension
of MIFE. In MCFE, each encryptor can additionally tag each ciphertext with appropriate metadata
such that ciphertexts with only matching metadata can be decrypted together. In more detail, each
ciphertext is now annotated with a unique label such that ciphertexts encrypted for different slots
can now only be combined together during decryption as long as the associated labels are an exact
match for all individual ciphertexts. In this work, we upgrade our MIFE scheme to also support
ciphertext labelling. While the functionality of our scheme matches that of MCFE for quadratic
functions, our security guarantee falls short of the general corruption model studied for MCFE. In
our model, all encryptors share a secret key, therefore this yields a secret-key version of quadratic
MCFE, which we denote by SK-MCFE. We leave the problem of proving security in the general
corruption model as an important open problem.
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1 Introduction
Functional encryption (FE) [SW05, BW07, BSW11] is a generalization of public key encryption that enables
fine grained control over access to encrypted data. In FE, the secret key is associated with a function
f , the ciphertext is associated with an input x from the domain of f , and decryption enables recovery
of f(x) and nothing else. Importantly, no information about x is revealed beyond what is revealed
by {fi(x)}i for any set of secret decryption keys corresponding to functions {fi}i in possession of the
adversary. This collusion resistance property of FE makes it very suitable for computing on encrypted
data – a ciphertext encrypting the genomic data of hundreds of individuals can now be decrypted using
function keys corresponding to various statistical functionalities studying correlations between genomic
sequences and disease, while guaranteeing privacy of individual genomic sequences. Motivated by several
important applications, including the construction of the powerful notion of indistinguishability obfuscation
(iO) [BV15a, AJ15a], FE has received an enormous amount of attention in the community, with scores
of elegant constructions from diverse assumptions, achieving various useful functionalities and satisfying
assorted notions of security [GGH+13, GGHZ16, BS15, ABDP15, BJK15, BCFG17, TT18, AGW20].
Multi-Input Functional Encryption. Functional encryption was first generalized to support aggregated
computation over multiple input sources by the celebrated work of Goldwasser et al. [GGG+14]. The premise
of multi-input FE, denoted by MIFE, is that in many natural applications of FE it is essential to support
generalized functionalities where arity is greater than one. For instance, in the above example of genome
wide association studies, the ciphertext must encrypt genomic data of multiple individuals for it to be useful
for the statistical studies in question, but this suggests that this data must be encrypted all at once by a
single entity, which is an unreasonable assumption in practice. Genomic data is highly sensitive information
and it is much more meaningful to allow every individual to encrypt their own data locally and generalize
the construction to support functions of large arity that can process several ciphertexts at a time. This
constraint is organically captured by MIFE, where n independent encryptors may individually generate
ciphertexts for vectors {xji}i∈[n],j∈[poly] and a secret key for function f allows to compute f(xj1

1 ,x
j2
2 , . . . ,xjnn )

for any j1, . . . , jn ∈ [poly].
Since its inception, MIFE received substantial attention which quickly bifurcated into two parallel

branches – (i) the first builds on top of powerful primitives such as iO or compact single-input FE
for general models of computation, like circuits or Turing machines and uses these to construct MIFE
for circuits or Turing machines [AJ15a, BV15a, AM18], (ii) the second focuses on efficient direct
constructions for restricted functionalities from simple assumptions such as pairings or learning with
errors [AGRW17, DOT18, ACF+18, CDG+18a, Tom19, ABKW19, ABG19, LT19, AGT21a]. In this work,
we continue development of the second branch by making advances to the recently proposed construction of
MIFE for quadratic functions by Agrawal, Goyal, and Tomida [AGT21a].
Modelling Security. Given the tension between functionality and security, where functionality seeks
to reveal partial information about the input, while security seeks to protect privacy of the input, the
question of modelling security in functional encryption has turned out to be subtle, and has been examined
in multiple works [BSW11, O’N10, AGVW13, AKW18]. For the setting of unbounded collusion, namely
where the adversary can obtain any polynomial number of function keys, in the security game, the
indistinguishability based definition of security has emerged as the gold standard (due to impossibilities
that plague the alternative simulation-based security [BSW11, AGVW13, AKW18]). In the single-input
setting, both symmetric and public key FE have been studied and are relevant for different applications. In
the multi-input setting, it was observed by Goldwasser et al. [GGG+14] that the symmetric key setting,
where the encryptor requires a secret key to compute a ciphertext, is much more relevant for applications.
This is to prevent the primitive from becoming meaningless due to excessive leakage occurring by virtue of
functionality. In more detail, let us consider a two input scheme where a given first slot ciphertext hides a
challenge bit b. Now, in the public key setting, an adversary can compute an unbounded encryptions for slot
2 herself and match these with the challenge ciphertext of slot 1 to learn a potentially unbounded amount of
information. This unrestricted information leakage can be prevented by requiring the encryption algorithm
to require a secret key.
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However, in the symmetric key multi-input setting, an additional subtlety emerges related to the
uniqueness of each user’s encryption key. For instance, if we consider the application of encrypting genomic
data discussed above, it quickly becomes apparent that having all users share the same encryption key is
problematic – if the genomic data is encrypted and stored in a central repository, then any malicious insider,
who has contributed data and is hence in possession of the master encryption key, can download and decrypt
data belonging to any other user! As data is supposed to span hundreds of users, the master encryption
key will become widely distributed and the privacy of honest user data can very quickly and easily get
compromised. Hence, it is crucial for security that encryption keys be unique to users, and the adversary
gaining control of a particular user’s key does not compromise the security of other users’ data.
Multi-Input FE for Quadratic Functions. Recently, Agrawal, Goyal, and Tomida (AGT) [AGT21a]
provided the first construction of multi-input functional encryption for quadratic functions. In more detail,
they construct an n-input MIFE scheme for the function class Fm,n, which is defined as follows. Each
function f ∈ Fm,n is represented by a vector c ∈ Z(mn)2 . For inputs x1, . . . ,xn ∈ Zm, f is defined as
f(x1, . . . ,xn) = 〈c,x⊗ x〉 where x = (x1|| · · · ||xn) and ⊗ denotes the Kronecker product. In their quadratic
MIFE scheme for Fm,n, a user can encrypt xi ∈ Zm to CTi for slot i ∈ [n], a key generator can compute a
secret key SK for c ∈ Z(mn)2 , and decryption of CT1, . . . ,CTn with SK reveals only 〈c,x ⊗ x〉 and nothing
else.

However, while this result makes exciting progress in the domain of direct constructions for MIFE by
providing the first candidate supporting quadratic functions, it suffers from the severe drawback that all the
encryptors must share the same master key for encryption. As described above, this limits the applicability
of the construction for many meaningful practical applications, e.g. when the system is susceptible to insider
attacks. Moreover, having a single master key for all users creates a single point of failure which makes
the system vulnerable to not only attack but also inadvertent leakage/misuse. Decentralizing trust is an
overarching goal in cryptography, and this motivates to design a scheme where users have unique encryption
keys and the adversarial model is strong enough to capture corruption of some subset of these.
Multi-Client Functional Encryption. A generalization of multi-input functional encryption is the
notion of multi-client functional encryption (MCFE) where the ciphertext is additionally associated with a
label. In more detail, encryptor i now encrypts not only the input xi but also a public label `i to obtain
CT(i,xi, `i). A functional key SKf for any n-ary function f can be used to decrypt {CT(i,xi, `i)}i∈[n] if and
only if all the labels match, i.e. `i = ` for all i ∈ [n]. Note that setting all labels to a single value (say
“TRUE”) recovers the notion of MIFE, which allows unrestricted combinations of ciphertexts across slots.
The more expressive MCFE provides additional control over allowable combinations of ciphertexts, which is
very useful for several applications – for instance, in the example of computing on encrypted genomic data
discussed above, being able to filter records based on some label such as ethnicity = African may help to
substantially reduce the number of inputs that participate in the study, making the process more efficient.

We emphasize that regardless of the security model (all-or-nothing or fine-grained), the motivation of
labelling functionality is to better control the decryption pattern to reduce the information that a decrypter
can learn. In the plain n input MIFE setting, where Q ciphertexts per slot are available, the decrypter can
potentially compute Qn function values, which reveal a large amount of information about the underlying
plaintexts. However, using Q distinct labels to label every ciphertext in each slot, we can reduce the number
of function values revealed to as little as Q. Thus, the labelling functionality is quite useful for controlling
the amount of information that a decrypter learns.

It is worth noting that for an MIFE construction supporting general circuits, MCFE can easily be
captured by adding an additional check in the function key to verify that all the labels are equal, but for
restricted function classes like linear or quadratic functions, MCFE is more powerful than MIFE. In the
arena of direct constructions from simple assumptions, the notion of MCFE has been studied for the case
of linear functions [GGG+14, CDG+18a, ABKW19, ABG19, LT19] but not for quadratic functions, to the
best of our knowledge.
Our Results. We advance the state-of-the-art in MIFE, and propose new constructions with stronger
security and broader functionality.
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• Stronger Security: Typically, in the MIFE security game, an attacker is allowed to either corrupt all
or none1 of the users who can encrypt the data. Here we study MIFE security in a “fine-grained”
corruption model where an attacker can corrupt even non-trivial subset of the users, instead of only
the trivial subsets.

We formalize such a fine-grained corruption model by providing each user a unique encryption
key, and letting the attacker corrupt any subset of the encryption keys. We require that, even after
corruption of any non-trivial subset of encryption keys, the scheme still satisfies the MIFE-style security
for all ciphertexts generated using honest encryption keys. We give a construction for a MIFE system
whose security can be proven in this fine-grained corruption model, instead of the standard all-or-
nothing corruption model. Our construction departs significantly from the existing AGT quadratic
MIFE scheme [AGT21a] as we need to tackle a more general class of attackers.

We observe that while several inner product MIFE schemes already have stronger security in the
context of MCFE [CDG+18b, ABG19, AGT21b], achieving it in quadratic MIFE is much more difficult.
Intuitively, a decrypter in a quadratic MIFE system is allowed to learn a function value on cross terms
derived from different slots, and achieving this without heavy machinery such as obfuscation seems
to require the encryption keys to be correlated with each other (this is also the case for the AGT
scheme). Due to the correlation, the corruption of even a single encryption key affects the security
of ciphertexts for all the other slots. This is in contrast to inner product MIFE, which is basically
obtained by running independent single-input inner product FE instances in parallel.

• Broader Functionality: In MCFE, each encryptor can specify a special label, to tag each ciphertext
with appropriate metadata, such that ciphertexts with only exactly matching metadata/labels can be
decrypted together. Here we upgrade our MIFE scheme to additionally support ciphertext labelling.
While the functionality of our upgraded MIFE scheme matches that of MCFE for quadratic functions,
our security guarantee falls short of the general corruption model studied for MCFE. In our model, all
encryptors share a secret key, therefore this yields a secret-key version of quadratic MCFE, which we
denote by SK-MCFE. We leave the problem of proving security in the general corruption model as an
important open problem.

1.1 Technical Overview
The starting point for both of our MIFE and SK-MCFE schemes for quadratic functions is the recent AGT
scheme [AGT21a]. The AGT construction necessitates that all encryptors share the same master secret key,
thus throughout the sequel we will refer to it as the “SK-MIFE” scheme.
A simplified overview of the AGT SK-MIFE scheme. The AGT scheme uses three building blocks
– (i) SK-FE for inner product (IPFE), (ii) SK-FE for predicate inner product (pIPFE), and (iii) SK-MIFE
for mixed-group inner product. The mixed-group property of (iii) is necessary for a technical reason in the
security proof, but for now we can consider it as SK-MIFE for inner product (IP-MIFE). And, for security,
all of the underlying schemes are required to satisfy the corresponding function-hiding security property.
Concretely, the required MIFE schemes are summarized in Table 1.2

Notation. We denote IPFE ciphertexts of v by iCT[v], pIPFE ciphertexts of (v1,v2) by pCT[(v1,v2)]
and IP-MIFE ciphertexts of v for slot i by miCTi[v] under some master secret keys iMSK, pMSK, miMSK,
respectively. Similarly we denote IPFE secret keys of v by iSK[v], pIPFE secret keys of (v1,v2) by
pSK[(v1,v2)] and IP-MIFE secret keys for v by miSK[v] under the same master secret keys iMSK, pMSK,
miMSK, respectively.

AGT scheme description. Let us start by recalling the structure of ciphertexts and secret keys in the
AGT SK-MIFE scheme. At a high level, an AGT ciphertext CTi of x ∈ Zm and SK for c ∈ Z(mn)2

p are of
1An MIFE scheme where corruption of all encrypting users is allowed is more commonly regarded as public-key MIFE, while

disallowing corruption of any encrypting user is regarded as secret-key MIFE.
2Formally, the inner product functionalities defined need to involve group elements as it is necessary for the proof. However,

for simplicity of the overview, we use directly define them over Zp.
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Table 1: Description of input and function classes for IPFE, pIPFE, IP-MIFE.
Scheme
Type

No. of
inputs

Input
Class(es)

Function
Class

Description of
functions

IPFE 1 X = Zmp F = Zmp fy(x) = 〈x,y〉

pIPFE 1 X = Zm1
p × Zm2

p F = Zm1
p × Zm2

p fy1,y2(x1,x2) =
{
〈x2,y2〉 if 〈x1,y1〉 = 0,
⊥ otherwise.

IP-MIFE n X1 = · · · Xn = Zmp F = Zmnp fy(x1, . . . ,xn) = 〈(x1|| . . . ||xn),y〉

the following form:

CTi =
({

pCT[(h,bj)], pSK[(h̃, b̃j)]
}
j∈[m]

, iCT[d], iSK[d̃], miCTi[f ]
)

(1)

SK =
(
{σi,k}i,k∈[n],miSK[f̃ ]

)
(2)

for some Zp vectors bj , b̃j ,d, d̃, f , f̃ ,h, h̃ and Zp elements σi,k.
Now a message vector x is encoded in the vectors bj , b̃j , and the remaining vectors in the ciphertext are

only added to either tie together separate components of different AGT ciphertexts, or randomize a portion
of a single AGT ciphertext. We refer the reader to [AGT21a] for a more detailed overview, but for our
purposes, it is enough to understand how the decryption algorithm works.

Consider a sequence of n AGT ciphertexts CT1, . . . ,CTn and a corresponding secret key SK. The
decryptor first runs the decryption algorithm for the pIPFE scheme for all possible input combinations.
That is, for all i, k ∈ [n] and j, ` ∈ [m], it computes

zi,j,k,` = pDec(pCT[(hi,bi,j)], pSK[(h̃k, b̃k,`)]). (3)

As it turns out, the underlying encoding procedure used in AGT ensures that each such term is of the form
zi,j,k,` = xi[j]xk[`]+ui,j,k,`, where ui,j,k,` is a pseudorandom masking term such that

∑
c[(i, j, k, `)]ui,j,k,` =

〈c,u〉 can be computed by combining the remaining portions of the ciphertexts and secret key. That is, the
decryptor first computes∑

c[(i, j, k, `)]zi,j,k,` =
∑

c[(i, j, k, `)]xi[j]xk[`] +
∑

c[(i, j, k, `)]ui,j,k,`

where
∑

c[(i, j, k, `)]xi[j]xk[`] is the desired output, and then it computes
∑

c[(i, j, k, `)]ui,j,k,` = 〈c,u〉 by
combining the (iCT[d], iSK[d̃],miCTi[f ]) portion of each ciphertext amongst themselves and also with the
secret key ({σi,k}i,k∈[n],miSK[f̃ ]).

Achieving Strong Fine-Grained Security. Recall that in the stronger fine-grained corruption model,
each encryptor has a unique encryption key, and the adversary is allowed to corrupt any subset of encryption
keys in the security game. Throughout the sequel, we refer to such a scheme as plain MIFE in contrast to
SK-MIFE.

Before describing our main ideas, we highlight the reason as to why AGT is not already secure in this
stronger corruption model. Observe that each component of the AGT ciphertext CTi is generated under
the same master secret key of the corresponding scheme over all slots. In other words, it is essential that
all encryption keys include the same IPFE, pIPFE, and IP-MIFE master secret keys. As it turns out, this
is one of the main barriers to proving the SK-MIFE construction of AGT to be strongly secure. This is
because the scheme ends up being completely insecure if encryption keys for any slot are revealed! Basically,
revealing only the underlying pIPFE master secret key allows one to completely decrypt any ciphertexts of
the AGT scheme.
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While this seems like a major technical barrier at first, we observe that there is a very elegant way to get
around this problem by relying on the underlying homomorphic properties satisfied by the SK-MIFE scheme.
Although, the AGT SK-MIFE construction can not be used as is since the usage of the pIPFE scheme prevents
any useful type of ciphertext homomorphism, we are able to simplify the underlying SK-MIFE construction
that not only avoids the usage of pIPFE completely, but also leads to an interesting homomorphism property
that we show is very useful in upgrading any weakly secure SK-MIFE into a strongly secure MIFE scheme.

The special property. Let us start by describing the special homomorphism property P that we crucially
rely on. It states that there exists an explicit and efficient algorithm Ẽnc, and a sequence of public elementary
messages ei,1, . . . , ei,d ∈ Xi (∀i ∈ [n]) such that – for every slot i ∈ [n] and message xi ∈ Xi, the following
two distributions are statistically indistinguishable:{(

PP, {CTi,j}j∈[d],CTi
)

: CTi ← Enc(MSK, i, xi)
}
,{(

PP, {CTi,j}j∈[d],CTi
)

: CTi ← Ẽnc({CTi,j}j , xi)
}

where (PP,MSK)← Setup(1λ) and CTi,j ← Enc(MSK, i, ei,j) for j ∈ [d].
Property P to MIFE. Assuming there exists an SK-MIFE scheme satisfying property P, our main

observation is that there exists a generic compiler to upgrade it to a MIFE for the same function class
in which an attacker can corrupt any arbitrary set of encryption keys. That is, consider any SK-MIFE
scheme (Setup′,Enc′,KeyGen′,Dec′) for some function class F satisfying property P, our compiler upgrades
it to an MIFE scheme (Setup,Enc,KeyGen′,Dec′) for F as follows:

Setup(1λ, 1n): It computes PP,MSK← Setup′(1λ) and CTi,j ← Enc′(MSK, i, ei,j) for all i ∈ [n], j ∈ [d], and
sets EKi = {CTi,j}j for all i ∈ [n]. Then, it outputs the parameters as PP, {EKi}i,MSK.

Enc(EKi, x): It computes CTi ← Ẽnc({CTi,j}j , x) and outputs CTi.

The correctness follows directly from the correctness of the underlying SK-MIFE scheme and the statistical
closeness of the output distributions between Enc and Ẽnc. And, the proof of security also follows via a
hybrid argument. The main idea is to first switch how each challenge ciphertext is generated. That is,
instead of computing it as Ẽnc({CTi,j}j , x

β), the challenger computes it directly as Enc(MSK, i, xβ) (where
β ∈ {0, 1} and x0, x1 are the challenge messages). Note that this readily follows from the statistical closeness,
and thus, by relying on the regular security of the underlying SK-MIFE scheme, we can prove the stronger
security for our MIFE scheme. This is because the reduction algorithm can simulate a corrupted encryption
key EKi = {CTi,j}j∈[d] by querying its own oracle on the elementary messages ei,1, . . . , ei,d. For more details,
we refer the reader to the main body.

Building SK-MIFE with property P. In order to obtain our final result, we need to instantiate the above
generic compiler with an SK-MIFE scheme for quadratic functions with property P. As mentioned earlier,
our core idea in this part is to rely on the homomorphic structure of the AGT SK-MIFE scheme. Recall
that a ciphertext in the AGT scheme consists of bilinear source group elements. Thus, we can define a group
operation over the AGT ciphertexts by element-wise multiplication of group elements (and we use addition
for the group operation in what follows). Let CTi[x] be a slot-i encryption of x in the AGT scheme. Our
observation is that if for any a1, a2 ∈ Zp, we have

a1CTi[x1] + a2CTi[x2] = CTi[a1x1 + a2x2], (4)

then we can achieve P by simply setting the elementary messages to be e1, . . . , en, where ej is the one-
hot vector with the j-th element being one, and defining Ẽnc using the appropriate group operations.
Unfortunately, this is not the case!

Insufficiency of AGT. To better understand the reason for failure, we need to open up the encryption
abstractions used in AGT to their underlying bilinear form. Informally, an AGT ciphertext CTi for x ∈ Zmp
looks like CTi = ([vMi]1, [wNi]2). Here [·]1, [·]2 denote element-wise group exponentiation in bilinear groups
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G1, G2, and Mi,Ni are common matrices shared among all ciphertexts for slot i. Also, each element of v,w
depends on x and the random tape used in encryption. Concretely, each element of v,w is one of the
following four types — (i) 1; (ii) x[j] for some j ∈ [m]; (iii) a fresh random Zp element; or (iv) an element
of the tuple (b, c, b`, c`) where b, c, ` are fresh random Zp elements.

From the viewpoint of well-formedness of a homomorphically operated ciphertext, it is not hard to see
that the elements (ii) and (iii) will stay consistent with the homomorphism Eq. (4), while the elements (i)
and (iv) will no longer be well-formed after the group operations. This is because, after the homomorphic
addition as Eq. (4), the element (i) becomes a1 + a2, while the element (iv) become an elements of the tuple
(a1b1 + a2b2, a1c1 + a2c2, a1b1`1 + a2b2`2, a1c1`1 + a2c2`2). While an element (i) can still be well-formed
as long as a1 + a2 = 1, an element (iv) will never be well-formed (unless `1 = `2, which occurs with only
negligible probability).

Stripping away pIPFE from AGT. Diving a bit further into the structure and semantics of the AGT SK-
MIFE scheme, we find out that the elements (iv) are derived from the pIPFE scheme. So, a natural thought
is if we can remove the pIPFE scheme from AGT, then we can eliminate the elements (iv) thereby solving
the above problem. However, the usage of the pIPFE scheme in the AGT template was crucial as replacing
it with a (non-predicate) IPFE scheme enabled a mix-and-match attack wherein an attacker can illegally
combine portions of two different ciphertexts for the same slot. Concretely, for two ciphertexts CT1

i ,CT2
i in

the same slot, pIPFE prevents decryptor from computing pDec(pCT1
i,j , pCT2

i,`) in the decryption process as
in Eq. (3) (meaning that 〈h1, h̃2〉 6= 0 if h1 and h̃2 are vectors derived from two different ciphertexts for the
same slot i).

Although this seems to be a major bottleneck at first, we make an important observation that if each
encryptor computes and encrypts all possible quadratic terms between its own message vector at the time
of encryption, then a decryptor does not need to generate the quadratic terms derived from the same slot
via the pIPFE decryption. Therefore, the mix-and-match problem can be rather easily solved by replacing
pIPFE with a plain (non-predicate) IPFE scheme. And, since this new encryption method only increases the
length of the underlying encrypted vector from m to m2, thus it is still efficient. We refer to Definition 2.9
and Remark 2.10 for more details.

Final rerandomization trick. While it seems that we are done at this point, unfortunately this is still not
sufficient. And, the reason is the fact that even after removing elements (iv), we cannot achieve the property
P by using e1, . . . , en as the public elementary messages from two reasons. First,

∑
j x[j] is not necessarily

1, and thus elements (i) may not be 1 after the homomorphic addition. Second, elements (iii) depend on x
and the random tape used to generate the ciphertexts of ei, and thus not independently random after the
homomorphic addition. The second reason can be visualized as the resulting ciphertext containing far less
entropy than a freshly sampled ciphertext.

However, we solve these issues by the following rerandomization trick. Our idea is to additionally include
a large sequence of 0 vectors to the list of elementary messages, and sample a fresh sequence of random
elements which will be used to homomorphically add each encryption of 0 to the underlying homomorphically
computed ciphertext such that the resulting ciphertext has sufficient entropy. That is, for a sufficiently large
D, we define Ẽnc as follows: Ẽnc

(
({CTi[ej ]}j∈[m], {CTi,j [0]}j∈[D]),x

)
computes CTi[x] as

CTi[x] = CTi,1[0] +
∑
j∈[m]

xi[j]
(
CTi[ej ]− CTi,1[0]

)
+

∑
j∈[D−1

2 ]

γj(CTi,2j [0]− CTi,2j+1[0]),

where γ1, . . . , γ(D−1)/2 ← Zp.
This solves the second problem as now the elements (iii) are distributed randomly if D is sufficiently

large due to the fresh entropy introduced by γ1, . . . , γ(D−1)/2. And, since we have
∑
j∈[m](xi[j] − xi[j]) +∑

j∈[(D−1)/2](γj − γj) = 0, thus element (i) is also equal to 1 in CTi[x]. Hence, the above rerandomization
trick combined with the pIPFE removal strategy gives us our SK-MIFE scheme for quadratic functions with
property P, which in turn gives us our quadratic MIFE scheme secure in the stronger fine-grained corruption
model.

Supporting the Ciphertext Labelling Functionality. Finally, we provide a rather simple yet incredibly
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useful mechanism to annotate labels with SK-MIFE ciphertexts. This adds the feature of multi-client style
encryption to the quadratic SK-MIFE scheme. To this end, we look back at the existing techniques to
achieve desired labelling for IP-MIFE schemes (that is, the ideas used to obtain IP-MCFE, or in other
words, MCFE for inner product), but find that all techniques are rather specific to inner product. The prior
works basically use the following blueprint [CDG+18a, CDG+18b, ABG19, AGT21b]. The MCFE schemes
use a (single-input) IPFE scheme as a building block, and a ciphertext of the MCFE for the i-th slot message
xi with a label lab is simply a ciphertext of the IPFE scheme for some vector x̃i related to xi and lab. A
secret key of the MCFE scheme for c = (c1|| . . . ||cn) contains IPFE secret keys for some vector c̃i related
to c for i ∈ [n], and decryption for slot-i reveals

〈x̃i, c̃i〉 = 〈xi, ci〉+ ui

where ui is a masking term such that
∑
i∈[n] ui is equal to 0 (or a computable value by the decryptor) only

when x̃i is associated with the same label for all i. Hence, the decryptor can learn only
∑
i〈xi, ci〉 as desired.

However, the structure of the only known MIFE scheme for quadratic functions by AGT, as observed, is
quite different from this blueprint, and thus we need a new approach.

Our starting point is again the AGT MIFE scheme where recall the ciphertext has the form as described
in Eq. (1). A natural first thought is to try to replace all the three underlying IPFE, pIPFE, and IP-
MIFE schemes with their labelled counterparts. After a quick glance, it appears that this would be a viable
strategy since if we could annotate each component in the AGT ciphertext with a label, then the entire AGT
ciphertext will be labelled as well.

As we elaborated during the description of our MIFE construction, the application of pIPFE in the AGT
template can be replaced with any IPFE scheme (ignoring the quadratic increase in the overall ciphertext
size). Concretely, we showed that the ciphertext CT of the modified AGT scheme can be written as

CTi =
({

iCT(1)[bj ], iSK(1)[b̃j ]
}
j∈[m]

, iCT(2)[d], iSK(2)[d̃], miCTi[f ]
)
,

where (iCT(1), iSK(1)) and (iCT(2), iSK(2)) are generated by two separate master secret keys iMSK(1) and
iMSK(2), respectively. Thus, it seems like if we can annotate both, the IPFE and the IP-MIFE, components
of the modified AGT scheme with the same label, then the resulting quadratic MIFE scheme will also support
ciphertext labelling functionality.

Now to annotate the IP-MIFE component of the ciphertext, we need a labelled version of the SK-MIFE
scheme for mixed-group inner products with function-hiding security as a counterpart. Although such a
scheme for inner product is not already known, we were able to construct a new scheme with the desired
properties by combining ideas from the SK-MIFE scheme for mixed-group inner product in [AGT21a] and
the MCFE scheme for inner product in [AGT21b]. We refer the reader to Section 3 for the exact details.

Finally, to get the desired result, we simply need a mechanism to annotate the IPFE component of the
AGT ciphertexts with labels such that ciphertexts with different labels can no longer be combined. Our
idea is to simply keep a PRF key K as part of the overall system master key, and use the PRF key K to
sample a label-dependent IPFE key at the time of encryption. That is, the setup no longer samples the IPFE
keys used during the encryption, but instead the encryptor first samples the IPFE keys using PRF(K, lab)
as the randomness where lab is the specified label, and then uses those keys to compute the appropriate
ciphertext components. Clearly, ciphertexts encrypted w.r.t. different labels can no longer be combined since
the underlying ciphertext components are now incompatible (as they are sampled using independent IPFE
keys). And, basically by iterating the hybrid sequence of the SK-MIFE scheme for quadratic functions in
[AGT21a] per queried label, we can also prove security in the secret-key MCFE setting.

Open Problems. We conclude the introduction by discussing some open problems. To the best of our
knowledge, this is the first work proposing a technique to convert SK-MIFE to MIFE with stronger security.
Since our technique is applicable to all SK-MIFE schemes with property P, exploring other classes of MIFE
to which our technique is applicable is an interesting open problem. We observe that this conversion does
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seem applicable to group-based SK-MIFE schemes for inner product in [AGRW17, ACF+18] since they
enjoy a nice homomorphic property. However, MIFE schemes for inner product with the stronger security
are already known so this does not yield a new result. Nevertheless it does give a new pathway to obtaining
these results since known MCFE schemes for inner product are constructed without going through SK-MIFE.

The second open question is the construction of a (public-key) MCFE scheme for quadratic functions.
Interestingly, while the above ideas are sufficient for SK-MCFE for quadratic functions, we were unable to
prove security in the public-key setting. First, in the above abstraction, the usage of PRFs to annotate the
IPFE portion of the modified AGT ciphertext requires the encryption key for each slot to contain the secret
PRF key K. Thus, corruption of even one encryption key completely breaks down the scheme. An approach
is to sample a separate PRF key for each pair of encryption slots, however, even that does not seem to
suffice as corrupting even a single secret key for a particular encryption slot seems to provide an attacker a
mechanism to maul the labels from honest ciphertexts, thereby breaking security. Other natural approaches
run into similar roadblocks. We leave the question full fledged MCFE as an exciting open problem.

We remark that the approach of providing generic compilers to “upgrade” security notions of primitives
can be very useful in enabling new constructions since it simplifies the minimum building block that must be
instantiated. For the case of restricted functionalities like linear [ABG19] or quadratic functions (this), such
compilers have required the underlying scheme to satisfy “nice” algebraic properties. Can this requirement
be removed? Given current techniques, it seems difficult to remove such requirements without relying on
strong tools like obfuscation. However, exploring this question more fully is a promising line of research.

Finally, it is evidently a fascinating question whether we can “lift” the degree of the underlying function
class beyond 2 without relying on strong tools like compact functional encryption or obfuscation. Currently,
we have results from single assumptions in the arena of degree ≤ 2 [AGRW17, DOT18, ACF+18, CDG+18a,
Tom19, ABKW19, ABG19, LT19, AGT21a] and results from combinations of assumptions for classes like
NC1 and beyond [JLS21, JLS22] even in the single input setting. While compact functional encryption can
be generalized to the multi-input setting [AJ15b, BV15b], can we have constructions of MIFE and MCFE
for bigger classes of functions without relying on obfustopia primitives?

2 Preliminaries
Notation. We begin by defining the notation that we will use throughout the paper. We use bold letters to
denote vectors and the notation [a, b] to denote the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote
the set [1, n]. For vector v, v[i] denotes the i-th element of v. For (in, . . . , i1) ∈ [Nn]× · · · × [N1] ⊂ Nn, we
sometimes identify (in, . . . , i1) as

∑
j∈[2,n]

(
(ij − 1)

∏
`∈[j−1]N`

)
+ i1, which is an element in [N1N2 · · ·Nn].

This identification is used to introduce an order in the elements in [N1]×· · ·×[Nn]. For a matrix A = (aj,`)j,`
over Zp, [A]i denotes a matrix over Gi whose (j, `)-th entry is gaj,`i , and we use this notation for vectors and
scalars similarly. Throughout the paper, we use λ to denote the security parameter.

2.1 Pseudorandom Functions
A family of keyed functions PRF = {PRFλ}λ∈N is a pseudorandom function family with key space K =
{Kλ}λ∈N, domain X = {Xλ}λ∈N and co-domain Y = {Yλ}λ∈N if function PRFλ : Kλ ×Xλ → Yλ is efficiently
computable, and satisfies the pseudorandomness property defined below.

Definition 2.1. A pseudorandom function family PRF is secure if for every PPT adversary A, there exists
a negligible function negl(·) such that∣∣∣Pr[APRFλ(K,·)(1λ) = 1]− Pr[AO(·)(1λ) = 1]

∣∣∣ < negl(λ),

where O is a random function and the probability is taken over the choice of seeds K ∈ Kλ and the random
coins of the challenger and adversary.
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2.2 Bilinear Groups
Definition 2.2 (Bilinear Groups). A family of bilinear groups {Gλ}λ∈N where Gλ = (p,G1, G2, GT , g1, g2, e)
consists of a prime p, cyclic groups G1, G2, GT of order p, generators g1 and g2 of G1 and G2 respectively,
and a bilinear map e : G1 ×G2 → GT , which has two properties.

• (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha1 , hb2) = e(h1, h2)ab.

• (Non-degeneracy): For generators g1 and g2, gT = e(g1, g2) is a generator of GT .

In the following, we omit subscript λ from G.
Definition 2.3 (Dj,k-MDDH Assumption [EHK+17]). For j > k, let Dj,k be a matrix distribution over
matrices in Zj×kp , which outputs a full-rank matrix with overwhelming probability. Let G be bilinear groups.
We can assume that, wlog, the first k rows of a matrix chosen from Dj,k form an invertible matrix. We
consider the following distribution: A← Dj,k, z← Zkp, k0 = Az, k1 ← Zjp, Pi,β = (G, [A]i, [kβ ]i). We say
that the Dj,k-MDDH assumption holds with respect to G if, for any PPT adversary A,

AdvDj,k-MDDH
A = max

i∈{1,2}
|Pr[1← A(Pi,0)]− Pr[1← A(Pi,1)]| ≤ negl.

In what follows, we denote Dk+1,k by Dk. Note that the well-known k-Lin assumption can be captured as
the Dk-MDDH assumption.

Bilateral Variant. Let G,A,kβ be the same as above and Pβ = (G, [A]1, [A]2, [kβ ]1, [kβ ]2). We
say the bilateral Dj,k-MDDH assumption holds with respect to GBG if P0 and P1 are computationally
indistinguishable as above. The bilateral Dj,k-MDDH assumption generically holds in bilinear groups if
k ≥ 2. Note that the following two properties are applicable to the bilateral case similarly.

Uniform Distribution. Let Uj,k be a uniform distribution over Zj×kp . Then, the following holds with
tight reductions: Dk-MDDH⇒ Uk-MDDH⇒ Uj,k-MDDH. We denote Uk-MDDH by MDDHk.

Random Self-Reducibility. We can obtain arbitrarily many instances of the Dj,k-MDDH problem from
a single instance. For any n ∈ N, we define the following distribution: A ← Dj,k, Z ← Zk×np , K0 =
AZ, K1 ← Zj×np , Pi,β = (G, [A]i, [Kβ ]i). The n-fold Dj,k-MDDH assumption is similarly defined to the
Dj,k-MDDH assumption. Then, the n-foldDj,k-MDDH assumption is implied by theDj,k-MDDH assumption
with security loss of min{n, j − k}.

2.3 Multi-Input Functional Encryption
Syntax. Let n be the number of encryption slots, and F = {Fn}n∈N be a function family such that, for all
f ∈ Fn, f : X1×· · ·×Xn → Y. Here Xi and Y be the input and output spaces (respectively). A multi-input
functional encryption (MIFE)3 scheme for function family F consists of following algorithms.

Setup(1λ, 1n)→ (PP, {EKi}i,MSK). It takes a security parameter 1λ, number of slots 1n, and outputs public
parameters PP, n encryption keys {EKi}i∈[n], a master secret key MSK. (The remaining algorithms
implicitly take PP as input.)

Enc(EKi, x)→ CTi. It takes the i-th encryption key EKi and an input x ∈ Xi, and outputs a ciphertext CTi.

KeyGen(MSK, f)→ SK. It takes the master key MSK and a function f ∈ F as inputs, and outputs a
decryption key SK.

Dec(CT1, . . . ,CTn,SK)→ y. It takes n ciphertexts CT1, . . . ,CTn and decryption key SK, and outputs a
decryption value y ∈ Y or a special abort symbol ⊥.

3When n = 1, we call MIFE just functional encryption (FE).
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Correctness. An MIFE scheme for function family F is correct if for all λ, n ∈ N, (x1, . . . , xn) ∈ X1 ×
· · · × Xn, f ∈ Fn, we have

Pr

y = f(x1, . . . , xn) :

(PP, {EKi}i,MSK)← Setup(1λ, 1n)
{CTi ← Enc(i,EKi, xi)}i
SK← KeyGen(MSK, f)
y = Dec(CT1, . . . ,CTn,SK)

 = 1.

Definition 2.4. For security, we define two indistinguishability-based security definitions: message-hiding
security and function-hiding security. An MIFE scheme is sel-XX-YY-IND-secure (XX ∈ {pos, any},YY ∈
{mh, fh})4 if for any stateful admissible PPT adversary A, there exists a negligible function negl(·) such that
for all λ, n ∈ N, the following probability is negligibly close to 1/2 in λ:

Pr


A({EKi}i∈CS , {CTµ}µ, {SKν}ν) = β :

β ← {0, 1}
PP, {EKi}i∈[n],MSK← Setup(1λ, 1n)
(CS,MS,FS)← A(1λ,PP) s.t.
CS ⊆ [n]
MS = {iµ, xµ,0, xµ,1}µ∈[qc]
FS = {fν,0, fν,1}ν∈[qk]
{CTµ ← Enc(iµ,EKiµ , xµ,β)}µ
{SKν ← KeyGen(MSK, fν,β)}ν


where the adversary A is said to be admissible if and only if:

1. f0(x0
1, . . . , x

0
n) = f1(x1

1, . . . , x
1
n) for all sequences (x0

1, . . . , x
0
n, x

1
1, . . . , x

1
n, f

0, f1) such that:

– For all i ∈ [n], [(i, x0
i , x

1
i ) ∈MS] or [i ∈ CS and x0

i = x1
i ],

– (f0, f1) ∈ FS.

2. When XX = pos, qc[i] > 0 for all i ∈ [n], where qc[i] denotes the number of elements of the form
(i, ∗, ∗) in MS.

3. When YY = mh, fν,0 = fν,1 for all ν ∈ [qk].

MIFE security in secret-key setting. We say an MIFE scheme is secret-key MIFE (SK-MIFE) scheme
if all the n encryption keys EKi are basically the master secret key MSK. The security of an SK-MIFE
scheme is defined the same way as an MIFE scheme except that the adversary has to set CS = ∅.

2.4 Multi-Client Functional Encryption
A multi-client functional encryption (MCFE) scheme is an extension of MIFE where each ciphertext is now
annotated with a unique label such that ciphertexts encrypted for different slots can now only be combined
together during decryption as long as the associated labels match for all individual ciphertext pieces. We
first define its syntax where we highlight in terms of changes, how MCFE compares with MIFE.

Syntax. An MCFE system is associated with a label space L, in addition to the number of encryption
slots n and function class F as in MIFE. A multi-client functional encryption scheme for function family F
consists of following algorithms.

4“sel” stands for “selective” meaning that the adversary has to select the challenge elements at the beginning of the security
game. The opposite notion is “adaptive”. “pos” stands for “positive”. In MCFE, a user can decrypt ciphertexts only when it
has ciphertexts for all slots with the same label, and a portion of them is useless for decryption. “pos” prohibits the adversary
from querying the oracle on such useless challenge elements. “mh” and “fh” stand for “message-hiding” and “function-hiding”,
respectively.

10



Setup,KeyGen,Dec have the same syntax as in MIFE.

Enc(EKi, lab, x)→ CT. The encryption algorithm takes the i-th encryption key EKi, a label lab, and an input
x ∈ Xi, and outputs a ciphertext CTi.

Correctness. An MCFE scheme for function family F is correct if for all λ, n ∈ N, (x1, . . . , xn) ∈ X1 ×
· · · × Xn, f ∈ F , and label lab ∈ L, we have

Pr

y = f(x1, . . . , xn) :

(PP, {EKi}i,MSK)← Setup(1λ, 1n)
{CTi ← Enc(i,EKi, lab, xi)}i
SK← KeyGen(MSK, f)
y = Dec(CT1, . . . ,CTn,SK)

 = 1.

That is, if all the ciphertexts are encrypted for the same label, then the decryption works as in MIFE.

MCFE security in secret-key setting. In this work we are mostly interested in the secret-key setting.
The intuition behind security for secret-key MCFE is similar to that for secret-key MIFE, with the difference
that the admissibility constraint for ciphertexts is defined for each label individually. Below we define it
formally.

Definition 2.5. An SK-MCFE scheme is sel-XX-YY-IND-secure (XX ∈ {pos, any},YY ∈ {mh, fh}) if for
any stateful admissible PPT adversary A, there exists a negligible function negl(·) such that for all λ, n ∈ N,
the following probability is negligibly close to 1/2 in λ:

Pr

A({CTµ}µ, {SKν}ν) = β :

(PP,MSK)← Setup(1λ, 1n), β ← {0, 1}
(MS,FS)← A(1λ,PP) s.t.
MS = {iµ, labµ, xµ,0, xµ,1}µ∈[qc]
FS = {fν,0, fν,1}ν∈[qk]

{CTµ ← Enc(MSK, iµ, labµ, xµ,β)}µ
{SKν ← KeyGen(MSK, fν,β)}ν


where the adversary A is said to be admissible if and only if:

1. f0(x0
1, . . . , x

0
n) = f1(x1

1, . . . , x
1
n) for all sequences (x0

1, . . . , x
0
n, x

1
1, . . . , x

1
n, f

0, f1, lab) such that:

– For all i ∈ [n], (i, lab, x0
i , x

1
i ) ∈MS,

– (f0, f1) ∈ FS.

2. When XX = pos, for any label lab queried by the adversary, qc[i, lab] > 0 for all i ∈ [n], where qc[i, lab]
denotes the number of elements of the form (i, lab, ∗, ∗) in MS.

3. When YY = mh, fν,0 = fν,1 for all ν ∈ [qk].

Remark 2.6. In this paper, we only consider pos-security since a sel-pos-YY-secure MIFE/MCFE scheme
can be generically transformed into a sel-any-YY-secure MIFE/MCFE scheme [AGRW17, DOT18, ABKW19,
ABG19].

2.5 Functionalities
In this section, we define basic function classes for MIFE/SK-MCFE that is used in this paper.

Definition 2.7 (Inner Product over Bilinear Groups). Let G = (p,G1, G2, GT , g1, g2, e) be bilinear groups.
A function family F IP

m,n,G for inner products over bilinear groups consists of functions f : (Gm1 )n → GT .
Each f ∈ F IP

m,n,G is specified by [(y1, . . . ,yn)]2 where yi ∈ Zmp and defined as f([x1]1, . . . , [xn]1) =
[
∑
i∈[n]〈xi,yi〉]T . We call MIFE/SK-MCFE for F IP

m,n,G MIFE/SK-MCFE for inner product. Especially,
we sometimes call FE for F IP

m,1,G inner product functional encryption (IPFE).
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Note that constructions of IPFE and SK-MCFE for inner product with function-hiding (sel-any-fh)
security are already known [TAO20, AGT21b].

Definition 2.8 (Mixed-Group Inner Products). Let G = (p,G1, G2, GT , g1, g2, e) be bilinear groups. A
function family FMG

m1,m2,n,G for mixed-group inner products consists of functions f : (Gm1
1 × Gm2

2 )n → GT .
Each f ∈ FMG

m1,m2,n,G is specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈ Zm1
p and yi,2 ∈ Zm2

p

and defined as f(([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)) = [〈x,y〉]T where x = (x1,1,x1,2, . . . ,xn,1,xn,2) and
y = (y1,1,y1,2, . . . ,yn,1,yn,2). We call MIFE/SK-MCFE for FMG

m1,m2,n,G MIFE/SK-MCFE for mixed-group
inner product.

Definition 2.9 (Bounded-Norm Quadratic functions over Z). A function family FQF
m,n,X,C for bounded-norm

multi-input quadratic functions consist of functions f : (Xm)n → Z where X = {i ∈ Z | |i| ≤ X}. Each
f ∈ FQF

m,n,X,C is specified by c ∈ Z(mn)2 s.t. ||c||∞ ≤ C and c[(i, j, k, `)] = 0 if i ≥ k. Then, f specified by
c is defined as f(x1, . . . ,xn) =

∑
i,k∈[n],j,`∈[m] c[(i, j, k, `)]xi[j]xk[`]. We call MIFE/SK-MCFE for FQF

m,n,X,C

MIFE/SK-MCFE for quadratic functions.

Remark 2.10. The original definition of quadratic functions in [AGT21a] provides that c is a vector s.t.
c[(i, j, k, `)] = 0 if (i, j) > (k, `) instead of i ≥ k. Actually, the functionality in Definition 2.9 implies the
original functionality by defining g(x1, . . . ,xn) = f(x′1, . . . ,x′n) where x′i = (xi⊗xi,xi, 1) and f ∈ FQF

m,n,X,C .

Formally, our contribution in this paper is the constructions of MIFE and SK-MCFE for quadratic
functions from pairings. Note that only an SK-MIFE scheme for quadratic functions based on pairings
[AGT21a] is know prior to our work.

3 SK-MCFE for Mixed-Group Inner Product
In this section, we provide our construction for function-hiding SK-MCFE for mixed-group inner-product
(Definition 2.8), which is used as a building block of our MIFE and SK-MCFE schemes for quadratic
functions. The construction is similar to the function-hiding SK-MIFE for mixed-group inner-product in
[AGT21a] by Agrawal, Goyal, and Tomida (AGT). Recall that the AGT SK-MIFE for mixed-group inner-
product is obtained by combining a function-hiding SK-MIFE for inner-product and a function-hiding SK-FE
for inner product. Our SK-MCFE for mixed-group inner-product is obtained by replacing a function-hiding
SK-MIFE for inner-product in the AGT scheme with a function-hiding SK-MCFE for inner-product. Note
that a function-hiding SK-MCFE for inner product can be obtained from a function-hiding MCFE scheme
for inner product in [AGT21b] since SK-MCFE is the special case of MCFE. Additionally, while the MCFE
scheme in [AGT21b] uses a hash function modeled as a random oracle in encryption, we can replace it with
a PRF in the secret-key setting. The function-hiding SK-MCFE scheme for inner product without a random
oracle is presented in Fig. 9.

Formally, we construct a function-hiding SK-MCFE scheme for FMG
m1,m2,n,G with label space L from a

function-hiding SK-MCFE scheme for F IP
m,n,G with the same label space L and a function-hiding FE scheme

for F IP
m,1,G in a generic way. Let icFE = (icSetup, icEnc, icKeyGen, icDec) be a function-hiding SK-MCFE for

F IP
m,n,G, and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme (SK-FE for F IP

m,1,G). Then,
our function-hiding SK-MCFE for mixed-group inner product FMG

m1,m2,n,G is constructed as shown in Fig. 1.
Since the correctness and the security proof is similar to those of SK-MIFE for mixed-group inner product

in [AGT21a, Section 4], we defer them to Appendix A.

4 SK-MCFE for Quadratic Functions
As explained in the technical overview, i) our MIFE scheme for quadratic functions can be generically
obtained from the modified AGT SK-MIFE scheme for quadratic functions, which does not use a SK-FE
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Setup(1λ, 1n) : It generates master secret keys of icFE and iFE as follows:
icPP, icMSK← icSetup(1λ, 1n), (iPP1, iMSK1), . . . , (iPPn, iMSKn)← iSetup(1λ)
where the vector lengths of icFE and iFE are set as m1 +m2 + k + 1 and m2 + k + 1, respectively.
Note that k ≥ 2 is the parameter of the bilateral MDDH assumption.
Then it outputs PP,MSK as follows:
PP = (icPP, iPP1, . . . , iPPn), MSK = (icMSK, iMSK1, . . . , iMSKn).

Enc(MSK, i, lab, ([xi,1]1, [xi,2]2)) : It output CTi as follows:
z←Zkp, x̃i,1=(xi,1, 0m2 , z, 0) ∈ Zm1+m2+k+1

p , x̃i,2=(xi,2,−z, 0) ∈ Zm2+k+1
p

icCTi ← icEnc(icMSK, i, lab, [x̃i,1]1), iSKi ← iKeyGen(iMSKi, [x̃i,2]2), CTi = (icCTi, iSKi)

KeyGen(MSK, {[yi,1]2, [yi,2]1}i∈[n]) : It output SK as follows:
a←Zkp, ỹi,1=(yi,1, 0m2 ,a, 0) ∈ Zm1+m2+k+1

p , ỹi,2=(yi,2,a, 0) ∈ Zm2+k+1
p , ỹ = (ỹ1,1, . . . , ỹn,1)

icSK← icKeyGen(icMSK, [ỹ]2), iCTi ← iEnc(iMSKi, [ỹi,2]1), SK = (icSK, {iCTi}i∈[n])

Dec(CT1, . . . ,CTn,SK) : It output z as follows:
Outputs icDec(icCT1, . . . , icCTn, icSK)

∏
i∈[n] iDec(iCTi, iSKi)

Figure 1: Our mixed-group IP-MIFE scheme.

scheme for predicate inner product; ii) the modified SK-MIFE scheme can be seen as the special case of our
SK-MCFE scheme, where the label space consists of one element. Considering the above two facts, we first
present our SK-MCFE scheme for quadratic functions to save the effort of presenting the security proof of
the modified SK-MIFE scheme in the construction of our MIFE scheme.

4.1 Construction
Let mgFE = (mgSetup,mgEnc,mgKeyGen,mgDec) be an SK-MCFE scheme for mixed-group inner product
(Section 3) with label space L, and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme.
Also, let PRF = {PRFλ}λ∈N be a PRF family where PRFλ : {0, 1}λ ×L → {0, 1}λ and G be bilinear groups.
Below we provide an SK-MCFE scheme for function class FQF

m,n,X,C with the same label space L. Similarly
to [AGT21a], we can construct our SK-MCFE scheme from MDDHk, while it makes the construction and
security proof far more complicated as we can see in [AGT21a]. Thus, we present the construction based on
MDDH1 for better readability in this paper.

Setup(1λ, 1n) samples a random PRF key K ← {0, 1}λ and the master keys for the underlying IPFE and
SK-MCFE scheme as (iPP(2), iMSK(2)) ← iSetup(1λ), (mgPP,mgMSK) ← mgSetup(1λ, 1n) where the
vector length of iFE is set as 2, and the vector length of mgFE is set as m2n + 2 and 1. Note that
iPP(2) = mgPP = G. It also samples a sequence of randomization terms as:

∀ i, k ∈ [n], j, ` ∈ [m], w(i,j,k,`) ← Zp
∀ i ∈ [n], j ∈ [m], ui,j , ũi,j , vi,j , ṽi,j ← Zp

It outputs the public parameters and master key as

PP = G, MSK =
(
K, iMSK(2),mgMSK, {w(i,j,k,`)}i,j,k,`, {ui,j , ũi,j , vi,j , ṽi,j}i,j

)
.

Enc(MSK, i, lab,x) parses MSK as above, and using the PRF key K, it samples a IPFE master key of vector
length mn+3m+4 as (iPP(1), iMSK(1))← iSetup(1λ; PRF(K, lab)). Here we assume (w.l.o.g.) that the
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MIFE setup algorithm takes λ bits as random coins. It then samples random elements s, s̃, r, t← Zp.
And, it sets vectors bj , b̃j for j ∈ [m] as follows:

bj = (x[j], 0, se(i,j), rui,j , vi,j ,03m), b̃j = (x[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m).

where e(i,j) is the mn-dimensional one-hot vector with the (i, j)-th element being 1, and vector
w(∗,∗,i,j) ∈ Zmnp is defined as follows:

∀ j ∈ [m], w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))

The encryptor encodes the vectors bj , b̃j under MIFE as follows:

∀ j ∈ [m], iCTj ← iEnc(iMSK(1), [bj ]1), iSKj ← iKeyGen(iMSK(1), [b̃j ]2).

It also encodes the random elements s, s̃ as follows:

iCT← iEnc(iMSK(2), [(s, 0)]1), iSK← iKeyGen(iMSK(2), [(s̃, 0)]2).

Lastly, it sets f = (r, t,0m2n), h = 0, and encrypts elements f , h as

mgCT← mgEnc(mgMSK, i, lab, ([f ]1, [h]2)).

And the resulting ciphertext is set as below:

CT = ({iCTj}j , {iSKj}j , iCT, iSK,mgCT) .

KeyGen(MSK, c) parses MSK as above, and the key vector c lies in the space Z(mn)2 . Let the vector f̃i ∈
Z(2+m2n)
p be the following vector: for all i ∈ [n],

f̃i[1] =
∑

j,`∈[m],k∈[n]

c[(i, j, k, `)]ui,j ũk,`, f̃i[2] =
∑

j,`∈[m],k∈[n]

c[(k, `, i, j)]vk,`ṽi,j

and f̃i is zeros at all other places. It also sets h̃i = 0 for all i ∈ [n]. The key generator samples a SK-
MCFE secret key corresponding to vectors {f̃i, h̃i}i as mgSK← mgKeyGen(mgMSK, {[f̃i]2, [h̃i]1}i∈[n]),
and partial derandomization terms:

∀ i, k ∈ [n], σi,k =
∑

j,`∈[m]

c[(i, j, k, `)]w(i,j,k,`)

And, it outputs the secret key as
SK = (c,mgSK, {σi,k}i,k) .

Dec(CT1, . . . ,CTn,SK) parses the ciphertexts and secret key as:

CTi = ({iCTi,j}i,j , {iSKi,j}i,j , iCTi, iSKi,mgCTi) , SK = (c,mgSK, {σi,k}i,k) .

It runs the MIFE decryption algorithm as:

[z1]T =
∏

i,k∈[n]
j,`∈[m]

iDec(iCTi,j , iSKk,`)c[(i,j,k,`)], [z2]T =
∏

i,k∈[n]

iDec(iCTi, iSKk)σi,k

It also runs the SK-MCFE decryption algorithm as:

[z3]T = mgDec(mgCT1, . . . ,mgCTn,mgSK)

Finally it outputs z where [z]T = [z1−z2−z3]T by searching for z within the range of z ≤ |m2n2CX2|.
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Hβ0
β ← {0, 1}, PP,MSK← Setup(1λ)
(MS, {cν}ν∈[qk])← A(PP) where
MS = {i, lab,xµ,0i,lab,x

µ,1
i,lab}i∈[n],lab∈LS,µ∈[qc]

{CTµi,lab ← Enc(MSK, i, lab,xµ,βi,lab)}i,lab,µ
{SKν ← KeyGen(MSK, cν)}ν
β′ ← A({CTµi,lab}i,lab,µ, {SKν}ν)

Hβs ,H
β
(κ,ι,η),H

β
f,κ

β ← {0, 1}, PP,MSK′ ← Setup(1λ)
(MS, {cν}ν∈[qk])← A(PP) where
MS = {i, lab,xµ,0i,lab,x

µ,1
i,lab}i∈[n],lab∈LS,µ∈[qc]

MSK← S̃etup(MSK′,LS)
{CTµi,lab ← Ẽnc(MSK, i, lab, µ,MS)}i,lab,µ

{SKν ← K̃eyGen(MSK, cν)}ν
β′ ← A({CTµi,lab}i,lab,µ, {SKν}ν)

Figure 2: Description of hybrids

Correctness. Let si, s̃i, ri, ti for i ∈ [n] be random elements used to generate CTi. Due to the correctness
of iFE,mgFE, in decryption, we have

z1 =
∑

i,k∈[n],j,`∈[m]

c[(i, j, k, `)](xi[j]xk[`] + sis̃kw(i,j,k,`) + riui,j ũk,` + tkvi,j ṽk,`)

z2 =
∑

i,k∈[n],j,`∈[m]

c[(i, j, k, `)]sis̃kw(i,j,k,`)

z3 =
∑

i,k∈[n],j,`∈[m]

c[(i, j, k, `)](riui,j ũk,` + tkvi,j ṽk,`).

Therefore, we have z =
∑
i,k∈[n],j,`∈[m] c[(i, j, k, `)]xi[j]xk[`].

4.2 Security
For security, we have the following theorem.

Theorem 4.1. If iFE and mgFE are sel-pos-fh-IND-secure, and the MDDH1 assumption holds in G, then
the proposed SK-MCFE for quadratic functions is sel-pos-mh-IND-secure.

Proof. At a high level, we prove Theorem 4.1 by basically iterating the hybrid sequence in the security
proof of the AGT SK-MIFE scheme [AGT21a] for each queried label. They provide a security proof of the
AGT scheme for the simplest case as warm-up [AGT21a, Section 5], and it is also quite helpful to follow our
security proof. Since the the proof of Theorem 4.1 is complex, we recommend reading it before diving into
this proof to grasp the intuition.

Wlog, in the pos setting, we can denote challenge messages by {i, lab,xµ,0i,lab,x
µ,1
i,lab}i∈[n],lab∈LS,µ∈[qc] for

some LS = {lab1, . . . , labd} ⊂ L and qc instead of {iµ, labµ,xµ,0iµ ,x
µ,1
iµ }µ∈[q′c]. For notational convenience, we

use the former notation in this proof. We abuse notation and sometimes identify labi ∈ LS and i ∈ [d] so
that we can treat all lab ∈ LS as an element in [d]. We prove Theorem 4.1 via a series of hybrids Hβs ,H

β
(κ,ι,η)

for κ ∈ [d], ι ∈ [n], η ∈ [qc], and Hβf,κ for κ ∈ [d]. We show that Hβ0 ≈c Hβs ≈c Hβ(1,1,1) ≈c · · · ≈c Hβ(1,n,qc) ≈c
Hβf,1 ≈c Hβ(2,1,1) ≈c · · · ≈c Hβ(d,n,qc) ≈c Hβf,d, where Hβ0 is the original security game for SK-MCFE defined in
Definition 2.5. In all the hybrids except Hβ0 , the challenge ciphertexts and the secret keys queried by the
adversary are generated by S̃etup, Ẽnc, K̃eyGen instead of Setup,Enc,KeyGen as depicted in Fig. 2. These
algrothms work as shown in Fig. 3. We denote the probability that A outputs β in hybrid Hβ by P(A,Hβ).

Lemma 4.2. For all PPT adversaries A, |P(A,Hβ0 )− P(A,Hβs )| ≤ negl(λ).

Proof. In Hβs , S̃etup generates fresh master secret keys {iMSK(1)
lab }lab∈LS of iFE(1) as additional components

of MSK. The difference between Hβ0 and Hβs is the way of generating ciphertext components iCTi,j and
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S̃etup(MSK′,LS)→ MSK for Hβs ,Hβ(κ,ι,η),H
β
f,κ

{(iPP(1)
lab , iMSK(1)

lab )← iSetup(1)(1λ)}lab∈LS , MSK = (MSK′, {iMSK(1)
lab }lab)

Ẽnc(MSK, i, lab, µ,MS)→ CTµi,lab for Hβs , Hβ(κ,ι,η) , Hβf,κ
s, s̃, r, t← Zp, {w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))}j∈[m]

bj = (xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m), b̃j = (xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m)

bj =


(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) (lab, i, µ) ≤ (labκ, ι, η)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j , ej ,02m) (labκ, ι, η) < (lab, i, µ) ≤ (labκ, ι, qc)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m) (labκ, ι, qc) < (lab, i, µ)

b̃j =


(0, xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) lab < labκ
(xµ,βi,lab[j],xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,xµ,0i,lab[j]x1,0

ι,lab − xµ,βi,lab[j]x1,β
ι,lab,02m) lab = labκ

(xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) labκ < lab

bj =
{

(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) lab ≤ labκ
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m) labκ < lab

b̃j =
{

(0, xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) lab ≤ labκ
(xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) labκ < lab


j∈[m]

d = (s, 0), d̃ = (s̃, 0), f = (r, t,0m2n)

f =


(r, t,0m2n) lab 6= labκ
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι,lab)⊗ x1,β

i,lab,0m2(n−ι)) lab = labκ, (i, µ) ≤ (ι, η)
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ xµ,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι,lab)⊗ xµ,βi,lab,0m2(n−ι)) lab = labκ, (ι, η) < (i, µ)

f = (r, t,0m2n)
h = 0, {iCTi,j ← iEnc(iMSK(1)

lab , [bj ]1) iSKi,j ← iKeyGen(iMSK(1)
lab , [b̃j ]2)}j∈[m]

iCTi ← iEnc(iMSK(2), [d]1), iSKi ← iKeyGen(iMSK(2), [d̃]2), mgCTi ← mgEnc(mgMSK, i, lab, ([f ]1, [h]2))
CTµi,lab = ({iCTi,j , iSKi,j}j∈[m], iCTi, iSKi,mgCTi)

K̃eyGen(MSK, c)→ SK for Hβs , Hβ(κ,ι,η),H
β
f,κ

c(∗,∗,i,∗) = (c[(1, 1, i, 1)], . . . , c[(1, 1, i,m)], c[(1, 2, i, 1)], . . . , c[(1, 2, i,m)], . . . , c[(n,m, i,m)])

f̃i =
(∑

j,`∈[m],k∈[n] c[(i, j, k, `)]ui,j ũk,`,
∑

j,`∈[m],k∈[n] c[(k, `, i, j)]vk,`ṽi,j ,0m2n

)
, h̃i = 0

f̃i =
(∑

j,`∈[m],k∈[n] c[(i, j, k, `)]ui,j ũk,`,
∑

j,`∈[m],k∈[n] c[(k, `, i, j)]vk,`ṽi,j , c(∗,∗,i,∗)

)
, h̃i = 0


i∈[n]

{σi,k =
∑

j,`∈[m] c[(i, j, k, `)]w(i,j,k,`)}i,k∈[n], mgSK← mgKeyGen(mgMSK, {[̃fi]2, [h̃i]1}i∈[n])
SK = (c,mgSK, {σi,k}i,k∈[n])

Figure 3: Description of S̃etup, Ẽnc, K̃eyGen in Hβs ,H
β
(κ,ι,η),H

β
f,κ

iSKi,j in CTµi,lab. Specifically, they are generated by encryption or key-generation under iMSK(1)
lab instead of

encryption or key-generation under a master key generated by the PRF. The indistinguishability directly
follows from the psendorandomness of the PRF.

Lemma 4.3. Let Hβ(κ,0,qc) = Hβf,κ−1 for κ ∈ [d] and Hβf,0 = Hβs . For all PPT adversaries A and κ ∈ [d], ι ∈ [n],
|P(A,Hβ(κ,ι−1,qc))− P(A,Hβ(κ,ι,1))| ≤ negl(λ).
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Lemma 4.4. For all PPT adversaries A and κ ∈ [d], ι ∈ [n], η ∈ {2, . . . , qc}, |P(A,Hβ(κ,ι,η−1)) −
P(A,Hβ(κ,ι,η))| ≤ negl(λ).

We defer the proofs of Lemmas 4.3 and 4.4 to Section 4.3.

Lemma 4.5. For all PPT adversaries A and κ ∈ [d], there exist PPT adversaries B1,B2 such that
|P(A,Hβ(κ,n,qc))− P(A,Hβf,κ)| ≤ dAdviFE

B1
(λ) + AdvmgFE

B2
(λ).

Proof. The difference between Hβ(κ,n,qc) and Hβf,κ lies in how to set vector b̃j and f that are encrypted to
iSKi,j and mgCTi,j , respectively, in CTµi,lab (observe that bj is set as

bj =
{

(0,xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) lab ≤ labκ
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m) labκ < lab

in all CTµi,lab in Hβ(κ,n,qc)). Let bµi,lab,j , b̃
µ
i,lab,j be the vectors bj , b̃j used to generate CTµi,lab, respectively. It

is not hard to see that for all i1, i2 ∈ [n], µ1, µ2 ∈ [qc], lab ∈ LS, j1, j2 ∈ [m], 〈bµ1
i1,lab,j1

, b̃µ2
i2,lab,j2

〉 in Hβ(κ,n,qc)
and that in Hβf,κ are equal for all κ ∈ [d].

Next recall that f is set as

f =
{

(r, t,0m2n) lab 6= labκ
(r, t, (x1,β

1,lab, . . . ,x
1,β
n,lab)⊗ x1,β

i,lab − (x1,0
1,lab, . . . ,x

1,0
n,lab)⊗ x1,0

i,lab) lab = labκ

in all CTµi,lab in Hβ(κ,n,qc). Let fµi,lab be the vector f used in CTµi,lab, and f̃νi be the vector f̃i used in SKν . Then,∑
i∈[n]〈f

µi
i,lab, f̃νi 〉 in Hβ(κ,n,qc) and that in Hβf,κ are equal for all (µ1, . . . , µn) ∈ [qc]n, ν ∈ [qk], lab ∈ LS. This is

because ∑
i∈[n]

〈cνi , (x
1,β
1,lab, . . . ,x

1,β
n,lab)⊗ x1,β

i,lab − (x1,0
1,lab, . . . ,x

1,0
n,lab)⊗ x1,0

i,lab〉

=
∑

(i,j,k,`)∈[n]×[m]

(
cν [(i, j, k, `)]x1,β

i,lab[j]x1,β
k,lab[`]− cν [(i, j, k, `)]x1,0

i,lab[j]x1,0
k,lab[`]

)
= 0

which follows the query condition in Section 2.4. Hence, A’ views in Hβ(κ,n,qc) and Hβf,κ are indistinguishable
from the sel-pos-fh-IND security of iFE and mgFE.

Since A does not obtain the information on β in Hβf,d, we have P(A,Hβf,d) = 1/2. Thanks to Lemma 4.2
to Lemma 4.5, Theorem 4.1 holds.

4.3 Proofs of Lemmas 4.3 and 4.4
Proof of Lemma 4.3. We introduce intermediate hybrids Ĥβκ,ι,1, . . . , Ĥ

β
κ,ι,4 where S̃etup, Ẽnc, K̃eyGen work as

shown in Fig. 5. For reference, we describe those algorithms in Hβ(κ,ι−1,qc) and Hβ(κ,ι,1) in Fig. 4. We prove
that Hβ(κ,ι−1,qc) ≈c Ĥβκ,ι,1 ≈c · · · ≈c Ĥβκ,ι,4 ≈c Hβ(κ,ι,1). Thanks to Lemma 4.6 to Lemma 4.10, Lemma 4.3
holds.

Lemma 4.6. For all PPT adversaries A, there exist PPT adversaries B1,B2 such that |P(A,Hβ(κ,ι−1,qc))−
P(A, Ĥβκ,ι,1)| ≤ dAdviFE

B1
(λ) + AdvmgFE

B2
(λ).
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Ẽnc(MSK, i, lab, µ,MS)→ CTµi,lab for Hβ(κ,ι−1,qc), Hβ(κ,ι,1)

s, s̃, r, t← Zp, {w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))}j∈[m]

bj =
{

(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) (lab, i, µ) < (labκ, ι, 1)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m) (labκ, ι, 1) ≤ (lab, i, µ)

b̃j =


(0, xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) lab < labκ
(xµ,βi,lab[j],xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,xµ,0i,lab[j]x1,0

ι−1,lab − xµ,βi,lab[j]x1,β
ι−1,lab,02m) lab = labκ

(xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) labκ < lab

bj =


(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) (lab, i, µ) < (labκ, ι, 1)
(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) (lab, i, µ) = (labκ, ι, 1)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j , ej ,02m) (labκ, ι, 1) < (lab, i, µ) ≤ (labκ, ι, qc)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m) (labκ, ι, qc) < (lab, i, µ)

b̃j =


(0, xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) lab < labκ
(xµ,βi,lab[j],xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,xµ,0i,lab[j]x1,0

ι,lab − xµ,βi,lab[j]x1,β
ι,lab,02m) lab = labκ

(xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) labκ < lab


j∈[m]

d = (s, 0), d̃ = (s̃, 0)

f =


(r, t,0m2n) lab 6= labκ
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι−1,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι−1,lab)⊗ x1,β

i,lab,0m2(n−ι+1)) lab = labκ, i < ι

(r, t, (x1,0
1,lab, . . . ,x

1,0
ι−1,lab)⊗ xµ,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι−1,lab)⊗ xµ,βi,lab,0m2(n−ι+1)) lab = labκ, ι ≤ i

f =


(r, t,0m2n) lab 6= labκ
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι,lab)⊗ x1,β

i,lab,0m2(n−ι)) lab = labκ, i < ι

(r, t, (x1,0
1,lab, . . . ,x

1,0
ι,lab)⊗ xµ,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι,lab)⊗ xµ,βi,lab,0m2(n−ι)) lab = labκ, ι ≤ i

h = 0, {iCTi,j ← iEnc(iMSK(1)
lab , [bj ]1) iSKi,j ← iKeyGen(iMSK(1)

lab , [b̃j ]2)}j∈[m]

iCTi ← iEnc(iMSK(2), [d]1), iSKi ← iKeyGen(iMSK(2), [d̃]2), mgCTi ← mgEnc(mgMSK, i, lab, ([f ]1, [h]2))
CTµi,lab = ({iCTi,j , iSKi,j}j∈[m], iCTi, iSKi,mgCTi)

Figure 4: Description of Ẽnc in Hβ(κ,ι−1,qc) and Hβ(κ,ι,1). Red letters show the parts that are changed from
Hβ(κ,ι−1,qc).

Proof. For all i1, i2 ∈ [n], µ1, µ2 ∈ [qc], lab ∈ LS, j1, j2 ∈ [m], observe that 〈bµ1
i1,lab,j1

, b̃µ2
i2,lab,j2

〉 in Ĥβ(κ,ι−1,qc)

are equal to that in Ĥβκ,ι,1. Thus, due to the security of iFE, this implies that {iCTi,j , iSKi,j} generated in
Ĥβ(κ,ι−1,qc) and those generated in Ĥβκ,ι,1 are computationally indistinguishable.

Similarly, we can confirm that for all (i, µ, lab, ν) ∈ [n]×[qc]×LS×[qk], 〈fµi,lab, f̃νi 〉+〈h
µ
i,lab, ĥ

ν
i 〉 in Ĥβ(κ,ι−1,qc)

are equal to that in Ĥβκ,ι,1. Thus, thanks to the security of mgFE, {mgCTi,mgSK} generated in Ĥβ(κ,ι−1,qc)

and those generated in Ĥβκ,ι,1 are computationally indistinguishable.

Lemma 4.7. For all PPT adversaries A, there exists a PPT adversary B against MDDH1 such that
|P(A, Ĥβκ,ι,1)− P(A, Ĥβκ,ι,2)| ≤ AdvMDDH1

B (λ).

Proof. B works as follows.

1. B takes an instance of MDDH1, (G, [a]1, [Kb]1) where a ← Zmnp , z ← Zmp , K0 = az> ∈ Zmn×mp , and
K1 ← Zmn×mp .
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S̃etup(MSK′,LS)→ MSK for Ĥβκ,ι,1, Ĥβκ,ι,2 , Ĥ
β
κ,ι,3, Ĥ

β
κ,ι,4

{(iPP(1)
lab , iMSK(1)

lab )← iSetup(1)(1λ)}lab∈LS , {v̂i,j}i∈[n],j∈[m] ← Zmp
MSK = (MSK′, {iMSKlab}lab, {v̂i,j}i,j )

Ẽnc(MSK, i, lab, µ,MS)→ CTµi,lab for Ĥβκ,ι,1, Ĥβκ,ι,2 , Ĥβκ,ι,3, Ĥβκ,ι,4

s, s̃, r, t← Zp

w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j)), v̈j ← Zmp

αj = tṽi,j(vι,1, . . . , vι,m), αj = tv̂i,j , αj = v̈j ,

αj =
{

v̈j lab 6= labκ
v̈j − (xµ,βi,lab[j]x1,β

ι,lab − xµ,0i,lab[j]x1,0
ι,lab) lab = labκ

bj =



(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j , 03m) (lab, i, µ) < (labκ, ι, 1), i 6= ι

(0, xµ,0i,lab[j], se(i,j), rui,j , 0, ej , 02m) (lab, i, µ) < (labκ, ι, 1), i = ι

(0, 0, se(i,j), rui,j , 0, 0m, ej ,0m) (lab, i, µ) = (labκ, ι, 1)
(xµ,βi,lab[j], 0, se(i,j), rui,j , 0, ej , 02m) (labκ, ι, 1) < (lab, i, µ), i = ι

(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j , 03m) (labκ, ι, 1) < (lab, i, µ), i 6= ι

b̃j =


(0, xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,αj ,02m) lab < labκ
(xµ,βi,lab[j],xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,αj ,αj + xµ,βi,lab[j]x1,β

ι,lab,0m) lab = labκ
(xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,αj ,02m) labκ < lab


j∈[m]

d = (s, 0), d̃ = (s̃, 0), α = (α1[1], . . . ,αm[1],α1[2], . . . ,αm[2], . . . ,αm[m])

f =


(r, t,0m2(ι−1), α,0m2(n−ι)) lab 6= labκ
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι−1,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι−1,lab)⊗ x1,β

i,lab,α,0m2(n−ι)) lab = labκ, i < ι

(r, t, (x1,0
1,lab, . . . ,x

1,0
ι−1,lab)⊗ xµ,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι−1,lab)⊗ xµ,βi,lab,α,0m2(n−ι)) lab = labκ, ι ≤ i

h = 0, {iCTi,j ← iEnc(iMSK(1)
lab , [bj ]1) iSKi,j ← iKeyGen(iMSK(1)

lab , [b̃j ]2)}j∈[m]

iCTi ← iEnc(iMSK(2), [d]1), iSKi ← iKeyGen(iMSK(2), [d̃]2), mgCTi ← mgEnc(mgMSK, i, lab, ([f ]1, [h]2))
CTµi,lab = ({iCTi,j , iSKi,j}j∈[m], iCTi, iSKi,mgCTi)

K̃eyGen(MSK, c)→ SK for Ĥβκ,ι,1, Ĥ
β
κ,ι,2, Ĥ

β
κ,ι,3, Ĥ

β
κ,ι,4

c(∗,∗,i,∗) = (c[(1, 1, i, 1)], . . . , c[(1, 1, i,m)], c[(1, 2, i, 1)], . . . , c[(1, 2, i,m)], . . . , c[(n,m, i,m)])

f̃i =

 ∑
j,`∈[m],k∈[n]

c[(i, j, k, `)]ui,j ũk,`,
∑

j,`∈[m],k∈[n]\{ι}

c[(k, `, i, j)]vk,`ṽi,j , c(∗,∗,i,∗)

 , h̃i = 0


i∈[n]

{σi,k =
∑

j,`∈[m] c[(i, j, k, `)]w(i,j,k,`)}i,k∈[n], mgSK← mgKeyGen(mgMSK, {[̃fi]2, [h̃i]1}i∈[n])
SK = (c,mgSK, {σi,k}i,k∈[n])

Figure 5: Description of S̃etup, Ẽnc, K̃eyGen in Ĥβκ,ι,1, . . . , Ĥ
β
κ,ι,4. Red letters show the parts that are changed

from Hβ(κ,ι−1,qc).

2. B computes PP,MSK in the same way as Setup and S̃etup except that B implicitly defines that vι,j =
z[j], ṽi,j = a[(i, j)], v̂i,j = K1[(i, j), ∗] for (i, j) ∈ [n]× [m] where Kb[(i, j), ∗] is the (i, j)-th row of Kb,
and gives PP to A.

3. When A outputs the challenge, B computes CTµi,lab in the same way as Ẽnc in Ĥβκ,ι,1 except that B
defines that αj = tKb[(i, j), ∗].
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4. B generates SKν in the same way as K̃eyGen in Ĥβκ,ι,1 and gives {CTµi,lab,SKν} to A (note that SKν can
be generate without the MDDH1 instance).

5. B outputs A’s output as it is.

Observe that A’s view corresponds to Ĥβκ,ι,1 if b = 0 and Ĥβκ,ι,2 otherwise.

Lemma 4.8. For all PPT adversaries A, there exists a PPT adversary B against MDDH1 such that
|P(A, Ĥβκ,ι,2)− P(A, Ĥβκ,ι,3)| ≤ AdvMDDH1

B (λ).

Proof. B works as follows.

1. B takes an instance of MDDH1, (G, [a]1, [Kb]1) where a ← Zdnqcp , z← Zm2n
p , K0 = az> ∈ Zdnqc×m2n

p ,
and K1 ← Zdnqc×m2n

p .

2. B computes PP,MSK in the same way as Setup and S̃etup except that B implicitly defines that tµi,lab =
a[(lab, i, µ)], v̂i,j [`] = z[(i, j, `)], v̈µi,lab,j [`] = K1[(lab, i, µ), (i, j, `)] for all (i, j, `, µ, lab) ∈ [n] × [m]2 ×
[qc]× LS where Kb[(lab, i, µ), (i, j, `)] is the ((lab, i, µ), (i, j, `))-th element of Kb, and gives PP to A.

3. When A outputs the challenge, B computes CTµi,lab in the same way as Ẽnc in Ĥβκ,ι,2 except that B
defines that αµ

i,lab,j = (Kb[(lab, i, µ), (i, j, 1)], . . . ,Kb[(lab, i, µ), (i, j,m)]).

4. B generates SKν in the same way as K̃eyGen in Ĥβκ,ι,1 and gives {CTµi,lab,SKν} to A (note that SKν can
be generate without the MDDH1 instance).

5. B outputs A’s output as it is.

Observe that A’s view corresponds to Ĥβκ,ι,2 if b = 0 and Ĥβκ,ι,3 otherwise.

Lemma 4.9. For all PPT adversaries A. we have P(A, Ĥβκ,ι,3) = P(A, Ĥβκ,ι,4).

Proof. Since v̈j is freshly chosen for each ciphertext, both v̈j and v̈j − (xµ,βi,lab[j]x1,β
ι,lab − xµ,0i,lab[j]x1,0

ι,lab) are
randomly distributed in Zmp . Thus A’s views in Ĥβκ,ι,3 and Ĥβκ,ι,4 are identical.

Lemma 4.10. For all PPT adversaries A, |P(A, Ĥβκ,ι,4)− P(A,H(κ,ι,1))| ≤ negl(λ).

Lemma 4.10 can be proven similarly to the reverse of Lemma 4.6 to Lemma 4.8. Note that here we
additionally use the fact that c[(i, j), (k, `)] = 0 if k < i as defined in Definition 2.9, which implies

〈c(ι,∗,i,∗),x1,0
ι,lab ⊗ xµ,0i,lab − x1,β

ι,lab ⊗ xµ,βi,lab〉 = 〈c(ι,∗,i,∗),x1,0
ι,lab ⊗ x1,0

i,lab − x1,β
ι,lab ⊗ x1,β

i,lab〉 = 0

for all i ∈ [n] such that i < ι where

c(ι,∗,i,∗) = (c[(ι, 1, i, 1)], . . . , c[(ι, 1, i,m)], c[(ι, 2, i, 1)], . . . , c[(ι,m, i,m)]).

Proof of Lemma 4.4. We introduce intermediate hybrids Ĥβκ,ι,η,1, . . . , Ĥ
β
κ,ι,η,4 where S̃etup, Ẽnc, K̃eyGen work

as shown in Fig. 7. For reference, we describe those algorithms in Hβ(κ,ι−1,qc) and Hβ(κ,ι,1) in Fig. 6. We prove
that Hβ(κ,ι,η−1) ≈c Ĥβκ,ι,η,1 ≈c · · · ≈c Ĥβκ,ι,η,4 ≈c Hβ(κ,ι,η). Thanks to Lemma 4.11 to Lemma 4.15, Lemma 4.3
holds.
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Ẽnc(MSK, i, lab, µ,MS)→ CTµi,lab for Hβ(κ,ι,η−1), Hβ(κ,ι,η)

s, s̃, r, t← Zp, {w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))}j∈[m]

bj =


(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) (lab, i, µ) ≤ (labκ, ι, η − 1)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j , ej ,02m) (labκ, ι, η − 1) < (lab, i, µ) ≤ (labκ, ι, qc)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m) (labκ, ι, qc) < (lab, i, µ)

b̃j =


(0, xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) lab < labκ
(xµ,βi,lab[j],xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,xµ,βi,lab[j]x1,β

ι,lab − xµ,0i,lab[j]x1,0
ι,lab,02m) lab = labκ

(xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) labκ < lab

bj =


(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) (lab, i, µ) ≤ (labκ, ι, η − 1)
(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) (lab, i, µ) = (labκ, ι, η)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j , ej ,02m) (labκ, ι, η) < (lab, i, µ) ≤ (labκ, ι, qc)
(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m) (labκ, ι, qc) < (lab, i, µ)

b̃j =


(0, xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) lab < labκ
(xµ,βi,lab[j],xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,xµ,0i,lab[j]x1,0

ι,lab − xµ,βi,lab[j]x1,β
ι,lab,02m) lab = labκ

(xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m) labκ < lab


j∈[m]

d = (s, 0), d̃ = (s̃, 0)

f =


(r, t,0m2n) lab 6= labκ
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι,lab)⊗ x1,β

i,lab,0m2(n−ι)) lab = labκ, (i, µ) ≤ (ι, η − 1)
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ xµ,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι,lab)⊗ xµ,βi,lab,0m2(n−ι)) lab = labκ, (ι, η − 1) < (i, µ)

f =


(r, t,0m2n) lab 6= labκ
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι,lab)⊗ x1,β

i,lab,0m2(n−ι)) lab = labκ, (i, µ) ≤ (ι− 1, η)
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι,lab)⊗ x1,β

i,lab,0m2(n−ι)) lab = labκ, (i, µ) = (ι, η)
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ xµ,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι,lab)⊗ xµ,βi,lab,0m2(n−ι)) lab = labκ, (ι, η) < (i, µ)

h = 0, {iCTi,j ← iEnc(iMSK(1)
lab , [bj ]1) iSKi,j ← iKeyGen(iMSK(1)

lab , [b̃j ]2)}j∈[m]

iCTi ← iEnc(iMSK(2), [d]1), iSKi ← iKeyGen(iMSK(2), [d̃]2), mgCTi ← mgEnc(mgMSK, i, lab, ([f ]1, [h]2))
CTµi,lab = ({iCTi,j , iSKi,j}j∈[m], iCTi, iSKi,mgCTi)

Figure 6: Description of Ẽnc in Hβ(κ,ι,η−1) and Hβ(κ,ι,η). Red letters show the parts that are changed from
Hβ(κ,ι,η−1).

Lemma 4.11. For all PPT adversariesA, there exist PPT adversaries B1,B2,B3 such that |P(A,Hβ(κ,ι,η−1))−
P(A, Ĥβκ,ι,η,1)| ≤ dAdviFE

B1
(λ) + AdviFE

B2
(λ) + AdvmgFE

B3
(λ).

Proof. For all i1, i2 ∈ [n], µ1, µ2 ∈ [qc], lab ∈ LS, j1, j2 ∈ [m], observe that 〈bµ1
i1,lab,j1

, b̃µ2
i2,lab,j2

〉 in Ĥβ(κ,ι,η−1)

are equal to that in Ĥβκ,ι,η,1. Thus, due to the security of iFE, this implies that {iCTi,j , iSKi,j} generated in
Ĥβ(κ,ι,η−1) and those generated in Ĥβκ,ι,η,1 are computationally indistinguishable.

For all i1, i2 ∈ [n], µ1, µ2 ∈ [qc], we have 〈dµ1
i1
, d̃µ2

i2
〉 in Ĥβ(κ,ι,η−1) are equal to that in Ĥβκ,ι,η,1. Thus, due

to the security of lFE, this implies that {iCTi, iSKi} generated in Ĥβ(κ,ι,η−1) and those generated in Ĥβκ,ι,η,1
are computationally indistinguishable.

We can also confirm that for all (i, µ, lab, ν) ∈ [n]× [qc]× LS × [qk], 〈fµi,lab, f̃νi 〉+ 〈hµi,lab, ĥ
ν
i 〉 in Ĥβ(κ,ι,η−1)

are equal to that in Ĥβκ,ι,η,1. Thus, thanks to the security of mgFE, {mgCTi,mgSK} generated in Ĥβ(κ,ι,η−1)

and those generated in Ĥβκ,ι,η,1 are computationally indistinguishable.
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S̃etup(MSK′,LS)→ MSK for Ĥβκ,ι,η,1, Ĥβκ,ι,η,2, Ĥβκ,ι,η,3, Ĥ
β
κ,ι,η,4

{(iPP(1)
lab , iMSK(1)

lab )← iSetup(1)(1λ)}lab∈LS , {ûi,j , üi,j}i∈[n],j∈[m] ← Zmp , rηι,labκ , s
η
ι,labκ ← Zp

{γi,j = ũi,j(uι,1, . . . , uι,m), γi,j = ûi,j , δi,j = rηι,labκγi,j , δi,j = üi,j }i∈[n],j∈[m]

MSK = (MSK′, {iMSKlab}lab, {γi,j , δi,j}i,j , r
η
ι,labκ , s

η
ι,labκ )

Ẽnc(MSK, i, lab, µ,MS)→ CTµi,lab for Ĥβκ,ι,η,1, Ĥ
β
κ,ι,η,2, Ĥβκ,ι,η,3, Ĥβκ,ι,η,4

s, s̃, r, t← Zp

w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j)), w(ι,∗,i,j) = (w(ι,1,i,j), . . . , w(ι,m,i,j)), s̈← Zp

αj = xµ,0i,lab[j]x1,0
ι,lab − xµ,βi,lab[j]x1,β

ι,lab + xµ,βi,lab[j]xη,βι,lab + sηι,labκ s̃w(ι,∗,i,j) + δi,j

αj = xµ,0i,lab[j]x1,0
ι,lab − xµ,βi,lab[j]x1,β

ι,lab + xµ,βi,lab[j]xη,βι,lab + s̈w(ι,∗,i,j) + δi,j

αj = xµ,0i,lab[j]xη,0ι,lab + s̈w(ι,∗,i,j) + δi,j

bj =



(0, xµ,0i,lab[j], se(i,j), rui,j , vi,j ,03m) (lab, i, µ) < (labκ, ι, η), i 6= ι

(0, xµ,0i,lab[j], se(i,j), 0, vi,j ,02m, rej) (lab, i, µ) < (labκ, ι, η), i = ι

(0, 0, 0mn, 0, vi,j ,0m, ej ,0m) (lab, i, µ) = (labκ, ι, η)
(xµ,βi,lab[j], 0, se(i,j), 0, vi,j , ej ,0m, rej) (labκ, ι, η) < (lab, i, µ), i = ι

(xµ,βi,lab[j], 0, se(i,j), rui,j , vi,j ,03m) (labκ, ι, η) < (lab, i, µ), i 6= ι

b̃j =


(0, xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,02m, γi,j) lab < labκ
(xµ,βi,lab[j],xµ,0i,lab[j], s̃w(∗,∗,i,j), ũi,j , tṽi,j ,xµ,0i,lab[j]x1,0

ι,lab − xµ,βi,lab[j]x1,β
ι,lab,αj ,γi,j) lab = labκ

(xµ,βi,lab[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,02m, γi,j) labκ < lab


j∈[m]

d =
{

(s, 0) (lab, i, µ) 6= (labκ, ι, η)
(0, 1) (lab, i, µ) = (labκ, ι, η)

, d̃ = (s̃, sηι,labκ s̃), d̃ = (s̃, s̈)

f =


(r, t,0m2n) lab 6= labκ
(r, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι,lab)⊗ x1,β

i,lab,0m2(n−ι)) lab = labκ, (i, µ) < (ι, η − 1)
(0, t, (x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ xµ,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι,lab)⊗ xµ,βi,lab,0m2(n−ι)) lab = labκ, (i, µ) = (ι, η)

(r, t, (x1,0
1,lab, . . . ,x

1,0
ι,lab)⊗ xµ,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι,lab)⊗ xµ,βi,lab,0m2(n−ι)) lab = labκ, (ι, η) < (i, µ)

h =
{

0 (lab, i, µ) 6= (labκ, ι, η)
1 (lab, i, µ) = (labκ, ι, η)

{iCTi,j ← iEnc(iMSK(1)
lab , [bj ]1) iSKi,j ← iKeyGen(iMSK(1)

lab , [b̃j ]2)}j∈[m]

iCTi ← iEnc(iMSK(2), [d]1), iSKi ← iKeyGen(iMSK(2), [d̃]2), mgCTi ← mgEnc(mgMSK, i, lab, ([f ]1, [h]2))
CTµi,lab = ({iCTi,j , iSKi,j}j∈[m], iCTi, iSKi,mgCTi)

K̃eyGen(MSK, c)→ SK for Ĥβκ,ι,η,1, Ĥ
β
κ,ι,η,2, Ĥ

β
κ,ι,η,3, Ĥβκ,ι,η,4

c(∗,∗,i,∗) = (c[(1, 1, i, 1)], . . . , c[(1, 1, i,m)], c[(1, 2, i, 1)], . . . , c[(1, 2, i,m)], . . . , c[(n,m, i,m)])

f̃i =
(∑

j,`∈[m],k∈[n] c[(i, j, k, `)]ui,j ũk,`,
∑

j,`∈[m],k∈[n] c[(k, `, i, j)]vk,`ṽi,j , c(∗,∗,i,∗)

)

h̃i =



0 i 6= ι∑
k∈[n],j,`∈[m] c[(ι, j, k, `)]δk,`[j] i = ι∑
k∈[n],j,`∈[m] c[(ι, j, k, `)]δk,`[j]

+ 〈c(∗,∗,ι,∗), ((x1,0
1,lab, . . . ,x

1,0
ι,lab)⊗ x1,0

i,lab − (x1,β
1,lab, . . . ,x

1,β
ι,lab)⊗ x1,β

i,lab,0m2(n−ι))〉
− 〈c(∗,∗,ι,∗), ((x1,0

1,lab, . . . ,x
1,0
ι,lab)⊗ xη,0i,lab − (x1,β

1,lab, . . . ,x
1,β
ι,lab)⊗ xη,βi,lab,0m2(n−ι))〉

i = ι


i∈[n]

{σi,k =
∑

j,`∈[m] c[(i, j, k, `)]w(i,j,k,`)}i,k∈[n], mgSK← mgKeyGen(mgMSK, {[̃fi]2, [h̃i]1}i∈[n])
SK = (c,mgSK, {σi,k}i,k∈[n])

Figure 7: Description of S̃etup, Ẽnc, K̃eyGen in Ĥβκ,ι,η,1, . . . , Ĥ
β
κ,ι,η,4. Red letters show the parts that are

changed from Hβ(κ,ι,η−1).
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Lemma 4.12. For all PPT adversaries A, there exists a PPT adversary B against MDDH1 such that
|P(A, Ĥβκ,ι,η,1)− P(A, Ĥβκ,ι,η,2)| ≤ AdvMDDH1

B (λ).

Proof. 1. B takes an instance of MDDH1, (G, [a]1, [Kb]1) where a← Zmnp , z← Zmp , K0 = az> ∈ Zmn×mp ,
and K1 ← Zmn×mp .

2. B computes PP,MSK in the same way as Setup and S̃etup except that B implicitly defines that uι,j =
z[j], ũi,j = a[(i, j)], ûi,j = K1[(i, j), ∗] for (i, j) ∈ [n]× [m] where Kb[(i, j), ∗] is the (i, j)-th row of Kb,
and gives PP to A.

3. When A outputs the challenge, B computes CTµi,lab in the same way as Ẽnc in Ĥβκ,ι,η,1 except that B
defines that γi,j = Kb[(i, j), ∗].

4. B generates SKν in the same way as K̃eyGen in Ĥβκ,ι,η,1 except that B defines that γi,j = Kb[(i, j), ∗],
and gives {CTµi,lab,SKν} to A.

5. B outputs A’s output as it is.
Observe that A’s view corresponds to Ĥβκ,ι,η,1 if b = 0 and Ĥβκ,ι,η,2 otherwise.

Lemma 4.13. For all PPT adversaries A, there exists PPT adversaries B1,B2 against MDDH1 such that
|P(A, Ĥβκ,ι,η,2)− P(A, Ĥβκ,ι,η,3)| ≤ AdvMDDH1

B1
(λ) + AdvMDDH1

B2
(λ).

Proof. We can prove the lemma with two steps. In the first step, rηι,labκ ûi,j is changed to üi,j for i ∈ [n], j ∈
[m]. In this step, B1 works as follows.

1. B1 takes an instance of MDDH1, (G, [a]1, [kb]1) where a ← Zm2n
p , z ← Zp, k0 = za ∈ Zm2n

p , and
k1 ← Zm2n

p .

2. B1 computes PP,MSK in the same way as Setup and S̃etup except that B1 implicitly defines that
rηι,labκ = z, ûi,j [`] = a[(i, j, `)], üi,j [`] = k1[(i, j, `)] for (i, j, `) ∈ [n]× [m]2.

3. When A outputs the challenge, B1 computes CTµi,lab in the same way as Ẽnc in Ĥβκ,ι,η,2 except that B1
defines that δi,j [`] = kb[(i, j, `)].

4. B1 generates SKν in the same way as K̃eyGen in Ĥβκ,ι,η,2 except that B1 defines that δi,j [`] = kb[(i, j, `)],
and gives {CTµi,lab,SKν} to A.

5. B1 outputs A’s output as it is.

In the second step, sηι,labκ s̃
µ
i,lab is changed to s̈µi,lab for all (lab, i, µ) ∈ LS × [n]× [qc]. In this step, B2 works

as follows.

1. B2 takes an instance of MDDH1, (G, [a]1, [kb]1) where a ← Zdnqcp , z ← Zp, k0 = za ∈ Zdnqcp , and
k1 ← Zdnqcp .

2. B2 computes PP,MSK in the same way as Setup and S̃etup except that B2 implicitly defines that
sηι,labκ = z, s̃µi,lab = a[(lab, i, µ)], s̈µi,lab = k1[(lab, i, µ)] for (lab, i, µ) ∈ LS × [n]× [qc].

3. When A outputs the challenge, B2 computes CTµi,lab in the same way as Ẽnc in Ĥβκ,ι,η,2 except that B2
defines that dµi,lab = (a[(lab, i, µ)],kb[(lab, i, µ)]).
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miSetup(1λ)→ miPP,miMSK
G← GBG(1λ), w1, . . . ,wn ← Zmp , u1, . . . ,un ← Zmp
miPP = (G, [w1]1, . . . , [wn]1), miMSK = (w1, . . . ,wn,u1, . . . ,un)

miEnc(miMSK, i,xi)→ miCTi
s← Zp, miCTi = [ci]1 = ([s]1, [swi + ui + xi]1)

miKeyGen(miMSK,y1, . . . ,yn)→ miSK
miSK0=−

∑
i∈[n]〈yi,ui〉, miSKi=(−y>i wi,yi), miSK=(miSK0, {miSKi}i∈[n])

miDec(miCT1, . . . ,miCTn,miSK)→ z

[z]1 = [
∑
i∈[n]〈ci,miSKi〉+ miSK0]1

Figure 8: IP-MIFE scheme by Abdalla et al.

4. B2 generates SKν in the same way as K̃eyGen in Ĥβκ,ι,η,2, and gives {CTµi,lab,SKν} to A (note that SKν
can be generated without the MDDH1 instance).

5. B2 outputs A’s output as it is.

Observe that A’s view corresponds to Ĥβκ,ι,η,2 if b = 0 and Ĥβκ,ι,η,3 otherwise.

Before going to the next lemma, we introduce a sel-pos-mh-IND-secure IP-MIFE scheme, i.e., an MIFE
scheme for F IP

m,n,G (Definition 2.8), denoted by miFE = (miSetup, . . . ,miDec) that we use for the security
proof. The scheme is obtained by applying the conversion of single to multi-input IPFE by Abdalla et
al. [ACF+18, Sec. 4.1], to the single-input IPFE scheme by Abdalla et al. [ABDP15, Sec. 5]. The resulting
scheme satisfies the sel-pos-mh-IND-security under the MDDH1 assumption. Note that although Abdalla et
al. considered the conversion in the adaptive setting, it is not hard to see that the conversion works in the
selective setting. The original scheme in [ABDP15] uses a pairing-free group for the construction, but it is
easy to see that their scheme can be similarly built on pairing groups where the MDDH1 assumption holds
(Fig. 8).
Lemma 4.14. For all PPT adversaries A, there exists a PPT adversary B against miFE in Fig. 8 such that
|P(A, Ĥβκ,ι,η,3)− P(A, Ĥβκ,ι,η,4)| ≤ AdvmiFE

B (λ).

Proof. First, we prove that the following equality holds: for all µ1, . . . , µn ∈ [qc]n, ν ∈ [qk], and lab ∈ LS
we have ∑

i∈[n]

〈cν(ι,0,i,0),x
η,β
ι,lab ⊗ xµi,βi,lab − x1,β

ι,lab ⊗ xµi,βi,lab 〉+
∑

i∈[ι−1]

〈cν(i,0,ι,0),x
1,β
i,lab ⊗ xη,βι,lab − x1,β

i,lab ⊗ x1,β
ι,lab〉

=
∑
i∈[n]

〈cν(ι,0,i,0),x
η,0
ι,lab ⊗ xµi,0i,lab − x1,0

ι,lab ⊗ xµi,0i,lab〉+
∑

i∈[ι−1]

〈cν(i,0,ι,0),x
1,0
i,lab ⊗ xη,0ι,lab − x1,0

i,lab ⊗ x1,0
ι,lab〉

(5)

where
cν(ι,∗,i,∗) = (cν [(ι, 1, i, 1)], . . . , cν [(ι, 1, i,m)], cν [(ι, 2, i, 1)], . . . , cν [(ι,m, i,m)]).

Due to the game condition in Definition 2.5, for all µ1, . . . , µn ∈ [qc]n, ν ∈ [qk], and lab ∈ LS, we have∑
i,k∈[n]

〈cν(i,∗,k,∗),x
f(i),β
i,lab ⊗ xf(k),β

k,lab 〉 =
∑
i,k∈[n]

〈cν(i,∗,k,∗),x
f(i),0
i,lab ⊗ xf(k),0

k,lab 〉 (6)

∑
i,k∈[n]

〈cν(i,∗,k,∗),x
g(i),β
i,lab ⊗ xg(k),β

k,lab 〉 =
∑
i,k∈[n]

〈cν(i,∗,k,∗),x
g(i),0
i,lab ⊗ xg(k),0

k,lab 〉 (7)
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where

f(i) =


1 if i < ι

η if i = ι

µi if i > ι

, g(i) =


1 if i < ι

1 if i = ι

µi if i > ι

.

Note that Eq. (6) and Eq. (7) corresponds to the conditions

f(x1,β
1,lab, . . . ,x

1,β
ι−1,lab,x

η,β
ι,lab,x

jι+1,β
ι+1,lab, . . . ,x

jn,β
n,lab) = f(x1,0

1,lab, . . . ,x
1,0
ι−1,lab,x

η,0
ι,lab,x

jι+1,0
ι+1,lab, . . . ,x

jn,0
n,lab)

f(x1,β
1,lab, . . . ,x

1,β
ι−1,lab,x

1,β
ι,lab,x

jι+1,β
ι+1,lab, . . . ,x

jn,β
n,lab) = f(x1,0

1,lab, . . . ,x
1,0
ι−1,lab,x

1,0
ι,lab,x

jι+1,0
ι+1,lab, . . . ,x

jn,0
n,lab)

respectively. Then, Eq. (6) − Eq. (7) results in Eq. (5) by reflecting the fact that cν(i,∗,k,∗) = 0 if i ≥ k as
defined in Definition 2.9.

We set the functionality of miFE as F IP
m2,n+ι−1, and let n′ = n+ ι− 1. B against miFE works as follows.

1. B obtains miPP = (G, [w̃1]1, . . . , [w̃n′ ]1). B implicitly defines (w(ι,∗,i,1), . . . ,w(ι,∗,i,m)) = w̃i for i ∈ [n],
and generates PP and other elements in MSK the same as Setup and S̃etup in Hβκ,ι,η,3.

2. When A outputs the challenge ciphertexts, {i, lab,xµ,0i,lab,x
µ,1
i,lab}i∈[n],µ∈[qc],lab∈LS , B defines

x̃µ,βi =
{

xη,βι,labκ ⊗ xµ,βi,labκ − x1,β
ι,labκ ⊗ xµ,βi,labκ i ∈ [n]

x1,β
i,labκ ⊗ xη,βι,labκ − x1,β

i,labκ ⊗ x1,β
ι,labκ i ∈ {n+ 1, . . . , n′}

and outputs {i, ẍµ,0i = x̃µ,βi , ẍµ,1i = x̃µ,0i }i∈[n′],µ∈[q′
c,i

] as challenge vectors for the security game for
miFE where

q′c,i =
{
qc i ∈ [n]
1 i ∈ {n+ 1, . . . , n′}

.

Then, B obtains {miCTµi }i∈[n′],µ∈[q′
c,i

] where miCTµi = ([Cµi,1]1, [Cµi,2]1) = ([sµi ]1, [sµi w̃i + ui + ẍµ,bi ]1)
where b is the chosen bit in the security game for miFE.

3. B generates CTµi,lab the same as in Hβκ,ι,η,3 except that it defines

αµ
i,lab,j = (Cµi,2[j],Cµi,2[m+ j], . . . ,Cµi,2[m(m− 1) + j]) + xµ,0i,labκ [j]x1,0

ι,labκ

d̃µi = (s̃µi ,C
µ
i,1).

Note that B implicitly defines üi,j = (ui[j],ui[m+ j], . . . ,ui[m(m− 1) + j]) here.

4. To generate challenge secret key for c, B queries the key generation oracle for miFE on (c̃1, . . . , c̃n′) =
(c(ι,∗,1,∗), . . . , c(ι,∗,n,∗), c(1,∗,ι,∗), . . . , c(ι−1,∗,ι,∗)) and obtains miSK = (K0, {Ki}i∈[n′]) = (

∑
i∈[n′]〈c̃i,ui〉,

{−c̃>i w̃i}i∈[n′]) (here we omit c̃i in Ki here). Since we have Eq. (5), B’s queries follow the security
game condition for miFE. Then, B generates a secret key the same as in Hβκ,ι,η,3 except that it defines

h̃ι = K0 −
∑

i∈[n+1,n′]

(
〈c̃i,C1

i,2 − x̃1,β
i 〉+ C1

i,1Ki
)

σι,k = Kk.

5. B outputs A’s output as it is.

Observe that A’s view corresponds to Ĥβκ,ι,η,3 if b = 0 and Ĥβκ,ι,η,4 otherwise.
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Lemma 4.15. For all PPT adversaries A, |P(A, Ĥβκ,ι,η,4)− P(A, Ĥβ(κ,ι,η))| ≤ negl(λ).

Lemma 4.15 can be proven similarly to the reverse of Lemma 4.11 to Lemma 4.13. Note that here we
additionally use the fact that c[(i, j), (k, `)] = 0 if k < i as defined in Definition 2.9, which implies

〈c(ι,∗,i,∗),x1,0
ι,lab ⊗ xµ,0i,lab − x1,β

ι,lab ⊗ xµ,βi,lab〉 = 〈c(ι,∗,i,∗),x1,0
ι,lab ⊗ x1,0

i,lab − x1,β
ι,lab ⊗ x1,β

i,lab〉 = 0

for all i ∈ [n] such that i < ι where

c(ι,∗,i,∗) = (c[(ι, 1, i, 1)], . . . , c[(ι, 1, i,m)], c[(ι, 2, i, 1)], . . . , c[(ι,m, i,m)]).

5 MIFE for Quadratic Functions
In this section, we provide our construction for MIFE for quadratic functions.

5.1 Homomorphism in Underlying Schemes
For the construction of our MIFE for quadratic functions, we use the same building blocks as SK-MCFE
for quadratic functions Section 4, namely, a function-hiding SK-MCFE scheme mgFE for mixed-group inner
product and a function-hiding IPFE scheme iFE. Additionally, we require them to have homomorphism
for the construction of MIFE for quadratic functions. Precisely iFE needs to have homomorphism for both
encryption and key generation while mgFE needs to have homomorphism for only encryption.

Homomorphism of iFE. We use function-hiding IPFE in [TAO20] for iFE with homomorphism. In their
construction from MDDH1, the setup algorithm chooses a bilinear group G and a random matrix B in
Z(m+3)×(m+3)
p , and sets PP = G,MSK = (B,B∗) where B∗ = (B−1)>. Encryption of [x]1 ∈ Gm1 chooses

r ← Zp and outputs iCT = [(x, r, 0, 0)B]1. Similarly, key generation of [y]2 ∈ Gm2 chooses s ← Zp and
outputs iSK = [(y, 0, s, 0)B∗]2. Thus, the random-tape space of iEnc and iKeyGen can be seen as Zp and,
for all x1,x2,y1,y2 ∈ Zmp , a1, a2, r1, r2, s1, s2 ∈ Zp we have the following homomorphism of Zp-module with
respect to encryption and key generation:

a1iEnc(iMSK, [x1]1; r1) + a2iEnc(iMSK, [x2]1; r2)
= iEnc(iMSK, [a1x1 + a2x2]1; a1r1 + a2r2)

a1iKeyGen(iMSK, [y1]2; s1) + a2iKeyGen(iMSK, [y2]2; s2)
= iKeyGen(iMSK, [a1y1 + a2y2]2; a1s1 + a2s2)

We can confirm this as follows:

a1[(x1, r1, 0, 0)B]1 + a2[(x2, r2, 0, 0)B]1 = [(a1x1 + a2x2, a1r1 + a2r2, 0, 0)B]1
a1[(y1, 0, s1, 0)B∗]2 + a2[(y2, 0, s2, 0)B∗]2 = [(a1y1 + a2y2, 0, a1s1 + a2s2, 0)B∗]2.

Homomorphism of mgFE. As shown in Section 3, our SK-MCFE scheme mgFE for mixed-group inner
product uses a function-hiding SK-MCFE scheme icFE for inner product and function-hiding FE scheme iFE
for inner product as a building block. For a function-hiding SK-MCFE scheme for inner product, we use a
slightly modified function-hiding MCFE scheme for inner product proposed in [AGT21b], which is described
in Fig. 9. The modification lies in the way of generating t in encryption, which is generated via a random
oracle in the MCFE scheme in [AGT21b], but PRF suffices in the secret-key setting. Since an icFE ciphertext
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Setup(1λ, 1n): Let PRF = {PRFλ}λ∈N be a PRF family where PRFλ : {0, 1}λ × L → Zp. On input the security
parameter 1λ and the number of slots 1n, the setup algorithm outputs (PK,MSK) as follows.

{iPPi, iMSKi ← iSetup(1λ)}i∈[n], K ← {0, 1}κ

PP = {PPi}i∈[n], MSK = (K, {MSKi}i∈[n]).

Enc(MSK, i, lab, [xi]1): The encryption algorithm takes as input user MSK, user index i ∈ [n], an input vector [xi]1,
a label lab and outputs CTi as follows.

t = PRF(K, lab), x̂i = (xi, 0m, t, 0), CTi = iCTi ← iEnc(iMSKi, [x̂i]1).

KeyGen(MSK, {[yi]2}i∈[n]): The key generation algorithm takes as input the master secret key MSK, and vectors
{[yi]2}i∈[n] and outputs SK as follows. It randomly chooses ri ∈ Zp so that

∑
i∈[n] ri = 0 and compute

ŷi = (yi, 0m, ri, 0), iSKi ← iKeyGen(iMSKi, [ŷi]2), SK = {iSKi}i∈[n].

Dec(SK,CT1, ...,CTn): The decryption algorithm takes as input the secret key SK, ciphertexts CT1, . . . ,CTn and
outputs d as follows.

[d]T =
∏
i∈[n]

iDec(iSKi, iCTi).

Figure 9: Function-Hiding SK-MCFE for inner product

consists of a iFE ciphertext, a mgFE ciphertext of ([x1]1, [x2]2) ∈ Gm1
1 ×Gm2

2 can be generated as

r1, r2 ← Zp, z← Zkp, t = PRF(K, lab)
iEnc(iMSK(1), ([(x1, 0m2 , z, 0, 0m1+m2+k+1, t, 0)]1); r1)
iKeyGen(iMSK(2), ([(x2,−z, 0, )]2); r2)

for some master secret keys iMSK(1), iMSK(2) and PRF key K. Thus, the random-tape space of mgEnc can
be set as Zk+2

p , and by using the homomorphism of iFE, we can obtain the following homomorphism of
ciphertexts in mgFE. For all N ∈ N, i ∈ [n], lab ∈ L, a1, . . . , aN ∈ Zp s.t.

∑
j∈[N ] aj = 1, x1,1, . . . ,xN,1 ∈

Zm1
p , x1,2, . . . ,xN,2 ∈ Zm2

p , r1, . . . , rN ∈ Zk+2
p , we have∑

j∈[N ]

ajmgEnc(mgMSK, i, lab, ([xj,1]1, [xj,2]2); rj)

= mgEnc(mgMSK, i, lab, ([
∑
j∈[N ]

ajxj,1]1, [
∑
j∈[N ]

ajxj,2]2);
∑
j∈[N ]

ajrj)

5.2 Construction
Let mgFE = (mgSetup,mgEnc,mgKeyGen,mgDec) be an SK-MCFE scheme for mixed-group inner product
(Section 3) with label space L, and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme.
Also, let PRF = {PRFλ}λ∈N be a PRF family where PRFλ : {0, 1}λ × L → {0, 1}λ. Let lab0 be a fixed label
in L and D = 4m + 2k + 17 where k is the parameter for the bilateral MDDH assumption used for mgFE.
Below we provide an MIFE scheme for function class FQF

m,n,X,C . Note that MstEnc is a subroutine algorithm
used in Setup, which corresponds to Ẽnc of property P in the technical overview.

Setup(1λ, 1n) samples a random PRF key K ← {0, 1}λ and the master keys for the underlying IPFE and
SK-MCFE scheme as (iPP(2), iMSK(2)) ← iSetup(1λ), (mgPP,mgMSK) ← mgSetup(1λ, 1n) where the
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vector length of iFE is set as 2, and the vector length of mgFE is set as m2n + 2 and 1. Note that
iPP(2) = mgPP = G. It also samples a sequence of randomization terms as:

∀ i, k ∈ [n], j, ` ∈ [m], w(i,j,k,`) ← Zp
∀ i ∈ [n], j ∈ [m], ui,j , ũi,j , vi,j , ṽi,j ← Zp

It sets the public parameters and master key as

PP = G, MSK =
(
K, iMSK(2),mgMSK, {w(i,j,k,`)}i,j,k,`, {ui,j , ũi,j , vi,j , ṽi,j}i,j

)
.

It runs MstEnc described below to generate master ciphertexts, which forms encryption keys, as

∀ i ∈ [n], j ∈ [m], MCT1,i,j ← MstEnc(MSK, i, ej)
∀ i ∈ [n], j ∈ [D], MCT0,i,j ← MstEnc(MSK, i,0m).

Finally it output encryption keys together with the public key and master secret key as

∀ i ∈ [n], EKi = ({MCT1,i,j}j∈[n], {MCT0,i,j}j∈[D]).

MstEnc(MSK, i,x) parses MSK as above, and using the PRF key K, it samples a IPFE master key of vector
length mn+ 3m+ 4 as:

(iPP(1), iMSK(1))← iSetup(1λ; PRF(K, lab0))

It then samples random elements s, s̃, r, t← Zp. And, it sets vectors bj , b̃j for j ∈ [m] as follows:

bj = (x[j], 0, se(i,j), rui,j , vi,j ,03m), b̃j = (x[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m).

where where e(i,j) is the mn-dimensional one-hot vector with the (i, j)-th element being 1, and vector
w(∗,∗,i,j) ∈ Zmnp is defined as follows:

∀ j ∈ [m], w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))

The encryptor encodes the vectors bj , b̃j under MIFE as follows:

∀ j ∈ [m], iCTj ← iEnc(iMSK(1), [bj ]1), iSKj ← iKeyGen(iMSK(1), [b̃j ]2).

It also encodes the random elements s, s̃ as follows:

iCT← iEnc(iMSK(2), [(s, 0)]1), iSK← iKeyGen(iMSK(2), [(s̃, 0)]2).

Lastly, it sets f = (r, t,0m2n), h = 0, and encrypts elements f , h with respect to label lab0 as

mgCT← mgEnc(mgMSK, i, lab0, ([f ]1, [h]2)).

The resulting ciphertext is set as MCT = ({iCTj}j , {iSKj}j , iCT, iSK,mgCT) .

Enc(EKi,x) parses EKi as above. It then samples random elements γ1, . . . , γ(D−1)/2 ← Zp. And, it encrypts
x to CT by homomorphic addition of master ciphertexts as follows:

CT =
∑
j∈[m]

x[j]MCT1,i,j −

∑
j∈[m]

x[j]− 1

MCT0,i,1

+
∑

j∈[(D−1)/2]

γj(MCT0,i,2j −MCT0,i,2j+1)

where the above is the component-wise homomorphic addition with respect to ciphertexts of iFE and
mgFE. Then, it outputs CT.
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KeyGen(MSK, c) parses MSK as above, and the key vector c lies in the space Z(mn)2

p . Let the vector f̃i ∈
Z(2+m2n)
p be the following vector: for all i ∈ [n]

f̃i[1] =
∑

j,`∈[m],k∈[n]

c[(i, j, k, `)]ui,j ũk,`, f̃i[2] =
∑

j,`∈[m],k∈[n]

c[(k, `, i, j)]vk,`ṽi,j

and f̃i is zeros at all other places. It also sets h̃i = 0 for all i ∈ [n]. The key generator samples a SK-
MCFE secret key corresponding to vectors {f̃i, h̃i}i as mgSK← mgKeyGen(mgMSK, {[f̃i]2, [h̃i]1}i∈[n]),
and partial derandomization terms:

∀ i, k ∈ [n], σi,k =
∑

j,`∈[m]

c[(i, j, k, `)]w(i,j,k,`)

And, it outputs the secret key as SK = (c,mgSK, {σi,k}i,k) .

Dec(CT1, . . . ,CTn,SK) parses the ciphertexts and secret key as:

CTi = ({iCTi,j}i,j , {iSKi,j}i,j , iCTi, iSKi,mgCTi) ,
SK = (c,mgSK, {σi,k}i,k) .

It runs the MIFE decryption algorithm as:

[z1]T =
∏

i,k∈[n],
j,`∈[m]

iDec(iCTi,j , iSKk,`)c[(i,j,k,`)], [z2]T =
∏

i,k∈[n]

iDec(iCTi, iSKk)σi,k

It also runs the SK-MCFE decryption algorithm as:

[z3]T = mgDec(mgCT1, . . . ,mgCTn,mgSK)

Finally it outputs z where [z]T = [z1−z2−z3]T by searching for z within the range of z ≤ |m2n2CX2|.

Correctness. Let sb,i,j , s̃b,i,j , rb,i,j , tb,i,j for b ∈ {0, 1}, i ∈ [n], j ∈ [D] be random elements used to
generate MCTb,i,j in EKi. Thanks to the homomorphism of iFE and mgFE, Enc(EKi,x) outputs CTi =
({iCTi,j}j , {iSKi,j}j , iCTi, iSKi,mgCTi), which are encryption of

[b]1 = [(xi[j], 0, sie(i,j), riui,j , vi,j ,03m)]1
[b̃]2 = [(xi[j], 0, s̃iw(∗,∗,i,j), ũi,j , tiṽi,j ,03m)]2
[(si, 0)]1, [(s̃i, 0)]2, ([f ]1, [h]2) = ([(ri, ti,0m2n)]1, [0]2) for label lab0

(8)

respectively, where

si =
∑
j∈[m]

xi[j]s1,i,j −

∑
j∈[m]

xi[j]− 1

 s0,i,1 +
∑

j∈[(D−1)/2]

γj(s0,i,2j − s0,i,2j+1)

s̃i =
∑
j∈[m]

xi[j]s̃1,i,j −

∑
j∈[m]

xi[j]− 1

 s̃0,i,1 +
∑

j∈[(D−1)/2]

γj(s̃0,i,2j − s̃0,i,2j+1)

ri =
∑
j∈[m]

xi[j]r1,i,j −

∑
j∈[m]

xi[j]− 1

 r0,i,1 +
∑

j∈[(D−1)/2]

γj(r0,i,2j − r0,i,2j+1)

ti =
∑
j∈[m]

xi[j]t1,i,j −

∑
j∈[m]

xi[j]− 1

 t0,i,1 +
∑

j∈[(D−1)/2]

γj(t0,i,2j − t0,i,2j+1).

(9)
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Hβ0 , Hβ1 , Hβf
β ← {0, 1}, PP, {EKi}i∈[n],MSK← Setup(1λ)
(CS, {i,xµ,0i ,xµ,1i }i∈[n],µ∈[qc], {cν}ν∈[qk])← A(PP)
{CTµi ← Enc(EKi,xµ,βi )}i,µ
{CTµi ← MstEnc(MSK, i,xµ,βi )}i,µ
{CTµi ← MstEnc(MSK, i,xµ,0i )}i,µ
{SKν ← KeyGen(MSK, cν)}ν
β′ ← A({EKi}i∈CS , {CTµi }i,µ, {SKν}ν)

Figure 10: Description of hybrids

Hence, similarly to the correctness of our SK-MCFE for quadratic functions (Section 4), in decryption, we
have

z1 =
∑

i,k∈[n],j,`∈[m]

c[(i, j, k, `)](xi[j]xk[`] + sis̃kw(i,j,k,`) + riui,j ũk,` + tkvi,j ṽk,`)

z2 =
∑

i,k∈[n],j,`∈[m]

c[(i, j, k, `)]sis̃kw(i,j,k,`)

z3 =
∑

i,k∈[n],j,`∈[m]

c[(i, j, k, `)](riui,j ũk,` + tkvi,j ṽk,`).

Since c[(i, j, k, `)] = 0 for i ≥ k, we have z =
∑
i,k∈[n],j,`∈[m] c[(i, j, k, `)]xi[j]xk[`].

5.3 Security
For security, we have the following theorem. Let qcFE be SK-MCFE scheme for quadratic functions in
Section 4.

Theorem 5.1. If qcFE are sel-pos-mh-IND-secure, then the proposed MIFE for quadratic functions is sel-
pos-mh-IND-secure.

Proof. Wlog, in the pos setting, we can denote challenge messages by {i,xµ,0i ,xµ,1i }i∈[n],µ∈[qc] for some qc
instead of {iµ,xµ,0iµ ,x

µ,1
iµ }µ∈[q′c]. For notational convenience, we use the former notation in this proof. We

prove Theorem 5.1 via a series of hybrids Hβ1 ,H
β
f . We show that Hβ0 ≈c Hβ1 ≈c Hβf , where Hβ0 is the original

security game for MIFE defined in Definition 2.4. Each hybrid is defined as described in Fig. 10, where the
reply for the ciphertext query is computed by MstEnc instead of Enc. We denote the probability that A
outputs β in hybrid Hβ by P(A,Hβ) in what follows.

Theorem 5.1 directly follows from Lemma 5.2 and Lemma 5.3 since A does not obtain the information
on β in Hβf .

Lemma 5.2. For all PPT adversaries A, we have |P(A,Hβ0 )− P(A,Hβ1 )| ≤ 2−Ω(λ).

Proof. The difference between Hβ0 and Hβ1 lies in the way of generating challenge ciphertexts. That is,
the challenge ciphertexts are generated by Enc in Hβ0 while they are generated by MstEnc in Hβ1 . Recall
that the random elements used in MstEnc are s, s̃, r, t ∈ Zp and the random tapes used to generate(
{iCT`}`∈[m], {iSK`∈[m]}`, iCT, iSK,mgCT

)
. Since iEnc, iKeyGen can use a random element in Zp, and mgEnc

can use a random element in Zk+2
p as a random tape, we can use a random element in Z2m+k+8

p as a
random tape of MstEnc. Due to the homomorphism of iFE and mgFE, for all N ∈ N, i ∈ [n], a1, . . . , aN ∈
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Zp s.t.
∑
j∈[N ] aj = 1, x1, . . . ,xN ∈ Zmp , r1, . . . , rN ∈ Z2m+k+8

p , we have the following homomorphism of
MstEnc: ∑

j∈[N ]

ajMstEnc(MSK, i,x; rj) = MstEnc(MSK, i,
∑
j∈[N ]

ajxj ;
∑
j∈[N ]

ajrj).

Parse EKi = ({MCT1,i,j}i∈[n],j∈[m], {MCT0,i,j}i∈[n],j∈[D]) and let rb,i,j ∈ Z2m+k+8
p be the random tape

used to generate MCTb,i,j for b ∈ {0, 1}, i ∈ [n], j ∈ [D]. In other words,

MCTb,i,j =
{

MstEnc(MSK, i, ej); rb,i,j) b = 1
MstEnc(MSK, i,0m); rb,i,j) b = 0

From the homomorphism of MstEnc and the fact that Enc can use γ = (γ1, . . . , γ(D−1)/2) ∈ Z(D−1)/2
p for

a random tape, we have

Enc(EKi,x : γ) = MstEnc(MSK, i,
∑
j∈[m]

x[j]ej ; r)

where

r =
∑
j∈[m]

xi[j]r1,i,j −

∑
j∈[m]

xi[j]− 1

 r0,i,1 +
∑

j∈[(D−1)/2]

γj(r0,i,2j − r0,i,2j+1). (10)

Here, we use the equality:
∑
j∈[m] xi[j] −

(∑
j∈[m] xi[j]− 1

)
+
∑
j∈[(D−1)/2](γj − γj) = 1. Hence, to prove

the lemma, it suffices to show that the following distributions are statistically close for all i ∈ [n]:{
(r, {r1,i,j}j∈[m], {r0,i,j}j∈[D]) : ∀(b, i, j), rb,i,j ← Z2m+k+8

p , γ ← Z(D−1)/2
p

r is defined as Eq. (10)

}
and{

(r, {r1,i,j}j∈[m], {r0,i,j}j∈[D]) : ∀(b, i, j), rb,i,j ← Zp, r← Z2m+k+8
p

}
This can be shown as follows. For all j ∈ [(D − 1)/2], r̃j = r0,i,2j − r0,i,2j+1 is uniformly distributed in
Z2m+k+8
p , and thus r̃1, . . . , r̃(D−1)/2 span Z2m+k+8

p with overwhelming probability if (D − 1)/2 ≥ 2m +
k + 8. Hence,

∑
j∈[(D−1)/2] γj(r0,i,2j − r0,i,2j+1) =

∑
j∈[(D−1)/2] γj r̃j is randomly distributed even given

({r1,i,j}j∈[m], {r0,i,j}j∈[D]). This concludes the proof.

Lemma 5.3. For all PPT adversaries A, there exists a PPT adversary B against qcFE in Section 4 such
that |P(A,Hβ1 )− P(A,Hβf )| ≤ AdvqcFE

B (λ).

Proof. The difference of these hybrids is whether CTµi is encryption of xµ,βi or xµ,0i . We can construct B as
follows.

1. B is given qcPP and gives it to A.

2. A outputs (CS, {i,xµ,0i ,xµ,1i }i∈[n],µ∈[qc],FS = {cν}ν∈[qk]), and B chooses β ← {0, 1} and queries its
own oracle on MS,FS where

MS =
(
{i, lab0, ej , ej}i∈CS,j∈[m], {(i, lab0,0m,0m)×D}i∈CS
{i, lab0,xµ,βi ,xµ,0i }i∈[n],µ∈[qc]

)
.
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3. B is given (
{cCT1,i,j}i∈CS,j∈[m], {cCT0,i,j}i∈CS,j∈[D], {cCTµi }i∈[n],µ∈[qc], {cSKν}ν∈[qk]

)
where cCT1,i,j , cCT0,i,j , cCTµi are ciphertexts of qcFE for (i, lab0, ej), (i, lab0,0m), (i, lab0,xµ,β/0i ),
respectively, and gives it to A by setting EKi = ({cCT1,i,j}j∈[m], {cCT0,i,j}j∈[D]).

4. A outputs β′, and B outputs β′ as it is.

We can confirm the above simulation of B is valid from the three observations. First, B’s query satisfies
the game condition (recall that the adversary can query any pair of the same messages for corrupted slot).
Second, qcPP = iPP(1) = G where qcPP is the public parameter of qcFE. Third, MstEnc(MSK, ·, ·) and
qcEnc(cMSK, ·, lab0, ·) (the encryption algorithm of qcFE) are the exactly the same.
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A Correctness and Security of Our SK-MCFE Scheme for Mixed-
Group Inner Product

We present the correctness and the security analysis of our SK-MCFE scheme for mixed-group inner product,
which is deferred from Section 3.

A.1 Correctness
Due to the correctness of icFE and iFE, Dec outputs∑

i∈[n]

(〈x̃i,1, ỹi,1〉+ 〈x̃i,2, ỹi,2〉)


T

=

∑
i∈[n]

(〈xi,1,yi,1〉+ 〈xi,2,yi,2〉)


T

.

A.2 Security
For security, we have the following theorem.

Theorem A.1. If icFE and iFE are sel-pos-fh-secure, and the bilateral MDDHk assumption holds in G, then
the proposed SK-MCFE for mixed-group inner product is sel-pos-fh-secure.

Proof. Wlog, in the pos setting, we can denote challenge messages by {i, labiµ,x
µ,0
i ,xµ,1i }i∈[n],µ∈[qc] for

some qc instead of {iµ, labµ,xµ,0iµ ,x
µ,1
iµ }µ∈[q′c]. For notational convenience, we use the former notation in this

proof. We prove Theorem A.1 via a series of hybrid games Hβ1,ι,1, . . . ,H
β
1,ι,5,H

β
f for ι ∈ [qc]. We show that

Hβ0 ≈c Hβ1,1,1 ≈c · · · ≈c Hβ1,1,5 ≈c Hβ1,2,1 ≈c · · · ≈c Hβ1,qc,5 ≈c Hβf , where Hβ0 for β ∈ {0, 1} is the original
security game (described in Fig. 11).

Hβ0
icPP, icMSK← icSetup(1λ), (iPP1, iMSK1), . . . , (iPPn, iMSKn)← iSetup(1λ)
PP = (icPP, iPP1, . . . , iPPn), MSK = (icMSK, iMSK1, . . . , iMSKn)
(MS,FS)← A(1λ,PP) where
MS = {i, labµi , ([x

µ,0
i,1 ]1, [xµ,0i,2 ]2), ([xµ,1i,1 ]1, [xµ,1i,2 ]2)}i∈[n],µ∈[qc]

FS = {([yν,0i,1 ]2, [y
ν,0
i,2 ]1), ([yν,1i,1 ]2, [y

ν,1
i,2 ]1)}i∈[n],ν∈[qk]{

zµi ← Zkp, x̃µi,1 = (xµ,βi,1 , 0m2 , zµi , 0), x̃µi,2 = (xµ,βi,2 ,−zµi , 0)
icCTµi ← icEnc(icMSK, i, labµi , [x̃

µ
i,1]1), iSKµi ← KeyGen(iMSKi, [x̃µi,2]2), CTµi = (icCTµi , iSKµi )

}
i∈[n]
µ∈[qc]{

SKνi ← K̃eyGen({([yν,0i,1 ]2, [y
ν,0
i,2 ]1), ([yν,1i,1 ]2, [y

ν,1
i,2 ]1)}i∈[n])

}
ν∈[qk]

β′ ← A({CTµi }i∈[n],µ∈[qc], {SKµi }i∈[n],µ∈[qk])
K̃eyGen(·)
Input: {([y0

i,1]2, [y
0
i,2]1), ([y1

i,1]2, [y
1
i,2]1)}i∈[n]

a← Zkp, ỹi,1 = (yβi,1, 0m2 ,a, 0), ỹi,2 = (yβi,2,a, 0)
ỹ = (ỹ1,1, . . . , ỹn,1), icSK← icKeyGen(icMSK, [ỹ]2), iCTi ← iEnc(iMSKi, [ỹi,2]1)
SK = (icSK, {iCTi}i∈[n]).
Output: SK

Figure 11: Function-hiding security game for mgFE.

Each hybrid is defined as follows.

Hβ1,ι,1 This game is the same as Hβ0 except that
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• for (i, µ) ∈ [n]× [qc], x̃µi,1, x̃
µ
i,2 to be encrypted are set as

x̃µi,1 =


(xµ,βi,1 , xµ,βi,2 , zµi , 0)

(xµ,βi,1 , 0m2 , 0k, 1 )
(xµ,βi,1 , 0m2 , zµi , 0)

x̃µi,2 =


( 0m2 ,−zµi , 0) if µ < ι

( 0m2 , 0k, 1 ) if µ = ι

(xµ,βi,2 ,−zµi , 0) if µ > ι

(11)

• K̃eyGen sets

ỹi,1 = (yβi,1, yβi,2 ,a, 〈z
ι
i,a〉 ), ỹi,2 = (yβi,2,a, −〈zιi,a〉+ 〈xι,βi,2 ,y

β
i,2〉 )

for all queries.

Hβ1,ι,2 This game is the same as Hβ1,ι,1 except that K̃eyGen samples ti ← Zp and sets ỹi,1 = (yβi,1,y
β
i,2,a, ti ),

ỹi,2 = (yβi,2,a, −ti + 〈xι,βi,2 ,y
β
i,2〉) for each query.

Hβ1,ι,3 This game is the same as Hβ1,ι,2 except that K̃eyGen sets ỹi,1 = (yβi,1,y
β
i,2,a, ti +〈xι,βi,2 ,y

β
i,2〉 ), ỹi,2 =

(yβi,2,a,−ti +�����〈xι,βi,2 ,y
β
i,2〉) for each query.

Hβ1,ι,4 This game is the same as Hβ1,ι,3 except that K̃eyGen sets ỹi,1 = (yβi,1,y
β
i,2,a, 〈z

ι
i,a〉 + 〈xι,βi,2 ,y

β
i,2〉),

ỹi,2 = (yβi,2,a, −〈zιi,a〉 ) for all queries.

Hβ1,ι,5 This game is the same as Hβ1,ι,4 except that

• x̃ιi,1 = (xι,βi,1 , xι,βi,2 , z
ι
i, 0 ), x̃ιi,2 = (0m2 , −zιi, 0 ) for all i ∈ [n];

• K̃eyGen sets ỹi,1 = (yβi,1,y
β
i,2,a, 0 ), ỹi,2 = (yβi,2,a, 0 ) for all queries.

Hβf This game is the same as Hβ1,qc,5 except that

• x̃µi,0 = ( xµ,0i,1 ,x
µ,0
i,2 , zµi , 0), x̃µi,2 = (0m2 ,−zµi , 0) for all (i, µ) ∈ [n]× [qc];

• K̃eyGen sets ỹi,1 = ( y0
i,1,y0

i,2 ,a, 0), ỹi,2 = ( y0
i,2 ,a, 0) for all queries.

Since A is not given the information on β in Hβf , the probability that A outputs β is 1/2. Thanks to
Lemmas A.2 to A.7, Theorem A.1 holds.

Next, we prove the indistinguishability of each pair of hybrid games. We denote the probability that A
outputs β in hybrid Hβ by P(A,Hβ) in what follows.

Lemma A.2. Let Hβ1,0,5 = Hβ0 . For all PPT adversaries A and ι ∈ [qc], there exist PPT adversary B1,B2

such that |P(A,Hβ1,ι−1,5)− P(A,Hβ1,ι,1)| ≤ AdvicFE
B1

+ nAdviFE
B2

.

Proof. Recall that the differences between Hβ1,ι−1,5 and Hβ1,ι,1 are

• x̃ιi,1 = (xι,βi,1 , 0m2 , zιi, 0) −→ x̃ιi,1 = (xι,βi,1 , 0m2 , 0k, 1);

• x̃ιi,2 = (xι,βi,2 ,−zιi, 0) −→ x̃ιi,2 = (0m2 , 0k, 1);
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• ỹi,1 =
{

(yβi,1, 0m2 ,a, 0) if ι = 1
(yβi,1,y

β
i,2,a, 0) if ι > 1

−→ ỹi,1 = (yβi,1,y
β
i,2,a, 〈zιi,a〉);

• ỹi,2 = (yβi,2,a, 0) −→ ỹi,2 = (yβi,2,a,−〈zιi,a〉+ 〈xι,βi,2 ,y
β
i,2〉).

For all i ∈ [n], µ ∈ [qc], ν ∈ [qk], let x̃µ,0i,1 and ỹν,0i,1 be x̃µi,1 and ỹνi,1 defined in Hβ1,ι−1,5, respectively. Let x̃µ,1i,1
and ỹν,1i,1 be x̃µi,1 and ỹνi,1 defined in Hβ1,ι,1, respectively. Then, it is not hard to see that we have 〈x̃µ,0i,1 , ỹ

ν,0
i,1 〉 =

〈x̃µ,1i,1 , ỹ
ν,1
i,1 〉. Hence, for all (µ1, . . . , µn) ∈ [qc]n, ν ∈ [qk], we have

∑
i∈[n]〈x̃

µi,0
i,1 , ỹν,0i,1 〉 =

∑
i∈[n]〈x̃

µi,1
i,1 , ỹν,1i,1 〉 and

can reduce the indistinguishability between x̃µi,1 and ỹνi,1 in Hβ1,ι−1,5 and those in Hβ1,ι,1 to the function-hiding
property of icFE.

Similarly, for all i ∈ [n], µ ∈ [qc], ν ∈ [qk], let x̃µ,0i,2 and ỹν,0i,2 be x̃µi,2 and ỹνi,2 defined in Hβ1,ι−1,5, respectively.
Let x̃µ,1i,2 and ỹν,1i,2 be x̃µi,2 and ỹνi,2 defined in Hβ1,ι,1, respectively. Then, we have 〈x̃µ,0i,2 , ỹ

ν,0
i,2 〉 = 〈x̃µ,1i,2 , ỹ

ν,1
i,2 〉.

Thus, we can reduce the indistinguishability between x̃µi,2 and ỹνi,2 in Hβ1,ι−1,5 and those in Hβ1,ι,1 to the
function-hiding property of iFE. Note that the function-hiding property of iFE in the multi-instance setting
is easily reduced to that in the single-instance setting via hybrid argument. This concludes the proof.

Lemma A.3. For all PPT adversaries A and ι ∈ [qc], there exists a PPT adversary B against bilateral
MDDHk such that |P(A,Hβ1,ι,1)− P(A,Hβ1,ι,2)| ≤ nAdvMDDHk

B .

Proof. We describe the reduction B.

1. B obtains an n-fold bilateral Uqk,k-MDDH instance (G, [A]1, [Kδ]1, [A]2, [Kδ]2), where A ∈ Zqk×kp ,

Z← Zk×np , K0 = AZ, K1 ← Zqk×np .

2. When A outputs {i, ([xµ,0i,1 ]1, [xµ,0i,2 ]2), ([xµ,1i,1 ]1, [xµ,1i,2 ]2)}i∈[n],µ∈[qc], B computes PP,MSK as in Fig. 11
and gives PP, {icCTµi , iSKµi }i∈[n],µ∈[qc] to A, where icCTµi ← icEnc(icMSK, i, [x̃µi,1]1), iSKµi ←
iKeyGen(iMSKi, [x̃µi,2]2) with x̃µi,1, x̃

µ
i,2 being set as in Eq. (11).

3. For the ν-th query to K̃eyGen on {([yν,0i,1 ]2, [y
ν,0
i,2 ]1), ([yν,1i,1 ]2, [y

ν,1
i,2 ]1)}i∈[n], B replies SK = (icSK,

{iCTi}i∈[n]) as follows:

ỹνi,1 = (yν,βi,1 ,y
ν,β
i,2 ,a

ν , kδ,ν,i), ỹνi,2 = (yβi,2,aν ,−kδ,ν,i + 〈xι,βi,2 ,y
ν,β
i,2 〉)

ỹν = (ỹν1,1, . . . , ỹνn,1), icSK← icKeyGen(icMSK, [ỹν ]2)
iCTi ← iEnc(iMSKi, [ỹνi,2]1)

where aν is the ν-th row of A and kδ,ν,i is the (ν, i)-th entry of Kδ.

4. B outputs A’s output as it is.

It is not hard to see that A’s view corresponds to Hβ1,ι,1 if δ = 0 and Hβ1,ι,2 otherwise. Note that n-fold
bilateral Uqk,k-MDDH reduced to bilateral MDDHk with the security loss of n.

Lemma A.4. For all PPT adversaries A and ι ∈ [qc], we have P(A,Hβ1,ι,2) = P(A,Hβ1,ι,3).

Proof. We implicitly define ti,ν = t′i,ν + 〈xι,βi,2 ,y
ν,β
i,2 〉 where t′i,ν ← Zp for all i ∈ [n], ν ∈ [qk]. This does

not change the distribution of ti,ν . Then, it is easy to see that K̃eyGen sets ỹνi,1 = (yν,βi,1 ,y
ν,β
i,2 ,a, t′i,ν +

〈xι,βi,2 ,y
ν,β
i,2 〉), ỹνi,2 = (yν,βi,2 ,aν ,−t′i,ν) in Hβ1,ι,2, which are identically distributed to ỹνi,1, ỹνi,2 in Hβ1,ι,3. Thus,

A’s views in both hybrids are identical.
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Lemma A.5. For all PPT adversariesA and ι ∈ [qc], there exists a PPT adversary B such that |P(A,Hβ1,ι,3)−
P(A,Hβ1,ι,4)| ≤ nAdvMDDHk

B .

We omit the proof since Lemma A.5 can be proven similarly to Lemma A.3.

Lemma A.6. For all PPT adversaries A and ι ∈ [qc], there exist PPT adversary B1,B2 such that
|P(A,Hβ1,ι,4)− P(A,Hβ1,ι,5)| ≤ AdvicFE

B1
+ nAdviFE

B2
.

We omit the proof since Lemma A.6 can be proven similarly to Lemma A.2.

Lemma A.7. For all PPT adversaries A, there exist PPT adversary B1,B2 such that |P(A,Hβ1,qc,5) −
P(A,Hβf )| ≤ AdvicFE

B1
+ nAdviFE

B2
.

Proof. For all i ∈ [n], µ ∈ [qc], ν ∈ [qk], let x̃µ,0i,1 and ỹν,0i,1 be x̃µi,1 and ỹνi,1 defined in Hβ1,qc,5, respectively. Let
x̃µ,1i,1 and ỹν,1i,1 be x̃µi,1 and ỹνi,1 defined in Hβf , respectively. Due to the admissibility of A, its queries satisfy
that

∑
i∈[n](〈x

µi,β
i,1 ,yν,βi,1 〉+ 〈xµi,βi,2 ,yν,βi,2 〉) =

∑
i∈[n](〈x

µi,0
i,1 ,yν,0i,1 〉+ 〈xµi,0i,2 ,yν,0i,2 〉) for all (µ1, . . . , µn) ∈ [qc]n s.t.

labµ1
1 = labµ2

2 = · · · = labµnn , ν ∈ [qk]. Thus, we have
∑
i∈[n]〈x̃

µ,0
i,1 , ỹ

ν,0
i,1 〉 =

∑
i∈[n]〈x̃

µ,1
i,1 , ỹ

ν,1
i,1 〉 and can reduce

the indistinguishability between x̃µi,1 and ỹνi,1 in Hβ1,qc,5 and those in Hβf to the function-hiding property of
icFE.

Similarly, for all i ∈ [n], µ ∈ [qc], ν ∈ [qk], let x̃µ,0i,2 and ỹν,0i,2 be x̃µi,2 and ỹνi,2 defined in Hβ1,qc,5, respectively.
Let x̃µ,1i,2 and ỹν,1i,2 be x̃µi,2 and ỹνi,2 defined in Hβf , respectively. Then, we have 〈x̃µ,0i,2 , ỹ

ν,0
i,2 〉 = 〈x̃µ,1i,2 , ỹ

ν,1
i,2 〉. Thus,

we can reduce the indistinguishability between x̃µi,2 and ỹνi,2 in Hβ1,qc,5 and those in Hβf to the function-hiding
property of iFE. This concludes the proof.
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