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Abstract

We present a new template for building oblivious transfer from quantum information that
we call the “fixed basis” framework. Our framework departs from prior work (eg., Crepeau
and Kilian, FOCS ’88) by fixing the correct choice of measurement basis used by each player,
except for some hidden trap qubits that are intentionally measured in a conjugate basis. We
instantiate this template in the quantum random oracle model (QROM) to obtain simple pro-
tocols that implement, with security against malicious adversaries:

• Non-interactive random-input bit OT in a model where parties share EPR pairs a priori.

• Two-round random-input bit OT without setup, obtained by showing that the protocol
above remains secure even if the (potentially malicious) OT receiver sets up the EPR pairs.

• Three-round chosen-input string OT from BB84 states without entanglement or setup.
This improves upon natural variations of the CK88 template that require at least five
rounds.

Along the way, we develop technical tools that may be of independent interest. We prove
that natural functions like XOR enable seedless randomness extraction from certain quantum
sources of entropy. We also use idealized (i.e. extractable and equivocal) bit commitments,
which we obtain by proving security of simple and efficient constructions in the QROM.
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1 Introduction

Stephen Wiesner’s celebrated paper [Wie83] that kickstarted the field of quantum cryptography
suggested a way to use quantum information in order to achieve a means for transmitting two mes-
sages either but not both of which may be received. Later, it was shown that this powerful primitive
– named oblivious transfer (OT) [Rab05, EGL85] – serves as the foundation for secure computa-
tion [GMW87, Kil88], which is a central goal of modern crytography.

Wiesner’s original proposal only required uni-directional communication, from the sender to
the receiver. However, it was not proven secure, and succesful attacks on the proposal (given the
ability for the receiver to perform multi-qubit measurements) where even discussed in the paper.
Later, [CK88] suggested a way to use both interaction and bit commitments (which for example can
be instantiated using cryptographic hash functions) to obtain a secure protocol. In this work, we
investigate how much interaction is really required to obtain oblivious transfer from quantum
information (and hash functions). In particular, we ask

Can a sender non-interactively transmit two bits to a receiver
such that the receiver will be able to recover one but not both of the bits?

We obtain a positive answer to this question if the sender and receiver share prior entanglement,
and we analyze the (malicious, simulation-based) security of our protocol in the quantum random
oracle model (QROM).

Specifically, we consider the EPR setup model, where a sender and receiver each begin with
halves of EPR pairs, which are maximally entangled two-qubit states |00⟩+|11⟩√

2
. Such simple entan-

gled states are likely to be a common shared setup in quantum networks (see e.g. [SQ20] and ref-
erences therein), and have attracted much interest as a quantum analogue of the classical common
reference string (CRS) model [Kob03, CVZ20, MY21a, DLS22]. They have already been shown to
be useful for many two-party tasks such as quantum communication via teleportation [BBC+93],
entanglement-assisted quantum error correction [BDH06], and even cryptographic tasks like key
distribution [Eke91] and non-interactive zero-knowledge [CVZ20, MY21a].

Non-interactive Bit OT in the EPR Setup Model. We show that once Alice and Bob share a
certain (fixed) number of EPR pairs between them, they can realize a one-shot1 bit OT protocol,
securely implementing an ideal functionality that takes two bits 𝑚0,𝑚1 from Alice and delivers 𝑚𝑏

for a uniformly random 𝑏 ← {0, 1} to Bob. We provide an unconditionally secure protocol in the
QROM, and view this as a first step towards protocols that rely on concrete properties of hash
functions together with entanglement setup.

Furthermore, our result helps understand the power of entanglement as a cryptographic re-
source. Indeed, non-interactive oblivious transfer is impossible to achieve classically, under any
computational assumption, even in the common reference string and/or random oracle model.
Thus, the only viable one-message solution is to assume the parties already start with so-called
OT correlations, where the sender gets random bits 𝑥0, 𝑥1 from a trusted dealer, and the receier gets
𝑥𝑏 for a random bit 𝑏. On the other hand, our result shows that OT can be acheived in a one-shot
manner just given shared EPR pairs.

1We use the terms "one-shot", "one-message", and "non-interactive" interchangably in this work, all referring to a
protocol between two parties Alice and Bob that consists only of a single message from Alice to Bob.
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We note that an “OT correlations setup” is fundementally different than an EPR pair setup.
First of all, OT correlations are specific to OT, while, as desribed above, shared EPR pairs are al-
ready known to be broadly useful, and have been widely studied independent of OT. Moreover,
an OT correlations setup requires private (hidden) randomness, while generating EPR pairs is a de-
terministic process. In particular, any (even semi-honest) dealer that sets up OT correlations can
learn the parties’ private inputs by observing the resulting transcript of communication, while
this is not necesarily true of an EPR setup by monogamy of entanglement. Furthermore, as we
describe next, our OT protocol remains secure even if a potentially malicious receiver dishonestly
sets up the entanglement.

Two-Message Bit OT without Setup. The notion of two-message oblivious transfer has been
extensively studied in the classical setting [AIR01, NP01, PVW08, HK12, DGH+20] and is of par-
ticular theoretical and practical interest. We show that the above protocol remains secure even if
the receiver were the one performing the EPR pair setup (as opposed to a trusted dealer / network
administrator). That is, we consider a two-message protocol where the receiver first sets up EPR
pairs and sends one half of every pair to the sender, following which the sender sends a message
to the receiver as before. We show that this protocol also realizes the same bit OT functionality
with random receiver choice bit.

This results in the first two-message maliciously-secure variant of OT, without setup, that does
not (necessarily) make use of public-key cryptography. However, we remark that we still only
obtain the random receiver input functionality in this setting, and leave a construction of two-
message chosen-input string OT without public-key cryptography as an intriguing open problem.

Another Perspective: OT Correlations from Entanglement via 1-out-of-2 Deletion. It is well-
known that shared halves of EPR pairs can be used to generate shared randomness by having
each player measure their halves of EPR pairs in a common basis. But can they also be used to
generate OT correlations, where one of the players (say Alice) outputs a random pair of bits, while
the other (say Bob) learns only one of these (depending on a hidden choice bit), and cannot guess
the other bit?2

At first, it may seem like the following basic property of EPR pairs gives a candidate solution
that requires no communication: if Alice and Bob measure their halves in the same basis (say, both
computational, hereafter referred to as the + basis), then they will obtain the same random bit 𝑟,
while if Alice and Bob measure their halves in conjugate bases (say, Alice in the + basis and Bob
in the Hadamard basis, hereafter referred to as the × basis), then they will obtain random and
independent bits 𝑟𝐴, 𝑟𝐵 . Indeed, if Alice and Bob share two EPR pairs, they could agree that Alice
measures both of her halves in either the + basis or the × basis depending on whether her choice
bit is 0 or 1, while Bob always measures his first half in the + basis and his second half in the ×
basis. Thus, Bob obtains (𝑟0, 𝑟1), and, depending on her choice 𝑏, Alice obtains 𝑟𝑏, while deleting
information about 𝑟1−𝑏 by measuring the corresponding register in a conjugate basis.

Of course, there is nothing preventing Alice from simply measuring her first half in the +
basis and her second half in the × basis, obtaining both 𝑟0, 𝑟1 and rendering this initial candidate
completely insecure. However, what if Alice could prove to Bob that she indeed measured both
qubits in the same basis, without revealing to Bob which basis she chose? Then, Bob would be

2While this framing of the problem is different from the previous page, the two turn out to be equivalent thanks to
OT reversal and reorientation methods [IKNP03].
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convinced that one of his bits is independent of Alice’s view, while the privacy of Alice’s choice 𝑏
would remain intact. We rely on the Random Oracle to implement a cut-and-choose based proof
that helps us obtain secure bit OT.

We emphasize that this problem is also interesting in the plain model under computational
assumptions. We leave this as an open problem for future work, and discuss it (together with
other open problems arising from this work) in Section 1.1.

Other Technical Contributions. We make additional technical contributions along the way, that
may be of independent interest.

• Seedless Extraction from Quantum Sources of Entropy. Randomness extraction has been a
crucial component in all quantum OT protocols, and seeded randomness extraction from the
quantum sources of entropy that arise in such protocols has been extensively studied (see
e.g. [RK05, BF10]). In our non-interactive and two-message settings, it becomes necessary
to extract entropy without relying on the existence of a random seed. As such, we prove
the security of seedless randomness extractors in this context, which may be of independent
interest. In particular, we show that either the XOR function or a random oracle (for better
rate) can be used in place of the seeded universal hashing used in prior works. The XOR ex-
tractor has been used in subsequent work [BK22] as a crucial tool in building cryptosystems
with certified deletion.

• Extractable and Equivocal Commitments in the QROM. We abstract out a notion of (non-
interactive) extractable and equivocal bit commitments in the quantum random oracle model,
that we make use of in our OT protocols. We provide a simple construction based on prior
work [AHU19, Zha19, DFMS21].

• Three-Message String OT without Entanglement or Setup. We show that our fixed basis
framework makes it possible to eliminate the need for both entanglement and setup with just
three messages. The resulting protocol realizes string OT with no entanglement, and only
requires one quantum message containing BB84 states followed by two classical messages.
Furthermore, it allows both the sender and the receiver to choose their inputs to the OT (as
opposed to sampling a random input to one of the parties).

On the other hand, we find that using prior templates [CK88] necessitates a multi-stage
protocol where players have to first exchange basis information in order to establish two
channels, resulting in protocols that require at least an extra round of interaction.

• Concrete Parameter Estimates. We also estimate the number of EPR pairs/BB84 states re-
quired for each of our protocols, and derive concrete security losses incurred by our proto-
cols. This is discussed in Section 2.6, where we also provide a table of our estimates. We
expect that future work will be able to further study and optimize the concrete efficiency of
quantum OT in the QROM, and our work provides a useful starting point.

1.1 Open problems and directions for future research.

Our new frameworks for oblivious transfer raise several fundamental questions of both theoretical
and practical interest.
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Strengthening Functionality. It would be interesting to obtain non-interactive or two-message
variants of non-trivial quantum OT realizing stronger functionality than we obtain in this work3.
Our work leaves open the following natural questions.

• Does there exist two-message non-trivial quantum chosen-input bit OT, that allows both par-
ties to choose inputs?

• Does there exist one- or two-message non-trivial quantum chosen-sender-input string OT,
with chosen sender strings and random receiver choice bit? Such a string OT may be suffi-
cient to construct non-interactive secure computation (NISC) [IKO+11] with chosen sender
input and random receiver input.

• Does there exist two-message non-trivial quantum OT without entanglement?

• Can our quantum OT protocols serve as building blocks for other non-interactive function-
alities, eg., by relying on techniques in [GIK+15] for one-way secure computation, or [BV17]
for obfuscation?

Strengthening Security. While analyses in this work are restricted to the QROM, our frame-
works are of conceptual interest even beyond this specific model. In particular, one could ask the
following question.

• Does there exist non-interactive OT with shared EPR pair setup from any concrete computa-
tional hardness assumption?

One possible direction towards acheiving this would be to instantiate our template with post-
quantum extractable and equivocal commitments in the CRS model, and then attempt to instan-
tiate the Fiat-Shamir paradigm in this setting based on a concrete hash function (e.g. [CGH04,
KRR17, CCH+19] and numerous followups). Going further, one could even try to instantiate
our templates from weak computational hardness including one-way functions (or even pseu-
dorandom states). We imagine that such an OT would find useful applications even beyond
MPC, given how two-message classical OT [AIR01, NP01] has been shown to imply a variety
of useful protocols including two-message proof systems, non-malleable commitments, and be-
yond [OPP14, BGI+17, JKKR17, KS17, BGJ+17, KKS18, BGJ+18].

Finally, we note that any cryptographic protocol in a broader context typically requires the pro-
tocol to satisfy strong composability properties. It would be useful to develop a formal model for
UC security with a (global) quantum random oracle, and prove UC security for our OT protocols
in this model. Another question is whether one can achieve composably (UC) secure protocols
with minimal interaction by building on our frameworks in the CRS model.

Practical Considerations. Our concrete quantum resource requirements and security bounds
are computed assuming no transmission errors. On the other hand, actual quantum systems,
even those that do not rely on entanglement, are often prone to errors. One approach to reconcile
these differences is to employ techniques to first improve fidelity, eg. of our EPR pair setup via
entanglement purification; and then execute our protocol on the resulting states. Another natural

3Here non-trivial quantum OT refers to OT that is based on assumptions (such as symmetric-key cryptography) or
ideal models that are not known to imply classical OT.
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approach (following eg., [BBCS92]) could involve directly building error-resilient versions of our
protocols that tolerate low fidelity and/or coherence. Another question is whether our games can
be improved to reduce resource consumption and security loss, both in the idealized/error-free
and error-prone models.

1.2 Related Work

Wiesner [Wie83] suggested the first template for quantum OT, but his work did not contain a
security proof (and even discussed some potential attacks). Crepeau and Kilian [CK88] made
progress by demonstrating an approach for basing oblivious transfer on properties of quantum
information plus a secure "bit commitment" scheme. This led to interest in building bit commit-
ment from quantum information. Unfortunately, it was eventually shown by Mayers, Lo, and
Chau [May97, LC97] that bit commitment (and thus oblivious transfer) is impossible to build by
relying solely on the properties of quantum information.

This is indeed a strong negative result, and rules out the possibility of basing secure compu-
tation on quantum information alone. However, it was still apparent to researchers that quantum
information must offer some advantage in building secure computation systems. One could inter-
pret the Mayers, Lo, Chau impossibility result as indicating that in order to hone in and under-
stand this advantage, it will be necessary to make additional physical, computational, or modeling
assumptions beyond the correctness of quantum mechanics. Indeed, much research has been per-
formed in order to tease out the answer to this question, with three lines of work being particularly
prominent and relevant to this work4.

• Quantum OT from bit commitment. Although unconditionally-secure bit commitment can-
not be constructed using quantum information, [CK88]’s protocol is still meaningful and
points to a fundamental difference between the quantum and classical setting, where bit
commitment is not known to imply OT. A long line of work has been devoted to understand-
ing the security of [CK88]’s proposal: e.g. [BBCS92, MS94, Yao95, DFL+09, Unr10, BF10].

• Quantum OT in the bounded storage model. One can also impose physical assumptions
in order to recover quantum OT with unconditional security. [DFSS08] introduced the quan-
tum bounded-storage model, and [WST08] introduced the more general quantum noisy-storage
model, and showed how to construct unconditionally-secure quantum OT in these idealized
models. There has also been much followup work focused on implementation and efficiency
[WCSL10, ENG+14, IKS+17, FGS+18].

• Quantum OT from "minicrypt" assumptions. While [CK88]’s proposal for obtaining OT
from bit commitment scheme suggests that public-key cryptography is not required for
building OT in a quantum world, a recent line of work has been interested in identifying
the weakest concrete assumptions required for quantum OT, with [BCKM21, GLSV21] show-
ing that the existence of one-way functions suffices and [MY21b, AQY21] showing that the
existence of pseudo-random quantum states suffices.

Our work initiates the explicit study of quantum oblivious transfer in the quantum random or-
acle model, a natural model in which to study unconditionally-secure quantum oblivious transfer.

4Another line of work studies (unconditional) oblivious transfer with imperfect security [CKS13, CGS16, KST20],
which we view as largely orthogonal to our work.
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Any protocol proven secure in the idealized random oracle model immediately gives rise to a nat-
ural "real-world" protocol where the oracle is replaced by a cryptographic hash function, such as
SHA-256. As long as there continue to exist candidate hash functions with good security against
quantum attackers, our protocols remain useful and relevant. On the other hand, the bounded
storage model assumes an upper bound on the adversary’s quantum storage while noisy storage
model assumes that any qubit placed in quantum memory undergoes a certain amount of noise.
The quantum communication complexity of these protocols increases with the bounds on stor-
age/noise. It is clear that advances in quantum storage and computing technology will steadily
degrade the security and increase the cost of such protocols, whereas protocols in the QROM do
not suffer from these drawbacks.

2 Technical overview

Notation. We will consider the following types of OT protocols.

• ℱOT[𝑘]: the chosen-input string OT functionality takes as input a bit 𝑏 from the receiver and
two strings 𝑚0,𝑚1 ∈ {0, 1}𝑘 from the sender. It delivers 𝑚𝑏 to the receiver.

• ℱR−ROT[1]: the random-receiver-input bit OT functionality takes as input ⊤ from the receiver
and two bits 𝑚0,𝑚1 ∈ {0, 1} from the sender. It samples 𝑏 ← {0, 1} and delivers (𝑏,𝑚𝑏) to
the receiver.

• ℱS−ROT[𝑘]: the random-sender-input string OT functionality takes as input ⊤ from the sender
and (𝑏,𝑚) from the receiver for 𝑏 ∈ {0, 1},𝑚 ∈ {0, 1}𝑘. It set 𝑚𝑏 = 𝑚, samples 𝑚1−𝑏 ←
{0, 1}𝑘 and delivers (𝑚0,𝑚1) to the sender.

2.1 Non-Interactive OT in the shared EPR pair model

As discussed in the introduction, there is a skeleton candidate OT protocol that requires no com-
munication in the shared EPR model that we describe in Figure 1.

• Setup: 2 EPR pairs on registers (𝒜0,ℬ0) and (𝒜1,ℬ1), where Alice has registers (𝒜0,𝒜1)
and Bob has registers (ℬ0,ℬ1).

• Alice’s output: Input 𝑏 ∈ {0, 1}.

1. If 𝑏 = 0, measure both of 𝒜0,𝒜1 in basis + to obtain 𝑟′0, 𝑟
′
1. Output 𝑟′0

2. If 𝑏 = 1, measure both of 𝒜0,𝒜1 in basis × to obtain 𝑟′0, 𝑟
′
1. Output 𝑟′1.

• Bob’s output: Measure ℬ0 in basis + to obtain 𝑟0 and ℬ1 in basis × to obtain 𝑟1. Output
(𝑟0, 𝑟1).

Figure 1: An (insecure) skeleton OT candidate.
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The next step is for Alice to prove that she measured both her qubits in the same basis, with-
out revealing what basis she chose. While it is unclear how Alice could directly prove this, we
could hope to rely on the cut-and-choose paradigm to check that she measured “most” out of a
set of pairs of qubits in the same basis. Indeed, a cut-and-choose strategy implementing a type of
“measurement check” protocol has appeared in the original quantum OT proposal of [CK88] and
many followups. Inspired by these works, we develop such a strategy for our protocol as follows.

Non-interactive Measurement Check. To achieve security, we first modify the protocol so that
Alice and Bob use 2𝑛 EPR pairs, where Alice has one half of every pair and Bob has the other half.

Alice samples a set of 𝑛 bases 𝜃1, . . . , 𝜃𝑛 ← {+,×}𝑛. For each 𝑖 ∈ [𝑛], she must measure the 𝑖𝑡ℎ

pair of qubits (each qubit corresponding to a half of an EPR pair) in basis 𝜃𝑖, obtaining measure-
ment outcomes (𝑟𝑖,0, 𝑟𝑖,1). Then, she must commit to her bases and outcomes com(𝜃1, 𝑟1,0, 𝑟1,1), . . . ,
com(𝜃𝑛, 𝑟𝑛,0, 𝑟𝑛,1). Once committed, she must open commitments corresponding to a randomly
chosen (by Bob) 𝑇 ⊂ [𝑛] of size 𝑘, revealing {𝜃𝑖, 𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 . Given these openings, for every
𝑖 ∈ 𝑇 , Bob will measure his halves of EPR pairs in bases (𝜃𝑖, 𝜃𝑖) to obtain (𝑟′𝑖,0, 𝑟

′
𝑖,1). Bob aborts if

his outcomes (𝑟′𝑖,0, 𝑟
′
𝑖,1) do not match Alice’s claimed outcomes (𝑟𝑖,0, 𝑟𝑖,1) for any 𝑖 ∈ 𝑇 . If outcomes

on all 𝑖 ∈ 𝑇 match, we will say that Bob accepts the measurement check.
Now, suppose Alice passes Bob’s check with noticeable probability. Because she did not know

the check subset 𝑇 at the time of committing to her measurement outcomes, we can conjecture that
for “most” 𝑖 ∈ [𝑛] ∖ 𝑇 , Alice also correctly committed to results of measuring her qubits in bases
(𝜃𝑖, 𝜃𝑖). Moreover we can conjecture that the act of committing and passing Bob’s check removed
from Alice’s view information about at least one out of (𝑟𝑖,0, 𝑟𝑖,1) for most 𝑖 ∈ [𝑛] ∖ 𝑇 . We build on
techniques for analyzing quantum “cut-and-choose” protocols [DFL+09, BF10] to prove that this
is the case.

In fact, we obtain a non-interactive instantiation of such a measurement-check by leveraging
the random oracle to perform the Fiat-Shamir transform. That is, Alice applies a hash function,
modeled as a random oracle, to her set of commitments in order to derive the “check set” 𝑇 of
size 𝑘. Then, she can compute openings to the commitments in the set 𝑇 , and finally send all of
her 𝑛 commitments together with 𝑘 openings in a single message to Bob. Finally, the unopened
positions will be used to derive two strings (𝑡0, 𝑡1) of 𝑛 − 𝑘 bits each, with the guarantee that –
as long as Alice passes Bob’s check – there exists 𝑏 such that Alice only has partial information
about the string 𝑡1−𝑏. We point out that to realize OT, it is not enough for Alice to only have
partial information about 𝑡1−𝑏, we must in fact ensure that she obtains no information about 𝑡1−𝑏.
We achieve this by developing techniques for seedless randomness extraction in this setting, which
we discuss later in this overview. The resulting protocol is described in Fig. 2.5

To prove security, we build on several recently developed quantum random oracle techniques
[Zha19, DFMS19, DFMS21] as well as techniques for analyzing “quantum cut-and-choose” pro-
tocols [DFL+09, BF10]. In particular, we require the random oracle based commitments to be
extractable, and then argue that Bob’s state on registers {ℬ𝑖,0,ℬ𝑖,1}𝑖∈𝑇 is in some sense close to the
state |𝜓⟩ described by the information {𝜃𝑖, 𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 in Alice’s unopened commitments. To do
so, we use the Fiat-Shamir result of [DFMS19, DFMS21] and the quantum sampling formalism of
[BF10] to bound the trace distance between Bob’s state and a state that is in a “small” superposition
of vectors close to |𝜓⟩.

5Our actual protocol involves an additional step that allows Alice to program any input 𝑚𝑏 of her choice, but we
suppress this detail in this overview.
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• Setup: Random oracle RO and 2𝑛 EPR pairs on registers {𝒜𝑖,𝑏,ℬ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}, where
Alice has register 𝒜 := {𝒜𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} and Bob has register ℬ := {ℬ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}.

• Alice’s message: Input 𝑏 ∈ {0, 1}.

1. Sample 𝜃1, . . . , 𝜃𝑛 ← {+,×}𝑛 and measure each 𝒜𝑖,0,𝒜𝑖,1 in basis 𝜃𝑖 to obtain
𝑟𝑖,0, 𝑟𝑖,1.

2. Compute commitments com1, . . . , com𝑛 to (𝜃1, 𝑟1,0, 𝑟1,1), . . . , (𝜃𝑛, 𝑟𝑛,0, 𝑟𝑛,1).

3. Compute 𝑇 = RO(com1, . . . , com𝑛), where 𝑇 is parsed as a subset of [𝑛] of size 𝑘.

4. Compute openings {𝑢𝑖}𝑖∈𝑇 for {com𝑖}𝑖∈𝑇 .

5. Let 𝑇 = [𝑛] ∖ 𝑇 , and for all 𝑖 ∈ 𝑇 , set 𝑑𝑖 = 𝑏⊕ 𝜃𝑖 (interpreting + as 0 and × as 1).

6. Send {com𝑖}𝑖∈[𝑛], 𝑇, {𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖, 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 to Bob.

• Alice’s output: 𝑚𝑏 := Extract(𝑡𝑏 := {𝑟𝑖,𝜃𝑖}𝑖∈𝑇 ).

• Bob’s computation:

1. Abort if 𝑇 ̸= RO(com1, . . . , com𝑛) or if verifying any commitment in the set 𝑇 fails.

2. For each 𝑖 ∈ 𝑇 , measure registers ℬ𝑖,0,ℬ𝑖,1 in basis 𝜃𝑖 to obtain 𝑟′𝑖,0, 𝑟
′
𝑖,1, and abort if

𝑟𝑖,0 ̸= 𝑟′𝑖,0 or 𝑟𝑖,1 ̸= 𝑟′𝑖,1.

3. For each 𝑖 ∈ 𝑇 , measure register ℬ𝑖,0 in the + basis and register ℬ𝑖,1 in the × basis
to obtain 𝑟′𝑖,0, 𝑟

′
𝑖,1.

• Bob’s output: 𝑚0 := Extract(𝑡0 := {𝑟𝑖,𝑑𝑖}𝑖∈𝑇 ),𝑚1 := Extract(𝑡1 := {𝑟𝑖,𝑑𝑖⊕1}𝑖∈𝑇 ).

Figure 2: Non-interactive OT in the shared EPR pair model. Extract is an (unspecified) seedless
hash function used for randomness extraction.

New Techniques for Randomness Extraction. We also note that the arguments above have not
yet established a fully secure OT correlation. In particular, Alice might have some information
about 𝑡1−𝑏, whereas OT security would require one of Bob’s strings to be completely uniform and
independent of Alice’s view.

This situation also arises in prior work on quantum OT, and is usually solved via seeded random-
ness extraction. Using this approach, a seed 𝑠 would be sampled by Bob, and the final OT strings
would be defined as 𝑚0 = Extract(𝑠, 𝑡0) and 𝑚1 = Extract(𝑠, 𝑡1), where Extract is a universal hash
function. Indeed, quantum privacy amplication [RK05] states that even given 𝑠, Extract(𝑠, 𝑡1−𝑏) is
uniformly random from Alice’s perspective as long as 𝑡1−𝑏 has sufficient (quantum) min-entropy
conditioned on Alice’s state.

Unfortunately, this approach would require Bob to transmit the seed 𝑠 to Alice in order for
Alice to obtain her output 𝑚𝑏 = Extract(𝑠, 𝑡𝑏), making the protocol no longer non-interactive. In-
stead, we develop techniques for seedless randomness extraction that work in our setting, allowing
us to make the full description of the hash function used to derive the final OT strings public at the
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beginning of the protocol.
We provide two instantiations of seedless randomness extraction that work in a setting where

the entropy source comes from measuring a state supported on a small superposition of basis
vectors in the conjugate basis. More concretely, given a state on two registers𝒜,ℬ, where the state
on ℬ is supported on standard basis vectors with small Hamming weight, consider measuring ℬ
in the Hadamard basis to produce 𝑥. For what unseeded hash functions Extract does Extract(𝑥)
look uniformly random, even given the state on register 𝒜?

• XOR extractor. First, we observe that one can obtain a single bit of uniform randomness by
XORing all of the bits of 𝑥 together, as long as the superposition on register ℬ only contains
vectors with relative Hamming weight < 1/2. This can be used to obtain a bit OT protocol,
where the OT messages 𝑚0,𝑚1 consist of a single bit. In fact, by adjusting the parameters
of the quantum cut-and-choose, the XOR extractor could be used bit-by-bit to extract any
number of 𝜆 bits. However, this setting of parameters would require a number of EPR pairs
that grows with 𝜆3, resulting in a very inefficient protocol.

• RO extractor. To obtain a more efficient method of extracting 𝜆 bits, we turn to the random
oracle model, which has proven to be a useful seedless extractor in the classical setting. Since
an adversarial Alice in our protocol has some control over the state on registers𝒜,ℬ, arguing
that RO(𝑥) looks uniformly random from her perspective requires some notion of adaptive
re-programming in the QROM. While some adaptive re-programming theorems have been
shown before (e.g. [Unr15, GHHM21]), they have all only considered 𝑥 sampled from a classical
probability distribution. This is for good reason, since counterexamples in the quantum setting
exist, even when 𝑥 has high min-entropy given the state on register 𝒜.6 In this work, we
show that in the special case of 𝑥 being sampled via measurement in a conjugate basis,
one can argue that RO(𝑥) can be replaced with a uniformly random 𝑟, without detection
by the adversary. Our proof relies on the superposition oracle of [Zha19] and builds on
proof techniques in [GHHM21]. We leverage our RO extractor to obtain non-interactive 𝜆-
bit string OT with a number of EPR pairs that only grows linearly in 𝜆.

Differences from the CK88 template. As mentioned earlier, the original quantum OT proposal
[CK88] and its followups also incorporate a commit-challenge-response measurement-check pro-
tocol to enforce honest behavior. However, we point out one key difference in our approach that
enables us to completely get rid of interaction. In CK88, each party measures their set of qubits7

using a uniformly random set of basis choices. Then, in order to set up the two channels required
for OT, they need to exchange their basis choices with each other (after the measurement check
commitments have been prepared and sent). This requires multiple rounds of interaction. In our
setting, it is crucial that one of the parties measures (or prepares) qubits in a fixed set of bases
known to the other party, removing the need for a two-way exchange of basis information. In
the case of Fig. 2, this party is Bob. Hereafter, we refer to the CK88 template as the random basis
framework, and our template as the fixed basis framework.

6For example, consider an adversary that, via a single superposition query to the random oracle, sets register ℬ to
be a superposition over all 𝑥 such that the first bit of RO(𝑥) is 0. Then, measuring ℬ in the computational basis will
result in an 𝑥 with high min-entropy, but where RO(𝑥) is distinguishable from a uniformly random 𝑟.

7More accurately, since the protocol only uses BB84 states, one party prepares and the other party measures.
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Non-interactive OT reversal. So far, our techniques have shown that, given shared EPR pairs,
Alice can send a single classical message to Bob that results in the following correlations: Alice
outputs a bit 𝑏 and string 𝑚𝑏, while Bob outputs strings 𝑚0,𝑚1, thus implementing the ℱS−ROT

functionality treating Bob as the “sender”.
However, an arguably more natural functionality would treat Alice as the sender, with some

chosen inputs 𝑚0,𝑚1, and Bob as the receiver, who can recover 𝑏,𝑚𝑏 from Alice’s message. In
fact, for the case that 𝑚0,𝑚1 are single bits, a “reversed” version of the protocol can already be
used to acheive this due to the non-interactive OT reversal of [IKNP03]. Let (𝑏, 𝑟𝑏) and (𝑟0, 𝑟1) be
Alice and Bob’s output from our protocol, where Alice has chosen 𝑏 uniformly at random. Then
Alice can define ℓ0 = 𝑚0 ⊕ 𝑟𝑏, ℓ1 = 𝑚1 ⊕ 𝑟𝑏 ⊕ 𝑏 and send (ℓ0, ℓ1) along with her message to Bob.
Bob can then use 𝑟0 to recover 𝑚𝑐 from ℓ𝑐 for his “choice bit” 𝑐 = 𝑟0 ⊕ 𝑟1. Moreover, since in our
protocol the bits 𝑟0, 𝑟1 can be sampled uniformly at random by the functionality, this implies that
𝑐 is a uniformly random choice bit, unknown to Alice, but unable to be tampered with by Bob.
This results in a protocol that satisfies the ℱR−ROT[1] functionality, and we have referred to it as
our one-shot bit OT protocol in the introduction.

2.2 Two-message OT without trusted setup

Next, say that we don’t want to assume a trusted EPR pair setup. In particular, what if we allow
Bob to set up the EPR pairs? In this case, a malicious Bob may send any state of his choice to Alice.
However, observe that in Fig. 2, Alice’s bit 𝑏 is masked by her random choices of 𝜃𝑖. These choices
remain hidden from Bob due to the hiding of the commitment scheme, plus the fact that they are
only used to measure Alice’s registers. Regardless of the state that a malicious Bob may send, he
will not be able to detect which basis Alice measures her registers in, and thus will not learn any
information about 𝑏. As a result, we obtain a two-message quantum OT protocol in the QROM. As
we show in Section 6.2 , this protocol satisfies the ℱS−ROT OT ideal functionality that allows Alice
to choose her inputs (𝑏,𝑚), and sends Bob random outputs (𝑚0,𝑚1) subject to 𝑚𝑏 = 𝑚.

Moreover, adding another reorientation message at the end from Bob to Alice – where Bob
uses 𝑚0,𝑚1 as keys to encode his chosen inputs – results in a three-round chosen input string OT
protocol realizing the ℱOT[𝑘] functionality. However, as we will see in the next section, with three
messages, we can remove the need for entanglement while still realizing ℱOT[𝑘].

Finally, in the case that 𝑚0,𝑚1 are bits, we can apply the same non-interactive [IKNP03] rever-
sal described above to the two-round protocol, resulting in a two-round secure realization of the
ℱR−ROT[1] ideal functionality. This results in our two-round bit OT protocol as referenced in the
introduction.

2.3 Three-message chosen-input OT

We now develop a three-message protocol that realizes the chosen-input string OT functionality
ℱOT, which takes two strings𝑚0,𝑚1 from the sender and a bit 𝑏 from the receiver, and delivers𝑚𝑏

to the receiver. This protocol will not require entanglement, but still uses the fixed basis framework,
just like the one discussed in Section 2.1.

Recall that in the EPR-based protocol, Bob would obtain (𝑟0, 𝑟1) by measuring his halves of two
EPR pairs in basis (+,×), while Alice would obtain (𝑟0, 𝑟

′
1) or (𝑟′0, 𝑟1) respectively by measuring

her halves in basis (+,+) or (×,×), where (𝑟′0, 𝑟
′
1) are uniform and independent of (𝑟0, 𝑟1).
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Our first observation is that a similar effect is achieved by having Bob send BB84 states polar-
ized in a fixed basis instead of sending EPR pairs. That is, Bob samples uniform (𝑟0, 𝑟1) and sends
to Alice the states |𝑟0⟩+ , |𝑟1⟩×. Alice would obtain (𝑟0, 𝑟

′
1) or (𝑟′0, 𝑟1) respectively by measuring

these states in basis (+,+) or (×,×) respectively, where (𝑟′0, 𝑟
′
1) are uniform and independent of

(𝑟0, 𝑟1). The skeleton protocol is sketched in Figure 3.

• Bob’s message and output:

1. Sample (𝑟0, 𝑟1)← {0, 1} and send |𝑟0⟩+ , |𝑟1⟩× in registers 𝒜0,𝒜1 to Alice.

2. Bob’s output is (𝑟0, 𝑟1).

• Alice’s output: Input 𝑏 ∈ {0, 1}.

1. If 𝑏 = 0, measure both of 𝒜0,𝒜1 in basis + to obtain 𝑟′0, 𝑟
′
1. Output 𝑟′0

2. If 𝑏 = 1, measure both of 𝒜0,𝒜1 in basis × to obtain 𝑟′0, 𝑟
′
1. Output 𝑟′1.

Figure 3: Another (insecure) skeleton OT candidate.

As before, though, there is nothing preventing Alice from retrieving both (𝑟0, 𝑟1) by measuring
the states she obtains in basis (+,×). Thus, as before, we need a measurement check to ensure that
Alice measures “most” out of a set of pairs of qubits in the same basis. But implementing such a
check with BB84 states turns out to be more involved than in the EPR pair protocol.

Non-interactive measurement check without entanglement. Towards building a measurement
check, we first modify the skeleton protocol so that Bob sends 2𝑛 BB84 qubits {|𝑟𝑖,0⟩+ , |𝑟𝑖,1⟩×}𝑖∈[𝑛]
on registers {𝒜𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} to Alice (instead of just two qubits).

Now Alice is required to sample a set of 𝑛 bases 𝜃1, . . . , 𝜃𝑛 ← {+,×}𝑛. For each 𝑖 ∈ [𝑛],
she must measure the 𝑖𝑡ℎ pair of qubits in basis 𝜃𝑖, obtaining measurement outcomes (𝑟′𝑖,0, 𝑟

′
𝑖,1).

Then, she will commit to her bases and outcomes com(𝜃1, 𝑟
′
1,0, 𝑟

′
1,1), . . . , com(𝜃𝑛, 𝑟

′
𝑛,0, 𝑟

′
𝑛,1). Once

committed, she will open commitments corresponding to a randomly chosen (by Bob) 𝑇 ⊂ [𝑛] of
size 𝑘, revealing {𝜃𝑖, 𝑟′𝑖,0, 𝑟′𝑖,1}𝑖∈𝑇 .

But Bob cannot check these openings the same way as in the EPR-based protocol. Recall that
in the EPR protocol, for every 𝑖 ∈ 𝑇 , Bob would measure his halves of EPR pairs in bases (𝜃𝑖, 𝜃𝑖) to
obtain (𝑟𝑖,0, 𝑟𝑖,1), and compare the results against Alice’s response. On the other hand, once Bob
has sent registers {𝒜𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} containing {|𝑟𝑖,0⟩+ , |𝑟𝑖,1⟩×}𝑖∈[𝑛] to Alice, there is no way for him
to recover the result of measuring any pair of registers (𝒜𝑖,0,𝒜𝑖,1) in basis (𝜃𝑖, 𝜃𝑖).

To fix this, we modify the protocol to allow for a (randomly chosen and hidden) set 𝑈 of “trap”
positions. For all 𝑖 ∈ 𝑈 , Bob outputs registers (𝒜𝑖,0,𝒜𝑖,1) containing |𝑟𝑖,0⟩𝜗𝑖 , |𝑟𝑖,1⟩𝜗𝑖 , that is, both
qubits are polarized in the same basis 𝜗𝑖 ← {+,×}. All other qubits are sampled the same way
as before, i.e. as |𝑟𝑖,0⟩+ , |𝑟𝑖,1⟩×. Alice commits to her measurement outcomes {𝜃𝑖, 𝑟′𝑖,0, 𝑟′𝑖,1}𝑖∈[𝑛],
and then reveals commitment openings {𝜃𝑖, 𝑟′𝑖,0, 𝑟′𝑖,1}𝑖∈𝑇 for a randomly chosen subset of size 𝑇 ,
as before. But Bob can now check Alice on all positions 𝑖 in the intersection 𝑇 ∩ 𝑈 where 𝜗𝑖 = 𝜃𝑖.
Specifically, Bob aborts if for any 𝑖 ∈ 𝑇 ∩ 𝑈 , 𝜗𝑖 = 𝜃𝑖 but (𝑟′𝑖,0, 𝑟

′
𝑖,1) ̸= (𝑟𝑖,0, 𝑟𝑖,1). Otherwise, Alice
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and Bob will use the set [𝑛]∖𝑇 ∖𝑈 to generate their OT outputs. The resulting protocol is sketched
in Figure 4. Crucially, we make use of a third round in order to allow Bob to transmit his choice of
𝑈 to Alice, so that they can both agree on the set [𝑛] ∖ 𝑇 ∖ 𝑈 .

Again, we must argue that any Alice that passes Bob’s check with noticeable probability loses
information about one out of 𝑟𝑖,0 and 𝑟𝑖,1 for “most” 𝑖 ∈ [𝑛] ∖ 𝑇 ∖ 𝑈 . Because she did not know the
check subset 𝑇 or Bob’s trap subset 𝑈 at the time of committing to her measurement outcomes,
we can again conjecture that for “most” 𝑖 ∈ [𝑛] ∖ 𝑇 , Alice also correctly committed to results of
measuring her qubits in bases (𝜃𝑖, 𝜃𝑖). Moreover we can conjecture that the act of committing and
passing Bob’s check removed from Alice’s view information about at least one out of (𝑟𝑖,0, 𝑟𝑖,1) for
most 𝑖 ∈ [𝑛] ∖ 𝑇 . This requires carefully formulating and analyzing a quantum sampling strategy
that is somewhat more involved than the one in Section 2.1. Furthermore, as in Section 2.1, we
make the measurement check non-interactive by relying on the Fiat-Shamir transform. A formal
analysis of this protocol can be found in Section 7.

2.4 The random basis framework

Next, we shift our attention to analyzing the original template for commitment-based quantum
OT, due to [CK88], and studied in many followups including [BBCS92, MS94, Yao95, DFL+09,
BF10, Unr10, GLSV21, BCKM21]. In this template, one party (say, Bob) prepares random BB84
states and sends them to Alice, who is then supposed to immediately measure each received state
in a random basis. That is, each party samples their own uniformly random sequence of bases
𝜃𝐴 = 𝜃𝐴,1, . . . , 𝜃𝐴,𝑛, 𝜃𝐵 = 𝜃𝐵,1, . . . , 𝜃𝐵,𝑛 during the protocol, and thus we refer to this template as
the “random basis framework”. After this initial prepare-and-measure step, Alice then convinces
Bob via a cut-and-choose measurement check that she indeed measured her states, thus simulating
a type of erasure channel. The rest of the protocol can be viewed as a conversion from the resulting
erasure channel to OT.

First, we observe that, given a non-interactive commitment for use in the measurement check,
this protocol can naturally be written as a five-message OT between a receiver Alice and a sender
Bob as follows.

1. Bob samples and sends random BB84 states to Alice, where 𝜃𝐵 are the bases and 𝑟𝐵 are the
bits encoded.

2. Alice measures the received states in bases 𝜃𝐴, commits to 𝜃𝐴 and the measurement results,
and sends the commitments to Bob.

3. Bob samples a random subset 𝑇 of the commitments to ask Alice to open, and sends 𝑇 and
𝜃𝐵 to Alice.

4. Alice computes openings to the commitments in 𝑇 , and then encodes her choice bit 𝑏 as
follows: set 𝑆𝑏 = {𝑖 ∈ 𝑇 : 𝜃𝐴,𝑖 = 𝜃𝐵,𝑖} and set 𝑆1−𝑏 = {𝑖 ∈ 𝑇 : 𝜃𝐴,𝑖 ̸= 𝜃𝐵,𝑖}. She sends her
openings and (𝑆0, 𝑆1) to Bob.

5. Bob checks that the commitment openings verify and that Alice was honestly measuring her
qubits in 𝑇 . If so, Bob encrypts 𝑚0 using {𝑟𝐵,𝑖}𝑖∈𝑆0 , encrypts 𝑚1 using {𝑟𝐵,𝑖}𝑖∈𝑆1 , and sends
the two encryptions to Alice.
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• Inputs: Bob has inputs 𝑚0,𝑚1 each in {0, 1}𝜆, Alice has input 𝑏 ∈ {0, 1}.

• Bob’s Message:

1. Sample a “large enough” subset 𝑈 ⊂ [𝑛], and for every 𝑖 ∈ 𝑈 , sample 𝜗𝑖 ← {+,×}.
2. For every 𝑖 ∈ [𝑛], sample (𝑟𝑖,0, 𝑟𝑖,1)← {0, 1}.
3. For 𝑖 ∈ 𝑈 , set registers (𝒜𝑖,0,𝒜𝑖,1) to (|𝑟𝑖,0⟩𝜗𝑖 , |𝑟𝑖,1⟩𝜗𝑖).
4. For 𝑖 ∈ [𝑛] ∖ 𝑈 , set registers (𝒜𝑖,0,𝒜𝑖,1) to (|𝑟𝑖,0⟩+ , |𝑟𝑖,0⟩×).
5. Send {𝒜𝑖,0,𝒜𝑖,1}𝑖∈[𝑛] to Alice.

• Alice’s message:

1. Sample 𝜃1, . . . , 𝜃𝑛 ← {+,×}𝑛 and measure each 𝒜𝑖,0,𝒜𝑖,1 in basis 𝜃𝑖 to obtain
𝑟′𝑖,0, 𝑟

′
𝑖,1.

2. Compute commitments com1, . . . , com𝑛 to (𝜃1, 𝑟
′
1,0, 𝑟

′
1,1), . . . , (𝜃𝑛, 𝑟

′
𝑛,0, 𝑟

′
𝑛,1).

3. Compute 𝑇 = RO(com1, . . . , com𝑛), where 𝑇 is parsed as a subset of [𝑛] of size 𝑘.

4. Compute openings {𝑢𝑖}𝑖∈𝑇 for {com𝑖}𝑖∈𝑇 .

5. Let 𝑇 = [𝑛] ∖ 𝑇 , and for all 𝑖 ∈ 𝑇 , set 𝑑𝑖 = 𝑏⊕ 𝜃𝑖 (interpreting + as 0 and × as 1).

6. Send {com𝑖}𝑖∈[𝑛], 𝑇, {𝑟′𝑖,0, 𝑟′𝑖,1, 𝜃𝑖, 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 to Bob.

• Bob’s Message:

1. Abort if 𝑇 ̸= RO(com1, . . . , com𝑛) or if verifying any commitment in the set 𝑇 fails.

2. If for any 𝑖 ∈ 𝑇 ∩ 𝑈 , 𝑟𝑖,0 ̸= 𝑟′𝑖,0 or 𝑟𝑖,1 ̸= 𝑟′𝑖,1, abort.

3. Set 𝑥0 = 𝑚0 ⊕ Extract(𝑡0 := {𝑟𝑖,𝑑𝑖}𝑖∈[𝑛]∖𝑇∖𝑈 ) and 𝑥1 = 𝑚1 ⊕ Extract(𝑡1 :=
{𝑟𝑖,𝑑𝑖⊕1}𝑖∈[𝑛]∖𝑇∖𝑈 ).

4. Send (𝑥0, 𝑥1, 𝑈) to Alice.

• Alice’s output: 𝑚𝑏 := 𝑥𝑏 ⊕ Extract(𝑡𝑏 := {𝑟′𝑖,𝜃𝑖}𝑖∈𝑇 ).

Figure 4: Three-message chosen-input OT without entanglement. Extract is an (unspecified) func-
tion used for randomness extraction. Since Bob is sending the final message, we may use a seeded
function here.

Now, a natural question is whether we can reduce interaction in the QROM via a non-interactive
measurment check, as accomplished above in the fixed basis framework. Unfortunately, the struc-
ture of the random basis framework appears to prevent this optimiziation. Indeed, Alice cannot
encode her choice bit until after she receives 𝜃𝐵 from Bob, which he cannot send until after he
receives Alice’s commitments.

However, while these reasons prevent us from obtaining a one or two message protocol as in
the fixed basis framework, we do show a different optimiziation that allows us to obtain a four-
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message chosen-input OT and a three-message random-input OT utilizing this framework, which
we discuss next.

Reverse Crepeau-Kilian OT. Suppose instead that Alice sends random BB84 states {|𝑟𝐴,𝑖⟩𝜃𝐴,𝑖
}𝑖∈[𝑛],

after which Bob measures these states in random bases 𝜃𝐵 to obtain {𝑟𝐵,𝑖}𝑖∈[𝑛]. Now, instead of
waiting to obtain the “correct” bases 𝜃𝐴, Bob simply sends 𝜃𝐵 to Alice. When 𝜃𝐴,𝑖 and 𝜃𝐵,𝑖 match,
𝑟𝐴,𝑖 = 𝑟𝐵,𝑖, and when 𝜃𝐴,𝑖 and 𝜃𝐵,𝑖 do not match, then 𝑟𝐴,𝑖 and 𝑟𝐵,𝑖 should be uncorrelated: again
establishing an erasure channel on which Bob can send Alice messages. However, unlike CK88,
the player that is performing measurements in random bases need not wait to learn the right bases,
and instead simply announces his own bases to set up a reverse erasure channel.

However, this protocol leads to new avenues of attack for a malicious Alice. In particular,
Alice may send halves of EPR pairs in the first round, and, given 𝜃𝐵 , perform measurements to
determine all the 𝑟𝐵,𝑖 values. Such an attack can be prevented by means of a “reverse” measure-
ment check: namely, Alice commits to all 𝑟𝐴,𝑖 and 𝜃𝐴,𝑖 values in the first message (she commits to the
descriptions of her states), and, given a random check set 𝑇 chosen by Bob, reveals all committed
values {𝑟𝐴,𝑖, 𝜃𝐴,𝑖}𝑖∈𝑇 . Given Alice’s openings, for every 𝑖 ∈ [𝑇 ] such that 𝜃𝐴,𝑖 = 𝜃𝐵,𝑖 Bob checks
that 𝑟𝐴,𝑖 = 𝑟𝐵,𝑖. The resulting four-round chosen-input OT protocol is summarized in Figure 5.
We also note that, using our seedless extaction techniques described above, this template can be
used to obtain three-message protocols for ℱS−ROT and ℱR−ROT.

Finally, we note that it is unclear how to apply Fiat-Shamir to this reversed protocol in order to
reduce interaction even further. Indeed, in this case it seems the Fiat-Shamir hash function would
also have to take as input Alice’s quantum states, since otherwise she could determine these states
after observing the result of the hash.

The ideal commitment model. We observe that the protocols that we obtain in the random basis
framework (if we used seeded extraction or the XOR extractor) actually do not use the random
oracle beyond its usage in building the commitment scheme. Thus, these protocols could be seen
as being constructed in an “ideal commitment model”, which is motivated by prior work [DFL+09,
GLSV21, BCKM21] that established commitments as the only necessary cryptographic building
block for quantum OT. It may be interesting to explore these protocols combined with other (say,
plain model or CRS model) instantiations of the required commitments.

2.5 Extractable and Equivocal Commitments

To achieve simulation-based security, our constructions rely on commitments that satisfy extractabil-
ity and equivocality. We model these as classical non-interactive bit commitments that, informally,
satisfy the following properties.

• Equivocality: This property ensures that the commitment scheme admits an efficient sim-
ulator, let’s say 𝒮Equ, that can sample commitment strings that are indistinguishable from
commitment strings generated honestly and later, during the opening phase, provide valid
openings for either 0 or 1.

• Extractability: This property ensures that the commitment scheme admits an efficient extrac-
tor, let’s say 𝒮Ext, that, given access to the committer who outputs a commitment string, can
output the committed bit.
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• Inputs: Bob has inputs 𝑚0,𝑚1 ∈ {0, 1}𝜆, Alice has input 𝑏 ∈ {0, 1}.

• Alice’s first message:

1. For every 𝑖 ∈ [𝑛], sample 𝑟𝐴,𝑖 ← {0, 1} and 𝜃𝐴,𝑖 ← {+,×}, and prepare the state
|𝑟𝐴,𝑖⟩𝜃𝐴,𝑖

on register 𝒜𝑖.

2. Compute commitments com1, . . . , com𝑛 to (𝜃𝐴,𝑖, 𝑟𝐴,𝑖), . . . , (𝜃𝐴,𝑛, 𝑟𝐴,𝑛).

3. Send {𝒜𝑖}𝑖∈[𝑛] and {com𝑖}𝑖∈[𝑛] to Bob.

• Bob’s first message:

1. Sample 𝜃𝐵 = 𝜃𝐵,1, . . . , 𝜃𝐵,𝑛 ← {+,×}𝑛 and measure each 𝒜𝑖 in basis 𝜃𝐵,𝑖 to obtain
𝑟𝐵,𝑖.

2. Sample a “large enough” subset 𝑇 ⊂ [𝑛].

3. Send 𝑇 and 𝜃𝐵 to Alice.

• Alice’s second message:

1. Compute openings {𝑢𝑖}𝑖∈𝑇 for {com𝑖}𝑖∈𝑇 .

2. Set 𝑆𝑏 = {𝑖 ∈ 𝑇 : 𝜃𝐴,𝑖 = 𝜃𝐵,𝑖} and 𝑆1−𝑏 = {𝑖 ∈ 𝑇 : 𝜃𝐴,𝑖 ̸= 𝜃𝐵,𝑖}.
3. Send {𝑢𝑖}𝑖∈𝑇 , 𝑆0, 𝑆1 to Bob.

• Bob’s second message:

1. Check that the openings to the commitments in 𝑇 verify, and that for each 𝑖 ∈ 𝑇
such that 𝜃𝐴,𝑖 = 𝜃𝐵,𝑖, it holds that 𝑟𝐴,𝑖 = 𝑟𝐵,𝑖.

2. Set 𝑥0 = 𝑚0 ⊕ Extract({𝑟𝐵,𝑖}𝑖∈𝑆0) and 𝑥1 = 𝑚1 ⊕ Extract({𝑟𝐵,𝑖}𝑖∈𝑆1).

3. Send (𝑥0, 𝑥1) to Alice.

• Alice’s output: 𝑚𝑏 := 𝑥𝑏 ⊕ Extract({𝑟𝐴,𝑖}𝑖∈𝑆𝑏
).

Figure 5: Four-message chosen-input OT from commitments. Extract is an (unspecified) function
used for randomness extraction. Since Bob is sending the final message, we may use a seeded
function here.

The need for these two additional properties is not new to our work. Indeed, [DFL+09] showed
that bit commitment schemes satisfying extraction and equivocation suffice to instantiate the origi-
nal [CK88, BBCS92] QOT template. [DFL+09] called their commitments dual-mode commitments,
and provided a construction based on the quantum hardness of the learning with errors (QLWE)
assumption. In two recent works [BCKM21, GLSV21], constructions of such commitment schemes
were achieved by relying on just post-quantum one-way functions (in addition to quantum com-
munication).

We show that the most common construction of random-oracle based commitments – where
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a commitment to bit 𝑏 is 𝐻(𝑏||𝑟) for uniform 𝑟 – satisfies both extractability and equivocality in
the QROM. Our proof of extractability applies the techniques of [Zha19, DFMS21] for on-the-fly
simulation with extraction, and our proof of equivocality relies on a one-way-to-hiding lemma
from [AHU19].

2.6 Concrete parameters

Beyond proving the our protocols have negligible security error, we also compute both concrete
bounds for the number of quantum resources required by our protocols (as a function of the secu-
rity parameter), and derive exact security losses incurred by our protocols. This involves careful
analyses of the cut-and-choose strategies underlying the measurement-check parts of our proto-
cols. Such strategies were generically analyzed in [BF10], and we strengthen their classical analy-
ses to obtain improved parameters for our quantum sampling games.

We summarize our parameters in Table 1 below, where we discuss the number of EPR pairs/BB84
states required by each of our fixed-basis protocols in the first two columns, and in our optimiza-
tion of random-basis protocols in the last two columns. We also compute concrete bounds that we
obtain when relying on the XOR extractor (to obtain bit OT) versus when relying on the random
oracle or seeded extractors (to obtain string OT).

Fixed Basis Framework Random Basis Framework
1 round ℱS−ROT

(EPR pairs)
3 round ℱOT

(BB84 states)
3 round ℱS−ROT

(BB84 states)
4 round ℱOT

(BB84 states)
Bit OT

(XOR extractor)
300𝜆 3200𝜆 1600𝜆 1600𝜆

String OT
(RO/seeded extractor)

6420𝜆
(RO)

84 200𝜆
(seeded)

23 000𝜆
(RO)

10 300𝜆
(seeded)

Table 1: A summary of quantum resources required for our protocols. 𝜆 denotes the security

parameter. All of our protocols have security losses bounded by 𝑂(𝑞3/2𝜆)
2𝜆

, where 𝑞 is the number of
queries made by the adversary to the random oracle. We refer the reader to the following sections
for additional details and concrete bounds: (Section 6.1, Section 6.2) for the fixed basis EPR pair
protocols, (Section 7 and Appendix C) for the fixed basis BB84 state protocols, and Appendix B for
the random basis protocols.

3 Preliminaries

We use [𝑛] to denote the set {1, 2, . . . 𝑛} and [𝑎, 𝑏] (where 𝑎 < 𝑏) to denote the set {𝑎, 𝑎+1, . . . 𝑏}. We
use ℋ𝒲(𝑥) to denote the Hamming weight of a binary string 𝑥 ∈ {0, 1}*, and 𝜔(𝑥) to denote its
relative Hamming weight ℋ𝒲(𝑥)/|𝑥|. For two strings 𝑥, 𝑦 ∈ {0, 1}*, we use ∆(𝑥, 𝑦) = 𝜔(𝑥 ⊕ 𝑦) to
denote the relative Hamming distance of 𝑥, 𝑦. For finite sets 𝑋,𝑌 , let 𝐹𝑋→𝑌 be the set of functions
with domain 𝑋 and codomain 𝑌 . For a set 𝑇 ⊆ [𝑛], {𝑖}𝑖∈𝑇 is used to represent a set indexed by 𝑇 .
Let ℎ𝑏(𝑥) denote the binary entropy function, ℎ𝑏(𝑥) = −𝑥 log2(𝑥) − (1 − 𝑥) log2(1 − 𝑥). We make
use of the well-known fact that the number of strings of length 𝑛 with relative Hamming weight
at most 𝛿 is ≤ 2ℎ𝑏(𝛿)𝑛.
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3.1 Quantum preliminaries

A register 𝒳 is a named Hilbert space C2𝑛 . A pure quantum state on register 𝒳 is a unit vector
|𝜓⟩𝒳 ∈ C2𝑛 , and we say that |𝜓⟩𝒳 consists of 𝑛 qubits. A mixed state on register 𝒳 is described by
a density matrix 𝜌𝒳 ∈ C2𝑛×2𝑛 , which is a positive semi-definite Hermitian operator with trace 1.

A quantum operation 𝐹 is a completely-positive trace-preserving (CPTP) map from a register
𝒳 to a register 𝒴 , which in general may have different dimensions. That is, on input a density
matrix 𝜌𝒳 , the operation 𝐹 produces 𝐹 (𝜌𝒳 ) = 𝜏𝒴 a mixed state on register 𝒴 . A unitary 𝑈 : 𝒳 → 𝒳
is a special case of a quantum operation that satisfies 𝑈 †𝑈 = 𝑈𝑈 † = I𝒳 , where I𝒳 is the identity
matrix on register 𝒳 . A projector Π is a Hermitian operator such that Π2 = Π, and a projective
measurement is a collection of projectors {Π𝑖}𝑖 such that

∑︀
𝑖Π𝑖 = I.

Let Tr denote the trace operator. For registers 𝒳 ,𝒴 , the partial trace Tr𝒴 is the unique operation
from 𝒳 ,𝒴 to 𝒳 such that for all 𝜌𝒳 , 𝜏𝒴 , Tr𝒴(𝜌, 𝜏) = Tr(𝜏)𝜌. The trace distance between states 𝜌, 𝜏 ,
denoted TD(𝜌, 𝜏) is defined as

TD(𝜌, 𝜏) :=
1

2
‖𝜌− 𝜏‖1 :=

1

2
Tr

(︂√︁
(𝜌− 𝜏)†(𝜌− 𝜏)

)︂
.

We will often use the fact that the trace distance between two states 𝜌 and 𝜏 is an upper bound on
the probability that any algorithm can distinguish 𝜌 and 𝜏 .

Lemma 3.1 (Gentle measurement [Win99]). Let 𝜌𝒳 be a quantum state and let (Π, I−Π) be a projective
measurement on 𝒳 such that Tr(Π𝜌) ≥ 1− 𝛿. Let

𝜌′ =
Π𝜌Π

Tr(Π𝜌)

be the state after applying (Π, I − Π) to 𝜌 and post-selecting on obtaining the first outcome. Then,
TD(𝜌, 𝜌′) ≤ 2

√
𝛿.

Finally, we will make use of the convention that + denotes the computational basis {|0⟩ , |1⟩}
and × denotes the Hadamard basis

{︁
|0⟩+|1⟩√

2
, |0⟩−|1⟩√

2

}︁
. For a bit 𝑟 ∈ {0, 1}, we write |𝑟⟩+ to denote 𝑟

encoded in the computational basis, and |𝑟⟩× to denote 𝑟 encoded in the Hadamard basis.

3.2 Quantum machines and protocols

Quantum interactive machines. A quantum interactive machine (QIM) is a family of machines
{𝑀𝜆}𝜆∈N, where each 𝑀𝜆 consists of a sequence of quantum operations 𝑀𝜆,1, . . . ,𝑀𝜆,ℓ(𝜆), where
ℓ(𝜆) is the number of rounds in which 𝑀𝜆 operates. Usually, we drop the indexing by 𝜆 and refer
to the machine 𝑀 = 𝑀1, . . . ,𝑀ℓ. Each machine 𝑀𝑖 may have a designated input and output
register used to communicate with its environment.

Quantum oracle machines. Let 𝑋,𝑌 be finite sets and let 𝑂 : 𝑋 → 𝑌 be an arbitrary function.
We say that𝐴𝑂 is a 𝑞-query quantum oracle machine (QOM) if it can be written as𝐴𝑞+1𝑈𝑂𝐴𝑞𝑈𝑂 . . . 𝑈𝑂𝐴2𝑈𝑂𝐴1,
where 𝐴1, . . . , 𝐴𝑞+1 are arbitrary quantum operations, and 𝑈 [𝑂] is the unitary defined by

𝑈 [𝑂] : |𝑥⟩𝒳 |𝑦⟩𝒴 → |𝑥⟩𝒳 |𝑦 ⊕𝑂(𝑥)⟩𝒴 ,
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operating on a designated oracle input register 𝒳 and oracle output register 𝒴 . We say that 𝐴 is
a quantum interactive oracle machine (QIOM) if 𝐴 = 𝐴𝑂1 , . . . , 𝐴

𝑂
ℓ is such that each 𝐴𝑂𝑖 is a quantum

oracle machine.
Sometimes, it will be convenient to consider controlled queries to an oracle 𝑂, which would be

implemented by a unitary

𝑈𝑐[𝑂] : |𝑏⟩ℬ |𝑥⟩𝒳 |𝑦⟩𝒴 → |𝑏⟩ℬ |𝑥⟩𝒳 |𝑦 ⊕ 𝑏 ·𝑂(𝑥)⟩𝒴 .

However, it is easy to see that such a controlled query can be implemented with two standard
queries, by introducing an extra register 𝒵 , as follows:

|𝑏⟩ℬ |𝑥⟩𝒳 |𝑦⟩𝒴 |0⟩𝒵
𝑈 [𝑂0]𝒳 ,𝒵−−−−−−→ |𝑏⟩ℬ |𝑥⟩𝒳 |𝑦⟩𝒴 |𝑂(𝑥)⟩𝒵 → |𝑏⟩ℬ |𝑥⟩𝒳 |𝑦 ⊕ 𝑏 ·𝑂(𝑥)⟩𝒴 |𝑂(𝑥)⟩𝒵
𝑈 [𝑂0]𝒳 ,𝒵−−−−−−→ |𝑏⟩ℬ |𝑥⟩𝒳 |𝑦 ⊕ 𝑏 ·𝑂(𝑥)⟩𝒴 |0⟩𝒵 .

It will also be convenient to consider algorithms 𝐴𝑂0,𝑂1 with access to multiple oracles 𝑂0 :
𝑋0 → 𝑌0, 𝑂1 : 𝑋1 → 𝑌1, written as 𝐴𝑞+1𝑈𝑂1𝐴𝑞𝑈𝑂0 . . . 𝑈𝑂1𝐴2𝑈𝑂0𝐴1. Defining 𝑂(𝑏, 𝑥) = 𝑂𝑏(𝑥) for
(𝑏, 𝑥) ∈ (0, 𝑋0) ∪ (1, 𝑋1), it is easy to see that any 𝐴𝑂0,𝑂1 can be written as an oracle algorithm
𝐵𝑂. On the other hand, given a 𝑞-query oracle algorithm 𝐴𝑂 where 𝑂 : 𝑋 → 𝑌 , and a partition
of 𝑋 into (0, 𝑋 ′) ∪ (1, 𝑋 ′), we can write 𝐴 as a 4𝑞-query algorithm 𝐵𝑂0,𝑂1 , where 𝑂𝑏 : 𝑋 ′ → 𝑌
is such that 𝑂𝑏(𝑥′) = 𝑂(𝑏, 𝑥′). This follows by answering each query to 𝑂 using one controlled
query to 𝑂0 and one controlled query to 𝑂1. This can be extended to splitting up an oracle 𝑂 into
𝑘 oracles, with a multiplicative factor of 2𝑘 in the number of queries made by the adversary. Thus,
throughout this work, we often consider machines that have access to multiple (potentially inde-
pendently sampled) oracles, while noting that this model is equivalent to considering machines
with access to a single oracle, up to a difference in the number of oracle queries. In particular,
any adversarial algorithm that has superposition access to a single oracle 𝑂 with an input space
that can be partitioned into 𝑘 parts may be written as an adversarial algorithm wth access to 𝑘
appropriately defined separate oracles 𝑂1, . . . , 𝑂𝑘.

Functionalities and protocols in the quantum random oracle model. Let ℱ denote a functional-
ity, which is a classical interactive machine specifying the instructions to realize a cryptographic
task. A two-party protocol8 Π for ℱ consists of two QIMs (𝐴,𝐵).9 A protocol Π in the quantum
random oracle model (QROM) consists of two QIOMs (𝐴𝐻 , 𝐵𝐻) that have quantum oracle access to
a uniformly random function 𝐻 sampled from 𝐹𝑋→𝑌 for some finite sets 𝑋 and 𝑌 .

An adversary intending to attack the protocol along with a distinguisher can be described
by a family {Adv𝜆,D𝜆, 𝑥𝜆}𝜆∈N, where Adv𝜆 is a QIOM that corrupts party 𝑀 ∈ {𝐴,𝐵}, D𝜆 is a
QOM, and 𝑥𝜆 is the input of the honest party 𝑃 ∈ {𝐴,𝐵}. Define the one-bit random variable
Π[Adv𝜆,D𝜆, 𝑥𝜆] as follows.

• 𝐻 is sampled uniformly at random.

• Adv𝐻𝜆 interacts with 𝑃𝐻(𝑥𝜆) during the execution of Π, and Adv𝜆 outputs a quantum state 𝜌,
while 𝑃𝐻 outputs a classical string 𝑦.

8One can also consider multi-party protocols, but we restrict to the two-party setting in this work.
9Technically, 𝐴 and 𝐵 are infinite families of interactive machines, parameterized by the security parameter 𝜆.
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• D𝐻𝜆 (𝜌, 𝑦) outputs a bit 𝑏.

An ideal-world protocol ̃︀Πℱ for functionality ℱ consists of two “dummy” parties ̃︀𝐴, ̃︀𝐵 that have
access to an additional “trusted” party that implements ℱ . That is, ̃︀𝐴, ̃︀𝐵 each interact directly with
ℱ , which eventually returns outputs to ̃︀𝐴, ̃︀𝐵. We consider the execution of ideal-world protocols
in the presence of a simulator followed by a distinguisher, described by a family {Sim𝜆,D𝜆, 𝑥𝜆}𝜆∈N.
Define the random variable ̃︀Πℱ [Sim𝜆,D𝜆, 𝑥𝜆] over one bit output a follows.

• Sim𝜆 interacts with ̃︀𝑃 (𝑥𝜆) during the execution of ̃︀Πℱ , and Sim𝜆 outputs a quantum state 𝜌,
while ̃︀𝑃 outputs a classical string 𝑦.

• DSim𝜆
𝜆 (𝜌, 𝑦) outputs a bit 𝑏.

In the above, Sim𝜆 may be stateful, meaning that the part of Sim𝜆 that interacts with ̃︀𝑃 (𝑥) may
pass an arbitrary state to the part of Sim𝜆 that answers D′𝜆𝑠 oracle queries.

Furthermore, we will only consider the notion of security with abort where every ideal func-
tionality is slightly modified to (1) know the identities of corrupted parties and (2) be slightly
reactive: after all parties have provided input, the functionality computes outputs and delivers
the outputs to the corrupt parties only. Then the functionality awaits either a “deliver” or “abort”
command from the corrupted parties. Upon receiving “deliver”, the functionality delivers the out-
puts to all the honest parties. Upon receiving “abort”, the functionality delivers an abort output
(⊥) to all the honest parties.

Definition 3.2 (Securely Realizing Functionalities with Abort). A protocol Π 𝜇-securely realizes a
functionality ℱ with abort in the quantum random oracle model if there exists a polynomial 𝑠 such that for
any function 𝑞 and any {Adv𝜆}𝜆∈N, there exists a simulator {Sim𝜆}𝜆∈N such that the run-time of Sim𝜆 is
at most the run-time of Adv𝜆 plus 𝑠(𝜆, 𝑞(𝜆)), and for all {D𝜆, 𝑥𝜆}𝜆∈N with the property that the combined
number of oracle queries made by Adv𝜆 and D𝜆 is at most 𝑞(𝜆), it holds that⃒⃒⃒⃒

Pr[Π[Adv𝜆,D𝜆, 𝑥𝜆] = 1]− Pr
[︁̃︀Πℱ [Sim𝜆,D𝜆, 𝑥𝜆] = 1

]︁⃒⃒⃒⃒
= 𝜇(𝜆, 𝑞(𝜆)).

Furthermore, we say that a protocol Π securely realizes a functionality ℱ if it 𝜇-securely realizes ℱ where
𝜇 is such that for any 𝑞(𝜆) = poly(𝜆), 𝜇(𝜆, 𝑞(𝜆)) = negl(𝜆).

3.3 Oblivious transfer functionalities

We will consider various oblivious transfer functionalities in this work. Some of these will be used
as stepping stones towards other constructions.

• ℱOT[𝑘]: the chosen-input string OT functionality takes as input a bit 𝑏 from the receiver and
two strings 𝑚0,𝑚1 ∈ {0, 1}𝑘 from the sender. It delivers 𝑚𝑏 to the receiver.

• ℱR−ROT[1]: the random-receiver-input bit OT functionality takes as input ⊤ from the receiver
and two bits 𝑚0,𝑚1 ∈ {0, 1} from the sender. It samples 𝑏 ← {0, 1} and delivers (𝑏,𝑚𝑏) to
the receiver.
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• ℱS−ROT[𝑘]: the random-sender-input (string) OT functionality takes as input⊤ from the sender
and (𝑏,𝑚) from the receiver for 𝑏 ∈ {0, 1},𝑚 ∈ {0, 1}𝑘. It set 𝑚𝑏 = 𝑚, samples 𝑚1−𝑏 ←
{0, 1}𝑘 and delivers (𝑚0,𝑚1) to the sender.

We will often refer to the following bit OT reversal theorem.

Imported Theorem 3.3 ([IKNP03]). Any protocol that securely realizes the functionality ℱS−ROT[1] can
be converted into a protocol that securely realizes the functionality ℱR−ROT[1], without adding any mes-
sages.

For concreteness, we specify how the OT reversal works. Suppose that Alice and Bob have
access to an ideal OT functionality ℱS−ROT[1] where Alice is the receiver and Bob is the sender.
Their goal is to realize ℱR−ROT[1] with roles reversed, i.e. with Alice as sender and Bob as receiver.
This is achieved as follows.

• Alice has input 𝑚0,𝑚1 ∈ {0, 1}, and samples 𝑐← {0, 1}, 𝑟 ← {0, 1}.

• Alice and Bob run the protocol forℱS−ROT[1] where Alice inputs (𝑐, 𝑟) as receiver toℱS−ROT[1],
and Alice sends

ℓ0 := 𝑚0 ⊕ 𝑟, ℓ1 := 𝑚1 ⊕ 𝑟 ⊕ 𝑐

along with her OT message to Bob.

• Bob obtains output (𝑟0, 𝑟1) from the protocol for ℱS−ROT[1]. Then, he sets

𝑏 := 𝑟0 ⊕ 𝑟1,𝑚𝑏 := ℓ𝑏 ⊕ 𝑟0,

and outputs (𝑏,𝑚𝑏).

3.4 Quantum oracle results

We state here some results on quantum oracle machine from prior literature, which we use in our
proofs.

Imported Theorem 3.4 (One-way to hiding [AHU19]). Let 𝑋,𝑌 be finite non-empty sets and let
(𝑆,𝑂1, 𝑂2, |𝜓⟩) be sampled from an arbitrary distribution such that 𝑆 ⊆ 𝑋 , 𝑂1, 𝑂2 : 𝑋 → 𝑌 are such
that ∀𝑥 ̸∈ 𝑆,𝑂1(𝑥) = 𝑂2(𝑥), and |𝜓⟩ is a quantum state on an arbitrary number of qubits. Let 𝐴𝑂(|𝜓⟩)
be a quantum oracle algorithm that makes at most 𝑞 queries. Let 𝐵𝑂(|𝜓⟩) be an oracle algorithm that does
the following: pick 𝑖← [𝑞], run 𝐴𝑂(|𝜓⟩) until (just before) the 𝑖𝑡ℎ query, measure the query input register
in the computational basis, and output the measurement outcome 𝑥. Let

• 𝑃left = Pr
[︀
𝐴𝑂1(|𝜓⟩) = 1

]︀
,

• 𝑃right = Pr
[︀
𝐴𝑂2(|𝜓⟩) = 1

]︀
,

• and 𝑃guess = Pr
[︀
𝑥 ∈ 𝑆 : 𝑥← 𝐵𝑂1(|𝜓⟩)

]︀
.

Then it holds that
|𝑃left − 𝑃right| ≤ 2𝑞

√︁
𝑃guess.
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The above theorem is actually a generalization of the theorem stated in [AHU19], in which the
input |𝜓⟩ is assumed to be a classical bit string 𝑧. However, the proof given in [AHU19] readily
extends to considering quantum input. The proof is split up into [AHU19, Lemma 8] and [AHU19,
Lemma 9]. In Lemma 8, (𝑆,𝑂1, 𝑂2, 𝑧) are fixed, and 𝑧 is used to define 𝐴’s initial state |Ψ0⟩. Here,
we can just define 𝐴’s initial state as |𝜓⟩. In Lemma 9, an expectation is taken over (𝑆,𝑂1, 𝑂2, 𝑧),
and the same expectation can be taken over (𝑆,𝑂1, 𝑂2, |𝜓⟩).

Imported Theorem 3.5 (Measure-and-reprogram [DFMS19, DFM20]). 10 Let 𝑋,𝑌 be finite non-
empty sets, and let 𝑞 ∈ N. Let Adv be a quantum oracle machine with initial state 𝜌 that makes at most 𝑞
queries to a uniformly random function 𝐻 : 𝑋 → 𝑌 and that outputs an 𝑥 ∈ 𝑋 along with an arbitrary
quantum state 𝜎 on register 𝒜. There exists a quantum interactive machine Sim[Adv] such that for any
projection

Π[𝑦] :=
∑︁
𝑥

|𝑥⟩ ⟨𝑥| ⊗Π𝑥,𝑦𝒜 ,

where each Π𝑥,𝑦 is an arbitrary projection on register𝒜 that is parameterized by strings 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 ,
it holds that

E
𝐻

[︀
Tr (Π[𝐻(𝑥)] (|𝑥⟩ ⟨𝑥| ⊗ 𝜎)) : (𝑥, 𝜎)← Adv𝐻(𝜌)

]︀
≤ (2𝑞 + 1)2 E

⎡⎣Tr (Π[𝑦] (|𝑥⟩ ⟨𝑥| ⊗ 𝜎)) : (𝑥, st)← Sim[Adv](𝜌)
𝑦 ← 𝑌

𝜎 ← Sim[Adv](𝑦, st)

⎤⎦ .
Moreover, Sim[Adv] runs Adv except for the following differences: i) it introduces an intermediate

measurement of one of the registers maintained by Adv to obtain 𝑥, and ii) it simulates responses to Adv’s
oracle queries to 𝐻 .

Finally, we will often make use of an “on-the-fly” method for simulating a quantum random
oracle, due to [Zha19]. This method of simulation is efficient and does not depend on an a priori up-
per bound on the number of queries 𝑞 to be made by the adversary. In fact, as shown by [DFMS21],
this simulation method may be augmented with an extraction interface that essentially allows to
recovers a pre-image 𝑥 given an image 𝑦 = 𝐻(𝑥).

Below, we define independent queries to an interface to be two consecutive queries that can in
principle be performed in either order. More formally, two consecutive queries are independent if
they can applied to disjoint registers, meaning that one query may be applied to input and output
registers 𝒳 and 𝒴 , while the other may be applied to disjoint input and output registers 𝒳 ′ and
𝒴 ′.

Furthermore, we say that two quantum operations 𝐸 and 𝐹 𝛼-almost-commute if for any input
state 𝜌, TD(𝐸(𝐹 (𝜌)), 𝐹 (𝐸(𝜌)) ≤ 𝛼. We say that two quantum operations 𝐸 and 𝐹 commute if for
any input state 𝜌, TD(𝐸(𝐹 (𝜌)), 𝐹 (𝐸(𝜌)) = 0.

Imported Theorem 3.6 (On-the-fly simulation with extraction [Zha19, DFMS21]). Let 𝑋 be a finite
non-empty set and 𝑌 = {0, 1}𝑛. There exists a simulator SimRO that consists of an initialization step and
an interface SimRO.RO that maintains an internal state. SimRO.RO, given registers 𝒳 and 𝒴 , applies a

10This theorem was stated more generally in [DFMS19, DFM20] to consider the drop in expectation for each specific
𝑥* ∈ 𝑋 .
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quantum operation to these registers and its internal state.11 The following properties hold for any oracle
algorithm 𝐴.

1. Indistinguishable simulation.

Pr
𝐻
[1← 𝐴𝐻 ] = Pr

[︁
1← 𝐴SimRO.RO

]︁
.

2. Efficiency. Suppose that 𝐴 makes 𝑞 queries to SimRO.RO. Then the total runtime of SimRO is 𝑂(𝑞2).

There also exists an interface SimRO.E that upon input a classical value 𝑦 ∈ {0, 1}𝑛, outputs a classical
value 𝑥̂ ∈ 𝑋 ∪ {∅}. The following properties hold for any oracle algorithm 𝐴.

1. Correctness of extraction. Suppose that𝐴makes 𝑞 queries to SimRO.RO and no queries to SimRO.E,
and outputs x ∈ 𝑋ℓ and y ∈ 𝑌 ℓ. Then,

Pr

⎡⎣∃ 𝑖 : (y𝑖 = ŷ𝑖) ∧ (x𝑖 ̸= x̂𝑖)

⃒⃒⃒⃒
⃒

x,y← 𝐴SimRO.RO

ŷ← SimRO.RO(x)
x̂← SimRO.E(y)

⎤⎦ ≤ 296(𝑞 + ℓ+ 1)3 + 2

2𝑛
.

2. Almost commutativity of SimRO.RO and SimRO.E. Any two independent queries to SimRO.E

and SimRO.RO
8
√
2

2𝑛/2 -almost-commute.

3. Efficiency. Suppose that 𝐴 makes 𝑞RO queries to SimRO.RO and 𝑞E queries to SimRO.E. Then the
total runtime of SimRO is 𝑂(𝑞RO𝑞E + 𝑞2RO).

3.5 Quantum entropy and leftover hashing

Quantum conditional min-entropy. Let 𝜌𝒳𝒴 denote a bipartite quantum state over registers
𝒳 ,𝒴 . Following [Ren08, KRS09], the conditional min-entropy of 𝜌𝒳𝒴 given 𝒴 is then defined
to be

H∞(𝜌𝒳𝒴 | 𝒴) := sup
𝜏

max{ℎ ∈ R : 2−ℎ · I𝒳 ⊗ 𝜏𝒴 − 𝜌𝒳𝒴 ≥ 0}.

In this work, we will exclusively consider the case where the 𝜌𝒳𝒴 is a joint distribution of the
form (𝑅, 𝜏) where 𝑅 is a classical random variable. In other words, 𝜌𝒳𝒴 can be written as∑︁

𝑥

Pr[𝑋 = 𝑥] |𝑥⟩ ⟨𝑥| ⊗ 𝜏𝑥.

We refer to such 𝜌𝒳𝒴 as a classical-quantum state. In this case, quantum conditional min-
entropy exactly corresponds to the maximum probability of guessing 𝑥 given the state on register
𝒴 .

Imported Theorem 3.7 ([KRS09]). Let 𝜌𝒳 ,𝒴 be a classical-quantum state, and let 𝑝guess(𝜌𝒳 ,𝒴 |𝒴) be the
maximum probability that any quantum operation can output the 𝑥 on register𝒳 , given the state on register
𝒴 . Then

𝑝guess(𝜌𝒳 ,𝒴 |𝒴) = 2−H∞(𝜌𝒳 ,𝒴 |𝒴).

11We can also consider applying SimRO.RO to a classical input 𝑥 and producing classical output 𝑦, which corresponds
to applying the quantum operation on |𝑥⟩𝒳 |0⟩𝒴 and measuring the register 𝒴 to produce the output.
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Leftover hash lemma with quantum side information. We now state a generalization of the
leftover hash lemma to the setting of quantum side information.

Imported Theorem 3.8 ([RK05]). Let ℋ be a family of universal hash functions from 𝑋 to {0, 1}ℓ, i.e.
for any 𝑥 ̸= 𝑥′, Prℎ←ℋ[ℎ(𝑥) = ℎ(𝑥′)] = 2−ℓ. Let 𝜌𝒳𝒴 be any classical-quantum state. Let ℛ be a register
that holds ℎ← ℋ, let 𝒦 be a register that holds ℎ(𝑥), where 𝑥 is on register 𝒳 , and define 𝜌𝒳𝒴ℛ𝒦 to be the
entire system. Then, it holds that⃦⃦⃦⃦

⃦𝜌𝒴ℛ𝒦 − 𝜌𝒴ℛ ⊗ 1

2ℓ

∑︁
𝑢

|𝑢⟩ ⟨𝑢|

⃦⃦⃦⃦
⃦
1

≤ 1

21+
1
2
(H∞(𝜌𝒳𝒴 |𝒴)−ℓ)

.

Small superposition of terms. We will also make use of the following lemma from [BF10].

Imported Theorem 3.9. ([BF10]) Let 𝒳 ,𝒴 be registers of arbitrary size, and let {|𝑖⟩}𝑖∈𝐼 and {|𝑤⟩}𝑤∈𝑊
be orthonormal bases of 𝒳 . Let |𝜓⟩𝒳𝒴 and 𝜌𝒳𝒴 be of the form

|𝜓⟩ =
∑︁
𝑖∈𝐽

𝛼𝑖 |𝑖⟩𝒳 |𝜓𝑖⟩𝒴 and 𝜌 =
∑︁
𝑖∈𝐽
|𝛼𝑖|2 |𝑖⟩ ⟨𝑖|𝒳 ⊗ |𝜓𝑖⟩ ⟨𝜓𝑖|𝒴

for some subset 𝐽 ⊆ 𝐼 . Furthermore, let ̂︀𝜌𝒳𝒴 and ̂︀𝜌mix
𝒳𝒴 be the classical-quantum states obtained by measur-

ing register 𝒳 of |𝜓⟩ and 𝜌, respectively, in basis {|𝑤⟩}𝑤∈𝑊 to observe outcome 𝑤. Then,

H∞(̂︀𝜌𝒳 ,𝒴 |𝒴) ≥ H∞(̂︀𝜌mix
𝒳 ,𝒴 |𝒴)− log |𝐽 |.

3.6 Sampling in a quantum population

In this section, we describe a generic framework presented in [BF10] for analyzing cut-and-choose
strategies applied to quantum states.

Classical sampling stratiegies. Let 𝐴 be a set, and let q = (𝑞1, . . . , 𝑞𝑛) ∈ 𝐴𝑛 be a string of length
𝑛. We consider the problem of estimating the relative Hamming weight of a substring 𝜔(q𝑡) by
only looking at the substring q𝑡 of q, for a subset 𝑡 ⊂ [𝑛]. We consider sampling strategies Ψ =
(𝑃𝑇 , 𝑃𝑆 , 𝑓), where 𝑃𝑇 is an (independently sampled) distribution over subsets 𝑡 ⊆ [𝑛], 𝑃𝑆 is a
distribution over seeds 𝑠 ∈ 𝑆, and 𝑓 : {(𝑡,v) : 𝑡 ⊂ [𝑛],v ∈ 𝐴𝑡} × 𝑆 → R is a function that takes the
subset 𝑡, the substring v, and a seed 𝑠, and outputs an estimate for the relative Hamming weight
of the remaining string. For a fixed subset 𝑡, seed 𝑠, and a parameter 𝛿, define 𝐵𝛿

𝑡,𝑠(Ψ) ⊆ 𝐴𝑛 as

𝐵𝛿
𝑡,𝑠 := {b ∈ 𝐴𝑛 : |𝜔(b𝑡)− 𝑓(𝑡,b𝑡, 𝑠)| < 𝛿}.

Then we define the classical error probability of strategy Ψ as follows.

Definition 3.10 (Classical error probability). The classical error probability of a sampling strategy Ψ =
(𝑃𝑇 , 𝑃𝑆 , 𝑓) is defined as the following value, paraterized by 0 < 𝛿 < 1:

𝜖𝛿classical(Ψ) := max
q∈𝐴𝑛

Pr
𝑡←𝑃𝑇 ,𝑠←𝑃𝑆

[︁
q /∈ 𝐵𝛿

𝑡,𝑠(Ψ)
]︁
.
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Quantum sampling strategies. Now, let 𝐴 = 𝐴1, . . . , 𝐴𝑛 be an 𝑛-partite quantum system on
registers𝒜 = 𝒜1⊗· · ·⊗𝒜𝑛, where each system has dimension 𝑑. Let {|𝑎⟩}𝑎 be a fixed orthonormal
basis for each 𝒜𝑖. 𝒜 may be entangled with another system ℰ , and we write the purified state on
𝒜 and ℰ as |𝜓⟩𝒜ℰ . We consider the problem of testing whether the state on 𝒜 is close to the all-
zero reference state |0⟩𝒜1

. . . |0⟩𝒜𝑛
. There is a natural way to apply any sampling strategy Ψ =

(𝑃𝑇 , 𝑃𝑆 , 𝑓) to this setting: sample 𝑡, 𝑠 according to 𝑃𝑇 , 𝑃𝑆 , measure subsystems 𝒜𝑖 for 𝑖 ∈ [𝑡] in
basis {|𝑎⟩}𝑎 to observe q𝑡 ∈ 𝐴|𝑡|, and compute an estimate 𝑓(𝑡,q𝑡, 𝑠).

In order to analyze the effect of this strategy, we first consider the mixed state on registers 𝒯
(holding the subset 𝑡), 𝒮 (holding the seed 𝑠), and𝒜, ℰ that results from sampling 𝑡 and 𝑠 according
to 𝑃𝑇𝑆 = 𝑃𝑇𝑃𝑆

𝜌𝒯 𝒮𝒜ℰ =
∑︁
𝑡,𝑠

𝑃𝑇𝑆(𝑡, 𝑠) |𝑡, 𝑠⟩ ⟨𝑡, 𝑠| ⊗ |𝜓⟩ ⟨𝜓| .

Next, we compare this state to an ideal state, parameterized by 0 < 𝛿 < 1, of the form

̃︀𝜌𝒯 𝒮𝒜ℰ =∑︁
𝑡,𝑠

𝑃𝑇𝑆(𝑡, 𝑠) |𝑡, 𝑠⟩ ⟨𝑡, 𝑠| ⊗
⃒⃒⃒ ̃︀𝜓𝑡𝑠⟩⟨ ̃︀𝜓𝑡𝑠 ⃒⃒⃒ with

⃒⃒
𝜓𝑡𝑠
⟩︀
∈ span

(︁
𝐵𝛿
𝑡,𝑠

)︁
⊗ ℰ ,

where

span
(︁
𝐵𝛿
𝑡,𝑠

)︁
:= span

(︁
{|b⟩ : b ∈ 𝐵𝛿

𝑡,𝑠}
)︁
= span ({|b⟩ : |𝜔(b𝑡)− 𝑓(𝑡,b𝑡, 𝑠)| < 𝛿}) .

That is, ̃︀𝜌𝒯 𝒮𝒜ℰ is a state such that it holds with certainty that the state on registers𝒜𝑡ℰ , after having
measured 𝒜𝑡 and oberserving q𝑡, is in a superposition of states with relative Hamming weight
𝛿-close to 𝑓(𝑡,q𝑡, 𝑠). This leads us to the definition of the quantum error probability of strategy Ψ.

Definition 3.11 (Quantum error probability). The quantum error probability of a sampling strategy
Ψ = (𝑃𝑇 , 𝑃𝑆 , 𝑓) is defined as the following value, parameterized by 0 < 𝛿 < 1:

𝜖𝛿quantum(Ψ) := max
ℰ

max
|𝜓⟩𝒜ℰ

miñ︀𝜌𝒯 𝒮𝒜ℰ
TD (𝜌𝒯 𝒮𝒜ℰ , ̃︀𝜌𝒯 𝒮𝒜ℰ) ,

where the first max is over all finite-dimensional registers ℰ , the second max is over all state |𝜓⟩𝒜ℰ and the
min is over all ideal state ̃︀𝜌𝒯 𝒮𝒜ℰ of the form described above.

Finally, we relate the classical and quantum error probabilities.

Imported Theorem 3.12 ([BF10]). For any sampling strategy Ψ and 𝛿 > 0,

𝜖𝛿quantum(Ψ) ≤
√︁
𝜖𝛿classical(Ψ).

4 Seedless extraction from quantum sources

In this section, we consider the problem of seedless randomness extraction from a quantum source
of entropy. The source of entropy we are interested in comes from applying a Hadamard basis
measurement to a state that is in a “small” superposition of computational basis vectors. More
concretely, consider an arbitrarily entangled system on registers 𝒜,𝒳 , where 𝒳 is in a small su-
perposition of computational basis vectors. Then, we want to specify an extractor 𝐸 such that, if
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𝑥 is obtained by measuring register 𝒳 in the Hadamard basis, then 𝐸(𝑥) looks uniformly random,
even given the “side information” on register 𝒜. Note that seeded randomness extraction in this
setting has been well-studied (e.g. [RK05, DFL+09, BF10]).

Proofs of the following two theorems are given in Appendix A.

4.1 The XOR extractor

First, we observe that if 𝐸 just XORs all the bits of 𝑥 together, then the resulting bit 𝐸(𝑥) is perfectly
uniform, as long as the original state on 𝒳 is only supported on vectors with relative Hamming
weight < 1/2.

Theorem 4.1. Let 𝒳 be an 𝑛-qubit register, and consider any state |𝛾⟩𝒜,𝒳 that can be written as

|𝛾⟩ =
∑︁

𝑢:ℋ𝒲(𝑢)<𝑛/2

|𝜓𝑢⟩𝒜 ⊗ |𝑢⟩𝒳 .

Let 𝜌𝒜,𝒫 be the mixed state that results from measuring 𝒳 in the Hadamard basis to produce 𝑥, and writing⨁︀
𝑖∈[𝑛] 𝑥𝑖 into the single qubit register 𝒫 . Then it holds that

𝜌𝒜,𝒫 = Tr𝒳 (|𝛾⟩ ⟨𝛾|)⊗
(︂
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

)︂
.

4.2 The RO extractor

Next, our goal is to extract multiple bits of randomness from 𝑥. To do this, we model 𝐸 as a
random oracle. We derive a bound on the advantage any adversary has in distinguishing 𝐸(𝑥)
from a uniformly random string, based on the number of qubits 𝑘 in the register 𝒳 , the number
of vectors 𝐶 in the superposition on register 𝒳 , and the number of queries 𝑞 made to the random
oracle. In fact, to be as general as possible, we consider a random oracle with input length 𝑛, and
allow 𝑛 − 𝑘 of the bits of the input to the random oracle to be (adaptively) determined by the
adversary, while the remaining 𝑘 bits are sampled by measuring a 𝑘-qubit register 𝒳 .

Theorem 4.2. Let 𝐻 : {0, 1}𝑛 → {0, 1}𝑚 be a uniformly random function, and let 𝑞, 𝐶, 𝑘 be integers.
Consider a two-stage oracle algorithm (𝐴𝐻1 , 𝐴

𝐻
2 ) that combined makes at most 𝑞 queries to𝐻 . Suppose that

𝐴𝐻1 outputs classical strings (𝑇, {𝑥𝑖}𝑖∈𝑇 ), and let |𝛾⟩𝒜,𝒳 be its left-over quantum state,12 where 𝑇 ⊂ [𝑛]
is a set of size 𝑛 − 𝑘, each 𝑥𝑖 ∈ {0, 1}, 𝒜 is a register of arbitary size, and 𝒳 is a register of 𝑘 qubits.
Suppose further that with probability 1 over the sampling of 𝐻 and the execution of 𝐴1, there exists a set
𝐿 ⊂ {0, 1}𝑘 of size at most 𝐶 such that |𝛾⟩ may be written as follows:

|𝛾⟩ =
∑︁
𝑢∈𝐿
|𝜓𝑢⟩𝒜 ⊗ |𝑢⟩𝒳 .

Now consider the following two games.

• REAL:
12That is, consider sampling 𝐻 , running a purified 𝐴𝐻

1 , measuring at the end to obtain (𝑇, {𝑥𝑖}𝑖∈𝑇 ), and then defining
|𝛾⟩ to be the left-over state on 𝒜’s remaining registers.
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– 𝐴𝐻1 outputs 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾⟩𝒜,𝒳 .
– 𝒳 is measured in the Hadamard basis to produce a 𝑘-bit string which is parsed as {𝑥𝑖}𝑖∈𝑇 , and

a left-over state |𝛾′⟩𝒜 on register 𝒜. Define 𝑥 = (𝑥1, . . . , 𝑥𝑛).
– 𝐴𝐻2 is given 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾′⟩𝒜 , 𝐻(𝑥), and outputs a bit.

• IDEAL:

– 𝐴𝐻1 outputs 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾⟩𝒜,𝒳 .
– 𝑟 ← {0, 1}𝑚.
– 𝐴𝐻2 is given 𝑇, {𝑥𝑖}𝑖∈𝑇 ,Tr𝒳 (|𝛾⟩ ⟨𝛾|), 𝑟, and outputs a bit.

Then,

|Pr[REAL = 1]− Pr[IDEAL = 1]| ≤
2
√
𝑞𝐶 + 2𝑞

√
𝐶

2𝑘/2
<

4𝑞𝐶

2𝑘/2
.

5 Non-interactive extractable and equivocal commitments

A non-interactive commitment scheme with partial opening in the quantum random oracle model
consists of classical oracle algorithms (Com,Open,Rec) with the following syntax.

• Com𝐻(1𝜆, {𝑚𝑖}𝑖∈[𝑛]): On input the security parameter 𝜆 and 𝑛 messages {𝑚𝑖 ∈ {0, 1}𝑘}𝑖∈[𝑛],
output 𝑛 commitments {com𝑖}𝑖∈[𝑛] and a state st.

• Open𝐻(st, 𝑇 ): On input a state st and a set 𝑇 ⊆ [𝑛], output messages {𝑚𝑖}𝑖∈𝑇 and openings
{𝑢𝑖}𝑖∈𝑇 .

• Rec𝐻({com𝑖}𝑖∈[𝑛], 𝑇, {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 ): on input 𝑛 commitments {com𝑖}𝑖∈[𝑛], a set 𝑇 , and a set of
message opening pairs {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 , output either {𝑚𝑖}𝑖∈𝑇 or ⊥.

The commitment scheme is parameterized by 𝑛 = 𝑛(𝜆) which is the number of messages to be
committed in parallel, and 𝑘 = 𝑘(𝜆) which is the number of bits per message.

5.1 Definitions

Definition 5.1 (Correctness). A non-interactive commitment scheme with partial opening in the QROM
is correct if for any {𝑚𝑖}𝑖∈[𝑛] and 𝑇 ⊆ [𝑛],

Pr

[︂
Rec𝐻({com𝑖}𝑖∈[𝑛] , 𝑇, {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 ) = {𝑚𝑖}𝑖∈𝑇 :

(st, {com𝑖}𝑖∈[𝑛])← Com𝐻(1𝜆, {𝑚𝑖}𝑖∈[𝑛])
{𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 ← Open𝐻(st, 𝑇 )

]︂
= 1.

Definition 5.2 (𝜇-Hiding). A non-interactive commitment scheme with partial opening in the QROM is
𝜇-hiding if for any adversary Adv that makes at most 𝑞(𝜆) queries to the random oracle, and any two sets
of messages {𝑚𝑖,0}𝑖∈[𝑛] and {𝑚𝑖,1}𝑖∈[𝑛], it holds that⃒⃒⃒⃒

⃒Pr [︁Adv𝐻({com𝑖}𝑖∈[𝑛]) = 1 : {com𝑖}𝑖∈[𝑛] ← Com𝐻(1𝜆, {𝑚𝑖,0}𝑖∈[𝑛])
]︁
−

Pr
[︁
Adv𝐻({com𝑖}𝑖∈[𝑛]) = 1 : {com𝑖}𝑖∈[𝑛] ← Com𝐻(1𝜆, {𝑚𝑖,1}𝑖∈[𝑛])

]︁ ⃒⃒⃒⃒⃒ = 𝜇(𝜆, 𝑞(𝜆)).
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Furthermore, we say that a commitment is hiding if it is 𝜇-hiding, where 𝜇 is such that for any 𝑞(𝜆) =
poly(𝜆), 𝜇(𝜆, 𝑞(𝜆)) = negl(𝜆).

Definition 5.3 (𝜇-Extractability). A non-interactive commitment scheme with partial opening in the
QROM is 𝜇-extractable if there exists a polynomial 𝑠 and a simulator SimExt consisting of an interface
SimExt.RO and an algorithm SimExt.Ext that may share a common state, such that for any family of
quantum oracle algorithms {Adv𝜆 = (AdvCommit,𝜆,AdvOpen,𝜆,D𝜆)}𝜆∈N that makes at most 𝑞(𝜆) queries to
the random oracle, it holds that

⃒⃒⃒⃒
⃒Pr𝐻

⎡⎣D𝐻𝜆 (𝜌2, out) = 1 :

(𝜌1, {com𝑖}𝑖∈[𝑛])← Adv𝐻Commit,𝜆

(𝜌2, 𝑇, {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 )← Adv𝐻Open,𝜆(𝜌1)

out← Rec𝐻({com𝑖}𝑖∈[𝑛], 𝑇, {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 )

⎤⎦

− Pr

⎡⎢⎢⎢⎢⎣DSimExt.RO
𝜆 (𝜌2, out) = 1 :

(𝜌1, {com𝑖}𝑖∈[𝑛])← AdvSimExt.RO
Commit,𝜆

{𝑚*𝑖 }𝑖∈[𝑛] ← SimExt.Ext({com𝑖}𝑖∈[𝑛])
(𝜌2, 𝑇, {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 )← AdvSimExt.RO

Open,𝜆 (𝜌1)

out← RecSimExt.RO({com𝑖}𝑖∈[𝑛], 𝑇, {𝑚𝑖, 𝑢𝑖}𝑖∈𝑇 )
out := FAIL if out /∈ {{𝑚*𝑖 }𝑖∈𝑇 ,⊥}

⎤⎥⎥⎥⎥⎦
⃒⃒⃒⃒
⃒ = 𝜇(𝜆, 𝑞(𝜆)),

where the state of SimExt was kept implicit, and the total run-time of SimExt on security parameter 1𝜆 is at
most 𝑠(𝜆, 𝑞(𝜆)). The interface SimExt.RO is invoked on each query to 𝐻 made by Adv and Rec, while the
algorithm SimExt.Ext is invoked on the classical commitments output by Adv.

Furthermore, we say that a commitment is extractable if it is 𝜇-extractable, where 𝜇 is such that for
any 𝑞(𝜆) = poly(𝜆), 𝜇(𝜆, 𝑞(𝜆)) = negl(𝜆).

Finally, we say that the commitment scheme satisfies extraction with a 𝜈-commuting simulator if
a call to SimExt.RO 𝜈(𝜆)-almost-commutes with the operation SimExt.Ext when the input and output
registers of SimExt.RO and SimExt.Ext are disjoint.13

Definition 5.4 (𝜇-Equivocality). A non-interactive commitment scheme with partial opening in the
QROM is 𝜇-equivocal if there exists a polynomial 𝑠 and a simulator SimEqu that consists of an inter-
face SimEqu.RO and two algorithms SimEqu.Com, SimEqu.Open that may all share a common state, such
that for any family of quantum oracle algorithms {Adv𝜆 = (AdvRCommit,𝜆,AdvROpen,𝜆,D𝜆)}𝜆∈N that makes
at most 𝑞(𝜆) queries to the random oracle, it holds that

⃒⃒⃒⃒
⃒Pr𝐻

⎡⎢⎢⎣D𝐻𝜆 (𝜌2, {com𝑖,𝑚𝑖, 𝑢𝑖}𝑖∈[𝑛]) = 1 :

(𝜌1, {𝑚𝑖}𝑖∈[𝑛])← Adv𝐻RCommit,𝜆

(st, {com𝑖}𝑖∈[𝑛])← Com𝐻(1𝜆, {𝑚𝑖}𝑖∈[𝑛])
𝜌2 ← Adv𝐻ROpen,𝜆(𝜌1, {com𝑖}𝑖∈[𝑛])
{𝑚𝑖, 𝑢𝑖}𝑖∈[𝑛] ← Open𝐻(st, [𝑛])

⎤⎥⎥⎦

− Pr

⎡⎢⎢⎢⎣DSimEqu.RO
𝜆 (𝜌2, {com𝑖,𝑚𝑖, 𝑢𝑖}𝑖∈[𝑛]) = 1 :

(𝜌1, {𝑚𝑖}𝑖∈[𝑛])← AdvSimEqu.RO
RCommit,𝜆

{com𝑖}𝑖∈[𝑛] ← SimEqu.Com

𝜌2 ← AdvSimEqu.RO
ROpen,𝜆 (𝜌1, {com𝑖}𝑖∈[𝑛])

{𝑢𝑖}𝑖∈[𝑛] ← SimEqu.Open({𝑚𝑖}𝑖∈[𝑛])

⎤⎥⎥⎥⎦
⃒⃒⃒⃒
⃒ = 𝜇(𝜆, 𝑞(𝜆)),

where the state of SimEqu was kept implicit, and the total run-time of SimEqu on security parameter 1𝜆 is
at most 𝑠(𝜆, 𝑞(𝜆)). The interface SimEqu.RO is invoked on each query to 𝐻 made by Adv, the algorithm

13Note that SimExt.RO and SimExt.Ext can share a common state, so do not necesarily commute even when their
inputs and output registers are disjoint.
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SimEqu.Com is invoked to produce commitments, and the algorithm SimEqu.Open is invoked on a set of
messages to produce openings.

Furthermore, we say that a commitment is equivocal if it is 𝜇-equivocal, where 𝜇 is such that for any
𝑞(𝜆) = poly(𝜆), 𝜇(𝜆, 𝑞(𝜆)) = negl(𝜆).

It is easy to see that a 𝜇-equivocal commitment satisfies 2𝜇-hiding, since one can first move
from committing to {𝑚𝑖,0}𝑖∈[𝑛] to a hybrid where the equivocality simulator is run, and then move
to committing to {𝑚𝑖,1}𝑖∈[𝑛].

We also note that all our definitions consider classical commitments, where the commitment
string itself is purely classical. Furthermore, we assume that any potentially quantum state sent
by a malicious committer is immediately measured by an honest receiver to produce a classical
string – it is this classical string that serves as the commitment. This is similar to prior works
that consider commitments in the QROM (eg., [DFMS21]), and we refer the reader to [BB21] for
additional discussions about enforcing classical (parts of) commitments via measurement.

5.2 Construction

Protocol 6

Parameters: security parameter 𝜆, number of commitments 𝑛 = 𝑛(𝜆)
Random oracle: 𝐻 : {0, 1}𝜆+1 → {0, 1}𝜆+1.

• Com𝐻(1𝜆, {𝑏𝑖}𝑖∈[𝑛]): For all 𝑖 ∈ [𝑛], sample 𝑟𝑖 ← {0, 1}𝜆 and set com𝑖 = 𝐻(𝑏𝑖||𝑟𝑖). Set
st = {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛] and output (st, {com𝑖}𝑖∈[𝑛]).

• Open𝐻(st, 𝑇 ): Parse st as {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛] and output {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 .

• Rec𝐻({com𝑖}𝑖∈[𝑛], 𝑇, {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 ): Output ⊥ if there exists 𝑖 ∈ 𝑇 s.t. 𝐻(𝑏𝑖||𝑟𝑖) ̸= com𝑖.
Otherwise output {𝑏𝑖}𝑖∈𝑇 .

Figure 6: Extractable and equivocal commitment scheme

We construct extractable and equivocal bit commitments in the QROM in Fig. 6. Without loss
of generality, a committer can commit to strings of length > 1 by committing to each bit in the
string one by one, and sending all commitments in parallel.

5.3 Extractability

In this section, we prove the following theorem by relying on Imported Theorem 3.6. We remark
that our proof of extraction uses ideas already present in [DFMS21] to establish that our construc-
tion satisfies Definition 5.3.

Theorem 5.5. Protocol 6 is a 𝜇-extractable non-interactive commitment scheme with partial opening in
the QROM, with message length 1 (i.e. 𝑘 = 1), satisfying Definition 5.3, where 𝜇(𝜆, 𝑞, 𝑛) = 8𝑞𝑛

2𝜆/2
+
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148(𝑞+𝑛+1)3+1
2𝜆

14, and where the runtime of the simulator is bounded by 𝑠(𝜆, 𝑞) = 𝑂(𝑞2 + 𝑞 · 𝑛(𝜆)). In
addition, the protocol satisfies extraction with 𝜈-commuting simulator, where 𝜈(𝜆) = 8

2𝜆/2
.

Proof. Let (SimRO.RO,SimRO.E) be the on-the-fly random oracle simulator with extraction from
Imported Theorem 3.6. The extractable commitment simulator SimExt = (SimExt.RO,SimExt.Ext)
is defined as follows.

• SimExt.RO = SimRO.RO

• SimExt.Ext runs SimRO.E to obtain either a 𝜆 + 1 bit string 𝑥*, or ∅. In the case of 𝑥*, output
the first bit of 𝑥*. In the case of ∅, output 0.

We now prove that for any family of quantum oracle algorithms {Adv𝜆 = (AdvCommit,𝜆,AdvOpen,𝜆,D𝜆)}𝜆∈N,
the two experiments in Definition 5.3 are 𝜇(𝜆, 𝑞) close, where 𝜇(𝜆, 𝑞) = 148(𝑞+𝑛+1)3+1

2𝜆
+ 8𝑞𝑛

2𝜆/2
. We

consider the following sequence of hybrids (where parts in blue indicate difference from the pre-
vious hybrid):

• Hyb0: This corresponds to the “real” experiment in Definition 5.3.

1. Sample oracle 𝐻 ← 𝐹{0,1}𝜆+1→{0,1}𝜆+1 .

2. (𝜌1, {com𝑖}𝑖∈[𝑛])← Adv𝐻Commit,𝜆

3. (𝜌2, {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )← Adv𝐻Open,𝜆(𝜌1)

4. out← Rec𝐻({com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )
5. Output 𝑏← D𝐻𝜆 (𝜌2, out)

• Hyb1: This is the same as previous hybrid, except that all oracle calls to 𝐻 are answered by
SimRO.RO.

1. Initialize the extractable random oracle simulator, SimRO.

2. (𝜌1, {com𝑖}𝑖∈[𝑛])← AdvSimRO.RO
Commit,𝜆

3. (𝜌2, {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )← AdvSimRO.RO
Open,𝜆 (𝜌1)

4. out← RecSimRO.RO({com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )

5. Output 𝑏← DSimRO.RO
𝜆 (𝜌2, out)

• Hyb2: This is the same as the previous hybrid except for an additional query to SimRO.RO
that is performed at the end of the experiment, along with an event BAD that we define.
Notice also that we have opened up the description of the algorithm Rec below. The hybrid
outputs the following distribution.

1. Initialize the extractable random oracle simulator, SimRO.

2. (𝜌1, {com𝑖}𝑖∈[𝑛])← AdvSimRO.RO
Commit,𝜆

3. (𝜌2, {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )← AdvSimRO.RO
Open,𝜆 (𝜌1)

14When 𝑛 = 𝑐𝜆 for some arbitrary fixed constant 𝑐, then we can define 𝜇𝑐(𝜆, 𝑞) =
2𝑞(𝑐𝜆)1/2

2𝜆/2 . In all our OT protocols,
we will set 𝑛 in this manner and will assume that 𝜇 is a function of 𝜆, 𝑞.
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4. out← RecSimRO.RO({com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )
– If there exists 𝑖 ∈ 𝑇 s.t. SimRO.RO(𝑏𝑖||𝑟𝑖) ̸= com𝑖, set out := ⊥, otherwise set out :=
{𝑏𝑖}𝑖∈𝑇 .

5. Obtain bit 𝑏← DSimRO.RO
𝜆 (𝜌2, out).

6. For all 𝑖 ∈ [𝑛], set 𝑦𝑖 ← SimRO.RO(𝑏𝑖||𝑟𝑖).
7. If out ̸= ⊥ and there exists 𝑖 ∈ 𝑇 such that 𝑦𝑖 ̸= com𝑖, output BAD, otherwise output 𝑏.

• Hyb3 : This is the same as the previous hybrid except that there is a query to SimRO.E, and an
extra condition in the BAD event. The hybrid outputs the following distribution:

1. Initialize the extractable random oracle simulator, SimRO.

2. (𝜌1, {com𝑖}𝑖∈[𝑛])← AdvSimRO.RO
Commit,𝜆

3. (𝜌2, {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )← AdvSimRO.RO
Open,𝜆 (𝜌1)

4. out← RecSimRO.RO({com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )
– If there exists 𝑖 ∈ 𝑇 s.t. SimRO.RO(𝑏𝑖||𝑟𝑖) ̸= com𝑖, set out := ⊥, otherwise set out :=
{𝑏𝑖}𝑖∈𝑇 .

5. Obtain bit 𝑏← DSimRO.RO
𝜆 (𝜌2, out)

6. For all 𝑖 ∈ [𝑛], set 𝑦𝑖 ← SimRO.RO(𝑏𝑖||𝑟𝑖).
7. For all 𝑖 ∈ [𝑛], set 𝑥*𝑖 ← SimRO.E(com𝑖).

8. If there exists 𝑖 ∈ 𝑇 such that (𝑥*𝑖 ̸= (𝑏𝑖||𝑟𝑖)) ∧ (𝑦𝑖 = com𝑖), output BAD, or if out ̸= ⊥
and there exists 𝑖 ∈ 𝑇 such that 𝑦𝑖 ̸= com𝑖, output BAD, otherwise output 𝑏.

• Hyb4: This hybrid is identical to the previous one except that SimRO.E is called earlier on in
the hybrid. The hybrid outputs the following distribution:

1. Initialize the extractable random oracle simulator, SimRO.

2. (𝜌1, {com𝑖}𝑖∈[𝑛])← AdvSimRO.RO
Commit,𝜆

3. For all 𝑖 ∈ [𝑛], set 𝑥*𝑖 ← SimRO.E(com𝑖).

4. (𝜌2, {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )← AdvSimRO.RO
Open,𝜆 (𝜌1)

5. out← RecSimRO.RO({com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )
– If there exists 𝑖 ∈ 𝑇 s.t. SimRO.RO(𝑏𝑖||𝑟𝑖) ̸= com𝑖, set out := ⊥, otherwise set out :=
{𝑏𝑖}𝑖∈𝑇 .

6. 𝑏← DSimRO.RO
𝜆 (𝜌2, out)

7. For all 𝑖 ∈ [𝑛], set 𝑦𝑖 ← SimRO.RO(𝑏𝑖||𝑟𝑖).
8. If there exists 𝑖 ∈ 𝑇 such that (𝑥*𝑖 ̸= (𝑏𝑖||𝑟𝑖)) ∧ (𝑦𝑖 = com𝑖), output BAD, or if out ̸= ⊥

and there exists 𝑖 ∈ 𝑇 such that 𝑦𝑖 ̸= com𝑖, output BAD, otherwise output 𝑏.

• Hyb5: This hybrid is identical to the previous hybrid except for altering the variable out to
sometimes take the value FAIL. The hybrid outputs the following distribution:

1. Initialize the extractable random oracle simulator, SimRO.

34



2. (𝜌1, {com𝑖}𝑖∈[𝑛])← AdvSimRO.RO
Commit,𝜆

3. For all 𝑖 ∈ [𝑛], set 𝑥*𝑖 ← SimRO.E(com𝑖). For all 𝑖 ∈ [𝑛], if 𝑥*𝑖 = ∅, set 𝑏*𝑖 := 0, and
otherwise set 𝑏*𝑖 equal to the first bit of 𝑥*𝑖 .

4. (𝜌2, {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )← AdvSimRO.RO
Open,𝜆 (𝜌1)

5. Obtain out← RecSimRO.RO({com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 ) as follows:
– If there exists 𝑖 ∈ 𝑇 s.t. SimRO.RO(𝑏𝑖||𝑟𝑖) ̸= com𝑖, set out := ⊥, otherwise set out :=
{𝑏𝑖}𝑖∈𝑇 .

6. If out /∈ {{𝑏*𝑖 }𝑖∈𝑇 ,⊥}, set out = FAIL.

7. 𝑏← DSimRO.RO
𝜆 (𝜌2, out)

8. For all 𝑖 ∈ [𝑛], set 𝑦𝑖 ← SimRO.RO(𝑏𝑖||𝑟𝑖).
9. If there exists 𝑖 ∈ 𝑇 such that (𝑥*𝑖 ̸= (𝑏𝑖||𝑟𝑖)) ∧ (𝑦𝑖 = com𝑖), output BAD, or if out ̸= ⊥

and there exists 𝑖 ∈ 𝑇 such that 𝑦𝑖 ̸= com𝑖, output BAD, otherwise output 𝑏.

• Hyb6: This hybrid is identical to the previous hybrid except for removing the final query to
SimRO.RO and the event BAD.

1. Initialize the extractable random oracle simulator, SimRO.
2. (𝜌1, {com𝑖}𝑖∈[𝑛])← AdvSimRO.RO

Commit,𝜆

3. For all 𝑖 ∈ [𝑛], set 𝑥*𝑖 ← SimRO.E(com𝑖). For all 𝑖 ∈ [𝑛], if 𝑥*𝑖 = ∅, set 𝑏*𝑖 := 0, and
otherwise set 𝑏*𝑖 equal to the first bit of 𝑥*𝑖 .

4. (𝜌2, {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 )← AdvSimRO.RO
Open,𝜆 (𝜌1)

5. Obtain out← RecSimRO.RO({com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈𝑇 ) as follows:
– If there exists 𝑖 ∈ 𝑇 s.t. SimRO.RO(𝑏𝑖||𝑟𝑖) ̸= com𝑖, set out := ⊥, otherwise set out :=
{𝑏𝑖}𝑖∈𝑇 .

6. If out /∈ {{𝑏*𝑖 }𝑖∈𝑇 ,⊥}, set out = FAIL.

7. 𝑏← DSimRO.RO
𝜆 (𝜌2, out)

8. For all 𝑖 ∈ [𝑛], set 𝑦𝑖 ← SimRO.RO(𝑏𝑖||𝑟𝑖).
9. If there exists 𝑖 ∈ 𝑇 such that (𝑥*𝑖 ̸= (𝑏𝑖||𝑟𝑖)) ∧ (𝑦𝑖 = com𝑖), output BAD, or if out ̸= ⊥

and there exists 𝑖 ∈ 𝑇 such that 𝑦𝑖 ̸= com𝑖, output BAD, otherwise output 𝑏.

We note that Hyb6 is the simulated distribution. We prove indistinguishability between the hybrids
below.

Claim 5.6. Pr[Hyb0 = 1] = Pr[Hyb1 = 1]

Proof. This follows from the indistinguishable simulation property of Imported Theorem 3.6.

Claim 5.7. Pr[Hyb1 = 1] = Pr[Hyb2 = 1]

Proof. First, adding the extra query to SimRO.RO does not affect the output of the experiment since
it is performed after 𝑏 is computed. Next, the event BAD only occurs if some classical query (𝑏𝑖||𝑟𝑖)
to SimRO.RO returns different classical values at different points in the experiment. However, this
can never occur due to the indistinguishable simulation property of Imported Theorem 3.6, and
because two classical queries to an oracle 𝐻 always return the same value.

35



Claim 5.8. |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ 148(𝑞+𝑛+1)3+1
2𝜆

Proof. First, adding the query to SimRO.E does not affect the output of the experiment since it is
performed after the information needed to determine the output is already computed.

Thus, to prove this claim, it suffices to show that

Pr
Hyb2

[∃ 𝑖 ∈ 𝑇 : (𝑥*𝑖 ̸= (𝑏𝑖||𝑟𝑖)) ∧ (𝑦𝑖 = com𝑖)] ≤
296(𝑞 + 𝑛+ 1)3 + 2

2𝜆+1
.

Consider adversary B that runs steps 2 through 5 in Hyb2, and outputs {com𝑖}𝑖∈𝑇 , {𝑏𝑖||𝑟𝑖}𝑖∈𝑇 . Note
that B does not make any queries to SimRO.E. Now consider the experiment where B is run as
above, followed by running 𝑦𝑖 ← SimRO.RO(𝑏𝑖||𝑟𝑖) for all 𝑖 ∈ 𝑇 and then 𝑥*𝑖 ← SimRO.E(com𝑖) for
all 𝑖 ∈ 𝑇 , and outputting 1 if ∃ 𝑖 ∈ 𝑇 : (𝑥*𝑖 ̸= (𝑏𝑖||𝑟𝑖)) ∧ (SimRO.RO(𝑏𝑖||𝑟𝑖) = com𝑖). Applying the
correctness of extraction property of Imported Theorem 3.6, and bounding |𝑇 | by 𝑛, we get the
required claim.

Claim 5.9. |Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ 8𝑞𝑛
2𝜆/2

Proof. This follows from the almost commutativity of SimRO.E and SimRO.RO property of Imported
Theorem 3.6. Indeed, since {com𝑖}𝑖∈[𝑛] are classical strings output by the experiment after step 2,
all subsequent queries to SimRO.RO are independent of SimRO.E(com𝑖) for any 𝑖, in the sense that
they may operate on disjoint input and output registers. Thus, the statistical distance between
the two experiments is at most 8𝑞𝑛

2𝜆/2
, since there are most 𝑞 queries to SimRO.RO, and 𝑛 queries to

SimRO.E.

Claim 5.10. Pr[Hyb4 = 1] = Pr[Hyb5 = 1]

Proof. The only change in Hyb5 is that the variable out is modified and set to FAIL when out ̸∈
{{𝑏*𝑖 }𝑖∈𝑇 ,⊥}. We show that whenever out is set of FAIL, the event BAD occurs, which means that
the output of the experiment is anyway BAD.

Indeed, in the case of FAIL, we know that out is not equal to ⊥ or {𝑏*𝑖 }𝑖∈𝑇 . Since out ̸= ⊥, this
means that either BAD occurs, or 𝑦𝑖 = com𝑖 for all 𝑖 ∈ 𝑇 . Since out ̸= {𝑏*𝑖 }𝑖∈𝑇 , there must there
exist 𝑖 ∈ 𝑇 such that 𝑥*𝑖 ̸= (𝑏𝑖||𝑟𝑖). But then if 𝑦𝑖 = com𝑖 for all 𝑖 ∈ 𝑇 , the event BAD also occurs.

Claim 5.11. Pr[Hyb6 = 1] ≥ Pr[Hyb5 = 1]

Proof. This follows by observing that the distribution Hyb6 is identical to Hyb5 except that it never
outputs BAD, and therefore the probability that it outputs 1 cannot possibly reduce.

Combining all claims, we have that

Pr[Hyb0 = 1] ≤ Pr[Hyb6 = 1] +

(︃
148(𝑞 + 𝑛+ 1)3 + 1

2𝜆
+

8𝑞𝑛

2𝜆/2

)︃
, (1)

and by a similar argument

Pr[Hyb0 = 0] ≤ Pr[Hyb6 = 0] +

(︃
148(𝑞 + 𝑛+ 1)3 + 1

2𝜆
+

8𝑞𝑛

2𝜆/2

)︃
.
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Because the output of Hyb0 and Hyb6 is a single bit, the equation above implies that

Pr[Hyb6 = 1] ≤ Pr[Hyb0 = 1] +

(︃
148(𝑞 + 𝑛+ 1)3 + 1

2𝜆
+

8𝑞𝑛

2𝜆/2

)︃
(2)

Combining equations (1) and (2), we have

⃒⃒⃒
Pr[Hyb6 = 1]− Pr[Hyb0 = 1]

⃒⃒⃒
≤

(︃
148(𝑞 + 𝑛+ 1)3 + 1

2𝜆
+

8𝑞𝑛

2𝜆/2

)︃
, (3)

In addition, by Property 3 in Imported Theorem 3.6, the runtime of Sim is bounded by a poly-
nomial 𝑠(𝜆, 𝑞) = 𝑂(𝑞2 + 𝑞 · 𝑛). Finally, by the almost commutativity of SimRO.RO and SimRO.E
property of Imported Theorem 3.6, it follows that the simulator Sim is 𝜈-commuting, with 𝜈(𝜆) =
8

2𝜆/2
.

5.4 Equivocality

Theorem 5.12. Protocol 6 is a 𝜇-equivocal bit commitment scheme with partial opening in the QROM
satisfying Definition 5.4, where 𝜇(𝜆, 𝑞, 𝑛) = 2𝑞𝑛1/2

2𝜆/2
15 and where the runtime of the simulator is bounded

by 𝑠(𝜆, 𝑞) = 𝑂(𝑞2 + poly(𝜆)).

Proof. We construct a simulator SimEqu = (SimEqu.RO, SimEqu.Com, SimEqu.Open) as follows:

1. Initialize the efficient on-the-fly random oracle simulator, SimRO.RO, from Imported Theo-
rem 3.6. For all 𝑖 ∈ [𝑛], sample 𝑟𝑖 ← {0, 1}𝜆, 𝑅𝑖0, 𝑅𝑖1 ← {0, 1}𝜆+1.

2. Let SimEqu.RO answer oracle queries of AdvRCommit,𝜆 and AdvROpen,𝜆 using the oracle 𝐻⊥

which is defined as follows:

𝐻⊥(𝑥) =

⎧⎪⎨⎪⎩
𝑅𝑖0 if 𝑥 = 0||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝑅𝑖1 if 𝑥 = 1||𝑟𝑖 for some 𝑖 ∈ [𝑛]

SimRO.RO(𝑥) otherwise

In an abuse of notation, we have defined 𝐻⊥ using the quantum operation SimRO.RO. 𝐻⊥

will actually be implemented by issuing a controlled query to SimRO.RO (see discussion on
controlled queries in Section 3.2), controlled on the 𝑥 in input register 𝒳 not being in the set
{𝑏||𝑟𝑖}𝑏∈{0,1},𝑖∈[𝑛], and then, for each 𝑖 ∈ [𝑛] and 𝑏 ∈ {0, 1}, implementing a controlled query
to a unitary that maps |𝑥, 𝑦⟩ →

⃒⃒
𝑥, 𝑦 ⊕𝑅𝑖𝑏

⟩︀
, controlled on the input 𝒳 register being (𝑏||𝑟𝑖).

3. SimEqu.Com: To output commitments, for all 𝑖 ∈ [𝑛], sample 𝑐𝑖 ← {0, 1}𝜆+1, set com𝑖 = 𝑐𝑖
and output {com𝑖}𝑖∈[𝑛].

4. SimEqu.Open: When given input {𝑏𝑖}𝑖∈[𝑛], output {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛].

15When 𝑛 = 𝑐𝜆 for some arbitrary fixed constant 𝑐, then we can define 𝜇𝑐(𝜆, 𝑞) =
2𝑞(𝑐𝜆)1/2

2𝜆/2 . In all our OT protocols,
we will set 𝑛 in this manner and will assume that 𝜇 is a function of 𝜆, 𝑞.
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5. Let SimEqu.RO answer oracle queries of D𝜆 using the oracle 𝐻⊥𝑅 which is defined as follows:

𝐻⊥𝑅 (𝑥) =

{︃
𝑐𝑖 if 𝑥 = 𝑏𝑖||𝑟𝑖 for some 𝑖 ∈ [𝑛]

SimRO.RO(𝑥) otherwise

Note that 𝐻⊥𝑅 can be implemented in a similar way as described above.

Consider then the following sequence of hybrids to prove that Protocol 6 is an equivocal bit
commitment scheme in QROM satisfying Definition 5.4 (parts in blue are different from previous
hybrid):

• Hyb0: This hybrid outputs the following distribution, which matches the real output distri-
bution in Definition 5.4.

– Sample oracle 𝐻 ← 𝐹{0,1}𝜆+1→{0,1}𝜆+1 .

– (𝜌1, {𝑏𝑖}𝑖∈[𝑛])← Adv 𝐻RCommit,𝜆

– (st, {com𝑖}𝑖∈[𝑛])← Com𝐻(1𝜆, {𝑏𝑖}𝑖∈[𝑛])

– 𝜌2 ← Adv 𝐻ROpen,𝜆(𝜌1, {com𝑖}𝑖∈[𝑛])

– {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛] ← Open𝐻(st, [𝑛])

– Output D𝐻𝜆 (𝜌2, {com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]).

• Hyb1: This is the same as the previous hybrid except that the randomness used in Com is
sampled at the beginning of the experiments and is used to define a different oracle 𝐻⊥. 𝐻⊥

is then used to answer queries of AdvRCommit,𝜆,AdvROpen,𝜆. Concretely, this hybrid outputs
the following distribution.

– Sample oracle 𝐻 ← 𝐹{0,1}𝜆+1→{0,1}𝜆+1 .

– For all 𝑖 ∈ [𝑛], sample 𝑟𝑖 ← {0, 1}𝜆, 𝑅𝑖0, 𝑅𝑖1 ← {0, 1}𝜆+1 and define oracle 𝐻⊥ as:

𝐻⊥(𝑥) =

⎧⎪⎨⎪⎩
𝑅𝑖0 if 𝑥 = 0||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝑅𝑖1 if 𝑥 = 1||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝐻(𝑥) otherwise

– (𝜌1, {𝑏𝑖}𝑖∈[𝑛])← Adv 𝐻
⊥

RCommit,𝜆

– (st, {com𝑖}𝑖∈[𝑛])← Com𝐻(1𝜆, {𝑏𝑖}𝑖∈[𝑛])

– 𝜌2 ← Adv 𝐻
⊥

ROpen,𝜆(𝜌1, {com𝑖}𝑖∈[𝑛])

– Output D𝐻𝜆 (𝜌2, {com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]).

• Hyb2: This is the same as previous hybrid, except that the commitments are sampled as fresh
uniformly random string, and another oracle 𝐻⊥𝑅 is defined that is used to answer oracle
queries of D𝜆. Concretely, this hybrid outputs the following distribution.

– Sample oracle 𝐻 ← 𝐹{0,1}𝜆+1→{0,1}𝜆+1 .
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– For all 𝑖 ∈ [𝑛], sample 𝑟𝑖 ← {0, 1}𝜆, 𝑅𝑖0, 𝑅𝑖1 ← {0, 1}𝜆+1 and define oracle 𝐻⊥ as:

𝐻⊥(𝑥) =

⎧⎪⎨⎪⎩
𝑅𝑖0 if 𝑥 = 0||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝑅𝑖1 if 𝑥 = 1||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝐻(𝑥) otherwise

– (𝜌1, {𝑏𝑖}𝑖∈[𝑛])← Adv𝐻
⊥

RCommit,𝜆

– For all 𝑖 ∈ [𝑛], sample 𝑐𝑖 ← {0, 1}𝜆+1 and set com𝑖 = 𝑐𝑖.

– 𝜌2 ← Adv𝐻
⊥

ROpen,𝜆(𝜌1, {com𝑖}𝑖∈[𝑛])

– Define oracle 𝐻⊥𝑅 as follows:

𝐻⊥𝑅 (𝑥) =

{︃
𝑐𝑖 if 𝑥 = 𝑏𝑖||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝐻(𝑥) otherwise

– Output D𝐻
⊥
𝑅

𝜆 (𝜌2, {com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]).

• Hyb3: This is the same as previous hybrid, except that the oracle 𝐻 is replaced by the effi-
cient on-the-fly simulator SimRO.RO. This hybrid distribution is also the simulated output
distribution in Definition 5.4. Concretely, this hybrid outputs the following distribution.

– Initialize on-the-fly simulator SimRO.RO.

– For all 𝑖 ∈ [𝑛], sample 𝑟𝑖 ← {0, 1}𝜆, 𝑅𝑖0, 𝑅𝑖1 ← {0, 1}𝜆+1 and define oracle 𝐻⊥ as:

𝐻⊥(𝑥) =

⎧⎪⎨⎪⎩
𝑅𝑖0 if 𝑥 = 0||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝑅𝑖1 if 𝑥 = 1||𝑟𝑖 for some 𝑖 ∈ [𝑛]

SimRO.RO(𝑥) otherwise

– (𝜌1, {𝑏𝑖}𝑖∈[𝑛])← Adv𝐻
⊥

RCommit,𝜆

– For all 𝑖 ∈ [𝑛], sample 𝑐𝑖 ← {0, 1}𝜆+1, and set com𝑖 = 𝑐𝑖.

– 𝜌2 ← Adv𝐻
⊥

ROpen,𝜆(𝜌1, {com𝑖}𝑖∈[𝑛])

– Define oracle 𝐻⊥𝑅 as follows:

𝐻⊥𝑅 (𝑥) =

{︃
𝑐𝑖 if 𝑥 = 𝑏𝑖||𝑟𝑖 for some 𝑖 ∈ [𝑛]

SimRO.RO(𝑥) otherwise

– Output D𝐻
⊥
𝑅

𝜆 (𝜌2, {com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]).

Consider the following indistinguishability claims between the hybrids:

Claim 5.13. |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ 2𝑞𝑛1/2

2𝜆/2
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Proof. The two hybrids differ in the way oracle queries of Adv𝜆 are answered. In Hyb1, queries of
AdvRCommit,𝜆 and AdvROpen,𝜆 are answered using oracle 𝐻⊥ instead of 𝐻 as in Hyb0. Assume then
for sake of contradiction that there exists some Adv = {𝜌𝜆,Adv𝜆}𝜆∈N for which |Pr[Hyb1 = 1] −
Pr[Hyb0 = 1]| > 2𝑞3/2𝑛1/2

2𝜆/2
. Fix such Adv.

We derive a contradiction by relying on the One-Way to Hiding lemma (Imported Theorem 3.4).
We first define oracle algorithms A,B,C. Our goal after defining these algorithms will be to show
C succeeds in a particular event with more probability than is allowed by the statement of the
lemma, which gives us a contradiction.

A𝑂(𝐻, {𝑟𝑖}𝑖∈[𝑛])

• (𝜌1, {𝑏𝑖}𝑖∈[𝑛])← Adv𝑂RCommit,𝜆

• (st, {com𝑖}𝑖∈[𝑛])← Com𝐻(1𝜆, {𝑏𝑖}𝑖∈[𝑛]; {𝑟𝑖}𝑖∈[𝑛])

• 𝜌2 ← Adv𝑂ROpen,𝜆(𝜌1, {com𝑖}𝑖∈[𝑛])

• {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛] ← Open𝐻(st, [𝑛])

• Output D𝐻𝜆 (𝜌2, {com𝑖}𝑖∈[𝑛], {𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]).

B𝑂(𝐻, {𝑟𝑖}𝑖∈[𝑛]) Fix 𝑞 := 𝑞(𝜆) non-uniformly as (an upper bound on) the number of oracle

queries of Adv𝜆, and thus also A𝑂. Pick 𝑖← [𝑞], run A𝑂 until just before the 𝑖𝑡ℎ query, measure the
query register and output the measurement outcome 𝑥.

C𝑂(𝐻, {𝑟𝑖}𝑖∈[𝑛]) Run 𝑥← B𝑂(𝐻, {𝑟𝑖}𝑖∈[𝑛]), parse 𝑥 as 𝑏||𝑟, where |𝑏| = 1, |𝑟| = 𝜆, and output 𝑟.

We begin by proving the following claim about B.

SubClaim 5.14. Given oracle 𝐻 and (r,R0,R1) = {𝑟𝑖, 𝑅𝑖0, 𝑅𝑖1}𝑖∈[𝑛], define oracle 𝐻⊥r,R0,R1
as

𝐻⊥r,R0,R1
(𝑥) =

⎧⎪⎨⎪⎩
𝑅𝑖0 if 𝑥 = 0||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝑅𝑖1 if 𝑥 = 1||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝐻(𝑥) otherwise

Then,

Pr

⎡⎢⎢⎢⎣𝑥 ∈ 𝑆r
⃒⃒⃒⃒
⃒

𝐻 ← 𝐹{0,1}𝜆+1→{0,1}𝜆+1

∀𝑖 ∈ [𝑛], 𝑟𝑖 ← {0, 1}𝜆, 𝑅𝑖0, 𝑅𝑖1 ← {0, 1}𝜆+1

𝑥← B
𝐻⊥

r,R0,R1 (𝐻, {𝑟𝑖}𝑖∈[𝑛])
𝑆r = {(𝑏||𝑟𝑖)}𝑏∈{0,1},𝑖∈[𝑛]

⎤⎥⎥⎥⎦ > 𝑛

2𝜆

Proof. Note that over the randomness of sampling 𝐻, r,R0,R1, A𝐻
⊥
r,R0,R1 (𝐻, {𝑟𝑖}𝑖∈[𝑛]) is the ex-

periment in Hyb1, while A𝐻(𝐻, {𝑟𝑖}𝑖∈[𝑛]) is the experiment in Hyb0.
For any oracle 𝐻 , and any r := {𝑟𝑖}𝑖∈[𝑛],R0 := {𝑅𝑖0}𝑖∈[𝑛],R1 := {𝑅𝑖1}𝑖∈[𝑛],

𝑃𝐻,r,R0,R1

left := Pr
[︁
A
𝐻⊥

r,R0,R1 (𝐻, {𝑟𝑖}𝑖∈[𝑛]) = 1
]︁
, 𝑃𝐻,r,R0,R1

right := Pr
[︀
A𝐻(𝐻, {𝑟𝑖}𝑖∈[𝑛]) = 1

]︀
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This implies that

E
𝐻,r,R0,R1

[︁
𝑃𝐻,r,R0,R1

left

]︁
= Pr[Hyb1 = 1], E

𝐻,r,R0,R1

[︁
𝑃𝐻,r,R0,R1

right

]︁
= Pr[Hyb0 = 1]

Therefore,

E
𝐻,r,R0,R1

⃒⃒⃒
𝑃𝐻,r,R0,R1

left − 𝑃𝐻,r,R0,R1

right

⃒⃒⃒
≥
⃒⃒⃒

E
𝐻,r,R0,R1

[︁
𝑃𝐻,r,R0,R1

left

]︁
− E
𝐻,r,R0,R1

[︁
𝑃𝐻,r,R0,R1

right

]︁ ⃒⃒⃒
=
⃒⃒⃒
Pr[Hyb1 = 1]− Pr[Hyb0 = 1]

⃒⃒⃒
>

2𝑞𝑛1/2

2𝜆/2
(4)

where the first inequality follows by Jensen’s inequality and linearity of expectation. Also, letting
𝑆r = {(𝑏||𝑟𝑖)}𝑏∈{0,1},𝑖∈[𝑛], define

𝑃𝐻,r,R0,R1
guess := Pr

[︁
𝑥 ∈ 𝑆r | 𝑥← B

𝐻⊥
r,R0,R1 (𝐻, {𝑟𝑖}𝑖∈[𝑛])

]︁
.

Invoking the one-way to hiding lemma (Imported Theorem 3.4), with 𝑂1, 𝑂2 set as 𝐻⊥r,R0,R1
, 𝐻 ,

and noting the oracle algorithm 𝐵 in the lemma is exactly the same as B in our claim, and that set
𝑆r is the set of points such that ∀𝑥 /∈ 𝑆r, 𝐻(𝑥) = 𝐻⊥r,R0,R1

(𝑥), we get

∀𝐻, r,R0,R1, 𝑃
𝐻,r,R0,R1
guess ≥

⃒⃒⃒
𝑃𝐻,r,R0,R1

left − 𝑃𝐻,r,R0,R1

right

⃒⃒⃒2
4𝑞2

=⇒ E
𝐻,r,R0,R1

[𝑃𝐻,r,R0,R1
guess ] ≥ E

𝐻,r,R0,R1

[︃ ⃒⃒⃒
𝑃𝐻,r,R0,R1

left − 𝑃𝐻,r,R0,R1

right

⃒⃒⃒2
4𝑞2

]︃
>

𝑛

2𝜆
(using Eq. (4))

Therefore,
Pr

𝐻,r,R0,R1,B
[𝑥 ∈ 𝑆r | 𝑥← B

𝐻⊥
r,R0,R1 (𝐻, {𝑟𝑖}𝑖∈[𝑛])] >

𝑛

2𝜆

as desired.

SubClaim 5.15. Given oracle 𝐻 and (r,R0,R1) = {𝑟𝑖, 𝑅𝑖0, 𝑅𝑖1}𝑖∈[𝑛], define oracle 𝐻⊥r,R0,R1
as

𝐻⊥r,R0,R1
(𝑥) =

⎧⎪⎨⎪⎩
𝑅𝑖0 if 𝑥 = 0||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝑅𝑖1 if 𝑥 = 1||𝑟𝑖 for some 𝑖 ∈ [𝑛]

𝐻(𝑥) otherwise

Then,

Pr

⎡⎢⎣𝑦 ∈ {𝑟𝑖}𝑖∈[𝑛]
⃒⃒⃒⃒
⃒

𝐻 ← 𝐹{0,1}𝜆+1→{0,1}𝜆+1

∀𝑖 ∈ [𝑛], 𝑟𝑖 ← {0, 1}𝜆, 𝑅𝑖0, 𝑅𝑖1 ← {0, 1}𝜆+1

𝑦 ← C
𝐻⊥

𝑟,𝑅0,𝑅1 (𝐻, {𝑟𝑖}𝑖∈[𝑛])

⎤⎥⎦ > 𝑛

2𝜆

Proof. This follows from Subclaim 5.14, and noting that for any 𝑥 ∈ 𝑆r, 𝑥 is of the form 𝑏||𝑟, where
|𝑏| = 1, |𝑟| = 𝜆 and 𝑟 ∈ {𝑟𝑖}𝑖∈[𝑛].
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To complete the proof of Claim 5.13, we note that by SubClaim 5.15, it holds that

Pr
[︀
𝑦 ∈ {𝑟𝑖}𝑖∈[𝑛]

]︀
>

𝑛

2𝜆

where 𝑦 and {𝑟𝑖}𝑖∈[𝑛] are sampled according to the process below:

• Sample oracle 𝐻 ← 𝐹{0,1}𝜆+1→{0,1}𝜆+1 .

• For all 𝑖 ∈ [𝑛], sample 𝑟𝑖 ← {0, 1}𝜆, 𝑅𝑖0, 𝑅𝑖1 ← {0, 1}𝜆+1

• Sample 𝜄← [𝑞] and execute the steps below until the adversary makes the 𝜄𝑡ℎ query.

– (𝜌1, {𝑏𝑖}𝑖∈[𝑛])← Adv
𝐻⊥

r,R0,R1
RCommit,𝜆

– 𝜌2 ← Adv
𝐻⊥

r,R0,R1
ROpen,𝜆 (𝜌1, {𝐻(𝑏𝑖||𝑟𝑖)}𝑖∈[𝑛])

• Measure the adversary’s query register to obtain 𝑥, parse 𝑥 as 𝑏||𝑦 where |𝑏| = 1, |𝑦| = 𝜆.

Note that the view of AdvRCommit,𝜆 and AdvROpen,𝜆 consists of (𝐻⊥r,R0,R1
, {𝐻(𝑏𝑖||𝑟𝑖)}𝑖∈[𝑛]) ≡ (𝑂, {𝑐𝑖}𝑖∈[𝑛])

for a oracle 𝑂 and strings {𝑐𝑖}𝑖∈[𝑛] that are sampled uniformly and independently of each other and
independently of {𝑟𝑖}𝑖∈[𝑛]. This means that the adversary is required to guess one out of 𝑛 uni-
form 𝜆-bit strings {𝑟𝑖}𝑖∈[𝑛] given uniform and independent auxiliary information. Since this is
impossible except with probability at most 𝑛

2𝜆
, we obtain a contradiction, proving our claim.

Claim 5.16. Pr[Hyb1 = 1] = Pr[Hyb2 = 1]

Proof. Note that the distribution of {com𝑖}𝑖∈[𝑛] in either hybrid is a set of uniformly independently
sampled random strings, sampled independently of the oracle that is accessed by AdvROpen,𝜆.
Therefore, the distribution of the output of AdvROpen,𝜆 in either hybrid is identical. Conditioned
on this, note that the following two distributions representing the inputs/oracle D𝜆 has access to,
are identical:

• In Hyb1, (𝐻, {com𝑖, 𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]) = (𝐻, {𝐻(𝑏𝑖||𝑟𝑖), 𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]).

• In Hyb2, (𝐻⊥𝑅 , {com𝑖, 𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]) = (𝐻⊥𝑅 , {𝑐𝑖, 𝑏𝑖, 𝑟𝑖}𝑖∈[𝑛]), where for all 𝑖 ∈ [𝑛], 𝐻⊥𝑅 (𝑏𝑖||𝑟𝑖) = 𝑐𝑖.

Since the distributions are identical, the claim then follows.

Claim 5.17. Pr[Hyb2 = 1] = Pr[Hyb3 = 1]

Proof. Indistinguishability follows immediately from the indistinguishable simulation property of
Imported Theorem 3.6.

Combining all claims, we get |Pr[Hyb0 = 1]−Pr[Hyb3 = 1]| ≤ 2𝑞𝑛1/2

2𝜆/2
. In addition, note that the

runtime of SimEqu is bounded by 𝑠(𝜆, 𝑞) = 𝑂(𝑞2 + poly(𝜆)), where the 𝑂(𝑞2) terms comes from
using SimRO.RO (Imported Theorem 3.6).
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6 The fixed basis framework: OT from entanglement

We first obtain non-interactive OT in the shared EPR model, and then show that the protocol
remains secure even when one player does the EPR pair setup.

6.1 Non-interactive OT in the shared EPR pair model

Theorem 6.1. Instantiate Protocol 7 with any non-interactive commitment scheme that is correct (Defi-
nition 5.1), hiding (Definition 5.2), and extractable (Definition 5.3). Then the following hold.

• When instantiated with the XOR extractor, there exist constants 𝐴,𝐵 such that Protocol 7 securely
realizes (Definition 3.2) ℱS−ROT[1].

• When instantiated with the ROM extractor, there exist constants 𝐴,𝐵 such that Protocol 7 securely
realizes (Definition 3.2) ℱS−ROT[𝜆].

Furthermore, letting 𝜆 be the security parameter, 𝑞 be an upper bound on the total number of random
oracle queries made by the adversary, and using the commitment scheme from Section 5.2 with security
parameter 𝜆com = 4𝜆, the following hold.

• When instantiatied with the XOR extractor and constants 𝐴 = 50, 𝐵 = 100, Protocol 7 securely re-
alizes ℱS−ROT[1] with 𝜇R*-security against a malicious receiver and 𝜇S*-security against a malicious
sender, where

𝜇R* =

(︃
8𝑞3/2

2𝜆
+

3600𝜆𝑞

22𝜆
+

148(450𝜆+ 𝑞 + 1)3 + 1

24𝜆

)︃
, 𝜇S* =

(︃
85𝜆1/2𝑞

22𝜆

)︃
.

This requires a total of 2(𝐴+𝐵)𝜆 = 300𝜆 EPR pairs.

• When instantiated with the ROM extractor and constants 𝐴 = 1050, 𝐵 = 2160, Protocol 7 se-
curely realizes ℱS−ROT[𝜆] with 𝜇R*-security against a malicious receiver and 𝜇S*-security against a
malicious sender, where

𝜇R* =

(︃
8𝑞3/2 + 4𝜆

2𝜆
+

77040𝜆𝑞

22𝜆
+

148(9630𝜆+ 𝑞 + 1)3 + 1

24𝜆

)︃
, 𝜇S* =

(︃
197𝜆1/2𝑞

22𝜆

)︃
.

This requires a total of 2(𝐴+𝐵)𝜆 = 6420𝜆 EPR pairs.

Then, applying non-interactive bit OT reversal (Imported Theorem 3.3) to the protocol that
realizes ℱS−ROT[1] immediately gives the following corollary.

Corollary 6.2. Given a setup of 300𝜆 shared EPR pairs, there exists a one-message protocol in the QROM
that 𝑂

(︁
𝑞3/2

2𝜆

)︁
-securely realizes ℱR−ROT[1].

In this section, we provide the proof of Theorem 6.1.

Proof. We will prove the part of the theorem statement that considers instantiating Protocol 7 with
the specific commitment from Section 5.2, and note that the more general part of the theorem
statement follows along the same arguments.

Let 𝐻𝐶 be the random oracle used by the commitment scheme. We treat 𝐻𝐶 and 𝐻𝐹𝑆 (and
𝐻𝐸𝑥𝑡 in the case of the ROM extractor) as separate oracles that the honest parties and adversaries
query, which is without loss of generality (see Section 3.2).
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Sender security. First, we show security against a malicious receiver R*. Let (SimExt.RO,SimExt.Ext)
be the simulator for the commitment scheme (Definition 5.3) against a malicious committer. We
describe a simulator for our OT protocol against a malicious receiver below.

Sim[R*]:

• Prepare 2𝑛 EPR pairs on registersℛ and 𝒮.

• Initialize R* with the state on registerℛ. Answer 𝐻𝐹𝑆 (and 𝐻𝐸𝑥𝑡) queries using the efficient
on-the-fly random oracle simulator (Imported Theorem 3.6), and answer 𝐻𝐶 queries using
SimExt.RO.

• Obtain (𝑥0, 𝑥1), {𝑐𝑖}𝑖∈[𝑛], 𝑇, {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 from R* and run

{(𝑟*𝑖,0, 𝑟*𝑖,1, 𝜃*𝑖 )}𝑖∈[𝑛] ← SimExt.Ext({𝑐𝑖}𝑖∈[𝑛]).

• Run the “check receiver message” part of the honest sender strategy, except that {𝑟*𝑖,0, 𝑟*𝑖,1}𝑖∈𝑇
are used in place of {𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 for the third check. If any check fails, send abort to the ideal
functionality, output R*’s state, and continue to answering the distinguisher’s queries.

• Let 𝑏 := maj{𝜃*𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇 . For all 𝑖 ∈ 𝑇 , measure the register 𝒮𝑖,𝑏⊕𝑑𝑖 in basis + if 𝑏⊕ 𝑑𝑖 = 0 or
basis × if 𝑏⊕ 𝑑𝑖 = 1 to obtain 𝑟′𝑖. Let 𝑚𝑏 := 𝑥𝑏 ⊕ 𝐸({𝑟′𝑖}𝑖∈𝑇 ).

• Send (𝑏,𝑚𝑏) to the ideal functionality, output R*’s state, and continue to answering the dis-
tinguisher’s queries.

• Answer the distinguisher’s 𝐻𝐹𝑆 (and 𝐻𝐸𝑥𝑡) queries with the efficient on-the-fly random
oracle simulator and 𝐻𝐶 queries with SimExt.RO.

Now, given a distinguisher D such that R* and D make a total of at most 𝑞 queries combined
to 𝐻𝐹𝑆 and 𝐻𝐶 (and 𝐻𝐸𝑥𝑡), consider the following sequence of hybrids.

• Hyb0: The result of the real interaction between R* and S. Using the notation of Definition 3.2,
this is a distribution over {0, 1} described by Π[R*,D,⊤].

• Hyb1: This is identical to Hyb0, except that all 𝐻𝐶 queries of R* and D are answered via the
Sim.RO interface, and {(𝑟*𝑖,0, 𝑟*𝑖,1, 𝜃*𝑖 )} ← Sim.Ext({𝑐𝑖}𝑖∈[𝑛]) is run after R* outputs its message.
The values {𝑟*𝑖,0, 𝑟*𝑖,1}𝑖∈𝑇 are used in place of {𝑟𝑖,0, 𝑟𝑖,1}𝑖∈𝑇 for the third sender check.

• Hyb2: The result of Sim[R*] interacting in ̃︀ΠℱS−ROT[1]
(or ̃︀ΠℱS−ROT[𝜆]

). Using the notation of Defi-
nition 3.2, this is a distribution over {0, 1} described by ̃︀ΠℱS−ROT[1]

[Sim[R*],D,⊤] (or ̃︀ΠℱS−ROT[𝜆]
[Sim[R*],D,⊤]).

The proof of security against a malicious R* follows by combining the two claims below, Claim 6.3
and Claim 6.4.

Claim 6.3.

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ 24(𝐴+𝐵)𝜆𝑞

22𝜆
+

148(𝑞 + 3(𝐴+𝐵)𝜆+ 1)3 + 1

24𝜆
.
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Proof. This follows by a direct reduction to extractability of the commitment scheme (Defini-
tion 5.3). Indeed, let AdvCommit be the machine that runs Hyb0 until R* outputs its message, which
includes {𝑐𝑖}𝑖∈[𝑛]. Let AdvOpen be the machine that takes as input the rest of the state of Hyb0,
which includes 𝑇 and the openings {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖), 𝑢𝑖}𝑖∈[𝑇 ], and outputs 𝑇 and these openings. Let
D be the machine that runs the rest of Hyb0 and outputs a bit.

Then, the bound follows from plugging in 𝜆com = 4𝜆 and 𝑛 = 3(𝐴 + 𝐵)𝜆 (the number of bits
committed) to the bound from Theorem 5.5.

Claim 6.4. For any 𝑞 ≥ 4, when 𝐸 is the XOR extractor and 𝐴 = 50, 𝐵 = 100, or when 𝐸 is the ROM
extractor and 𝐴 = 1050, 𝐵 = 2160,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ 8𝑞3/2

2𝜆
.

Proof. First, note that the only difference between these hybrids is that in Hyb2, the 𝑚1−𝑏 received
by D as part of the sender’s output is sampled uniformly at random (by the ideal functionality),
where 𝑏 is defined as maj{𝜃*𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇 . Now, we introduce some notation.

• Let c := (𝑐1, . . . , 𝑐𝑛) be the classical commitments.

• Write the classical extracted values {(𝑟*𝑖,0, 𝑟*𝑖,1, 𝜃*𝑖 )}𝑖∈[𝑛] as

R* :=

[︂
𝑟*1,0 . . . 𝑟

*
𝑛,0

𝑟*1,1 . . . 𝑟
*
𝑛,1

]︂
,𝜃* :=

[︀
𝜃*1 . . . 𝜃

*
𝑛

]︀
.

• Given any R,𝜃 ∈ {0, 1}2×𝑛, define |R𝜃⟩ as a state on 𝑛 two-qubit registers, where register 𝑖
contains the vector |R𝑖,0,R𝑖,1⟩ prepared in the (𝜃𝑖,𝜃𝑖)-basis.

• Given R,R* ∈ {0, 1}2×𝑛 and a subset 𝑇 ⊂ [𝑛], define R𝑇 to be the columns of R indexed
by 𝑇 , and define ∆(R𝑇 ,R

*
𝑇 ) as the fraction of columns 𝑖 ∈ 𝑇 such that (R𝑖,0,R𝑖,1) ̸=

(R*𝑖,0,R
*
𝑖,1).

• For 𝑇 ⊂ [𝑛], let 𝑇 := [𝑛] ∖ 𝑇 .

• Given R*,𝜃* ∈ {0, 1}2×𝑛, 𝑇 ⊆ [𝑛], and 𝛿 ∈ (0, 1), define

ΠR*,𝜃*,𝑇,𝛿 :=
∑︁

R:R𝑇=R*
𝑇 ,Δ

(︁
R𝑇 ,R

*
𝑇

)︁
≥𝛿

|R𝜃*⟩ ⟨R𝜃* | .

Intuitively, this is a projection onto “bad” states as defined by R*,𝜃*, 𝑇, 𝛿, i.e., states that
agree with R* on all registers 𝑇 but are at least 𝛿-“far” from R* on registers 𝑇 .

Now, consider the following projection, which has hard-coded the description of 𝐻𝐹𝑆 :

Π𝛿bad :=
∑︁

c,R*,𝜃*

|c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗Π

R*,𝜃*,𝐻𝐹𝑆(c),𝛿
𝒮 ,

where 𝒞 is the register holding the classical commitments, 𝒵 is the register holding the output
of SimExt.Ext, and 𝒮 is the register holding the sender’s halves of EPR pairs.
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SubClaim 6.5. Let
𝜏 :=

∑︁
c,R*,𝜃*

𝑝(c,R
*,𝜃*) 𝜏 (c,R

*,𝜃*),

where
𝜏 (c,R

*,𝜃*) = |c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗ 𝜌

(c,R*,𝜃*)
𝒮,𝒳

is the entire state of the system, including the sender’s halves of EPR pairs and the receiver’s entire state
in Hyb1 (equivalently also Hyb2) at the point in the experiment that is right after R* outputs its message
and SimExt.Ext is run. Here, each 𝑝(c,R*,𝜃*) is the probability that the registers 𝒞,𝒵 holds the classical
string c,R*,𝜃*, 𝒮 is the register holding the sender’s halves of EPR pairs, and 𝒳 is a register holding the
remaining state of the system, which includes the rest of the receiver’s classical message and its private state.
Then,

• If 𝐴 = 50, 𝐵 = 100, then Tr
(︀
Π0.25

bad 𝜏
)︀
≤ 64𝑞3

22𝜆
.

• If 𝐴 = 1050, 𝐵 = 2160, then Tr
(︀
Π0.054

bad 𝜏
)︀
≤ 64𝑞3

22𝜆
.

Proof. Define Adv𝐻𝐹𝑆
R* to be the oracle machine that runs Hyb1 until R* outputs c (and the rest

of its message), then runs SimExt.Ext to obtain |R*,𝜃*⟩ ⟨R*,𝜃*|, and then outputs the remaining
state 𝜌𝒮,𝒳 . Consider running the measure-and-reprogram simulator Sim[AdvR* ] from Imported
Theorem 3.5, which simulates 𝐻𝐹𝑆 queries, measures and outputs c, then receives a uniformly
random subset 𝑇 ⊂ [𝑛] of size 𝑘, and then continues to run AdvR* until it outputs |R*,𝜃*⟩ ⟨R*,𝜃*|⊗
𝜌𝒮,𝒳 . Letting

Π𝛿bad[𝑇 ] :=
∑︁

c,R*,𝜃*

|c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗ΠR*,𝜃*,𝑇,𝛿

𝒮 ,

for 𝑇 ⊂ [𝑛], Imported Theorem 3.5 implies that

Tr
(︁
Π𝛿bad𝜏

)︁
≤ (2𝑞 + 1)2 E

⎡⎣Tr(︁Π𝛿bad[𝑇 ]𝜎)︁ :
(c, st)← Sim[AdvR* ]

𝑇 ← 𝑆𝑛,𝑘
(R*,𝜃*, 𝜌𝒮,𝒳 )← Sim[AdvR* ](𝑇, st)

⎤⎦ ,
where

𝜎 = |c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗ 𝜌𝒮,𝒳 ,

and 𝑆𝑛,𝑘 is the set of all subsets of [𝑛] of size 𝑘.
Now, recall that the last thing that AdvR* does in Hyb1 is run SimExt.Ext on c to obtain (R*,𝜃*).

Consider instead running SimExt.Ext on c immediately after Sim[AdvR* ] outputs c. Note that
SimExt.Ext only operates on the register holding c and its own private state used for simulating
𝐻𝐶 , so since com has a 8

2𝜆com/2 -commuting simulator (Definition 5.3), we have that,
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Tr
(︁
Π𝛿bad𝜏

)︁

≤ (2𝑞 + 1)2

⎛⎜⎜⎝E

⎡⎢⎢⎣Tr(︁Π𝛿bad[𝑇 ]𝜎)︁ :

(c, st)← Sim[AdvR* ]
(R*,𝜃*)← SimExt.Ext(c)

𝑇 ← 𝑆𝑛,𝑘
𝜌𝒮,𝒳 ← Sim[AdvR* ](𝑇, st)

⎤⎥⎥⎦+
8𝑞

22𝜆

⎞⎟⎟⎠
:= (2𝑞 + 1)2𝜖+

8𝑞(2𝑞 + 1)2

22𝜆
,

where
𝜎 = |c⟩ ⟨c|ℬ ⊗ |R

*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗ 𝜌𝒮,𝒳 ,

and where we denote the expectation inside the parantheses by 𝜖, and we plugged in 𝜆com = 4𝜆.
Towards bounding 𝜖, we now consider the following quantum sampling game.

• Fix a state on register 𝒮 (and potentially other registers of arbitrary size), where 𝒮 is split
into 𝑛 registers 𝒮1, . . . ,𝒮𝑛 of dimension 4, and fix R*,𝜃* ∈ {0, 1}2×𝑛.

• Sample 𝑇 ⊂ [𝑛] as a uniformly random subset of size 𝑘.

• For each 𝑖 ∈ 𝑇 , measure registers 𝒮𝑖 in the (𝜃*𝑖 ,𝜃
*
𝑖 )-basis to obtain a matrix R𝑇 ∈ {0, 1}2×|𝑇 |,

and output ∆(R𝑇 ,R
*
𝑇 ).

Next, we argue that 𝜖 is bounded by the quantum error probability 𝜖𝛿quantum (Definition 3.11) of
the above game. This corresponds to the trace distance between the initial state on register 𝒮 and
an “ideal” state (as defined in Definition 3.11). This ideal state is supported on vectors |R𝜃*⟩ such
that ∆(R𝑇 ,R

*
𝑇
) < ∆(R𝑇 ,R

*
𝑇 )+ 𝛿. In particular, for any |R𝜃*⟩with ∆(R𝑇 ,R

*
𝑇 ) = 0 in the support

of the ideal state, it holds that ∆(R𝑇 ,R
*
𝑇
) < 𝛿. Thus, this ideal state is orthogonal to the subspace

ΠR*,𝜃*,𝑇,𝛿
𝒮 , and so it follows that 𝜖 is bounded by 𝜖𝛿quantum.

Thus, by Imported Theorem 3.12, 𝜖 is then bounded by
√︁
𝜖𝛿classical, where 𝜖𝛿classical is the classical

error probability (Definition 3.10) of the following sampling game.

• Let R ∈ {0, 1}2×𝑛 be an arbitrary matrix.

• Sample a uniformly random subset 𝑇 ⊂ [𝑛] of size 𝑘.

• Let 𝛿* be the fraction of columns (R𝑖,0,R𝑖,1) for 𝑖 ∈ 𝑇 that are non-zero, and output 𝛿*.

The classical error of the above game is the probability that≥ 𝛿*+ 𝛿 of the columns (R𝑖,0,R𝑖,1)
for 𝑖 ∈ 𝑇 are non-zero. Using the analysis in Appendix D.2, we can bound this probability by
2 exp

(︀
−2(1− 𝑘/𝑛)2𝛿2𝑘

)︀
.

• For 𝛿 = 0.25, this probability is bounded by

2 exp
(︀
−2(0.25)2(1−𝐴/(𝐴+𝐵))2𝐴

)︀
< 2−4𝜆−1,

for 𝐴 = 50, 𝐵 = 100. Thus, we can bound 𝜖𝛿classical by 2/24𝜆 and thus 𝜖 by
√
2/22𝜆.
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• For 𝛿 = 0.054, this probability is bounded by

2 exp
(︀
−2(0.054)2(1−𝐴/(𝐴+𝐵))2𝐴

)︀
< 2−4𝜆−1,

for 𝐴 = 1050, 𝐵 = 2160. Thus, we can bound 𝜖classical by 2/24𝜆 and thus 𝜖 by
√
2/22𝜆.

Summarizing, we have that in either case,

Tr
(︁
Π𝛿bad𝜏

)︁
≤
√
2(2𝑞 + 1)2 + 8𝑞(2𝑞 + 1)2

22𝜆
≤ 64𝑞3

22𝜆
,

for 𝑞 ≥ 4.

Thus, by gentle measurement (Lemma 3.1), the 𝜏 defined in SubClaim 6.5 is within 8𝑞3/2

2𝜆
trace

distance of a state 𝜏good in the image of I− Π0.25
bad if 𝐴 = 50, 𝐵 = 100 and in the image of I− Π0.054

bad

if 𝐴 = 1050, 𝐵 = 2160.
For readability, we note that

I−Π𝛿bad =
∑︁

c,R*,𝜃*

|c⟩ ⟨c|𝒞 ⊗ |R
*,𝜃*⟩ ⟨R*,𝜃*|𝒵 ⊗

(︁
I−ΠR*,𝜃*,𝐻𝐹𝑆(c),𝛿

)︁
𝒮
,

where for any 𝑇 ,

I−ΠR*,𝜃*,𝑇,𝛿 =
∑︁

R:(R𝑇 ̸=R*
𝑇 )∨(Δ(R𝑇 ,R

*
𝑇
)<𝛿)

|R𝜃*⟩ ⟨R𝜃* | .

We require the following two sub-claims to complete the proof of Claim 6.4.

SubClaim 6.6. If 𝐸 is the XOR extractor, then conditioned on 𝜏 being in the image of I − Π0.25
bad , it holds

that
Pr[Hyb1 = 1] = Pr[Hyb2 = 1].

Proof. First note that if the 𝑇 sent by R* to the sender is not equal to 𝐻𝐹𝑆(c), then the sender
will abort, and the hybrids are perfectly indistinguishable. So it suffices to analyze the state 𝜏
conditioned on the register that contains 𝑇 being equal to 𝐻𝐹𝑆(c).

Now, if 𝜏 is in I−Π0.25
bad , it must be the case that the register 𝒮 is in the image of I−ΠR*,𝜃*,𝑇,0.25,

where R*,𝜃* were output by SimExt.Ext. Recall that the sender aborts if the positions measured
in 𝑇 are not equal to R*𝑇 , and in this case the hybrids would be perfectly indistinguishable. Thus,
we can condition on the sender not aborting, which, by the definition of I − ΠR*,𝜃*,𝑇,0.25 implies
that register 𝒮𝑇 is supported on vectors

⃒⃒(︀
R𝑇

)︀
𝜃*
⟩︀

such that ∆(R𝑇 ,R
*
𝑇
) < 0.25.

Now, to obtain 𝑚1−𝑏, the sender measures register 𝒮𝑖,𝑑𝑖⊕𝑏⊕1 in basis 𝑑𝑖 ⊕ 𝑏⊕ 1 for each 𝑖 ∈ 𝑇 to
obtain a string 𝑟′ ∈ {0, 1}𝑛−𝑘. Then, 𝑚1−𝑏 is set to 𝐸(𝑟′). Since 𝑏 is defined as maj{𝜃*𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇 in
Hyb2, at least (𝑛 − 𝑘)/2 of the bits 𝑟′𝑖 are obtained by measuring in 1 ⊕ 𝜃*𝑖 . Let 𝑀 ⊂ 𝑇 be this set
of size at least (𝑛 − 𝑘)/2, and define r* ∈ {0, 1}𝑛 such that r*𝑖 = R*𝑖,𝑑𝑖⊕𝑏⊕1 . We know from above
that the register 𝒮𝑀 is supported on vectors |(r𝑀 )𝜃*⟩ for r𝑀 such that ∆(r𝑀 , r

*
𝑀 ) < 0.5. Thus,

recalling that each of these states is measured in the basis 1 ⊕ 𝜃*𝑖 , we can appeal to Theorem 4.1
(with an appropriate change of basis) to show that 𝑚1−𝑏 is perfectly uniformly random from R*’s
perspective, completing the proof.
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SubClaim 6.7. If 𝐸 is the ROM extractor and 𝐵 ≥ 326, 𝑞 ≥ 4, then conditioned on 𝜏 being in the image
of I−Π0.054

bad , it holds that

|Pr[Hyb1 = 1] = Pr[Hyb2 = 1]| ≤ 4𝑞

2𝜆
.

Proof. This follows the same argument as the above sub-claim, until we see that there are (𝑛−𝑘)/2
qubits of 𝒮 that are measured in basis 1 ⊕ 𝜃*𝑀 , and that the state on these qubits is supported
on vectors |(r𝑀 )𝜃*⟩ for r𝑀 such that ∆(r𝑀 , r

*
𝑀 ) < 0.108. We can then apply Theorem 4.2 with

random oracle input size 𝑛 − 𝑘, register 𝒳 size (𝑛 − 𝑘)/2, and |𝐿| ≤ 2ℎ𝑏(0.108)(𝑛−𝑘)/2. Note that,
when applying this theorem, we are fixing any outcome of the (𝑛− 𝑘)/2 bits of the random oracle
input that are measured in 𝜃*, and setting register 𝒳 to contain the (𝑛 − 𝑘)/2 registers that are
measured in basis 1⊕ 𝜃*. This gives a bound of

4𝑞2ℎ𝑏(0.108)(𝑛−𝑘)/2

2(𝑛−𝑘)/4
=

4𝑞

2(𝑛−𝑘)(
1
4
− 1

2
ℎ𝑏(0.108))

=
4𝑞

2𝐵𝜆(
1
4
− 1

2
ℎ𝑏(0.108))

≤ 4𝑞

2𝜆
,

for 𝐵 ≥ 326.

This completes the proof of Claim 6.4.

Receiver security. Next, we show security against a malicious sender S*. During the proof, we
will use an efficient quantum random oracle “wrapper” algorithm 𝑊 [(𝑥, 𝑧)] that provides an in-
terface between any quantum random oracle simulator, such as the on-the-fly simulator (Imported
Theorem 3.6), and the machine querying the random oracle. The wrapper will implement a con-
trolled query to the actual random oracle simulator, controlled on the input 𝒳 register not being
equal to 𝑥. Then, it will implement a controlled query to a unitary that maps |𝑥, 𝑦⟩ → |𝑥, 𝑦 ⊕ 𝑧⟩,
controlled on the input 𝒳 register being equal to 𝑥. The effect of this wrapper is that the oracle
presented to the machine is the oracle𝐻 simulated by the simulator, but with𝐻(𝑥) reprogrammed
to 𝑧.

Sim[S*] :

• Query the ideal functionality with ⊥ and obtain 𝑚0,𝑚1.

• Sample 𝑇 as a uniformly random subset of [𝑛] of size 𝑘, sample 𝑑𝑖 ← {0, 1} for each 𝑖 ∈ 𝑇 ,
and sample 𝜃𝑖 ← {+,×} for each 𝑖 ∈ 𝑇 .

• For each 𝑖 ∈ [𝑛], sample 𝑟𝑖,0, 𝑟𝑖,1 ← {0, 1} and prepare BB84 states |𝜓𝑖,0⟩ , |𝜓𝑖,1⟩ as follows.

– If 𝑖 ∈ 𝑇 , set |𝜓𝑖,0⟩ = |𝑟𝑖,0⟩𝜃𝑖 , |𝜓𝑖,1⟩ = |𝑟𝑖,1⟩𝜃𝑖 .

– If 𝑖 ∈ 𝑇 , set |𝜓𝑖,0⟩ = |𝑟𝑖,0⟩+ , |𝜓𝑖,1⟩ = |𝑟𝑖,1⟩×.

• For each 𝑖 ∈ 𝑇 , let 𝑒𝑖 := (𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖) and for each 𝑖 ∈ 𝑇 , let 𝑒𝑖 := (0, 0, 0). Compute
(st, {𝑐𝑖}𝑖∈[𝑛])← Com({𝑒𝑖}𝑖∈[𝑛]) and {𝑢𝑖}𝑖∈𝑇 ← Open(st, 𝑇 ).

• Set 𝑥0 := 𝐸({𝑟𝑖,𝑑𝑖}𝑖∈𝑇 )⊕𝑚0 and 𝑥1 := 𝐸({𝑟𝑖,𝑑𝑖⊕1}𝑖∈𝑇 )⊕𝑚1 (where if 𝐸 is the ROM extractor,
this is accomplished via classical queries to an on-the-fly random oracle simulator for 𝐻𝐸𝑥𝑡).
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• Run S* on input (𝑥0, 𝑥1), {𝑐𝑖}𝑖∈[𝑛], 𝑇, {𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖, 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 , {|𝜓𝑖,𝑏⟩}𝑖∈[𝑛],𝑏∈{0,1}. Answer
𝐻𝐶 queries using the on-the-fly random oracle simulator, answer 𝐻𝐹𝑆 queries using the on-
the-fly random oracle simulator wrapped with𝑊 [{𝑐𝑖}𝑖∈[𝑛], 𝑇 ], and if𝐸 is the ROM extractor,
answer 𝐻𝐸𝑥𝑡 queries using the on-the-fly random oracle simulator. Output S*’s final state
and continue to answering the distinguisher’s random oracle queries.

Now, given a receiver input 𝑏 ∈ {0, 1}, and distinguisher D such that S* and D make a total
of at most 𝑞 queries combined to 𝐻𝐹𝑆 and 𝐻𝐶 (and 𝐻𝐸𝑥𝑡), consider the following sequence of
hybrids.

• Hyb0: The result of the real interaction between R(𝑏) and S*. Using the notation of Defini-
tion 3.2, this is a distribution over {0, 1} desrcibed by Π[S*,D, 𝑏].

• Hyb1: This is the same as the previous hybrid except that 𝑇 is sampled uniformly at random
as in the simulator, and 𝐻𝐹𝑆 queries are answered with the wrapper 𝑊 [({𝑐𝑖}𝑖∈[𝑛], 𝑇 )].

• Hyb2: This is the same as the previous hybrid except that the messages {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖)}𝑖∈𝑇 are
replaced with (0, 0, 0) inside the commitent.

• Hyb3: The result of Sim[S*] interacting in ̃︀ΠℱS−ROT[1]
(or ̃︀ΠℱS−ROT[𝜆]]

). Using the notation of Defi-
nition 3.2, this is a distribution over {0, 1} described by ̃︀ΠℱS−ROT[1]

[Sim[S*],D, 𝑏] (or ̃︀ΠℱS−ROT[𝜆]
[Sim[S*],D, 𝑏]).

The proof of security against a malicious S* follows by combining the following three claims.

Claim 6.8.
Pr[Hyb0 = 1] = Pr[Hyb1 = 1].

Proof. These hybrids are identically distributed, since 𝐻𝐹𝑆 is a random oracle and 𝑇 is uniformly
random in Hyb1.

Claim 6.9.

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤
4𝑞
√︀
3(𝐴+𝐵)𝜆

22𝜆
.

Proof. This follows directly from the hiding of the commitment scheme (Definition 5.2), which
is implied by its equivocality (see Section 5.1). To derive the bound, we plug in 𝜆com = 4𝜆 and
𝑛 = 3(𝐴+𝐵)𝜆 to the bound from Theorem 5.12.

Claim 6.10.
Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

Proof. First, note that one difference in how the hybrids are specified is that in Hyb2, the receiver
samples 𝑥1−𝑏 uniformly at random, while in Hyb3, 𝑥1−𝑏 is set to𝐸({𝑟𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇 )⊕𝑚1−𝑏. However,
since 𝑚1−𝑏 is sampled uniformly at random by the functionality, this is an equivalent distribution.

Thus, the only difference between these these hybrids is the basis in which the states on regis-
ters {𝒮𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇 are prepared (which are the registers {𝒮𝑖,𝜃𝑖⊕1}𝑖∈𝑇 in Hyb2). Indeed, note that in
Hyb2, the state on register 𝒮𝑖,𝑑𝑖⊕𝑏𝑖⊕1 is prepared by having the receiver measure their correspond-
ing half of an EPR pair (registerℛ𝑖,𝑑𝑖⊕𝑏𝑖⊕1) in basis 𝜃𝑖 = 𝑑𝑖⊕ 𝑏, while in Hyb3, this state is prepared
by sampling a uniformly random bit and encoding it in the basis 𝑑𝑖 ⊕ 𝑏𝑖 ⊕ 1. However, these
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sampling procedures both produce a maximally mixed state on register 𝒮𝑖,𝑑𝑖⊕𝑏⊕1, and thus these
hybrids are equivalent.

This completes the proof of the theorem.

6.2 Two-round OT without setup

In this section, we analyze a variant of the EPR-based protocol (Fig. 7) where we allow the sender
to generate the EPR setup. That is, an honest sender will prepare 2𝑛 EPR pairs between registers
ℛ and 𝒮, and send ℛ to the reciever, while a malicious sender may prepare and send an arbitary
state.

Thus, the resulting protocol is a two-round protocol without setup. We show that it securely
realizes the ℱS−ROT[𝜆] OT ideal functionality, where the receiver can send chosen inputs (𝑏,𝑚) to
the functionality and the functionality outputs to the sender random (𝑚0,𝑚1) such that 𝑚𝑏 = 𝑚.

Theorem 6.11. Consider instantiating the two-round variant of Protocol 7 with any non-interactive com-
mitment scheme that is correct (Definition 5.1), equivocal (Definition 5.4), and extractable (Defini-
tion 5.3). Then the following hold.

• When instantiated with the XOR extractor, there exist constants 𝐴,𝐵 such that the two-round vari-
ant of Protocol 7 securely realizes (Definition 3.2) ℱS−ROT[1].

• When instantiated with the ROM extractor, there exist constants 𝐴,𝐵 such that the two-round vari-
ant of Protocol 7 securely realizes (Definition 3.2) ℱS−ROT[𝜆].

Letting 𝜆 be the security parameter, 𝑞 be an upper bound on the total number of random oracle queries
made by the adversary, and using the commitment scheme from Section 5.2 with security parameter 𝜆com =
4𝜆, the following hold.

• When instantiatied with the XOR extractor and constants 𝐴 = 50, 𝐵 = 100, the two-round variant
of Protocol 7 securely realizes ℱS−ROT[1] with 𝜇ℛ*-security against a malicious receiver and 𝜇𝒮*-
security against a malicious sender, where

𝜇ℛ* =

(︃
8𝑞3/2

2𝜆
+

3600𝜆𝑞

22𝜆
+

148(450𝜆+ 𝑞 + 1)3 + 1

24𝜆

)︃
, 𝜇𝒮* =

(︃
85𝜆1/2𝑞

22𝜆

)︃
.

This requires a total of 2(𝐴+𝐵)𝜆 = 300𝜆 EPR pairs.

• When instantiated with the ROM extractor and constants 𝐴 = 1050, 𝐵 = 2160, the two-round
variant of Protocol 7 securely realizes ℱS−ROT[𝜆] with 𝜇ℛ*-security against a malicious receiver and
𝜇𝒮*-security against a malicious sender, where

𝜇ℛ* =

(︃
8𝑞3/2 + 4𝜆

2𝜆
+

77040𝜆𝑞

22𝜆
+

148(9630𝜆+ 𝑞 + 1)3 + 1

24𝜆

)︃
, 𝜇𝒮* =

(︃
197𝜆1/2𝑞

22𝜆

)︃
.

This requires a total of 2(𝐴+𝐵)𝜆 = 6420𝜆 EPR pairs.

Then, applying non-interactive bit OT reversal (Imported Theorem 3.3) to the protocol that
realizes ℱS−ROT[1] immediately gives the following corollary.
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Corollary 6.12. Given a setup of 300𝜆 shared EPR pairs, there exists a one-message protocol in the QROM
that 𝑂

(︁
𝑞3/2

2𝜆

)︁
-securely realizes ℱR−ROT[1].

Proof. Security against a malicious receiver remains the same as Theorem 6.1, so we only show se-
curity against a malicious sender. Let S* be a malicious sender. Let (SimEqu.RO,SimEqu.Com,SimEqu.Open)
be the equivocal simulator for the commitment scheme (Definition 5.4).

Sim[S*] :

• Run S*. Answer 𝐻𝐹𝑆 (and 𝐻𝐸𝑥𝑡) queries using the efficient on-the-fly random oracle sim-
ulator, and answer 𝐻𝐶 queries using SimEqu.RO. Eventually, S* outputs a state on register
ℛ = (ℛ1,0,ℛ1,1, . . . ,ℛ𝑛,0,ℛ𝑛,1).

• Query the ideal functionality with ⊥ and obtain 𝑚0,𝑚1.

• Run the following strategy on behalf of the receiver.

– Compute {𝑐𝑖}𝑖∈[𝑛] ← SimEqu.Com.

– Compute 𝑇 = 𝐻𝐹𝑆(𝑐1‖ . . . ‖𝑐𝑛) and parse 𝑇 as a subset of [𝑛] of size 𝑘.

– For each 𝑖 ∈ 𝑇 , sample 𝜃 ← {+,×} and measure registers ℛ𝑖,0 and ℛ𝑖,1 in basis 𝜃𝑖 to
obtain 𝑟𝑖,0, 𝑟𝑖,1.

– Compute {𝑢𝑖}𝑖∈𝑇 ← SimEqu.Open({𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖}𝑖∈𝑇 ).
– For each 𝑖 ∈ 𝑇 , measure register ℛ𝑖,0 in basis + and register ℛ𝑖,1 in basis × to obtain
𝑟𝑖,0, 𝑟𝑖,1.

– For each 𝑖 ∈ 𝑇 , sample 𝑑𝑖 ← {0, 1}. Compute 𝑥0 := 𝐸({𝑟𝑖,𝑑𝑖}𝑖∈𝑇 )⊕𝑚0, 𝑥1 := 𝐸({𝑟𝑖,𝑑𝑖⊕1}𝑖∈𝑇 )⊕
𝑚1.

• Send (𝑥0, 𝑥1), {𝑐𝑖}𝑖∈[𝑛], 𝑇, {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 to S*, and run S* until it outputs a
final state, answering 𝐻𝐹𝑆 (and 𝐻𝐸𝑥𝑡) queries using the efficient on-the-fly random oracle
simulator and 𝐻𝐶 queries using SimEqu.RO. Output S*’s final state.

• Answer the distinguisher’s 𝐻𝐹𝑆 (and 𝐻𝐸𝑥𝑡) queries using the efficient on-the-fly random
oracle simulator and 𝐻𝐶 queries using SimEqu.RO.

Now, given a distinguisher D such that S* and D make a total of at most 𝑞 queries combined to
𝐻𝐹𝑆 and 𝐻𝐶 , and a receiver input (𝑏,𝑚𝑏), consider the following sequence of hybrids.

• Hyb0: The result of the real interaction between S* and R. Using the notation of Definition 3.2,
this is a distribution over bits described by Π[S*,D, (𝑏,𝑚𝑏)].

• Hyb1: Answer all 𝐻𝐶 queries of S* and D with SimEqu.RO. Run the honest receiver strategy,
except {𝑐𝑖}𝑖∈[𝑛] ← SimEqu.Com, and {𝑢𝑖} ← SimEqu.Open({(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖)}𝑖∈𝑇 ).

• Hyb2: The result of Sim[S*] interacting in ̃︀ΠℱS−ROT[1]
(or ̃︀ΠℱS−ROT[𝜆]]

). Using the notation of
Definition 3.2, this is a distribution over bits described by ̃︀ΠℱS−ROT[1]

[Sim[S*],D, (𝑏,𝑚𝑏)] (or̃︀ΠℱS−ROT[𝜆]
[Sim[S*],D, (𝑏,𝑚𝑏)]).
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Claim 6.13.

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤
2𝑞
√︀
3(𝐴+𝐵)𝜆

22𝜆
.

Proof. This follows by a direct reduction to equivocality of the commitment scheme (Definition 5.4).
Indeed, let AdvRCommit be the machine that runs Hyb0 until S* outputs its message on register ℛ
and R runs the Measurement portion of its honest strategy to produce {𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖}𝑖∈[𝑛]. Let
AdvROpen be the machine computes 𝑇 = 𝐻𝐹𝑆(𝑐1‖ . . . ‖𝑐𝑛). Let D be the machine that runs the rest
of Hyb0, from the Reorientation portion of its honest receiver’s strategy to the final bit output by
the distinguisher.

Then, plugging in 𝜆com = 4𝜆 and 𝑛 = 3(𝐴 + 𝐵)𝜆 to Theorem 5.12 gives the bound in the
claim.

Claim 6.14.
Pr[Hyb1 = 1] = Pr[Hyb2 = 1].

Proof. First, note that one difference in how the hybrids are specified is that in Hyb1, the receiver
samples 𝑥1−𝑏 uniformly at random, while in Hyb2, 𝑥1−𝑏 is set to𝐸({𝑟𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇 )⊕𝑚1−𝑏. However,
since 𝑚1−𝑏 is sampled uniformly at random by the functionality, this is an equivalent distribution.

Then, the only difference between these these hybrids is the basis in which the states on regis-
ters {ℛ𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇 are measured (which are the registers {ℛ𝑖,𝜃𝑖⊕1}𝑖∈𝑇 in Hyb1). Indeed, since the
resulting bits 𝑟𝑖,𝑑𝑖⊕𝑏⊕1 are unused by the receiver in Hyb1, and masked by 𝑚1−𝑏 in Hyb2, they are
independent of the sender’s view. Thus, measuring them in different bases has no effect on the
sender’s view, and so the hybrids are identical.

This completes the proof of the claim, as desired.
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Protocol 7

Ingredients and parameters.
• Security parameter 𝜆, and constants 𝐴,𝐵. Let 𝑛 = (𝐴+𝐵)𝜆 and 𝑘 = 𝐴𝜆.

• A non-interactive extractable commitment scheme (Com,Open,Rec), where commit-
ments to 3 bits have size ℓ := ℓ(𝜆).

• A random oracle 𝐻𝐹𝑆 : {0, 1}𝑛ℓ → {0, 1}⌈log (
𝑛
𝑘)⌉.

• An extractor 𝐸 with domain {0, 1}𝑛−𝑘 which is either

– The XOR function, so 𝐸(𝑟1, . . . , 𝑟𝑛−𝑘) =
⨁︀

𝑖∈[𝑛−𝑘] 𝑟𝑖.

– A random oracle 𝐻𝐸𝑥𝑡 : {0, 1}𝑛−𝑘 → {0, 1}𝜆.

Setup.

• 2𝑛 EPR pairs on registers {ℛ𝑖,𝑏,𝒮𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}, where the receiver has register ℛ :=
{ℛ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} and the sender has register 𝒮 := {𝒮𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}.

Protocol.

• Receiver message. R, on input 𝑏 ∈ {0, 1},𝑚 ∈ {0, 1}𝜆, does the following.

– Measurement. Sample 𝜃1𝜃2 . . . 𝜃𝑛 ← {+,×}𝑛 and for 𝑖 ∈ [𝑛], measure registers
ℛ𝑖,0,,ℛ𝑖,1 in basis 𝜃𝑖 to obtain 𝑟𝑖,0, 𝑟𝑖,1.

– Measurement check.

* Compute
(︀
st, {𝑐𝑖}𝑖∈[𝑛]

)︀
← Com

(︀
{(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖)}𝑖∈[𝑛]

)︀
.

* Compute 𝑇 = 𝐻𝐹𝑆(𝑐1‖ . . . ‖𝑐𝑛), parse 𝑇 as a subset of [𝑛] of size 𝑘.

* Compute {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖), 𝑢𝑖}𝑖∈[𝑇 ] ← Open(st, 𝑇 ).

– Reorientation. Let 𝑇 = [𝑛] ∖ 𝑇 , and for all 𝑖 ∈ 𝑇 , set 𝑑𝑖 = 𝑏⊕ 𝜃𝑖 (interpreting + as 0,
× as 1).

– Sampling. Set 𝑥𝑏 = 𝐸
(︀
{𝑟𝑖,𝜃𝑖}𝑖∈𝑇

)︀
⊕𝑚, and sample 𝑥1−𝑏 ← {0, 1}𝜆.

– Message. Send to S

(𝑥0, 𝑥1), {𝑐𝑖}𝑖∈[𝑛], 𝑇, {𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖, 𝑢𝑖}𝑖∈[𝑇 ], {𝑑𝑖}𝑖∈𝑇 .

• Sender computation. S does the following.

– Check Receiver Message. Abort if any of the following fails.

* Check that 𝑇 = 𝐻𝐹𝑆(𝑐1‖ . . . ‖𝑐𝑛).
* Check that Rec({𝑐𝑖}𝑖∈𝑇 , {(𝑟𝑖,0, 𝑟𝑖,1, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ) ̸= ⊥.

* For every 𝑖 ∈ 𝑇 , measure the registers 𝒮𝑖,0,𝒮𝑖,1 in basis 𝜃𝑖 to obtain 𝑟′𝑖,0, 𝑟
′
𝑖,1, and

check that 𝑟𝑖,0 = 𝑟′𝑖,0 and 𝑟𝑖,1 = 𝑟′𝑖,1.

– Output. For all 𝑖 ∈ 𝑇 , measure the register 𝒮𝑖,0 in basis + and the register 𝒮𝑖,1 in
basis × to obtain 𝑟′𝑖,0, 𝑟

′
𝑖,1. Output

𝑚0 := 𝑥0 ⊕ 𝐸
(︀
{𝑟′𝑖,𝑑𝑖}𝑖∈𝑇

)︀
,𝑚1 := 𝑥1 ⊕ 𝐸

(︀
{𝑟′𝑖,𝑑𝑖⊕1}𝑖∈𝑇

)︀
.

Figure 7: Non-interactive random-sender-input OT in the shared EPR pair model.
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7 The fixed basis framework: OT without entanglement or setup

In Fig. 8, we formalize our 3 round chosen-input OT protocol that does not rely on entanglement
or setup.

Theorem 7.1. Instantiate Protocol 8 with any non-interactive commitment scheme that is extractable
(Definition 5.3) and equivocal (Definition 5.4). Then there exist constants 𝐴,𝐵 such that Protocol 8
securely realizes (Definition 3.2) ℱOT[𝜆].

Furthermore, letting 𝜆 be the security parameter, 𝑞 be an upper bound on the total number of random
oracle queries made by the adversary, and using the commitment scheme from Section 5.2 with security
parameter 𝜆com = 4𝜆, for constants 𝐴 = 11 700, 𝐵 = 30 400, Protocol 8 securely realizes ℱOT[𝜆] with
𝜇R*-security against a malicious receiver and 𝜇S*-security against a malicious sender, where

𝜇R* =
3
√
10𝑞3/2

2𝜆
+

1

25𝜆
+

148(𝑞 + 126300𝜆+ 1)3 + 1

24𝜆
+

1010400𝑞𝜆

22𝜆
, 𝜇S* =

(︃
712𝑞𝜆1/2

22𝜆

)︃
.

This requires a total of 2(𝐴+𝐵)𝜆 = 84 200𝜆 BB84 states.

Proof. We begin by proving security against malicious senders below.
Receiver security

We now describe a simulator Sim that simulates the view of an arbitrary malicious sender S*.
Sim will answer random oracle queries to 𝐻 using SimEqu.RO, the random oracle simulator for
the commitment scheme (Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ). Additionally, the queries to 𝐻𝐹𝑆 will be sim-
ulated using an efficient on-the-fly random oracle simulator SimRO.RO as mentioned in Imported
Theorem 3.6.

The Simulator. Sim[S*] does the following.

1. Receive {|𝜓⟩}𝑖∈[𝑛] from S*.

2. Perform the following steps.

• Measurement Check Message.

– Compute
(︀
{𝑐𝑖}𝑖∈[𝑛]

)︀
← SimEqu.Com .

– Compute 𝑇 = 𝐻𝐹𝑆(𝑐1|| . . . ||𝑐𝑛) and parse 𝑇 as a subset of [𝑛] of size 𝑘.
– Perform (delayed) measurements on {|𝜓⟩}𝑖∈[𝑛] as follows:

* Sample ̂︀𝜃 ← {0, 1}𝑛.

* For all 𝑖 ∈ 𝑇 , measure the 𝑖𝑡ℎ pair of qubits in basis ̂︀𝜃𝑖 to obtain ̂︀𝑟𝑖0, ̂︀𝑟𝑖1.

* For all 𝑖 ∈ 𝑇 , measure the first qubit of |𝜓⟩𝑖 in the computational basis and the
second qubit in the Hadamard basis to obtain ̂︀𝑟𝑖0, ̂︀𝑟𝑖1 respectively.

– Compute {𝑢𝑖}𝑖∈[𝑛] ← SimEqu.Open({(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖)}𝑖∈[𝑛]).
• Reorientation. Let 𝑇 = [𝑛] ∖ 𝑇 , and for all 𝑖 ∈ 𝑇 , set 𝑑𝑖 = ̂︀𝜃𝑖.
• Message. Send to S

{𝑐𝑖}𝑖∈[𝑛], 𝑇, {̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖, 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 .
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Protocol 8

Ingredients / parameters / notation.
• Security parameter 𝜆 and constants 𝐴,𝐵. Let 𝑘 = 𝐴𝜆, 𝑛 = (𝐴+𝐵)𝜆.

• For classical bits (𝑥, 𝜃), let |𝑥⟩𝜃 denote |𝑥⟩ if 𝜃 = 0, and (|0⟩+ (−1)𝑥 |1⟩)/
√
2 if 𝜃 = 1.

• A non-interactive extractable and equivocal commitment (Com,Open,Rec), where com-
mitments to 3 bits have size ℓ := ℓ(𝜆).

• A random oracle 𝐻𝐹𝑆 : {0, 1}𝑛ℓ → {0, 1}⌈log (
𝑛
𝑘)⌉, and a universal hash function family

ℎ : {0, 1}𝑝(𝜆) × {0, 1}≤𝐵𝜆 → {0, 1}𝜆.

Sender Input: Messages 𝑚0,𝑚1 ∈ {0, 1}𝜆. Receiver Input: Choice bit b.

1. Sender Message. S samples strings 𝑟0 ← {0, 1}𝑛, 𝑟1 ← {0, 1}𝑛, a random subset 𝑈 ⊂ [𝑛]
of size 𝑘, and for 𝑖 ∈ 𝑈 , it samples 𝑏𝑖 ← {0, 1} uniformly at random. It computes state
|𝜓⟩ = |𝜓⟩1 . . . |𝜓⟩𝑛 as follows, and sends it to R: for 𝑖 ∈ 𝑈 , |𝜓⟩𝑖 = (

⃒⃒
𝑟0𝑖
⟩︀
𝑏𝑖
,
⃒⃒
𝑟1𝑖
⟩︀
𝑏𝑖
) and for

𝑖 ∈ [𝑛] ∖ 𝑈 , |𝜓⟩𝑖 = (
⃒⃒
𝑟0𝑖
⟩︀
0
,
⃒⃒
𝑟1𝑖
⟩︀
1
).

2. Receiver Message. R does the following.

• Choose ̂︀𝜃 ← {0, 1}𝑛 and measure the 𝑖𝑡ℎ pair of qubits in basis ̂︀𝜃𝑖 to obtain ̂︀𝑟𝑖0, ̂︀𝑟𝑖1.

• Measurement Check Message.

– Compute
(︀
st, {𝑐𝑖}𝑖∈[𝑛]

)︀
← Com

(︁
{(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖)}𝑖∈[𝑛])︁.

– Compute 𝑇 = 𝐻𝐹𝑆(𝑐1|| . . . ||𝑐𝑛) and parse 𝑇 as a subset of [𝑛] of size 𝑘.

– Compute {(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ← Open(st, 𝑇 ).

• Reorientation. Let 𝑇 := [𝑛] ∖ 𝑇 , and for all 𝑖 ∈ 𝑇 , set 𝑑𝑖 = 𝑏⊕ ̂︀𝜃𝑖.
• Message. Send to S the values {𝑐𝑖}𝑖∈[𝑛], 𝑇, {̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖, 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 .

3. Sender Message. S does the following.

• Check Receiver Message. S aborts if any of these checks fail:

– Check that 𝑇 = 𝐻𝐹𝑆(𝑐1|| . . . ||𝑐𝑛).
– Check that Rec({𝑐𝑖}𝑖∈𝑇 , 𝑇, {(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ) ̸= ⊥.
– For every 𝑖 ∈ 𝑇 ∩ 𝑈 such that ̂︀𝜃𝑖 = 𝑏𝑖, check that ̂︀𝑟𝑖0 = 𝑟0𝑖 and ̂︀𝑟𝑖1 = 𝑟1𝑖 .

• Message. Sample 𝑠 ← {0, 1}𝑝(𝜆), let 𝑅𝛽 denote the concatenation of {𝑟𝑑𝑖⊕𝛽𝑖 }𝑖∈𝑇∖𝑈
and send to R the values (𝑠, 𝑈, 𝑐𝑡0 = 𝑚0 ⊕ ℎ(𝑠,𝑅0), 𝑐𝑡1 = 𝑚1 ⊕ ℎ(𝑠,𝑅1)).

4. Receiver Output. Output 𝑚𝑏 = 𝑐𝑡𝑏 ⊕ ℎ(𝑠,𝑅) where 𝑅 is the concatenation {̂︀𝑟𝑖̂︀𝜃𝑖}𝑖∈𝑇∖𝑈 .

Figure 8: Three-round chosen-input OT without entanglement
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3. Upon receiving (𝑠, 𝑈, 𝑐𝑡0, 𝑐𝑡1) from S*,

• Set𝑅0 to be the concatenation {̂︀𝑟𝑖̂︀𝜃𝑖}𝑖∈𝑇∖𝑈 and𝑅1 to be the concatenation of {̂︀𝑟𝑖̂︀𝜃𝑖⊕1}𝑖∈𝑇∖𝑈 .

• Compute ̂︁𝑚0 := 𝑐𝑡0 ⊕ ℎ(𝑠,𝑅0), ̂︁𝑚1 := 𝑐𝑡1 ⊕ ℎ(𝑠,𝑅1), and send ̂︁𝑚0, ̂︁𝑚1 to the ideal
functionality.

Analysis. Fix any adversary {S*𝜆,D𝜆, 𝑏𝜆}𝜆∈N, where S*𝜆 is a QIOM that corrupts the sender, D𝜆 is
a QOM, and 𝑏𝜆 is the input of the honest receiver. For any receiver input 𝑏𝜆 ∈ {0, 1} consider the
random variables Π[S*𝜆,D𝜆, 𝑏𝜆] and ̃︀ΠℱOT[𝜆]

[Sim𝜆,D𝜆, 𝑏𝜆] according to Definition 3.2 for the protocol
in Figure 8. Let 𝑞(·) denote an upper bound on the combined number of queries of S*𝜆 and D𝜆. We
will show that :⃒⃒⃒⃒

Pr[Π[S*𝜆,D𝜆, 𝑏𝜆] = 1]− Pr
[︁̃︀ΠℱOT[𝜆]

[Sim𝜆,D𝜆, 𝑏𝜆] = 1
]︁⃒⃒⃒⃒

= 𝜇(𝜆, 𝑞(𝜆)).

This is done via a sequence of hybrids, as follows:

• Hyb0 : The output of this hybrid is the real distribution Π[S*𝜆,D𝜆, 𝑏𝜆].

• Hyb1: The output of this hybrid is the same as the previous hybrid except that the chal-
lenger uses switches 𝐻𝐹𝑆 with an efficient on-the-fly random oracle simulator SimRO.RO as
mentioned in Imported Theorem 3.6.

• Hyb2 : The output of this hybrid is the same as the previous hybrid except that instead
of running (Com,Open), the challenger uses (SimEqu.RO,SimEqu.Com,SimEqu.Open) to pre-
pare their commitments. It answers any random oracle queries to 𝐻𝐶 by calling SimEqu.RO
instead.

• Hyb3 : The output of this hybrid is the same as the previous hybrid except that the mea-
surement of {|𝜓⟩𝑖}𝑖∈[𝑛] on behalf of R is done after computing set 𝑇 and before invoking
SimEqu.Open on the measured values.

• Hyb4 : The output of this hybrid is the same as the previous hybrid except the following
modification on behalf of R, for all 𝑖 ∈ 𝑇 :

– Sample ̂︀𝜃𝑖 ← {0, 1}
– Measure the first qubit of |𝜓⟩𝑖 in the computational basis and the second qubit in the

Hadamard basis. Let the outcomes be ̂︀𝑟𝑖0, ̂︀𝑟𝑖1 respectively.

• Hyb5 : The output of this hybrid is the same as the previous hybrid except the following
modification.

– For 𝑖 ∈ 𝑇 , set reorientation bit 𝑑𝑖 := ̂︀𝜃𝑖.
– After receiving the last sender message.

* Set𝑅0 to be the concatenation {̂︀𝑟𝑖̂︀𝜃𝑖}𝑖∈𝑇∖𝑈 and𝑅1 to be the concatenation of {̂︀𝑟𝑖̂︀𝜃𝑖⊕1}𝑖∈𝑇∖𝑈 .

* Compute ̂︁𝑚0 := 𝑐𝑡0 ⊕ ℎ(𝑠,𝑅0), ̂︁𝑚1 := 𝑐𝑡1 ⊕ ℎ(𝑠,𝑅1), and send ̂︁𝑚0, ̂︁𝑚1 to the ideal
functionality.
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The output of this last hybrid is identical to the ideal distribution ̃︀ΠℱOT[𝜆]
[Sim𝜆,D𝜆, 𝑏𝜆].

We show that |Pr[Hyb5 = 1] − Pr[Hyb0 = 1]| ≤ 𝜇(𝜆, 𝑞(𝜆)), where (Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ) is

a 𝜇(𝜆, 𝑞(𝜆))-equivocal bit commitment scheme, where 𝜇(𝜆, 𝑞, 𝑛com) = 2𝑞𝑛
1/2
com

2𝜆com/2 for the specific com-
mitment scheme that we construct in Section 5.2, where 𝑛com is the number of bit commitments
and 𝜆com is the security parameter for the commitment scheme. Later, we will set 𝑛com = 𝑐1𝜆 and
𝜆com = 𝑐2𝜆 for some fixed constants 𝑐1, 𝑐2. Thus 𝜇 will indeed be a function of 𝜆 and 𝑞. We now
procced with the proof by arguing indistinguishability of each pair of consecutive hybrids in the
sequence above.

Claim 7.2. Pr[Hyb0 = 1] = Pr[Hyb1 = 1].

Proof. This follows from the indistinguishable simulation property of SimRO.RO as mention in the
Imported Theorem 3.6.

Claim 7.3. |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ 𝜇(𝜆, 𝑞(𝜆)).

Proof. Suppose there exists an adversary Adv𝜆 corrupting S, a distinguisher D𝜆, and a bit 𝑏 such
that, ⃒⃒⃒⃒

Pr[Hyb1 = 1]− Pr[Hyb2 = 1]

⃒⃒⃒⃒
> 𝜇(𝜆, 𝑞(𝜆))

We will build a reduction adversary {Adv*𝜆 = (AdvRCommit,𝜆,AdvROpen,𝜆,D
*
𝜆)}𝜆∈N that makes

at most 𝑞(𝜆) queries to the random oracle, and contradicts the 𝜇-equivocality of the commitment
(Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ) as defined in Definition 5.4. In the following reduction, all random ora-
cle queries to 𝐻𝐶 will be answered by the equivocal commitment challenger whereas calls to 𝐻𝐹𝑆

will be simulated by Adv*𝜆 by internally running SimRO.RO.

AdvRCommit,𝜆:

• Initalize the OT protocol with between honest receiver R and Adv corrupting S.

• Output intermediate state 𝜌*𝜆,1 representing the joint state of S and R along with the mea-
surement information {(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖)}𝑖∈[𝑛] computed by R.

The measurement information {(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖)}𝑖∈[𝑛] is sent as messages to the reduction chal-
lenger which then returns a set of commitments {com𝑖}𝑖∈[𝑛].

AdvROpen,𝜆(𝜌
*
𝜆,1, {com𝑖}𝑖∈[𝑛]): Use 𝜌*𝜆,1 to initialize the joint state of S and R, and output the new

joint state 𝜌*𝜆,2 after R has computed 𝑇 .

The challenger returns {𝑢𝑖}𝑖∈[𝑛] which is then fed to the following distinguisher (along with
the information {com𝑖, (̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖)}𝑖∈[𝑛] from the aforementioned execution).

D*𝜆(𝜌
*
𝜆,2, {com𝑖, (̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖), 𝑢𝑖}𝑖∈[𝑛]) :

• Use 𝜌*𝜆,2 to initialize the joint state of S and R. Run it until completion using {(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖), 𝑢𝑖}𝑖∈𝑇
as openings of R in the measurement check proof
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• Let 𝜏*𝜆 be the final state of Adv and 𝑦* be the output of R. Run D𝜆(𝜏
*
𝜆 , 𝑦
*) and output the bit 𝑏

returned by the distinguisher.

By construction, when the challenger executes (Com𝐻𝐶 ,Open𝐻𝐶 ), the reduction will generate a
distribution identical to Hyb1. Similarly, when the challenger executes (SimEqu.Com, SimEqu.Open),
the reduction will generate a distribution identical to Hyb2. Therefore, the reduction {Adv*𝜆 =
(AdvRCommit,𝜆,AdvROpen,𝜆,D

*
𝜆)}𝜆∈N directly contradicts the 𝜇-equivocality of the underlying com-

mitment scheme (Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ) as in Definition 5.4.

Claim 7.4. Pr[Hyb2 = 1] = Pr[Hyb3 = 1]

Proof. The only difference in Hyb3 from Hyb2 is that we commute the measurement of {|𝜓⟩}𝑖∈[𝑛]
past the invocation of SimEqu.Com and the computation of 𝑇 . Since these two operators are ap-
plied to disjoint subsystems, this can be done without affecting the hybrid distribution.

Claim 7.5. Pr[Hyb3 = 1] = Pr[Hyb4 = 1]

Proof. The only difference in Hyb4 from Hyb3 is the following. For all 𝑖 ∈ 𝑇 : If ̂︀𝜃𝑖 = 0, we measure
the second qubit of |𝜓𝑖⟩ in the Hadamard basis (instead of the computational basis as defined in the
previous hybrid). If ̂︀𝜃𝑖 = 1, we measure the first qubit of |𝜓𝑖⟩ in computational basis (instead of the
Hadamard basis as defined in the previous hybrid). But this doesn’t affect the hybrid distribution
because the values on these registers are not used anywhere in the hybrid and are eventually
traced out.

Claim 7.6. Pr[Hyb4 = 1] = Pr[Hyb5 = 1]

Proof. The only difference between these experiments is the way in which we define the output of
honest receiver. Assuming the correctness of ℱOT[𝜆], the two hybrids are identical. In Hyb4, the re-

ceiver’s output is computed by the challenger as ̂︁𝑚𝑏 = 𝑐𝑡𝑏⊕ℎ(𝑠, ||𝑖∈𝑇∖𝑈 ̂︀𝑟𝑖̂︀𝜃𝑖) (where ||𝑖∈𝐺𝑥𝑖 denotes
the concatenation of 𝑥𝑖 for 𝑖 ∈ 𝐺, in increasing order of 𝑖). In Hyb5, the receiver’s output is derived
via the OT ideal functionality which receives sender’s input strings ̂︁𝑚0 := 𝑐𝑡0 ⊕ ℎ(𝑠, ||𝑖∈𝑇∖𝑈 ̂︀𝑟𝑖̂︀𝜃𝑖)
and ̂︁𝑚1 := 𝑐𝑡1⊕ℎ(𝑠, ||𝑖∈𝑇∖𝑈 ̂︀𝑟𝑖̂︀𝜃𝑖⊕1) from the challenger and receiver choice bit 𝑏. The OT ideal func-

tionality sends ̂︁𝑚𝑏 = 𝑐𝑡𝑏 ⊕ ℎ(𝑠, ||𝑖∈𝑇∖𝑈 ̂︀𝑟𝑖̂︀𝜃𝑖⊕𝑏) to the ideal receiver which it then outputs. Therefore
for any fixing of the adversary’s state and receiver choice bit, the two hybrids result in identical̂︁𝑚𝑏.

Combining all the claims, we get that |Pr[Hyb0 = 1]− Pr[Hyb5 = 1]| ≤ 𝜇(𝜆, 𝑞(𝜆)). Using Theo-

rem 5.12 where we derived 𝜇(𝜆, 𝑞, 𝑛com) =
2𝑞𝑛

1/2
com

2𝜆com/2 and plugging 𝜆com = 4𝜆, 𝑛com = 3𝑛 (as we are
committing to 3 bits at a time) where 𝑛 = 42 100𝜆 (this setting of 𝑛 is the same as that needed in
the sender security part of the proof), we get 712𝑞

√
𝜆

22𝜆
security against a malicious sender.

Sender security
Let SimExt = (SimExt.RO,SimExt.Ext) be the simulator for the extractable commitment scheme

from Section 5. Let + refer to the computational basis and × to the hadamard basis. Below we
describe the simulator Sim[R*] against a malicious receiver R* for Protocol 8.

Sim[R*]:
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• Initialize the on-the-fly random oracle simulator SimRO from Imported Theorem 3.6. Run R*

answering its oracle queries to 𝐻𝐹𝑆 using SimRO and queries to 𝐻𝐶 using SimExt.RO.

• Sample 2𝑛 EPR pairs on registers {(𝒮𝑖,𝑏,ℛ𝑖,𝑏)}𝑖∈[𝑛],𝑏∈{0,1} (where each 𝒮𝑖,𝑏,ℛ𝑖,𝑏 is a 2-dimensional
register). Send registers {ℛ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} to R*.

• When R* outputs {𝑐𝑖}𝑖∈[𝑛], 𝑇, {(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 , run {(̃︀𝑟𝑖0, ̃︀𝑟𝑖1, ̃︀𝜃𝑖)}𝑖∈[𝑛] ← SimExt.Ext({𝑐𝑖}𝑖∈[𝑛]).

• Run the “check receiver message" part of the honest sender strategy, except do the following
in place of the third check. If any of the checks fail, send abort to the ideal functionality,
output R*’s state and continue answering distinguisher’s queries.

– Sample subset 𝑈 ⊂ [𝑛] of size 𝑘 and for each 𝑖 ∈ [𝑛], sample bit 𝑏𝑖 ∈ {0, 1}.
– For each 𝑖 ∈ [𝑛], do the following:

* If 𝑖 ∈ 𝑈 , measure both registers 𝒮𝑖,0 and 𝒮𝑖,1 in basis + when 𝑏𝑖 = 0, and both in
basis × when 𝑏𝑖 = 1. Denote measurement outcomes from 𝒮𝑖,0 and 𝒮𝑖,1 by 𝑟0𝑖 and
𝑟1𝑖 respectively.

* If 𝑖 /∈ 𝑈 , then measure 𝒮𝑖,0 in basis + and 𝒮𝑖,1 in basis × and denote outcomes by
outcomes 𝑟0𝑖 , 𝑟

1
𝑖 respectively.

– For each 𝑖 ∈ 𝑇 ∩ 𝑈 such that ̃︀𝜃𝑖 = 𝑏𝑖, check that ̃︀𝑟𝑖0 = 𝑟0𝑖 and ̃︀𝑟𝑖1 = 𝑟1𝑖 .

• Set 𝑏 := maj{̃︀𝜃𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇∖𝑈 and send 𝑏 to ℱOT[𝜆] to obtain 𝑚𝑏.

• Compute the last message using the honest sender strategy except for using 𝑚1−𝑏 := 0𝜆.

• Send R* this last message, output the final state of R* and terminate.

• Answer any queries of distinguisher to 𝐻𝐹𝑆 and 𝐻𝐶 using SimRO and SimExt.RO respec-
tively.

Fix any distinguisher D and let 𝑞 denote the total queries that R*,D make to𝐻𝐹𝑆 and𝐻𝐶 . Consider
the following sequence of hybrids:

• Hyb0: This is the real world interaction between R* and S. Using the notation of Defini-
tion 3.2, this is a distribution over {0, 1} denoted by Π[R*,D, (𝑚0,𝑚1)].

• Hyb1: This is the same as the previous hybrid, except the following are run instead to gen-
erate the first sender message: (1) Sample 2𝑛 EPR pairs on registers {(𝒮𝑖,𝑏,ℛ𝑖,𝑏)}𝑖∈[𝑛],𝑏∈{0,1}.
(2) Run the following algorithm:

Algorithm Measure-EPR:

– Sample subset 𝑈 ⊂ [𝑛] of size 𝑘 and for each 𝑖 ∈ [𝑛], sample bit 𝑏𝑖 ∈ {0, 1}.
– For each 𝑖 ∈ [𝑛], do the following:

* If 𝑖 ∈ 𝑈 , measure registers 𝒮𝑖,0 and 𝒮𝑖,1 in basis + when 𝑏𝑖 = 0, and in basis×when
𝑏𝑖 = 1, to get outcomes 𝑟0𝑖 and 𝑟1𝑖 respectively.

* If 𝑖 /∈ 𝑈 , then measure 𝒮𝑖,0 in basis + and 𝒮𝑖,1 in basis × to get outcomes 𝑟0𝑖 , 𝑟
1
𝑖

respectively.
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Thereafter, registers {ℛ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} are sent over to R* and the rest of the experiment works
as the previous hybrid.

• Hyb2: This is the same previous hybrid, except that the sender does not perform any mea-
surements before sending registers {ℛ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} to R*, and delays running the algorithm
Measure-EPR to just before executing the third check in “check receiver message" part of the
honest sender strategy.

• Hyb3: This is the same as the previous hybrid, except for the following changes: queries
of R* to 𝐻𝐶 are now answered using SimExt.RO. Once R* outputs its second message,
run {(̃︀𝑟𝑖0, ̃︀𝑟𝑖1, ̃︀𝜃𝑖)}𝑖∈[𝑛] ← SimExt.Ext({𝑐𝑖}𝑖∈[𝑛]). Thereafter, {(̃︀𝑟𝑖0, ̃︀𝑟𝑖1, ̃︀𝜃𝑖)}𝑖∈𝑇 are used for
the third check in the “check receiver part" of the honest sender strategy (instead of using
{(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖)}𝑖∈𝑇 ).

• Hyb4: This is the result of the interaction between Sim[R*], ℱOT[𝜆] and honest sender S. Using
the notation of Definition 3.2, this is denoted by ̃︀ΠℱOT[𝜆]

[Sim[R*],D, (𝑚0,𝑚1)].

We prove the indistinguishability between the hybrids using the following claims:

Claim 7.7. Pr[Hyb0 = 1] = Pr[Hyb1 = 1]

Proof. The only difference between the two hybrids is in how S samples the state on the registers
that it sends to R*. Denote the registers that S sends to R* in either hybrid by {ℛ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}.
In Hyb0, each pair (ℛ𝑖,0,ℛ𝑖,1) contains state (

⃒⃒
𝑟0𝑖
⟩︀
𝑏𝑖
,
⃒⃒
𝑟1𝑖
⟩︀
𝑏𝑖
), for 𝑖 ∈ 𝑈 and 𝑏𝑖 chosen uniformly

from {+,×}, and (
⃒⃒
𝑟0𝑖
⟩︀
0
,
⃒⃒
𝑟1𝑖
⟩︀
1
) for 𝑖 /∈ 𝑈 , and for independently uniformly sampled bits 𝑟0𝑖 , 𝑟

1
𝑖 .

In Hyb1, the challenger prepares 2𝑛 EPR pairs on registers {(𝒮𝑖,𝑏,ℛ𝑖,𝑏)}𝑖∈[𝑛],𝑏∈{0,1}, then for every
𝑖 ∈ 𝑈 measures the pair 𝒮𝑖,0,𝒮𝑖,1 in basis 𝑏𝑖 that is uniformly sampled from {+,×}, and for 𝑖 /∈ 𝑈
measures 𝒮𝑖,0,𝒮𝑖,1 in basis 0, 1 respectively. By elementary properties of EPR pairs, each register
ℛ𝑖,𝑏 is in a state |𝑟⟩ for a uniformly independently sampled bit 𝑟 and in a basis that is chosen from
the same distribution in both experiments.

Claim 7.8. Pr[Hyb1 = 1] = Pr[Hyb2 = 1]

Proof. In Hyb1, S measures the registers {𝒮𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1} first, after which R* operates on regis-
ters {ℛ𝑖,𝑏}𝑖∈[𝑛],𝑏∈{0,1}. In Hyb2, S performs the same measurements, but after receiving the sec-
ond round message from R*. Indistinguishability follows because measurements on disjoint sub-
systems commute.

Claim 7.9.

|Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ 148(𝑞 + 3𝑛+ 1)3 + 1

24𝜆
+

24𝑞𝑛

22𝜆
.

Proof. This follows by a direct reduction to extractability of the commitment scheme (Defini-
tion 5.3). Indeed, let AdvCommit be the machine that runs Hyb0 until R* outputs its message, which
includes {𝑐𝑖}𝑖∈[𝑛]. Let AdvOpen be the machine that takes as input the rest of the state of Hyb0, which
includes 𝑇 and the openings {(̂︀𝑟𝑖0, ̂︀𝑟𝑖1, ̂︀𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , and outputs 𝑇 and these openings. Let D be the
machine that runs the rest of Hyb0 and outputs a bit.

61



Then, plugging in 𝜆com = 4𝜆, Definition 5.3 when applied to (AdvCommit,AdvOpen,D) implies
that the hybrids cannot be distinguished except with probability

148(𝑞 + 3𝑛+ 1)3 + 1

24𝜆
+

24𝑞𝑛

22𝜆
,

since we are committing to a total of 3𝑛 bits.

Claim 7.10. For 𝐴 = 11 700, 𝐵 = 30 400, and 𝑞 ≥ 5,

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ 3
√
10𝑞3/2

2𝜆
+

1

25𝜆

Proof. The only difference between Hyb3 and Hyb4 is that𝑚1−𝑏 = 0𝜆, where 𝑏 = maj{̃︀𝜃𝑖⊕𝑑𝑖}𝑖∈𝑇 . In
what follows, we show that 𝑚1−𝑏 is masked with a string that is (statistically close to) uniformly
random from even given the view of R* in either hybrid, which implies the given claim.

Notation: We setup some notation before proceeding.

• Let c := (𝑐1, . . . , 𝑐𝑛) be the classical commitments and b := (𝑏1, . . . 𝑏𝑛) be the bits sampled by
the sender while executing its checks.

• Write the classical extracted values {(̃︀𝑟𝑖0, ̃︀𝑟𝑖1, ̃︀𝜃𝑖)}𝑖∈[𝑛] as matrices

̃︀R :=

[︂ ̃︀𝑟10 . . . ̃︀𝑟𝑛0̃︀𝑟11 . . . ̃︀𝑟𝑛1
]︂
, ̃︀𝜃 :=

[︁̃︀𝜃1 . . . ̃︀𝜃𝑛]︁ .
• Given any R ∈ {0, 1}2×𝑛, 𝜃 ∈ {0, 1}𝑛, define |R𝜃⟩ as a state on 𝑛 4-dimensional registers,

where register 𝑖 contains the state |R𝑖,0,R𝑖,1⟩ prepared in the (𝜃𝑖,𝜃𝑖)-basis.

• Given R, ̃︀R ∈ {0, 1}2×𝑛 and a subset 𝑇 ⊆ [𝑛], define R𝑇 be the columns of R indexed by 𝑇 ,
and define ∆

(︁
R𝑇 , ̃︀R𝑇

)︁
as the fraction of columns 𝑖 ∈ 𝑇 such that (R𝑖,0,R𝑖,1) ̸= (̃︀R𝑖,0, ̃︀R𝑖,1).

• For 𝑇 ⊂ [𝑛], let 𝑇 := [𝑛] ∖ 𝑇 .

• Given ̃︀R ∈ {0, 1}2×𝑛, ̃︀𝜃 ∈ {0, 1}𝑛, 𝑇 ⊆ [𝑛], 𝑈 ⊆ [𝑛], b ∈ {0, 1}𝑛, and 𝛿 ∈ (0, 1), define

Π
̃︀R,̃︀𝜃,𝑇,𝑈,b,𝛿 := ∑︁

R :R𝑆′=̃︀R𝑆′ ,Δ
(︁
R𝑇∖𝑈 ,

̃︀R𝑇∖𝑈

)︁
≥𝛿

where 𝑆′={𝑗 | 𝑗∈𝑇∩𝑈 ∧b𝑗=̃︀𝜃𝑗}

⃒⃒
R̃︀𝜃⟩︀ ⟨︀R̃︀𝜃 ⃒⃒ .

Now, consider the following projection, which has hard-coded the description of 𝐻𝐹𝑆 :

Π𝛿bad :=
∑︁

c,̃︀R,̃︀𝜃,b,
𝑈⊆[𝑛],|𝑈 |=𝑘

|c⟩ ⟨c|𝒞 ⊗
⃒⃒⃒ ̃︀R, ̃︀𝜃⟩⟨̃︀R, ̃︀𝜃⃒⃒⃒

𝒵1

⊗ |𝑈,b⟩ ⟨𝑈,b|𝒵2
⊗Π

̃︀R,̃︀𝜃,𝐻𝐹𝑆(c),𝑈,b,𝛿
𝒮 ,

where 𝒞 is the register holding the classical commitments, 𝒵1 is the register holding the output of
SimExt.Ext, 𝒵2 is the register holding the subset 𝑈 and bits b sampled by sender, and 𝒮 denotes
all the registers holding the sender’s halves of EPR pairs.
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SubClaim 7.11. Let
𝜏 :=

∑︁
c,̃︀R,̃︀𝜃,𝑈,b

𝑝(c,
̃︀R,̃︀𝜃,𝑈,b)𝜏 (c,̃︀R,̃︀𝜃,𝑈,b),

where
𝜏 (c,

̃︀R,̃︀𝜃,𝑈,b) = |c⟩ ⟨c|𝒞 ⊗
⃒⃒⃒ ̃︀R, ̃︀𝜃⟩⟨̃︀R, ̃︀𝜃⃒⃒⃒

𝒵1

⊗ |𝑈,b⟩ ⟨𝑈,b|𝒵2
⊗ 𝜌(c,

̃︀R,̃︀𝜃,𝑈,b)
𝒮,𝒳

is the entire state of Hyb3 (equivalently also Hyb4) immediately after R* outputs its message (which includes
c), SimExt.Ext is run to get ̃︀R, ̃︀𝜃, and sender samples the set 𝑈 ⊆ [𝑛] of size 𝑑 and bits b ∈ {0, 1}𝑛. Here,
each 𝑝(c,̃︀R,̃︀𝜃,𝑈,b) is the probability that the string c, ̃︀R, ̃︀𝜃, 𝑈,b is contained in the registers 𝒞,𝒵1,𝒵2. Also,
𝒮 is the register holding the sender’s halves of EPR pairs and 𝒳 is a register holding remaining state
of the system, which includes the rest of the receiver’s classical message and its private state. Then, for
𝐴 = 11 700, 𝐵 = 30 400 and for 𝑞 ≥ 5,

Tr
(︁
Π

11/200
bad 𝜏

)︁
≤ 45𝑞3

22𝜆

Proof. Define Adv𝐻𝐹𝑆
R* to be the oracle machine that runs Hyb3 until R* outputs c (and the rest of

its message), then runs SimExt.Ext to obtain
⃒⃒⃒ ̃︀R, ̃︀𝜃⟩⟨̃︀R, ̃︀𝜃⃒⃒⃒

𝒵1

, followed by sampling the set 𝑈 ⊆ [𝑛]

of size 𝑑, and bits b ∈ {0, 1}𝑛 in the register 𝒵2, and finally outputting the remaining state 𝜌𝒮,𝒳 .
Consider running the measure-and-reprogram simulator Sim[AdvR* ] from Imported Theorem 3.5,
which simulates 𝐻𝐹𝑆 queries, measures and outputs c, then receives a uniformly random subset
𝑇 ⊂ [𝑛] of size 𝑘, and then continues to run AdvR* until it outputs

⃒⃒⃒ ̃︀R, ̃︀𝜃⟩⟨̃︀R, ̃︀𝜃⃒⃒⃒
𝒵1

⊗|𝑈,b⟩ ⟨𝑈,b|𝒵2
⊗

𝜌𝒮,𝒳 . Letting

Π𝛿bad[𝑇 ] :=
∑︁

c,̃︀R,̃︀𝜃,b
𝑈⊆[𝑛],|𝑈 |=𝑑

|c⟩ ⟨c|𝒞 ⊗
⃒⃒⃒ ̃︀R, ̃︀𝜃⟩⟨̃︀R, ̃︀𝜃⃒⃒⃒

𝒵1

⊗ |𝑈,b⟩ ⟨𝑈,b|𝒵2
⊗Π

̃︀R,̃︀𝜃,𝑇,𝑈,b,𝛿
𝒮 ,

for 𝑇 ⊂ [𝑛], Imported Theorem 3.5 implies that Tr
(︀
Π𝛿bad𝜏

)︀
≤ (2𝑞 + 1)2𝛾, where

𝛾 = E
[︂
Tr

(︂
Π𝛿bad[𝑇 ]

(︂
|c⟩ ⟨c|𝒞 ⊗

⃒⃒⃒ ̃︀R, ̃︀𝜃⟩⟨̃︀R, ̃︀𝜃⃒⃒⃒
𝒵1

⊗ |𝑈,b⟩ ⟨𝑈,b|𝒵2
⊗ 𝜌𝒮,𝒳

)︂)︂]︂
with expectation defined over the following experiment:

• (c, st)← Sim[AdvR* ],

• 𝑇 ← 𝑆𝑛,𝑘, the set of all subsets of [𝑛] of size 𝑘,

•
(︁̃︀R, ̃︀𝜃, 𝑈,b, 𝜌𝒮,𝒳)︁← Sim[AdvR* ](𝑇, st).

Now, recall that one of the last things that AdvR* does in Hyb3 is run SimExt.Ext on c to obtain
(̃︀R, ̃︀𝜃). Consider instead running SimExt.Ext on c immediately after Sim[AdvR* ] outputs c. Note
that SimExt.Ext only operates on the register holding c and its own private state used for simulat-
ing 𝐻𝐶 , so since Com𝐻𝐶 has a 8

2𝜆com/2 -commuting simulator (Definition 5.3), we have that,
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Tr
(︁
Π𝛿bad𝜏

)︁
≤ (2𝑞 + 1)2

(︂
𝜖+

8𝑞

2𝜆com/2

)︂
(5)

where

𝜖 := E
[︂
Tr

(︂
Π𝛿bad[𝑇 ]

(︂
|c⟩ ⟨c|𝒞 ⊗

⃒⃒⃒ ̃︀R, ̃︀𝜃⟩⟨̃︀R, ̃︀𝜃⃒⃒⃒
𝒵1

⊗ |𝑈,b⟩ ⟨𝑈,b|𝒵2
⊗ 𝜌𝒮,𝒳

)︂)︂]︂
(6)

over the randomness of the following experiment:

• (c, st)← Sim[AdvR* ],

• (̃︀R, ̃︀𝜃)← SimExt.Ext(c),

• 𝑇 ← 𝑆𝑛,𝑘,

•
(︁̃︀R, ̃︀𝜃, 𝑈,b, 𝜌𝒮,𝒳)︁← Sim[AdvR* ](𝑇, st).

The sampling of 𝑇,𝑈 ⊆ [𝑛] each of size 𝑘 uniformly and independently at random in the experi-
ment above is equivalent to the following sampling strategy. First, sample the size of their inter-
section, i.e. sample and fix 𝑠 = |𝑇 ∩𝑈 |, this fixes the size of 𝑇 ∪𝑈 to be 2𝑘− 𝑠, since |𝑇 | = |𝑈 | = 𝑠.
Next sample and fix a set 𝑇 ′ of size 2𝑘− 𝑠 (that will eventually represent the union 𝑇 ∪𝑈 ). Finally,
sample a subset 𝑆 ⊂ 𝑇 ′ of size 𝑠 (which will eventually represent the intersection 𝑇 ∩ 𝑈 ), and
then obtain 𝑇 and 𝑈 by paritioning 𝑇 ′ ∖ 𝑆 into two random subsets each of size 𝑘 − 𝑠, and then
computing the union of each set with 𝑆. This is described formally below.

• Fix a state on register 𝒮 (and potentially other registers of arbitrary size), where 𝒮 is split
into 𝑛 registers 𝒮1, . . . ,𝒮𝑛 of dimension 4, and fix ̃︀R ∈ {0, 1}2×𝑛, ̃︀𝜃 ∈ {0, 1}𝑛.

• Sample two independent and uniform subsets of [𝑛] each of size 𝑘. Let 𝑠 denote the size of
their intersection. Fix 𝑠, and discard the subsets themselves.

• Sample a random subset 𝑇 ′ of [𝑛], of size 2𝑘 − 𝑠.

• Sample subsets 𝑇,𝑈, 𝑆′ ⊆ 𝑇 ′ as follows:

– Sample and fix a random subset set of size 𝑠 of 𝑇 ′, call this subset 𝑆.

– Partition 𝑇 ′ ∖ 𝑆 (note: this has size 2𝑘− 2𝑠) into two equal sets 𝑊1 and 𝑊2 of size 𝑘− 𝑠.
This can be done by first sampling a set 𝑊1 of size 𝑘 − 𝑠 uniformly at random from
𝑇 ′ ∖ 𝑆 and setting 𝑊2 = (𝑇 ′ ∖ 𝑆) ∖𝑊1.

– Let 𝑇 =𝑊1 ∪ 𝑆 and 𝑈 =𝑊2 ∪ 𝑆.

– Sample bits b ∈ {0, 1}𝑛 and set 𝑆′ = {𝑗 | 𝑗 ∈ 𝑆 ∧ b𝑗 = ̃︀𝜃𝑗}.
• For each 𝑖 ∈ 𝑆′, measure the register 𝒮𝑖 in basis ̃︀𝜃𝑖 to get R𝑆′ ∈ {0, 1}2×|𝑆′|. Output

∆(R𝑆′ , ̃︀R𝑆′).
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The quantum error probability 𝜖𝛿quantum (Definition 3.11) of the above game corresponds to
the trace distance between the initial state on register 𝒮 and an “ideal” state (as defined in Defini-
tion 3.11). This ideal state is supported on vectors

⃒⃒
R̃︀𝜃⟩︀ such that |∆(R𝑇 ′ , ̃︀R𝑇 ′)−∆(R𝑆′ , ̃︀R𝑆′)| < 𝛿.

In particular, for any
⃒⃒
R̃︀𝜃⟩︀ with ∆(R𝑆′ , ̃︀R𝑆′) = 0 in the support of the ideal state, it holds that

∆(R𝑇 ′ , ̃︀R𝑇 ′) < 𝛿, or ∆(R𝑇∖𝑈 ,
̃︀R𝑇∖𝑈 ) < 𝛿 (since 𝑇 ′ = 𝑇 ∖ 𝑈 in the sampling game above). Thus,

this ideal state is orthogonal to the subspace Π
̃︀R,̃︀𝜃,𝑇,𝑈,b,𝛿
𝒮 , and so it follows that 𝜖 is bounded by

𝜖𝛿quantum.

Thus, by Imported Theorem 3.12, 𝜖 is then bounded by
√︁
𝜖𝛿classical, where 𝜖𝛿classical is the clas-

sical error probability (Definition 3.10) in the corresponding classical sampling game, defined as
follows:

• Let R, ̃︀R ∈ {0, 1}2×𝑛 s.t. R is the matrix on which we are running the sampling and ̃︀R is an
arbitrary matrix.

• Sample two independent and uniform subsets of [𝑛] each of size 𝑘. Let 𝑠 denote the size of
their intersection. Fix 𝑠, and discard the subsets themselves. Sample a random subset 𝑇 ′ of
[𝑛], of size 2𝑘 − 𝑠.

• Sample subset 𝑆′ ⊆ 𝑇 ′ as follows:

– Sample 𝑆 as a random subset of 𝑇 ′ of size 𝑠.

– Sample bits b ∈ {0, 1}𝑛 and set 𝑆′ = {𝑗 | 𝑗 ∈ 𝑆 ∧ b𝑗 = ̃︀𝜃𝑗}.
• Output ∆(R𝑆′ , ̃︀R𝑆′).

We provide an analysis of this classical sampling game in Appendix D.3. Using Lemma D.4
from the same appendix, we get that for 0 < 𝜖, 𝛽, 𝛿 < 1 and 0 < 𝛾 < 𝛿,

𝜖𝛿classical ≤ 2 exp

(︃
−2
(︂

(𝑛− 𝑘)2 − 3𝜖𝑘2

(𝑛− 𝑘)2 + (1− 2𝜖)𝑘2

)︂2

𝛾2(1− 𝜖)𝑘
2

𝑛

)︃

+ 2 exp

(︂
−(𝛿 − 𝛾)2(1− 𝛽)(1− 𝜖)𝑘

2

𝑛

)︂
+ exp

(︂
−𝛽

2(1− 𝜖)𝑘2

2𝑛

)︂
+ 2 exp

(︂
−2𝜖2𝑘3

𝑛2

)︂
Setting 𝛿 = 11/200, 𝜖 = 0.03917, 𝛽 = 0.04213, 𝛾 = 0.02456, 𝑘 = 𝐴𝜆, 𝑛 = (𝐴 + 𝐵)𝜆,𝐴 =

11 700, 𝐵 = 30 400, we get each of the exp terms above is ≤ 1
24𝜆

. Thus, 𝜖𝛿classical ≤
7

24𝜆
, giving

us, 𝜖 ≤ 𝜖𝛿quantum ≤
√︁
𝜖𝛿classical ≤

√
7

22𝜆
.

This gives using Eq. (5) that:

Tr
(︁
Π

11/200
bad 𝜏

)︁
≤ (2𝑞 + 1)2

[︃√
7

22𝜆
+

8𝑞

2𝜆com/2

]︃
For 𝜆com = 4𝜆 and 𝑞 ≥ 5,

Tr
(︁
Π

11/200
bad 𝜏

)︁
≤ (2𝑞 + 1)2

[︃√
7

22𝜆
+

8𝑞

22𝜆

]︃
≤ (2𝑞 + 1)2(8𝑞 +

√
7)

22𝜆
≤ 5𝑞2 · 9𝑞

22𝜆
≤ 45𝑞3

22𝜆
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Thus, by gentle measurement (Lemma 3.1), the 𝜏 defined in SubClaim 7.11 is within trace
distance 3

√
10𝑞3/2

2𝜆
of a state 𝜏good in the image of I−Π

11/200
bad .The following sub-claim completes the

proof of Claim 7.10.

SubClaim 7.12. If ℎ : {0, 1}𝑚 × {0, 1}≤𝐴𝜆 → {0, 1}𝜆 is a universal family of hash functions, then
conditioned on 𝜏 (defined in SubClaim 6.5) being the image of I− Π

11/200
bad , and 𝐴 = 11 700, 𝐵 = 30 400,

it holds that
|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ 1

25𝜆

where ℎ𝑏 is the binary entropy function.

Proof. Note that

I−Π𝛿bad =
∑︁

c,̃︀R,̃︀𝜃,b,
𝑈⊆[𝑛],|𝑈 |=𝑑

|c⟩ ⟨c|𝒞 ⊗
⃒⃒⃒ ̃︀R, ̃︀𝜃⟩⟨̃︀R, ̃︀𝜃⃒⃒⃒

𝒵1

⊗ |𝑈,b⟩ ⟨𝑈,b|𝒵2
⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑︁

R :R𝑆′ ̸=̃︀R𝑆′ or Δ
(︁
R𝑇∖𝑈 ,

̃︀R𝑇∖𝑈

)︁
<𝛿

where 𝑇=𝐻𝐹𝑆(c),

𝑆′={𝑗 | 𝑗∈𝑇∩𝑈 ∧b𝑗=̃︀𝜃𝑗}

⃒⃒
R̃︀𝜃⟩︀ ⟨︀R̃︀𝜃 ⃒⃒𝒮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

Since 𝜏 is in the image of I − Π
11/200
bad , by definition the state on register 𝒮 is in a superposition

of states as in the summation above. However, note that if 𝑇 ̸= 𝐻𝐹𝑆(c) or if R𝑆′ ̸= ̃︀R𝑆′ (where
𝑆′ = {𝑗 | 𝑗 ∈ 𝑇∩𝑈 ∧b𝑗 = ̃︀𝜃𝑗}), then the sender side check will fail and the two hybrids are perfectly
indistinguishable. So, it suffices to analyze states 𝜏 where the register containing 𝑇 equals 𝐻𝐹𝑆(c)

and where R𝑆′ = ̃︀R𝑆′ . Thus, conditioned on the sender not aborting, the above equation implies
that the register 𝒮 is in superposition of states

⃒⃒
R̃︀𝜃⟩︀ s.t. R𝑆′ = ̃︀R𝑆′ ,∆(R𝑇∖𝑈 ,

̃︀R𝑇∖𝑈 ) < 11/200, for
𝑆′ as defined above.

Recall that 𝜏 is the state of Hyb3 (equivalently also Hyb4) immediately after R* outputs its
message (which includes c), SimExt.Ext is run to get ̃︀R, ̃︀𝜃, and sender samples the set 𝑈 ⊆ [𝑛] of
size 𝑑 and bits b ∈ {0, 1}𝑛 next the sender measures register 𝒮. Since measurements on different
subsystems commute, we may assume that the sender measures the registers 𝒮𝑇∪𝑈 first (recall
that we are trying to argue that the remaining registers have entropy). Then, by the argument
in the previous paragraph, this leaves the remaining registers 𝒮𝑇∖𝑈 in a superposition of states⃒⃒⃒(︁
R𝑇∖𝑈

)︁
̃︀𝜃
⟩

for R𝑇∖𝑈 s.t. ∆(R𝑇∖𝑈 ,
̃︀R𝑇∖𝑈 ) <

11
200 .

Next, to obtain 𝑐𝑡𝑐 for 𝑐 ∈ {0, 1}, the sender measures registers 𝒮𝑖,𝑑𝑖⊕𝑐 in basis 𝑑𝑖 ⊕ 𝑐 to obtain
a string r′𝑐 ∈ {0, 1}|𝑇∖𝑈 |. Then, 𝑐𝑡𝑐 is set as 𝑚𝑐 ⊕ ℎ(𝑠, r′𝑐), where 𝑠 is uniformly sampled seed for a
universal hash function ℎ. Recall, in addition, in Hyb4 the sender defines 𝑏 as maj{̃︀𝜃𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇∖𝑈 .
We now prove a lower bound on the quantum min-entropy of r′𝑏⊕1, which by the Leftover Hash
lemma (Imported Theorem 3.8) would imply our claim.

Consider the subset 𝑊 ⊆ {0, 1} × 𝑇 ∖ 𝑈 defined as 𝑊 = {𝑖, 𝑑𝑖 ⊕ 𝑏 ⊕ 1}𝑖∈𝑇∖𝑈 . Consider
again by the commuting property of measurements on different systems that registers 𝒮𝑇∖(𝑈∪𝑊 ) =
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{𝒮𝑖,𝑑𝑖⊕𝑏}𝑖∈𝑇∖𝑈 are measured first, leaving the registers 𝒮𝑊 = {𝒮𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇∖𝑈 in a superposition

of states
⃒⃒⃒
r̃︀𝜃𝑊 [1]

⟩
, where ∆

(︁
r, ̃︀R𝑊

)︁
< 11/200, and where 𝑊 [1] denotes the projection of 𝑊 on

the second set, i.e. 𝑊 [1] = {𝑑𝑖 ⊕ 𝑏⊕ 1}𝑖∈𝑇∖𝑈 . Hence, since r′𝑏⊕1 is obtained by measuring registers
𝒮𝑊 = {𝒮𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇∖𝑈 in basis 𝑑𝑖⊕𝑏⊕1, majority of the bits of r′𝑏⊕1 are obtained by measuring 𝒮𝑊
in basis ̃︀𝜃𝑖 ⊕ 1 (since 𝑏 was defined as maj{̃︀𝜃𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇∖𝑈 , this means in the majority of the places

in 𝑇 ∖ 𝑈 , the following holds: 𝑏 = ̃︀𝜃𝑖 ⊕ 𝑑𝑖 ⇐⇒ 𝑑𝑖 ⊕ 𝑏⊕ 1 = ̃︀𝜃𝑖 ⊕ 1).
Therefore, registers 𝒮𝑊 are in a superposition of states

⃒⃒⃒
r̃︀𝜃𝑊 [1]

⟩
, where ∆

(︁
r, ̃︀R𝑊

)︁
< 11/200.

Recall that 𝒮𝑊 = {𝒮𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇∖𝑈 , then the paragraph above implies that for a majority of 𝑖 ∈
𝑇 ∖ 𝑈 , register 𝒮

𝑖,̃︀𝜃𝑖⊕1 is measured in basis ̃︀𝜃𝑖 ⊕ 1. Using Imported Theorem 3.9, we get,

H∞(r′𝑏⊕1 | 𝒞,𝒵1,𝒵2,𝒳 ) ≥
|𝑇 ∖ 𝑈 |

2
− ℎ𝑏

(︂
11

200

)︂
|𝑇 ∖ 𝑈 |

≥ 𝑛− 2𝑘

2
− ℎ𝑏

(︂
11

200

)︂
(𝑛− 𝑘)

≥ 𝑛− 2𝑘

2
− 0.3073(𝑛− 𝑘)

For 𝑛 = (𝐴+𝐵)𝜆, 𝑘 = 𝐴𝜆,𝐴 = 11 700, 𝐵 = 30 400, we get,

H∞(r′𝑏⊕1 | 𝒞,𝒵1,𝒵2,𝒳 ) ≥ 9𝜆.

where ℎ𝑏 is the binary entropy function, and we bound the number of strings of length 𝑛 with
relative hamming weight at most 𝛿 by ℎ𝑏(𝛿)𝑛. Hence, using the leftover hash lemma (Imported
Theorem 3.8), (𝑠, ℎ(𝑠, r′𝑏⊕1)) is 1

25𝜆
.

This completes the proof of the claim, as desired.
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A Security of the seedless extractors

In this section, we show the security of the XOR and ROM extractors.

A.1 XOR extractor

Theorem A.1. Let 𝒳 be an 𝑛-qubit register, and consider any state |𝛾⟩𝒜,𝒳 that can be written as

|𝛾⟩ =
∑︁

𝑢:ℋ𝒲(𝑢)<𝑛/2

|𝜓𝑢⟩𝒜 ⊗ |𝑢⟩𝒳 .

Let 𝜌𝒜,𝒫 be the mixed state that results from measuring 𝒳 in the Hadamard basis to produce 𝑥, and writing⨁︀
𝑖∈[𝑛] 𝑥𝑖 into the single qubit register 𝒫 . Then it holds that

𝜌𝒜,𝒫 = Tr𝒳 (|𝛾⟩ ⟨𝛾|)⊗
(︂
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

)︂
.

Proof. First, write the state on (𝒜,𝒳 ,𝒫) that results from applying Hadamard to 𝒳 and writing
the parity, denoted by 𝑝(𝑥) :=

⨁︀
𝑖∈[𝑛] 𝑥𝑖, to 𝒫 :

1

2𝑛/2

∑︁
𝑥∈{0,1}𝑛

⎛⎝ ∑︁
𝑢:ℋ𝒲(𝑢)<𝑛/2

(−1)𝑢·𝑥 |𝜓𝑢⟩

⎞⎠ |𝑥⟩ |𝑝(𝑥)⟩ .
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Then we have that

𝜌𝒜,𝒫 =
1

2𝑛

∑︁
𝑥:𝑝(𝑥)=0

(︃∑︁
𝑢1,𝑢2

(−1)(𝑢1⊕𝑢2)·𝑥 |𝜓𝑢1⟩ ⟨𝜓𝑢2 |

)︃
⊗ |0⟩ ⟨0|

+
1

2𝑛

∑︁
𝑥:𝑝(𝑥)=1

(︃∑︁
𝑢1,𝑢2

(−1)(𝑢1⊕𝑢2)·𝑥 |𝜓𝑢1⟩ ⟨𝜓𝑢2 |

)︃
⊗ |1⟩ ⟨1|

=
1

2𝑛

∑︁
𝑢1,𝑢2

|𝜓𝑢1⟩ ⟨𝜓𝑢2 | ⊗

⎛⎝ ∑︁
𝑥:𝑝(𝑥)=0

(−1)(𝑢1⊕𝑢2)·𝑥 |0⟩ ⟨0|+
∑︁

𝑥:𝑝(𝑥)=1

(−1)(𝑢1⊕𝑢2)·𝑥 |1⟩ ⟨1|

⎞⎠
=

1

2𝑛

∑︁
𝑢1,𝑢2

2𝑛/2𝛿𝑢1=𝑢2 |𝜓𝑢1⟩ ⟨𝜓𝑢2 | ⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|)

=
1

2

∑︁
𝑢:ℋ𝒲<𝑛/2

|𝜓𝑢⟩ ⟨𝜓𝑢| ⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|)

= Tr𝒳 (|𝛾⟩ ⟨𝛾|)⊗
(︂
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|

)︂
,

where the 3rd equality is due to the following claim, plus the observation that 𝑢1⊕𝑢2 ̸= 1𝑛 for
any 𝑢1, 𝑢2 such thatℋ𝒲(𝑢1),ℋ𝒲(𝑢2) < 𝑛/2.

Claim A.2. For any 𝑢 ∈ {0, 1}𝑛 such that 𝑢 /∈ {0𝑛, 1𝑛}, it holds that∑︁
𝑥:𝑝(𝑥)=0

(−1)𝑢·𝑥 =
∑︁

𝑥:𝑝(𝑥)=1

(−1)𝑢·𝑥 = 0.

Proof. For any such 𝑢 /∈ {0𝑛, 1𝑛}, define 𝑆0 = {𝑖 : 𝑢𝑖 = 0} and 𝑆1 = {𝑖 : 𝑢𝑖 = 1}. Then, for any
𝑦0 ∈ {0, 1}|𝑆0| and 𝑦1 ∈ {0, 1}|𝑆1|, define 𝑥𝑦0,𝑦1 ∈ {0, 1}𝑛 to be the 𝑛-bit string that is equal to 𝑦0
when restricted to indices in 𝑆0 and equal to 𝑦1 when restricted to indices in 𝑆1. Then,

∑︁
𝑥:𝑝(𝑥)=0

(−1)𝑢·𝑥 =
∑︁

𝑦1∈{0,1}|𝑆1|

∑︁
𝑦0∈{0,1}|𝑆0|:𝑝(𝑥𝑦0,𝑦1 )=0

(−1)𝑢·𝑥𝑦0,𝑦1

=
∑︁

𝑦1∈{0,1}|𝑆1|

2|𝑆0|−1(−1)1|𝑆1|·𝑦1 = 2|𝑆0|−1
∑︁

𝑦1∈{0,1}|𝑆1|

(−1)𝑝(𝑦1) = 0,

and the same sequence of equalities can be seen to hold for 𝑥 : 𝑝(𝑥) = 1.

A.2 RO extractor

Theorem A.3. Let 𝐻 : {0, 1}𝑛 → {0, 1}𝑚 be a uniformly random function, and let 𝑞, 𝐶, 𝑘 be integers.
Consider a two-stage oracle algorithm (𝐴𝐻1 , 𝐴

𝐻
2 ) that combined makes at most 𝑞 queries to𝐻 . Suppose that

𝐴𝐻1 outputs classical strings (𝑇, {𝑥𝑖}𝑖∈𝑇 ), and let |𝛾⟩𝒜,𝒳 be its left-over quantum state,16 where 𝑇 ⊂ [𝑛]

16That is, consider sampling 𝐻 , running a purified 𝐴𝐻
1 , measuring at the end to obtain (𝑇, {𝑥𝑖}𝑖∈𝑇 ), and then defining

|𝛾⟩ to be the left-over state on 𝒜’s remaining registers.
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is a set of size 𝑛 − 𝑘, each 𝑥𝑖 ∈ {0, 1}, 𝒜 is a register of arbitary size, and 𝒳 is a register of 𝑘 qubits.
Suppose further that with probability 1 over the sampling of 𝐻 and the execution of 𝐴1, there exists a set
𝐿 ⊂ {0, 1}𝑘 of size at most 𝐶 such that |𝛾⟩ may be written as follows:

|𝛾⟩ =
∑︁
𝑢∈𝐿
|𝜓𝑢⟩𝒜 ⊗ |𝑢⟩𝒳 .

Now consider the following two games.

• REAL:

– 𝐴𝐻1 outputs 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾⟩𝒜,𝒳 .

– 𝒳 is measured in the Hadamard basis to produce a 𝑘-bit string which is parsed as {𝑥𝑖}𝑖∈𝑇 , and
a left-over state |𝛾′⟩𝒜 on register 𝒜. Define 𝑥 = (𝑥1, . . . , 𝑥𝑛).

– 𝐴𝐻2 is given 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾′⟩𝒜 , 𝐻(𝑥), and outputs a bit.

• IDEAL:

– 𝐴𝐻1 outputs 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾⟩𝒜,𝒳 .

– 𝑟 ← {0, 1}𝑚.

– 𝐴𝐻2 is given 𝑇, {𝑥𝑖}𝑖∈𝑇 ,Tr𝒳 (|𝛾⟩ ⟨𝛾|), 𝑟, and outputs a bit.

Then,

|Pr[REAL = 1]− Pr[IDEAL = 1]| ≤
2
√
𝑞𝐶 + 2𝑞

√
𝐶

2𝑘/2
<

4𝑞𝐶

2𝑘/2
.

Proof. The proof follows via two steps. First, we define a HYBRID distribution where we re-
program the random oracle at input 𝑥 to a uniformly random string 𝑟, and argue that the adver-
sary cannot notice, even given 𝑥. Intuitively, this is establishing that 𝐻(𝑥) must have been quite
close to uniformly random from the adversary’s perspective at the point that 𝑥 is measured (on
average over 𝑥). This requires a new “adaptive re-programming” lemma for the QROM, where
the point 𝑥 that is adaptively re-programmed may be sampled from a quantum source of entropy.
As mentioned in the introduction, all previous adaptive re-programming lemmas have only han-
dled classical entropy sources. Second, we “undo” the re-programming of 𝐻(𝑥), but still output
(uniformly random) 𝑟 as the extracted string. Indistinguishability of these two games, on the other
hand, can be established via a one-way-to-hiding lemma, since in the final game, the adversary is
given no information at all about the measured string 𝑥. In particular, it suffices to use the fact that
𝑥 has high quantum min-entropy conditioned on the adversary’s state to argue that the adversary
cannot guess 𝑥 and thus cannot notice whether or not 𝐻(𝑥) was re-programmed.

Now we formalize this strategy. Consider the following hybrid game.

• HYBRID:

– 𝐴𝐻1 outputs 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾⟩𝒜,𝒳 .

– 𝒳 is measured in the Hadamard basis to produce a 𝑘-bit string which is parsed as
{𝑥𝑖}𝑖∈𝑇 , and a left-over state |𝛾′⟩𝒜 on register 𝒜. Define 𝑥 = (𝑥1, . . . , 𝑥𝑛). Sample
𝑟 ← {0, 1}𝑚, and re-program 𝐻(𝑥) to 𝑟.
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– 𝐴𝐻2 is given 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾′⟩𝒜 , 𝑟, and outputs a bit.

The theorem follows by combining the two following claims.

Claim A.4.
|Pr[REAL = 1]− Pr[HYBRID = 1]| ≤

2
√
𝑞𝐶

2𝑘/2
.

Proof. Consider purifying the random oracle 𝐻 on register ℛ, and let |̂︀𝛾⟩ℛ,𝒜,𝒳 be the left-over
state of 𝐴1 and the random oracle in REAL or HYBRID after 𝐴1 outputs (𝑇, {𝑥𝑖}𝑖∈𝑇 ). By Imported
Theorem A.6, the state |̂︀𝛾⟩ℛ,𝒜,𝒳 satisfies the premise of Lemma A.7 below, where ℱ is the set of 2𝑘

sub-registers ofℛ corresponding to each 𝑥′ ∈ {0, 1}𝑛 such that 𝑥′𝑖 = 𝑥𝑖 for all 𝑖 ∈ 𝑇 .
Now, consider a reduction that receives the state 𝜌REAL or 𝜌REPROG from Lemma A.7, measures

ℱ𝑥 in the computational basis to obtain 𝐻(𝑥), and then continues to run 𝐴2 on input 𝐻(𝑥) (along
with 𝐴1’s state on𝒜 and 𝑇 , {𝑥𝑖}𝑖∈𝑇 ). In the case of 𝜌REAL, this exactly matches the REAL game and
in the case of 𝜌REPROG, this exactly matches the HYBRID game, using the fact that |𝜑0⟩ (as defined
in Imported Theorem A.6) is the uniform superposition state.

Claim A.5.

|Pr[HYBRID = 1]− Pr[IDEAL = 1]| ≤ 2𝑞
√
𝐶

2𝑘/2
.

Proof. This follows from an invocation of Imported Theorem 3.4. Consider the distribution over
(𝑆,𝑂1, 𝑂2, |𝜓⟩) that results from the following.

• Sample 𝑂1 as a random oracle 𝐻 ,

• run 𝐴𝐻1 to obtain 𝑇, {𝑥𝑖}𝑖∈𝑇 , |𝛾⟩𝒜,𝒳 ,

• measure to obtain {𝑥𝑖}𝑖∈𝑇 as in the HYBRID game, define 𝑥 = (𝑥1, . . . , 𝑥𝑛), and define 𝑆 =
{𝑥},

• sample 𝑟 ← {0, 1}𝑚, and let 𝑂2 be the same as 𝑂1, except that 𝑂2(𝑥) = 𝑟,

• let |𝜓⟩ be the resulting state on register𝒜 along with the classical information (𝑇, {𝑥𝑖}𝑖∈𝑇 , 𝑟).

Then, Pr[IDEAL = 1] = 𝑃left and Pr[HYBRID = 1] = 𝑃right, so it suffices to bound 𝑃guess. By
Imported Theorem 3.7, 𝑃guess is upper bounded by 1/2ℓ, where ℓ is the quantum conditional min-
entropy of {𝑥𝑖}𝑖∈𝑇 given register 𝒜. By Imported Theorem 3.9, and the fact that measuring an
unentangled 𝑘-bit standard basis vector in the Hadamard basis gives 𝑘 bits of quantum conditional
min-entropy, 𝑃guess is upper bounded by 𝐶

2𝑘
. Thus, Imported Theorem 3.4 gives the final bound of

2𝑞
√
𝐶

2𝑘/2
.
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A.3 The superposition oracle

Following [Zha19, GHHM21], we will use the fact that a quantum accesible random oracle 𝐻 :
{0, 1}𝑛 → {0, 1}𝑚 can be implemented as follows.

• Let ℱ be a (𝑚 · 2𝑛)-qubit register split into 2𝑛 subregisters {ℱ𝑥}𝑥∈{0,1}𝑛 of size 𝑚. Let |𝜑0⟩ be
the uniform superposition state. Prepare an initial state

|Ψ⟩ℱ =
⨂︁

𝑥∈{0,1}𝑛
|𝜑0⟩ℱ𝑥

.

• A query on registers 𝒳 ,𝒴 is answered with a unitary 𝑂𝒳 ,𝒴,ℱ such that

𝑂𝒳 ,𝒴,ℱ |𝑥⟩ ⟨𝑥|𝒳 = |𝑥⟩ ⟨𝑥|𝒳 ⊗ (CNOT⊗𝑚)ℱ𝑥:𝒴 .

• Register ℱ is measured to obtain a random function 𝐻 .

Imported Theorem A.6 ([AMRS20, GHHM21]). Let |𝜓𝑞⟩𝒜,ℱ be the joint adversary-oracle state state
after an adversary has made 𝑞 queries to the superposition oracle on register ℱ . Then this state can be
written as

|𝜓𝑞⟩𝒜,ℱ =
∑︁

𝑆⊂{0,1}𝑛,|𝑆|≤𝑞

|𝜓𝑞,𝑆⟩𝒜,ℱ𝑆
⊗
(︁
|𝜑0⟩⊗(2

𝑛−|𝑆|)
)︁
ℱ𝑆

,

where |𝜓𝑞,𝑆⟩ are such that ⟨𝜑0|ℱ𝑥
|𝜓𝑞,𝑆⟩𝒜,ℱ𝑆

= 0 for all 𝑥 ∈ 𝑆.

A.4 Re-programming

In this section, we prove the following lemma.

Lemma A.7. Let |𝜑0⟩ be an 𝑚-qubit unit vector, and let ℱ be a (𝑚 · 2𝑘)-qubit register split into 2𝑘 sub-
registers {ℱ𝑥}𝑥∈{0,1}𝑘 of 𝑚 qubits. Let 𝒜 be an arbitrary register and 𝒳 be an 𝑘-qubit register. Consider
any state |𝛾⟩ℱ ,𝒜,𝒳 , set 𝐿 ⊆ {0, 1}𝑘, and integer 𝑞 ∈ N, such that |𝛾⟩ can be written as

|𝛾⟩ =
∑︁
𝑢∈𝐿

⃒⃒⃒ ̂︀𝜓𝑢⟩
ℱ ,𝒜
⊗ |𝑢⟩𝒳 ,

where each ⃒⃒⃒ ̂︀𝜓𝑢⟩
‖
⃒⃒⃒ ̂︀𝜓𝑢⟩ ‖ =

∑︁
𝑆⊂{0,1}𝑛:|𝑆|≤𝑞

|𝜓𝑢,𝑆⟩𝒜,ℱ𝑆
⊗
(︁
|𝜑0⟩(2

𝑘−|𝑆|)
)︁
ℱ𝑆

,

and each |𝜓𝑢,𝑆⟩ is orthogonal to |𝜑0⟩ℱ𝑥
for all 𝑥 ∈ 𝑆. Let

• 𝜌REALℱ ,𝒜,𝒳 be the mixed state that results from measuring 𝒳 in the Hadamard basis to produce 𝑥 ∈
{0, 1}𝑘 and a left-over state |𝛾𝑥⟩ℱ ,𝒜, and outputting |𝛾𝑥⟩ ⟨𝛾𝑥| ⊗ |𝑥⟩ ⟨𝑥|, and

• 𝜌REPROG
ℱ ,𝒜,𝒳 be the mixed state that results from measuring 𝒳 in the Hadamard basis to produce 𝑥 ∈
{0, 1}𝑘 and a left-over state |𝛾𝑥⟩ℱ ,𝒜, and outputting Trℱ𝑥 (|𝛾𝑥⟩ ⟨𝛾𝑥|)⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

⊗ |𝑥⟩ ⟨𝑥|.
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Then,

TD
(︁
𝜌REAL, 𝜌REPROG

)︁
≤

2
√
𝑞|𝐿|

2𝑘/2
.

Proof. For each 𝑢 ∈ 𝐿, let 𝑎𝑢 := ‖
⃒⃒⃒ ̂︀𝜓𝑢⟩ ‖, and |𝜓𝑢⟩ :=

⃒⃒⃒ ̂︀𝜓𝑢⟩ /𝑎𝑢. Consider applying the Hadamard
transform to register 𝒳 of |𝛾⟩, producing∑︁

𝑥∈{0,1}𝑘,𝑢∈𝐿

(−1)𝑢·𝑥𝑎𝑢
2𝑘/2

|𝜓𝑢⟩ℱ ,𝒜 ⊗ |𝑥⟩𝒳 :=
∑︁

𝑥∈{0,1}𝑘
|𝛾𝑥⟩ℱ ,𝒜 ⊗ |𝑥⟩𝒳

and then measuring in the computational basis to produce 𝑥 and left-over state |𝛾𝑥⟩ ⟨𝛾𝑥|ℱ ,𝒜 .
The lemma asks to bound the following quantity.

1

2

⃦⃦⃦⃦
⃦ ∑︁
𝑥∈{0,1}𝑘

|𝛾𝑥⟩ ⟨𝛾𝑥|ℱ ,𝒜 ⊗ |𝑥⟩ ⟨𝑥| −
∑︁

𝑥∈{0,1}𝑘
Trℱ𝑥

(︁
|𝛾𝑥⟩ ⟨𝛾𝑥|ℱ ,𝒜

)︁
⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

⊗ |𝑥⟩ ⟨𝑥|

⃦⃦⃦⃦
⃦
1

=
1

2

⃦⃦⃦⃦
⃦ 1

2𝑘

∑︁
𝑥∈{0,1}𝑘

∑︁
𝑢1,𝑢2∈𝐿

(−1)(𝑢1⊕𝑢2)·𝑥𝑎𝑢1𝑎𝑢2 |𝜓𝑢1⟩ ⟨𝜓𝑢2 | ⊗ |𝑥⟩ ⟨𝑥|

− 1

2𝑘

∑︁
𝑥∈{0,1}𝑘

Trℱ𝑥

⎛⎝ ∑︁
𝑢1,𝑢2∈𝐿

(−1)(𝑢1⊕𝑢2)·𝑥𝑎𝑢1𝑎𝑢2 |𝜓𝑢1⟩ ⟨𝜓𝑢2 |

⎞⎠⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥
⊗ |𝑥⟩ ⟨𝑥|

⃦⃦⃦⃦
⃦
1

≤ 1

2𝑘+1

∑︁
𝑢1,𝑢2∈𝐿

𝑎𝑢1𝑎𝑢2

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑥∈{0,1}𝑘

(|𝜓𝑢1⟩ ⟨𝜓𝑢2 | ⊗ |𝑥⟩ ⟨𝑥|)−
(︀
Trℱ𝑥 (|𝜓𝑢1⟩ ⟨𝜓𝑢2 |)⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

⊗ |𝑥⟩ ⟨𝑥|
)︀⃦⃦⃦⃦⃦⃦

1

≤ 1

2𝑘+1

∑︁
𝑢1,𝑢2∈𝐿

𝑎𝑢1𝑎𝑢2
∑︁

𝑥∈{0,1}𝑛

⃦⃦
|𝜓𝑢1⟩ ⟨𝜓𝑢2 | − Trℱ𝑥 (|𝜓𝑢1⟩ ⟨𝜓𝑢2 |)⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

⃦⃦
1
,

where the inequalities follow from the triangle inequality. Now, following the proof of [GHHM21,
Theorem 6], for any 𝑢1, 𝑢2, and 𝑥, we can write

|𝜓𝑢1⟩ ⟨𝜓𝑢2 | = ⟨𝜑0|ℱ𝑥
|𝜓𝑢1⟩ ⟨𝜓𝑢2 |𝜑0⟩ℱ𝑥

⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥
+ |𝜓𝑢1⟩ ⟨𝜓𝑢2 | (I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

)

+ (I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥
) |𝜓𝑢1⟩ ⟨𝜓𝑢2 |𝜑0⟩ ⟨𝜑0|ℱ𝑥

and

Trℱ𝑥 (|𝜓𝑢1⟩ ⟨𝜓𝑢2 |)⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥
= ⟨𝜑0|ℱ𝑥

|𝜓𝑢1⟩ ⟨𝜓𝑢2 |𝜑0⟩ℱ𝑥
⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

+Trℱ𝑥

(︀
(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

) |𝜓𝑢1⟩ ⟨𝜓𝑢2 |
)︀
⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

so⃦⃦
|𝜓𝑢1⟩ ⟨𝜓𝑢2 | − Trℱ𝑥 (|𝜓𝑢1⟩ ⟨𝜓𝑢2 |)⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

⃦⃦
1
≤ ‖ |𝜓𝑢1⟩ ⟨𝜓𝑢2 | (I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

)‖1
+ ‖(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

) |𝜓𝑢1⟩ ⟨𝜓𝑢2 |𝜑0⟩ ⟨𝜑0|ℱ𝑥
‖1 + ‖Trℱ𝑥

(︀
(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

) |𝜓𝑢1⟩ ⟨𝜓𝑢2 |
)︀
⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

‖1.

Now, for each 𝑥, 𝑢, define 𝛼𝑥,𝑢 = ‖ ⟨𝜑0|ℱ𝑥
|𝜓𝑢⟩ ‖. The first term above simplifies as

‖ |𝜓𝑢1⟩ ⟨𝜓𝑢2 | (I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥
)‖1 = ‖ ⟨𝜓𝑢2 | (I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

)‖ =
√︀

1− ⟨𝜓𝑢2 |𝜑0⟩ ⟨𝜑0|𝜓𝑢2⟩ =
√︁
1− 𝛼2

𝑥,𝑢2,.
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The second term above simplifies as

‖(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥
) |𝜓𝑢1⟩ ⟨𝜓𝑢2 |𝜑0⟩ ⟨𝜑0|ℱ𝑥

‖1 ≤ ‖(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥
) |𝜓𝑢1⟩ ⟨𝜓𝑢2 | ‖1

= ‖(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥
) |𝜓𝑢1⟩ ‖ =

√︀
1− ⟨𝜓𝑢1 |𝜑0⟩ ⟨𝜑0|𝜓𝑢1⟩ =

√︁
1− 𝛼2

𝑥,𝑢1 ,

where the inequality is Holder’s inequality. The third term simplifies as

⃦⃦
Trℱ𝑥

(︀
(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

) |𝜓𝑢1⟩ ⟨𝜓𝑢2 |
)︀
⊗ |𝜑0⟩ ⟨𝜑0|ℱ𝑥

⃦⃦
1
=
⃦⃦
Trℱ𝑥

(︀
(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

) |𝜓𝑢1⟩ ⟨𝜓𝑢2 |
)︀⃦⃦

1

≤
⃦⃦
(I− |𝜑0⟩ ⟨𝜑0|ℱ𝑥

) |𝜓𝑢1⟩ ⟨𝜓𝑢2 |
⃦⃦
1
=
√︁

1− 𝛼2
𝑥,𝑢1 ,

where the inequality is the following fact from [Hol19]: for any bounded operator 𝑇 on𝒜⊗ℬ,
‖Trℬ(𝑇 )‖1 ≤ ‖𝑇‖1.

Thus, the distinguishing advantage can be bounded by

1

2𝑘+1

∑︁
𝑢1,𝑢2∈𝐿

𝑎𝑢1𝑎𝑢2
∑︁

𝑥∈{0,1}𝑘
2
√︁
1− 𝛼2

𝑥,𝑢1 +
√︁
1− 𝛼2

𝑥,𝑢2

≤ 1

2𝑘

∑︁
𝑢1,𝑢2∈𝐿

𝑎𝑢1𝑎𝑢2

⎛⎝ ∑︁
𝑥∈{0,1}𝑘

√︁
1− 𝛼2

𝑥,𝑢1 +
∑︁

𝑥∈{0,1}𝑘

√︁
1− 𝛼2

𝑥,𝑢2

⎞⎠
≤ 1

2𝑘

∑︁
𝑢1,𝑢2∈𝐿

𝑎𝑢1𝑎𝑢2

⎛⎜⎝
⎯⎸⎸⎸⎷2𝑘

⎛⎝2𝑘 −
∑︁

𝑥∈{0,1}𝑘
𝛼2
𝑥,𝑢1

⎞⎠+

⎯⎸⎸⎸⎷2𝑘

⎛⎝2𝑘 −
∑︁

𝑥∈{0,1}𝑘
𝛼2
𝑥,𝑢2

⎞⎠
⎞⎟⎠ ,

where the second inequality follows from Cauchy-Schwartz.
Now, for any 𝑢,

∑︁
𝑥∈{0,1}𝑘

𝛼2
𝑥,𝑢 =

∑︁
𝑥∈{0,1}𝑘

‖ ⟨𝜑0|ℱ𝑥
|𝜓𝑢⟩ ‖2‖

=
∑︁

𝑥∈{0,1}𝑘

⃦⃦⃦⃦ ∑︁
𝑆⊂{0,1}𝑘:|𝑆|≤𝑞

⟨𝜑0|ℱ𝑥
|𝜓𝑢,𝑆⟩𝒜,ℱ𝑆

⊗
(︁
|𝜑0⟩(2

𝑘−|𝑆|)
)︁
ℱ𝑆

⃦⃦⃦⃦2

=
∑︁

𝑥∈{0,1}𝑘

⃦⃦⃦⃦∑︁
𝑆 ̸∋𝑥
|𝜓𝑢,𝑆⟩𝒜,ℱ𝑆

⊗
(︁
|𝜑0⟩(2

𝑘−|𝑆|)
)︁
ℱ𝑆

⃦⃦⃦⃦2
,

where the last equality follows since |𝜑0⟩ℱ𝑥
is orthogonal to |𝜓𝑢,𝑆⟩ for all 𝑥 ∈ 𝑆, and |𝜑0⟩ is

normalized. Now, since each of the summands in the inner summation are pairwise orthogonal
(so that we can move the summation outside of the norm), we can write
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∑︁
𝑥∈{0,1}𝑘

⃦⃦⃦⃦∑︁
𝑆 ̸∋𝑥
|𝜓𝑢,𝑆⟩𝒜,ℱ𝑆

⊗
(︁
|𝜑0⟩(2

𝑘−|𝑆|)
)︁
ℱ𝑆

⃦⃦⃦⃦2
=
∑︁
𝑆

∑︁
𝑥/∈𝑆

⃦⃦⃦⃦
|𝜓𝑢,𝑆⟩𝒜,ℱ𝑆

⊗
(︁
|𝜑0⟩(2

𝑘−|𝑆|)
)︁
ℱ𝑆

⃦⃦⃦⃦2

≥ (2𝑘 − 𝑞)
∑︁
𝑆

⃦⃦⃦⃦
|𝜓𝑢,𝑆⟩𝒜,ℱ𝑆

⊗
(︁
|𝜑0⟩(2

𝑘−|𝑆|)
)︁
ℱ𝑆

⃦⃦⃦⃦2
= (2𝑘 − 𝑞)

⃦⃦⃦⃦∑︁
𝑆

|𝜓𝑢,𝑆⟩𝒜,ℱ𝑆
⊗
(︁
|𝜑0⟩(2

𝑘−|𝑆|)
)︁
ℱ𝑆

⃦⃦⃦⃦2
= (2𝑘 − 𝑞)‖ |𝜓𝑢⟩ ‖2 = 2𝑘 − 𝑞.

Thus, the distinguishing advantage can be bounded by

2

2𝑘

√︀
2𝑘 · 𝑞

∑︁
𝑢1,𝑢2∈𝐿

𝑎𝑢1𝑎𝑢2 ≤
2
√
𝑞|𝐿|

2𝑘/2
,

since, by Cauchy-Schwartz and the fact that
∑︀

𝑢∈𝐿 𝑎
2
𝑢 = 1, we can bound

∑︀
𝑢∈𝐿 𝑎𝑢 ≤

√︀
|𝐿|.

B The random basis framework

In this section, we obtain three round OT realizing ℱS−ROT, and we provide a modification that
yields four round chosen input ℱOT[𝜆]. The constructions make use of standard BB84 states, there-
fore we refer to this as the random basis framework.

Theorem B.1 (Three round random-sender-input OT.). Instantiate Protocol 9 with any non-interactive
commitment scheme that is extractable (Definition 5.3) and equivocal (Definition 5.4). Then the following
hold.

• When instantiated with the XOR extractor, there exist constants 𝐴,𝐵 such that Protocol 9 securely
realizes (Definition 3.2) ℱS−ROT[1].

• When instantiated with the ROM extractor, there exist constants 𝐴,𝐵 such that Protocol 9 securely
realizes (Definition 3.2) ℱS−ROT[𝜆].

Furthermore, letting 𝜆 be the security parameter, 𝑞 be an upper bound on the total number of random
oracle queries made by the adversary, and using the commitment scheme from Section 5.2 with security
parameter 𝜆com = 2𝜆, the following hold.

• When instantiatied with the XOR extractor and constants 𝐴 = 1100, 𝐵 = 500, Protocol 9 se-
curely realizes ℱS−ROT[1] with 𝜇R*-security against a malicious receiver and 𝜇S*-security against a
malicious sender, where

𝜇R* =

√
5 + 1

2𝜆
+

148(𝑞 + 3200𝜆+ 1)3 + 1

22𝜆
+

25600𝑞𝜆

2𝜆
, 𝜇S* =

114𝑞
√
𝜆

2𝜆
.

This requires a total of (𝐴+𝐵)𝜆 = 1600𝜆 BB84 states.
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• When instantiated with the ROM extractor and constants 𝐴 = 11 000, 𝐵 = 12 000, Protocol 9
securely realizes ℱS−ROT[𝜆] with 𝜇R*-security against a malicious receiver and 𝜇S*-security against
a malicious sender, where

𝜇R* =

√
5

2𝜆
+

4𝑞

218𝜆
+

148(𝑞 + 46000𝜆+ 1)3 + 1

22𝜆
+

368000𝑞𝜆

2𝜆
, 𝜇S* =

430𝑞
√
𝜆

2𝜆
.

This requires a total of (𝐴+𝐵)𝜆 = 23 000𝜆 BB84 states.

Theorem B.2 (Four Round chosen input string OT.). Instantiate Protocol 10 with any non-interactive
commitment scheme that is extractable (Definition 5.3) and equivocal (Definition 5.4). Then there exist
constants 𝐴,𝐵 such that Protocol 10 securely realizes (Definition 3.2) ℱOT[𝜆].

Furthermore, letting 𝜆 be the security parameter, 𝑞 be an upper bound on the total number of random
oracle queries made by the adversary, and using the commitment scheme from Section 5.2 with security
parameter 𝜆com = 2𝜆, for constants 𝐴 = 5300, 𝐵 = 5000, Protocol 10 securely realizes ℱOT[𝜆] with
𝜇R*-security against a malicious receiver and 𝜇S*-security against a malicious sender, where

𝜇R* =

√
5

2𝜆
+

1

29𝜆
+

148(𝑞 + 2𝑛+ 1)3 + 1

22𝜆
+

16𝑞𝑛

2𝜆
, 𝜇S* =

288𝑞
√
𝜆

2𝜆
.

This requires a total of (𝐴+𝐵)𝜆 = 10 300𝜆 BB84 states.

B.1 Three-round random-input OT

In this section, we prove Theorem B.1.

Sender Security Let SimExt = (SimExt.RO,SimExt.Ext) be the simulator for the extractable com-
mitment scheme (Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ) (according to Definition 5.3). Let 𝜖 = 0.053 (for XOR
extractor) or 0.010748 (for ROM extractor) be a constant. We describe the simulator Sim[R*] against
a malicious receiver R*.
Sim[R*]:

• Initialize R* and answer its oracle queries to𝐻𝐶 using SimExt.RO and in case of ROM extrac-
tor queries to 𝐻𝐸𝑥𝑡 using the efficient on-the-fly random oracle simulator (Imported Theo-
rem 3.6). Wait to receive 𝑛 qubits and commitments {𝑐𝑖}𝑖∈[𝑛] from R*.

• {(𝑥*𝑖 , 𝜃*𝑖 )}𝑖∈[𝑛] ← SimExt.Ext({𝑐𝑖}𝑖∈[𝑛]).

• Choose ̂︀𝜃 ← {0, 1}𝑛 and measure all the received qubits in bases ̂︀𝜃 to get measurement
outcomes ̂︀𝑥. Also, sample a random subset 𝑇 ← [𝑛] s.t. |𝑇 | = 𝑘 and send 𝑇, {̂︀𝜃𝑖}𝑖∈𝑇 to R*,
where 𝑇 := [𝑛] ∖ 𝑇 .

• Wait to receive sets 𝐼0, 𝐼1, where 𝐼0 ⊆ 𝑇 , 𝐼1 = 𝑇 ∖ 𝐼0 and openings {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 .

• Check if Rec({𝑐𝑖}𝑖∈𝑇 , {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ) = ⊥ or if there exists 𝑖 ∈ 𝑇 s.t. ̂︀𝜃𝑖 = 𝜃*𝑖 but ̂︀𝑥𝑖 ̸= 𝑥*𝑖 .
If any of the checks fail, send abort to the ideal functionality, output R*’s state and continue
answering distinguisher’s queries.
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Protocol 9

Ingredients, parameters and notation.
• Security parameter 𝜆 and constants 𝐴,𝐵. Let 𝑛 = (𝐴+𝐵)𝜆 and 𝑘 = 𝐴𝜆.

• For classical bits (𝑥, 𝜃), let |𝑥⟩𝜃 denote |𝑥⟩ if 𝜃 = 0, and (|0⟩+ (−1)𝑥 |1⟩)/
√
2 if 𝜃 = 1.

• A non-interactive extractable and equivocal commitment scheme (Com,Open,Rec),
where commitments to 2 bits have size ℓ := ℓ(𝜆).

• An extractor 𝐸 with domain {0, 1}𝑛−𝑘 which is either

– The XOR function, so 𝐸(𝑟1, . . . , 𝑟𝑛−𝑘) =
⨁︀

𝑖∈[𝑛−𝑘] 𝑟𝑖.

– A random oracle 𝐻𝐸𝑥𝑡 : {0, 1}𝑛−𝑘 → {0, 1}𝜆.

Receiver input: 𝑏 ∈ {0, 1},𝑚 ∈ {0, 1}𝑧 , where 𝑧 is the output length of the extractor.

1. Receiver message. R performs the following steps.

(a) Choose 𝑥← {0, 1}𝑛, 𝜃 ← {0, 1}𝑛 and prepare the states {|𝑥𝑖⟩𝜃𝑖}𝑖∈[𝑛].

(b) Compute
(︀
st, {𝑐𝑖}𝑖∈[𝑛]

)︀
← Com

(︀
{(𝑥𝑖, 𝜃𝑖)}𝑖∈[𝑛]

)︀
, and send {|𝑥𝑖⟩𝜃𝑖 , 𝑐𝑖}𝑖∈[𝑛] to S.

2. Sender message. S performs the following steps.

(a) Choose ̂︀𝜃 ← {0, 1}𝑛. For all 𝑖 ∈ [𝑛], measure |𝑥𝑖⟩𝜃𝑖 in basis ̂︀𝜃𝑖 to get outcome ̂︀𝑥𝑖.
(b) Sample a random subset 𝑇 of [𝑛] of size 𝑘. Send 𝑇, {̂︀𝜃𝑖}𝑖∈𝑇 to R, where 𝑇 := [𝑛] ∖𝑇 .

3. Receiver message. R performs the following steps.

(a) Divide 𝑇 into 2 disjoint subsets 𝑆0, 𝑆1 as follows. Set 𝐼𝑏 = 𝑆0 and 𝐼1−𝑏 = 𝑆1, where
𝑆0 = {𝑖 | 𝑖 ∈ 𝑇 ∧ 𝜃𝑖 = ̂︀𝜃𝑖}, 𝑆1 = {𝑖 | 𝑖 ∈ 𝑇 ∧ 𝜃𝑖 ̸= ̂︀𝜃𝑖}.

(b) Compute {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ← Open(st, 𝑇 ).

(c) Compute 𝑋 as the concatenation of {𝑥𝑖}𝑖∈𝐼𝑏 , set 𝑟𝑏 := 𝐸(𝑋) ⊕ 𝑚, and sample
𝑟1−𝑏 ← {0, 1}𝑧 , where 𝑧 is the output length of extractor.

(d) Send 𝐼0, 𝐼1, {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , (𝑟0, 𝑟1) to S.

4. Output computation S does the following:

(a) Abort if Rec({𝑐𝑖}𝑖∈𝑇 , {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ) = ⊥ or if ∃𝑖 ∈ 𝑇 s.t. 𝜃𝑖 = ̂︀𝜃𝑖 but 𝑥𝑖 ̸= ̂︀𝑥𝑖.
(b) Compute ̂︀𝑋0, ̂︀𝑋1 as the concatenation of {̂︀𝑥𝑖}𝑖∈𝐼0 , {̂︀𝑥𝑖}𝑖∈𝐼1 respectively. Output

𝑚0 := 𝐸( ̂︀𝑋0)⊕ 𝑟0 and 𝑚1 := 𝐸( ̂︀𝑋1)⊕ 𝑟1.

Figure 9: Three-round OT protocol realizing ℱS−ROT[1].
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Protocol 10

Ingredients, parameters and notation.
• Security parameter 𝜆 and constants 𝐴,𝐵. Let 𝑛 = (𝐴+𝐵)𝜆 and 𝑘 = 𝐴𝜆.

• For classical bits (𝑥, 𝜃), let |𝑥⟩𝜃 denote |𝑥⟩ if 𝜃 = 0, and (|0⟩+ (−1)𝑥 |1⟩)/
√
2 if 𝜃 = 1.

• A non-interactive extractable and equivocal commitment scheme (Com,Open,Rec),
where commitments to 2 bits have size ℓ := ℓ(𝜆).

• A universal hash function ℎ : {0, 1}𝑝(𝜆) × {0, 1}≤𝐵𝜆 → {0, 1}𝜆.

Sender input: 𝑚0,𝑚1 ∈ {0, 1}𝜆, Receiver input: 𝑏 ∈ {0, 1}.

1. Receiver message. R performs the following steps.

(a) Choose 𝑥← {0, 1}𝑛, 𝜃 ← {0, 1}𝑛 and prepare the states {|𝑥𝑖⟩𝜃𝑖}𝑖∈[𝑛].

(b) Compute
(︀
st, {𝑐𝑖}𝑖∈[𝑛]

)︀
← Com

(︀
{(𝑥𝑖, 𝜃𝑖)}𝑖∈[𝑛]

)︀
.

(c) Send {|𝑥𝑖⟩𝜃𝑖 , 𝑐𝑖}𝑖∈[𝑛] to S.

2. Sender message. S performs the following steps.

(a) Choose ̂︀𝜃 ← {0, 1}𝑛. For all 𝑖 ∈ [𝑛], measure |𝑥𝑖⟩𝜃𝑖 in basis ̂︀𝜃𝑖 to get outcome ̂︀𝑥𝑖.
(b) Sample a random subset 𝑇 of [𝑛] of size 𝑘. Send 𝑇, {̂︀𝜃𝑖}𝑖∈𝑇 to R, where 𝑇 := [𝑛] ∖𝑇 .

3. Receiver message. R performs the following steps.

(a) Divide 𝑇 into 2 disjoint subsets 𝑆0, 𝑆1 as follows. Set 𝐼𝑏 = 𝑆0 and 𝐼1−𝑏 = 𝑆1, where
𝑆0 = {𝑖 | 𝑖 ∈ 𝑇 ∧ 𝜃𝑖 = ̂︀𝜃𝑖}, 𝑆1 = {𝑖 | 𝑖 ∈ 𝑇 ∧ 𝜃𝑖 ̸= ̂︀𝜃𝑖}.

(b) Compute {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ← Open(st, 𝑇 ).

(c) Compute 𝑋 as the concatenation of {𝑥𝑖}𝑖∈𝐼𝑏 , set 𝑟𝑏 := 𝐸(𝑋)⊕𝑚, and
sample 𝑟1−𝑏 ← {0, 1}𝑧 , where 𝑧 is the output length of extractor.

(d) Send 𝐼0, 𝐼1, {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , (𝑟0, 𝑟1) to S.

4. Sender message. S and R do the following:

• S does the following:

– Abort if Rec({𝑐𝑖}𝑖∈𝑇 , {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ) = ⊥ or if ∃𝑖 ∈ 𝑇 s.t. 𝜃𝑖 = ̂︀𝜃𝑖 but 𝑥𝑖 ̸= ̂︀𝑥𝑖.
– Compute ̂︀𝑋0, ̂︀𝑋1 as the concatenation of {̂︀𝑥𝑖}𝑖∈𝐼0 , {̂︀𝑥𝑖}𝑖∈𝐼1 respectively.
– Sample 𝑠← {0, 1}𝑝(𝜆), send (𝑠, 𝑐𝑡0 = 𝑚0 ⊕ ℎ(𝑠, ̂︀𝑋0), 𝑐𝑡1 = 𝑚1 ⊕ ℎ(𝑠, ̂︀𝑋1)) to R.

• R computes 𝑋 as the concatenation of {𝑥𝑖}𝑖∈𝐼𝑏 and outputs 𝑐𝑡𝑏 ⊕ ℎ(𝑠,𝑋).

Figure 10: Four-round OT protocol realizing ℱOT[𝜆]. Parts in blue are different than the 3-round
OT protocol realizing ℱS−ROT[1] in Protocol 9.
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• Compute the set 𝑄 = {𝑖 | 𝑖 ∈ 𝐼0 ∧ 𝜃*𝑖 ̸= ̂︀𝜃𝑖}. If |𝑄| ≥ (1−𝜖)(𝑛−𝑘)
4 , then set 𝑏 = 1, else set 𝑏 = 0.

Compute 𝑚𝑏 = {̂︀𝑥𝑖}𝑖∈𝐼𝑏 , send (𝑏,𝑚𝑏) to the ideal functionality and output R*’s state.

• Continue answering distinguisher’s queries to 𝐻𝐶 (and 𝐻𝐸𝑥𝑡) using SimExt.RO (and the
efficient on-the-fly random oracle simulator).

Consider a distinguisher (D,𝜎) such that R*,D make a total of 𝑞 queries combined to 𝐻𝐶 (and
𝐻𝐸𝑥𝑡). Consider the following sequence of hybrids:

• Hyb0: This is the real world interaction between R*, S. Using the notation of Definition 3.2,
this is a distribution over {0, 1} denoted by Π[R*,D,⊤].

• Hyb1: This is identical to the previous hybrid, except that queries to 𝐻𝐶 are answered using
SimExt.RO, and {(𝑥*𝑖 , 𝜃*𝑖 )}𝑖∈[𝑛] ← SimExt.Ext({𝑐𝑖}𝑖∈[𝑛]) is run after R* outputs its first mes-
sage. After R* sends its openings in the third round, the sender performs the following
checks: check if Rec({𝑐𝑖}𝑖∈𝑇 , {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 ) = ⊥ or if there exists 𝑖 ∈ 𝑇 s.t. 𝜃*𝑖 = ̂︀𝜃𝑖 but
𝑥*𝑖 ̸= ̂︀𝑥𝑖 (note that it uses 𝑥*𝑖 , 𝜃

*
𝑖 for its second check, rather than 𝑥𝑖, 𝜃𝑖 as in the honest sender

strategy). It then continues with the rest of the protocol as in the honest sender strategy.

• Hyb2: This is the result of Sim[R*] interacting in ̃︀ΠS−ROT[1][Sim[R*],D,⊤] (or ̃︀ΠS−ROT[𝜆][Sim[R*],D,⊤]).

Claim B.3. |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ 148(𝑞+2𝑛+1)3+1
22𝜆

+ 16𝑞𝑛
2𝜆

.

Proof. This follows by a direct reduction to extractability of the commitment scheme (Defini-
tion 5.3). Indeed, let AdvCommit be the machine that runs Hyb0 until R* outputs its message, which
includes {𝑐𝑖}𝑖∈[𝑛]. Let AdvOpen be the machine that takes as input the rest of the state of Hyb0, and
runs it till the third round to get set 𝑇 and openings {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , and outputs 𝑇 and these
openings. Let D be the machine that runs the rest of Hyb0 and outputs a bit.

Then, plugging in 𝜆com = 2𝜆, Definition 5.3 when applied to (AdvCommit,AdvOpen,D) implies
that the hybrids cannot be distinguished except with probability

148(𝑞 + 2𝑛+ 1)3 + 1

22𝜆
+

16𝑞𝑛

2𝜆
,

since we are committing to a total of 2𝑛 bits.

Claim B.4. When instantiated with the XOR extractor and constants 𝐴 = 1100, 𝐵 = 500, we have,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤
√
5 + 1

2𝜆
.

And when instantiated with the ROM extractor and constants 𝐴 = 11 000, 𝐵 = 12 000, we have,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤
√
5

2𝜆
+

4𝑞

218𝜆
.

Proof. In Hyb1, while both 𝑅0, 𝑅1 were set according to the honest sender strategy, in Hyb2, for 𝑏 as
defined by the simulator, 𝑅1−𝑏 (output by the honest sender) is set as a uniformly random string.
In the following, we show that in either hybrid 𝑅1−𝑏 is statistically close to a uniformly random
string given R*’s view which would imply this claim. We setup some notation before proceeding:
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• Let 𝒳 = {𝒳𝑖}𝑖∈[𝑛] denote the 𝑛 registers, each holding a single qubit, sent by R* in its first
round.

• For a vector x = (𝑥1, . . . 𝑥𝑛), and a set 𝑆 ⊆ [𝑛], let x𝑆 denotes the values of x indexed by 𝑆.

• For vectors x,𝜃 ∈ {0, 1}𝑛, let |x𝜃⟩ denote the state on 𝑛 single-qubit registers, where register
𝑖 contains the state |x𝑖⟩ prepared in the 𝜃𝑖 basis.

• For a set 𝑇 ⊆ [𝑛], let 𝑇 := [𝑛] ∖ 𝑇 .

• Using notation as defined in Section 3, for a subset 𝑆 ⊆ [𝑛] and two vectors x,y ∈ {0, 1}𝑛,
∆(x𝑆 ,y𝑆) denotes the fraction of values x𝑖, 𝑖 ∈ 𝑆 s.t. x𝑖 ̸= y𝑖.

Consider the following quantum sampling game (defined as in Section 3.6):

• Fix some state on register 𝒳 and some strings x*,𝜃* ∈ {0, 1}𝑛.

• Sample 𝑇 ⊆ [𝑛] as a uniform random subset of size 𝑘.

• Sample ̂︀𝜃 ← {0, 1}𝑛, and let 𝑆 = {𝑖 | 𝑖 ∈ 𝑇 ∧ ̂︀𝜃𝑖 = 𝜃*𝑖 }. For each 𝑖 ∈ 𝑆, measure register 𝒳𝑖 in
basis 𝜃*𝑖 to get outcome 𝑥𝑖.

• Let x𝑆 be the concatenation of {𝑥𝑖}𝑖∈𝑆 . Output ∆(x𝑆 ,x
*
𝑆).

This quantum sampling game corresponds to the execution in either hybrid, where register 𝒳
is the register sent by R* in its first message, (x*,𝜃*) represent the values extracted by running
SimExt.Ext, and ̂︀𝜃 respresents the bases sampled by the sender. By Definition 3.11, the quantum
error probability 𝜖𝛿quantum of the above game corresponds to the trace distance between the initial
state on the register 𝒳 and an “ideal” state, where it holds with certainty that register 𝒳 is in a
superposition of states |x𝜃*⟩ for x s.t. |∆(x𝑇 ,x

*
𝑇
) − ∆(x𝑆 ,x

*
𝑆)| < 𝛿. In the following we find a

bound 𝜖𝛿quantum and show that given the state on register 𝒳 is in the ideal state described above,
the two hybrids are statistically indistinguishable.

SubClaim B.5. 𝜖𝛿quantum ≤
√
5

2𝜆
when instantiated with the XOR extractor (with 𝛿 = 0.1183) or with the

ROM extractor (with 𝛿 = 0.0267).

Proof. Using Imported Theorem 3.12, 𝜖𝛿quantum can be bound by the square root of the classical error
probability, 𝜖𝛿classical, of the corresponding classical sampling game, described as follows:

• Given a string q ∈ {0, 1}𝑛, sample 𝑇 ⊆ [𝑛] as a uniform random subset of size 𝑘.

• Sample a subset 𝑆 ⊆ 𝑇 as follows: sample bits b← {0, 1}𝑛. Let set 𝑆 = {𝑖 | 𝑖 ∈ 𝑇 ∧ b𝑖 = 1}.

• Output 𝜔(q𝑆).

Since setting 𝑆 as above is equivalent to choosing a random subset of 𝑇 (chosen uniformly among
all possible subsets of 𝑇 ), using the analysis in Appendix D.2, we get, for 0 < 𝛽 < 1 and 0 < 𝜂 < 𝛿,

𝜖𝛿classical ≤ 2 exp

(︃
−2
(︂
1− 𝑘

𝑛

)︂2

𝜂2𝑘

)︃
+ 2 exp

(︀
−(𝛿 − 𝜂)2(1− 𝛽)𝑘

)︀
+ exp

(︂
−𝛽

2𝑘

2

)︂
.
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For the case of XOR extractor, for 𝛿 = 0.1183, 𝛽 = 0.051, 𝜂 = 0.081, we have each of the expressions
inside the exp terms above bounded by 1

22𝜆
, giving us 𝜖𝛿classical ≤

5
22𝜆

, which means 𝜖𝛿quantum ≤
√
5

2𝜆
.

And for the case of ROM extractor, for 𝛿 = 0.0267, 𝛽 = 0.01588, 𝜂 = 0.01538, we achieve the
same bounds and get 𝜖𝛿quantum ≤

√
5

2𝜆
.

SubClaim B.6. Given the state on register 𝒳 is in a superposition of states |x𝜃*⟩ s.t. |∆(x𝑇 ,x
*
𝑇
) −

∆(x𝑆 ,x
*
𝑆)| < 𝛿, where 𝑆 = {𝑖 | 𝑖 ∈ 𝑇 ∧ ̂︀𝜃𝑖 = 𝜃*𝑖 }, the following holds:

• When instantiated with the XOR extractor and 𝛿 = 0.1183, 𝐴 = 1100, 𝐵 = 500,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ 1

2𝜆

• When instantiated with ROM extractor and 𝛿 = 0.0267, 𝐴 = 11 000, 𝐵 = 12 000,

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ 4𝑞

218𝜆

Proof. Note that the checks performed by the sender once R* sends the openings in the third round
correspond to checking if ∆(x𝑆 ,x

*
𝑆) = 0. If this check fails, the sender aborts and the hybrids are

perfectly indistinguishable. So it suffices to analyze the states on 𝒳 that are in a superposition of
states |x𝜃*⟩ s.t. ∆(x𝑆 ,x

*
𝑆) = 0 and ∆(x𝑇 ,x

*
𝑇
) < 𝛿.

Recall that in either hybrid, for 𝑖 ∈ 𝑇 , the sender chooses bit ̂︀𝜃𝑖 ← {0, 1} and measures register
𝒳𝑖 in basis ̂︀𝜃𝑖. Using Hoeffding’s inequality (stated in Appendix D), the number of positions 𝑖 ∈ 𝑇
s.t. ̂︀𝜃𝑖 ̸= 𝜃*𝑖 is at least (1−𝜖)(𝑛−𝑘)

2 except with probability exp
(︁
− 𝜖2(𝑛−𝑘)

2

)︁
. Hence, given any partition

(𝐼0, 𝐼1) of 𝑇 that R* provides in the third round, it holds that there exists a bit 𝑏 and partition 𝐼1−𝑏
s.t. there are at least (1−𝜖)(𝑛−𝑘)

4 positions 𝑖 with ̂︀𝜃𝑖 ̸= 𝜃*𝑖 except with probability exp
(︁
− 𝜖2(𝑛−𝑘)

2

)︁
.

Call this subset of positions in 𝐼1−𝑏 as 𝑀 . Also, note that in Hyb3, the bit 𝑏 used by Sim[R*] is the
same bit used above.

• XOR extractor: For the case of XOR extractor, for 𝜖 = 0.053, 𝑛 − 𝑘 = 𝐵𝜆,𝐵 = 500, this
probability above exp

(︁
− 𝜖2(𝑛−𝑘)

2

)︁
< 1

2𝜆
.

Combining the two parts above, we have that register 𝒳𝑀 = {𝒳𝑖}𝑖∈𝑀 is in a superposition
of states

⃒⃒⃒
x𝜃*

𝑀

⟩
s.t. ∆(x,x*𝑀 ) < 𝛿(𝑛−𝑘)

(1−𝜖)(𝑛−𝑘)/4 = 4𝛿
1−𝜖 ≈ 0.49968 < 1

2 (for 𝛿 = 0.1183, 𝜖 = 0.053).
Using Theorem 4.1, it then follows that 𝑚1−𝑏 is uniformly random string, hence proving the
given claim.

• ROM extractor: For the case of ROM extractor, for 𝜖 = 0.01013, 𝑛 − 𝑘 = 𝐵𝜆,𝐵 = 13 500, this
probability above exp

(︁
− 𝜖2(𝑛−𝑘)

2

)︁
< 1

2𝜆
.

In a similar way as above, we have that register 𝒳𝑀 = {𝒳𝑖}𝑖∈𝑀 is in a superposition of
states

⃒⃒⃒
x𝜃*

𝑀

⟩
s.t. ∆(x,x*𝑀 ) < 𝛿(𝑛−𝑘)

(1−𝜖)(𝑛−𝑘)/4 = 4𝛿
1−𝜖 < 0.10796 (for 𝛿 = 0.0267, 𝜖 = 0.010748).

We now apply Theorem 4.2 with random oracle input size 𝑛 − 𝑘, register 𝒳 of size |𝑀 |,
and |𝐿| ≤ 2ℎ𝑏(0.10796)(1−𝜖)(𝑛−𝑘)/4. Note that, when applying this theorem, we are fixing the
outcome of the 𝑛−𝑘−|𝑀 | bits of the random oracle input that are measured in basis 𝜃*𝑖 , and
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setting 𝒳 to contain the |𝑀 | registers are measured in basis ̂︀𝜃𝑖 = 𝜃*𝑖 ⊕ 1. This gives a bound
of

4 · 𝑞 · 2ℎ𝑏(0.10796)(1−𝜖)(𝑛−𝑘)/4

2(1−𝜖)(𝑛−𝑘)/8
=

4𝑞

2(
1
2
−ℎ𝑏(0.10796))(1−𝜖)(𝑛−𝑘)/4

=
4𝑞

2(
1
2
−ℎ𝑏(0.10796))(1−𝜖)𝐵𝜆/4

≤ 4𝑞

218𝜆

for 𝐵 = 12 000, 𝜖 = 0.010748.

Receiver Security. Let SimEqu = (SimEqu.RO,SimEqu.Com,SimEqu.Open) be the simulator for
the equivocal commitment scheme (Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ) (according to Definition 5.3). We
describe the simulator Sim[S*] against a malicious receiver S*. Sim will answer random oracle
queries to 𝐻𝐶 using SimEqu.RO. Additionally, if randomness extractor 𝐸 in the protocol is 𝐻𝐸𝑥𝑡,
then its simulation is accomplished via queries to an on-the-fly random oracle simulator SimRO.RO
as mentioned in Imported Theorem 3.6.

The Simulator.

1. Prepare 𝑛 EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[𝑛]

2. Compute the commitments strings {𝑐𝑖}𝑖∈[𝑛] by calling SimEqu.Com for the underlying com-
mitment scheme.

3. Send {𝒮𝑖}𝑖∈[𝑛] and {𝑐𝑖}𝑖∈[𝑛] to 𝑆*.

4. Receive 𝑇, {̂︀𝜃𝑖}𝑖∈𝑇 from 𝑆*.

5. For all 𝑖 ∈ 𝑇 , sample 𝜃𝑖 ← {+,×} and measure ℛ𝑖 in the basis 𝜃𝑖 to obtain outcome 𝑥𝑖. For
all 𝑖 ∈ 𝑇 , measureℛ𝑖 in the basis ̂︀𝜃𝑖 to obtain outcome ̃︀𝑥𝑖.

6. Call SimEqu.Open({𝑥𝑖, 𝜃𝑖}𝑖∈[𝑇 ]) of the underlying commitment scheme to obtain openings
{(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈[𝑇 ].

7. Generate a partition 𝐼0, 𝐼1 of 𝑇 as follows: for every 𝑖 ∈ 𝑇 , flip a random bit 𝑏𝑖 and place
𝑖 ∈ 𝐼𝑏𝑖 .

8. Receives 𝑚0,𝑚1 from ℱS−ROT functionality.

9. Set 𝑟0 = 𝐸({̃︀𝑥𝑖}𝑖∈𝐼0)⊕𝑚0, 𝑟1 = 𝐸({̃︀𝑥𝑖}𝑖∈𝐼1)⊕𝑚1.

10. Send 𝐼0, 𝐼1, {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 , (𝑟0, 𝑟1) to 𝑆*.
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Analysis. Fix any adversary {S*𝜆,D𝜆, (𝑏𝜆,𝑚𝜆)}𝜆∈N, where S*𝜆 is a QIOM that corrupts the sender,
D𝜆 is a QOM, and (𝑏𝜆,𝑚𝜆) is the input of the honest receiver. For any receiver input 𝑏𝜆 ∈
{0, 1},𝑚𝜆 ∈ {0, 1}𝑣, where 𝑣 is the output lenght of extractor, consider the random variables
Π[S*𝜆,D𝜆, (𝑏𝜆,𝑚𝜆)] and ̃︀ΠℱOT [Sim𝜆,D𝜆, (𝑏𝜆,𝑚𝜆)] according to Definition 3.2 for the protocol in Fig-
ure 9. Let 𝑞(·) denote an upper bound on the number of queries of S*𝜆 and D𝜆. We will show that
: ⃒⃒⃒⃒

Pr[Π[S*𝜆,D𝜆, (𝑏𝜆,𝑚𝜆)] = 1]− Pr
[︁̃︀Πℱ [Sim𝜆,D𝜆, (𝑏𝜆,𝑚𝜆)] = 1

]︁⃒⃒⃒⃒
= 𝜇(𝜆, 𝑞(𝜆))

where the term on the right corresponds to the security error in the equivocal commitment.
This is done via a sequence of hybrids, as follows 17:

• Hyb0 : The output of this hybrid is the real distribution Π[S*𝜆,D𝜆, (𝑏𝜆,𝑚𝜆)].

• Hyb1 : This is the same as the previous hybrid except that instead of running the Com and
Open algorithm, as in Figure 9, the challenger now answers random oracle queries to 𝐻𝐶 us-
ing SimEqu.RO, the random oracle simulator for the commitment scheme (Com𝐻𝐶 ,Open𝐻𝐶 ,
Rec𝐻𝐶 ). Additionally, it performs the following modified steps on behalf of R:

– Prepare the commitments by calling SimEqu.Com for the underlying commitment pro-
tocol.

– Prepare the opening by calling SimEqu.Open({𝑥𝑖, 𝜃𝑖}𝑖∈[𝑛]), where {𝑥𝑖, 𝜃𝑖}𝑖∈[𝑛] are as de-
fined in the previous hybrid.

• Hyb2 : This is the same as the previous hybrid except the following change: in protocol round
1, the challenger calls Algorithm EPR-to-BB84(𝑖) for every 𝑖 ∈ [𝑛] to obtain |𝑥𝑖⟩𝜃𝑖 .
Algorithm EPR-to-BB84 (𝑖):

1. Sample EPR pair on registers 𝒮𝑖,ℛ𝑖.
2. Randomly sample a basis 𝜃𝑖 ← {+,×}
3. Measureℛ𝑖 in the basis 𝜃𝑖 and let the outcome be 𝑥𝑖
4. Use 𝒮𝑖 as a BB84 state |𝑥𝑖⟩𝜃𝑖

• Hyb3: This is the same as the previous hybrid, except that in protocol round 1, the challenger
sends halves of 𝑛 EPR pairs {𝒮𝑖}𝑖∈[𝑛], prepared by executing Step 1 of the algorithm EPR-
to-BB84, to S* while retaining {ℛ}𝑖∈[𝑛] with itself. After round 2, the challenger runs Steps
2 and 3 of the Algorithm EPR-to-BB84 for every 𝑖 ∈ [𝑛] to obtain {𝑥𝑖, 𝜃𝑖}𝑖∈[𝑛]. The resulting
values {𝑥𝑖, 𝜃𝑖}𝑖∈𝑇 are used as inputs to SimEqu.Open to prepare openings in round 3. Step 4
of the Algorithm EPR-to-BB84(𝑖) is not relevant in this hybrid.

• Hyb4: This is the same as the previous hybrid, except the following changes. After round 2,
the challenger runs the Steps 2-3 of algorithm EPR-to-BB84 for every 𝑖 ∈ [𝑇 ], leaving {ℛ𝑖}𝑖∈𝑇

17If randomness extractor 𝐸 in the protocol is 𝐻𝐸𝑥𝑡, then there will be an additonal hybrid between Hyb0 and Hyb1
where we switch from using 𝐻𝐸𝑥𝑡 to simulating it using an efficient on-the-fly random oracle simulator SimRO.RO as
mentioned in Imported Theorem 3.6. This hybrid’s (perfect) indistinguishability will follow directly from the indistin-
guishable simulation property as mentioned in Imported Theorem 3.6.
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unmeasured. It generates a partition 𝐼0, 𝐼1 of 𝑇 as follows: for every 𝑖 ∈ 𝑇 , flip a random bit
𝑏𝑖 and place 𝑖 ∈ 𝐼𝑏𝑖 .

For all 𝑖 ∈ 𝑇 , the challenger measures {ℛ𝑖}𝑖∈𝑇 in the basis {̂︀𝜃𝑖}𝑖∈𝑇 where {̂︀𝜃𝑖}𝑖∈𝑇 was ob-
tained from S* in round 2. Denote measurement outcomes by {̃︀𝑥𝑖}𝑖∈𝑇 . Using the resulting
outcomes, the challenger sets 𝑟𝑏 := 𝐸({̃︀𝑥𝑖}𝑖∈𝐼𝑏)⊕𝑚.

• Hyb5 : This is the same as the previous hybrid, except that in Round 3, the challenger sets
𝑟0 = 𝐸({̃︀𝑥𝑖}𝑖∈𝐼0)⊕𝑚0, 𝑟1 = 𝐸({̃︀𝑥𝑖}𝑖∈𝐼1)⊕𝑚1 where 𝑚0,𝑚1 are received from ℱS−ROT

The output of this experiment is identical to the ideal distribution ̃︀ΠℱS−ROT
[Sim𝜆,D𝜆, (𝑏𝜆,𝑚𝜆)].

We show that |Pr[Hyb5 = 1] − Pr[Hyb0 = 1]| ≤ 𝜇(𝜆, 𝑞(𝜆)), where (Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ) is a
𝜇(𝜆, 𝑞(𝜆))-equivocal bit commitment scheme, where (Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ) is a 𝜇(𝜆, 𝑞(𝜆))-equivocal

bit commitment scheme, where 𝜇(𝜆, 𝑞, 𝑛com) = 2𝑞𝑛
1/2
com

2𝜆com/2 for the specific commitment scheme that we
construct in Section 5.2, where 𝑛com is the number of bit commitments and 𝜆com is the security pa-
rameter for the commitment scheme. Later, we will set 𝑛com = 𝑐1𝜆 and 𝜆com = 𝑐2𝜆 for some fixed
constants 𝑐1, 𝑐2. Thus 𝜇 will indeed be a function of 𝜆 and 𝑞. We now procced with the proof by
arguing the computational indistinguishability of each pair of consecutive hybrids in the above
sequence.

Claim B.7. |Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ 𝜇(𝜆, 𝑞(𝜆)).

Proof. Suppose there exists an adversary Adv𝜆 corrupting S, a distinguisher D𝜆, quantuam states
𝜌𝜆, 𝜎𝜆 and a bit 𝑏 such that, ⃒⃒⃒⃒

Pr[Hyb0 = 1]− Pr[Hyb1 = 1]

⃒⃒⃒⃒
> 𝜇(𝜆, 𝑞(𝜆))

We will construct a reduction {Adv*𝜆 = (AdvRCommit,𝜆,AdvROpen,𝜆,D
*
𝜆)}𝜆∈N that makes at most

𝑞(𝜆) queries to the random oracle, and contradicts the 𝜇-equivocality of the underlying commit-
ment scheme (Com𝐻𝐶 ,Open𝐻𝐶 ,Rec𝐻𝐶 ) as defined in Definition 5.4. In the following reduction, all
random oracle queries to 𝐻𝐶 will be answered by the equivocal commitment challenger.

AdvRCommit,𝜆(𝜌𝜆):

• Initalize the OT protocol with between honest receiver R and Adv(𝜌𝜆) corrupting S.

• After R samples {(𝑥𝑖, 𝜃𝑖)}𝑖∈[𝑛], output the intermediate state 𝜌*𝜆,1 representing the joint state
of S and R along with {(𝑥𝑖, 𝜃𝑖)}𝑖∈[𝑛].

The commitment challenger obtains {(𝑥𝑖, 𝜃𝑖)}𝑖∈[𝑛] and returns a set of commitments {com𝑖}𝑖∈[𝑛].

AdvROpen,𝜆(𝜌
*
𝜆,1, {com𝑖}𝑖∈[𝑛]): Use 𝜌*𝜆,1 to initialize the joint state of S and R, and {com𝑖}𝑖∈[𝑛] as

commitments of R in the protocol. Output the new joint state 𝜌*𝜆,2 after R has computed 𝐼0 and 𝐼1.

The challenger returns {𝑢𝑖}𝑖∈[𝑛] which is then fed to the following distinguisher (along with
the information {com𝑖, (𝑥𝑖, 𝜃𝑖)}𝑖∈[𝑛] from the aforementioned execution).

D*𝜆(𝜌
*
𝜆,2, {com𝑖, (𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈[𝑛]) :
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• Use 𝜌*𝜆,2 to initialize the joint state of S and R. Run it until completion using {(𝑥𝑖, 𝑢𝑖)}𝑖∈𝑇 as
openings of R.

• Let 𝜏*𝜆 be the final state of Adv and 𝑦* be the output of R. Run D𝜆(𝜎𝜆, 𝜏
*
𝜆 , 𝑦
*) and output the

bit 𝑏 returned by it.

By construction, when the challenger executes (Com𝐻𝐶 ,Open𝐻𝐶 ), the reduction will generate a
distribution identical to Hyb0. Similarly, when the challenger executes (SimEqu.Com,SimEqu.Open)
algorithms, the reduction will generate a distribution identical to Hyb1. Therefore, the reduction
directly contradicts the 𝜇-equivocality of the underlying commitment scheme (Com𝐻𝐶 ,Open𝐻𝐶 ,
Rec𝐻𝐶 ) according to Definition 5.4, as desired.

Claim B.8. Pr[Hyb1 = 1] = Pr[Hyb2 = 1]

Proof. The only difference between the two hybrids is a syntactic change in the way BB84 states
are sampled in round 1. The distribution (𝑥𝑖, 𝜃𝑖, |𝑥𝑖⟩𝜃𝑖)𝑖∈[16𝜆] resulting from these syntactically
different sampling strategies is identical in both hybrids.

Claim B.9. Pr[Hyb2 = 1] = Pr[Hyb3 = 1]

Proof. Hyb3 constitutes a purification of the receiver’s strategy in round 1 and since actions on
disjoint subsystems commute, this does not affect the joint distribution of the sender’s view and
receiver output.

Claim B.10. Pr[Hyb3 = 1] = Pr[Hyb4 = 1]

Proof. Hyb4 constitutes a purification of the receiver’s strategy in round 3 and since actions on
disjoint subsystems commute, this does not affect the joint distribution of the sender’s view and
receiver output.

Claim B.11. Pr[Hyb4 = 1] = Pr[Hyb5 = 1]

Proof. Assuming correctness of ℱS−ROT, the two hybrids are identical.Suppose ideal world re-
ceiver’s input is (𝑏 = 0,𝑚). In this case, ℱS−ROT sends 𝑚0 = 𝑚,𝑚1 to the challenger where
𝑚1 ← {0, 1}𝑣. In Hyb5, this would lead to 𝑟0 = 𝐸({̃︀𝑥𝑖}𝑖∈𝐼0) ⊕ 𝑚 (which is same as Hyb4) and
𝑟1 = 𝐸({̃︀𝑥𝑖}𝑖∈𝐼1) ⊕𝑚1 (which is uniformly random as in Hyb4). Moreover, the output on sender
side in Hyb5 is (𝐸({̃︀𝑥𝑖}𝑖∈𝐼0)⊕𝑟0, 𝐸({̃︀𝑥𝑖}𝑖∈𝐼1)⊕𝑟1) = (𝑚,𝑚1) as desired. The case when ideal world
receiver bit 𝑏 is 1 can be proved in a similar way. Therefore for any fixing of the adversary’s state
and receiver’s input, the two hybrids result in identical distributions.

Combining all the claims, we get that |Pr[Hyb0 = 1] − Pr[Hyb5 = 1]| ≤ 𝜇(𝜆, 𝑞(𝜆)). In Theorem

5.12, we derived 𝜇(𝜆, 𝑞, 𝑛com) = 2𝑞𝑛
1/2
com

2𝜆com/2 . We will now state the parameters for 𝑛com and 𝜆com.

• XOR extractor: Plugging 𝜆com = 2𝜆, 𝑛com = 2𝑛 (as we are committing to 2 bits at a time)
where 𝑛 = 1600𝜆 (this setting of 𝑛 is the same as that needed in the sender security part of
the proof), we get 114𝑞

√
𝜆

2𝜆
security against a malicious sender.

• ROM extractor: Plugging 𝜆com = 2𝜆, 𝑛com = 2𝑛 (as we are committing to 2 bits at a time)
where 𝑛 = 23 000𝜆 (this setting of 𝑛 is the same as that needed in the sender security part of
the proof), we get 430𝑞

√
𝜆

2𝜆
security against a malicious sender.
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B.2 Four-round chosen-input OT

In this section, we prove Theorem B.2.

Sender Security The proof of this follows along a similar line as the proof of security against a
malicious receiver for the 3-round protocol described before. We only describe the changes to the
corresponding proof from before over here.

The only change to the simulator (compared to Sim[R*] for the 3-round protocol described
earlier) is that after computing 𝑏 at the end of third round, it sends 𝑏 to ℱOT[𝜆] to receive back 𝑚𝑏,
sets 𝑚1−𝑏 := 0𝜆, and thereafter completes the protocol as in the honest sender strategy. Once it
outputs R*’s state, it continues answering distinguisher’s queries using SimExt.RO.

The hybrids (Hyb0,Hyb1,Hyb2) also remain same as in the proof before, and the indistinguisha-
bility between Hyb0,Hyb1 proceeds as before. The indistiguishability between Hyb1,Hyb2 follows
using a slightly modified analysis of SubClaim B.5 and SubClaim B.6. Specifically, for the proof of
SubClaim B.5, we use 𝛿 = 0.04, 𝛽 = 0.023, 𝜂 = 0.0236, 𝐴 = 5300, 𝐵 = 5000, and obtain the same
result of 𝜖𝛿quantum ≤

√
5

2𝜆
.

For the proof of SubClaim B.5, we use a different analysis as follows: set 𝜖 = 0.017. By as-
sumption of the subclaim and using a similar analysis as the proof of SubClaim B.5, the state on
𝒳 is in a superposition of states |x𝜃*⟩ s.t. ∆(x𝑆 ,x

*
𝑆) = 0 and ∆(x𝑇 ,x

*
𝑇
) < 𝛿. Using Hoeffding’s

inequality, the number of positions 𝑖 ∈ 𝑇 s.t. ̂︀𝜃𝑖 ̸= 𝜃*𝑖 is at least (1−𝜖)(𝑛−𝑘)
2 except with probability

exp
(︁
− 𝜖2(𝑛−𝑘)

2

)︁
. For 𝜖 = 0.053, 𝑛 − 𝑘 = 𝐵𝜆,𝐵 = 5000, this probability is < 1

2𝜆
. Next, as before,

given any partition (𝐼0, 𝐼1) of 𝑇 that R* sends in the third round, it holds that there exists a bit 𝑏
and partition 𝐼1−𝑏 s.t. there are at least (1−𝜖)(𝑛−𝑘)

4 positions 𝑖 with ̂︀𝜃𝑖 ̸= 𝜃*𝑖 .

Hence, 𝒳𝐼1−𝑏
is in a superposition of states

⃒⃒⃒⃒
x(︁

𝜃*
𝐼1−𝑏

)︁⟩ s.t. ∆(x,x*𝐼1−𝑏
) < 𝛿 and at least (1−𝜖)(𝑛−𝑘)

4

positions of it are measured in basis ̂︀𝜃𝑖 ̸= 𝜃*𝑖 . Let ̂︀𝑋1−𝑏 be the string obtained by concatenating the
measurement outcomes of 𝐼1−𝑏. Also, let 𝒞 denote the register for the complete system (including
the private state of R*), but excluding register 𝒳 . Using Imported Theorem 3.9, we get,

H∞( ̂︀𝑋1−𝑏 | 𝒳𝐼𝑏 , 𝒞) ≥
(1− 𝜖)(𝑛− 𝑘)

4
− ℎ𝑏(𝛿)|𝐼1−𝑏|

≥ (1− 𝜖)(𝑛− 𝑘)
4

− ℎ𝑏(𝛿)(𝑛− 𝑘)

For 𝜖 = 0.017, 𝛿 = 0.04, 𝑛 − 𝑘 = 𝐵𝜆,𝐵 = 5000, we get, H∞( ̂︀𝑋1−𝑏 | 𝒳𝐼𝑏 , 𝒞) ≥ 17𝜆, and also, that
H∞( ̂︀𝑋1−𝑏 | ̂︀𝑋𝐼𝑏 , 𝒞) ≥ 17𝜆. Using Imported Theorem 3.8, we then get that (𝑠, ℎ(𝑠, ̂︀𝑋𝐼1−𝑏

)) is 1
29𝜆

statistically close to uniformly random string. Hence, |Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤
√
5

2𝜆
+ 1

29𝜆
.

Receiver Security The proof of this is similar to the proof of receiver security for the 3 round
random basis protocol described before. We only describe the changes here. The only change to
the simulator is the following: Instead of executing Steps 8-10, it computes ̃︁𝑋0,̃︁𝑋1 as the concate-
nation of {̃︀𝑥𝑖}𝑖∈𝐼0 , {̃︀𝑥𝑖}𝑖∈𝐼1 respectively. It sends 𝐼0, 𝐼1, {(𝑥𝑖, 𝜃𝑖), 𝑢𝑖}𝑖∈𝑇 to S. On receiving 𝑠, 𝑐𝑡0, 𝑐𝑡1
from S in Round 4, it extracts 𝑚0 := 𝑐𝑡0⊕ ℎ(𝑠,̃︁𝑋0), 𝑚1 := 𝑐𝑡1⊕ ℎ(𝑠,̃︁𝑋1), and sends 𝑚0,𝑚1 to ℱOT.

The hybrids Hyb0,Hyb1,Hyb2,Hyb3 remain same as before. In Hyb4, instead of setting 𝑟𝑏, the
challenger just outputs 𝑚𝑏 := 𝑐𝑡𝑏 ⊕ ℎ(𝑠, {̃︀𝑥𝑖}𝑖∈𝐼𝑏) after Round 4. In Hyb5, instead of setting 𝑟0, 𝑟1,
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the challenger extracts 𝑚0 := 𝑐𝑡0 ⊕ ℎ(𝑠, {𝑥𝑖}𝑖∈𝐼0), 𝑚1 := 𝑐𝑡1 ⊕ ℎ(𝑠, {𝑥𝑖}𝑖∈𝐼1) after Round 4, and
sends 𝑚0,𝑚1 to ℱOT. The proof of indistinguishability between each pair of hybrids is similar to
the prior proof.

The only security loss in the proof is between Hyb0 and Hyb1 (when we invoke the equivocality
of the underlying commitment scheme). Using Theorem 5.12 where we derived 𝜇(𝜆, 𝑞, 𝑛com) =
2𝑞𝑛

1/2
com

2𝜆com/2 and plugging 𝜆com = 2𝜆, 𝑛com = 2𝑛 (as we are committing to 2 bits at a time) where
𝑛 = 10 300𝜆 (this setting of 𝑛 is the same as that needed in the sender security part of the proof),
we get 288𝑞

√
𝜆

2𝜆
security against a malicious sender.

C Three round chosen input bit OT via the XOR extractor

In this section, we derive parameters required when using a seedless XOR extractor in place of a
universal hash function, in Protocol 8.

Theorem C.1 (Three round chosen input bit OT.). Consider Protocol 8 and modify it to use the XOR ex-
tractor in place of the universal hash function. In addition, instantiate the protocol with any non-interactive
commitment scheme that is extractable (Definition 5.3) and equivocal (Definition 5.4). Then there exist
constants 𝐴,𝐵 such that Protocol 8 (modified to use XOR extractor) securely realizes (Definition 3.2)
ℱOT[1].

Furthermore, letting 𝜆 be the security parameter, 𝑞 be an upper bound on the total number of random
oracle queries made by the adversary, and using the commitment scheme from Section 5.2 with security
parameter 𝜆com = 4𝜆, for constants 𝐴 = 800, 𝐵 = 800, Protocol 8 (modified to use XOR extractor)
securely realizes ℱOT[1] with 𝜇R*-security against a malicious receiver and 𝜇S*-security against a malicious
sender, where

𝜇R* =
3
√
10𝑞3/2

2𝜆
+

148(𝑞 + 4800𝜆+ 1)3 + 1

24𝜆
+

38400𝑞𝜆

22𝜆
, 𝜇S* =

80
√
3𝑞𝜆

22𝜆
.

This requires a total of 2(𝐴+𝐵)𝜆 = 3200𝜆 BB84 states.

Proof. The proof of this proceeds along the same line as that of Protocol 8. We only describe the
changes here.

Sender security We define the same hybrids as used in the proof of sender security of Protocol 8,
and the proof of the indistinguishability between Hyb0,Hyb1,Hyb2,Hyb3 proceeds along the same
way. For the proof of indistinguishability between Hyb3 and Hyb4 as well, the proof proceeds
similarly except that the proof of some subclaims change. Specifically, SubClaim 7.11 now proves
that for 𝐴 = 800, 𝐵 = 800, 𝑞 ≥ 5, Tr

(︀
Π0.245

bad 𝜏
)︀
≤ 45𝑞3

22𝜆
. In particular, in the proof of SubClaim 7.11

we get 𝜖𝛿classical ≤
7
2𝜆

assuming 𝛿 = 0.245, 𝜖 = 0.08326, 𝛽 = 0.123, 𝛾 = 0.152, 𝑘 = 𝐴𝜆, 𝑛 = (𝐴 +
𝐵)𝜆,𝐴 = 800, 𝐵 = 800.

As in that proof then, by gentle measurement (Lemma 3.1), the 𝜏 defined in SubClaim 7.11 is
within trace distance 3

√
10𝑞3/2

2𝜆
of a state 𝜏good in the image of I−Π0.245

bad . And now conditioned on 𝜏
being in the image of I−Π0.245

bad , and 𝐴 = 800, 𝐵 = 800, we show that Pr[Hyb3 = 1] = Pr[Hyb4 = 1].
To prove this, as in the proof of SubClaim 7.12, we have registers 𝒮𝑊 are in a superposition of

states
⃒⃒⃒
r̃︀𝜃𝑊 [1]

⟩
, where ∆

(︁
r, ̃︀R𝑊

)︁
< 0.245. Recalling that 𝒮𝑊 = {𝒮𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇∖𝑈 , we have, for a
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majority of 𝑖 ∈ 𝑇 ∖ 𝑈 , register 𝒮
𝑖,̃︀𝜃𝑖⊕1 is measured in basis ̃︀𝜃𝑖 ⊕ 1. Call these set of registers that

are measured in basis ̃︀𝜃𝑖 ⊕ 1 as 𝑀 . We then have that registers 𝒮𝑀 are in superposition of states⃒⃒⃒
r̃︀𝜃𝑀

⟩
, where ∆

(︁
r, ̃︀R𝑀

)︁
≤ 0.245·|𝑇∖𝑈 |

|𝑀 | ≤ 0.245·|𝑇∖𝑈 |
|𝑇∖𝑈 |/2 = 2 · 0.245 = 0.49 < 1

2 .
Hence, using Theorem 4.1 it then follows that the measured bit is a uniformly random bit.

Receiver Security This proceeds in the same way as the proof of receiver security. The only
difference is the security loss incurred during in the indistinguishability between Hyb1 and Hyb2.

As before, |Pr[Hyb1 = 1] − Pr[Hyb2 = 1]| ≤ 2𝑞𝑛
1/2
com

2𝜆com/2 . Plugging 𝜆com = 4𝜆, 𝑛com = 3𝑛 (as we are
committing to 3 bits at a time) where 𝑛 = 1600𝜆 (this setting of 𝑛 is the same as that needed in the
sender security part of the proof), we get 80

√
3𝑞𝜆

22𝜆
security against a malicious sender.

D Classical sampling strategies

We analyze some common sampling strategies to find their classical error probability, 𝜖𝛿classical in
this section. Before doing so, we recall Hoeffding’s inequality, which we make extensive use of
below.

Hoeffding’s inequality Let 𝑋1, . . . 𝑋𝑛 be independent bounded random variables with 𝑋𝑖 ∈
[𝑎, 𝑏] for all 𝑖, where −∞ < 𝑎 ≤ 𝑏 <∞. Let 𝑋 =

∑︀
𝑖∈[𝑛]𝑋𝑖. Then, for 𝜖 > 0,

Pr[𝑋 ≥ E[𝑋] + 𝜖] ≤ exp

(︂
− 2𝜖2

𝑛(𝑏− 𝑎)2

)︂
, Pr[𝑋 ≤ E[𝑋]− 𝜖] ≤ exp

(︂
− 2𝜖2

𝑛(𝑏− 𝑎)2

)︂

D.1 Random subset without replacement

This corresponds to sampling 𝑇 ⊆ [𝑛] of size 𝑘 uniformly at random without replacement and
outputting 𝜔(q𝑇 ). Then, for 0 < 𝛿 < 1, 𝜖𝛿classical ≤ 2 exp

(︁
−2
(︀
1− 𝑘

𝑛

)︀2
𝛿2𝑘
)︁

[BF10, Appendix B.1].

D.2 Random subset without replacement, using only part of the sample

This corresponds to sampling a set 𝑇 ⊆ [𝑛] of size 𝑘 without replacement, then sampling 𝑆 ⊆ 𝑇
uniformly at random among all possible subsets of 𝑇 and outputting 𝜔(q𝑆). We provide a tighter
analysis of this compared to [BF10, Appendix B.4].

Lemma D.1. For 0 < 𝛿, 𝛽 < 1 and 0 < 𝜂 < 𝛿,

𝜖𝛿classical ≤ 2 exp

(︃
−2
(︂
1− 𝑘

𝑛

)︂2

𝜂2𝑘

)︃
+ 2 exp

(︀
−(𝛿 − 𝜂)2(1− 𝛽)𝑘

)︀
+ exp

(︂
−𝛽

2𝑘

2

)︂
.

Proof.

𝜖𝛿classical = max
q

Pr
𝑇,𝑆

[|𝜔(q𝑇 )− 𝜔(q𝑆)| ≥ 𝛿]
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We have using the sampling strategy above, for 0 < 𝜂 < 1,

max
q

Pr
𝑇
[|𝜔(q𝑇 )− 𝜔(q𝑇 )| ≥ 𝜂] ≤ 2 exp

(︃
−2
(︂
1− 𝑘

𝑛

)︂2

𝜂2𝑘

)︃
(8)

In the following, given a string q, we find a bound on Pr𝑆 [|𝜔(q𝑇 ) − 𝜔(q𝑆)| ≥ 𝛾]. Relating this to
the above, we will get the final bound. Conditioning on the size of 𝑆 being 𝑠, the sampling of 𝑆
corresponds to sampling a uniform subset of size 𝑠. We have the following subclaim:

SubClaim D.2.
Pr
𝑆

[︀
|𝜔(q𝑇 )− 𝜔(q𝑆)| ≥ 𝛾

⃒⃒
|𝑆| = 𝑠

]︀
≤ 2 exp

(︀
−2𝛾2𝑠

)︀
Proof. We find a bound using Hoeffding’s inequality applied to sampling 𝑆 with replacement
(sampling 𝑆 without replacement will only be tighter). For each 𝑖 ∈ [𝑠], let 𝑌𝑖 = 1 if the 𝑖𝑡ℎ

drawn element of 𝑆 is 1. Let 𝑌 =
∑︀

𝑖∈[𝑠] 𝑌𝑖, 𝑌 = 𝑌/𝑠. Then, using Hoeffding’s inequality, since

𝑌𝑖 are independent bounded random variables, for 𝛾′ > 0, Pr[|𝑌 − E[𝑌 ]| ≥ 𝛾′] ≤ 2 exp
(︁
−2𝛾′2

𝑠

)︁
or

Pr
[︀
|𝑌 − E[𝑌 ]| ≥ 𝛾

]︀
≤ 2 exp

(︀
−2𝛾2𝑠

)︀
for 𝛾 = 𝛾′/𝑠. Since, E[𝑌 ] = 𝜔(q𝑇 ), we have for 0 < 𝛾 < 1,

Pr [|𝜔(q𝑆)− 𝜔(q𝑇 )| ≥ 𝛾 | |𝑆| = 𝑠] ≤ 2 exp
(︀
−2𝛾2𝑠

)︀
.

Using the distribution of |𝑆|, we have,

SubClaim D.3. For 0 < 𝛾, 𝛽 < 1, Pr𝑆 [|𝜔(q𝑇 )− 𝜔(q𝑆)| ≥ 𝛾] ≤ 2 exp
(︀
−2𝛾2(1− 𝛽)𝑘2

)︀
+exp

(︁
−𝛽2𝑘

2

)︁
.

Proof. To find the distribution of |𝑆|, note that sampling 𝑆 corresponds to choosing each element
of 𝑇 at random with probability 1/2. For 𝑖 ∈ [𝑘], let 𝑋𝑖 = 1 if 𝑖𝑡ℎ element is chosen to be part of
the set, and let 𝑋 =

∑︀
𝑖∈[𝑘]𝑋𝑖. Then, Pr[𝑋𝑖 = 1] = 1/2 and each 𝑋𝑖 is an independent bounded

random variable. Using Hoeffding’s inequality, for 𝛽′ > 0, Pr[𝑋 ≤ E[𝑋]− 𝛽′] ≤ exp
(︁
−2𝛽′2

𝑘

)︁
.

Setting 𝛽′ = E[𝑋]𝛽, we get, Pr[𝑋 ≤ (1− 𝛽)E[𝑋]] ≤ exp
(︁
−2𝛽2(E[𝑋])2

𝑘

)︁
. Since 𝛽′ > 0, we have

𝛽 > 0. In particular, for 0 < 𝛽 < 1, we have, Pr𝑆 [|𝑆| ≤ (1− 𝛽)𝑘2 ] ≤ exp
(︁
−𝛽2𝑘

2

)︁
.

Therefore,

Pr [|𝜔(q𝑆)− 𝜔(q𝑇 )| ≥ 𝛾] =
∑︁

𝑠≤(1−𝛽)𝑘/2

Pr
[︀
|𝜔(q𝑆)− 𝜔(q𝑇 )| ≥ 𝛾

⃒⃒
|𝑆| = 𝑠

]︀
Pr[|𝑆| = 𝑠]

+
∑︁

𝑠>(1−𝛽)𝑘/2

Pr
[︀
|𝜔(q𝑆)− 𝜔(q𝑇 )| ≥ 𝛾

⃒⃒
|𝑆| = 𝑠

]︀
Pr[|𝑆| = 𝑠]

≤ exp

(︂
−𝛽

2𝑘

2

)︂
+

∑︁
𝑠>(1−𝛽)𝑘/2

2 exp
(︀
−2𝛾2𝑠

)︀
≤ exp

(︂
−𝛽

2𝑘

2

)︂
+ 2 exp

(︂
−2𝛾2(1− 𝛽)𝑘

2

)︂
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Combining the above with Eq. (8), we get, for any string q ∈ {0, 1}𝑛,

Pr
[︀
|𝜔(q𝑇 )− 𝜔(q𝑆)| ≥ 𝜂 + 𝛾

]︀
≤ 2 exp

(︃
−2
(︂
1− 𝑘

𝑛

)︂2

𝜂2𝑘

)︃

+ 2 exp

(︂
−2𝛾2(1− 𝛽)𝑘

2

)︂
+ exp

(︂
−𝛽

2𝑘

2

)︂
.

For 𝛿 = 𝜂 + 𝛾, we get, for 0 < 𝛿 < 1, 0 < 𝜂 < 𝛿 and 0 < 𝛽 < 1,

Pr
[︀
|𝜔(q𝑇 )− 𝜔(q𝑆)| ≥ 𝛿

]︀
≤ 2 exp

(︃
−2
(︂
1− 𝑘

𝑛

)︂2

𝜂2𝑘

)︃

+ 2 exp
(︀
−(𝛿 − 𝜂)2(1− 𝛽)𝑘

)︀
+ exp

(︂
−𝛽

2𝑘

2

)︂
.

D.3 Intersection of two uniform subsets and then using part of the sample

This corresponds to sampling two independent uniform subsets 𝑇,𝑈 ⊆ [𝑛], each of size 𝑘, setting
𝑆 = 𝑇 ∩ 𝑈 , and then taking a random subset of 𝑆 (among all possible subsets of 𝑆). This is the
strategy followed in our 3 round chosen input OT protocol (Section 7). In terms of the sampling
strategy definition in Section 3.6, the above strategy can be thought of as the following sampling
strategy Ψ:

• 𝑃𝑇 ′ : Sample two independent and uniform subsets of [𝑛] each of size 𝑘. Let 𝑠 denote their
intersection size. Fix 𝑠, and discard the subsets themselves. Sample a random subset 𝑇 ′ of
[𝑛], of size 2𝑘 − 𝑠, and output 𝑇 ′.

• 𝑃𝑆′ : Given 𝑇 ′, reverse calculate 𝑠 as 2𝑘 − |𝑇 ′|. Sample a uniformly random subset 𝑆 of 𝑇 ′, of
size 𝑠. Sample a uniformly random subset 𝑆′ of 𝑆 (among all possible subsets of 𝑆). Output
𝑆′.

• 𝑓(𝑇 ′,q𝑇 ′ , 𝑆′): Output 𝜔(q𝑆′).

We prove then the following:

Lemma D.4. For 0 < 𝜖, 𝛽, 𝛿 < 1 and 0 < 𝛾 < 𝛿,

𝜖𝛿classical(Ψ) ≤2 exp

(︃
−2
(︂

(𝑛− 𝑘)2 − 3𝜖𝑘2

(𝑛− 𝑘)2 + (1− 2𝜖)𝑘2

)︂2

𝛾2(1− 𝜖)𝑘
2

𝑛

)︃

+ 2 exp

(︂
−(𝛿 − 𝛾)2(1− 𝛽)(1− 𝜖)𝑘

2

𝑛

)︂
+ exp

(︂
−𝛽

2(1− 𝜖)𝑘2

2𝑛

)︂
+ 2 exp

(︂
−2𝜖2𝑘3

𝑛2

)︂
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Proof.

𝜖𝛿classical(Ψ) = max
q

Pr
𝑇 ′←𝑃𝑇 ′ ,𝑆′←𝑃𝑆′

[︁
q /∈ 𝐵𝛿

𝑇 ′,𝑆′

]︁
= max

q
Pr

𝑇 ′←𝑃𝑇 ′ ,𝑆′←𝑃𝑆′

[︀
|𝜔(q𝑇 ′)− 𝜔(q𝑆′)| ≥ 𝛿

]︀
To relate 𝜔(q𝑇 ′) with 𝜔(q𝑆′), consider the following equivalent sampling strategy Ψ′:

• Sample two independent and uniform subsets of [𝑛] each of size 𝑘. Let 𝑠 denote their inter-
section size. Fix 𝑠, and discard the subsets themselves. Sample a random subset 𝑅 of [𝑛], of
size 𝑛− 2(𝑘 − 𝑠).

• Sample a uniformly random subset 𝑆 of 𝑅, of size 𝑠. Sample a uniformly random subset -
𝑆′, of 𝑆 (among all possible subsets of 𝑆). Output 𝜔(q𝑆′).

In intuitive terms, compared to the original sampling strategy where 𝑇,𝑈 ⊆ [𝑛] of size 𝑘 each were
sampled, in sampling strategy Ψ, set 𝑇 ′ corresponds to sampling 𝑇∪𝑈 first, and then sampling 𝑆 =
𝑇∩𝑈 . And in the above sampling strategy, Ψ′, sampling𝑅 corresponds to sampling 𝑇 ∪ 𝑈∪(𝑇∩𝑈),
or in terms of sampling strategy Ψ it corresponds to sampling 𝑇 ′∪𝑆. Therefore, 𝜔(q𝑇 ′) in sampling
strategy Ψ is equivalent to 𝜔(q𝑅∖𝑆) in Ψ′. Therefore,

𝜖𝛿classical(Ψ) = max
q

Pr
𝑇 ′←𝑃𝑇 ′ ,𝑆′←𝑃𝑆′

[︀
|𝜔(q𝑇 ′)− 𝜔(q𝑆′)| ≥ 𝛿

]︀
= max

q
Pr

𝑠,𝑅,𝑆,𝑆′

[︀
|𝜔(q𝑅∖𝑆)− 𝜔(q𝑆′)| ≥ 𝛿

]︀
(9)

But note that given 𝑠, sampling 𝑆 and 𝑆′ from 𝑅 corresponds exactly the sampling analyzed in
Appendix D.2. Therefore, using the same result, we get, for 0 < 𝛿, 𝛽 < 1 and 0 < 𝛾 < 𝛿,

max
q

Pr
𝑆,𝑆′

[︀
|𝜔(q𝑅∖𝑆)− 𝜔(q𝑆′)| ≥ 𝛿

⃒⃒
|𝑆| = 𝑠

]︀
≤ 2 exp

(︃
−2
(︂
1− 𝑠

𝑛− 2(𝑘 − 𝑠)

)︂2

𝛾2𝑠

)︃

+ 2 exp
(︀
−(𝛿 − 𝛾)2(1− 𝛽)𝑠

)︀
+ exp

(︂
−𝛽

2𝑠

2

)︂
.

We now factor in the distribution of 𝑠, which we analyze using Hoeffding’s inequality applied
to sampling with replacement. Consider the following experiment - sample subset 𝑇 ⊆ [𝑛] size
𝑘 uniformly at random. Now sample 𝑘 elements from [𝑛] with replacement and call that set 𝑈 .
Set 𝑠 = |𝑇 ∩ 𝑈 |. Let for all 𝑖 ∈ [𝑘], 𝑋𝑖 = 1 iff the 𝑖𝑡ℎ drawn element for 𝑈 is drawn from 𝑇 .
Then, Pr[𝑋𝑖 = 1] = 𝑘/𝑛. Let 𝑋 =

∑︀
𝑖∈[𝑘]𝑋𝑖 represent 𝑠 = 𝑇 ∩ 𝑈 . E[𝑋] = 𝑘2/𝑛. Since 𝑋𝑖 are

independently drawn binary random variables, applying Hoeffding’s inequality, for 𝜖′ > 0,

Pr
[︀
|𝑋 − E[𝑋]| ≥ 𝜖′

]︀
≤ 2 exp

(︂
−2𝜖′2

𝑘

)︂
=⇒ Pr

[︂⃒⃒⃒⃒
𝑠− 𝑘2

𝑛

⃒⃒⃒⃒
≥ 𝜖′

]︂
≤ 2 exp

(︂
−2𝜖′2

𝑘

)︂
=⇒ Pr

[︂⃒⃒⃒⃒
𝑠− 𝑘2

𝑛

⃒⃒⃒⃒
≥ 𝜖𝑘2

𝑛

]︂
≤ 2 exp

(︂
−2𝜖2𝑘3

𝑛2

)︂
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where we substituted 𝜖′ = 𝜖𝑘2

𝑛 . Therefore, 𝑠 ∈
(︁
(1−𝜖)𝑘2

𝑛 , (1+𝜖)𝑘
2

𝑛

)︁
except with probability 2 exp

(︁
−2𝜖2𝑘3
𝑛2

)︁
for 0 < 𝜖 < 1. We have then for 0 < 𝜖, 𝛽, 𝛿 < 1 and 0 < 𝛾 < 𝛿,

Pr
𝑠,𝑅,𝑆,𝑆′

[︀
|𝜔(q𝑅∖𝑆)− 𝜔(q𝑆′)| ≥ 𝛿

]︀
=

∑︁
𝑠0: |𝑠0−𝑘2/𝑛|≥ 𝜖𝑘2

𝑛

Pr
𝑅,𝑆,𝑆′

[︀
|𝜔(q𝑅∖𝑆)− 𝜔(q𝑆′)| ≥ 𝛿 | 𝑠 = 𝑠0

]︀
Pr
𝑠
[𝑠 = 𝑠0]

+
∑︁

𝑠0: |𝑠0−𝑘2/𝑛|< 𝜖𝑘2

𝑛

Pr
𝑅,𝑆,𝑆′

[︀
|𝜔(q𝑅∖𝑆)− 𝜔(q𝑆′)| ≥ 𝛿 | 𝑠 = 𝑠0

]︀
Pr
𝑠
[𝑠 = 𝑠0]

≤
∑︁

𝑠0: |𝑠0−𝑘2/𝑛|≥ 𝜖𝑘2

𝑛

Pr
𝑠
[𝑠 = 𝑠0] +

∑︁
𝑠0: |𝑠0−𝑘2/𝑛|<𝜖

2 exp

(︃
−2
(︂
1− 𝑠

𝑛− 2(𝑘 − 𝑠)

)︂2

𝛾2𝑠

)︃

+ 2 exp
(︀
−(𝛿 − 𝛾)2(1− 𝛽)𝑠

)︀
+ exp

(︂
−𝛽

2𝑠

2

)︂
≤ 2 exp

(︃
−2
(︂

(𝑛− 𝑘)2 − 3𝜖𝑘2

(𝑛− 𝑘)2 + (1− 2𝜖)𝑘2

)︂2

𝛾2(1− 𝜖)𝑘
2

𝑛

)︃

+ 2 exp

(︂
−(𝛿 − 𝛾)2(1− 𝛽)(1− 𝜖)𝑘

2

𝑛

)︂
+ exp

(︂
−𝛽

2(1− 𝜖)𝑘2

2𝑛

)︂
+ 2 exp

(︂
−2𝜖2𝑘3

𝑛2

)︂
where we substituted the upper bound and lower bound of 𝑠 to get the last inequality. Since this
is true for any string q, it is also true for maxq and hence using Eq. (9), we get 𝜖𝛿classical is bounded
by the quantity above.
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