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Abstract.

We present the first fully collusion resistant traitor tracing (TT) scheme for identity-based inner product func-
tional encryption (IBIPFE) that directly traces user identities through an efficient tracing procedure. We name
such a scheme as embedded identity traceable IBIPFE (EI-TIBIPFE), where secret keys and ciphertexts are com-
puted for vectors u and v respectively. Additionally, each secret key is associated with a user identification infor-
mation tuple (i , id,gid) that specifies user index i , user identity id and an identity gid of a group to which the user
belongs. The ciphertexts are generated under a group identity gid′ so that decryption recovers the inner product
between the vectors u and v if the user is a member of the group gid′, i.e., gid = gid′. Suppose some users linked
to a particular group team up and create a pirate decoder that is capable of decrypting the content of the group,
then the tracing algorithm extracts at least one id from the team given black-box access to the decoder.

In prior works, such TT schemes are built for usual public key encryptions. The only existing TIPFE scheme
proposed by Do, Phan, and Pointcheval [CT-RSA’20] can trace user indices but not the actual identities. Moreover,
their scheme achieves selective security and private traceability, meaning that it is only the trusted authority that
is able to trace user indices. In this work, we present the following TT schemes with varying parameters and levels
of security:
(1) We generically construct EI-TIBIPFE assuming the existence of IBIPFE. The scheme preserves the security

level of the underlying IBIPFE.
(2) We build an adaptively secure EI-TIPFE scheme from bilinear maps. Note that EI-TIPFE is a particular case

of EI-TIBIPFE, which does not consider group identities.
(3) Next, we construct a selectively secure EI-TIBIPFE from bilinear maps. As an intermediate step, we design

the first IBIPFE scheme based on a target group assumption in the standard model.
(4) Finally, we provide a generic construction of selectively secure EI-TIBIPFE from lattices, namely under the

standard Learning With Errors assumption.
Our pairing-based schemes support public traceability and the ciphertext size grows with

p
n, whereas in the

IBIPFE and lattice-based ones, it grows linearly with n. The main technical difficulty is designing such an ad-
vanced TT scheme for an IBIPFE that is beyond IPFE and more suitable for real-life applications.

Keywords: embedded identity, traitor tracing, inner product functional encryption, identity-based inner product
functional encryption
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1 Introduction

A traditional traitor tracing (TT) [CFN94] scheme is a multi-receiver system that helps to
detect a malicious user that deceives the broadcasters by creating a pirate decryption box.
More specifically, contents are encrypted under a public key mpk and each authorized user
indexed with j is given a sophisticated secret key sk j to recover the contents. Consider a sce-
nario where a collection of dishonest users, called traitors, embeds their secret keys into a
pirate decoder which decrypts the ciphertext for unauthorized users, thereby causing a sig-
nificant loss to the content providers. To prevent such impermissible theft, there is a tracing
algorithm that uses a dedicated tracing key key to identify the traitors in the system. The trac-
ing algorithm is called public or private, depending on whether the key is available publicly
or kept secret.

In literature, TT schemes are mainly explored in the context of usual public key encryp-
tion (PKE) [CFN94,BF99,SW98,KD98,CFNP00,FT01,SSW01,CPP05,BF99,TT01,KY02a,KY02b,
FNP07, BP08, BZ17, LPSS17, ABP+17] or identity-based encryption (IBE) [ADML+07, GMS12,
PT11]. Recently, Do, Phan and Pointcheval [DPP20] bring this feature of traceability into
the setting of a more fine-grained encryption mechanism called functional encryption (FE)
[BSW11]. In particular, they define and construct a traceable inner product functional en-
cryption (TIPFE) scheme where secret keys are generated for tuples ( j ,u) representing user
indices and vectors. The ciphertexts are computed for some vectors v in such a manner that
the decryption reveals nothing about the message v except the inner product 〈u, v〉. Suppose
many secret keys sk j ,u for a fixed vector u are provided to different users having distinct in-
dices. It may happen that some of these users create a pirate decoder embedding their own
secret keys in order to sell it for personal interests. Therefore, anyone from outside can learn
the inner product using the pirate decoder. The tracing algorithm of TIPFE is employed to
identify such dishonest users in the system.

Following the usual tracing procedures [BSW06,BF99], Do et al. [DPP20] design their trac-
ing algorithm to find out a set T index containing the traitor’s indices associated with the se-
cret keys of IPFE. In order to find the actual traitors, the indices in T index are mapped back
to the identities of traitors. Thus, the central authority must maintain a map or a look-up ta-
ble to discover the identities linked to the indices of T index. Additionally, the key generation
process of [DPP20] encodes the identities as codewords or vectors (having the same length
as the IPFE vectors), and the tracing algorithm needs to access the list of these codewords.
This makes the key generation inherently stateful, which not only dilutes the whole purpose
of tracing but is inconvenient for many practical scenarios. Further, a TIPFE like [DPP20]
which supports private tracing is more restrictive since only the central authority can find
out the traitors’ identities. On the other hand, even if the map is made publicly available,
then users’ anonymity would be fully compromised.

Nishimaki, Wichs and Zhandry [NWZ16] address this issue by constructing a TT scheme
that publicly traces users’ identities from a decoder box. However, their TT scheme is built
upon an adaptively-secure collusion resistant public key FE scheme for general circuits with
compact ciphertexts. All known constructions of such FE schemes depend on the existence
of either multilinear maps [GGH+13] or indistinguishability obfuscation (IO) [?]. Although IO
has been built from well-founded assumptions [JLS21] through a long sequence of works, the
construction is highly complex and relies on various cryptographic tools. Nevertheless, it has
not yet reached the arena of implementable primitives. To avoid the route of full-fledge FE or
IO, Goyal, Koppula, and Waters [GKW19] developed new and more efficient public/private
fully collusion resistant traitor tracing schemes from standard assumptions based on paring
and lattices. However, these TT schemes can trace users’ identities only in plain PKEs. The
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existing TIPFE of [DPP20] is proven secure in the selective indistinguishability model and
achieves private tracing (that can trace only user indices) under the decisional bilinear Diffie-
Hellman (DBDH) assumption.

We further investigate more realistic applications of TIPFE. In the current structure of
TIPFE, the ciphertexts do not contain any information about the source of the message. As
a result, the sender can not be recognized during decryption, although it is an essential and
desirable feature for any PKE scheme. If many broadcasters (or data suppliers) encrypt their
individual data using the same TIPFE scheme then users having secret keys from one broad-
caster can decrypt the content of others. Further, in the context of tracing, this means the
tracing must be run across all the users’ identities even when the decoder is created to cheat
a specific broadcaster. A naive way to resolve this problem is to sample individual TIPFE sys-
tem for each of these broadcasters. However, this requires maintaining a huge database for
storing parameters of all the TIPFE systems, and complications may arise in managing cer-
tificates. Such shortcomings of TIPFE can be surpassed by introducing identities assigned to
the broadcasters and enabling them to encrypt contents under their own individual identi-
ties. A secret key is now associated with an additional broadcaster’s identity, which restricts
the user to decrypt only the contents of that broadcaster. This is motivated by the notion of
an identity-based TT (IB-TT) scheme [ADML+07].

To see how capable is a TIPFE having ciphertexts encrypted under sender’s identities
in solving various cryptographic problems, we consider a specific application scenario as
follows. Suppose the central Department of Health (DOH) of a country authorizes certain
labs to perform a clinical trail of any drug in order to create a medicine as early as possi-
ble. Each lab (playing the role of a broadcaster) encrypts the clinical data of their manu-
factured medicine under their lab-id and scientists from different labs receive secret keys
directly from DOH to compute on the encrypted data and learn important characteristics of
the medicine produced by their own labs. Such statistical analysis or findings should be kept
secret within a lab until the medicine is approved by DOH due to several reasons including
financial profits, dignity of the lab. During the trial it may happen that a scientist of a par-
ticular lab X is compromised and (s)he creates a decoder box by embedding the secret key
to sell out sensitive data about the medicine manufactured by lab X . To prevent this, DOH
can employ a broadcaster-identity-based TIPFE and encodes an identification information
of each scientist into their secret keys which is a tuple of the form (index number, employ-id,
lab-id/name) in order to facilitate tracing such culprits via a dedicated algorithm. This mo-
tivates us toward the following question:
Open Problem. Can we construct an efficient fully collusion resistant broadcaster-identity-
based TIPFE under a standard assumption where the user identification information can be
embedded into the secret keys such that the tracing algorithm publicly/privately traces the in-
dices associated with traitors’ secret keys along with their identities?

Our Contributions. In this work, we affirmatively answer to the above question. More pre-
cisely, our contributions are as follows.
Embedded Identity TIPFE. We formally introduce the notion of embedded identity TIPFE
(EI-TIPFE) inspired from the primitive of EI-TT introduced in [GKW19]. We further extend
this notion to identity-based IPFE (IBIPFE) [ACGU20] and define a more generalized primi-
tive called embedded identity traceable IBIPFE (EI-TIBIPFE). It additionally encodes broad-
caster’s identity, referred to as group identity here after, into a secret key and enables en-
crypting message vectors under group identities. We emphasize that only user identities are
traced in EI-TIBIPFE from a pirate decoder designed for a specific group identity.

4



To construct EI-TIPFE or EI-TIBIPFE, we formalize an intermediate primitive called em-
bedded identity private linear IBIPFE (EIPL-IBIPFE). Also, we observe that EIPL-IPFE can
be viewed as a particular case of it where the group identities are omitted. We show that
EI-TIBIPFE or EI-TIPFE can be achieved generically from EIPL-IBIPFE or EIPL-IPFE re-
spectively. Hence, the answer to the above question boils down to construct the intermedi-
ate primitive EIPL-IBIPFE. We build EIPL-IBIPFE under various standard assumptions with
varying security levels and efficiency which eventually leads to the following constructions:
EI-TIBIPFE from IBIPFE. We present a generic construction of EI-TIBIPFE from IBIPFE,
which preserves the security of the underlying IBIPFE. It can publicly trace user identities
from the pirate decoder. The ciphertext size and length of the public key grow linearly in
both the number of users n and the length of embedded user identities k.
EI-TIPFE from pairing. We propose an adaptively secure EI-TIPFE in a composite-order
pairing group based on the standard decisional 3-party Diffie-Hellman (D3DH) [BW06,BSW06]
and subgroup decision assumptions. It supports public tracing with more efficient system
parameters. Specifically, the size of ciphertexts and the master public keys grow linearly withp

n,
p

k. Further, the secret key size varies logarithmically with respect to the number of users
in the system.
EI-TIBIPFE from pairing. We propose a selectively secureEI-TIBIPFE in a composite-order
pairing group based on the standard D3DH and subgroup decision assumptions. In contrast
to the EI-TIPFE, constructing EI-TIBIPFE is more technical since it provides a finer access
control over the computation on encrypted data. We follow a two steps approach – in the first
step, we build an IBIPFE scheme based on the (plain) DBDH assumption in a prime-order
pairing group, and in the second step, we upgrade the IBIPFE toEI-TIBIPFE supporting pub-
lic traceability. The EI-TIBIPFE enjoys similar efficiency as our EIPL-IPFE, notably the size
of ciphertext and master public keys grow with

p
n and

p
k.

We note that our IBIPFE is built upon a target group assumption, namely DBDH, in the
standard model. All existing group-based IBIPFEs are either relying on source group as-
sumptions [ACGU20, AGT21] or built in the random oracle model [DSP19]. It is well-known
that target group assumptions are qualitatively weaker than the source group ones [Fre10,
DKW21]. Hence, it is worth mentioning that our IBIPFE is the first instantiation of a FE
scheme beyond IPFE that is designed from a simple target group assumption in the stan-
dard model.
EI-TIBIPFE from lattices. Lastly, we propose a generic construction of selectively secure
EI-TIBIPFE assuming the existence of mixed FE (MFE) and attribute-based IPFE (ABIPFE).
Both of these primitives are known to exists under the post-quantum secure learning with
errors (LWE) assumption. By instantiating our EI-TIBIPFE using the ABIPFE of [LLW21] and
the MFE of [CVW+18], we yield a post-quantum secure EI-TIBIPFE where the ciphertext and
public key sizes scale linearly with n and k. In Table 1, we depict the efficiency, functionality
and hardness assumptions of our traceable FEs and compare the matrices with that of the
TIPFE of [DPP20].

While the work of Goyal et al. [GKW18] proposes a construction of a MFE scheme for
log-depth circuits which is sufficient for our EI-TIBIPFE, but the (most suitable) ABIPFE of
Lai et al. [LLW21] is proven secure with only a bounded number of accepting keys. Further-
more, the ciphertext size grows additively with the number of accepting keys3. By accepting
keys we mean the secret keys that can successfully decrypt the challenge ciphertext. Inter-
preting it into our setting, this indeed implies that our EI-TIBIPFE has a bounded number
of users (i.e., the parameter n) and the ciphertext size grows additively with n and k. This

3 The ABIPFE of [PD21] supports a single accepting key, so it can not be used in our transformation.
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Table 1: Comparison between Traceable FEs

Size of the component
Scheme Assum.

|mpk| |ct| |sk|
Tracing

mode
(Func., Sec.)

Identity

trace

[DPP20] DBDH m(n +poly(λ)) m ·poly(λ) poly(λ) Private (IPFE, Sel) ×

Our
work

D3DH m ·pn ·k ·poly(λ) m ·pn ·k ·poly(λ) logn +poly(λ) Public (IPFE, Adp) X

IBIPFE m ·n ·k ·poly(λ) m ·n ·k ·poly(λ) k ′+k ·poly(λ) Public (IBIPFE, Adp) X

D3DH m ·pn ·k ·poly(λ) m ·pn ·k ·poly(λ) logn +poly(λ) Public (IBIPFE, Sel) X

LWE† m ·poly(λ) m · (n +k +k ′) ·poly(λ) (logn +k +k ′) ·poly(λ) Private (IBIPFE, Sel) X

n: number of user; m,k,k ′: dimension of input vector, user identity and group identity respectively; Func., Sec.: functional-
ity and security model; Sel, Adp: selective, adaptive respectively. [†] We instantiate our LWE-based EI-TIBIPFE using the
MFE scheme of [GKW18] and the ABIPFE scheme of [LLW21]. Therefore, the parameters of our LWE-based scheme are
directly aligned to [GKW18, LLW21].

eventually prevents us to allow an exponential number of users in the system, and thus the
complexity leveraging technique of [GKW19] can not be employed to eliminate the indices
from EI-TIBIPFE. Although complexity leveraging techniques are common in literature, it
incurs a considerable amount of security loss in the system and hence may not be a practi-
cal solution for dropping the indices. Lastly, we emphasize that it is not at all a drawback of
our transformation, rather a limitation of existingABIPFEs [PD21,LLW21]. If one can achieve
an ABIPFE scheme with logn size ciphertexts in future, then our generic construction will
yield an EI-TIBIPFE having optimal size parameters.

Like [BSW06, Fre10, BZ17, BW06, GKRW18, CVW+18, NWZ16, GKW19], our EI-TIPFE or
EI-TIBIPFE schemes are fully collusion resistant meaning that there is no bound on adver-
sary’s secret key queries. In particular, for our lattice-basedEI-TIBIPFE scheme, the collusion
bound is set to be the total number of users in the system, which is similar to the collusion
resistant setting of [NWZ16]. On the technical side, we extend the framework of Goyal et
al. [GKW19] from tracing the traitors who only have the ability to create a decoder box that
decrypts a normal PKE-ciphertext to tracing more elegant and powerful traitors capable of
producing a decoder box that decrypts an IBIPFE-ciphertext under a similar set of standard
source-group based assumptions used in prior works [BW06, GKW19]. In other words, the
decoder box we handle in this work is more sophisticated in the sense that the secret keys
which are embedded into the box can perform linear computation over encrypted data and
the outputted information could have financial importance as discussed in the above appli-
cation. Finally, we summarize our results in the following Theorem.

Theorem 1 (Informal) Assuming IBIPFE/D3DH/LWE assumption, there exist a fully collu-
sion resistant adaptively/selectively(adaptively)/selectively secure EI-TIBIPFE (EI-TIPFE) scheme
with public/public/private tracing algorithm that can trace user identities from a pirate de-
coder.

Recently, Zhandry [Zha21] proposed white-box tracing mechanism for PKEwhich allows the
tracer to inspect the implementation of decoder and prevents some attack scenarios that are
inherent to black-box traitor tracing such as availability of the decoder to an outsider. On the
other hand, we stress that this work is motivated to design efficient black-box traitor tracing
scheme with public/private tracing for specific FEs which are fully collusion resistant.
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2 Technical Overview

We start by reviewing the embedded identity traitor tracing (EI-TT) framework of Goyal et
al. [GKW19] which is referred to GKW-TT from now on. The tracing algorithm of GKW-TT
is designed to trace traitors’ identities directly in PKE via an intermediate primitive called
embedded identity private linear broadcast encryption (EIPL-BE). We extend their framework
from PKE to IPFE and define the notion of embedded identity traceable IPFE (EI-TIPFE) for
tracing identities of traitors in an IPFE system.

We further extend the notion of EI-TIPFE to embedded identity traceable identity-based
IPFE (EI-TIBIPFE) which allows to trace users that belong to a specific group. We generi-
cally construct EI-TIBIPFE from an intermediate primitive embedded identity private linear
IBIPFE (EIPL-IBIPFE). This step is inspired from the approach of [GKW19]. We emphasize
that EI-TIPFE is a particular case of EI-TIBIPFE and one can similarly achieve it from EIPL-
IPFE (which is again a specific case of EIPL-IBIPFE).

The Framework of GKW-TT. Goyal et al. [GKW19] design EI-TT schemes from various
standard assumptions. The core idea of [GKW19] was to extend the framework of private
linear broadcast encryption (PL-BE) [BSW06] and introduce the notion of EIPL-BE. An EIPL-
BE consists of a setup, encryption, special encryption, and decryption algorithms. The dif-
ference between PL-BE and EIPL-BE is in the special encryption which is associated with
the index-position-bit tuple (i ,`,b), whereas in [BSW06] the special encryption is associated
only with the index i . More specifically, the user secret keys are generated for a tuple ( j , id)
and a message is encrypted under a tuple (i ,`,b) using a tracing key (secret or public) such
that decryption is successful as long as one of the conditions ( j > i ) or ( j = i ∧ ` =⊥) or
( j = i ∧ id` = 1−b) holds (where id` denotes the `-th bit of id).

At a high level, the role of EIPL-BE is similar to the role of PL-BE in the tracing mecha-
nism of [BSW06]. Apart from restricting decryption by secret keys {sk j } j≤i (as in [BSW06]),
the extended functionality of EIPL-BE is capable of preventing a secret key sk j ,id to decrypt
a ciphertext associated with the tuple ( j ,`, id`). The former feature enables the tracing algo-
rithm to find out the indices of traitors and the later uncover the corresponding identities
in a bit-by-bit manner. We discuss the security notions required for tracing in the context
IBIPFE.

2.1 Definition of Embedded Identity Traceable IBIPFE

Inspired by the usual TT schemes, Do et al. [DPP20] introduced the notion of traceable IPFE
(TIPFE) where user secret keys and ciphertexts are computed for vectors u and v ∈ Zm re-
spectively such that decryption only recovers the information 〈u, v〉 and nothing else about
the message vector v . Additionally, an index number referring to the identity of a user is en-
coded into his/her secret key. When a decoder box Du associated with a vector u is found, a
tracing algorithm given a black-box access to the decoder can be employed to extract a set of
indices T index. The tracing algorithm is said to be correct if T index includes only the indices of
users who embedded their secret keys into the decoder box.

The main downside of the tracing algorithm is that indices in T index are traced back to the
actual identities through a central map, which becomes problematic for many applications.
To overcome this limitation, we extend the notion of TIPFE into embedded identity TIPFE
(EI-TIPFE) where the users’ secret keys are associated with index-identity pair ( j , id) such
that j ∈ [n] and id can be a binary string of length k. Second and the essential change is in the
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tracing algorithm which now directly extracts a set T id containing the identities of traitors.
Hence, there is no need of such unnecessary map of TIPFE.

We note that the encryption of EI-TIPFE is performed independently of the sender’s
identity, hence receivers are unaware of the source of plaintexts. Moreover, in real applica-
tions, it is often the case that a group of users (e.g. employees) possesses a group identity (e.g.
the company in which they work). This motivates us to define the notion of embedded iden-
tity traceable IBIPFE (EI-TIBIPFE) where the secret keys of users are additionally associated
with a group identity gid ∈ {0,1}k ′

and the ciphertexts are computed under a group identity
gid′. The decryption successfully recovers the inner product if these two group identities are
the same, i.e. gid = gid′. The tracing becomes more efficient since the pirated decoder box
Du works with a specific gid and one need to only trace over the set of users that linked with
the gid, instead of the set of all users in the system. More formally, our EI-TIBIPFE scheme is
defined as follows:

Setup(1λ, n, 1k , 1k ′
, 1m) → (msk,mpk,key): The setup algorithm generates master key pairs

and a tracing key.

KeyGen(msk, i , id,gid, u) → sku : It generates secret keys of users with index-identity pair
(i , id) and a group identity gid.

Enc(mpk,gid′, v ) → ctv : It encrypts a vector v under a group identity gid′.

Dec(sku ,ctv ) → ζ/⊥: The decryption recovers the inner product 〈u, v〉 if gid = gid′; other-
wise returns ⊥.

TraceDu (key, 1
1

ε(λ) ,gid, u, v (0), v (1)) → T id: It outputs a set T id ⊂ {0,1}k of the identities of
traitors belong to the group identity gid.

We say that the tracing is correct if it does not falsely accuse an honest user as traitor and
T id is a subset of the identities of released secret keys. EI-TIBIPFE can be viewed as a partic-
ular case of EI-TIBIPFE when gid= gid′ always holds. In other words, one can independently
define EI-TIPFE from EI-TIBIPFE where KeyGen,Enc,TraceDu do not take a group identity as
input and decryption with honestly generated secret keys is always successful.

2.2 The framework of EIPL-IBIPFE for tracing identities in IBIPFE

The backbone of our EI-TIBIPFE construction is the notion of EIPL-IBIPFE. The concept
of EIPL-IBIPFE is inspired by the primitive of EIPL-BE introduced by [GKW19] for tracing
traitors in PKE. We extend their framework from PKE to FE, more specifically to IPFE or
even richer functionality of IBIPFE. Instead of encrypting an integer message, EIPL-IBIPFE
encrypts an integer vector fromZm under a group identity gid′ and generates secret keys cor-
responding to a vector of the same length for users with index-identity pair ( j , id) belonging
to a group having identity gid. The encryption has two modes – the normal mode is simi-
lar to the encryption of EI-TIBIPFE and the special mode is used for tracing purpose. More
formally, our EIPL-IBIPFE is defined as follows:

Setup(1λ, n, 1k , 1k ′
, 1m) → (msk,mpk,key): The setup algorithm outputs a master key pair

and a special encryption key.

KeyGen(msk, j , id,gid, u) → sku : It generates the secret key sku associated with the tuple
( j , id) and a group identity gid.

8



Enc(mpk,gid′, v ) → ctv : The normal encryption algorithm encrypts a message vector v un-
der the group identity gid′.

SplEnc(key,gid′, v , (i ,`, b)) → ctv : The special encryption algorithm encrypts a message
vector v for index-position-bit tuple (i ,`,b). If (the special encryption key) key is publicly
available then it is called public EIPL-IBIPFE; otherwise it is known as private EIPL-IBIPFE.

Dec(sku ,ctv ) → ζ/⊥: If ctv is a ciphertext of normal encryption then the decryption recovers
the message when gid= gid′ holds. On the other hand, the user can decrypt a special encryp-
tion ciphertext ctv if sku satisfies the conditions ( j > i ) or ( j = i ∧`=⊥) or ( j = i ∧ id` = 1−b)
where id` be the `-th bit of id.

We now observe that EI-TIBIPFE can be directly obtained from EIPL-IBIPFE. The Setup,
KeyGen,Enc,Dec algorithms of both the primitives works exactly in similar fashion. We briefly
discuss the tracing procedure. Before that, we formalize the following security properties for
our EIPL-IBIPFE by combining the security notions of two primitives EIPL-BE [GKW19] and
IBIPFE [ACGU20]:

– Normal-hiding. Enc(mpk,gid∗, v ) ≈c SplEnc(key,gid∗, v , (1,⊥,0)).
– Index-hiding. SplEnc(key,gid∗, v , (i∗,⊥,0)) ≈c SplEnc(key,gid∗, v , (i∗+1,⊥,0)) if an adver-

sary is not given a key for (i∗, id,gid∗,u).
– Lower identity-hiding. SplEnc(key,gid∗, v , (i∗,⊥,0)) ≈c SplEnc(key,gid∗, v , (i∗,`∗,b∗)) if

an adversary is not given a key for (i∗, id,gid∗,u) such that id`∗ = b∗.
– Upper identity-hiding. SplEnc(key,gid∗, v , (i∗,`∗,b∗)) ≈c SplEnc(key,gid∗, v , (i∗+1,⊥,0))

if an adversary is not given a key for (i∗, id,gid∗,u) such that id`∗ = 1−b∗.
– Message-hiding.SplEnc(key,gid∗, v (0), (i∗,⊥,0)) ≈c SplEnc(key,gid∗, v (1), (i∗,⊥,0)) if all the

secret keys associated to (i ≥ i∗, id,gid∗,u) satisfy the condition 〈v (0),u〉 = 〈v (1),u〉.
We call anEIPL-IBIPFE selectively/adaptively secure subject to the selection of the challenge
tuple (gid∗, v (0), v (1)) by an adversary before/after the setup and pre-ciphertext key queries.
The above security properties of EIPL-IBIPFE facilitates revealing a traitor’s identity in a bit-
by-bit manner. The role of a special encryption algorithm is similar to that of the indexed-
encryption algorithm of [BSW06] except it provides an additional feature that disables the
decryption ability of users upon a single bit of the identity. In more detail, the tracing mech-
anism follows a two-step process:

1. Index tracing. The first step is similar to the usual Pl-BE or EIPL-BE [BSW06, GKW19],
where the indices of dishonest users’ are traced. Formally, for each indices i ∈ [n +1], it
finds the probability p̂ ind

i of the decoder box for successfully decrypting special encryp-

tions to the tuple (i ,⊥,0). It outputs Index= {i ∈ [n +1] : p̂ ind
i and p̂ ind

i+1 are noticeably far}.
2. Identity tracing. The second step is a sub-search technique which is performed to trace

the identity for each i ∈ Index. It checks whether the `-th bit in a (possibly) traitor’s iden-
tity is zero or one for all index positions ` ∈ [k]. Formally, for each i ∈ Index, and ` ∈ [k],
it finds the probability q̂ id

i ,` of the decoder box for successfully decrypting special encryp-
tions to the tuple (i ,`,0).

Finally, for each ` ∈ [k], it sets id` = 0 if p̂ ind
i and q̂ id

i ,` are noticeably far; otherwise 1. The index
tracing phase identifies the possible indices of traitors using the index-hiding property. In the
second step, the lower identity-hiding and the upper identity-hiding properties ensure that
estimate q̂ id

i ,` is either close to p̂ ind
i or p̂ ind

i+1, which indeed enables it to extract the correct bit
of id` with high probability.
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We show that the tracing algorithm of our EI-TIBIPFE proceeds in a similar fashion as
it is run in [GKW19], However, we need to be extra careful due to the extended functional-
ity of IBIPFE. For instance, the “Index tracing" step requires to employ the message-hiding
property that allows the decoder to decrypt a ciphertext in our setting. On the other hand,
[GKW19] uses the message-hiding property to entirely restrict the decoder in decrypting a
ciphertext.

Finally, one can observe thatEIPL-IPFE is a particular case ofEIPL-IBIPFEwith gid= gid′,
otherwise one may ignore the group identity from the above definition to translate it into
EIPL-IPFE.

2.3 EIPL-IBIPFE from IBIPFE

We first describe our generic construction of EIPL-IBIPFE from any existing IBIPFE such as
pairing or lattice-based IBIPFE of Abdalla et al. [ACGU20]. In an IBIPFE, secret keys are gen-
erated for an identity-vector pair (gid,u) and ciphertexts are computed for another identity-
vector pair (gid′, v ) such that decryption recovers the inner product 〈u, v〉 if the two identities
match, i.e. gid= gid′. Given a set of secret keys for {(gid,u)}, it is hard to distinguish between
encryptions of v0 and v1 under gid′ if 〈u, v0〉 = 〈u, v1〉 holds for all the secret keys whenever
gid= gid′.

Our EIPL-IBIPFE construction is inspired by the approach of building EIPL-BE using
only a PKE scheme [GKW19]. We replace the underlying PKE with an IBIPFE scheme, which
transforms their generic EIPL-BE into an EIPL-IBIPFE. This construction provides useful in-
sights for designing more efficientEIPL-IBIPFE from pairing (presented later in this section).

Setup: {IBIPFE.mski ,`,b , IBIPFE. mpki ,`,b} ← IBIPFE.Setup (1λ,1m ,1k ′
),

Sets mpk= {IBIPFE.mpki ,`,b}i ,`,b ,key =mpk and msk= {IBIPFE.mski ,`,b}i ,`,b .

Key Generation: IBIPFE.ski ,`,id` ← IBIPFE.KeyGen (IBIPFE.mski ,`,id` , gid,u) and sets sku =
{IBIPFE.ski ,`,id`}`.

Normal Encryption: {vi ,`} ←Zm for all (i ,`) ∈ ([n]×[k−1]), vi ,k = v−∑k−1
`=1 vi ,`, IBIPFE.cti ,`,b

← IBIPFE.Enc (IBIPFE.mpki ,`,b ,gid′, vi ,`), ctv = {IBIPFE.cti ,`,b}i ,`,b .

Special Encryption: For i ≥ i∗, vi ,k = v−∑k−1
`=1 vi ,` else vi ,k ←Zm . If (i ,`,b) 6= (i∗,`∗,b∗), ṽi ,`,b =

vi ,`, else ṽi ,`,b ←Zm , cti ,`,b ← IBIPFE.Enc (IBIPFE.mpki ,`,b ,gid′, ṽi ,`,b), ctv = {cti ,`,b}i ,`,b .

Decryption: {〈u, vi ,`〉}` ← IBIPFE.Dec({IBIPFE.ski ,`,id`}`, {IBIPFE.cti ,`,id`}`), if gid = gid′ and
∀i ∈ [n], outputs 〈u, v〉 =∑

`∈[k]〈u, vi ,`〉.
We note that it is sufficient to generate 2nk many key pairs of IBIPFE since the group

identity (having size k ′ in the construction) is not required to trace. Thus, the size of the ci-
phertexts in our EIPL-IBIPFE grows linearly with the maximum number of users n and the
length of the user identities k. In other words, each n slot of the ciphertext contains k inde-
pendent and disjoint components of the IBIPFE sub-ciphertexts. Thus, a user can perform
decryption for each n slot by only looking at its dedicated IBIPFE component in the cipher-
text. Since all the IBIPFE ciphertexts are independently created, the security of EIPL-IBIPFE
directly follows from the security of IBIPFE. For instance, consider the message-hiding se-
curity where special encryptions of two message vectors v (0) and v (1) to the tuple (i∗,⊥,0)
under gid∗ (which is challenge group identity) must be indistinguishable if all secret key
queries for the tuple (i , id,gid,u) satisfies the condition that whenever i ≥ i∗ and gid = gid∗,
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it holds that 〈v (0),u〉 = 〈v (1),u〉. Note that, for i ≥ i∗, the vector v (β)
i ,k = v (β) −∑k−1

`=1 vi ,` is en-
crypted under mpki ,k,b using IBIPFE where β is either 0 or 1. Therefore, for all i ≥ i∗, it holds

that 〈v (0)
i ,k ,u〉 = 〈v (1)

i ,k ,u〉, and hence the message-hiding security follows from the security of
IBIPFE.

2.4 EIPL-IPFE from pairing

The generic construction discussed above is not a desirable solution for EI-TIBIPFE as
the ciphertext size linearly grows with the number of users in the system. In search of a more
efficient solution, we investigate non-generic group based constructions of EIPL-IBIPFE.
However, first we consider a simpler situation where the group identity is absent. That is, we
present a pairing-based construction of EIPL-IPFE which will lead to an EI-TIPFE scheme.

Our starting point is the pairing-based EIPL-BE scheme by Goyal et al. [GKW19], which
builds upon thePL-BE scheme by Boneh et al. [BSW06]. Let us first recall theEIPL-BE scheme.
In what follows, we denote an element g of the group G of order N = p ·q (where p, q are the
primes) and a vector a = (a1, . . . , am), we denote (g a1 , . . . , g am ) by g a . For two vectors a and b,
we denote 〈g a ,b〉 = g 〈a,b〉. Let e be a bilinear map define as e :G×G→GT , and Gp ,Gq be the
subgroups of G of orders p and q respectively. Suppose, there are n parties indexing each by
i ∈ [n] which is represented as a pair (x, y) ∈ [

p
n]×[

p
n]. We say that i1 ≡ (x1, y1) > i2 ≡ (x2, y2)

if either x1 > x2 or (x1 = x2 ∧ y1 > y2).
The EIPL-BE of [GKW19] makes use of the generic construction of EIPL-BE from PKE

and considers two subsystems of the PL-BE scheme by Boneh et al. [BSW06] for each bit of
an identity, in total, there are 2k subsystems. While all the subsystems share the same set of
randomness {αx ,rx} associated to x, each of it possesses an individual and independently
sampled random value {cy =∑

` cy,`,b} so that the key generation algorithm can select an ap-
propriate cy value for each identity id. This prevents mixing terms of different secret keys to
create a hybrid key. Inspired from this approach, we carefully upgrade the system of EIPL-BE
to make it capable of encrypting vectors v ∈Zm

q instead of a single integer. To do so, we make
use of the DDH-based IPFE scheme by Agrawal et al. [ALS16]. More specifically, for each
component v , we consider 2k subsystems of [BW06] or m subsystems of GKW-TT. In our
EIPL-IPFE, all the subsystems share a set of randomness {αx ,rx ,ψx} and each of it is linked
to an independent random value cy . The message vector is encoded in the target group, in-
stead of a source group as in GKW-TT. More precisely, our EIPL-IPFE works as follows.

Setup: The setup algorithm generates Eq = gβq , Zq = f βq ,Ex = g rx ,Gx = e(g , g )αx ,Wx = e( f , f )ψx ,

Eq,x = gβrx
q ,Gq,x = e(gq , gq )βαx ,Wq,x = e( fq , fq )βψx for all x ∈ [

p
n] with β←ZN ;αx ,ψx ,rx ←

Zm
N by choosing the random generators gp , fp and gq , fq from the groups Gp ,Gq respectively

such that g = gp gq , f = fp fq . It samples cc,`,b ←ZN for all (y,`,b) ∈ [
p

n]×[k]×{0,1} and sets
Hy,`,b = g cy,`,b . The master public key, the master secret key consist of the following compo-
nents

mpk=

{
Eq , Zq

}
,

 Ex , Gx , Wx

Eq,x , Gq,x , Wq,x


x

,
{

Hy,`,b

}
y,`,b

 ,msk=

{αx ,rx ,ψx}x

{cy,`,b}y,`,b


and the tracing key key is the public key itself.

Key Generation: The secret key component corresponding to the index i ≡ (x, y), the identity

id and the vector u contains K1 = g%, K2 = f ℘ where % = 〈αx ,u〉 + 〈rx ,u〉∑`∈[k] cy,`,id` and
℘= 〈ψx ,u〉. Sets sku = (x, y, id,K1,K2).
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Special Encryption: The special encryption encrypts a message vector v for the tuple (i∗ ≡
(x∗, y∗),`∗,b∗) using the tracing key key. Samples t ,κx , sx ←ZN and the algorithm works as
follows:

– For x > x∗, computes Rx = E sx
q,x , Ax = E sx t

q ,Bx = Zκx t
q and Ix = e(gq , gq )v ·G t sx

q,x ·W tκx
q,x and

these components are used to the successful decryption whenever i > i∗.
– For x = x∗, it sets Rx = E sx

x , Ax = g sx t ,Bx = f κx t and Ix = e(gq , gq )v ·G t sx
x ·W tκx

x . These
components are used for the successful decryption whenever (i > i∗) ∨ ((i ,`) = (i∗,⊥
))∨ ((i , id`) = (i∗,1−b∗)).

– For unsuccessful decryption, i.e., x < x∗, vectors Rx , Ix are randomly chosen fromGm and
Ax ,Bx are random elements from G.

– If (y > y∗) or ((y = y∗)∧ (`,b) 6= (`∗,b∗)) the column component Cy,`,b is generated as
H t

y,`,b otherwise Cy,`,b = H t
y,`,b ·hp where hp is random element in Gp . This column com-

ponent is used in the successful decryption phase whenever (x > x∗) ∨ ((i ,`) = (i∗,⊥
))∨ ((i , id`) = (i∗,1−b∗)).

Finally, it outputs the ciphertext ctv = (
{Rx , Ax ,Bx , Ix}x , {Cy,`,b}y,`,b

)
. The normal encryption

is the same as special encryption when run with (i∗,`∗,b∗) = (1,⊥,0).
Decryption: By pairing Rx ,C u

y,`,id`
; Ax ,K1 and Bx ,K2, the decryption outputs the inner prod-

uct 〈u, v〉 as 〈u, v〉 = log

( 〈Ix ,u〉·e(Rx ,
∏
`∈[k] C u

y,`,id`
)

e(K1,Ax )·e(K2,Bx )

)
.

We omit some terms for a simplified representation of the scheme. The normal-hiding
security directly follows from the construction of the EIPL-IPFE scheme. The main intu-
ition behind the index-hiding security proof is that if an adversary does not have a secret
key for the index i∗ = (x∗, y∗) then the factor of Cy∗,`,b which belongs to Gp can be cho-
sen undetectably, added, and removed. Similar techniques are used while proving the lower
identity-hiding and upper identity-hiding security notions. In the message-hiding security,
an adversary can not distinguish between the special encryption of the challenge vectors
v (0), v (1) to the index-position-bit tuple (i∗ = (x∗, y∗),⊥,0) with the restriction that the ad-
versary is allowed to query secret keys for i ≥ i∗ satisfying 〈v (0),u〉 = 〈v (1),u〉. We encounter
some challenges while plugging the plain DDH-based IPFE of [ALS16] into our settings. The
main difference is that there are several IPFE systems encrypting the message vector in a
subgroup ofGT for each index-factor x ∈ [

p
n] whereas the the IPFE of [ALS16] encodes mes-

sage vectors in a pairing-free group. Furthermore, all of these IPFE systems share the same
randomness t which is independent of the index under consideration and plays the role of
tying together the x and y-components of the ciphertext that belongs to both source and
target groups. We first carefully embed the D3DH assumption into the keys and ciphertext
components before applying the information-theoretic argument of [CS98, ALS16] for the
case of i ≥ i∗ where it holds that 〈v (0),u〉 = 〈v (1),u〉. This enables us to argue the message-
hiding security of EIPL-IPFE by leveraging the security of the implicit IPFE system for each
index-factor x ∈ [

p
n] for which decryption is successful. On the other hand, we note that

there is no information of the message vector present in the ciphertext components that are
associate with the indices i < i∗. Finally, we note that the size of the ciphertext grows linearly
with

p
n and

p
k, similar to previous TT schemes [BSW06, GKW19]. Next, we discuss how to

build EIPL-IBIPFE by adding the group identities into the system basing our EIPL-IPFE as
an initial footstep.

2.5 Construction of our EIPL-IBIPFE

The notion of IBIPFE provides more finer access control than IPFE and, hence it is more
challenging to construct. A natural first attempt is to build EIPL-IBIPFE generically from
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EIPL-IPFE and an IBE scheme. However, any such attempt would fail to provide the message-
hiding security due to common mix and match attacks. More specifically, a mixed secret key
obtained by combining an authorized IBE key with an unauthorized IPFE key can be used
to decrypt an undesirable ciphertext. Thus, it is advisable to build such a scheme in a non-
generic manner.

It is not hard to see that the above construction of EIPL-IPFE (or EIPL-BE) encrypts the
message vectors in the target group. Thus, one needs to have an IBIPFE scheme based on
a target group assumption so that it is well fitted into our EIPL-IPFE system. However, all
known pairing-based IBIPFE schemes [AGT21, ACGU20] are based on dual system encryp-
tion mechanisms and hence naturally depend on various source group assumptions (such
as subgroup decision assumptions). We follow a two step approach — in the first step, we
construct an IBIPFE scheme based on the plain DBDH assumption and then in the second
step, we carefully plug in the IBIPFE into our EIPL-IPFE system — to achieve our goal of
building EIPL-IBIPFE.

Step I. IBIPFE from a target group assumption. Our starting point is the Water’s IBE [Wat05]
based on the plain DBDH assumption in the standard model. We upgrade their scheme in
a natural way to enable encrypting vectors under a given identity. Although the construc-
tion is simple, it is an interesting extension of [Wat05] and motivates to build primitives like
attribute-based IPFE from target-group based assumptions in future.

Setup: Samples g , g2,u′ ←G, u = (ui ) ←Gk ′
,α←Zm

p .

g1 = gα, g2 = gα2 . Outputs mpk= (g1, g2,u′,u, g ),msk= g2.

Key Generation: V = {i ∈ [k ′] : gidi = 1}, H(gid) = u′∏
i∈V ui ∈G, r ←Zp . d1 = 〈g2, y〉·H(gid)r ,d2 =

g r . Outputs sky = (d1,d2).

Encryption: Samples t ←Zp . C1 = e(g , g2)αt+x ,C2 = g t ,C3 = H(gid′)t . Outputs ctx = (C1,C2,C3).

Decryption: If gid= gid′, then 〈x , y〉 = 〈C1, y〉 · e(d2,C3)
e(d1,C2) .

At a very high level, for proving the indistinguishability security of the above IBIPFE, we
partially rely on the ideas of [AGT21] where they use dual system encryption techniques to
prove the security of their attribute-based IPFE scheme based on source group assumptions.
However, we aim to prove security based on the plain DBDH assumption, and hence there is
no known way to use dual system encryption methodologies with such an assumption. We
consider a different approach. Suppose that the challenge message vectors are x (0), x (1) and
the challenge identity is gid∗. The reduction begins by sampling a random orthogonal (full
rank) matrix F satisfying the condition F ·(x (0)−x (1)) = e1 where e1 is the first canonical basis
vector. Accordingly the master key component α is switched to F>α̃. As the full rank matrix
F is chosen uniformly at random, this transformation is statistically indistinguishable to the
adversary’s view. We observe that the challenge vectors are used in this hybrid to generate
the master key pairs. Hence, we consider the selective security model where the adversary is
restricted to submit the challenge messages before seeing any public parameter of the sys-
tem. In the next hybrid, we use the DBDH assumption in order to hide the information of
the challenge bit. Given a DBDH instance (g a , g b , g c , g abc

T ), the adversary extends the group
elements into vectors as g a , g b , g c where a = (a, a2, . . . , am),b = (b, . . . ,b),c = (c, . . . ,c). It al-
lows us to embed the DBDH-instance into the master keys. In the secret key query phase,
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we define identity encoding functions based on gid∗ (similar to [Wat05]) to correctly sim-
ulate the accepting and non-accepting key queries. Finally, to simulate the challenge ci-
phertext we implicitly set g2 = g b and t = c so that ciphertext component C1 transforms

to e(g , g )F>·(w−bbe1+bFx (0)) due to the choice of F, where w represents the component wise
multiplication of the vectors a,b and c . Now, observe that the challenge bit b only occurs in
the first entry of (w −bbe1 +bFx (0)) and at the same time the DBDH-challenge element abc
is encoded in the first entry of w . Hence, the security of our IBIPFE follows from the plain
DBDH assumption. In Appendix B, we give the full security analysis with selective identity for
simplicity of exposition, however, we emphasize that using the techniques of [Wat05, BR09]
one can prove the security with adaptive identity.

Step II. EIPL-IBIPFE by extending EIPL-IPFE with our IBIPFE. In the second step, we
extend our EIPL-IPFE using the above IBIPFE. Recall that, in EIPL-IBIPFE, the users are
linked with different group identities. Therefore, the secret key of a user is now associated
with a user’s identity id, a group identity gid′, and the message vector v is encrypted under
a group identity gid′. The encoding H(gid′) appears the groups G and Gq during encryption.
Thus, we can not directly use our IBIPFE for building EIPL-IBIPFE. To overcome this obsta-
cle, we define a projection Hq of the identity encoding function H into the subgroup Gq of G
as follows:
Given group elements: ϑ′

p , {ϑp,i }i∈[k ′],ϑ
′
q , {ϑq,i }i∈[k ′] with ϑ′ =ϑ′

pϑ
′
q ,ϑi =ϑp,iϑq,i

define: H(gid) =ϑ′ ∏
i∈V

ϑi ,Hq (gid) =ϑ′
q

∏
i∈V

ϑq,i

where V = {i ∈ [k ′] : gidi = 1}. Equipped with this ideas, we describe our EIPL-IBIPFE as
follows.

Setup: The setup algorithm generates Eq = gβq ,Ex = g r̂ rx ,Gx = e(g , g )αx ,Yx = gψx ,Eq,x =
gβr̂ rx

q ,Gq,x = e(gq , gq )βαx ,Yq,x = gβψx
q for all x ∈ [

p
n] with β, r̂ ← ZN ;αx ,rx ,ψx ← Zm

N by
choosing the random generators gp , fp and gq , fq from the groups Gp ,Gq , respectively such
that g = gp gq , f = fp fq . To encode the group identity gid, randomly samples ϑ′

q ,ϑq,i ← Gq

and ϑ′
p ,ϑp,i ← Gp for all i ∈ [k ′] such that ϑ′ = ϑ′

pϑ
′
q ,ϑ = (ϑp,iϑq,i )i . It samples cy,`,b ← ZN

and sets Hy,`,b = g cy,`,b for all (y,`,b) ∈ [
p

n]× [k]× {0,1}. The master public and secret key
pair contains following components

mpk=


Eq ,ϑ′,ϑ

′β
q ,

ϑ, {ϑβq,i }i

 ,

 Ex , Gx , Yx

Eq,x , Gq,x , Yq,x


x

,
{

Hy,`,b

}
y,`,b

 , msk=

{αx ,rx ,ψx}x ,

r̂ , {cy,`,b}y,`,b


and the tracing key key is the master public key itself.

Key Generation: The secret key component corresponding to the index i ≡ (x, y), the identity

id, a group identity gid and the key vector u contains group elements as K1 = g%, K2 = f ℘ ·
H(gid)r̂ and K3 = g r̂ where % = 〈αx ,u〉 + r̂ 〈rx ,u〉∑`∈[k] cy,`,id` and ℘ = 〈ψx ,u〉. Sets sku =
(x, y, id,gid,K1,K2,K3).

Special Encryption: The special encryption encrypts the message vector v for the group

identity gid′ and the tuple (i∗ ≡ (x∗, y∗),`∗,b∗) using the tracing key key. Samples sx , t ←ZN

and this algorithm works as follows:
– For x > x∗, computes Rx = E sx

q,x , Ax = E sx t
q ,Bx = Hq (gid′)βsx t and Ix = e(gq , gq )v ·G t sx

q,x ·
e( fq ,Yq,x)t sx and these components are used to successful decryption whenever i > i∗

and gid= gid′.
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– For x = x∗, it sets Rx = E sx
x , Ax = g sx t ,Bx = H(gid′)sx t and Ix = e(gq , gq )v ·G t sx

x · e( f ,Yx)t sx .
These components are used for the successful decryption whenever (i > i∗)∨ ((i ,`) =
(i∗,⊥))∨ ((i , id`) = (i∗,1−b∗)) and gid= gid′.

– For unsuccessful decryption, i.e., x < x∗, vectors Rx , Ix are randomly chosen fromGm and
Ax ,Bx are random elements from G.

– If (y > y∗) or ((y = y∗)∧ (`,b) 6= (`∗,b∗)) the column component Cy,`,b is generated as
H t

y,`,b otherwise Cy,`,b = H t
y,`,b ·hp where hp is random element in Gp . This column com-

ponent is used in the successful decryption phase whenever (x > x∗) ∨ ((i ,`) = (i∗,⊥
))∨ ((i , id`) = (i∗,1−b∗)).

Finally, it outputs the ciphertext ctv = (
{Rx , Ax ,Bx , Ix}x , {Cy,`,b}y,`,b

)
. The normal encryption

is in fact a special encryption for the tuple (1,⊥,0).

Decryption: By pairing Rx ,C u
y,`,id`

; Ax ,K1; Ax ,K2 and Bx ,K3, the decryption outputs 〈u, v〉 =
log

( 〈Ix ,u〉·e(Rx ,
∏
`∈[k] C u

y,`,id`
)·e(K3,Bx )

e(K1,Ax )·e(K2,Ax )

)
if gid= gid′.

We consider selective security for our EIPL-IBIPFE where the adversary submits both the
challenge message vectors and the challenge group identity before receiving any public pa-
rameter of the system. The security analysis is more involved and challenging inEIPL-IBIPFE.
For instance, the index-hiding security game of EIPL-IPFE (or EIPL-BE of [GKW19]) does not
allow an adversary A to query a secret key for the challenge index i∗, however, it is not the
same for EIPL-IBIPFE. In this case, A can ask for a secret key for a vector u associated to
the tuple (i∗, id,gid 6= gid∗) where gid∗ is the challenge group identity. Our idea is to random-
ize the id-dependent term cy = ∑

`∈[k] cy,`,id` using the newly introduced randomness r̂ for
secret keys associated to the tuple (i∗, id,gid 6= gid∗). This eventually restricts the adversary
in extracting any unwanted information about the message from such key queries. On the
other hand, the message-hiding security is proved utilizing the techniques that we devised
while proving the security of IBIPFE. However, we need to rely on the D3DH assumption and
extend the proof techniques of IBIPFE from prime-order group to composite-order group
setting to make it compatible with the system of EIPL-IBIPFE. Although the top-level idea
is inspired from the proof analysis of [GKW19], we can not directly use their techniques be-
cause our EIPL-IBIPFE provides more finer access control and the adversary is more pow-
erful in the sense that it is entitled to query secret keys decrypting the challenge ciphertext.
Overall, our technique extends the framework of GKW-TT from tracing traitors in PKE to
tracing more sophisticated traitors in the context of IBIPFE.

2.6 EIPL-IBIPFE from LWE

We propose a generic construction of EIPL-IBIPFE from the LWE assumption. We use two
primitives attribute-based IPFE (ABIPFE) [PD21, LLW21] and mixed functional encryption
(MFE) [CVW+18] as the building blocks which have been built under the LWE assumption
with different security levels.

The notion of ABIPFE is a more generalized version of IBIPFE. In ABIPFE, secret keys
are generated with respect to a vector u and a policy C , and ciphertexts are computed for a
message vector v and an attribute att such that decryption recovers 〈u, v〉 if C (att) = 0. An
MFE scheme can be viewed as a dual of standard FE in which a secret key is associated with a
message M , and a ciphertext is associated with a (boolean) function f . Additionally, in MFE,
there are two encryption algorithms – PK-Enc and SK-Enc. The public encryption PK-Enc
encrypts the public parameters while the secret encryption SK-Enc encrypts the circuit f by
the master secret key. The decryption algorithm in an MFE scheme outputs f (M) ∈ {0,1}.
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We extend the framework of EIPL-BE [GKW19] to support inner product functionality
by replacing the underlying ABE with an ABIPFE scheme [PD21, LLW21]. Additionally, we
embed the group identity into the ABIPFE system to achieve our goal of EIPL-IBIPFE. The
core idea is to encrypt a tuple (i∗,`∗,b∗,gid′) using the MFE to get a ciphertext which is
then used as the attribute of ABIPFE. On the other hand, the decryption algorithm of MFE
is embedded into the policies of ABIPFE. Therefore, at the time of decryption, we can check
using the ABIPFE if a secret key corresponding to the tuple (i , id,gid) satisfies the condition
for decrypting the ciphertext to an inner product value. Finally, relying on the security of
ABIPFE and MFE, we prove that our EIPL-IBIPFE is selectively secure.

3 Preliminaries

Notations: Let λ be the security parameter that belongs to the set of natural numbers, 1λ

denotes its unary representation, and poly(λ) be a polynomial in λ. For a prime p, let Zp

denotes the field Z/pZ. For a set S, we use the notation s ← S to indicate the fact that s is
sampled uniformly at random from a finite set S. We write x ← X to denote that the ele-
ment x is sampled at random according to the distribution X . For any natural number n,
[n] denotes the set {1,2, . . . ,n}. We use a bold lower-case letter e.g., a to denote a vector,
and a bold upper-case letter e.g., A denotes a matrix. The i -th element of the vector a is
expressed as ai , and (i , j )-th element of a matrix A is represented by ai , j . The transpose of
a matrix A is denoted by A>. Let u, v ∈ Zm , then the inner product between the vectors is
defined as 〈u, v〉 = ∑m

i=1 ui vi ∈ Z. A function negl : N→ R is said to be a negligible function
if negl(λ) = λ−ω(1). An algorithm A is said to be a probabilistic polynomial time (PPT) algo-
rithm if it is modeled as a probabilistic Turing machine that runs in time poly(λ). If for any
PPT adversary A such that |Pr[A (1λ, X ) = 1]−Pr[A (1λ,Y ) = 1]| is negligible in λ, then we
say that the two distributions are indistinguishable, denoted by X ≈ Y .

3.1 Bilinear Group

A bilinear group BG= (p, q, N = p ·q,G,GT , g ,e(·, ·)) consists of the two primes p, q , two mul-
tiplicative (source and target) groups G,GT (respectively) with the order |G| = |GT | = N , g as
the generator of the group G and a bilinear map e :G×G→GT . It satisfies the following:

– bilinearity: e(g a , g b) = e(g , g )ab for all g ∈G, a,b ∈ZN and
– non-degeneracy: e(g , g ) is a generator of GT .

A bilinear group generator GBG.Gen(1λ) takes input the security parameter λ and outputs
a bilinear group BG = (p, q, N ,G,GT , g ,e(·, ·)) with a λ-bit composite integer N = p · q . We
consider Gp and Gq as the subgroups of G and their orders p and q respectively.

3.2 Complexity Assumptions

Let BG= (p, q, N ,G,GT , g ,e(·, ·)) ←GBG.Gen(1λ) be a bilinear group with composite-order N =
p · q where p, q be two prime integers. We define a series of source and target group-based
assumptions [BSW06, GKW19].

Assumption 1 (Decisional 3-party Diffie-Hellman) (D3DH) For every PPT adversary A , there
exists a negligible function negl(·) such that

Pr

A

 BG, gq , gp

g a
q , g b

q , g c
q ,Tb

= b :
BG; gp ←Gp ; gq ←Gq ; a,b,c,r ←Zq ;

T0 = g abc
q ;T1 = g r

q ;b← {0,1}

≤ 1

2
+negl(λ)
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Assumption 2 (Modified-1 Decisional 3-party Diffie-Hellman) (modified-1 D3DH) For ev-
ery PPT adversary A , there exists a negligible function negl(·) such that

Pr

A


BG, gp , gq , g a

p , g b
p ,

g c
p , g b2

p , g b3

p , g b4

p

g b2c
p , g b3c

p ,Tb

= b :
BG; gp ←Gp ; gq ←Gq ; a,b,c,r ←Zp ;

T0 = g abc
p ;T1 = g r

p ;b← {0,1}

≤ 1

2
+negl(λ)

Assumption 3 (Modified-2 Decisional 3-party Diffie-Hellman) (modified-2 D3DH) For ev-
ery PPT adversary A , there exists a negligible function negl(·) such that

Pr

A

BG, gp , gq , g a
p , g b

p ,

g c
p , g b2

p ,Tb

= b :
BG; gp ←Gp ; gq ←Gq ; a,b,c,r ←Zp ;

T0 = g abc
p ;T1 = g r

p ;b← {0,1}

≤ 1

2
+negl(λ)

Assumption 4 ((Plain) Decisional Bilinear Diffie-Hellman) (DBDH) For every PPT adversary
A , there exists a negligible function negl(·) such that

Pr

A

BG, g , g a , g b ,

g c ,Tb

= b :
BG; g ←G; a,b,c,r ←ZN ;

T0 = e(g , g )abc ;T1 = e(g , g )r ;b← {0,1}

≤ 1

2
+negl(λ)

Assumption 5 (Diffie-Hellman Sub-group Decisional) (DHSD) For every PPT adversary A ,
there exists a negligible function negl(·) such that

Pr


A

BG, g ,h, gp , gq , g a
q ,ha

q ,

g b g c
p ,hb ,Tb

= b :

BG; g = gp gq ;h = hp hq ;

gp ,hp ←Gp ; gq ,hq ←Gq ;

a,b,c ←ZN ;

T0 ←Gq ;T1 ←G;b← {0,1}


≤ 1

2
+negl(λ)

Assumption 6 (Bilinear Sub-group Decisional) (BSD) For every PPT adversary A , there ex-
ists a negligible function negl(·) such that

Pr

A

BG, g , gp , gq ,

e(Tb, g )

= b :

BG; g = gp gq ;h = hp hq ;

gp ←Gp ; gq ←Gq ; g ←G;

T0 ←Gp ;T1 ←G;b← {0,1}

≤ 1

2
+negl(λ)

Assumption 7 (Relaxed 3-party Diffie-Hellman) (R3DH) For every PPT adversary A , there
exists a negligible function negl(·) such that

Pr

A

 BG, g , gp , gq ,

g a
q , g ã

p g a2

q , g ãc̃
p , g c̃

p g c
q ,Tb

= b :

BG; gp ←Gp ; gq ←Gq ;

ã, c̃ ←Zp ; a,c ←Zq ;

T0 = g a2c
q ;T1 ←Gq ;b← {0,1}

≤ 1

2
+negl(λ)
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3.3 Identity-Based Inner Product Functional Encryption

An identity-based inner product functional encryption (IBIPFE) scheme consists of four PPT
algorithms IBIPFE= (Setup,KeyGen,Enc,Dec) which works as follows:

Setup(1λ, 1k , 1m) → (msk,mpk): On input the security parameter λ, a length k of identities
and a vector length m (as unary), the trusted authority generates a master secret key msk and
a master public key mpk.

KeyGen(msk, id, u) → sku : The trusted authority takes as input the master secret key msk,
an identity id ∈ {0,1}k , a vector u ∈Zm , and outputs a secret key sku .

Enc(mpk, id′, v ) → ctv : The encryption algorithm takes as input the master public key mpk,
an identity id′ ∈ {0,1}k and a message vector v ∈Zm . It outputs a ciphertext ctv .

Dec(sku ,ctv ) → ζ/⊥: The decryption algorithm uses a secret key sku to decrypt the cipher-
text ctv . It either outputs a decrypted value ζ on successful decryption or a symbol ⊥ indi-
cating decryption failure.

Correctness. An IBIPFE = (Setup, KeyGen, Enc, Dec) scheme is said to be correct if for all
λ,k,m ∈N, u, v ∈Zm , identity id ∈ {0,1}k , there exists a negligible function negl such that the
following holds

Pr


(msk,mpk) ← Setup(1λ,1k ,1m)

Dec(sku ,ctv ) = 〈u, v〉 : sku ←KeyGen(msk, id,u)

ctv ←Enc(mpk, id, v )

≥ 1−negl(λ),

where the probability is taken over the random coins of Setup,KeyGen and Enc of IBIPFE.

Definition 1 (Adaptive security of IBIPFE) An IBIPFE scheme is said to satisfy adaptive
indistinguishability-based (Adp-IND-CPA) security if for every PPT adversary A , there exists a
negligible function negl such that for every λ ∈N, the following holds,

Pr


(msk,mpk) ←Setup(1λ,1k ,1m )

AKeyGen(msk,·,·)(ctv (b) ) = b : (id∗, v (0), v (1)) ←AKeyGen(msk,·,·)(mpk)

b← {0,1};ctv (b) ←Enc(mpk, id∗, v (b))

≤ 1

2
+negl(λ),

with the following restriction on the key generation oracle.

– KeyGenOracle: All queries of A should be of the form (id,u) satisfying the condition 〈u, v (0)〉 =
〈u, v (1)〉 if id= id∗.

Definition 2 (Selective security of IBIPFE) An IBIPFE scheme is said to satisfy selective
indistinguishability-based (Sel-IND-CPA) security if for every PPT adversary A , there exists
a negligible function negl such that for every λ ∈N, the following holds,

Pr


(id∗, v (0), v (1)) ←A (1λ)

AKeyGen(msk,·,·)(ctv (b) ) = b : (msk,mpk) ←Setup(1λ,1k ,1m )

b← {0,1};ctv (b) ←Enc(mpk, id∗, v (b))

≤ 1

2
+negl(λ),

with the following restriction on the key generation oracle.
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– KeyGenOracle: All queries of A should be of the form (id,u) satisfying the condition 〈u, v (0)〉 =
〈u, v (1)〉 if id= id∗.

Remark 1 (IPFE) If we omit the identity from the above syntax of IBIPFE, then it yields the
primitive of inner product functional encryption (IPFE).

3.4 Attribute-Based Inner Product Functional Encryption

An attribute-based inner product functional encryption (ABIPFE) scheme for a class of func-
tions Fλ = {C : Sλ → {0,1}}, a predicate space Xλ and a message space Yλ consists of four
PPT algorithms ABIPFE= (Setup, KeyGen, Enc, Dec) and details about these algorithms are
given below.

Setup(1λ, 1m) → (msk,mpk): On input the security parameter λ, a vector length m (as
unary), the trusted authority generates a master secret key msk and a master public key mpk.

KeyGen(msk,C , u) → sku : The trusted authority takes input the master secret msk, a func-
tion C ∈Fλ, a vector u ∈Zm and outputs a secret key sku .

Enc(mpk,att, v ) → ctv : This encryption algorithm takes as input the master public keympk,
an attribute att ∈Sλ and a message vector v ∈Zm . It outputs a ciphertext ctv .

Dec(sku ,ctv ) → ζ/⊥: The decryption algorithm uses a secret key sku to decrypts the ci-
phertext ctv . It either outputs a decrypted value ζ on successful decryption or a symbol ⊥
indicating failure.

Correctness. An ABIPFE = (Setup, KeyGen, Enc, Dec) scheme is said to be correct if for all
λ,m ∈ N, C ∈ Fλ,att ∈ Sλ,u, v ∈ Zm , there exists a negligible function negl such that the
following holds,

Pr


(msk,mpk) ←Setup(1λ,1m )

Dec(sku ,ctv ) = 〈u, v〉∧C (att) = 0 : sku ←KeyGen(msk,C ,u)

ctv ←Enc(mpk,att, v )

≥ 1−negl(λ).

where the probability is taken over the random coins of Setup,KeyGen and Enc of ABIPFE as
described above.

Definition 3 [IND-CPA Security] An ABIPFE scheme is said to satisfy IND-CPA security if for
every PPT adversary A , there exists a negligible function negl such that for every λ ∈ N the
following holds,

Pr


(msk,mpk) ← Setup(1λ,1m)

A (ctv (b) ) = b : (att∗, v (0), v (1)) ←A KeyGen(msk,·,·)(mpk)

b← {0,1};ctv (b) ←Enc(mpk, v (b))

≤ 1

2
+negl(λ)

with the following restriction on the key generation oracle.

– KeyGen Oracle: All queries of A should be of the form (C ,u) satisfying the condition 〈ui , v (0)〉
= 〈ui , v (1)〉 if C (att∗) = 0.
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3.5 Mixed Functional Encryption

A mixed functional encryption (MFE) scheme for a class of functions F = {Fk }k and mes-
sage spaces M = {Mk }k where f : Mk → {0,1} consists of five PPT algorithms MFE = (Setup,
KeyGen,PK-Enc,SK-Enc,Dec) and details about these algorithms are given below.

Setup(1λ, 1k ) → (msk,mpk): On input the security parameterλ as unary and a functionality
index k, the trusted authority outputs a master secret key msk and a master public key mpk.

KeyGen(msk, M) → skM : On input the master secret keymsk, a message M ∈M , the trusted
authority generates the secret key skM .

PK-Enc(mpk) → ct: This normal public key encryption algorithm takes input the master
public key mpk and outputs a ciphertext ct.

SK-Enc(msk, f ) → ct: The secret encryption algorithm takes input the master secret key
msk, a function f ∈Fk and it generates the ciphertext ct.

Dec(skM ,ct) → {0, 1}: On input the secret key skM , a ciphertext ct, the decryptor outputs a
single bit between 0 and 1.

Correctness. A MFE= (Setup,KeyGen,PK-Enc,SK-Enc,Dec) is said to be correct if for allλ,k ∈
N, M ∈M , there exists negligible functions negl1, negl2 such that the following holds,

Pr


(msk,mpk) ← Setup(1λ,1k )

Dec(skM ,ct) = 1 : skM ←KeyGen(msk, M)

ct←PK-Enc(mpk)

≥ 1−negl1(λ),

Pr


(msk,mpk) ← Setup(1λ,1k )

Dec(skM ,ct) = f (M) : skM ←KeyGen(msk,u)

ct← SK-Enc(msk, f )

≥ 1−negl2(λ)

where the probability is taken over the random coins of Setup,KeyGen, PK-Enc and SK-Enc
of MFE as described above.

Definition 4 (q-bounded Restricted Function IND (F-IND)) Let q(·) be a fixed polynomial.
A MFE scheme is said to be q-bounded restricted function indistinguishability (F-IND) security
if for every stateful PPT adversary A , there exists a negligible function negl such that for every
λ ∈N the following holds,

Pr


(1k , f (0), f (1)) ←A (1λ)

A KeyGen(msk,·),SK-Enc(msk,·)(ctb) = b : (msk,mpk) ← Setup(1λ,1k )

b← {0,1};ctb ← SK-Enc(mpk, f (b))

≤ 1

2
+negl(λ),

with the following oracle restrictions then a MFE is said to satisfy F-IND security:

– A can make at most q queries to SK-Enc(msk, ·) oracle.
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– All queries M of A to KeyGen(msk, ·) oracle should satisfy f (0)(M) = f (1)(M).
– A must make all (at most q) SK-Enc(msk, ·) oracle queries before making any query to

KeyGen(msk, ·) oracle.

Definition 5 (q-bounded Restricted Accept IND (A-IND)) Let q(·) be a fixed polynomial. A
MFE scheme is said to be q-bounded restricted accept indistinguishability (A-IND) security if
for every stateful PPT adversary A , there exists a negligible function negl such that for every
λ ∈N the following holds,

Pr



(1k , f (∗)) ←A (1λ)

A KeyGen(msk,·),SK-Enc(msk,·)(ctb) = b : (msk,mpk) ← Setup(1λ,1k )

b← {0,1};ct0 ←PK-Enc(mpk)

ct1 ← SK-Enc(mpk, f (∗))


≤ 1

2
+negl(λ),

with the following oracle restrictions then a MFE is said to satisfy F-IND security:

– A can make at most q queries to SK-Enc(msk, ·) oracle.
– All queries M of A to KeyGen(msk, ·) oracle should satisfy f (∗)(M) = 1 and f (M) = 1 for

every query f to SK-Enc(msk, ·).
– A must make all (at most q) SK-Enc(msk, ·) oracle queries before making any query to

KeyGen(msk, ·) Oracle.

4 Definition: Embedded Identity Private Linear IPFE

An EIPL-IPFE for a message vector space Y = {Yλ}λ∈N, an identity space ID = {{0,1}k :
k ∈N} consists of five PPT algorithms EIPL-IPFE = (Setup, KeyGen, Enc, SplEnc, Dec) and
details about these algorithms are given below.

Setup(1λ, n, 1k , 1m) → (msk,mpk,key): The trusted authority takes as input the security
parameter λ, the index space n, the ‘identity space’ parameter k, a vector length parameter
m, and outputs a master secret key msk, a master public key mpk and a key key. The master
public key mpk and the key key are made public while the master secret key msk is kept secret
to the trusted authority.

KeyGen(msk, i , id, u) → sku : On input the master secret key msk, an index i ∈ [n], an iden-
tity id ∈ {0,1}k and a vector u ∈Zm , the trusted authority outputs a secret key sku .

Enc(mpk, v ) → ctv : This algorithm is run by an encryptor by taking input as mpk, a message
vector v ∈Zm and generates a ciphertext ctv associated to the vector v .

SplEnc(key, v , (i ,`, b)) → ctv : This algorithm outputs a ciphertext ctv by taking input as key,
a message vector v ∈ Zm and index-position-bit tuple (i ,`,b) ∈ [n +1]× ([k]∪ {⊥})× {0,1}. If
key =mpk then EIPL-IPFE is called public key EIPL-IPFE, else called private key EIPL-IPFE.
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Dec(sku ,ctv ) → ζ/⊥: On input the ciphertext ctv and the secret key sku , the decryptor out-
puts a decrypted value ζ or a symbol ⊥ indicating failure.

Correctness. An EIPL-IPFE = (Setup, KeyGen, Enc, SplEnc, Dec) scheme is said to be cor-
rect if there exists negligible functions negl1, negl2 such that for all λ,n,k,m ∈ N, v ∈ Zm ,
i ∈ [n +1], j ∈ [n], an identity id ∈ {0,1}k , ` ∈ ([k]∪ {⊥}),b ∈ {0,1}, the following holds.

Pr


(msk,mpk,key) ← Setup(1λ,n,1k ,1m)

Dec(sku ,ctv ) = 〈u, v〉 : sku ←KeyGen(msk, j , id,u)

ctv ←Enc(mpk, v )

≥ 1−negl1(λ),

If ( j ≥ i +1)∨ (i ,`) = ( j ,⊥)∨ (i , id`) = ( j ,1−b), then the following property holds,

Pr


(msk,mpk,key) ← Setup(1λ,n,1k ,1m)

Dec(sku ,ctv ) = 〈u, v〉 : sku ←KeyGen(msk, j , id,u)

ctv ← SplEnc(mpk, v , (i ,`,b))

≥ 1−negl2(λ),

We now formalize the IND-CPA security notions of EIPL-IPFE. Let q(·) be a fixed polynomial.
The security definitions for EIPL-IPFE is a generalization from the q-query security notions
of EIPL-BE [GKW19] as given below.

Definition 6 (q-query Normal Hiding Security) If for every stateful PPT adversary A , there
exists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1m ) ←A (1λ)

(msk,mpk,key) ←Setup(1λ,n,1k ,1m )

AKeyGen(msk,·,·,·),SplEnc(key,·,·,·)(ct(b)
v ) = b : v ←AKeyGen(msk,·,·,·),SplEnc(key,·,·,·,·)(mpk)

b← {0,1};ct(0)
v ←Enc(mpk, v )

ct(1)
v ←SplEnc(key, v , (1,⊥,0))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IPFE scheme is said to satisfy q-query
normal hiding security:

– SplEnc Oracle: A can make at most q(λ) queries of the form (v , (1,`,γ)).
– KeyGenOracle: All queries of A should be of distinct indices. That is, if A makes the queries

(i1, id1,u1), (i2, id2,u2), . . . , (iκ, idκ,uκ), then ia 6= ib when a 6= b for every a,b ∈ [κ].

Definition 7 (q-query Index Hiding Security) If for every stateful PPT adversary A , there ex-
ists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1m , i∗) ←A (1λ)

(msk,mpk,key) ← Setup(1λ,n,1k ,1m)

A KeyGen(msk,·,·,·),SplEnc(key,·,·)(ct(b)
v ) = b : v ←A KeyGen(msk,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ct(0)
v ← SplEnc(key, v , (i∗,⊥,0))

ct(1)
v ← SplEnc(key, v , (i∗+1,⊥,0))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IPFE scheme is said to satisfy q-query index
hiding security:
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– SplEnc Oracle: A can make at most q(λ) queries of the form (v , (i ,`,γ)), where the index i
must be equal to either i∗ or i∗+1.

– KeyGen Oracle: All queries of A should be of distinct indices and should not be of the form
(i∗, id,u). That is, if A makes the key queries (i1, id1,u1), (i2, id2,u2), . . . , (iκ, idκ,uκ), then
ia 6= ib when a 6= b for every a,b ∈ [κ] and ia 6= i∗ for every a ∈ [κ].

Definition 8 (q-query Lower Identity Hiding Security) If for every stateful PPT adversary A ,
there exists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1k ′
,1m , i∗,`∗,b∗) ←A (1λ)

(msk,mpk,key) ← Setup(1λ,n,1k ,1m)

A KeyGen(msk,·,·,·),SplEnc(key,·,·,·)(ct(b)
v ) = b : v ←A KeyGen(msk,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ct(0)
v ← SplEnc(key, v , (i∗,⊥,0))

ct(1)
v ← SplEnc(key, v , (i∗,`∗,b∗))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IPFE scheme is said to satisfy q-query lower
identity hiding security:

– SplEnc Oracle: A can make at most q(λ) queries of the form (v , (i ,`,γ)), where the index i
must be equal to i∗.

– KeyGen Oracle: All queries of A should be of distinct indices and should not be of the form
(i∗, id,u) such that id`∗ = b∗. That is, if A makes the key queries (i1, id1,u1), (i2, id2,u2), . . . ,
(iκ, idκ,uκ), then ia 6= ib when a 6= b for every a,b ∈ [κ] and ia 6= i∗ or (ida)`∗ 6= b∗ for every
a ∈ [κ].

Definition 9 (q-query Upper Identity Hiding Security) If for every stateful PPT adversary A ,
there exists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1m , i∗,`∗,b∗) ←A (1λ)

(msk,mpk,key) ←Setup(1λ,n,1k ,1m )

AKeyGen(msk,·,·,·),SplEnc(key,·,·,·)(ct(b)
v ) = b : v ←AKeyGen(msk,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ct(0)
v ←SplEnc(key, v , (i∗+1,⊥,0))

ct(1)
v ←SplEnc(key, v , (i∗,`∗,b∗))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IPFE scheme is said to satisfy q-query
upper identity hiding security:

– SplEnc Oracle: A can make at most q(λ) queries of the form (v , (i ,`,γ)), where the index i
must be equal to either i∗ or i∗+1.

– KeyGen Oracle: All queries of A should be of distinct indices and should not be of the form
(i∗, id,u) such that id`∗ = 1−b∗. That is, if A makes the key queries (i1, id1,u1), (i2, id2,u2),
. . . , (iκ, idκ,uκ), then ia 6= ib when a 6= b for every a,b ∈ [κ] and ia 6= i∗ or (ida)`∗ 6= 1−b∗

for every a ∈ [κ].
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Definition 10 (q-query Message Hiding Security) If for every stateful PPT adversary A , there
exists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1m , i∗) ←A (1λ)

A KeyGen(msk,·,·,·),SplEnc(key,·,·,·)(ctv (b) ) = b : (msk,mpk,key) ← Setup(1λ,n,1k ,1m)

(v (0), v (1)) ←A KeyGen(msk,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ctv (b) ← SplEnc(key, , v (b), (i∗,⊥,0))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IPFE scheme is said to satisfy q-query mes-
sage hiding security:

– SplEnc Oracle: A can make at most q(λ) queries of the form (v , (i ,`,γ)), where the index i
must be equal to i∗.

– KeyGen Oracle: All queries of A should be of distinct indices and the form of (i , id,u) for
i ≥ i∗ satisfying the condition 〈u, v (0)〉 = 〈u, v (1)〉. That is, if A makes the key queries
(i1, id1,u1), (i2, id2,u2), . . . , (iκ, idκ,uκ), then ia 6= ib when a 6= b for every a,b ∈ [κ], and
if ia ≥ i∗ then 〈u, v (0)〉 = 〈u, v (1)〉 for any a ∈ [κ].

5 Definition: Embedded Identity Private Linear IBIPFE

An EIPL-IBIPFE for a message vector space Y = {Yλ}λ∈N, a predicate vector space X =
{Xλ}λ∈N, a user identity space ID = {{0,1}k : k ∈N} and a group identity space GID =
{{0,1}k ′

: k ′ ∈N} consists of five PPT algorithms EIPL-IBIPFE = (Setup, KeyGen, Enc, SplEnc,
Dec) and details about these algorithms are given below.

Setup(1λ, n, 1k , 1k ′
, 1m) → (msk,mpk,key): The trusted authority takes as input the secu-

rity parameter λ, the index space n, the user identity space parameter k, the group identity
space parameter k ′, a vector length parameter m, and outputs a master secret key msk, a
master public key mpk and a key key. The master public key mpk and the key key are made
public while the master secret key msk is kept secret to the trusted authority.

KeyGen(msk, i , id,gid, u) → sku : On input the master secret key msk, an index i ∈ [n], an
user identity id ∈ {0,1}k , a group identity gid ∈ {0,1}k ′

and a vector u ∈Zm , the trusted author-
ity outputs a secret key sku .

Enc(mpk,gid′, v ) → ctv : This algorithm is run by an encryptor by taking input as mpk, a
group identity gid′, a message vector v ∈Zm and generates a ciphertext ctv associated to the
vector v .

SplEnc(key,gid′, v , (i ,`, b)) → ctv : It outputs a ciphertext ctv by taking input as key, a group
identity gid′, a message vector v ∈ Zm and index-position-bit tuple (i ,`,b) ∈ [n +1]× ([k]∪
{⊥})× {0,1}. If key = mpk then EIPL-IBIPFE is called public key EIPL-IBIPFE, else called pri-
vate key EIPL-IBIPFE.

Dec(sku ,ctv ) → ζ/⊥: On input the secret key sku , the ciphertext ctv decryptor outputs ei-
ther a decrypted value ζ or a symbol ⊥ indicating failure.

Correctness. An EIPL-IBIPFE= (Setup,KeyGen,Enc,SplEnc,Dec) scheme is said to be cor-
rect if there exists negligible functions negl1, negl2 such that for all λ,n,k,k ′,m ∈ N, v ∈ Zm ,
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i ∈ [n +1], j ∈ [n], user identity id ∈ {0,1}k , group identity gid ∈ {0,1}k ′
,` ∈ ([k]∪ {⊥}),b ∈ {0,1},

the following holds,

Pr


(msk,mpk,key) ← Setup(1λ,n,1k ,1k ′

,1m)

Dec(sku ,ctv ) = 〈u, v〉 : sku ←KeyGen(msk, j , id,gid,u)

ctv ←Enc(mpk,gid, v )

≥ 1−negl1(λ),

If ( j ≥ i +1)∨ (i ,`) = ( j ,⊥)∨ (i , id`) = ( j ,1−b) then the following holds,

Pr


(msk,mpk,key) ← Setup(1λ,n,1k ,1k ′

,1m)

Dec(sku ,ctv ) = 〈u, v〉 : sku ←KeyGen(msk, j , id,gid,u)

ctv ← SplEnc(key,gid, v , (i ,`,b))

≥ 1−negl2(λ).

We now formalize the IND-CPA security notions of EIPL-IBIPFE. Let q(·) be a fixed polyno-
mial. The security definitions for EIPL-IBIPFE is a generalization from the q-query security
notions of EIPL-BE [GKW19] as given below.

Definition 11 (q-query Normal-Hiding Security) If for every stateful PPT adversary A , there
exists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1k ′
,1m) ←A (1λ)

(msk,mpk,key) ← Setup(1λ,n,1k ,1k ′
,1m)

A KeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ct(b)
v ) = b : (gid∗, v ) ←A KeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ct(0)
v ←Enc(mpk,gid∗, v )

ct(1)
v ← SplEnc(key,gid∗, v , (1,⊥,0))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IBIPFE scheme is said to satisfy q-query
normal-hiding security:

– SplEnc Oracle: A can make at most q(λ) queries of the form (gid∗, v , (1,`,γ)).
– KeyGenOracle: All queries of A should be of distinct indices. That is, if A makes the queries

(i1, id1,gid1,u1), (i2, id2,gid2,u2), . . . , (iκ, idκ,gidκ,uκ), then ia 6= ib when a 6= b for every
a,b ∈ [κ].

Definition 12 (q-query Index-Hiding Security) If for every stateful PPT adversary A , there
exists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1k ′
,1m , i∗) ←A (1λ)

(msk,mpk,key) ← Setup(1λ,n,1k ,1k ′
,1m)

A KeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ct(b)
v ) = b : (gid∗, v ) ←A KeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ct(0)
v ← SplEnc(key,gid∗, v , (i∗,⊥,0))

ct(1)
v ← SplEnc(key,gid∗, v , (i∗+1,⊥,0))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IBIPFE scheme is said to satisfy q-query
index-hiding security:

– SplEnc Oracle: A can make at most q(λ) queries of the form (gid∗, v , (i ,`,γ)), where the
index i must be equal to either i∗ or i∗+1.
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– KeyGen Oracle: All queries of A should be of distinct indices and should not be of the form
(i∗, id,gid∗,u). That is, if A makes the key queries (i1, id1,gid1, u1), (i2, id2,gid2,u2), . . . ,
(iκ, idκ,gidκ,uκ), then ia 6= ib when a 6= b for every a,b ∈ [κ] and ia 6= i∗ when gida = gid∗

for every a ∈ [κ].

Definition 13 (q-query Lower Identity-Hiding Security) If for every stateful PPT adversary
A , there exists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1k ′
,1m , i∗,`∗,b∗) ←A (1λ)

(msk,mpk,key) ← Setup(1λ,n,1k ,1k ′
,1m)

A KeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ct(b)
v ) = b : (gid∗, v ) ←A KeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ct(0)
v ← SplEnc(key,gid∗, v , (i∗,⊥,0))

ct(1)
v ← SplEnc(key,gid∗, v , (i∗,`∗,b∗))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IBIPFE scheme is said to satisfy q-query
lower-identity hiding security:

– SplEnc Oracle: A can make at most q(λ) queries of the form (gid∗, v , (i ,`,γ)), where the
index i must be equal to i∗.

– KeyGen Oracle: All queries of A should be of distinct indices and should not be of the
form (i∗, id,gid∗,u) such that id`∗ = b∗. That is, if A makes the key queries (i1, id1,gid1,u1),
(i2, id2,gid2,u2), . . . , (iκ, idκ,gidκ,uκ), then ia 6= ib when a 6= b for every a,b ∈ [κ] and ia 6= i∗

or (ida)`∗ 6= b∗ when gida = gid∗ for every a ∈ [κ].

Definition 14 (q-query Upper Identity-Hiding Security) If for every stateful PPT adversary
A , there exists a negligible function negl such that for every λ ∈N the following holds,

Pr



(1n ,1k ,1k′
,1m , i∗,`∗,b∗) ←A (1λ)

(msk,mpk,key) ←Setup(1λ,n,1k ,1k′
,1m )

AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ct(b)
v ) = b : (gid∗, v ) ←AKeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ct(0)
v ←SplEnc(key,gid∗, v , (i∗+1,⊥,0))

ct(1)
v ←SplEnc(key,gid∗, v , (i∗,`∗,b∗))


≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IBIPFE scheme is said to satisfy q-query
upper identity-hiding security:

– SplEnc Oracle: A can make at most q(λ) queries of the form (gid∗, v , (i ,`,γ)), where the
index i must be equal to either i∗ or i∗+1.

– KeyGen Oracle: All queries of A should be of distinct indices and should not be of the form
(i∗, id,gid∗,u) such that id`∗ = 1−b∗. That is, if A makes the key queries (i1, id1,gid1,u1),
(i2, id2,gid2,u2), . . . , (iκ, idκ,gidκ,uκ), then ia 6= ib when a 6= b for every a,b ∈ [κ] and ia 6= i∗

or (ida)`∗ 6= 1−b∗ when gida = gid∗ for every a ∈ [κ].

Definition 15 (q-query Message-Hiding Security) If for every stateful PPT adversary A , there
exists a negligible function negl such that for every λ ∈N the following holds,

Pr


(1n ,1k ,1k ′

,1m , i∗) ←A (1λ)

A KeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(ctv (b) ) = b : (msk,mpk,key) ← Setup(1λ,n,1k ,1k ′
,1m)

(gid∗, v (0), v (1)) ←A KeyGen(msk,·,·,·,·),SplEnc(key,·,·,·)(mpk)

b← {0,1};ctv (b) ← SplEnc(key,gid∗, v (b), (i∗,⊥,0))

≤ 1

2
+negl(λ),

with the following oracle restrictions then an EIPL-IBIPFE scheme is said to satisfy q-query
message-hiding security:
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– SplEnc Oracle: A can make at most q(λ) queries of the form (gid∗, v , (i ,`,γ)), where the
index i must be equal to i∗.

– KeyGen Oracle: All queries of A should be of distinct indices and the form of (i , id,gid,u)
for i ≥ i∗ satisfying the condition 〈u, v (0)〉 = 〈u, v (1)〉 if gid = gid∗. That is, if A makes the
key queries (i1, id1,gid1,u1), (i2, id2,gid2,u2), . . . , (iκ, idκ,gidκ,uκ), then ia 6= ib when a 6= b
for every a,b ∈ [κ], and if ia ≥ i∗ and gida = gid∗ then 〈u, v (0)〉 = 〈u, v (1)〉 for any a ∈ [κ].

Note that, the above security notions are described as the Adp-IND-CPA security model. In
case of Sel-IND-CPA security model, A is restricted to submit gid∗ before setup for Defini-
tions 11 - 15 whereas A also submits the pair of message vectors (v (0), v (1)) along with gid∗

before seeing any public parameters in Definition 15. We similarly defineEIPL-IPFE (see Sec-
tion 4) and its security notions by ignoring the group identities from the above definitions.

6 Definition: Embedded Identity Traceable IBIPFE

AnEI-TIBIPFE for a message vector space Y = {Yλ}λ∈N, a predicate vector space X = {Xλ}λ∈N,
a user identity space ID = {{0,1}k : k ∈N}, a group identity space GID = {{0,1}k ′

: k ′ ∈N}
consists of five PPT algorithms EI-TIBIPFE = (Setup, KeyGen, Enc, Dec, Trace) and details
about these algorithms are given below.

Setup(1λ, n, 1k , 1k ′
, 1m) → (msk,mpk,key): The trusted authority takes as input the secu-

rity parameter λ, an index n, a user identity space parameter k, a group identity space pa-
rameter k ′, a vector length parameter m and generates the master secret key msk, a master
public key mpk, and a tracing key key.

KeyGen(msk, i , id,gid, u) → sku : On input the master secret key msk, user index i ∈ [n],
a user identity id ∈ {0,1}k , a group identity gid ∈ {0,1}k ′

, and a vector u ∈ Zm , the trusted
authority outputs a secret key sku .

Enc(mpk,gid′, v ) → ctv : The encryption algorithm takes input the master public key mpk, a
group identity gid′ ∈ {0,1}k ′

, a message vector v ∈Zm , and produces a ciphertext ctv .

Dec(sku ,ctv ) → ζ/⊥: The decryption algorithm is run by taking input a secret key sku and
a ciphertext ctv . It either outputs a decrypted value ζ or a symbol ⊥ indicating decryption
failure.

TraceDu (key, 1
1

ε(λ) ,gid, u, v (0), v (1)) → T : This algorithm has oracle access to a program Du

associated with the vector u, it takes as input the tracing key key, a group identity gid, the
predicate vector u, two message vectors v (0), v (1) and outputs a set of identities T ⊆ {0,1}k .
We call the tracing as public or private depending on whether key is equal to mpk or it is kept
secret.
Correctness. An EI-TIBIPFE= (Setup, KeyGen, Enc, Dec, Trace) scheme is said to be correct
if for all λ,n,k,k ′,m ∈N, i ∈ [n], id ∈ {0,1}k , gid ∈ {0,1}k ′

and v ,u ∈Zm , there exists a negligible
function negl satisfying gid= gid′ such that the following holds,

Pr

 (msk,mpk) ←Setup(1λ,n,1k ,1k′
,1m )

Dec(sku ,ctv ) = 〈u, v〉 : sku ←KeyGen(msk, i , id,gid,u)

ctv ←Enc(mpk,gid, v )

≥ 1−negl(λ)

where the probability is taken over the random coins of Setup,KeyGen and Enc ofEI-TIBIPFE.
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Definition 16 (Adaptive Security of EI-TIBIPFE) An EI-TIBIPFE is said to satisfy adaptive
indistinguishable-based (Adp-IND-CPA) security if for every PPT adversary A , there exists a
negligible function negl such that for every λ ∈N the following holds:

Pr


(msk,mpk,key) ←Setup(1λ,n,1k ,1k′

,1m )

AKeyGen(msk,·,·,·,·)(ctv (b) ) = b : (v (0), v (1),gid∗) ←AKeyGen(msk,·,·,·,·)(mpk)

b← {0,1};ctv (b) ←Enc(mpk,gid∗, v (b))

≤ 1

2
+negl(λ)

with the following restriction on the key generation oracle.
– KeyGen Oracle: All queries of A should be of form (i , id,gid,u) with i ∈ [n], id ∈ {0,1}k ,gid ∈

{0,1}k ′
and if gid= gid∗ then 〈u, v (0)〉 = 〈u, v (1)〉 holds.

We can similarly define the Sel-IND-CPA security of EI-TIBIPFE (alike to Definition 2) where
the adversary submits the challenge tuple (v (0), v (1),gid∗) before it receives the public param-
eters.

Definition 17 (Security of Tracing) For any non-negligible function ε(·), polynomial p(·) and
for all PPT adversary A , consider the experiment ExptEI-TIBIPFE

A (1λ,b) defined in Fig. 1. The
tracing security of the scheme EI-TIBIPFE = (Setup, KeyGen, Enc, Dec, Trace) is defined as
follows:

1. (1n ,1k ,1k ′
,1m ) ←A (1λ)

2. (msk,mpk,key) ←Setup(1λ,n,1k ,1k ′
,1m )

3. (Du ,u, v (0), v (1),gid∗) ←A O(·)

4. T ←TraceDu (key,1
1
ε(λ) ,gid∗,u, v (0), v (1))

The oracle O(·) has the msk hardwired in it and on query (i , id,gid,u) the oracle runs KeyGen(msk, i , id,gid,u) and sends
the output iff the index i was not queried before, otherwise it sends ⊥. Let S u

ID
be the set of all users identities (id’s)

queried by A associated with the vector u. The above model defines the adaptive tracing security. In case of selective
tracing, A selects (gid∗, v (0), v (1)) before setup and it outputs the decoder Du after it queries some secret keys.

Fig. 1: ExptEI-TIBIPFEA (1λ,b)

Based on the above experiment in Fig. 1, we define the following events and corresponding
probabilities.

– Good-Decoder: Pr[Du(ctv (b) ) = b : b← {0,1},ctv (b) ←Enc(mpk,gid∗, v (b))] ≥ 1
2 +ε(λ),

Pr-G-DA ,ε,p (λ) = Pr[Good-Decoder∧p(λ) ≥ |S u
ID

|].
– Cor-Tr: T 6=φ∧T ⊂S u

ID
, Pr-Cor-TrA ,ε,p (λ) = Pr[Cor-Tr].

– Fal-Tr: T *S u
ID

, Pr-Fal-TrA ,ε,p (λ) = Pr[Fal-Tr]

The EI-TIBIPFE is said to satisfy secure tracing if for any PPT adversary A , polynomial q(λ)
and non-negligible function ε(·), there exists negligible functions negl1,negl2 satisfying ε(λ) >
1/q(λ) with the following conditions,

Pr-Fal-TrA ,ε,p (λ) ≤ negl1, Pr-Cor-TrA ,ε,p (λ) ≥ Pr-G-DA ,ε,p (λ)−negl2

Note that the notion of EI-TIPFE is a particular case of EI-TIBIPFE where we simply ignore
gids used in the syntax of EI-TIBIPFE.
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7 EI-TIBIPFE from EIPL-IBIPFE

Consider an EIPL-IBIPFE scheme EIPL-IBIPFE = EIPL-IBIPFE.(Setup,KeyGen,
Enc,SplEnc,Dec) for a message vector space Y = {Yλ}λ∈N, a predicate vector space X =
{Xλ}λ∈N, a user identity space ID = {{0,1}k : k ∈ N} and a group identity space GID =
{{0,1}k ′

: k ′ ∈ N}. In the following, we provide our EI-TIBIPFE scheme with the same mes-
sage vector space, user identity space, and group identity space. Depending on the special
encryption algorithm of the underlying EIPL-IBIPFE scheme, this generic construction of
our EI-TIBIPFE is called public or private EI-TIBIPFE.

Setup(1λ, n, 1k , 1k ′
, 1m) → (msk,mpk,key): The algorithm runs EIPL-IBIPFE setup algo-

rithm as (msk,mpk,key) ← EIPL-IBIPFE.Setup(1λ,n,1k ,1k ′
,1m). Outputs a master secret key

msk, a master public key mpk and a key key.

KeyGen(msk, i , id,gid, u) → sku : The trusted authority runs EIPL-IBIPFE key generation
algorithm, and generates the secret key as sku ←EIPL-IBIPFE.Key Gen(msk, i , id, gid,u).

Enc(mpk,gid′, v ) → ctv : An encryptor runs theEIPL-IBIPFE encryption algorithm, and out-
puts the ciphertext as ctv ←EIPL-IBIPFE.Enc(mpk,gid′, v ).

Dec(sku ,ctv ) → ζ/ ⊥: The decrptor runs the EIPL-IBIPFE decryption algorithm, and out-
puts ζ←EIPL-IBIPFE.Dec(sku ,ctv ) or ⊥ indicating the failure.

TraceDu (key, 1
1

ε(λ) ,gid, u, v (0), v (1)) → T : Consider two algorithms Index-Trace and ID-Trace
defined in Fig. 2 and Fig. 3. First, the Index-Trace algorithm runs for each index i ∈ [n] and
find a collection of indices set T index such that the Index-Trace algorithm outputs 1 corre-
sponds to these indices. Next, the ID-Trace algorithm runs on the index set T index, and uses
the decoder box to find the required identity of the particular indexed user. Next the tracing
algorithm runs ID-Trace algorithm for all indices i ∈ T index, and for each index i where the
ID-Trace algorithm does not output ⊥. The tracing algorithm adds the output of ID-Trace
algorithm to the identity-set of traitors T.

1. Set T index :=;. For i = 1 to n.

– Compute (b, p, q) ← Index-Trace(key,1
1
ε(λ) ,gid,u, v (0), v (1), i ).

– If b = 1, set T index := T index∪ {(i , p, q)}.

2. Set T index :=;. For {(i , p, q)} ∈ T index.

– Compute id← ID-Trace(key,1
1
ε(λ) ,gid,u, v (0), v (1), i ).

– Set T := T ∪ id.

3. Return T.

7.1 Correctness

The correctness of EI-TIBIPFE follows from the correctness of the underlying EIPL-IBIPFE
scheme. If gid = gid′, the decryptor correctly decrypts the ciphertext ctv using a legitimate
secret key sku and obtains 〈u, v〉; otherwise, it returns ⊥.
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Algorithm. Index-Trace(key,1
1
ε(λ) ,gid,u, v (0), v (1), i )

Inputs: Key key, parameter 1
ε(λ) , a group identity gid, a vector u, messages v (0), v (1), index i .

Output: 0/1
It sets N =λ ·n/ε, count1 = count2 = 0. For j = 1 to N , it computes the following:

– It chooses b j ← {0,1} and computes ct1

v (b j ) ← EIPL-IBIPFE.SplEnc(key,gid, v (b j ), (i ,⊥,0)) and sends ct1

v (b j ) to Du .

Now Du outputs b′j .

– If b′j = b j then count1 = count1 +1, else count1 = count1 −1.

– Computes ct2

v (b j ) ←EIPL-IPFE.SplEnc(key,gid, v (b j ), (i +1,⊥,0)) and sends ct2

v (b j ) to Du . Let b′j ←Du (ct2

v (b j ) ).

– If b′j = b j then count2 = count2 +1, else count2 = count2 −1.

If count1−count2
N > ε

4n , output
(
1, count1

N , count2
N

)
, else output (0,⊥,⊥).

Fig. 2: Index-Trace

Algorithm. ID-Trace(key,1
1
ε(λ) ,gid,u, v0, v1, (i , p, q))

Inputs: Key key, a group identity gid, parameter 1
ε(λ) , a vector u, message pair v (0), v (1), index i , probabilities p, q .

Output: id ∈ {0,1}k

It sets N =λ ·n/ε, and count` = 0 for ` ∈ [k]. For `= 1 to k, it proceeds as follows:
1. For j = 1 to N , it computes the following:

– It chooses b j ← {0,1} and computes ct1

v (b j ) ←EIPL-IBIPFE.SplEnc(key,gid, v (b j ), (i ,`,0)) and sends ct1

v (b j ) to Du .

Now Du outputs b′j .

– If b′j = b j then count` = count`+1, else count` = count`−1.

Next, let id be an empty string. For `= 1 to k, do the following:

1. If
p+q

2 > count`
N , set id` = 0. Else set id` = 1.

Finally, output id.

Fig. 3: ID-Trace

7.2 Security Analysis

Theorem 2 If our EIPL-IBIPFE scheme is 1-query secure as per Definitions 11 to 15 (in the
adaptive/selective model), then the above EI-TIBIPFE scheme is secure as per Definitions 16
and 17 (in the adaptive/selective model).

Proof. We prove this theorem by combining following Theorems 3 and 4 in the adaptive
model and the proof in selective setting will follows similarly.

Theorem 3 (Security of indistinguishability) If our EIPL-IBIPFE be a 0-query secure EIPL-
IBIPFE scheme as per Definitions 11 to 15, then our EI-TIBIPFE scheme is secure as per Defi-
nition 16.

Proof. We would like to point out that the scheme EI-TIBIPFE is IND-CPA secure even if the
EIPL-IBIPFE scheme satisfies only 0-query security. Let us assume that τ is the least integer
index queried by the adversary of EI-TIBIPFE to the KeyGen oracle and (gid∗, v (0), v (1)) be the
adversary’s challenge tuple. As per Definition 16, all secret key queries of A to the KeyGen
oracle is of the form ( j , id,gid,u) where j ≥ τ and satisfying the relation 〈u, v (0)〉 = 〈u, v (1)〉
whenever gid= gid∗. Further all the secret keys are associated with distinct indices.

We construct a sequence of 2τ+ 3 hybrid experiments to prove the theorem. The se-
quence of hybrids starts with the hybrid H0 and ends with hybrid H0, which are exactly the
same as IND-CPA game of EI-TIBIPFE where the challenger encrypts v (0) and v (1) respec-
tively. For any PPT adversary A , let pA ,x(·) be a function of λ that denotes the probability
of A outputting the challenge bit in Hybrid Hx . It is sufficient to show that |pA ,0 −pA ,2| is
negligible in λ.
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Hybrid H0: It is the real IND-CPA game where the challenger computes the ciphertext ctv (0) ←
EIPL-IBIPFE.Enc (mpk,gid∗, v (0)) and sends it to A .

Hybrid Hi ,0(for i ∈ [τ]): This hybrid is identical to the previous hybrid, except that the chal-
lenge ciphertext is a special encryption of v (0) to the tuple (i ,⊥,0), i.e., ctv (0) ←
EIPL-IBIPFE.SplEnc(key,gid∗, v (0), (i ,⊥,0)).

Since the indices associate to the queried secret keys are all distinct, the normal-hiding
security of EIPL-IBIPFE guarantees that EIPL-IBIPFE.Enc(mpk,gid∗, v (0)) and EIPL-IBIPFE.
SplEnc(mpk,gid∗, v (0), (1,⊥,0)) are computationally indistinguishable except with a negligi-
ble advantage. Therefore, for any PPT adversary A , it holds that |pA ,0 −pA ,1,0| ≤ negl(λ).

For i ∈ [τ−1], by index-hiding security, the distributions EIPL-IBIPFE.SplEnc (mpk,gid∗,
v (0), (i ,⊥,0)) and EIPL-IBIPFE.SplEnc(mpk,gid∗, v (0), (i +1,⊥,0)) are computationally indis-
tinguishable since the A is not allowed to query a secret key with j = i . Therefore, we have
|pA ,i ,0 −pA ,i+1,0| ≤ negl(λ) for i ∈ [τ−1] and by the property of triangular inequality, it holds
that |pA ,0 −pA ,τ,0| ≤ negl(λ).

Hybrid H1: This hybrid is identical to the hybrid Hτ,0 except that the challenge ciphertext is
generated as ctv (1) ←EIPL-IBIPFE.SplEnc(key,gid∗, v (1), (τ,⊥,0)).

Observe that, for the index τ, the adversary may obtain some secret keys generated for
gid∗ to decrypt the ciphertext of hybrids Hτ,0 and H1. However, by the restriction on such se-
cret key queries, we have 〈u, v (0)〉 = 〈u, v (1)〉. Hence, the message-hiding security ofEIPL-IBIPFE
ensures that |pA ,1 −pA ,τ,0| ≤ negl(λ).

Hybrid Hτ−i+1,1(for i ∈ [τ]): This experiment is identical to the previous hybrid H1 except
that the adversary gets the challenge ciphertext ctv (1) ← EIPL-IBIPFE.SplEnc(key,gid∗, v (1),
(τ− i +1,⊥,0)) corresponding to the index-position-bit tuple (τ− i + 1,⊥,0). For i = 1, the
hybrid Hτ,1 is exactly identical with the hybrid H1.
Also as before, the index-hiding security of EIPL-IBIPFE ensures that |pA ,τ−i+1,1−pA ,τ−i ,1| ≤
negl(λ) for each i ∈ [τ−1].

Hybrid H2: This hybrid is similar to hybrid H1,1 expect the challenge ciphertext is of the form
ctv (1) ←EIPL-IBIPFE.Enc(mpk,gid∗, v (1)). Again, by the normal-hiding security ofEIPL-IBIPFE,
we have |pA ,1,1 −pA ,2| ≤ negl(λ).

Finally, combining the above claims and using the triangular inequality, we conclude the
proof. ut
Theorem 4 (Security of Tracing) If our EIPL-IBIPFE scheme is 1-query secure as per the Def-
initions 11 to 15, then our EI-TIBIPFE is secure as per the Definition 17.

The security proof of tracing is provided in Appendix A.

8 EIPL-IBIPFE from IBIPFE

Consider IBIPFE = (Setup,KeyGen,Enc,Dec) be an identity-based inner product functional
encryption scheme with the predicate space X = {Xλ}λ∈N and a message space Y = {Yλ}λ∈N.
In the following, we discuss the generic construction of EIPL-IBIPFE from IBIPFE.

Setup(1λ, n, 1k , 1k ′
, 1m) → (msk, mpk, key): The setup algorithm performs the following

steps:
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– runs the IBIPFE setup algorithm 2nk times and generates {IBIPFE.mski ,`,b , IBIPFE.mpki ,`,b}

← IBIPFE.Setup(1λ,1m ,1k ′
) for all (i ,`,b) ∈ [n]× [k]× {0,1}.

– sets the master secret key msk = {IBIPFE.mski ,`,b}(i ,`,b)∈[n]×[k]×{0,1} and the master public
key mpk= {IBIPFE.mpki ,`,b}(i ,`,b)∈[n]×[k]×{0,1} with the key key =mpk.

KeyGen(msk, i , id,gid, u) → sku : The key generation algorithm executes the following steps:

– runs IBIPFE key generation algorithm k times and generates IBIPFE.ski ,`,id` ← IBIPFE.
KeyGen(IBIPFE. mski ,`,id` , gid,u) for all ` ∈ [k].

– outputs the secret key sku = (
id,gid, {IBIPFE.ski ,`,id`}`∈[k]

)
.

Enc(mpk,gid′, v ) → ctv : The normal encryption algorithm works as follows:

– randomly chooses vi ,`←Zm for i ∈ [n], ` ∈ [k −1] and set vi ,k = v −∑k−1
`=1 vi ,` ∀ i ∈ [n].

– runs the IBIPFE encryption algorithm 2nk times and generate IBIPFE.cti ,`,b ← IBIPFE.Enc
(IBIPFE.mpki ,`,b , gid′, vi ,`) for all (i ,`,b) ∈ ([n]× [k]× {0,1}).

– outputs the ciphertext ctv = {IBIPFE.cti ,`,b}(i ,`,b)∈([n]×[k]×{0,1}).

SplEnc(key,gid′, v , (i∗,`∗, b∗)) → ctv : The special algorithm proceeds as follows:

– chooses n · (k −1) uniformly random vectors as vi ,`←Zm for i ∈ [n], ` ∈ [k −1], Next, sets
vi ,k as

vi ,k =
{

v −∑k−1
`=1 vi ,` if i ≥ i∗

←Zm otherwise

where vi ,k ←Zm represents sampling vi ,k as a random vector.
– sets the vectors ṽi ,`,b as:

ṽi ,`,b =
{

vi ,` if (i ,`,b) 6= (i∗,`∗,b∗)

←Zm otherwise

– runs the IBIPFE encryption algorithm 2nk times and generate the ciphertext cti ,`,b ←
IBIPFE.Enc (IBIPFE.mpki ,`,b ,gid′, ṽi ,`,b) for all (i ,`,b) ∈ ([n]× [k]× {0,1}).

– outputs ctv = {cti ,`,b}(i ,`,b)∈([n]×[k]×{0,1}).

Dec(sku ,ctv ) → ζ/ ⊥: To decrypt the ciphertext ctv , this algorithm performs as follows:

– runs the IBIPFE decryption algorithm and compute

z`← IBIPFE.Dec(IBIPFE.ski ,`,id` , IBIPFE.cti ,`,id`) for all ` ∈ [k].

– outputs ζ=∑
`∈[k] z`.

8.1 Correctness

If gid= gid′ then it proceeds as below, otherwise returns⊥. Note that, for all i ∈ [n],
∑k
`=1 vi ,` =

v in normal encryption. Therefore,

〈u, v〉 =
k∑
`=1

〈u, vi ,`〉 =
k∑
`=1

IBIPFE.Dec(IBIPFE.ski ,`,id` , IBIPFE.cti ,`,id`) =
k∑
`=1

z`.

In special encryption we note that,

(i ≥ i∗+1)∨ (i ,`) = (i∗,`∗ =⊥)∨ (i∗, id`∗) = (i ,1−b∗) =⇒ ṽi ,`,b = vi ,`.
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Thus, for i ≥ i∗, we have v =∑k
`=1 vi ,`. Therefore,

〈u, v〉 =
k∑
`=1

〈u, ṽi ,`,b〉 if (i ≥ i∗+1)∨ (i ,`) = (i∗,`∗ =⊥)∨ (i∗, id`∗) = (i ,1−b∗)

=
k∑
`=1

IBIPFE.Dec(IBIPFE.ski ,`,id` , IBIPFE.cti ,`,id`) =
k∑
`=1

z`.

8.2 Security Analysis

Here, we prove the security of our generic EIPL-IBIPFE construction from IBIPFE.

Theorem 5 If the underlying IBIPFE= (Setup, KeyGen, Enc,Dec) scheme is IND-CPA secure,
then our EIPL-IBIPFE =(Setup, KeyGen, Enc, SplEnc, Dec) scheme is secure as per Definitions
11 to 15.

Proof. We prove the above theorem by combining of following Lemmas 1 to 5. The proof
of each lemma holds directly from the IND-CPA security of underlying IBIPFE scheme. We
also note that our construction preserve the security level of the underlying IBIPFE, i.e., the
proposed EIPL-IBIPFE is selectively or adaptively secure if the IBIPFE is so. Next, we discuss
the formal proof.

Lemma 1 Assuming the underlying IBIPFE is IND-CPA secure, then our EIPL-IBIPFE scheme
satisfies the normal-hiding security as per the Definition 11.

Proof. The distribution of normal encryption and special encryption ciphertexts are iden-
tical since the special encryption algorithm runs on input (i∗,`∗,b∗) i.e., it computes Sp-
lEnc(key, gid∗, v , (i∗,`∗,b∗)) with i∗ = 1, `∗ = ⊥. Therefore, ṽi ,`,b = vi ,` for all i ,`,b as the
condition (i > i∗)∨ ((i = i∗)∧ (` 6= `∗∨b 6= b∗)) is equivalent to i ≥ 1. ut

Lemma 2 Assuming the underlying IBIPFE is IND-CPA secure, then our EIPL-IBIPFE scheme
satisfies the index-hiding security as per the Definition 12.

Proof. We will prove this security of indistinguishability via. IND-CPA security of the under-
lying IBIPFE scheme. Recall that the index-hiding security requires the special encryption to
(i∗,⊥,0) is indistinguishable from the special encryption to (i∗+1,⊥,0) if the adversary is not
provided with a key of the form (i∗, id,gid∗,u). In the table below, we represent the IBIPFE
ciphertexts that are different in the special encryptions to (i∗,⊥,0) and (i∗+1,⊥,0).

SplEnc(key,gid∗, v , (i∗,⊥,0)) SplEnc(key,gid∗, v , (i∗+1,⊥,0))

cti∗ ,k,0 ← IBIPFE.Enc(mpki∗ ,k,0,gid∗, w ) cti∗ ,k,0 ← IBIPFE.Enc(mpki∗ ,k,0,gid∗, w )

cti∗ ,k,1 ← IBIPFE.Enc(mpki∗ ,k,1,gid∗, w ) cti∗ ,k,1 ← IBIPFE.Enc(mpki∗ ,k,1,gid∗, w )

where w = v −∑k−1
`=1 vi∗ ,` where w ←Zm .

Note that, according to the game restriction, A can not query to KeyGen oracle for an
IBIPFE secret key corresponding to the index-group identity pair (i∗,gid∗). Therefore, A is
not allowed to make any IBIPFE secret key of the form IBIPFE.ski∗,`,id` for a vector u which

33



corresponds to the challenge group identity gid∗. Hence, by IND-CPA security of the under-
lying IBIPFE scheme, we first change the ciphertext cti∗,k,0 to encrypt a random vector w
instead of encrypting v −∑k−1

`=1 vi∗,` and then change the ciphertext cti∗,k,1 to encrypt the

same random vector w instead of encrypting v −∑k−1
`=1 vi∗,`. We observe that we can apply

the IND-CPA security even if 〈u, v〉 6= 〈u, w〉 as in all the queried secret keys of A we have
gid 6= gid∗. Hence, the index-hiding security follows from the IND-CPA security of the IBIPFE
scheme. ut
Lemma 3 Assuming the underlying IBIPFE is IND-CPA secure, then our EIPL-IBIPFE satisfies
the lower identity-hiding security as per the Definition 13.

Proof. We recall that in the lower identity-hiding security it is required that the special en-
cryption to (i∗,⊥,0) is indistinguishable from the special encryption to (i∗,`∗,b∗), given that
the adversary does not have a secret key for (i∗, id,gid∗,u) such that id`∗ = b∗. In the table
below, we represent the IBIPFE ciphertexts that are different in the special encryptions to
(i∗,⊥,0) and (i∗,`∗,b∗).

SplEnc(key,gid∗, v , (i∗,⊥,0)) SplEnc(key,gid∗, v , (i∗,`∗,b∗))

cti∗ ,`∗ ,b∗ ← IBIPFE.Enc(mpki∗ ,`∗ ,b∗ ,gid∗, w ) cti∗ ,`∗ ,b∗ ← IBIPFE.Enc(mpki∗ ,`∗ ,b∗ ,gid∗, w )

where w = v −∑
6̀=`∗ vi∗ ,` where w ←Zm

We observe that no IBIPFE secret key is generated using mski∗,`∗,b∗ for a pair (gid∗,u) with
id`∗ = b∗. Therefore, depending on the IND-CPA security of the IBIPFE, we can change the
ciphertext component cti∗,`∗,b∗ in SplEnc(key,gid∗, v , (i∗,⊥,0)) from encrypting the vector
w = v −∑

` 6=`∗ vi∗,` to a random vector w ←Zm . Hence, the proof follows. ut
Lemma 4 Assuming the underlying IBIPFE is IND-CPA secure, then our EIPL-IBIPFE scheme
satisfies the upper identity-hiding security as per the Definition 14.

Proof. We recall that in the lower identity-hiding security it is required that the special en-
cryption to (i∗,`∗,b∗) is indistinguishable from the special encryption to (i∗+1,⊥,0), given
the adversary does not have a secret key for (i∗, id,gid∗,u) such that id`∗ = 1−b∗. In the table
below, we represent the IBIPFE ciphertexts that are different in the special encryptions to
(i∗,`∗,b∗) and (i∗+1,⊥,0).

SplEnc(key,gid∗, v , (i∗,`∗,b∗)) SplEnc(key,gid∗, v , (i∗+1,⊥,0))

cti∗ ,`∗ ,1−b∗ ← IBIPFE.Enc(mpki∗ ,`∗ ,1−b∗ ,gid∗, w ) cti∗ ,`∗ ,1−b∗ ← IBIPFE.Enc(mpki∗ ,`∗ ,1−b∗ ,gid∗, w )

where w = v −∑
6̀=`∗ vi∗ ,` where w ←Zm

Using a similar argument as above, one can show that the IND-CPA security of IBIPFE en-
sures the indistinguishability of SplEnc(key,gid∗, v , (i∗,`∗,b∗)) and SplEnc(key,gid∗, v , (i∗+
1,⊥,0)). ut
Lemma 5 Assuming the underlying IBIPFE is IND-CPA secure, then our EIPL-IBIPFE scheme
satisfies the message-hiding security as per the Definition 15.
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Proof. The message-hiding security requires that the special encryptions of v (0) and v (1) to
the same tuple (i∗,⊥,0) under gid∗ are indistinguishable if all the secret key queries of the
form (i ≥ i∗, id,gid∗,u) must satisfy 〈u, v (0)〉 = 〈u, v (1)〉. In the table below, we represent the
IBIPFE ciphertexts that are different in the special encryptions of v (0) and v (1).

SplEnc(key,gid∗, v (0), (i∗,⊥,0)) SplEnc(key,gid∗, v (1), (i∗,⊥,0))

ct(0)
i∗ ,k,b

← IBIPFE.Enc(mpki∗ ,k,b ,gid∗, v (0)
i ,k

)

for b ∈ {0,1}

ct(1)
i∗ ,k,b

← IBIPFE.Enc(mpki∗ ,k,b ,gid∗, v (1)
i ,k

)

for b ∈ {0,1}

where v (0)
i ,k

= v (0) −∑k−1
`=1 vi ,` for all i ≥ i∗ where v (1)

i ,k
= v (1) −∑k−1

`=1 vi ,` for all i ≥ i∗

Note that, any secret key for the tuple (i ≥ i∗, id,gid∗,u) must satisfy 〈u, v (0)
i ,k〉 = 〈u, v (1)

i ,k〉.
Therefore, ct(0)

i∗,k,b and ct(1)
i∗,k,b are indistinguishable for b ∈ {0,1}, i ≥ i∗, by the IND-CPA secu-

rity of the IBIPFE. ut
Hence, the proof follows. ut

9 Adaptively Secure EIPL-IPFE using Bilinear Maps

Let us assume GBG.Gen be a bilinear group generator of a composite-order group N = p · q
where p, q be two prime integers. In the following, we describe our EIPL-IPFE= (Setup,KeyGen,
Enc, SplEnc, Dec) scheme based on bilinear map.

Setup(1λ, n, 1k , 1m) → (msk,mpk,key): The setup algorithm executes as follows:

– sets ñ = d
√

n
k e and n̂ = dn

ñ e.

– samples a bilinear group BG= (p, q, N = p ·q,G,GT ,e(·, ·)) ←GBG.Gen(1λ).
– chooses random generators gp ,hp , fp ∈Gp and gq ,hq , fq ∈Gq . It sets g = gp gq ,h = hp hq , f =

fp fq ∈G. Also, samples some random exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, cy,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], rx, j ,αx, j ,ψx, j ←ZN

– samples β←Zq and sets

mpk=



BG,h, g , f ,Eq = gβq , Zq = f βq ,
Ex, j = g rx, j ,Fx, j = hrx, j ,Gx, j = e(g , g )αx, j ,

Eq,x, j = g
βrx, j
q ,Fq,x, j = h

βrx, j
q ,Gq,x, j = e(gq , gq )βαx, j ,

Wq,x, j = e( fq , fq )βψx, j ,Wx, j = e( f , f )ψx, j


x∈[n̂], j∈[m]

{Hy,`,b = g cy,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}



msk=

G, g , {rx, j ,αx, j ,ψx, j }x∈[n̂], j∈[m],

{cy,`,b}(y,`,b)∈[ñ]×[k]×{0,1}

 , key =mpk
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– outputs mpk, msk, key.

KeyGen(msk, i , id, u) → sku : The key generation algorithm proceeds the following steps:

– consider (x, y) ∈ [n̂]× [ñ] be the unique row wise representation of index i (for any i ∈ [n],
its corresponding indices can be defined as y = i mod ñ and x = d i

ñ e)

– it generates the secret key sku = (x, y, id,K = (K1,K2)) where K1 = g 〈αx ,u〉·(∏`∈[k] Hy,`,id`

)〈rx ,u〉

and K2 = f 〈ψx ,u〉.

Enc(mpk, v ) → ctv : The encryption algorithm is the same as special encryption algorithm
(SplEnc) when run on index-position-bit tuple (i∗,`∗,b∗) = (1,⊥,0).

SplEnc(key, v , (i∗,`∗, b∗)) → ctv : The special encryption algorithm performs the following
steps:

– let (x∗, y∗) ∈ [n̂]× [ñ] be the unique row-wise representation of the index i∗.
– chooses random exponents as

∀ j ∈ [m], σ j ,ν j ,φ j ←ZN , τ, t ∈ZN , ∀x ∈ [n̂], sx ,ex ,κx , fx ,dx ←ZN

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, wy,`,b , vy,`,b ←ZN

– for all x ∈ [n̂], j ∈ [m] and (y,`,b) ∈ [ñ]× [k]× {0,1}, it generates the following components
as described in the Table 2 and Table 3.

Table 2: Computing row components for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E sx t
q Zκx t

q e(gq , gq )v j ·G t sx
q,x, j ·W

tκx
q,x, j

x = x∗ E sx
x, j F sxτ

x, j g sx t f κx t e(gq , gq )v j ·G t sx
x, j ·W

tκx
x, j

x < x∗ g sxσ j hsxτν j g ex f dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 3: Computing column components for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧ (`,b) 6= (`∗,b∗)) H t
y,`,b ·hwy,`,bτ g wy,`,b

(y < y∗)∨ (y,`,b) = (y∗,`∗,b∗)) H t
y,`,b ·hwy,`,bτ ·V vy,`,bτ

`,b g wy,`,b · Ṽ vy,`,b

`,b

– outputs the ciphertext ctv associated with the vector v as

ctv =

{
Rx, j , R̃x, j , Ax ,Bx , Ix, j

}
x∈[n̂], j∈[m] ,{

Cy,`,b ,C̃y,`,b
}

(y,`,b)∈[ñ]×[k]×{0,1}


Dec(sku ,ctv ) → ζ/ ⊥: The decryptor uses a secret key sku to decrypt the ciphertext ctv .
Then, it computes

η=
∏

j∈[m] Ix, j
u j ·∏ j∈[m] e(Rx, j ,

∏
`∈[k] C

u j

y,`,id`
)∏

j∈[m] e(R̃x, j ,
∏
`∈[k] C̃

u j

y,`,id`
) ·e(K1, Ax) ·e(K2,Bx)

Outputs ζ= loge(gq ,gq )η.
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9.1 Correctness

Theorem 6 If all the components are generated as above algorithms, then our propose EIPL-
IPFE scheme is correct with non-negligible probability.

Proof. Consider the secret key sku = (x, y, id,K ) corresponding to the index i = (x, y), an iden-
tity id and a vector u. We know that K = (K1 = g 〈αx ,u〉 · (

∏
`∈[k] Hy,`,id`)〈rx ,u〉,K2 = f 〈ψx ,u〉)

and consider a ciphertext ctv is an encryption of a vector v and index-position-bit tuple
(i∗,`∗,b∗). It consists of ctv = ({Rx, j , R̃x, j , Ax ,Bx , Ix, j }x, j , {Cy,`,b ,C̃y,`,b}y,`,b). From the defi-
nition of EIPL-IPFE, correctness holds or the decryption oracle gives the outputs 〈u, v〉 if
(i ≥ i∗+1)∨ ((i∗,`∗) = (i ,⊥))∨ ((i∗, id`∗) = (i ,1−b∗)). Consider i∗ = (x∗, y∗). Let the index,
identity pair (i , id) satisfies the above restrictions. Depending on the representation of i , we
consider the following cases:
Case 1: x > x∗: In this case, we have all the row components for all x ∈ [ñ], j ∈ [m] as Rx, j =
E sx

q,x, j , R̃x, j = F sxτ
q,x, j , Ax = E sx t

q ,Bx = Zκx t
q , Ix, j = e(gq , gq )v j ·G t sx

q,x, j ·W tκx
q,x, j . The decryption does

not depend whether y > y∗ or not, we can compute the following components from the
Table 2 and Table 3. First consider (y > y∗)∨ ((y = y∗)∧ (`,b) 6= (`∗,b∗)), then we compute
following components:∏

j∈[m]
e

(
Rx, j ,

∏
`∈[k]

C
u j

y,`,id`

)
= e(gq , gq )βsx t〈u,rx〉∑`∈[k] cy,`,id` ·
e(gq ,hq )βsxτ〈u,rx〉∑`∈[k] wy,`,id` (1)∏

j∈[m]
Ix, j

u j = e(gq , gq )〈u,v〉 ·e(gq , gq )βt sx〈αx ,u〉 ·e( fq , fq )βtκx〈ψx ,u〉 (2)

∏
j∈[m]

e

(
R̃x, j ,

∏
`∈[k]

C̃
u j

y,`,id`

)
= e(hq , gq )βsxτ〈rx ,u〉∑`∈[k] wy,`,id` (3)

e(K1, Ax) = e(gq , gq )βsx t〈αx ,u〉 ·e(gq , gq )βsx t〈rx ,u〉∑`∈[k] cy,`,id` (4)

e(K2,Bx) = e( fq , fq )βκx t〈ψx ,u〉 (5)

Therefore, we get that for every ` ∈ [k], j ∈ [m],∏
j∈[m] e

(
Rx, j ,

∏
`∈[k] C

u j

y,`,id`

)
∏

j∈[m] e
(
R̃x, j ,

∏
`∈[k] C̃

u j

y,`,id`

) = e(gq , gq )βsx t〈u,rx〉∑`∈[k] cy,`,id` (6)

So, from Eq. 2,4,5,6 we have,

η=
∏

j∈[m] Ix, j
u j ·∏ j∈[m] e(Rx, j ,

∏
`∈[k] C

u j

y,`,id`
)∏

j∈[m] e(R̃x, j ,
∏
`∈[k] C̃

u j

y,`,id`
) ·e(K1, Ax) ·e(K2,Bx)

= e(gq , gq )βsx t〈u,rx〉∑`∈[k] cy,`,id` · e(gq , gq )〈u,v〉

e(gq , gq )βsx t〈rx ,u〉∑`∈[k] cy,`,id`

= e(gq , gq )〈u,v〉

Finally, it returns loge(gq ,gq )η.

Next, we consider (y < y∗)∨ ((y,`,b) = (y∗,`∗,b∗)), then we compute the following compo-
nents. ∏

j∈[m]
e

(
Rx, j ,

∏
`∈[k]

C
u j

y,`,id`

)
= e(gq , gq )βsx t〈u,rx〉∑`∈[k] cy,`,id` ·
e(gq ,hq )βsxτ〈u,rx〉∑`∈[k](wy,`,id`

+δ`,id`
vy,`,id`

) (7)∏
j∈[m]

e

(
R̃x, j ,

∏
`∈[k]

C̃
u j

y,`,id`

)
= e(hq , gq )βsxτ〈rx ,u〉∑`∈[k] wy,`,id`

+δ`,id`
vy,`,id` (8)
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In this case also,∏
j∈[m] e

(
Rx, j ,

∏
`∈[k] C

u j

y,`,id`

)
∏

j∈[m] e
(
R̃x, j ,

∏
`∈[k] C̃

u j

y,`,id`

) = e(gq , gq )βsx t〈u,rx〉∑`∈[k] cy,`,id`

So, correct decryption follows as previous.
Case 2: Otherwise: In this case, the correctness needs to hold if (i∗,`∗) = (i ,⊥)∨ (i∗, id`∗) =
(i∗,1− id`∗) or we can write as (x = x∗)∧ ((y > y∗)∨ (y = y∗∧ (`,b) 6= (`∗,b∗)))∏

j∈[m]
e

(
Rx, j ,

∏
`∈[k]

C
u j

y,`,id`

)
= e(g , g )sx t〈u,rx〉∑`∈[k] cy,`,id` ·
e(g ,h)sxτ〈u,rx〉∑`∈[k] wy,`,id` (9)∏

j∈[m]
e

(
R̃x, j ,

∏
`∈[k]

C̃
u j

y,`,id`

)
= e(h, g )sxτ〈rx ,u〉∑`∈[k] wy,`,id` (10)

∏
j∈[m]

Ix, j
u j = e(gq , gq )〈u,v〉e(g , g )t sx〈αx ,u〉e( f , f )tκx〈ψx ,u〉 (11)

e(K1, Ax)= e(g , g )sx t〈αx ,u〉 ·e(g , g )sx t〈rx ,u〉∑`∈[k] cy,`,id` (12)

e(K2,Bx)= e( f , f )κx t〈ψx ,u〉 (13)

Using the Eq. 9,10,11,12,13 and the same computations as Case 1, the correctness of EIPL-
IPFE holds. ut

9.2 Security

Theorem 7 If the assumptions 1,3,5,6, and 7 hold over the bilinear group BG, then our EIPL-
IPFE scheme is adaptively secure as per Definitions 6 to 10.

Proof. To prove the security of our scheme, we show that our construction satisfies all five
security properties. We significantly modify the proof technique of [BW06, GKW19] to com-
patible it with our scheme. Before going the main idea of the proof technique, we would like
to focus that since our EIPL-IPFE consists of a public key special encryption algorithm thus,
the adversary does not need to query to EIPL-IPFE challenger for the special encryption
queries or ciphertext queries. Therefore, the adversary only performs secret key queries to
the challenger throughout the security game.

Lemma 6 Our EIPL-IPFE satisfies normal-hiding secure as per the Definition 6.

Proof. Since the distribution of normal encryption’s ciphertext and special encryption’s ci-
phertext for the index-position-bit tuple (1,⊥,0) are the same, thus the definition of normal-
hiding security follows from construction. ut
Lemma 7 If the assumptions 3,5,6 and 7 hold over the bilinear group BG, then our EIPL-IPFE
satisfies the index-hiding secure as per the Definition 7.

Proof. As per the definition of index-hiding game, we show that adversary can not distin-
guish between the special encryption to the index-position-bit tuple (i∗,⊥,0) and (i∗+1,⊥
,0). For the index position i∗ = (x∗, y∗), the adversary can not query to the key generation
oracle for the secret keys.

Now if y∗ = ñ, then we have i∗+1 = (x∗+1,1) otherwise, i∗+1 = (x∗, y∗+1). Similar to
the [BW06, GKW19], we break down the proof into two parts based on whether y = ñ or not.
To prove this security, we consider following two claims 1 and 2.
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Claim 1. For y∗ < ñ, the special encryption corresponding to the index-position-bit tuple
((x∗, y∗),⊥,0) and ((x∗, y∗+1),⊥,0) are indistinguishable.

Proof of claim 1. To prove the above claim, we consider 2k + 1 sequences of hybrid games
as H0 and H ˜̀,b̃ where ˜̀∈ [k] and b̃ ∈ {0,1}. The hybrid H0 corresponds to the index-hiding
security game where the challenge ciphertext is a special encryption to the index-position-
bit tuple (i∗ = (x∗, y∗),⊥,0) and H ˜̀,b̃ is the same as H0 except the column component Cy∗,`,b

for (`,b) ∈ [ ˜̀−1]× {0,1} and for `= ˜̀,b ≤ b̃, choose an uniform random element from Gp .

Table 4: Computing column components of the ciphertext in Hybrid H ˜̀,b̃

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧`> ˜̀)∨
(y = y∗∧`= ˜̀∧b > b̃)

H t
y,`,b ·hwy,`,bτ g wy,`,b

(y < y∗)∨ (y = y∗∧`< ˜̀)∨
(y = y∗∧`= ˜̀∧b ≤ b̃)

H t
y,`,b ·hwy,`,bτV

vy,`,bτ

`,b g wy,`,b · Ṽ vy,`,b

`,b

Here, the hybrid Hk,1 corresponds to the index-hiding game in which the challenge ci-
phertext is an encryption of the index-position-bit tuple (i∗+1,⊥,0) = ((x∗, y∗+1),⊥,0). It
is also required that the hybrid H0 and H1,0 are indistinguishable. In the following, we show
that the hybrid H ˜̀,b̃ and the hybrid H ˜̀+b̃−1,(b̃+1) mod 2 are indistinguishable. This same proof
technique is used to show that all consecutive hybrids are indistinguishable. By combining
all indistinguishability of hybrids, the claim 1 follows.

H ˜̀,b̃ ≈ H ˜̀+b̃−1,(b̃+1) mod 2 : Suppose on contrary, there exists a PPT adversary A which can

distinguish between the hybrid H ˜̀,b̃ and hybrid H ˜̀+b̃−1,(b̃+1) mod 2 with non-negligible ad-
vantages. We construct a PPT reduction algorithm B which breaks the modified-2 D3DH
assumption 3 with the same non-negligible advantages as follows:

Let the reduction algorithm B first receives the modified-2 D3DH assumption 3 chal-
lenges from the challenger as

(BG, gp , gq , A = g a
p ,B = g b

p ,C = g c
p ,D = g b2

p ,T )

where T is either g abc
p or a random element in the subgroup Gp of prime-order p. Next, B

receives the challenge tuple (1λ,1n ,1k ,1m , i∗ = (x∗, y∗)) from the adversary A where y∗ < ñ.
Now, B generates the master public key by using the modified-2 D3DH instances and sends
it to A . Next, the adversary makes adaptively secret keys queries for distinct indices except
i∗ and sends the challenge message vector v to the challenger. In the following, we show
how does B simulates the master public key and how to answer the queried secret keys and
the challenge ciphertext from the challenge instances. Finally, A outputs its guess, which B

uses to break the modified-2 D3DH assumption 3.
As this reduction plays over the subgroup Gp with the challenger, thus it can choose any

components from the subgroup Gq by itself. We implicitly set the exponents rp,x∗, j , sp,x∗ and
κp,x∗ as b · r̃p,x∗, j , s̃p,x∗/b and κ̃p,x∗/b2 respectively where the exponents r̃p,x∗, j , κ̃p,x∗ s̃p,x∗ are
chosen uniformly random from the subgroup Gp and set hp = B = g b

p , fp = B d1 for some
random exponent d1 ← ZN , tp = a ·b, cp,y∗, ˜̀,b̃ = c · c̃p,y∗, ˜̀,b̃ where c̃p,y∗, ˜̀,b̃ ← ZN . With these
exponents, we correctly simulate the master public key, secret keys and the challenge group
elements T that can be programmed in the challenge ciphertext components Cy∗, ˜̀,b̃ .
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Public key simulation. Sample two random generators hq , fq ← Gq such that hq = g d
q , fq =

g d ′
q where the exponent d ,d ′ ← ZN . Additionally, it chooses the random exponents as fol-

lows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, c̃y,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], r̃x, j ,αx, j ,ψx, j ←ZN

Samples β← ZN and computes the following public key components for all x ∈ [n̂], j ∈ [m]
and (y,`,b) ∈ [ñ]× [k]× {0,1} as

Ex, j =
{

(gp gq )r̃x, j if x 6= x∗,

(B gq )r̃x, j otherwise. , Fx, j =
{

(Bhq )r̃x, j if x 6= x∗,

(Dhq )r̃x, j otherwise. ,

Hy,`,b =
{

(C gq )c̃y,`,b if (y,`,b) = (y∗, ˜̀, b̃),

(gp gq )c̃y,`,b otherwise.

Challenger B set the master public key as

mpk=



BG, g = gp gq ,h = g b
p g d

q , f = B d1 fq ,Eq = gβq , Zq = g d ′β
q ,

Ex, j ,Fx, j ,Gx, j = e(g , g )αx, j ,

Eq,x, j = g
βr̃x, j
q ,Fq,x, j = h

βr̃x, j
q ,Gq,x, j = e(gq , gq )βαx, j ,

Wx, j = e(B d1 fq ,B d1 fq )ψx, j ,Wq,x, j = e( fq , fq )βψx, j


x∈[n̂], j∈[m]

,

{Hy,`,b}(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


All the public key components can be computed using the modified-2 D3DH assumption 3
challenge instances.

Secret key simulation. In the secret key generation, adversary can not query for the se-
cret key corresponding to the index position i∗ = (x∗, y∗) for the key generation oracle. To
answer these queries, challenger returns the secret key sku corresponding to the tuple (i =
(x, y), id,u) as follows:

K1 =


g 〈αx ,u〉g 〈r̃x ,u〉∑`∈[k] c̃y,`,id` if x 6= x∗, y 6= y∗

g 〈αx ,u〉(B gq )〈r̃x ,u〉∑`∈[k] c̃y,`,id` if x = x∗, (y 6= y∗∨ id ˜̀ 6= b̃)

g 〈αx ,u〉g 〈r̃x ,u〉∑ 6̀= ˜̀cy,`,id` (C gq )〈r̃x ,u〉c̃y, ˜̀,b̃ if x 6= x∗∧ (y, id ˜̀) = (y∗, b̃)

K2 = (B d1 fq )〈ψx ,u〉

Challenge ciphertext simulation. B makes the simulation of the challenge ciphertext as
follows:

∀ j ∈ [m],σ j ,ν j ,φ j ←ZN , τ ∈ZN , tq ←ZN

∀x ∈ [n̂], ex , fx ,dx ←ZN , κ̃x , s̃x ←ZN

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, w̃y,`,b , vy,`,b ←ZN
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Now, the challenger B simulates the row and column components of the challenge cipher-
text as follows:

Table 5: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m].

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E s̃x
q,x, j F s̃xτ

q,x, j E
s̃x tq
q Z

κ̃x tq
q e(gq , gq )v j ·G tq s̃x

q,x, j ·W
tq κ̃x

q,x, j

x = x∗ g r̃x, j s̃x (Bhq )r̃x, j s̃xτ (Ag
tq
q )s̃x (A f

tq
q )d1κ̃x

e(gq , gq )v j ·e(g , Ag
tq
q )αx, j ,s̃x

·e( f , A f
tq
q )d1ψx, j κ̃x

x < x∗ g s̃xσ j (Bhq )s̃xτν j g ex f dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 6: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧`> ˜̀)∨
(y = y∗∧`= ˜̀∧b > b̃)

g
c̃y,`,b tq
q hw̃y,`,bτ A−c̃y,`,b /τ · g w̃y,`,b

y = y∗∧`= ˜̀∧b = b̃ g
c̃y,`,b tq
q ·hτw̃y,`,b ·T c̃y,`,b g w̃y,`,b

(y < y∗)∨ (y = y∗∧`< ˜̀)∨
(y = y∗∧`= ˜̀∧b < b̃)

g
c̃y,`,b tq
q ·hτw̃y,`,b · g

vy,`,b
p g wy,`,b

After generation of all the ciphertext components, challenger sends these to the adver-
sary A , then A guess b′ and sends it to B and it simply forwards it as its guess to the
modified-2 D3DH challenger.

Analysis of Simulation. If T = g abc
p , then B simulates the view of the hybrid H ˜̀,b̃ otherwise

if T is randomly sampled from the subgroup Gp , then B simulates the view of the hybrid
H ˜̀+b̃−1,(b̃+1) mod 2. So if A wins with the advantage ε(·), then B breaks the modified-2 D3DH
assumption with the same advantage. ut

Claim 2. If y∗ = ñ, the special encryption to the index-position-bit tuple ((x∗, y∗),⊥,0) and
((x∗+1,1),⊥,0) are indistinguishable.

Proof of claim 2. To prove the above claim, we consider a sequence of hybrids. In the follow-
ing, we discuss about these hybrids.

Hybrid 1. This hybrid corresponds to the index-hiding game in which the challenge cipher-
text is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗),⊥,0) for y∗ = ñ.

Hybrid 2. The hybrid is exactly same as hybrid 1 except that the challenge ciphertext is a
special encryption to index-position-bit tuple (i∗ = (x∗, y∗+1),⊥,0) for y∗ = ñ. In general,
as y∗ = ñ, the special-encryption algorithm does not encrypt to the position (x∗, y∗+1) gen-
erally. However, this algorithm can be naturally extended to encrypt such specific position.

Hybrid 3. Hybrid 3 is identical to the previous hybrid 2 except that the row component Ix, j

for x = x∗ of the special encryption as mentioned in the following Table 7, where L = e(gp , g )z

for z ∈Zp is randomly chosen.

Hybrid 4. Hybrid 4 is identical to hybrid 3 except that the row component of challenge ci-
phertext as in Table 7, where L = e(g , g )z with z as a random exponent from ZN .
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Table 7: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E sx t
q Zκx t

q e(gq , gq )v j ·G t sx
q,x, j ·W

tκx
q,x, j

x = x∗ E sx
x, j F sxτ

x, j g sx t f κx t e(gq , gq )v j ·G t sx
x, j ·W

tκx
x, j L

x < x∗ g sxσ j hsxτν j g ex f dx e(g , g ) fxφ j e( f , f ) fxφ j

Hybrid 5. Hybrid 5 is the same as hybrid 4 except that the row components in the Table 8
which we mention below.

Table 8: Computing row components for x ∈ [n̂], j ∈ [m] in Hybrid 5

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E sx t
q Zκx t

q e(gq , gq )v j ·G t sx
q,x, j ·W

tκx
q,x, j

x ≤ x∗ g sxσ j hsxτν j g ex f dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Hybrid 6. The hybrid 6 is similar to the hybrid 5 except that the column components to the
index-position-bit tuple ((x∗, y∗ = 1),`∗ =⊥,b∗ = 0) of the challenge ciphertext.

Hybrid 7. The hybrid 7 corresponds to the index-hiding game in which the challenge ci-
phertext is a special encryption to the index-position-bit tuple ((x∗+1,1),⊥,0) for y∗ = ñ.

In the following, we have proved that the adversary’s advantage for all the consecutive
hybrids are negligible in the security parameter which completes the proof of the claim 2.

Hybrid 1 ≈ Hybrid 2: The indistinguishability proof of the hybrid 1 and hybrid 2 is identi-
cal to the claim 1.

Hybrid 2 ≈ Hybrid 3: Suppose on contrary, there exists a PPT adversary A that distinguishes
between the above two hybrids with ε(·) advantages. Then we construct a PPT reduction al-
gorithm which breaks the modified-2 D3DH assumption with the same advantages as fol-
lows:

The reduction algorithm B first receives the modified-2 D3DH assumption 3 challenges
from the challenger as

(BG, gp , gq , A = g a
p ,B = g b

p ,C = g c
p ,T = e(gp , g )z)

where z is either abc or a random element from ZN . Next, in the setup phase, adversary
receives the challenge tuple (1λ,1n ,1k ,1m , , i∗ = (x∗, y∗)) from adversary A satisfying the
condition y∗ = ñ. We now apply the reduction games with its challenger in the subgroup
Gp , thus it can choose all the elements from the subgroup Gq by itself. Now, B generates
the master public key using the instances of modified-2 D3DH assumption 3 and sends it
to the adversary A . Next, the adversary makes the polynomially many secret key queries
to the key generation oracle corresponding to any index except i∗ and vector u. In the fol-
lowing, we show how B simulate the master public key, secret keys and challenge cipher-
text from the modified-2 D3DH instances. Finally, A outputs its guess, which is used to
break the modified-2 D3DH assumption. For x = x∗, our approach is to implicitly set the
exponents rp,x∗, j = br j ,αp,x∗, j = abkr j , tp = c for all r j ← ZN . Additionally, it implicitly sets
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cy,`,b = c̃p,y,`,b −a for all (y,`,b) ∈ [ñ]×[k]×{0,1}. According to the exponents as given above,
the challenger simulates the master public key components, the secret keys and the chal-
lenge ciphertext components. In the challenge ciphertext, the challenge group element T
can be programmed in the challenge ciphertext component Ix∗, j .

Public key simulation. It chooses random exponents d ,d1 from ZN such that h = g d , f =
g d1 . To generate the master public key, it also chooses the random exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, c̃y,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], r̃x, j , α̃x, j ,ψ̃x, j ←ZN

Also, it samples d ,β←ZN and for all (y,`,b) ∈ [ñ]× [k]× {0,1} computes

Ex, j =
{

(gp gq )r̃x, j if x 6= x∗,

B r j g
r̃x, j
q otherwise. ,

Fx, j =
{

(gp gq )dr̃x, j if x 6= x∗,

B dr j g
dr̃x, j
q otherwise. ,

Gx, j =
{

e(gp gq , gp gq )α̃x, j if x 6= x∗,

e(A,B)kr j e(gq , gq )α̃x, j otherwise.

Sets the master public key

mpk=



BG, g = gp gq ,h = g d , f = g d1 , Zq = f βq ,Eq = gβq ,
Ex, j ,Fx, j ,Gx, j ,

Eq,x, j = g
βr̃x, j
q ,Fq,x, j = hβr̃x, j ,Gq,x, j = e(gq , gq )βα̃x, j ,

Wx, j = e(g , g )d 2
1 ψ̃x, j ,Wq,x, j = e( fq , fq )βd 2

1 ψ̃x, j


x∈[n̂], j∈[m]

{Hy,`,b = A−1g c̃y,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


Secret key simulation. The adversary A can not query to the challenge index position i∗ =
(x∗, y∗). The challenger B returns secret key to the adversary associated with the query tuple
(i = (x, y), id,u) as follows:

K1 =
{

g 〈α̃x ,u〉+〈r̃x ,u〉∑`∈[k] c̃y,`,id` A−k〈r̃x ,u〉 if x 6= x∗,

g
〈α̃x ,u〉+〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q B 〈r,u〉∑`∈[k] c̃y,`,id` otherwise.

K2 = g d1〈ψ̃x ,u〉 for all x

Challenge ciphertext simulation. The challenger B can compute all the column compo-
nents corresponding to index-position-bit tuple (y,`,b) ∈ [ñ]×[k]×{0,1} on its own since Gp

subgroup components are random in Cy,`,b ,C̃y,`,b terms, and for computing over the sub-
group Gq , all the required components challenger B already knows. For x < x∗, all the row
components Rx, j , R̃x, j , Ax ,Bx , Ix, j are chosen random but for x > x∗, all the row components
are formed over the subgroup Gq which B knows. The challenger B will simulate the chal-
lenge ciphertext for x = x∗ as follows:
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Table 9: Computing row component of the ciphertext for x = x∗

Rx, j R̃x, j Ax Bx Ix, j

x = x∗ (Br j g
r̃x, j
q )s̃x (Br j g

r̃x, j
q )dτs̃x (C g

tq
q )s̃x (C g

tq
q )d1κ̃x

e(gq , gq )v j ·e(gq , gq )α̃x, j s̃x tq

·e(C , gp )d 2
1 ψ̃x, j κ̃x ·T kr j s̃x

·e(gq , gq )d 2
1 ψ̃x, j κ̃x tq

where the exponents s̃x∗ , κ̃x∗ ,τ ∈ZN and tq ←ZN are sampled uniformly at random. Finally,
the challenger B gets the guess bit b′ from A and it simply forwards it to the modified-2
D3DH challenger.

Analysis of simulation. If T = e(gp , g )abc , then B simulates the view of hybrid 2 else the ad-
versary’s view same as hybrid 3 for T = e(gp , g )z for any random z from ZN . Therefore, if B

breaks the modified-2 D3DH assumption 3 with ε(·) advantages then A wins the game with
the same advantages.

Hybrid 3 ≈ Hybrid 4: To show the indistinguishability of two hybrids 3 and 4, we use simi-
lar proof technique of [BW06, GKW19]. Here, we discuss the underlying approaches. Let us
consider that B receives the challenges of Bilinear Subgroup Decisional (BSD) assumption
6 from the challenger consisting a bilinear group BG and the component e(T, g ), where T
is either a random element from the subgroup Gp or a uniform element from the group G.
Then, B computes all the components of the master public key mpk honestly and forwards
it to the adversary A . After seeing mpk, adversary can query for a secret key to the key gener-
ation oracle. Finally, B computes all the challenge ciphertext components honestly except
the value Ix∗, j = e(g , g )v j ·G sx∗ t

x∗, j · e(g ,T ) · e( f , f )ψx, jκx t where T is taken from BSD challenge
assumption 6. If T ←Gp , then simulator’s view is same as hybrid 3 otherwise if T ←G then B

perfectly simulates as hybrid 4. Therefore, if A wins with the advantage ε(·), then B breaks
the assumption 6 with same advantages ε(·).

Hybrid 4 ≈ Hybrid 5: Suppose on contrary, there exists PPT adversary A that distinguishes
between the hybrid 4 and hybrid 5 with the non-negligible advantage ε(·), then we con-
struct a PPT reduction algorithm which breaks the R3DH assumption 7 with the same non-
negligible advantages as follows.

The reduction algorithm B first receives the R3DH challenge instances from the chal-
lenger as

(BG,gp ∈Gp ,gq ∈Gq , A = ga
q ,B = gã

p ·ga2

q ,C = gc̃
p ·gc

q ,D = gãc̃
p ,T )

where T is either ga2c
q or a random element from the subgroup Gq . Next, the challenger B

receives the challenge tuple (1λ,1n ,1k ,1m , i∗ = (x∗, y∗)) from the adversary A . Then, B gen-
erates the master public keys and sends it to adversary. After seeing the public parameters, A
can adaptively query to the key generation oracle corresponding to the tuple (i = (x, y),u, id).
Then the adversary uniformly chooses a challenge message vector pair v (0), v (1) and sends it
to B. Challenger randomly chooses a bit b ∈ {0,1} and generates the challenge ciphertext
ct(b)

v . In the following, we describe how does the challenger simulate the master public key,
secret keys and the challenge ciphertext using the R3DH assumption 7 instances. Finally, the
adversary A outputs a guess bit which breaks the R3DH assumption 7. Since the reduction
plays the game with challenger in the subgroup Gq , so it choose most components in the
subgroup Gp by itself. Although, the challenge components of B ,C are some part belonging
to the subgroup Gp . Thus some of their exponents will also implicitly depends on the ã and
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c̃ terms. In the following, we implicitly set the exponents as

gp = gp gq = A, rq,x∗, j = r̃q,x∗, j

a , rp,x∗, j = r̃p,x∗, j ,

sq,x∗ = c, sp,x∗ = c̃, κq,x∗ = 1/a, κp,x∗ = 1/ã, tq = a, tp = ã,

sx = s̃x/a;κx = κ̃x/a for all x ∈ [n̂]− {x∗}

where r̃p,x∗, j , r̃q,x∗, j ← ZN and for all x ∈ [n̂]− {x∗}, s̃x , κ̃x ← ZN . Additionally, the reduction
algorithm samples the exponents uniformly random from ZN . As the reduction algorithm
does not know the factorization, so at any instant we do not sample the exponents from Gp

and Gq individually. So instead of this we sample an exponent directly from ZN and it need
to make sure that the distributions are not disturbed.

Public key simulation. To generate the public key it chooses the random exponents as fol-
lows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, cy,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], r̃x, j ,αx, j ,ψx, j ←ZN

Also, we choose the exponents d ,d1,β← ZN to compute all the remaining components of
the master public key for all x ∈ [n̂], j ∈ [m] and (y,`,b) ∈ [ñ]× [k]× {0,1} and set h = g d , f =
g d1 .

Eq,x, j =
{

Aβr̃x, j if x 6= x∗,

g
βr̃x, j
q elsewhere. ,

Ex, j =
{

(gp A)r̃x, j if x 6= x∗,

(gpgq )r̃x, j elsewhere. ,

Fq,x, j = E d
q,x, j ,

Fx, j = E d
x, j ,

Gq,x, j = e(A, A)βαx, j ,

Gx, j = e(gp A,gp A)αx, j ,

Wq,x, j = e(A, A)βd 2
1ψx, j ,

Wx, j = e(gp A,gp A)d 2
1ψx, j .

So, the master public key is set as

mpk=



BG, g = gp A,h = g d , f = g d1 ,Eq = Aβ, Zq = Ad1β, Ex, j ,Fx, j ,Gx, j ,Wx, j ,

Eq,x, j ,Fq,x, j ,Gq,x, j ,Wq,x, j


x∈[n̂], j∈[m]

,

{Hy,`,b = (gp A)cy,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


Secret key simulation. In the secret key generation, the adversary A is not allowed to query
for the challenge index position i∗ = (x∗, y∗) to the key generation oracle. B answers the
secret key associated to the index position i = (x, y), identity id and the predicate vector u as
given below.

K1 =
{

g 〈αx ,u〉 · (gp A)〈r̃x ,u〉∑`∈[k] cy,`,id` if x 6= x∗,

g 〈αx ,u〉 · (gpgq )〈r̃x ,u〉∑`∈[k] cy,`,id` otherwise.

K2 = (gp A)d1〈ψx ,u〉 for all x
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Challenge ciphertext simulation. To generate the challenge ciphertext, B chooses the ran-
dom exponents as follows:

∀ j ∈ [m],σ j ,ν j ,φ j ←ZN , τ ∈ZN ,

∀x ∈ [n̂], ex , fx ,dx ←ZN , s̃x , κ̃x ←ZN ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, w̃y,`,b , ṽy,`,b ←ZN .

Now, B computes the row and column components as follows:

Table 10: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ g
βr̃x, j s̃x
q g

βτdr̃x, j s̃x
q Aβs̃x Ad1βκ̃x e(gq , gq )v j e(A, A)βαx, j s̃x e(A, A)βd 2

1 κ̃xψx, j

x = x∗ C r̃x, j C r̃x, j τd DT gd1
p Ad1 e(g , g )φ j fx e(g , g )d 2

1φ j fx

x < x∗ g s̃xσ j g d s̃xτν j g ex g d1dx e(g , g ) fxφ j e(g , g )d 2
1φ j fx

Table 11: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

∀y ∈ [ñ] Bcy,`,b hw̃y,`,bτg
ṽy,`,b
p g w̃y,`,b

Analysis of simulation. For T = ga2c
q , B simulates the hybrid 4, otherwise if T is randomly

chosen from the group Gq then B simulates the view of hybrid 5. Therefore, for the case of
x = x∗ and x < x∗, the adversarial view of the hybrids 4 and 5 will be indistinguishable. If B

breaks R3DH assumption 7 with the advantage ε(·) then A wins with the same advantage.

Hybrid 5 ≈ Hybrid 6: To prove the hybrid 5 and 6 are indistinguishable, let us consider (2ñk+
1) sub-hybrid H0, H ỹ , ˜̀,b̃ for (ỹ , ˜̀, b̃) ∈ [ñ]× [k]× {0,1}. In this game, the sub-hybrid H0 corre-
sponds to the hybrid 5 as described above. Now the sub-hybrid H ỹ , ˜̀,b̃ is the same as the
hybrid H0 except that the column components in the challenge ciphertext Cy,`,b for y < ỹ

and (y,`,b) ∈ {ỹ}× [ ˜̀− 1]× {0,1} and for y = ỹ ,` = ˜̀,b < b̃ have a random element in the
subgroup Gp . The column components are generated as described below in the Table 12.

Table 12: Computing column components of ciphertext for the sub-hybrid H ỹ , ˜̀,b̃

Cy,`,b C̃y,`,b

(y > ỹ)∨ (y = ỹ ∧`> ˜̀)∨
(y = ỹ ∧`= ˜̀∧b ≥ b̃)

H t
y,`,b ·hwy,`,bτ g wy,`,b

(y < ỹ)∨ (y = ỹ ∧`< ˜̀)∨
(y = ỹ ∧`= ˜̀∧b < b̃)

H t
y,`,b ·hwy,`,bτ ·V vy,`,bτ

`,b g wy,`,b · Ṽ vy,`,b

`,b

In the following, we show that the sub-hybrid H ỹ , ˜̀,b̃ is computationally indistinguisha-
bility with the sub-hybrid H ỹ , ˜̀+b̃−1,(b̃+1) mod 2. Note that, the sub hybrid H1,1,0 is identical
with the main hybrid 6. It is also required that the sub-hybrid H0 ≈ Hñ,`,1 and sub-hybrid
H ỹ ,k,1 ≈ H ỹ+1,1,0. We now show that the sub-hybrid H ỹ , ˜̀,b̃ and H ỹ , ˜̀+b̃−1,(b̃+1) mod 2 are indis-
tinguishable. This approach is used to prove of indistinguishability for all the consecutive
sub-hybrids (ỹ , ˜̀, b̃). By combining all the proof of sub-hybrids, the above two hybrids 5 and
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hybrid 6 are indistinguishable.

Sub-hybrid H ỹ , ˜̀,b̃ ≈ Sub-hybrid H ỹ ,ỹ+b̃−1,(b̃+1) mod 2: Suppose on contrary, there exist a PPT
adversary that distinguish between the sub-hybrid H ỹ , ˜̀,b̃ and sub-hybrid H ỹ ,ỹ+b̃−1,(b̃+1) mod 2
with the non-negligible advantage ε(·). We construct a PPT reduction algorithm B which
can break the modified-2 D3DH assumption 3 with the same non-negligible advantage as
described below. From the challenger, the reduction algorithm B receives the following in-
stances as

(BG, gp , gq , A = g a
p ,B = g b

p ,C = g c
p ,T )

where T is either g abc
p or a random element in the subgroup Gp of prime-order p. Next, it

receives the challenge tuple (1λ,1n ,1k ,1m , i∗ = (x∗, y∗)) from the adversary A where y∗ = ñ.
Now, B generates the master public key using the modified-2 D3DH assumption 3 instances
and sends it to the adversary. Then, the adversary can adaptively make queries for the secret
keys of distinct indices except i∗ and sets the challenge ciphertext ct(b)

v . In the following, B

simulates the master public key, secret keys and the challenge ciphertext. Finally, A outputs
its guess, which B uses to break the modified-2 D3DH assumption 3. Since, the reduction
plays with the challenger B over the subgroup Gp , thus it can choose everything from the
subgroup Gq by itself. It now implicitly sets the exponents as tp = a ·b, cp,ỹ , ˜̀,b̃ = c · c̃p,ỹ , ˜̀,b̃

where the exponent c̃p,ỹ , ˜̀,b̃ is chosen uniformly at random and also set and hp = B = g b
p .

By using these exponents, B simulates the master public key, secret keys and the group ele-
ments T can be programmed in the challenge ciphertext components C ỹ , ˜̀,b̃ .

Public key simulation. To simulate the master public key, B sets hq = g d
q where d ←ZN and

chooses the random exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, c̃y,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], rx, j ,αx, j ,ψx, j ←ZN

It also samples β,d1,d2 ←ZN and sets g = gp gq , h = hp hq = Bhq = g b
p ·g d

q , f = fp fq = g d1
p g d2

q .
All the components of the master public keys are generated as follows:

mpk=



BG, g = gp gq ,h = Bhq , f = g d ,Eq = gβq , Zq = f βq = gβd1
q

Ex, j = g rx, j ,Fx, j = hrx, j ,Gx, j = e(g , g )αx, j ,

Eq,x, j = g
βrx, j
q ,Fq,x, j = h

βrx, j
q ,Gq,x, j = e(gq , gq )βαx, j ,

Wx, j = e( f , f )ψx, j ,Wq,x, j = e(gq , gq )βd 2
1ψx, j


x∈[n̂], j∈[m]

{Hy,`,b}(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


All the components can be generated using the challenge modified-2 D3DH instances.

Secret key simulation. B answers the secret keys associated to the index i = (x, y), identity
id and the predicate vector u as given below.

K1 =
{

g 〈αx ,u〉 · g 〈rx ,u〉∑ 6̀= ˜̀ c̃y,`,id` (C gq )〈r̃x ,u〉c̃ ỹ , ˜̀,b̃ if (y, id ˜̀) = (ỹ , b̃),

g 〈αx ,u〉 · g 〈rx ,u〉∑`∈[k] c̃y,`,id` otherwise.
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K2 = g d〈ψx ,u〉

In the secret key query phase, the adversary A is not allowed to key query corresponding to
the challenge index position i∗ = (x∗, y∗).

Challenge ciphertext simulation. The challenger B chooses the random exponents as fol-
lows:

∀ j ∈ [m],σ j ,ν j ,φ j ←ZN , τ, tq ∈ZN ,

∀x ∈ [n̂], κx ,ex , fx ,dx , sx ←ZN

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, w̃y,`,b , vy,`,b ←ZN

Now, for all x ∈ [n̂], j ∈ [m], challenger can compute following row and column components
as in Table 13, 14 respectively.

Table 13: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E
sx tq
q Z

κx tq
q e(gq , gq )v j ·G sx tq

q,x, j ·W
tqκx

q,x, j

x ≤ x∗ g sxσ j hsxτν j g ex f dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 14: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > ỹ)∨ (y = ỹ ∧`> ˜̀)

∨(y = ỹ ∧`= ˜̀∧b > b̃)
g

c̃y,`,b tq
q hw̃y,`,bτ A−c̃y,`,b /τg w̃y,`,b

y = ỹ ∧`= ˜̀∧b = b̃ g
c̃y,`,b tq
q hτw̃y,`,b T c̃y,`,b g w̃y,`,b

(y < ỹ)∨ (y = ỹ ∧`< ˜̀)

∨(y = ỹ ∧`= ˜̀∧b < b̃)
g

c̃y,`,b tq
q hτw̃y,`,b g

vy,`,b
p g w̃y,`,b

Analysis of simulation. For T = g abc
p , then A gets the view of the challenge ciphertext as the

sub-hybrid H ỹ , ˜̀+b̃−1,(b̃+1) mod 2, otherwise for any other random group elements from the
sub-group Gp , the adversary A gets the view of sub-hybrid H ỹ , ˜̀,b̃ . If the adversary A wins
with an advantage ε(·), then B can break the modified-2 D3DH assumption 3 with the same
advantages.

Hybrid 6 ≈ Hybrid 7: Suppose on contrary, there exists a PPT adversary A that can distin-
guish the hybrid 6 and hybrid 7 with non-negligible advantage ε(·). Now, we construct a PPT
reduction algorithm B that breaks the DHSD assumption 5 with same advantage as follows:

The reduction algorithm B first receives the challenge instances of DHSD assumption 5
from the challenger as

(BG, g = gp gq ,h = hp hq , A = g a
q ,B = ha

q ,C = g b g c
p ,D = hb ,T )

where T is either sampled as T = g d
q or T = g d with d ←ZN . Next, B receives the challenge

tuple (1λ,1n ,1k ,1m , i∗ = (x∗, y∗)) from the adversary for y∗ = ñ. In the following, B simulates
the master public key from theDHSD instances of assumption 5 and sends it to the adversary
A . Then, A can make adaptively secret key queries for the distinct indices except i∗ and
sets the challenge ciphertext. Using the instances of assumption 5, B successfully simulates
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the secret keys and the challenge ciphertext. Finally, A outputs its guess, which B uses to
break the DHSD assumption 5. In this proof, the reduction plays with its challenger in the
subgroup Gp thus it can choose everything from the subgroup Gq by itself. To prove this
indistinguishability, B first implicitly sets the random exponents as

β= a, sx∗+1 = d · s̃x∗+1, γ`,b = c · γ̃`,b , δ`,b = b · γ̃`,b + δ̃`,b

where the exponents γ̃`,b , δ̃`,b are uniformly chosen from ZN . Also, B implicitly sets hτ = gπ

where π be any random exponent from ZN . Using the DHSD instances, the challenge group
element T can be programmed to compute the row component Ix∗+1. j .

Public key simulation. Challenger B chooses the random exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ̃`,b ←ZN , γ̃`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, cy,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], rx, j ,αx, j ,ψx, j ←ZN

It chooses randomly an exponent d ′ ← ZN and sets fq = g d ′
q . In the following, B computes

the master public key using the DHSD challenge instances as follows:

mpk=



BG, g ,h, f ,Eq = A, Zq = Ad ′
,

Ex, j = g rx, j ,Fx, j = hrx, j ,Gx, j = e(g , g )αx, j ,

Eq,x, j = Arx, j ,Fq,x, j = B rx, j ,Gq,x, j = e(A, gq )αx, j ,

Wx, j = e( f , f )ψx, j ,Wq,x, j = e(A, gq )d ′2ψx, j


x∈[n̂], j∈[m]

{Hy,`,b = g cy,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = g δ̃`,b C γ̃`,b ,V`,b = hδ̃`,b D γ̃`,b

}
(`,b)∈[k]×{0,1}


Secret Key Simulation. In this phase, B answers the queried secret keys sku for the tuple
(i = (x, y), id,u) where i 6= i∗ as given below

K1 = g 〈αx ,u〉 ·
( ∏
`∈[k]

Hy,`,id`

)〈rx ,u〉
, K2 = f 〈ψx ,u〉

Challenge ciphertext simulation. B chooses the random exponents as follows:

∀ j ∈ [m], σ j ,ν j ,φ j ←ZN , π ∈ZN , t ←ZN ,

∀x ∈ [n̂], ex , fx , s̃x ,dx ,κx ←ZN ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, wy,`,b , vy,`,b ←ZN ,

In the following Table 15, 16, we compute the row and column component of the challenge
ciphertext.
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]Table 15: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗+1 E s̃x
q,x, j F s̃xπ

q,x, j E s̃x t
q Z tκx

q e(gq , gq )v j ·G s̃x t
q,x, j ·W

tκx
q,x, j

x = x∗+1 T s̃x rx, j T s̃x rx, jπ T s̃x t f tκx e(gq , gq )v j ·e(T, g )s̃xαx, j t ·W tκx
x, j

x < x∗+1 g s̃xσ j h s̃xτν j g ex f dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 16: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

∀(y,`,b) ∈ [ñ]× [k]× {0,1} H t
y,`,b · g wy,`,bπ g wy,`,b

After seeing the challenge ciphertext, B receives a guess bit b′ from A which is forwarded
as its guesses to the DHSD challenger.

Analysis of simulation. If T = g d
q , then B simulates the view of hybrid 6 otherwise, if T is

randomly chosen element from the group G. Then B simulates the view same as hybrid
7. Therefore, if A wins the with non-negligible advantages ε(·) then B breaks the DHSD
assumption 5 with same advantage. Hence, the proof of claim 2 is complete. ut

This concludes the proof of index-hiding security. ut

Lemma 8 If the modified-2 D3DH assumption 3 holds over the bilinear group BG, then our
EIPL-IPFE satisfies the lower identity-hiding security as per the Definition 8.

Proof. The lower-identity security requires that no PPT adversary can distinguish between
the special encryption to the index-position-bit tuple (i∗ = (x∗, y∗),`∗,b∗) and (i∗ = (x∗, y∗),⊥
,0) with non-negligible advantages and given the adversary does not have a secret key for
(i∗, id,u) such that id`∗ = b∗. This proof technique is similar to Claim 1. Here, we just ex-
clude the intermediate hybrids as mention in the previous proof. Let (i∗ = (x∗, y∗),`∗,b∗)
be the challenge tuple provided by the adversary A . The hybrid H`∗,b∗ as in Claim 1 corre-
sponds to the lower identity-hiding game in which the challenge ciphertext is a special en-
cryption to the index-position-bit tuple (i∗ = (x∗, y∗),`∗,b∗) and similarly hybrid H0,1 is the
same as the lower identity-hiding game for the index-position-bit tuple (i∗ = (x∗, y∗),⊥,0).
So, the indistinguishability proof of the special encryption for the index-position-bit tuple
(i∗ = (x∗, y∗),⊥,0) and (i∗ = (x∗, y∗),`∗,b∗) are similar to the Claim 1.

In the following, we discuss about the secret key simulation where the reduction algo-
rithm B answers the all admissible secret keys corresponding to the tuple (i , id,u) as per the
lower identity-hiding security game. From the security restriction of this game, the adver-
sary can not query for the secret key corresponds to the index i∗ and the identity id such that
id`∗ = b∗. So all the key queries are in the form either i 6= i∗ or id`∗ 6= b∗.

Secret key simulation. The secret key sku corresponding to the tuple (i , id,u) are as follows:

– For i 6= i∗ i.e., x 6= x∗∧ y 6= y∗

K1 = g 〈αx ,u〉 · g 〈r̃x ,u〉∑`∈[k] c̃y,`,id` , K2 = (B d1 fq )〈ψx ,u〉

– For, (x = x∗)∧ (y 6= y∗∨ id`∗ 6= b∗)

K1 = g 〈αx ,u〉 · (B gq )〈r̃x ,u〉∑`∈[k] c̃y,`,id` , K2 = (B d1 fq )〈ψx ,u〉
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– For, (x 6= x∗)∧ (y = y∗∧ id`∗ = b∗)

K1 = g 〈αx ,u〉+〈rx ,u〉∑ 6̀=`∗ c̃y,`,id` · (C gq )〈rx ,u〉c̃y,`∗,id`∗ K2 = (B d1 fq )〈ψx ,u〉

Note that, in the second case, the adversary can ask for the secret keys corresponding to
the index i∗, which can be answered as long as the queried identity must satisfy id`∗ 6= 0.
Since the lower identity-hiding game requires the adversary not to ask the key queries in
this form (i∗, id) with id`∗ 6= b∗, then the reduction algorithm can perfectly simulate the low
identity-hiding game so that this scheme satisfies the security of the lower identity-hiding
security assuming the modified-2 D3DH assumption 3 holds.

It completes the proof of lower identity-hiding. ut
Lemma 9 If the assumptions 3,5,6 and 7 hold over the bilinear group BG, then our EIPL-IPFE
satisfies the upper-identity hiding security as per the Definition 9.

Proof. We will prove this Lemma 9, via a sequence of hybrid games as discuss below. Re-
call that, the upper-identity security requires that no PPT adversary can distinguish between
the special encryption to the index-position-bit tuple (i∗,`∗,b∗) and (i∗+1,⊥,0) with non-
negligible advantages and given the adversary does not have a secret key for the tuple (i∗, id,u)
such that id`∗ = 1−b∗.

Hyb1 : The hybrid corresponding to the upper identity-hiding game in which the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗),`∗,b∗).

Hyb2 : The hybrid is the similar as the Hyb1 except that the columns components as shown
in the table below.

Table 17: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧` 6= `∗) H t
y,`,b ·hwy,`,bτ g wy,`,b

(y < y∗)∨ ((y,`) = (y∗,`∗)) H t
y,`,b ·hwy,`,bτ ·V τvy,`,b

`,b g wy,`,b · Ṽ vy,`,b

`,b

In words, we can say that, the ciphertext component Cy∗,`∗,1−b∗ also includes the random
elements in the subgroup Gp whereas in Hyb1 only Cy∗,`∗,b∗ for index i∗ included a random
elements in the subgroup Gp .

Hyb3 : This hybrid consists some sub-hybrids Hyb3, ˜̀,b̃ where ( ˜̀, b̃) ∈ [k]× {0,1} is the same
as Hyb2 except that the column components in the challenge ciphertext components are
as in following Table 18. In words, we can say that the ciphertext components Cy∗,`,b for

`< ˜̀, or `= ˜̀and b ≤ b̃ include a random component in the subgroup Gp .

Table 18: Computing column components of the sub-hybrid Hyb3, ˜̀,b̃

Cy,`,b C̃y,`,b

(y > y∗)∨
(y = y∗∧` ∉ [ ˜̀]∪ {`∗})∨
(y = y∗∧`= ˜̀∧b > b̃)

H t
y,`,b hwy,`,bτ g wy,`,b

(y < y∗)∨
(y = y∗∧` ∈ [ ˜̀−1]∪ {`∗})∨

(y = y∗∧`= ˜̀∧b ≤ b̃)

H t
y,`,b hwy,`,bτV

τvy,`,b

`,b g wy,`,b
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Hyb4 : This hybrid is similar to the previous sub-hybrid Hyb3,k,1 except that the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗+1),⊥,0). Note
that, if y∗ = ñ, it also recall that the special-encryption algorithm can be directly extended to
encrypt to such position.

Hyb5. This hybrid corresponds to the upper identity-hiding game in which the challenge
ciphertext is a special encryption to index-position-bit tuple (i∗+1,⊥,0). Note that, if y∗ 6= ñ
then hybrids 4 and 5 are already identical.

Next, we discuss the indistinguishability of the above hybrids. By combining above consec-
utive hybrids, the upper identity-hiding security holds.

Hyb1 ≈ Hyb2: The proof of the indistinguishability of the hybrids Hyb1 and Hyb2 is identi-
cal to that Claim 1 and Lemma 8.

Hyb3, ˜̀,b̃ ≈ Hyb3, ˜̀+b̃−1,(b̃+1) mod 2: If the modified-2 D3DH assumption 3 holds, then there

does not exists any PPT adversary can distinguish between the Hyb3, ˜̀,b̃ and Hyb3, ˜̀+b̃−1,b̃+1 mod 2
non-negligible advantage.

First note that, Hyb3, ˜̀,b̃ is identically equals to Hyb3, ˜̀+b̃−1,b̃+1 mod 2 for ˜̀= `∗. Otherwise, ac-
cording to the key query there have two cases:

Case 1. Adversary makes key query of the index tuple ( j , id) with j = i∗∧ id ˜̀= b̃.

To prove the indistinguishable in that case, suppose on contrary, there exists a PPT adver-
sary A which can distinguish between the hybrids Hyb3, ˜̀,b̃ and Hyb3, ˜̀+b̃−1,(b̃+1) mod 2 with
non-negligible advantage ε(·). We construct a PPT reduction algorithm B which breaks the
modified-2 D3DH assumption 3 with the same non-negligible advantage as follows:

(
BG, gp , gq , A = g a

p ,B = g b
p ,C = g c

p ,D = g b2

p ,T
)

where T is either g abc
p or a uniformly random element from the subgroup Gp . Next, B re-

ceives a tuple (1λ,1n ,1k ,1m , (i∗,`∗,b∗)) from the adversary A and then B simulates the
master public key and sends it to the adversary. After seeing mpk, the adversary makes poly-
nomial times key queries for the secret keys of distinct index positions. For simulating the
public keys, secret keys and the challenge ciphertext, the adversary finally outputs a bit b′

as guess which B uses to break the assumption 3. As the reduction plays the game with its
challenger in the subgroup Gp so any elements it can choose from the subgroup Gq by itself.
Let us implicitly set the exponents as below

tp = ab; rp,x∗, j = b · r̃p,x∗, j ; cp,y∗,`∗,b∗ = c + c̃p,y∗,`∗,b∗ ;
sp,x∗ = s̃p,x∗/b; cp,y∗, ˜̀,b̃ =−c + c̃p,y∗, ˜̀,b̃ ; κp,x∗ = κ̃p,x∗/ab

where r̃p,x∗, j , s̃p,x∗ , c̃p,y∗, ˜̀,b̃ , κ̃p,x∗ and c̃p,y∗,`∗,b∗ are the random exponents. Also, we implicitly

set hp = B = g b
p . and fp = B d1 for some exponent d1 ← ZN . Setting the exponents allows to

simulate the public key, secret key exactly as well as the challenge group elements T which
can be programmed in the challenge ciphertext components Cy∗, ˜̀,b̃ .

Public key simulation. Let us consider two random group generators hq , fq ∈ Gq by sam-

pling random exponent d ,d ′ ∈ZN such that hq = g d
q , fq = g d ′

q . To simulate the public key, B
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additionally chooses the following exponents

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, c̃y,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], r̃x, j ,αx, j ,ψx, j ←ZN

It samples β← ZN and choose random generator fq ← Gq and sets fq = g d ′
q for some d ′ ∈

ZN . Next, B computes the master public key’s components by using the modified-2 D3DH
instances of assumption 3.

Ex, j =
{

g r̃x, j if x 6= x∗,

(B gq )r̃x, j elsewhere. , Fx, j =
{

(Bhq )r̃x, j if x 6= x∗,

(Dhq )r̃x, j elsewhere. ,

Hy,`,b =


C g c̃y,`,b if (y,`,b) = (y∗,`∗,b∗),

C−1g c̃y,`,b if (y,`,b) = (y∗, ˜̀, b̃),

g c̃y,`,b elsewhere.

Wx, j = e(B fq ,B fq )d 2
1ψx, j ∀x

It also computes Eq,x, j = g
βr̃x, j
q ,Fq,x, j = h

βr̃x, j
q ,Gx, j = e(g , g )αx, j , Gq,x, j = e(gq , gq )βαx, j ,Wq,x, j =

e( fq , fq )βψx, j and sends the master public key as

mpk=



BG, g = gp gq ,h = Bhq , f = B d1 fq ,Eq = gβq , Zq = f βq , Ex, j ,Fx, j ,Gx, j ,Wx, j ,

Eq,x, j ,Fq,x, j ,Gq,x, j ,Wq,x, j


x∈[n̂], j∈[m]

{Hy,`,b}(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b ,V`,b

}
(`,b)∈[k]×{0,1}


Secret key simulation. B answers the secret key sku = (x, y, id,K1,K2) query for the tuple
(i = (x, y), id,u) as follows:

K1 =



g 〈αx ,u〉 · g 〈r̃x ,u〉∑`∈[k] c̃y,`,id` if x 6= x∗, y 6= y∗,

g 〈αx ,u〉 · (B gq )〈r̃x ,u〉∑`∈[k] c̃y,`,id` if x = x∗, y 6= y∗,

g 〈αx ,u〉 · (
∏
`∈[k] Hy,`,id`)〈r̃x ,u〉 if x 6= x∗, y = y∗,

g 〈αx ,u〉 · (B gq )〈r̃x ,u〉∑`∈[k] c̃y,`,id` if i = i∗, id ˜̀ 6= b̃, id`∗ 6= b∗,

g 〈αx ,u〉 · (B gq )〈r̃x ,u〉∑`∈[k] c̃y,`,id` if i = i∗, id ˜̀= b̃, id`∗ = b∗.

K2 = (B d1 fq )〈ψx ,u〉 for all x.

There have some restrictions over the key queries to the key generation oracle, i.e.,
– The adversary A can not query for the tuple (i , id,u) to the key generation oracle such

that i = i∗∧ id`∗ 6= b∗.
– In case-1, adversary also makes an query for the tuple (i , id,u) where i = i∗ ∧ id ˜̀ = b̃.

If an adversary makes a key query for the tuple (i , id,u) satisfying i = i∗∧ id ˜̀ 6= b̃, then
challenger strictly aborts the upper identity-hiding experiment.
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Ciphertext simulation. To generate the ciphertext, the challenger chooses the exponents as
follows.

τ ∈ZN , tq ←ZN , ∀ j ∈ [m], σ j ,ν j ,φ j ←ZN ,

∀x ∈ [n̂], ex , fx ,dx , κ̃x , s̃x ←ZN ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, w̃y,`,b , vy,`,b ←ZN .

Now, the challenger computes the row and column components as the tables below.

Table 19: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E s̃x
q,x, j F s̃xτ

q,x, j E
s̃x tq
q Z

κ̃x tq
q e(gq , gq )v j ·G s̃x tq

q,x, j ·W
κ̃x tq

q,x, j

x = x∗ g s̃x r̃x, j (Bhq )s̃x r̃x, j τ (Ag
tq
q )s̃x (Bd1 f

tq
q )κ̃x

e(gq , gq )v j ·e(g , Ag
tq
q )s̃xαx, j ·

e(B ,B)d 2
1ψx, j κ̃x ·e( fq , fq )ψx, j κ̃x tq

x < x∗ g s̃xσ j h s̃xτν j g ex (Bd1 fq )dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 20: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧`> ˜̀)∨
(y = y∗∧` ∉ [ ˜̀]∪ {`∗})∨
(y = y∗∧`= ˜̀∧b > b̃)

g
c̃y,`,b tq
q ·hw̃y,`,bτ A−c̃y,`,b /τg w̃y,`,b

y = y∗∧`= ˜̀∧b = b̃ g
c̃y,`,b tq
q ·hτw̃y,`,b ·T−1 A−c̃y,`,b /τ · g w̃y,`,b

(y < y∗)∨ (y = y∗∧`< ˜̀)∨
(y = y∗∧` ∈ [ ˜̀−1]∪ {`∗})∨

(y = y∗∧`= ˜̀∧b < b̃)

g
c̃y,`,b tq
q ·hτw̃y,`,b · g

vy,`,b
p g w̃y,`,b

After seeing the challenge ciphertext, B receives a guess bit b′ from A and B forwards it
to the modified-2D3DH challenger. If T = g abc

p , then B simulates the view of Hyb3, ˜̀+b̃−1,(b̃+1) mod 2
otherwise, if T is uniformly choose a group element from the subgroup Gp then B simulates
the view of Hyb3, ˜̀,b̃ . Thus, if the adversary A wins with the advantage ε(·) then B breaks the
assumption 3 with same advantage.

Case 2. Adversary makes key queries for the index j and identity id such that ( j 6= i∗∨ id ˜̀=
1− b̃).

Since in this case, the adversary is allowed to query secret keys for the indices j such that
j 6= i∗ and an identity id satisfies the conditions id ˜̀ 6= b̃ ∧ id`∗ = b∗. So, we can use the same
proof strategy as used in Claim 1 and 8 where the reduction algorithm does not need to know
the value of the group element g 〈rx∗ ,u〉cy∗m ˜̀,b̃ for answering the key queries. The proof tech-
nique is similar with the proof of Claim 1 and Lemma 8.

Hyb3 ≈ Hyb4 : Since, the hybrid 3 and hybrid 4 hold directly. Therefore, no PPT adversary
can distinguish between these two hybrids with non-negligible advantage.

Hyb4 ≈ Hyb5 : The indistinguishability of the Hyb4 and Hyb5 can be classified into two cases.

Case 1. If y∗ 6= ñ, then both Hyb4 and Hyb5 are identical.

Case 2. For y∗ = ñ, then the indistinguishability of hybrid 4 and hybrid 5 is followed from
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a sequence of hybrids similar to the claim 2. In particular, the hybrid Hyb4 is similar to the
hybrid 2 and Hyb5 is identical with the hybrid 7 as described in the claim 2. Thus, the indis-
tinguishability follows from the claim 2.

This concludes the upper identity-hiding security game. ut
Lemma 10 Assuming the D3DH assumption 1 holds over the bilinear group BG, then our
EIPL-IPFE satisfies message-hiding security as per the Definition 10.

Proof. The message-hiding security requires that the special encryptions of v (0) and v (1) to
the same tuple (i∗,⊥,0) are indistinguishable. For all the secret key queries in of the form
(i ≥ i∗, id,u) must satisfy 〈u, v (0)〉 = 〈u, v (1)〉. To prove of the above Lemma 10, we consider
the following hybrid games.

Hybrid 1. The hybrid corresponds to the message-hiding game in which the challenge ci-
phertext is a special encryption of the vector v (b) to the index-position-bit tuple (i∗,⊥,0).

Hybrid 2. This hybrid is similar to the hybrid 1 except that the row components Ix, j for x ≥ x∗

as mentioned in the following Table 21.

Table 21: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E
sx tq
q Zκx t

q e(gq , gq )
v (b)

j ·e(gq , Ax )αx, j ·e( fq ,Bx )ψx, j

x = x∗ E sx
x, j F sxτ

x, j g sx t f κx t e(gq , gq )
v (b)

j ·e(g , Ax )αx, j ·e( f ,Bx )ψx, j

x < x∗ g s̃xσ j h s̃xτν j g ex f dx e(g , g ) fxφ j

Hybrid 3. Hybrid 3 is the same as hybrid 2 except that the row components Bx for x ≥ x∗ as
mentioned in the Table 22 below.

Table 22: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E
sx tq
q Zκx (t+t ′)

q e(gq , gq )
v (b)

j ·e(gq , Ax )αx, j ·e( fq ,Bx )ψx, j

x = x∗ E sx
x, j F sxτ

x, j g sx t f κx (t+t ′) e(gq , gq )
v (b)

j ·e(g , Ax )αx, j ·e( f ,Bx )ψx, j

x < x∗ g s̃xσ j h s̃xτν j g ex f dx e(g , g ) fxφ j

where t ′ is uniformly chosen from ZN . From hybrid 3, the adversary can not extract any
information about the challenge bit b from the row component Ix, j for all x ∈ [n̂], j ∈ [m].

Next, we discuss the indistinguishability of the above hybrids.

Hybrid 1 ≈ Hybrid 2: From the hybrid 1, we modify the challenge ciphertext generation pro-
cess by using the master secret key {(rx, j ,αx, j ,ψx, j )}x∈[ñ], j∈[m]. First, the challenger B com-
putes all the ciphertext components as

Gq,x, j = e(gq , gq )βsx tαx, j Gx, j = e(g , g )sx tαx, j

Wq,x, j = e( fq , fq )βκx tψx, j Wx, j = e( f , f )κx tψx, j

for a randomly chosenβ, sx ,κx , t ←ZN . For x > x∗, B uses the master secret keys to compute
Ix∗, j as below:
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Ix, j = e(gq , gq )
v (b)

j ·e(gq , gq )βsx tαx, j ·e( fq , fq )βκx tψx, j

= e(gq , gq )
v (b)

j ·e(gq , gβsx t
q )αx, j ·e( fq , f βκx t

q )ψx, j

= e(gq , gq )
v (b)

j ·e(gq , Ax)αx, j ·e( fq ,Bx)ψx, j

Also, for x = x∗,

Ix, j = e(gq , gq )
v (b)

j ·e(g , g )sx tαx, j ·e( f , f )κx tψx, j

= e(gq , gq )
v (b)

j ·e(g , g sx t )αx, j ·e( f , f κx t )ψx, j

= e(gq , gq )
v (b)

j ·e(g , Ax)αx, j ·e( f ,Bx)ψx, j

It is clearly observed that the above distribution of challenge ciphertext ctv (b) = ({Rx, j , R̃x, j , Ax ,Bx ,
Ix, j }x∈[n̂], j∈[m], {Cy,`,b ,C̃y,`,b}(y,`,b)∈[ñ]×[k]×{0,1}) remains unaltered in the hybrid 2. So we can ar-
gue that these two hybrids 1 and 2 are indistinguishable.

Hybrid 2 ≈ Hybrid 3: In this hybrid, we modify the the challenge ciphertext ctv (b) = ({Rx, j , R̃x, j ,

Ax ,Bx , Ix, j }x∈[n̂], j∈[m], {Cy,`,b ,C̃y,`,b}(y,`,b)∈[ñ]×[k]×{0,1}) as

Bx = f βκx (t+t ′)
q for x > x∗; Bx = f κx (t+t ′) for x = x∗

where t ′ ←ZN . Other remaining ciphertext components are similarly generated as hybrid 1.
In the following, it will be shown that if the D3DH assumption 1 holds over the bilinear group
BG, then this modification should not significantly affect the adversary’s view.

Suppose on contrary, there exists a PPT adversary A that distinguishes between the hy-
brid 2 and 3 with non-negligible advantages. We construct a PPT reduction algorithm which
breaks the D3DH assumption 1 with the same non-negligible advantages as follows.

The reduction algorithm B first receives the challenges of D3DH assumption 1 from the
challenger as (

BG, gp , gq , Aq = g a
q ,Dq = g d

q ,Cq = g c
q ,T

)
where T is either g adc

q or a random element g t+t ′
q from Gq with t ′ ← Zq . Next, the chal-

lenger receives the challenge tuple (1λ,n,1k ,1m , i∗ = (x∗, y∗)) from the adversary A . We ap-

ply the reduction game with its challenger in the subgroupGq for x ≥ x∗. Sets fq = g
dq
q where

dq is sampled randomly from ZN . We also implicitly set the exponents dq = d , tq = c and
κx,q = a · κ̃x,q where κ̃x,q , κ̃x,p are chosen at random for x ≥ x∗ and also we randomly sam-
ple the generator fp from Gp . Setting exponents this way, it allows us to simulate the master
public key, secret key and challenge ciphertext as well as the group elements T can be pro-
grammed in the challenge ciphertext component Ix, j for x ≥ x∗.

Public key simulation. To simulate the public key, first chose random exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, cy,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], rx, j ,αx, j ,ψx, j ←ZN
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It samples β←ZN . Next, it computes all public key components are given below.

mpk=



BG,h, g = gp gq , f = fp Dq ,Eq = gβq , Zq = Dβ
q ,

Ex, j = g rx, j ,Fx, j = hrx, j ,Gx, j = e(g , g )αx, j ,

Eq,x, j = g
βrx, j
q ,Fq,x, j = h

βrx, j
q ,Gq,x, j = e(gq , gq )βαx, j ,

Wq,x, j = e(Dq ,Dq )βψx, j ,Wx, j = e( fp Dq , fp Dq )ψx, j


x∈[n̂], j∈[m]

{Hy,`,b = g cy,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


Note that, all the public key terms should be computed using the above D3DH instances of
assumption 1.

Secret key simulation. The challenger B answers the secret key sku = (x, y, id, K1,K2) cor-
responding to the tuple (i = (x, y), id,u) where K1,K2 is computed as follows

K1 = g 〈αx ,u〉 ·
( ∏
`∈[k]

Hy,`,id`

)〈rx ,u〉
if (x ≥ x∗)∨ (x = x∗∧ y ≥ y∗),

K2 = f 〈ψx ,u〉 = ( fp Dq )〈ψx ,u〉.

Note that, the adversary can key queries for the index i such that i ≥ i∗ whenever 〈u, v (0)〉 =
〈u, v (1)〉.
Ciphertext simulation. The challenger B chooses the random exponents as follows:

∀ j ∈ [m], σ j ,ν j ,φ j ←ZN , τ, tp ←ZN ,

∀x ∈ [n̂], ex , fx , sx , κ̃x ←ZN ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, wy,`,b , vy,`,b ←ZN .

Next, challenger B uses the D3DH challenge instances to simulate the challenge ciphertext,
which is specified in Tables 23 and 24.

Table 23: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j C sx
q Tβκ̃x,q e(gq , gq )

v (b)
j ·e(gq , Ax )αx, j ·e(Dq ,Bx )ψx, j

x = x∗ E sx
x, j F sxτ

x, j (Cq g
tp
p )sx f

tp κ̃x,p
p T κ̃x,q e(gq , gq )

v (b)
j ·e(g , Ax )αx, j ·e(Dp Dq ,Bx )ψx, j

x < x∗ g sxσ j hsxτν j g ex (Dq fp )dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 24: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧ (`,b∗) 6= (`∗,b∗)) (Cq g
tp
p )cy,`,b ·hwy,`,bτ g wy,`,b

(y < y∗)∨ ((y,`,b) = (y∗,`∗,b∗)) (Cq g
tp
p )cy,`,b ·hwy,`,bτ ·V τvy,`,b

`,b g wy,`,b · Ṽ vy,`,b

`,b

If T = g adc
q , B simulates the view of hybrid 2, otherwise if T = g t+t ′

q for random t ′ ←ZN ,
then B simulates the view of hybrid 3. Therefore, if A wins with the advantage ε(·), then B

breaks the D3DH assumption 1 with same advantage.
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In this hybrid, we claim that the challenge ciphertext ctv (b) perfectly hides the bit b ∈ {0,1}.
Recall that, for all x > x∗, we have

Ix, j = e(gq , gq )
v (b)

j ·e(gq , Ax)αx, j ·e( fq ,Bx)ψx, j

= e(gq , gq )
v (b)

j ·e(gq ,Eβsx t
q )αx, j ·e( fq , Zκxβ(t+t ′)

q )ψx, j

= e(gq , gq )
v (b)

j ·e(gq , gq )βsx tαx, j ·e(gq , gq )d 2
qκxβ(t+t ′)ψx, j [as fq = g

dq
q ]

= e(gq , gq )
v (b)

j +d 2
qκxβt ′ψx, j ·e(gq , gq )βsx tαx, j ·e(gq , gq )d 2

qκxβtψx, j

For all j ∈ [m], we consider

z(b)
j = v (b)

j +d 2
qκxβt ′ψx, j =⇒ z (b) = v (b) +d 2

qκxβt ′ψx ∈Zm
N

To prove that z (b) does not reveal any information about b ∈ {0,1} to any legitimate adversary,
we consider v = v (0) − v (1) mod N and generates (m −1) dimensional subspace of Zq with

its basis V ∈Z(m−1)×m
N as

orth(v ) = {u ∈Zm
N : 〈u, v〉 = 0 mod N }

= {u ∈Zm
N : 〈u, v (0)〉 = 〈u, v (1)〉 mod N }

Let choose a vector ũ ∉ orth(v ) in a deterministic manner and set a m ×m invertible matrix
Ṽ as

Ṽ =
 V

ũ>


To prove that z (b) does not reveal any information about the challenge bit b ∈ {0,1}, it suffices
to show that Ṽ · z (b) information-theoretically hides the bit b. As V · v (0) = V · v (1), the first
(m−1) rows of Ṽ·z (b) are clearly independent of b. We now concentrate on the last row of the
product Ṽ · z (b) i.e.,

〈v (b), ũ〉+βd 2
q t ′κx · 〈ψx , ũ〉 (14)

We have to show that from the Eq. 14, adversary can not learn any information about the
challenge bit b.

Let (r 0
x ,α0

x ,ψ0
x) ∈Zm

N ×Zm
N ×Zm

N denotes a tuple of vectors satisfying the relation{
G sx t

q,x, j ·W κx t
q,x, j = e(gq , gq )βsx tα0

x, j ·e( fq , fq )βκx tψ0
x, j

}
j∈[m]

and the secret key sku = (x, y, id,K1,K2) associated with a tuple (i , id,u) are given below

K1 = g 〈α0
x ,u〉 ·

( ∏
`∈[k]

Hy,`,id`

)〈r 0
x ,u〉

, K2 = f 〈ψ0
x ,u〉

Since all the key queries vector u ∈ orth(v ), the joint distribution of the secret key is

{r 0
x +µ ·v ,α0

x −µ · ι ·v mod N ,ψ0
x +µ ·v mod N :µ ∈ZN }

where ι= loge(gq ,gq ) e( fq , fq ). Therefore, the conditional distribution ofβd 2
q t ′κx ·〈ψx , ũ〉 mod N

becomes

{βd 2
q t ′κx · 〈ψ0

x +µ ·v , ũ〉 mod N :µ ∈ZN } = {βd 2
q t ′κx · (〈ψ0

x , ũ〉+µ〈v , ũ〉 :µ ∈ZN )} (15)
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Since, ũ ∉ orth(v ), so 〈v , ũ〉 6= 0 and t ′ 6= 0 with a high probability. So from the Eq. 15, it is
uniformly distributed over ZN . Therefore, the term βd 2

q t ′κx · 〈ψx , ũ〉 mod N information

theoretically hides the inner product 〈v (b),u〉 in the inner product 〈z (b),u〉 mod N . From

the component Bx = f βκx (t+t ′)
q if x > x∗, the adversary can not extract the information about

(t + t ′). So information theoretically βκx(t + t ′) hides (t + t ′) as κx is uniformly chosen from
ZN .

By the similar argument for x = x∗, we say that the challenge ciphertext hides the infor-
mation about b. This concludes the proof of message-hiding security. ut

Therefore, this completes the security of our EIPL-IPFE. ut

10 Selectively Secure EIPL-IBIPFE using Bilinear Maps

Let us assume GBG.Gen be a bilinear group generator of a composite-order group with order
N = p ·q where p, q be two prime integers. In the following, we describe our EIPL-IBIPFE =
(Setup,KeyGen,Enc,SplEnc,Dec) scheme using bilinear maps.

Setup(1λ, n, 1k , 1k ′
, 1m) → (msk,mpk,key): The setup algorithm works as follows:

– sets ñ = d
√

n
k e and n̂ = dn

ñ e.

– samples a bilinear group BG= (p, q, N = pq,G,GT ,e(·, ·)) ←GBG.Gen(1λ).
– chooses random generators gp ,hp , fp ∈Gp and gq ,hq , fq ∈Gq and sets g = gp gq ,h = hp hq , f =

fp fq ∈G. Also, it randomly chooses some exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1} cy,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂] rx, j ,αx, j ,ψx, j ←ZN

– samples ϑ′
p ← Gp ,ϑ′

q ← Gq such that ϑ′ = ϑ′
pϑ

′
q ∈ G and a k ′-length vector ϑ = (ϑi )i∈[k ′] =

(ϑp,iϑq,i )i∈[k ′] whose each ϑp,i ,ϑq,i are chosen at random from the subgroups Gp ,Gq re-
spectively. Let gid be a k ′-bit string representing a group identity, where gidi denotes the
i -th bit of gid and V ⊆ {1,2, . . . ,k ′} be set of all i for which gidi = 1. Consider two iden-
tity encoding functions H,Hq be defined as H(gid) = (ϑ′

pϑ
′
q )

∏
i∈V ϑp,iϑq,i and Hq (gid) =

ϑ′
q
∏

i∈V ϑq,i for gid ∈GID.
– chooses β←Zq , r̂ ←ZN and sets

mpk=



BG,h, g , f ,ϑ′,ϑ
′β
q ,ϑ, {ϑβq,i }i∈[k ′],H,Hq ,Eq = gβq ,

Ex, j = g r̂ rx, j ,Fx, j = h r̂ rx, j ,Yx, j = gψx, j ,

Eq,x, j = g
βr̂ rx, j
q ,Fq,x, j = h

βr̂ rx, j
q ,Yq,x, j = g

βψx, j
q ,

Gx, j = e(g , g )αx, j ,Gq,x, j = e(gq , gq )βαx, j


x∈[n̂], j∈[m]

{Hy,`,b = g cy,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}



msk=
G, g , r̂ , {rx, j ,αx, j ,ψx, j }x∈[n̂], j∈[m],

{cy,`,b}(y,`,b)∈[ñ]×[k]×{0,1}

 , key =mpk.

– Finally, it outputs mpk, msk, key.

59



KeyGen(msk, i , id,gid, u) → sku : The key generation algorithm works as follows:

– consider (x, y) ∈ [n̂]× [ñ] be the unique row wise representation of index i (for any i ∈ [n],
its corresponding indices can be defined as y = i mod ñ and x = d i

ñ e).
– chooses a random r̃ ←ZN and sets r = r̃ · r̂ mod N .
– computes H(gid) =ϑ′∏

i∈V ϑi where V = {i : i -th entry of gid is equals to 1}.

– outputs the secret key sku = (x, y, id,gid,K = (K1,K2,K3)) where K1 = g 〈αx ,u〉 (∏
`∈[k] Hy,`,id`

)r̂ 〈rx ,u〉 ,
K2 = f 〈ψx ,u〉 ·H(gid)r and K3 = g r .

Enc(mpk,gid′, v ) → ctv : The encryption algorithm is the same as special encryption algo-
rithm (described below) when run with (i∗,`∗,b∗) = (1,⊥,0).

SplEnc(key,gid′, v , (i∗,`∗, b∗)) → ctv : The special encryption algorithm executes the fol-
lowing steps:

– let (x∗, y∗) ∈ [n̂]× [ñ] be the unique row-wise representation of the index i∗.
– chooses random exponents as

∀ j ∈ [m], σ j ,ν j ,φ j ←ZN , τ, t ∈ZN , ∀x ∈ [n̂], sx ,ex , fx ,dx ←ZN

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, wy,`,b , vy,`,b ←ZN

– for all x ∈ [n̂], j ∈ [m], (y,`,b) ∈ [ñ]× [k]× {0,1}, it generates the following components as
described in the Table 25 and Table 26.

Table 25: Computing the row components for x ∈ [n̂], j ∈ [m]
Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E sx t
q Hq (gid′)βsx t e(gq , gq )v j ·G t sx

q,x, j ·e( fq ,Yq,x, j )t sx

x = x∗ E sx
x, j F sxτ

x, j g sx t H(gid′)sx t e(gq , gq )v j ·G t sx
x, j ·e( f ,Yx, j )t sx

x < x∗ g sxσ j hsxτν j g ex H(gid′)dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 26: Computing column components for (y,`,b) ∈ [ñ]× [k]× {0,1}
Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧ (`,b) 6= (`∗,b∗)) H t
y,`,b ·hwy,`,bτ g wy,`,b

(y < y∗)∨ (y,`,b) = (y∗,`∗,b∗)) H t
y,`,b ·hwy,`,bτ ·V vy,`,bτ

`,b
g wy,`,b · Ṽ vy,`,b

`,b

– outputs the ciphertext ctv associated to the vector v as

ctv =
{

Rx, j , R̃x, j , Ax ,Bx , Ix, j
}

x∈[n̂], j∈[m] ,{
Cy,`,b ,C̃y,`,b

}
(y,`,b)∈[ñ]×[k]×{0,1}


Dec(sku ,ctv ) → ζ/ ⊥: The decryptor uses the secret key sku to decrypt the ciphertext ctv . It
computes

η=
∏

j∈[m] Ix, j
u j ·∏ j∈[m] e(Rx, j ,

∏
`∈[k] C

u j

y,`,id`
) ·e(K3,Bx)∏

j∈[m] e(R̃x, j ,
∏
`∈[k] C̃

u j

y,`,id`
) ·e(K1, Ax) ·e(K2, Ax)

∈GT

Finally, it returns loge(gq ,gq )η.
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10.1 Correctness

Theorem 8 If all the components are generated as above algorithm, then our proposed scheme
is correct with non-negligible probability.

Proof. Consider the secret key sku = (x, y, id,gid,K ) corresponding to the index i = (x, y), an
user identity id, a group gid, and a predicate vector u. We know that

K =
(

K1 = g 〈αx ,u〉 · (
∏
`∈[k]

Hy,`,id`)r̂ 〈rx ,u〉,K2 = f 〈ψx ,u〉H(gid)r ,K3 = g r

)

Here, the ciphertext ctv , which is an encryption of a vector v and index-position-bit tuple
(i∗,`∗,b∗). It consists of {Rx, j , R̃x, j , Ax ,Bx , Ix, j }x, j , {Cy,`,b ,C̃y,`,b}y,`,b . Let i∗ = (x∗, y∗). From
the definition of EIPL-IBIPFE, correctness holds or the decryption oracle gives the outputs
〈u, v〉 if gid= gid′ and (i ≥ i∗+1)∨((i∗,`∗) = (i ,⊥))∨((i∗, id`∗) = (i ,1−b∗)). Consider the index
position i , an user identity id and the group identity gid which satisfies the above mention
constraints then from the representation of i , we can consider the following cases:

Case 1: x > x∗ : In this case, we have all row components for all x ∈ [ñ], j ∈ [m] as Rx, j =
E sx

q,x, j , R̃x, j = F sxτ
q,x, j , Ax = E sx t

q ,Bx = Hq (gid)βsx t , Ix, j = e(gq , gq )v j ·G t sx
q,x, j · e( fq ,Yq,x, j )t sx . The

decryption does not depend whether y > y∗ or not, we can compute the following compo-
nents from the Table 25 and Table 26.

First, we consider (y > y∗)∨ ((y = y∗)∧ (`,b) 6= (`∗,b∗)) and simplify the following com-
ponents.∏

j∈[m]
e

(
Rx, j ,

∏
`∈[k]

C
u j

y,`,id`

)
= ∏

j∈[m]
e

(
g
βr̂ rx, j sx
q ,

∏
`∈[k]

g cy,`,id`
tu j hwy,`,id`

τu j

)
= e(gq , gq )βr̂ sx t〈u,rx〉∑`∈[k] cy,`,id` ·e(gq ,hq )βr̂ sxτ〈u,rx〉∑`∈[k] wy,`,id` (16)

∏
j∈[m]

Ix, j
u j = e(gq , gq )

∑
j∈[m] u j v j ·e(gq , gq )

∑
j∈[m]βt sxαx, j u j ·e( fq , gq )

∑
j∈[m]βψx, j t sx u j

= e(gq , gq )〈u,v〉 ·e(gq , gq )βsx t〈αx ,u〉 ·e( fq , gq )βt sx〈ψx ,u〉 (17)

∏
j∈[m]

e

(
R̃x, j ,

∏
`∈[k]

C̃
u j

y,`,id`

)
= ∏

j∈[m]
e

(
h
βr̂ rx, j sxτ
q ,

∏
`∈[k]

g wy,`,id`
u j

)
= e(hq , gq )βr̂ sxτ〈rx ,u〉∑`∈[k] wy,`,id` (18)

Also, we have

e(K1, Ax) = e(gq , gq )βsx t〈αx ,u〉 ·e(gq , gq )βr̂ sx t〈rx ,u〉∑`∈[k] cy,`,id` (19)

e(K2, Ax) = e( fq , gq )βsx t〈ψx ,u〉 ·e(Hq (gid), gq )βsx tr (20)

e(K3,Bx) = e(g r ,Hq (gid)βsx t ) = e(gq ,Hq (gid))βsx tr (21)

Therefore, we get that for every ` ∈ [k], j ∈ [m],∏
j∈[m] e

(
Rx, j ,

∏
`∈[k] C

u j

y,`,id`

)
∏

j∈[m] e
(
R̃x, j ,

∏
`∈[k] C̃

u j

y,`,id`

) = e(gq , gq )βr̂ sx t〈u,rx〉∑`∈[k] cy,`,id` (22)
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So, from Eq. 17,19,20,21,22 we have,∏
j∈[m] Ix, j

u j ·∏ j∈[m] e(Rx, j ,
∏
`∈[k] C

u j

y,`,id`
) ·e(K3,Bx)∏

j∈[m] e(R̃x, j ,
∏
`∈[k] C̃

u j

y,`,id`
) ·e(K1, Ax) ·e(K2, Ax)

= e(gq , gq )βr̂ sx t〈u,rx〉∑`∈[k] cy,`,id` · e(gq , gq )〈u,v〉

e(gq , gq )βr̂ sx t〈rx ,u〉∑`∈[k] cy,`,id`

= e(gq , gq )〈u,v〉

Next, we consider (y < y∗)∨ ((y,`,b) = (y∗,`∗,b∗)). Then, we compute the following compo-
nents. ∏

j∈[m]
e

(
Rx, j ,

∏
`∈[k]

C
u j

y,`,id`

)

= ∏
j∈[m]

e

(
g
βr̂ rx, j sx
q ,

∏
`∈[k]

g cy,`,id`
tu j hwy,`,id`

τu j hτδ`,id`
vy,`,id`

u j

)
= e(gq , gq )βr̂ sx t〈u,rx〉∑`∈[k] cy,`,id` ·e(gq ,hq )βr̂ sxτ〈u,rx〉∑`∈[k](wy,`,id`

+δ`,id`
vy,`,id`

) (23)∏
j∈[m]

e

(
R̃x, j ,

∏
`∈[k]

C̃
u j

y,`,id`

)

= ∏
j∈[m]

e

(
h
βr̂ rx, j sxτ
q ,

∏
`∈[k]

g wy,`,id`
u j · gδ`,id`

vy,`,id`
u j · g

γ`,id`
vy,`,id`

u j

p

)
= e(hq , gq )βr̂ sxτ〈rx ,u〉∑`∈[k](wy,`,id`

+δ`,id`
vy,`,id`

) (24)

In this case also, ∏
j∈[m] e

(
Rx, j ,

∏
`∈[k] C

u j

y,`,id`

)
∏

j∈[m] e
(
R̃x, j ,

∏
`∈[k] C̃

u j

y,`,id`

) = e(gq , gq )βr̂ sx t〈u,rx〉∑`∈[k] cy,`,id`

So, correct decryption follows as previous.

Case 2: Otherwise: From the Tables 25 and 26, we have Rx, j = E sx
x, j , R̃x, j = F sxτ

x, j , Ax = g sx t ,

Bx = H(gid)sx t , and Ix, j = e(gq , gq )v j ·G t sx
x, j ·e( f ,Yx, j )t sx , then the correctness holds if (i∗,`∗) =

(i ,⊥)∨ (i∗, id`∗) = (i∗,1− id`∗) or we can write it as (x = x∗)∧ ((y > y∗)∨ (y = y∗∧ (`,b) 6=
(`∗,b∗))) ∏

j∈[m]
e

(
Rx, j ,

∏
`∈[k]

C
u j

y,`,id`

)
= ∏

j∈[m]
e

(
g r̂ rx, j sx ,

∏
`∈[k]

g cy,`,id`
tu j hwy,`,id`

τu j

)
= e(g , g )r̂ sx t〈u,rx〉∑`∈[k] cy,`,id` ·e(g ,h)r̂ sxτ〈u,rx〉∑`∈[k] wy,`,id` (25)∏
j∈[m]

e

(
R̃x, j ,

∏
`∈[k]

C̃
u j

y,`,id`

)
= ∏

j∈[m]
e

(
h r̂ rx, j sxτ,

∏
`∈[k]

g wy,`,id`
u j

)
= e(h, g )r̂ sxτ〈rx ,u〉∑`∈[k] wy,`,id` (26)

e(K1, Ax)= e(g , g )sx t〈αx ,u〉 ·e(g , g )r̂ sx t〈rx ,u〉∑`∈[k] cy,`,id` (27)

e(K2, Ax) = e( f 〈ψx ,u〉 ·H(gid)r , g sx t )= e( f , g )sx t〈ψx ,u〉 ·e(H(gid), g )sx tr (28)

e(K3,Bx) = e(g r ,H(gid)sx t )= e(g ,H(gid))sx tr (29)∏
j∈[m]

Ix, j
u j = e(gq , gq )〈u,v〉 ·e(g , g )sx t〈αx ,u〉 ·e( f , g )t sx〈ψx ,u〉 (30)
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Using Eq. 25,26,27,28,29,30 and similar computation as Case 1, the correctness of EIPL-
IBIPFE holds. ut

10.2 Security Analysis

Theorem 9 If the assumptions 1,2,3, 5,6 and 7 hold over the bilinear groupBG, then our EIPL-
IBIPFE is selectively secure as per Definitions 11 to 15.

Proof. We prove that ourEIPL-IBIPFE satisfies all five security properties discussed in Sec. 10.
We significantly modify the proof technique of [BW06, GKW19] to fit this into our scheme.
Before going the main idea of the proof technique, we would like to focus that since our
EIPL-IBIPFE consists of a public key special encryption algorithm thus, the adversary does
not need to special encryption queries to EIPL-IBIPFE challenger. Therefore, the adversary
only performs secret key queries to the challenger throughout the security game.

Lemma 11 Our EIPL-IBIPFE satisfies normal-hiding security as per the Definition 11.

Proof of Lemma 11. Since the ciphertext distribution of normal encryption and special en-
cryption for the index-position-bit tuple (1,⊥,0) are the same, thus the definition of normal-
hiding security follows from the scheme. ut
Lemma 12 If the assumptions 2,3, 5,6, and 7 hold over the bilinear group BG, then our EIPL-
IBIPFE satisfies the index-hiding security as per the Definition 12.

Proof of Lemma 12. As per the definition of index-hiding game, we show that the adversary
can not distinguish between the special encryption of the index-position-bit tuple (i∗,⊥,0)
and (i∗+1,⊥,0). Note that, the adversary is not allowed to query for the secret keys corre-
sponding to the index position i∗ = (x∗, y∗) and the group identity gid∗ at a time.

If y∗ = ñ, we have i∗ + 1 = (x∗ + 1,1) otherwise, i∗ + 1 = (x∗, y∗ + 1). Similar to [BW06,
GKW19], we consider two cases based on whether y = ñ or not. To prove this security, we
consider following two claims 3 and 4.

Claim 3. For y∗ < ñ, the special encryption to the index-position-bit tuple ((x∗, y∗),⊥,0) and
((x∗, y∗+1),⊥,0) are indistinguishable.

Proof of claim 3. To prove the above claim, we consider 2k + 1 sequences of hybrid games
as H0 and H ˜̀,b̃ where ˜̀∈ [k] and b̃ ∈ {0,1}. The hybrid H0 corresponds to the index-hiding
security game where the challenge ciphertext is a special encryption to the index-position-
bit tuple (i∗ = (x∗, y∗),⊥,0) and H ˜̀,b̃ is the same as H0 except the column component Cy∗,`,b

for (`,b) ∈ [ ˜̀−1]× {0,1} and for `= ˜̀,b = b̃,we take uniform element from Gp .

Table 27: Computing column components of the ciphertext in Hybrid H ˜̀,b̃

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧`> ˜̀)∨
(y = y∗∧`= ˜̀∧b > b̃)

H t
y,`,b ·hwy,`,bτ g wy,`,b

(y < y∗)∨ (y = y∗∧`< ˜̀)∨
(y = y∗∧`= ˜̀∧b ≤ b̃)

H t
y,`,b ·hwy,`,bτV

vy,`,bτ

`,b g wy,`,b · Ṽ vy,`,b

`,b

Here, the hybrid Hk,1 corresponds to the index-hiding game in which challenge cipher-
text is a special encryption to the index-position-bit tuple (i∗+1,⊥,0) = ((x∗, y∗+1),⊥,0) and
it is also required that the hybrid H0 and H1,0 are indistinguishable. In the following, we show
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that the hybrid H ˜̀,b̃ and the hybrid H ˜̀+b̃−1,(b̃+1) mod 2 are indistinguishable. This same proof
technique is used to show that all consecutive hybrids are indistinguishable. By combining
all indistinguishability of hybrids, the claim 3 follows.

H ˜̀,b̃ ≈ H ˜̀+b̃−1,(b̃+1) mod 2 : Suppose on contrary, there exists a PPT adversary A that can dis-

tinguish between the hybrid H ˜̀,b̃ and hybrid H ˜̀+b̃−1,(b̃+1) mod 2 with non-negligible advan-
tage ε(·). We construct a PPT reduction algorithm B which breaks the assumption 2 with the
same advantages as follows.

Let the reduction algorithm B first receives the modified-1 D3DH assumption 2 chal-
lenge instances from the challenger as

(BG, gp , gq , A = g a
p ,B = g b

p ,C = g c
p ,D = g b2

p ,E = g b2c
p ,F = g b3

p ,G = g b4

p , H = g b3c
p ,T )

where T is either g abc
p or a random element in the subgroup Gp of prime-order p. Next, it re-

ceives the challenge tuple (1λ,1n ,1k ,1k ′
,1m , i∗ = (x∗, y∗),gid∗) from the adversary A where

y∗ < ñ. Now, B generates the master public key by using the modified-1 D3DH instances of
assumption 2 and sends it to A . Next, the adversary makes secret keys queries for distinct
indices i and the group identity gid except i∗,gid∗ and sends the challenge message vector
v to the challenger. In the following, we show that how does B generate the master public
key and how to answer the queried secret keys and the challenge ciphertext from the chal-
lenge instances. Finally, A outputs its guess, which B uses to break the modified-1 D3DH
assumption 2.

Since, this reduction plays over the subgroup Gp with its challenger, thus it can choose
any required elements from the subgroup Gq . We implicitly set the exponents as rp,x∗, j =
b · r̃p,x∗, j and sp,x∗ = s̃p,x∗/b, r̂p = b2 where the exponents r̃p,x∗, j , s̃p,x∗ are chosen uniformly
random from the group Gp . Also we set hp = B = g b

p , fp = B d1 , tp = a ·b,cp,y∗, ˜̀,b̃ = c · c̃p,y∗, ˜̀,b̃
for some uniformly chosen d1 ←ZN , c̃p,y∗, ˜̀,b̃ ←ZN . With these exponents, B correctly sim-
ulates the master public key, secret keys and as well as the challenge group elements T that
can be programmed in the challenge ciphertext components Cy, ˜̀,b̃ .

Public key simulation. The challenger B chooses two random generators hq , fq ← Gq such

that hq = g d
q , fq = g d ′

q where the exponents d ,d ′ ∈ZN are sampled randomly. Additionally, it
chooses the random exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1} c̃y,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂] r̃x, j ,αx, j ,ψx, j ←ZN

Next, it samples β, r̂q ← ZN and computes the following public key components for all x ∈
[n̂], j ∈ [m] and (y,`,b) ∈ [ñ]× [k]× {0,1} as

Ex, j =
{

(Dg
r̂q
q )r̃x, j if x 6= x∗,

(F g
r̂q
q )r̃x, j otherwise . ,

Fx, j =
{

(F h
r̂q
q )r̃x, j if x 6= x∗,

(Gh
r̂q
q )r̃x, j otherwise . ,

Hy,`,b =
{

(C gq )c̃y,`,b if (y,`,b) = (y∗, ˜̀, b̃)

(gp gq )c̃y,`,b otherwise

Challenger B samples group elements ϑ′
p ,ϑp,i from Gp for all i ∈ [k ′] and ϑ′

q ,ϑq,i from Gq

for all i ∈ [k ′] such that H(gid) =ϑ′
pϑ

′
q
∏

i∈V ϑp,iϑq,i =ϑ′∏
i∈V ϑi , Hq (gid) =ϑ′

q
∏

i∈V ϑq,i where
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ϑ′ =ϑ′
pϑ

′
q ∈G, ϑ= (ϑi ) ∈Gk ′

. Finally, B sets the master public key as

mpk=



BG, g = gp gq ,h = g b
p g d

q , f = B d1 fq ,

ϑ′,ϑ
′β
q ,ϑ= (ϑi ), {ϑβq,i }i∈[k ′],H,Hq ,Eq = gβq ,

Ex, j ,Fx, j ,Gx, j = e(g , g )αx, j ,

Eq,x, j = g
βr̂q r̃x, j
q ,Fq,x, j = h

βr̂q r̃x, j
q ,Gq,x, j = e(gq , gq )βαx, j ,

Yx, j = gψx, j ,Yq,x, j = g
βψx, j
q


x∈[n̂], j∈[m]

,

{Hy,`,b}(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


All the public key components can be computed using the challenge instances of modified-1
D3DH assumption 2.

Secret Key simulation. To answer these queries, challenger returns the secret key sku corre-
sponding to the tuple (i = (x, y), id,gid,u) as follows: Note that the adversary is not allowed
to secret key queries corresponding to the tuple (i∗, id,gid∗,u) to the key generation oracle.

If gid = gid∗, then adversary can not query for the secret key corresponding to the index
position i∗. to generate the secret keys the challenger first computes H(gid∗) = (ϑ′

pϑ
′
q
∏

i∈V ∗ ϑp,i

ϑq,i ) = g
d∗

1
p g

d∗
2

q where V ∗ associated with the non-zero indices associated with the group
identity gid∗ and d∗

1 ,d∗
2 ← ZN . The challenger B chooses a random value r̃ ← ZN and set

r = r̂ · r̃ . Then it simulates the secret keys as follows:

K1 =


g 〈αx ,u〉(Dg

r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id` if x 6= x∗, y 6= y∗,

g 〈αx ,u〉(F g
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id` if x = x∗, (y 6= y∗∨ id` 6= b̃),

g 〈αx ,u〉(Dg
r̂q
q )〈r̃x ,u〉∑ 6̀= ˜̀cy,`,id` (E g

r̂q
q )

〈r̃x ,u〉c̃y, ˜̀,id ˜̀ if x 6= x∗∧ (y, id ˜̀) = (y∗, b̃),

K2 = (B d1 fq )〈ψx ,u〉(Dd∗
1 g

d∗
2 r̂q

q )r̃ for all x ∈ [n̂], K3 = (Dg
r̂q
q )r̃

For gid 6= gid∗, the adversary can query for the secret key corresponding to the index i∗. In
the following, B generates the secret keys for this case.

K1 =
g 〈αx ,u〉g

r̂q 〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q (F

∑
6̀= ˜̀ c̃y,`,id` H

c̃y, ˜̀,id ˜̀)〈r̃x ,u〉 if x = x∗, y = y∗, id ˜̀= b̃

g 〈αx ,u〉g
r̂q 〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q F 〈r̃x ,u〉∑`∈[k] c̃y,`,id` if x = x∗, y = y∗, id ˜̀ 6= b̃

Without loss of generality, we assume that the adversary makes the maximum number of
Q queries with the challenge group identity gid∗ and challenge index i∗. Now, the simulator
chooses an integer k ′

1 ← [k ′], sets an integer s = 10Q, a random k ′-length vector z = (zi ) ←Zk ′
s

and a value z ′ ← Zs . Additionally, the simulator also chooses a random value w ′ ← ZN and
an uniformly random k ′-length vector w = (wi ) ←Zk ′

N . All these values are kept secret to the
simulator.

Let us consider V ∗ ⊆ {1,2, . . . ,k ′} be the set of all i for which the challenge identity gid∗
i = 1.

Let V ∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which correspond to the collec-
tion of indices V ∗. Then set

∑
i∈V ∗ zi = k ′

1s−z ′ for uniformly chosen k ′
1 ∈ [k ′]. Now, we define

the function K(gid) as
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K(gid) =
{

0, if z ′+∑
i∈V zi ≡ 0 mod s

1, elsewhere

So, from the above definition of the function K, we can say that K(gid∗) = 0 and for all gid 6=
gid∗ it becomes non-zero. Additionally, we set two functions as F(gid) = N − sk ′

1+z ′+∑
i∈V zi

and J(gid) = w ′+∑
i∈V wi . The simulator assigns the public parameters ϑ′ = f N−k ′

1s+z ′ · g w ′ =
g

d ′
p

p g
d ′

q
q andϑi = f zi g wi = g

dp,i
p g

dq,i
q . Now B answers secret key components K2,K3 as follows:

K2 = g−〈ψx ,u〉 J(gid)
F(gid) ·Dd∗

1 r̃ g
d∗

2 r̂q r̃
q

= g−〈ψx ,u〉 J(gid)
F(gid) H(gid)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)− 〈ψx ,u〉

F(gid)
(

f F(gid)g J(gid)
)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r− 〈ψx ,u〉

F(gid)

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r ′

= f 〈ψx ,u〉H(gid)r ′

K3 = (D r̃ g
r̂q r̃
q ) · g− 〈ψx ,u〉

F(gid) = g r− 〈ψx ,u〉
F(gid) = g r ′

We implicitly set r ′ = r − 〈ψx ,u〉
F(gid) . So from the construction of K function, we get K(gid) 6= 0 for

any key query corresponding to the group identity gid 6= gid∗. This implies that the function
F(gid) 6= 0 mod N for the group identity (since we assume N > sk ′

1 for reasonable values of
N , s and k ′

1. We prove this in Lemma 23).

Challenge ciphertext simulation. B makes the simulation of the challenge ciphertext as
follows:

∀ j ∈ [m],σ j ,ν j ,φ j ←ZN , τ ∈ZN , tq ←ZN ,

∀x ∈ [n̂], ex , fx ,dx ←ZN , κ̃x , s̃x ←ZN ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, w̃y,`,b , vy,`,b ←ZN ,

For the challenge group identity gid∗, B computes H(gid∗) = (ϑ′
pϑ

′
q
∏

i∈V ∗ ϑp,iϑq,i ) = g
d∗

1
p g

d∗
2

q

for some d∗
1 ,d∗

2 ∈ ZN and Hq (gid∗)β = ϑ
′β
q

∏
i∈V ∗ ϑ

β

q,i . Now, for all x ∈ [n̂], j ∈ [m], challenger
computes the row and columns components as follows:

Table 28: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m].

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E s̃x
q,x, j F s̃xτ

q,x, j E
s̃x tq
q Hq (gid∗)βs̃x tq

e(gq , gq )v j ·G tq s̃x

q,x, j ·
e( fq ,Yq,x, j )tq s̃x

x = x∗ D r̃x, j s̃x

g
r̂q r̃x, j s̃x
q

F r̃x, j s̃xτ

g
r̂q r̃x, j s̃xτ
q

(Ag
tq
q )s̃x (Ad∗

1 g
d∗

2 tq
q )s̃x

e(gq , gq )v j ·e(g , Ag
tq
q )αx, j ,s̃x ·

e(A,B)d1ψx, j s̃x ·e( fq , gq )ψx, j tq s̃x

x < x∗ g s̃xσ j (Bhq )s̃xτν j g ex (g
d∗

1
p g

d∗
2

q )dx e(g , g ) fxφ j ·e( f , f ) fxφ j
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Table 29: Computing the columns components for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧`> ˜̀)∨
(y = y∗∧`= ˜̀∧b > b̃)

g
c̃y,`,b tq
q hw̃y,`,bτ A−c̃y,`,b /τ · g w̃y,`,b

y = y∗∧`= ˜̀∧b = b̃ g
c̃y,`,b tq
q ·hτw̃y,`,b ·T c̃y,`,b g w̃y,`,b

(y < y∗)∨ (y = y∗∧`< ˜̀)∨
(y = y∗∧`= ˜̀∧b < b̃)

g
c̃y,`,b tq
q ·hτw̃y,`,b · g

vy,`,b
p g wy,`,b

After generating all the ciphertext components, challenger sends these to the adversary A ,
then A guesses a bit b′ and sends it to B. It simply forwards it as the guess to the modified-1
D3DH challenger of assumption 2.

Analysis of simulation. If T = g abc
p , then B simulates the view of the hybrid is similar as

H ˜̀,b̃ otherwise if T is random group elements from Gp and the view of the hybrid is similar
as H ˜̀+b̃−1,(b̃+1) mod 2. Thus, if A wins with the advantages ε(·) then B breaks the modified-1
D3DH assumption 2 with the same advantages. ut

Claim 4. If y∗ = ñ, then the special encryption to the index-position-bit tuple (x∗, y∗,⊥,0)
and ((x∗+1,1),⊥,0) are indistinguishable.

Proof of claim 4. To prove the above claim, we consider a sequence of hybrids games. In the
following, we discuss about these hybrids.

Hybrid 1. This hybrid corresponds to the index-hiding game in which the challenge cipher-
text is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗), ⊥,0) for y∗ = ñ.

Hybrid 2. The hybrid is the same as hybrid 1 except that the challenge ciphertext is a special
encryption to the index-position-bit tuple (i∗ = (x∗, y∗+1),⊥,0) for y∗ = ñ. Note that, the
special-encryption algorithm does not generally encrypt to the position (x∗, y∗+1 = ñ +1),
however the algorithm can be naturally extended to encrypt to such position.

Hybrid 3. Hybrid 3 is the same as the previous hybrid 2 except that the row component Ix∗, j

as mentioned in the following Table 30.

Table 30: Computing row components for the ciphertext x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E sx t
q Hq (gid∗)βsx t e(gq , gq )v j ·G t sx

q,x, j ·e( fq ,Yq,x, j )t sx

x = x∗ E sx
x, j F sxτ

x, j g sx t H(gid∗)sx t e(gq , gq )v j ·G t sx
x, j ·e( f ,Yx, j )t sx ·L

x < x∗ g sxσ j hsxτν j g ex H(gid∗)dx e(g , g ) fxφ j ·e( f , f ) fxφ j

where L = e(gp , g )z and z is randomly chosen from Zp .

Hybrid 4. Hybrid 4 is identical to hybrid 3 except that the row component of the challenge
ciphertext as the Table 30. Here we consider L = e(g , g )z with z is a random exponent from
ZN .

Hybrid 5. Hybrid 5 is the same as hybrid 4 except that row component in the challenge ci-
phertext as in Table 31 as mentioned below.
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Table 31: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E sx t
q Hq (gid∗)βsx t e(gq , gq )v j ·G t sx

q,x, j ·e( fq ,Yq,x, j )t sx

x ≤ x∗ g sxσ j hsxτν j g ex H(gid∗)dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Hybrid 6. The hybrid 6 is similar to the hybrid 5 except that the column components to the
index-position-bit tuple ((x∗, y∗ = 1),`∗ =⊥,b∗ = 0) of the challenge ciphertext.

Hybrid 7. The hybrid 7 corresponds to the index-hiding security game in which the challenge
ciphertext is a special encryption to the index-position-bit tuple ((x∗+1,1),⊥,0) for y∗ = ñ.

In the following, we prove that the adversary’s advantage for all the consecutive hybrids
is negligible in the security parameter which completes the proof of the claim 4.

Hybrid 1 ≈ Hybrid 2: The indistinguishable proof of the hybrid 1 and hybrid 2 is identical to
claim 3.

Hybrid 2 ≈ Hybrid 3: Suppose on the contrary, there exists a PPT adversary A that distin-
guishes between the above two hybrids with the non-negligible advantages ε(λ). We con-
struct a PPT reduction algorithm that breaks the modified-2 D3DH assumption 3 with the
same non-negligible advantages as follows:

The reduction algorithm B first receives the modified-2 D3DH assumption 3 challenge
instances from its challenger as given below.

(BG, gp , gq , A = g a
p ,B = g b

p ,C = g c
p ,T = e(gp , g )z)

where z is either abc or a random element from ZN . Next, in the setup phase, adversary
receives the challenge tuple (1λ,1n ,1k ,1m , i∗ = (x∗, y∗),gid∗) from the adversary A satisfy-
ing the condition y∗ = ñ. Since, the reduction game plays with its challenger in the sub-
group Gp , thus it can choose any elements from Gq by itself. Now, B generates the master
public key using the given instances and sends it to the adversary A . Then, the adversary
can not make secret keys query corresponding the index i∗ and gid∗ at a time. In the fol-
lowing, we show how does B simulate the master public key, secret keys and challenge ci-
phertext from the given instances. Finally, A outputs its guess, which is used to break the
modified-2 D3DH assumption 3. For x = x∗, our approach is to implicitly set the exponents
rp,x∗, j = br j ,αp,x∗, j = abkr̂ r j , tp = c where r j ←ZN for all j ∈ [m] . Additionally, we implicitly
set cy,`,b = c̃p,y,`,b − a for all (y,`,b) ∈ [ñ]× [k]× {0,1}. According to the exponents as given
above, the challenger simulates the master public key, the secret keys and the challenge ci-
phertext components.

Public key simulation. To generate the master public key, it chooses the random exponents
as follows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, c̃y,`,b ←ZN , r̂ ←ZN ,

∀ j ∈ [m], x ∈ [n̂], r̃x, j , α̃x, j ,ψ̃x, j ←ZN ,

Additionally, it samples random group elements ϑ′
p ,ϑp,i ∈ Gp for all i ∈ [k ′], ϑ′

q ,ϑq,i ∈ Gq for

all i ∈ [k ′] such that ϑ′ = ϑ′
pϑ

′
q ,ϑ = (ϑp,iϑq,i )i∈[k ′] ∈ Gk ′

, and also choose random integers
d ,d1,β←ZN for all (y,`,b) ∈ [ñ]× [k]× {0,1}. Then B computes

Ex, j =
{

(gp gq )r̂ r̃x, j if x 6= x∗

(B r j g
r̃x, j
q )r̂ otherwise

,Fx, j =
{

h r̂ r̃x, j if x 6= x∗

(B r j d g
dr̃x, j
q )r̂ otherwise
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Gx, j =
{

e(gp gq , gp gq )α̃x, j if x 6= x∗

e(A,B)kr̂ r j e(gq , gq )α̃x, j otherwise

Sets the master public key

mpk=



BG, g = gp gq ,h = g d , f = g d1 ,

ϑ
′β
q ,ϑ′,ϑ= (ϑi ), {ϑβq,i }i∈[k ′],H,Hq ,Eq = gβq ,

Ex, j ,Fx, j ,Gx, j ,Eq,x, j = g
βr̂ r̃x, j
q ,

Fq,x, j = hβr̂ r̃x, j ,Gq,x, j = e(gq , gq )βα̃x, j ,

Yx, j = g ψ̃x, j ,Yq,x, j = g
βψ̃x, j
q


x∈[n̂], j∈[m]

,

{Hy,`,b = A−1g c̃y,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


Secret key simulation. The challenger B generates the secret key sku corresponding to the
adversary’s query tuple (i = (x, y), id,gid,u) as below.

First consider gid = gid∗, then the adversary can not query for the secret key associated
with the index position i∗.

K1 =
{

g 〈α̃x ,u〉+r̂ 〈r̃x ,u〉∑`∈[k] c̃y,`,id` A−r̂ 〈r̃x ,u〉 if x 6= x∗

g
〈α̃x ,u〉+r̂ 〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q B r̂ 〈r,u〉∑`∈[k] c̃y,`,id` otherwise

K2 = g d1〈ψ̃x ,u〉H(gid)r ∀x ∈ [n̂], K3 = g r

where r = r̂ · r̃ and r̃ is randomly chosen from ZN . Note that, the adversary A is not allowed
to query for the secret key corresponding to the pair (i∗ = (x∗, y∗),gid∗).

If gid 6= gid∗, then the adversary can query for the index position i∗. Then the challenger
generates the corresponding secret keys as below

K1 = g
〈α̃x ,u〉+r̂ 〈r̃x ,u〉∑`∈[k] c̃ñ,`,id`
q B r̂ 〈r,u〉∑`∈[k] c̃ñ,`,id` if x = x∗

As the previous case, we assume that the adversary makes the maximum number of Q queries,
the challenge group identity gid∗ and challenge index i∗. Now, the simulator chooses an in-
teger k ′

1 ← [k ′], sets an integer s = 10Q, a random k ′-length vector z = (zi ) ←Zk ′
s and a value

z ′ ←Zs . Additionally, the simulator chooses a random value w ′ ←ZN and an uniformly ran-
dom k ′-length vector w = (wi ) ←Zk ′

N . All these values are kept secret to the B.
Let us consider V ∗ ⊆ {1,2, . . . ,k ′} be the set of all i for which the challenge identity gid∗

i = 1.
Let V ∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which correspond to the collec-
tion of indices V ∗. Sets

∑
i∈V ∗ zi = k ′

1s − z ′ for uniformly chosen k ′
1 ∈ [k ′]. Now, we define the

function K(gid) as

K(gid) =
{

0, if z ′+∑
i∈V zi ≡ 0 mod s

1, elsewhere

So, from the above definition of the function K, we can say K(gid∗) = 0 and for all other gid 6=
gid∗, it becomes non-zero. Additionally, we set two functions as F(gid) = N −sk ′

1+z ′+∑
i∈V zi
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and J(gid) = w ′+∑
i∈V wi . The simulator assigns the public parameters ϑ′ = f N−k ′

1s+z ′ · g w ′ =
g

d ′
p

p g
d ′

q
q and ϑi = f zi g wi = g

dp,i
p g

dq,i
q . Now B answers remaining secret key components as

K2 = g−〈ψ̃x ,u〉 J(gid)
F(gid) H(gid)r

= f 〈ψ̃x ,u〉
(

f F(gid)g J(gid)
)− 〈ψ̃x ,u〉

F(gid)
(

f F(gid)g J(gid)
)r

= f 〈ψ̃x ,u〉
(

f F(gid)g J(gid)
)r− 〈ψ̃x ,u〉

F(gid)

= f 〈ψ̃x ,u〉
(

f F(gid)g J(gid)
)r ′

= f 〈ψ̃x ,u〉H(gid)r ′

K3 = g r · g− 〈ψ̃x ,u〉
F(gid) = g r− 〈ψ̃x ,u〉

F(gid) = g r ′

We implicitly set r ′ = r − 〈ψ̃x ,u〉
F(gid) . So from the construction of K function, we get K(gid) 6= 0 for

any key query corresponding to the group identity gid 6= gid∗. This implies that the function
F(gid) 6= 0 mod N for any such group identity (as we assume N > sk ′

1 for reasonable values
of N , s and k ′

1, see Lemma 23).

Challenge ciphertext simulation. The challenger B can compute all the column compo-
nents corresponding to (y,`,b) ∈ [ñ]× [k]× {0,1} on its own, since Gp subgroup components
are random in Cy,`,b ,C̃y,`,b terms and for computing remaining terms over the subgroup Gq ,
the required exponents are already known to the challenger B. For x < x∗, all the row com-
ponents Rx, j , R̃x, j , Ax ,Bx , Ix, j are chosen randomly, but for x > x∗, all the row components
are formed over the subgroup Gq which it knows. For the challenge group identity gid∗, the

challenger computes H(gid∗) = (ϑ′
pϑ

′
q )

∏
j∈V ∗(ϑp, jϑq, j ) = g

d∗
1

p g
d∗

2
q for some d∗

1 ,d∗
2 ∈ZN . Then

the challenger B simulates the challenge ciphertext for x = x∗ as follows:

Table 32: Computing row component of the ciphertext for x = x∗

Rx, j R̃x, j Ax Bx Ix, j

x = x∗ (Br j g
r̃x, j
q )r̂ s̃x (Br j g

r̃x, j
q )dr̂ s̃xτ (C g

tq
q )s̃x (C d∗

1 g
tq d∗

2
q )s̃x

e(gq , gq )v j ·e(gq , gq )α̃x, j s̃x tq

·T r̂ k s̃xr j ·e( f ,C g
tq
q )ψ̃x, j s̃x

where the exponents s̃x∗ ,τ, tq are randomly sampled from ZN . Finally, B gets the guess bit
b′ from A and it simply forwarded it to the modified-2 D3DH assumption 3 challenger.

Analysis of simulation. If T = e(gp , g )abc , then B simulates the view of hybrid 2 else if
T = e(gp , g )z for any random z from ZN , adversary’s view same as hybrid 3. Therefore, if
A wins the game with advantages ε(·), then B breaks the modified-2 D3DH assumption 3
with the same advantages.

Hybrid 3 ≈ Hybrid 4: To show the indistinguishability of two the hybrids 3 and 4, we use a
similar proof technique of [BW06, GKW19]. Here, we discuss the underlying approaches. Let
us consider that B receives the Bilinear Subgroup Decisional (BSD) assumption 6 challenge
instances from the challenger consisting the bilinear group BG,e(T, g ) where T is either a
random element from the subgroup Gp or a uniform element from the group G. Then B

computes all the components for the master public key mpk honestly and forwarded it to
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the adversary. After seeing mpk, adversary can query for the secret key to the key generation
oracle. Finally, B computes all the challenge ciphertext components honestly except that
the value Ix∗, j = e(g , g )v j ·G sx∗ t

x∗, j ·e(g ,T ) ·e( f , g )ψx∗, j sx∗ t where T is taken from BSD challenge
of assumption 2. If T ←Gp , then simulator’s view is the same as hybrid 3 otherwise, if T ←G

then B perfectly simulates as hybrid 4. Therefore, if A wins with the advantage ε(·), then B

breaks the assumption 6 with the same advantage ε(·).

Hybrid 4 ≈ Hybrid 5: Suppose on the contrary, there exists PPT adversary A that distinguish
between the hybrid 4 and hybrid 5 with the non-negligible advantage ε(·). Then, we con-
struct a PPT reduction algorithm which breaks the R3DH assumption 7 with the same non-
negligible advantages.

Let the reduction algorithm B first receives the challenges of R3DH assumption 7 from
the challenger as

(BG,gp ∈Gp ,gq ∈Gq , A = ga
q ,B = gã

p ·ga2

q ,C = gc̃
p ·gc

q ,D = gãc̃
p ,T )

where T is either ga2c
q or a random element from the subgroup Gq . Next, the challenger B

receives the challenge tuple (1n ,1k ,1k ′
,1m , i∗ = (x∗, y∗),gid∗) from A . Then, B generates the

public keys and sends it to the adversary. After getting the public parameters, A can secret
key query to the key generation oracle corresponding for the tuple (i = (x, y), id,gid,u). Next
the adversary uniformly chooses a challenge message vector pair v (0), v (1) and sends it to B.
To answer the challenge ciphertext, B randomly chooses a bit b ∈ {0,1} and generates the
challenge ciphertext ct(b)

v . In the following, we describe how does the challenger simulate
the master public key, the secret key and the challenge ciphertext using the assumption 7
instances. Finally, the adversary A outputs a guess bit which breaks the assumption 7. As,
the reduction plays the game with the challenger in the subgroup Gq , so it chooses all the
components from the subgroup Gp by itself. Although, in the challenge instances of B ,C
some parts belong to the subgroup Gp but their exponents depends on ã and c̃ terms. In the
following, we implicitly set the exponents as

gp = gp , gq = A, rq,x∗, j = r̃q,x∗, j /a, rp,x∗, j = r̃p,x∗, j ,

sq,x∗ = c, sp,x∗ = c̃, tq = a, tp = ã,

for all x ∈ [n̂]− {x∗}, sx = s̃x/a

where r̃p,x∗, j , r̃q,x∗, j ←ZN and for all x ∈ [n̂]− {x∗}, s̃x ←ZN . Additionally, the reduction algo-
rithm samples the exponents uniformly random fromZN . Note that, the reduction algorithm
does not know the factorization so at any point, we do not sample these exponents from Gp

and Gq separately, but instead of sample any exponents directly fromZN and make sure that
the distributions are not affected.

Public key simulation. To generate the public key, B chooses the random exponents as fol-
lows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, cy,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], r̃x, j ,αx, j ,ψx, j ←ZN

Also, it chooses the exponents d ,β, r̂ ← ZN to compute all the remaining components of
the master public key. For all x ∈ [n̂], j ∈ [m] and (y,`,b) ∈ [ñ]× [k]× {0,1}, B computes the
following components.
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Eq,x, j =
{

Aβr̂ r̃x, j if x 6= x∗,

g
βr̂ r̃x, j
q elsewhere. ,

Ex, j =
{

(gp A)r̂ r̃x, j if x 6= x∗.

(gpgq )r̂ r̃x, j elsewhere. ,

Fq,x, j = E d
q,x, j ,

Fx, j = E d
x, j ,

Gq,x, j = e(A, A)βαx, j ,

Gx, j = e(gp A,gp A)αx, j ,

Yq,x, j = Aβψx, j ,

Yx, j = (gp A)ψx, j ,

Also, we choose random group elements ϑ′
p ,ϑp,i ∈ Gp for all i ∈ [k ′] and ϑ′

q ,ϑq,i ∈ Gq for all
i ∈ [k ′] such that H(gid) = (ϑ′

pϑ
′
q )

∏
i∈V (ϑp,iϑq,i ) = ϑ′∏

i∈V ϑi and Hq (gid) = ϑ′
q
∏

i∈V ϑq,i cor-
responding to any group identity gid. Now, the challenger B sets master public key as

mpk=



BG, g = gp A,h = g d , f = g d1 ,

ϑ
′β
q ,ϑ′,ϑ= (ϑi ), {ϑβq,i }i∈[k ′],H,Hq ,Eq = Aβ, Ex, j ,Fx, j ,Gx, j ,Yx, j ,

Eq,x, j ,Fq,x, j ,Gq,x, j ,Yq,x, j


x∈[n̂], j∈[m]

,

{Hy,`,b = (gp A)cy,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


Secret key simulation. First, B computes H(gid) = ϑ′∏

i∈V ϑi = g d ′ = (gp A)d ′
for some d ′ ←

ZN . In the query phase, the adversary A is not allowed to query for the challenge index
and group identity i∗ = (x∗, y∗),gid∗ together. If gid = gid∗, B answers the secret key sku

corresponding to the tuple (i , id,gid,u) as given below. Note that, the adversary is not allowed
to secret key query for the index position i∗.

K1 =
{

g 〈αx ,u〉 · (gp A)r̂ 〈r̃x ,u〉∑`∈[k] cy,`,id` if x 6= x∗,

g 〈αx ,u〉 · (gpgq )r̂ 〈r̃x ,u〉∑`∈[k] cy,`,id` otherwise. ,

K2 = (gp A)d1〈ψx ,u〉H(gid)r , K3 = g r .

If gid 6= gid∗, then the secret keys corresponding to the index i∗ looks as

K1 = g 〈αx ,u〉 · (gpgq )r̂ 〈r̃x ,u〉∑`∈[k] cy,`,id` if x = x∗, y = y∗ = ñ

To simulate the keys components K2 and K3, challenger similarly constructs the functions F,J
and K as mentioned in indistinguishability proof of in hybrid 3. Also, B sets similar public
key parameters ϑ′ and ϑi ’s. It answers the remaining secret key components as follows:

K2 = g−〈ψx ,u〉 J(gid)
F(gid) H(gid)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)− 〈ψx ,u〉

F(gid)
(

f F(gid)g J(gid)
)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r− 〈ψx ,u〉

F(gid)

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r ′

= f 〈ψx ,u〉H(gid)r ′

K3 = g r · g− 〈ψx ,u〉
F(gid) = g r− 〈ψx ,u〉

F(gid) = g r ′

As in the previous argument, we implicitly set r ′ = r − 〈ψx ,u〉
F(gid) . Therefore, from the construc-

tion of K function, we get K(gid) 6= 0 for any key query corresponding to the group identity
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gid 6= gid∗. This implies the function F(gid) 6= 0 mod N for any such group identity (since we
assume N > sk ′

1, see Lemma 23).

Challenge ciphertext simulation. To generate the challenge ciphertext, B chooses the ran-
dom exponents as follows

∀ j ∈ [m],σ j ,ν j ,φ j ←ZN , τ, t̃p ∈ZN ,

∀x ∈ [n̂], ex , fx ,dx ←ZN , s̃x ←ZN ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, w̃y,`,b , ṽy,`,b ←ZN .

For the challenge identity gid∗, B computes H(gid∗) = (ϑ′)
∏

i∈V ∗ ϑi = g
d∗

1
p g

d∗
2

q = g
d∗

1
p Ad∗

2 and

Hq (gid∗)β =ϑ′β
q

∏
i∈V ∗ ϑ

β

q,i = g
βd∗

2
q = Aβd∗

2 for some d∗
1 ,d∗

2 ∈ZN . Now, for all x ∈ [n̂], challenger
computes the row and column components as follows.

Table 33: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ g
βr̂ r̃x, j s̃x
q g

βr̂τdr̃x, j s̃x
q Aβs̃x Ad∗

2 βs̃x e(A, A)v j e(A, A)βαx, j s̃x e(A, A)d1βs̃xψx, j

x = x∗ C r̂ r̃x, j C r̃x, j r̂τd DT Dd∗
1 T d∗

2 e(g , g )φ j fx e(g , g )d 2
1φ j fx

x < x∗ g s̃xσ j g d s̃xτν j g ex g d1dx e(g , g ) fxφ j e(g , g )d 2
1φ j fx

Table 34: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

∀y ∈ [ñ] Bcy,`,b hw̃y,`,bτg
ṽy,`,b
p g w̃y,`,b

Analysis of simulation. For T = ga2c
q , B simulates the hybrid 4, otherwise if T is randomly

chosen from the group Gq then B simulates the view of hybrid 5 as the target row ‘= x∗’ will
be indistinguishable from the less than row ‘< x∗’. Therefore, if B breaks the R3DH assump-
tion with the advantage ε(·) then A wins the game with the same advantages.

Hybrid 5 ≈ Hybrid 6: To prove the hybrid 5 and 6 are indistinguishable, let us consider (2ñk+
1) sub-hybrid H0, H ỹ , ˜̀,b̃ for (ỹ , ˜̀, b̃) ∈ ([ñ]× [k]× {0,1}). In this game the sub-hybrid H0 cor-
responds to the hybrid 5 as described above. Now the sub-hybrid Hy,`,b is same as the hy-
brid H0 except that the column components in the challenge ciphertext Cy,`,b for y < ỹ and

(y,`,b) ∈ {ỹ}×[ ˜̀−1]×{0,1} and for y = ỹ ,`= ˜̀,b < b̃ have a random element in the subgroup
Gp . The column components are generated as described below in the Table 35.

Table 35: Computing column components of the ciphertext in sub-hybrid H ỹ , ˜̀,b̃

Cy,`,b C̃y,`,b

(y > ỹ)∨ (y = ỹ ∧`> ˜̀)∨
(y = ỹ ∧`= ˜̀∧b ≥ b̃)

H t
y,`,b ·hwy,`,bτ g wy,`,b

(y < ỹ)∨ (y = ỹ ∧`< ˜̀)∨
(y = ỹ ∧`= ˜̀∧b < b̃)

H t
y,`,b ·hwy,`,bτ ·V vy,`,bτ

`,b g wy,`,b · Ṽ vy,`,b

`,b

Now we show that sub-hybrid H ỹ , ˜̀,b̃ is indistinguishable with sub-hybrid H ỹ , ˜̀+b̃−1,(b̃+1) mod 2.
Note that, sub-hybrid H1,1,0 is identical to the main hybrid 6. It is also required that the sub-
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hybrid H0 ≈ Hñ,`,1 and sub-hybrid H ỹ ,k,1 ≈ H ỹ+1,1,0. We now show that+ the sub-hybrid H ỹ , ˜̀,b̃
and H ỹ , ˜̀+b̃−1,(b̃+1) mod 2 are indistinguishable with the similar techniques that are used to
prove the indistinguishability of all the consecutive sub-hybrids for (y,`,b) ∈ [ñ]×[k]×{0,1}.
By combining all claims of sub-hybrids, our required indistinguishability between hybrids 5
and 6 will follow.

Sub-hybrid H ỹ , ˜̀,b̃ ≈ Sub-hybrid H ỹ ,ỹ+b̃−1,(b̃+1) mod 2: Suppose on the contrary, there exist a
PPT adversary A that distinguishes the sub-hybrid H ỹ , ˜̀,b̃ and sub-hybrid H ỹ ,ỹ+b̃−1,(b̃+1) mod 2
with the non-negligible advantage ε(·). We construct a PPT reduction algorithm B which
can break the modified-2 D3DH assumption 3 with the same non-negligible advantage as
described above. From the challenger, the reduction algorithm B receives the following in-
stances as

(BG, gp , gq , A = g a
p ,B = g b

p ,C = g c
p ,T )

where T is either g abc
p or a random element in the subgroup Gp of prime-order p. Next, it re-

ceives the challenge tuple (1λ,1n ,1k ,1k ′
,1m , x∗, y∗,gid∗) from the adversary A where y∗ = ñ.

Now, B generates the master public key using the modified-2 D3DH instances and sends
it to the adversary. Then the adversary can make queries for the secret keys of distinct in-
dices except the pair (i∗,gid∗) to the key generation oracle. In the following, B generates the
master public key, secret keys and the challenge ciphertext. Note that, finally A outputs its
guess, which B uses to break the given modified-2 D3DH assumption 3. Since the reduction
plays with the challenger over the subgroup Gp , thus it can choose any elements from the
subgroup Gq itself. It now implicitly sets tp = a ·b, hp = B = g b

p and cp,ỹ , ˜̀,b̃ = c · c̃p,ỹ , ˜̀,b̃ where
the exponent c̃p,ỹ , ˜̀,b̃ is chosen uniformly random. By using these exponents, B simulates
the master public key, secret keys and the group elements T can be programmed in the chal-
lenge ciphertext components C ỹ , ˜̀,b̃ .

Public key simulation. To generate the master public key, B sets hq = g d
q for d ∈ ZN and

chooses the random exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, c̃y,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂], rx, j ,αx, j ,ψx, j ←ZN

Also, it chooses random group elements ϑ′
p ,ϑp,i ∈ Gp for all i ∈ [k ′] and ϑ′

q ,ϑq,i ∈ Gq for all
i ∈ [k ′] such that H(gid) = (ϑ′

pϑ
′
q )

∏
i∈V ϑp,iϑq,i = ϑ′∏

i∈V ϑi and Hq (gid) = ϑ′
q
∏

i∈V ϑq,i cor-
responding to any group identity gid. It also samples β, r̂ ,d1,d2 ← ZN and sets g = gp gq ,

h = hp hq = Bhq = g b
p · g d

q , f = fp fq = g d1
p g d2

q . All the components of the master public keys
are generated as follows:

mpk=



BG, g = gp gq ,h = Bhq , f = g d ,

ϑ′,ϑ
′β
q ,ϑ= (ϑi ), {ϑβq,i }i∈[k ′],H,Hq ,Eq = gβq

Ex, j = g r̂ rx, j ,Fx, j = h r̂ rx, j ,Gx, j = e(g , g )αx, j

Eq,x, j = g
βr̂ rx, j
q ,Fq,x, j = h

βr̂ rx, j
q ,Gq,x, j = e(gq , gq )βαx, j ,

Yx, j = gψx, j ,Yq,x, j = g
βψx, j
q


x∈[n̂], j∈[m]

{Hy,`,b}(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}
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All the components are generated from the challenge D3DH instances.

Secret key simulation. In the query phase, the adversary A is not allowed to query for the
challenge index i∗ and the group identity gid∗ together. If gid= gid∗, B replies the secret key
to A corresponding to the index i (6= i∗) as

K1 =
{

g 〈αx ,u〉 · g r̂ 〈rx ,u〉∑ 6̀= ˜̀ c̃y,`,id` (C gq )r̂ 〈r̃x ,u〉c̃ ỹ , ˜̀,b̃ if (y, id ˜̀) = (ỹ , b̃),

g 〈αx ,u〉 · g r̂ 〈rx ,u〉∑`∈[k] c̃y,`,id` otherwise. ,

K2 = g d〈ψx ,u〉H(gid)r , K3 = g r

where r̃ ← ZN and set r = r̃ · r̂ . If gid 6= gid∗, then A can query for the secret for the index
position i∗. Then the secret keys are generated as

K1 =
{

g 〈αx ,u〉 · g r̂ 〈rx ,u〉∑` 6= ˜̀ c̃y,`,id` (C gq )r̂ 〈r̃x ,u〉c̃ ỹ , ˜̀,b̃ if y = ỹ = ñ ∧ id ˜̀= b̃,

g 〈αx ,u〉 · g r̂ 〈rx ,u〉∑`∈[k] c̃y,`,id` if y = ỹ = ñ ∧ id ˜̀ 6= b̃,

To simulate the other keys components, the challenger similarly construct the functions F,J
and K as mentioned above in the secret key simulation phase of hybrid 3. Also, B sets sim-
ilar public key parameters ϑ′ and ϑi ’s. It answers the remaining secret key components as
follows:

K2 = g−〈ψx ,u〉 J(gid)
F(gid) H(gid)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)− 〈ψx ,u〉

F(gid)
(

f F(gid)g J(gid)
)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r− 〈ψx ,u〉

F(gid)

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r ′

= f 〈ψx ,u〉H(gid)r ′

K3 = g r · g− 〈ψx ,u〉
F(gid) = g r− 〈ψx ,u〉

F(gid) = g r ′

As in the previous argument, we implicitly set r ′ = r − 〈ψx ,u〉
F(gid) . Therefore, from the construc-

tion of K function, it implies that K(gid) 6= 0 for any key query corresponding to the group
identity gid 6= gid∗. This implies the function F(gid) 6= 0 mod N for any such group identities
(since we assume N > sk ′

1 for reasonable values of N , s and k ′
1, see Lemma 23).

Challenge ciphertext simulation. Challenger B chooses the random exponents as follows.

∀ j ∈ [m],σ j ,ν j ,φ j ←ZN , τ ∈ZN , tq ←ZN

∀x ∈ [n̂], ex , fx ,dx , sx ←ZN

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, w̃y,`,b , vy,`,b ←ZN

For the challenge group identity gid∗, B computes H(gid∗) = (ϑ′
pϑ

′
q )

∏
i∈V ∗ ϑp,iϑq,i = g

d∗
1

p g
d∗

2
q

and Hq (gid∗)β = ϑ
′β
q

∏
i∈V ∗ ϑ

β

q,i = g
βd∗

2
q for some d∗

1 ,d∗
2 ∈ ZN . Now, for all x ∈ [n̂], j ∈ [m], the

challenger can compute following row and column components.
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Table 36: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j E
sx tq
q Hq (gid∗)βsx tq e(gq , gq )v j ·G sx tq

q,x, j ·e( fq ,Yq,x, j )sx tq

x ≤ x∗ g sxσ j hsxτν j g ex H(gid)dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 37: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > ỹ)∨ (y = ỹ ∧`> ˜̀)∨
(y = ỹ ∧`= ˜̀∧b > b̃)

g
c̃y,`,b tq
q hw̃y,`,bτ A−c̃y,`,b /τ · g w̃y,`,b

y = ỹ ∧`= ˜̀∧b = b̃ g
c̃y,`,b tq
q hτw̃y,`,b T c̃y,`,b g w̃y,`,b

(y < ỹ)∨ (y = ỹ ∧`< ˜̀)∨
(y = ỹ ∧`= ˜̀∧b < b̃)

g
c̃y,`,b tq
q hτw̃y,`,b g

vy,`,b
p g w̃y,`,b

Analysis of simulation. For T = g abc
p , then A gets the view of the challenge ciphertext as

the sub-hybrid H ỹ , ˜̀+b̃−1,(b̃+1) mod 2, otherwise for any random group element from the sub-
group Gp , the adversary A gets the view of the sub-hybrid H ỹ , ˜̀,b̃ . Therefore, if A breaks the
modified-1 D3DH assumption 2 with non-negligible advantage then it also wins the game
with the same advantage.

Hybrid 6 ≈ Hybrid 7: Suppose on the contrary, there exists a PPT adversary A that can dis-
tinguish between the hybrid 6 and hybrid 7 with non-negligible advantage ε(·). Now, we con-
struct a PPT reduction algorithm B that breaks the DHSD assumption 5 with the same ad-
vantage.

The reduction algorithm B first receives the DHSD challenge instances of assumption 5
from its challenger as

(BG, g = gp gq ,h = hp hq , A = g a
q ,B = ha

q ,C = g b g c
p ,D = hb ,T )

where T is either sampled as T = g d
q or T = g d , where d is a random exponent sampled as

d ← ZN . Next B receives the challenge tuple (1λ,1n ,1k ,1k ′
,1m , x∗, y∗, gid∗) from the adver-

sary for y∗ = ñ. Now, B generates the master public key from the instances of assumption
5 and sends it to the adversary. Then, adversary is not allowed to make secret key queries
for the tuple (i∗, id,gid∗,u). Now, B simulates the secret keys and the challenge ciphertext
using the instances of DHSD assumption 5. Finally, A outputs its guess, which B uses to
break the assumption 5. In this proof, the reduction plays with its challenger in the sub-
group Gp thus it can choose any components from the subgroup Gq by itself. Let us con-
sider, B first implicitly sets the random exponents as β= a, sx∗+1 = d · s̃x∗+1,γ`,b = c ·γ̃`,b and
δ`,b = b · γ̃`,b + δ̃`,b where the exponents γ̃`,b , δ̃`,b are uniformly chosen at random. Also, B

implicitly sets hτ = gπ where π be any random exponent from ZN . In this simulation, the
challenge group element T can be programmed in the challenge ciphertext to compute the
row components for x = x∗+1.

Public key simulation. Challenger B chooses the random exponents as follows:

∀` ∈ [k],b ∈ {0,1}, δ̃`,b ←ZN , γ̃`,b ←Zp ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, cy,`,b ←ZN ,

∀ j ∈ [m], x ∈ [n̂], rx, j ,αx, j ,ψx, j ←ZN .
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It samples d ′, r̂ ← ZN such that fq = g d ′
q . It also samples random group elements ϑ′

p ,ϑp,i ∈
Gp ,ϑ′

q ,ϑq,i ∈Gq for all i ∈ [k ′] such that H(gid) = (ϑ′
pϑ

′
q )

∏
i∈V ϑp,iϑq,i =ϑ′∏

i∈V ϑi and Hq (gid) =
ϑ′

q
∏

i∈V ϑq,i corresponding to any group identity gid. We write ϑ
′β
q = g a%

q = A%, ϑβq,i = g a%i
q =

A%i where %,%i ← Zq . Now B computes the master public components using the challenge
instances of assumption 5 as

mpk=



BG, g ,h, f ,ϑ′,ϑ
′β
q ,ϑ= (ϑ)i , {ϑβq,i }i∈[k ′],H,Hq ,Eq = A,

Ex, j = g r̂ rx, j ,Fx, j = h r̂ rx, j ,Gx, j = e(g , g )αx, j ,

Eq,x, j = Ar̂ rx, j ,Fq,x, j = B r̂ rx, j ,Gq,x, j = e(A, gq )αx, j ,

Yx, j = gψx, j ,Yq,x, j = Aψx, j


x∈[n̂], j∈[m]

,

{Hy,`,b = g cy,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = g δ̃`,b C γ̃`,b ,V`,b = hδ̃`,b D γ̃`,b

}
(`,b)∈[k]×{0,1}


Secret Key Simulation. The challenger B answers the adversary’s queried secret keys corre-
sponding to the tuple (i , id,gid,u).

If gid= gid∗, the adversary can not make any secret key queries for the index position i∗.
Therefore, the secret keys corresponding to the index i (6= i∗) are generated as follows:

K1 = g 〈αx ,u〉 ·
( ∏
`∈[k]

Hy,`,id`

)r̂ 〈rx ,u〉
, K2 = f 〈ψx ,u〉H(gid)r , K3 = g r

where r̃ is randomly sampled fromZN such that r = r̃ · r̂ . Note that, in this case the adversary
can not query for the secret key corresponding to the index i∗.

If gid 6= gid∗, the adversary can make secret key query for the index position i∗. In that
case, B answers the secret key sku as follows

K1 = g 〈αx ,u〉 ·
( ∏
`∈[k]

Hy,`,id`

)r̂ 〈rx ,u〉
if x = x∗, y = y∗

The other secret keys are similarly generated as the previous hybrid. For gid 6= gid∗, chal-
lenger construct the identity encoding functions F,J and K similarly as previous. Now, B

answers the remaining secret keys components K2,K3 that looks as follows:

K2 = g−〈ψx ,u〉 J(gid)
F(gid) H(gid)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)− 〈ψx ,u〉

F(gid)
(

f F(gid)g J(gid)
)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r− 〈ψx ,u〉

F(gid)

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r ′

= f 〈ψx ,u〉H(gid)r ′

K3 = g r · g− 〈ψx ,u〉
F(gid) = g r− 〈ψx ,u〉

F(gid) = g r ′

As the similar argument, we can implicitly set r ′ = r − 〈ψx ,u〉
F(gid) .
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Challenge ciphertext simulation. B chooses the random exponents as follows:

∀ j ∈ [m], σ j ,ν j ,φ j ←ZN , π, t ←ZN ,

∀x ∈ [n̂], ex , fx , s̃x ,dx ←ZN

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, wy,`,b , vy,`,b ←ZN

For the challenge identity gid∗, H(gid∗) = (ϑ′
pϑ

′
q )

∏
i∈V ∗ ϑp,iϑq,i = g

d∗
1

p g
d∗

2
q = g d∗

and Hq (gid∗) =
ϑ′

q
∏

i∈V ∗ ϑq,i = g
d∗

2
q for some d∗,d∗

1 ,d∗
2 ← ZN . So, Hq (gid∗)β = Ad∗

2 , Now, row and columns
component of the challenge ciphertext are generated as in Table 38, 39.

Table 38: Computing row components of the ciphertext for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗+1 E s̃x
q,x, j F s̃xπ

q,x, j E s̃x t
q Ad∗

2 tq s̃x e(gq , gq )v j ·G s̃x t
q,x, j ·e( fq , A)t s̃xψx, j

x = x∗+1 T s̃x rx, j T s̃x rx, jπ T s̃x t T d∗t s̃x e(gq , gq )v j ·e(T, g )s̃xαx, j t ·e( f ,T )tψx, j sx

x < x∗+1 g s̃xσ j h s̃xτν j g ex H(gid∗)dx e(g , g ) fxφ j e( f , f ) fxφ j

Table 39: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

∀(y,`,b) ∈ [ñ]× [k]× {0,1} H t
y,`,b · g wy,`,bπ g wy,`,b

After seeing the challenge ciphertext, B receives a guess bit b′ from A and it simply forwards
that as its guess to the challenger of assumption 5.

Analysis of simulation. Finally, if T = g d
q , then B simulates the view of the hybrid 6, oth-

erwise, if T is randomly chosen element from the group G then B simulates the view same
as hybrid 7. Therefore, if A wins with the non-negligible advantages ε(·) then B breaks the
DHSD assumption 5 with the same advantage. Hence proof of the Lemma 4 is complete. ut

This concludes the proof of index-hiding security. ut
Lemma 13 If the modified-1 D3DH assumption 2 holds over the bilinear group BG, then our
EIPL-IBIPFE satisfies the lower identity-hiding security as per the Definition 13.

Proof. We recall that in the lower identity-hiding security, it is required that no PPT adver-
sary can distinguish between the special encryption to the index-position-bit tuple (i∗ =
(x∗, y∗),`∗,b∗) and (i∗ = (x∗, y∗),⊥,0) with non-negligible advantages. In its key query phase,
the adversary is not allowed to secret key query for the tuple (i∗ = (x∗, y∗), id,gid∗,u) such
that id`∗ = b∗. This proof technique is nearly identical to that of Claim 3. Here, we just exclude
the intermediate hybrids as mentioned in the previous proof. Let (i∗ = (x∗, y∗),`∗,b∗) be the
challenge tuple provided by the adversary A . Then the hybrid H`∗,b∗ corresponds to the ex-
actly same as the lower identity-hiding game in which the challenge ciphertext is a special
encryption to the index-position-bit tuple (i∗ = (x∗, y∗),`∗,b∗) and similarly the hybrid H0,1

is same as the lower identity-hiding game for the index-position-bit tuple (i∗ = (x∗, y∗),⊥,0).
So the indistinguishability proof to the tuple (i∗ = (x∗, y∗),⊥,0) and (i∗ = (x∗, y∗),`∗,b∗) are
similar to the Claim 3.
In the following, we discuss the secret key simulation where the reduction algorithm B an-
swers all permissible secret keys corresponding to the tuple (i , id,gid,u) as per the lower
identity-hiding security game. From the security restriction of this game, the adversary can
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not query for the secret key corresponding to the tuple (i∗ = (x∗, y∗), id`∗ = b∗,gid∗,u). So all
the key queries are of the form either i 6= i∗ or id`∗ 6= b∗ or gid 6= gid∗.

Secret key simulation. To answer the secret key corresponding to the tuple (i , id,gid,u), B

samples a random value r̃ ←ZN and sets r = r̃ · r̂ and it computes H(gid∗) = g
d∗

1
p g

d∗
2

q for some
d∗

1 ,d∗
2 ←ZN . Note that, the adversary is not allowed to query for the secret key correspond-

ing to the tuple (i∗, id,gid∗,u) such that id`∗ = b∗.

If gid = gid∗, A can not query for the secret key corresponding to the index i∗ such that
id∗ = b∗. In Table 40, we show how B generates all possible keys corresponding to the tuple
(i , id,gid,u).
For gid 6= gid∗,B generates the K2, K3 secret key components as follows:

We assume that the adversary makes the maximum number of Q queries and the chal-
lenge group identity gid∗ and challenge index i∗. Now, the simulator chooses an integer
k ′

1 ← [k ′], sets an integer s = 10Q, a random k ′-length vector z = (zi ) ← Zk ′
s and a value

z ′ ← Zs . Additionally, the simulator also chooses a random value w ′ ← ZN and a uniformly
random k ′-length vector w = (wi ) ←Zk ′

N . All these values are kept secret to the simulator.

Let us consider V ∗ ⊆ {1,2, . . . ,k ′} be the set of all i for which the challenge identity gid∗
i = 1.

Let V ∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which correspond to the collec-
tion of indices V ∗. Then set

∑
i∈V ∗ zi = k ′

1s−z ′ for uniformly chosen k ′
1 ∈ [k ′]. Now, we define

the function K(gid) as

K(gid) =
{

0, if z ′+∑
i∈V zi ≡ 0 mod s

1, elsewhere.

From the above definition of the function K, we can say that K(gid∗) = 0 and for all gid 6= gid∗

it becomes non-zero. Additionally, we set two functions as F(gid) = N − sk ′
1 + z ′ +∑

i∈V zi

and J(gid) = w ′+∑
i∈V wi . The simulator assigns the public parameters ϑ′ = f N−k ′

1s+z ′ · g w ′ =
g

d ′
p

p g
d ′

q
q and ϑi = f zi g wi = g

dp,i
p g

dq,i
q . Now B answers remaining secret key components as

K2 = g−〈ψx ,u〉 J(gid)
F(gid) ·Dd∗

1 r̃ g
d∗

2 r̂q r̃
q

= g−〈ψx ,u〉 J(gid)
F(gid) H(gid)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)− 〈ψx ,u〉

F(gid)
(

f F(gid)g J(gid)
)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r− 〈ψx ,u〉

F(gid)

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r ′

= f 〈ψx ,u〉H(gid)r ′

K3 = (D r̃ g
r̂q r̃
q ) · g− 〈ψx ,u〉

F(gid) = g r− 〈ψx ,u〉
F(gid) = g r ′

We implicitly set r ′ = r − 〈ψx ,u〉
F(gid) . So from the construction of K function, we get K(gid) 6= 0 for

any key query corresponding to the group identity gid 6= gid∗. This implies that the function
F(gid) 6= 0 mod N for any such group identity (since we assume N > sk ′

1 for any reasonable
value of N , s and k ′

1, see Lemma 23).

Thus, the above shows that the reduction algorithm can perfectly simulate the lower
identity-hiding game, thereby implying that the scheme satisfies lower identity-hiding se-
curity, assuming that the modified-1 D3DH assumption 2 holds. ut
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Table 40: Simulated secret keys used in the lower identity-hiding game

conditions
sub-conditions

on (x, y)

secret keys

K1 K2 K3

(i 6= i∗)∧ (id`∗ = b∗)∧
(gid= gid∗)

(x 6= x∗∧ y 6= y∗)
g 〈αx ,u〉·

(Dg
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(x 6= x∗∧ y = y∗)

g 〈αx ,u〉·
(Dg

r̂q
q )〈r̃x ,u〉∑ 6̀=`∗ c̃y,`,id` ·

(E g
r̂q
q )〈r̃x ,u〉c̃y,`∗ ,b∗

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(x = x∗∧ y 6= y∗)

g 〈αx ,u〉·
(F g

r̂q
q )〈r̃x ,u〉∑ 6̀=`∗ c̃y,`,id` ·

(F g
r̂q
q )〈r̃x ,u〉c̃y,`∗ ,b∗

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(i = i∗)∧ (id`∗ 6= b∗)∧
(gid= gid∗)

(x = x∗)∧ (y = y∗)
g 〈αx ,u〉·

(F g
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(i = i∗)∧ (id`∗ = b∗)∧
(gid 6= gid∗)

(x = x∗)∧ (y = y∗)
g
〈αx ,u〉+r̂q 〈r̃x ,u〉
q · g 〈αx ,u〉

p ·
F 〈r̃x ,u〉∑ 6̀=`∗ c̃y,`,id` ·

H 〈r̃x ,u〉c̃y,`∗ ,b∗
g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(i 6= i∗)∧ (id`∗ 6= b∗)∧
(gid= gid∗)

(x 6= x∗∧ y 6= y∗)∧ g 〈αx ,u〉·
(Dg

r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(x = x∗∧ y 6= y∗)
g 〈αx ,u〉·

(F g
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(x 6= x∗∧ y = y∗)

g 〈αx ,u〉·
(Dg

r̂q
q )〈r̃x ,u〉∑ 6̀=`∗ c̃y,`,id` ·

(Dg
r̂q
q )

〈r̃x ,u〉c̃y,`∗ ,id`∗
(Bd1 fq )〈ψx ,u〉 · (Dd∗

1 g
d∗

2 r̂q
q )r̃ (Dg

r̂q
q )r̃

(i = i∗)∧
(id`∗ 6= b∗)∧
(gid 6= gid∗)

(x = x∗)∧ (y = y∗)
g
〈αx ,u〉+r̂q 〈r̃x ,u〉
q ·

g 〈αx ,u〉
p ·F 〈r̃x ,u〉∑`∈[k] c̃y,`,id`

g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(i 6= i∗)∧ (id`∗ = b∗)∧
(gid 6= gid∗)

(x 6= x∗)∧ (y 6= y∗)
g 〈αx ,u〉·

(Dg
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x = x∗)∧ (y 6= y∗)
g 〈αx ,u〉·

(F g
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x 6= x∗)∧ (y = y∗)

g 〈αx ,u〉·
(Dg

r̂q
q )〈r̃x ,u〉∑ 6̀=`∗ c̃y,`,id` ·

(E g
r̂q
q )〈r̃x ,u〉c̃y,`∗ ,b∗

g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(i 6= i∗)∧ (id`∗ 6= b∗)∧
(gid 6= gid∗)

(x 6= x∗)∧ (y = y∗)

g 〈αx ,u〉·
(Dg

r̂q
q )〈r̃x ,u〉∑ 6̀=`∗ c̃y,`,id` ·

(Dg
r̂q
q )

〈r̃x ,u〉c̃y,`∗ ,id`∗
g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x 6= x∗)∧ (y 6= y∗)
g 〈αx ,u〉·

(Dg
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x = x∗)∧ (y 6= y∗)
g 〈αx ,u〉·

(F g
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

Lemma 14 If the assumptions 2,5,6 and 7 hold over the bilinear groupBG, then our EIPL-IBIPFE
satisfies the upper identity-hiding security as per the Definition 14.

Proof. The upper identity-hiding security requires that no PPT adversary can distinguish be-
tween the special encryption to the index-position-bit tuple (i∗,`∗,b∗) and (i∗+1,⊥,0) with
a non-negligible advantage. In the security experiment, the adversary makes only one secret
key query for some index position and it is not allowed to make only key query for the tuple
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(i∗, id,gid∗,u) such that id`∗ = 1−b∗. To prove the Lemma 14, we consider a sequence of hy-
brid games as discuss below.

Hyb1 : The hybrid corresponding to the upper identity-hiding game in which the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗),`∗,b∗).

Hyb2 : The hybrid is the similar to the Hyb1 except that the column components as in the
table below.

Table 41: Computing column components for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧` 6= `∗) H t
y,`,b ·hwy,`,bτ g wy,`,b

(y < y∗)∨ ((y,`) = (y∗,`∗)) H t
y,`,b ·hwy,`,bτ ·V τvy,`,b

`,b g wy,`,b · Ṽ vy,`,b

`,b

In words, we can say that the ciphertext component Cy∗,`∗,1−b∗ also includes random ele-
ments from the subgroup Gp whereas in Hyb1 only Cy∗,`∗,b∗ for the index position i∗ include
a random element from the subgroup Gp .

Hyb3, ˜̀,b̃ where ( ˜̀, b̃) ∈ [k]× {0,1}: This hybrid is the same as Hyb2 except that the column
components in the challenge ciphertext are computed as in Table 42. In words, we can say
that the challenge ciphertext ciphertext components Cy∗,`,b for `< ˜̀, or `= ˜̀and b ≤ b̃ in-
clude a random component from the subgroup Gp .

Table 42: Computing column components for the sub-hybrid Hyb3, ˜̀,b̃

Cy,`,b C̃y,`,b

(y > y∗)∨
(y = y∗∧` ∉ [ ˜̀]∪ {`∗})∨
(y = y∗∧`= ˜̀∧b > b̃)

H t
y,`,b hwy,`,bτ g wy,`,b

(y < y∗)∨
(y = y∗∧` ∈ [ ˜̀−1]∪ {`∗})∨

(y = y∗∧`= ˜̀∧b ≤ b̃)

H t
y,`,b hwy,`,bτV

τvy,`,b

`,b g wy,`,b

Hyb4 : This hybrid is similar to the previous sub-hybrid Hyb3,k,1 except that the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗ = (x∗, y∗+1),⊥,0). Note
that, here y∗ = ñ could be equal to ñ. In that case, the special-encryption algorithm can be
directly extended to encrypt such position.

Hyb5. This hybrid corresponds to the upper identity-hiding game in which the challenge
ciphertext is a special encryption to the index-position-bit tuple (i∗+1,⊥,0). Note that if
y∗ 6= ñ, then the hybrids 4 and 5 are already identical.

Next, we discuss the indistinguishability of the above hybrids.

Hyb1 ≈ Hyb2: The indistinguishability proof of the hybrids Hyb1 and Hyb2 is identical to that
of Claim 3 and Lemma 13.

Hyb3, ˜̀,b̃ ≈ Hyb3, ˜̀+b̃−1,(b̃+1) mod 2: If the modified-1D3DH assumption 2 holds, there does not

exist any PPT adversary that can distinguish between the sub-hybrid Hyb3, ˜̀,b̃ and the sub-
hybrid Hyb3, ˜̀+b̃−1,(b̃+1) mod 2 with non-negligible advantage.
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For, ˜̀ = `∗, then the sub-hybrid Hyb3, ˜̀,b̃ is identically equals to the sub-hybrid
Hyb3, ˜̀+b̃−1,(b̃+1) mod 2. Otherwise, according to the key query there have two cases.

Case 1. Adversary makes a key query for index tuple ( j , id,gid,u) such that j = i∗ ∧ id ˜̀ =
b̃ ∧gid= gid∗.

Suppose on contrary, there exists a PPT adversary A which can distinguish between the
sub-hybrids Hyb3, ˜̀,b̃ and Hyb3, ˜̀+b̃−1,b̃+1 mod 2 with non-negligible probability. We construct
a PPT reduction algorithm B which breaks the modified-1 D3DH assumption 2 with the
same non-negligible advantage as

(BG, gp , gq , A = g a
p ,B = g b

p ,C = g c
p ,D = g b2

p ,E = g b2c
p ,F = g b3

p ,G = g b4

p , H = g b3c
p ,T )

where T is either g abc
p or an uniformly random element from the sub-group Gp . Next, B

receives a challenge tuple (1λ,1n ,1k ,1k ′
,1m , (i∗,`∗,b∗),gid∗) from A . Then, B generates the

master public key and sends it to A . After seeingmpk, the adversary makes polynomial num-
bers of secret keys for the distinct index positions i under some admissible conditions. Then
B simulates the public keys, secret keys and the challenge ciphertext and sends it to A . Fi-
nally, the adversary outputs a bit b′ as guess which B uses to breaks the assumption 2. As the
reduction plays the game with its challenger in the subgroup Gp so everything it can choose
from the subgroup Gq by itself. Let us implicitly set the exponents as below

tp = ab; rp,x∗, j = b · r̃p,x∗, j ; cp,y∗,`∗,b∗ = c + c̃p,y∗,`∗,b∗ ;

r̂p = b2, sp,x∗ = s̃p,x∗/b; cp,y∗, ˜̀,b̃ =−c + c̃p,y∗, ˜̀,b̃

where r̃p,x∗, j , s̃p,x∗ , c̃p,y∗, ˜̀,b̃ and c̃p,y∗,`∗,b∗ are the random exponents. Also, we implicitly set

hp = B = g b
p and fp = B d1 for d1 uniformly chosen from ZN . Setting the exponents allows to

simulate the public key, secret key exactly as well as the challenge group elements T , that
can be programmed in the challenge ciphertext components, Cy∗, ˜̀,b̃ .

Public key simulation. The challenger B chooses a random group generator hq ∈ Gq by
sampling random exponent d ∈ ZN such that hq = g d

q . To generate the public key, B addi-
tionally chooses the following exponents

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp ,

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, c̃y,`,b ←ZN ,

∀ j ∈ [m], x ∈ [n̂], r̃x, j ,αx, j ,ψx, j ←ZN .

It samples β, r̂q ←ZN and chooses the random generator fq from the subgroup Gq such that

fq = g d ′
q for some d ′ ∈ ZN . Then, B computes the components of the master public key by

using the instances of modified-1 D3DH assumption 2.

Ex, j =
{

(Dg
r̂q
q )r̃x, j if x 6= x∗,

(F g
r̂q
q )r̃x, j elsewhere. ,

Fx, j =
{

(F h
r̂q
q )r̃x, j if x 6= x∗

(Gh
r̂q
q )r̃x, j elsewhere

Yx, j = gψx, j ∀x

Hy,`,b =


C g c̃y,`,b if (y,`,b) = (y∗,`∗,b∗)

C−1g c̃y,`,b if(y,`,b) = (y∗, ˜̀, b̃)

g c̃y,`,b elsewhere

The challenger also computes Eq,x, j = g
βr̂q r̃x, j
q ,Fq,x, j = h

βr̂q r̃x, j
q ,Gx, j = e(g , g )αx, j , Gq,x, j =

e(gq , gq )βαx, j ,Yq,x, j = g
βψx, j
q and samples the elements ϑ′

p ,ϑp,i ∈ Gp for all i ∈ [k ′], ϑ′
q ,ϑq,i ∈
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Gq such that ϑ′ =ϑ′
pϑ

′
q and ϑ= (ϑi ) = (ϑp,iϑq,i ). Let us consider two identity encoding func-

tion H,Hq be defined as H(gid) = ϑ′∏
i∈V ϑi , Hq (gid) = ϑ′

q
∏

i∈V ϑq,i . Finally, it publishes the
master public key as

mpk=



BG, g = gp gq ,h = Bhq , f = B d1 fq ,

ϑ′,ϑ
′β
q ,ϑ, {ϑβq,i }i∈[k ′],H,Hq ,Eq = gβq , Ex, j ,Fx, j ,Gx, j ,Yx, j ,

Eq,x, j ,Fq,x, j ,Gq,x, j ,Yq,x, j


x∈[n̂], j∈[m]

{Hy,`,b}(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b ,V`,b

}
(`,b)∈[k]×{0,1}


Secret key simulation. To answer the secret key sku corresponding to the tuple (i , id,gid,u),
B samples a random value r̃ ← ZN and sets r = r̃ · r̂ . For the challenge group identity gid∗,

it computes H(gid∗) = g
d∗

1
p g

d∗
2

q where d∗
1 ,d∗

2 ← ZN . In the secret key query phase, A is not
allowed to secret key query corresponding to the tuple (i∗, id,gid∗,u) such that id`∗ 6= b∗.
Now, B simulates the secret key corresponding to the tuple (i , id,gid,u) as the Table 43 given
below.

To simulate the secret key components K2 and K3 for the case gid 6= gid∗, we assume that
the adversary makes the maximum number of Q queries and the challenge group identity
gid∗ and challenge index i∗. Now, the simulator chooses an integer k ′

1 ← [k ′], sets an integer

s = 10Q, a random k ′-length vector z = (zi ) ← Zk ′
s and a value z ′ ← Zs . Additionally, the

simulator also chooses a random value w ′ ← ZN and a uniformly random k ′-length vector
w = (wi ) ←Zk ′

N . All these values are kept secret to the simulator.
Let us consider V ∗ ⊆ {1,2, . . . ,k ′} be the set of all i for which the challenge identity gid∗

i = 1.
Let V ∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which correspond to the collec-
tion of indices V ∗. Then set

∑
i∈V ∗ zi = k ′

1s−z ′ for uniformly chosen k ′
1 ∈ [k ′]. Now, we define

the function K(gid) as

K(gid) =
{

0, if z ′+∑
i∈V zi ≡ 0 mod s

1, elsewhere

So, from the above definition of the function K, we can say that K(gid∗) = 0 and for all gid 6=
gid∗ it becomes non-zero. Additionally, we set two functions as F(gid) = N − sk ′

1+z ′+∑
i∈V zi

and J(gid) = w ′+∑
i∈V wi . The simulator assigns the public parameters ϑ′ = f N−k ′

1s+z ′ · g w ′ =
g

d ′
p

p g
d ′

q
q and ϑi = f zi g wi = g

dp,i
p g

dq,i
q . Now B answers remaining secret key components as

K2 = g−〈ψx ,u〉 J(gid)
F(gid) ·Dd∗

1 r̃ g
d∗

2 r̂q r̃
q

= g−〈ψx ,u〉 J(gid)
F(gid) H(gid)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)− 〈ψx ,u〉

F(gid)
(

f F(gid)g J(gid)
)r

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r− 〈ψx ,u〉

F(gid)

= f 〈ψx ,u〉
(

f F(gid)g J(gid)
)r ′

= f 〈ψx ,u〉H(gid)r ′

K3 = (D r̃ g
r̂q r̃
q ) · g− 〈ψx ,u〉

F(gid) = g r− 〈ψx ,u〉
F(gid) = g r ′



Table 43: Simulated secret keys used in upper identity-hiding game

conditions
sub-conditions
on (x, y) & idb̃

secret keys

K1 K2 K3

(i 6= i∗)∧
(id`∗ = b∗)∧
(gid= gid∗)

(x 6= x∗)∧ (y 6= y∗)
g 〈αx ,u〉·

(Dg
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(x = x∗)∧ (y 6= y∗)
g 〈αx ,u〉·

(F g
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(x 6= x∗)∧ (y = y∗)∧
(id ˜̀ 6= b̃)

g 〈αx ,u〉 · g
r̂q 〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q

·(ED
∑
`∈[k] c̃y,`,id` )〈r̃x ,u〉 (Bd1 fq )〈ψx ,u〉 · (Dd∗

1 g
d∗

2 r̂q
q )r̃ (Dg

r̂q
q )r̃

(x 6= x∗)∧ (y = y∗)∧
(id ˜̀= b̃)

g 〈αx ,u〉·
(Dg

r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(i 6= i∗)∧
(id`∗ 6= b∗)∧
(gid= gid∗)

(x 6= x∗)∧ (y 6= y∗)
g 〈αx ,u〉·

(Dg
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(x = x∗)∧ (y 6= y∗)
g 〈αx ,u〉·

(F g
r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(x 6= x∗)∧ (y = y∗)∧
(id ˜̀= b̃)

g 〈αx ,u〉 · g
r̂q 〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q

·(E−1D
∑
`∈[k] c̃y,`,id` )〈r̃x ,u〉 (Bd1 fq )〈ψx ,u〉 · (Dd∗

1 g
d∗

2 r̂q
q )r̃ (Dg

r̂q
q )r̃

(x 6= x∗)∧ (y = y∗)∧
(id ˜̀ 6= b̃)

g 〈αx ,u〉·
(Dg

r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(i = i∗)∧
(id`∗ 6= b∗)∧
(gid= gid∗)

(x = x∗)∧ (y = y∗)∧
(id ˜̀ 6= b̃)

g 〈αx ,u〉·
(F g

r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(i = i∗)∧
(id`∗ = b∗)∧
(gid= gid∗)

(x = x∗)∧ (y = y∗)∧
(id ˜̀= b̃)

g 〈αx ,u〉·
(F g

r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

(Bd1 fq )〈ψx ,u〉 · (Dd∗
1 g

d∗
2 r̂q

q )r̃ (Dg
r̂q
q )r̃

(i = i∗)∧
(id`∗ = b∗)∧
(gid 6= gid∗)

(x = x∗)∧ (y = y∗)∧
(id ˜̀= b̃)

g 〈αx ,u〉·
(F g

r̂q
q )〈r̃x ,u〉∑`∈[k] c̃y,`,id`

g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x = x∗)∧ (y = y∗)∧
(id ˜̀ 6= b̃)

g 〈αx ,u〉g
r̂q 〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q ·

[F
∑
`∈[k] c̃y,`,id` ·H ]〈r̃x ,u〉 g

−〈ψx ,u〉 J(gid)
F(gid) ·Dd∗

1 r̃ g
d∗

2 r̂q r̃
q (D r̃ g

r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(i 6= i∗)∧
(id`∗ 6= b∗)∧
(gid 6= gid∗)

(x 6= x∗)∧ (y 6= y∗)
g 〈αx ,u〉

·(Dg
r̂q
p )

〈r̃x ,u〉∑`∈[k] c̃y,`,id` g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x = x∗)∧ (y 6= y∗)
g 〈αx ,u〉

·(F g
r̂q
p )

〈r̃x ,u〉∑`∈[k] c̃y,`,id` g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x 6= x∗)∧ (y = y∗)∧
(idb̃ = b̃)

g 〈αx ,u〉g
r̂q 〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q

·[D
∑
`∈[k] c̃y,`,id` ·E−1]〈r̃x ,u〉 g

−〈ψx ,u〉 J(gid)
F(gid) ·Dd∗

1 r̃ g
d∗

2 r̂q r̃
q (D r̃ g

r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x 6= x∗)∧ (y = y∗)∧
(idb̃ 6= b̃)

g 〈αx ,u〉

·(Dg
r̂q
p )

〈r̃x ,u〉∑`∈[k] c̃y,`,id` g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(i 6= i∗)∧
(id`∗ = b∗)∧
(gid 6= gid∗)

(x 6= x∗)∧ (y 6= y∗)
g 〈αx ,u〉

·(Dg
r̂q
p )

〈r̃x ,u〉∑`∈[k] c̃y,`,id` g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x = x∗)∧ (y 6= y∗)
g 〈αx ,u〉

·(F g
r̂q
p )

〈r̃x ,u〉∑`∈[k] c̃y,`,id` g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x 6= x∗)∧ (y = y∗)
(idb̃ = b̃)

g 〈αx ,u〉·
(Dg

r̂q
p )

〈r̃x ,u〉∑`∈[k] c̃y,`,id` g
−〈ψx ,u〉 J(gid)

F(gid) ·Dd∗
1 r̃ g

d∗
2 r̂q r̃

q (D r̃ g
r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)

(x 6= x∗)∧ (y = y∗)
(idb̃ 6= b̃)

g 〈αx ,u〉g
r̂q 〈r̃x ,u〉∑`∈[k] c̃y,`,id`
q ·

[D
∑
`∈[k] c̃y,`,id` ·E ]〈r̃x ,u〉 g

−〈ψx ,u〉 J(gid)
F(gid) ·Dd∗

1 r̃ g
d∗

2 r̂q r̃
q (D r̃ g

r̂q r̃
q ) · g

− 〈ψx ,u〉
F(gid)
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We implicitly set r ′ = r − 〈ψx ,u〉
F(gid) . So from the construction of K function, we get K(gid) 6= 0 for

any key query corresponding to the group identity gid 6= gid∗. This implies that the function
F(gid) 6= 0 mod N for any such group identity (since we assume N > sk ′

1 for reasonable val-
ues of N , s and k ′

1. We prove this in Lemma 23).

There have some restrictions over the key queries to the key generation oracle i.e.,
– Adversary A can not query for the tuple (i , id,gid,u) such that i = i∗∧ id`∗ 6= b∗∧gid =
gid∗.

– In Case 1, the adversary can make a query for the tuple (i , id,gid,u) where i = i∗∧ id ˜̀ =
b̃ ∧gid= gid∗. If the adversary makes a key query for the challenge index position i∗ with
id ˜̀ 6= b̃ and gid= gid∗, then the challenger B aborts.

Ciphertext simulation. To generate the challenge ciphertext, the challenger chooses the ex-
ponents as follows.

∀ j ∈ [m], σ j ,ν j ,φ j ←ZN , τ, tq ←ZN ,

∀x ∈ [n̂], ex , fx ,dx , s̃x ←ZN

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1}, w̃y,`,b , vy,`,b ←ZN

For the challenge group identity gid∗, B computes H(gid∗) =ϑ′∏
i∈V ∗ ϑi = g

d∗
p

p g
d∗

q
q and Hq (gid∗)β =

ϑ
′β
q

∏
i∈V ∗ ϑ

β

q,i = g
d∗

q
q . where d∗

q ,d∗
p ∈ ZN . Now, the challenger generates row and columns

components as the tables below.

Table 44: Row components computation for x ∈ [n̂], j ∈ [m]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E s̃x
q,x, j F s̃xτ

q,x, j E
s̃x tq
q Hq (gid∗)βs̃x tq

e(gq , gq )v j ·G s̃x tq

q,x, j ·
e( fq ,Yq,x, j )s̃x tq

x = x∗ (Dg
r̂q
q )s̃x r̃x, j (F h

r̂q
q )s̃x r̃x, j τ (Ag

tq
q )s̃x Ad∗

p s̃x g
d∗

q s̃x tq
q

e(gq , gq )v j e(g , Ag
tq
q )s̃xαx, j ·

e(B , A)d 2
1ψx, j s̃x e( fq , gq )ψx, j s̃x tq

x < x∗ g s̃xσ j h s̃xτν j g ex H(gid∗)dx e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 45: Column components computation for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧`> ˜̀)∨
(y = y∗∧` ∉ [ ˜̀]∪ {`∗})∨
(y = y∗∧`= ˜̀∧b > b̃)

g
c̃y,`,b tq
q ·hw̃y,`,bτ A−c̃y,`,b /τg w̃y,`,b

y = y∗∧`= ˜̀∧b = b̃ g
c̃y,`,b tq
q ·hτw̃y,`,b ·T−1 A−c̃y,`,b /τg w̃y,`,b

(y < y∗)∨ (y = y∗∧`< ˜̀)∨
(y = y∗∧` ∈ ([ ˜̀−1]∪ {`∗})∧b < b̃)

g
c̃y,`,b tq
q hτw̃y,`,b g

vy,`,b
p g w̃y,`,b

After seeing the challenge ciphertext, the adversary guesses a bit b′ and it forwards to the
modified-1 D3DH challenger of assumption 2.

Analysis of simulation. If T = g abc
p then B simulates the view of sub-hybrid Hyb3, ˜̀+b̃−1,b̃+1 mod 2

otherwise if T is a random group element from the subgroup Gp then B simulates the view
of sub-hybrid Hyb3, ˜̀,b̃ . Therefore, if the adversary A wins the game with an advantage ε(·)
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then B breaks the assumption 2 with same ε(·) advantage.

Case 2. (otherwise) The proof technique is similar to the proof of Claim 3 and Lemma 13.

In this case, we use the same proof strategy as used in Claim 3 and Lemma 13, where the

reduction algorithm does not need to know the value of the group element g r̂ 〈rx∗ ,u〉cy∗m ˜̀,b̃ for
answering the key queries.

Hyb3 ≈ Hyb4 : The proof of the above indistinguishability of hybrids Hyb3 and Hyb4 are iden-
tical. No adversary can not distinguish between these hybrids with non-negligible advan-
tage.

Hyb4 ≈ Hyb5 : The indistinguishable of the hybrids Hyb4 and Hyb5 can be classified into two
cases.

Case 1. If y∗ 6= ñ, then both the hybrids Hyb4 and Hyb5 are identical.

Case 2. For y∗ = ñ then the indistinguishability follows from the sequence of hybrid games
which is similar to the claim 4. In particular, Hyb4 as described above is similar to the hybrid
2 and Hyb5 is identical with the hybrid 7 as described in the claim 4. Thus this indistinguish-
able follows from the claim 4.

This concludes the upper identity-hiding security game. ut

Lemma 15 If the D3DH assumption 1 holds over the bilinear groupBG, then our EIPL-IBIPFE
satisfies the message-hiding security as per Definition 15.

Proof. Suppose the adversary A is a PPT adversary against the message-hiding security of
the our EIPL-IBIPFE scheme. We construct an algorithm B for breaking the D3DH assump-
tion 1 that uses A as a subroutine. To prove the message-hiding security, we consider two
hybrid games. The first game is same as the original game message-hiding as in definition
15. In the next game, we change the distribution of the master public key, secret key and the
challenge ciphertext, where we first sample a random vector ψ̃x and setψx = F>ψ̃x for some
x ∈ [n̂]. The matrix F is a full rank matrix chosen such that F(v (0) − v (1)) = e1 where v (0), v (1)

are the challenge message vectors submitted by the A and e1 denotes a m length vector as
(1,0, . . . ,0)>. Assuming the D3DH assumption holds over the bilinear groupBG, we show that
the adversary can distinguish between the challenge ciphertexts with negligible probability.

Game 0: The game is the same as the message-hiding as per Definition 15.

Game 1: The game is identical to the previous game except for each identity gid, the chal-
lenger samples the master secret key msk as follows:
(a) Samples uniformly random vector ψ̃x = (ψ̃x,1,ψ̃x,2, · · · ,ψ̃x,m) for all ψ̃x, j ∈ZN and x ∈ [n̂].
(b) Samples a uniformly chosen full rank matrix F ∈ Zm×m

N satisfying the relation F(v (0) −
v (1)) = e1 where v (0), v (1) are the challenge messages vectors of length m.

(c) Setsψx = F>ψ̃x instead of sampling uniformly random as in Game 0.
In the adversary’s view, the master public key mpk, the secret key associated with the tuple
(i , id,gid,u) where i ≥ i∗ and the challenge ciphertext ctv (b) is simulated as below.

Public key: All the components of mpk are generated similarly as Game 0 except Yq,x, j =
(gβFψx

q ) j and Yx, j = (g Fψx ) j where (g ) j represents the j -th group element from the vector
g = (g1, g2, . . . , gm).

Secret key: We consider V ⊆ {1, . . . ,k ′} be the set of all i for which the i -th component of
queried group identity is non-zero i.e., gidi = 1. The secret key sku components correspond-
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ing to the tuple (i , id,gid,u) are set as

K1 = g 〈α̃x ,u〉(
∏
`∈[k]

Hy,`,id`)r̂ 〈rx ,u〉, K2 = f 〈ψ̃x ,Fu〉H(gid)r , K3 = g r

Challenge ciphertext: For the challenge group identity gid∗, consider V ∗ ⊆ {1, . . . ,k ′} be the
set of all i such that gid∗

i = 1. All the components of the ciphertext except Ax ,Bx , Ix, j for
x > x∗ and x = x∗ are similarly generated as the Game 0.

Table 46: Computing row components of the ciphertext for x ∈ [n̂]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j g
βt sx
q Hq (gid∗)t sxβ

(
e(gq , gq )F>(Fv (0)−b(v (0)−v (1))) ·e(gq , gq )βsx tαx ·e(gq , fq )βt sx F>ψ̃x

)
j

x = x∗ E sx
x, j F sxτ

x, j g t sx H(gid∗)t sx
(
e(gq , gq )F>(Fv (0)−b(v (0)−v (1))) ·e(g , g )sx tαx ·e(g , f )t sx F>ψ̃x

)
j

x < x∗ g sxσ j hsxτν j g ex C
sx J(gid∗)
1 e(g , g ) fxφ j ·e( f , f ) fxφ j

Since, F ∈Zm×m
N is an orthogonal matrix, then the following two distributions are equiv-

alent.
{ψx :ψx ←Zm

N , x ∈ [n̂]} ≡ {F>ψ̃x : ψ̃x ←Zm
N , x ∈ [n̂]}

Therefore, the advantage of any PPT adversary A can distinguish between the Game 0 and
Game 1 with negligible probability.

Public key simulation: Without loss of generality, we assume that the adversary makes the
maximum number of Q queries and the challenge group identity gid∗ and challenge index
i∗. Now, the simulator chooses an integer k ′

1 ← [k ′], sets an integer s = 10Q, a random k ′-
length vector z = (zi ) ← Zk ′

s and a value z ′ ← Zs . Additionally, the simulator also chooses a
random value w ′ ← ZN and a uniformly random k ′-length vector w = (wi ) ← Zk ′

N . All these
values are kept secret to the simulator.

Let us consider V ∗ ⊆ {1,2, . . . ,k ′} be the set of all i for which the challenge identity gid∗
i = 1.

Let V ∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z which correspond to the index
set V ∗ and then set

∑
i∈V ∗ zi = k ′

1s − z ′ for uniformly chosen k ′
1 ∈ [k ′]. Now, we define the

function K(gid) as

K(gid) =
{

0, if z ′+∑
i∈V zi ≡ 0 mod s

1, elsewhere

So, from the above definition of the function K, we can say that K(gid∗) = 0 and for all gid 6=
gid∗ it becomes non-zero. Additionally, we set two functions as F(gid) = N − sk ′

1+z ′+∑
i∈V zi

and J(gid) = w ′+∑
i∈V wi . The simulator assigns the public parameters ϑ′ = f N−k ′

1s+z ′ · g w ′ =
g

d ′
p

p g
d ′

q
q and ϑi = f zi g wi = g

dp,i
p g

dq,i
q . From the adversarial perspective, the distribution of the

public parameters are identical to the real construction.
Suppose on the contrary, there exist a PPT adversary A that can distinguish between the

Game 0 and Game 1 with non-negligible advantage ε(·). Then we construct a PPT adversary
B that breaks the D3DH assumption 1 with the same non-negligible advantage. Let us con-
sider, B gets an instance

(BG, Aq = g a
q ,Dq = g d

q ,Cq = g c
q ,T )

of the D3DH assumption 1, where BG = (p, q, N ,G,GT , g ,e(·, ·)) is a group description. The
elements a,d ,c ←Zq are random integers and the element T = g τq is either g adc

q or random
group element from the subgroup Gq . The algorithm B works as follows:
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The adversary B implicitly sets the following vector of length m as

ax = (a, ax,2, . . . , ax,m); d = (d , . . . ,d); c = (c, . . . ,c)

where it random samples ax,2, . . . , ax,m ←ZN . We define the notion u¯v by component wise
multiplication of the vectors u and v . In this case, a¯d = (ad , ax,2d , . . . , ax,md) = d a. To gen-
erate the public key, we implicitly set ψ̃x,q = ax and ψ̃x,p ←Zm

N . Also it samples the following
exponents

∀` ∈ [k],b ∈ {0,1}, δ`,b ←ZN ,γ`,b ←Zp

∀y ∈ [ñ],` ∈ [k],b ∈ {0,1} cy,`,b ←ZN

∀ j ∈ [m], x ∈ [n̂] rx, j ,αx, j ←ZN

Additionally, samples the generators gp ,hp , fp from Gp and gq ,hq , fq are generators of the
group Gq and set fq = Dq . Also, randomly chooses β, r̂ ←ZN . Then, it sets the master public
key as

mpk=



BG,h, g , f = fp g d
q = fp Dq ,

ϑ′,ϑ
′β
q ,ϑ, {ϑβq,i },H,Hq ,Eq = gβq

Ex, j = g r̂ rx, j ,Fx, j = h r̂ rx, j ,Gx, j = e(g , g )αx, j

Eq,x, j = g
βr̂ rx, j
q ,Fq,x, j = h

βr̂ rx, j
q ,Gq,x, j = e(gq , gq )βαx, j

Yx, j = (g F>ax
q g

F>ψ̃x,p
p ) j ,Yq,x, j = (gβF>ax

q ) j ,


x∈[n̂], j∈[m]

{Hy,`,b = g cy,`,b }(y,`,b)∈[ñ]×[k]×{0,1},{
Ṽ`,b = gδ`,b g

γ`,b
p ,V`,b = hδ`,b

}
(`,b)∈[k]×{0,1}


Here, the exponent g ax

q is computed as

g ax
q = (g a

q , g
ax,2
q , . . . , g

ax,m
q ) = g

ψ̃x,q
q

Hence, the public key components are properly generated by using the D3DH instances as
described above.

Secret key simulation: B answers the secret key sku associated to the tuple (i , id,gid,u) as
describe below. We consider two cases. Before going further, we consider V ⊆ {1, . . . ,k ′} be
the set of all j such that gid j = 1. Let i = (x, y) be the row wise representation with i ≥ i∗.

Case 1. If the group identity gid 6= gid∗, B simulates the secret key as follows:

K1 = g 〈αx ,u〉
( ∏
`∈[k]

Hy,`,id`

)r̂ 〈rx ,u〉

K2 = f
〈ψ̃x,p ,Fu〉

p

(
f F(gid)

p g J(gid)
p

)r ′
p

g
−〈ax ,Fu〉 J(gid)

F(gid)
q Hq (gid)r

= f
〈ψ̃x,p ,Fu〉

p

(
f F(gid)

p g J(gid)
p

)r ′
p

f 〈ax ,Fu〉
q

(
f F(gid)

q g J(gid)
q

)r (
f F(gid)

q g J(gid)
q

)− 〈ax ,Fu〉
F(gid)

= f
〈ψ̃x,p ,Fu〉

p

(
f F(gid)

p g J(gid)
p

)r ′
p

f 〈ax ,Fu〉
q

(
f F(gid)

q g J(gid)
q

)r− 〈ax ,Fu〉
F(gid)
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= f
〈ψ̃x,p ,Fu〉

p

(
f F(gid)

p g J(gid)
p

)r ′
p

f 〈ax ,Fu〉
q

(
f F(gid)

q g J(gid)
q

)r ′
q

= f
〈ψ̃x,p ,Fu〉

p f
〈ax,p ,Fu〉

q

(
f F(gid)

p g J(gid)
p

)r ′
p
(

f F(gid)
q g J(gid)

q

)r ′
q

= f
〈ψ̃x,p ,Fu〉

p f 〈ax ,Fu〉
q H(gid)r ′ = f 〈ψ̃x ,Fu〉H(gid)r ′

K3 = g
r ′

p
p g

r−〈(a,ax,2,...,ax,m ),Fu〉· 1
F(gid)

q

= g
r ′

p
p g

r ′
q

q = g r ′

We implicitly set r ′
q = r − 〈ψ̃x,q ,Fu〉

F(gid) and r ′
p is randomly chosen. So from the construction of K

function, it can conclude that K(gid) 6= 0 for any key query corresponding to the group iden-
tity gid 6= gid∗. This implies that the function F(gid) 6= 0 mod N for any such group identities
(as we assume N > sk ′

1 for reasonable values of N , s and k ′
1, see Lemma 23.

Case 2. If gid= gid∗, B responds the secret keys as follows:

K1 = g 〈αx ,u〉
( ∏
`∈[k]

Hy,`,id`

)r̂ 〈rx ,u〉

K2 = g dµ
q f

〈ψ̃x,p ,Fu〉
p

(
( f F(gid∗)g J(gid∗))r

)
= g 〈ax¯d ,Fu〉

q f
〈ψ̃x,p ,Fu〉

p

(
( f F(gid∗)g J(gid∗))r

)
= f

〈(a,ax,2,...,ax,m ),Fu〉
q f

〈ψ̃x,p ,Fu〉
p

(
( f F(gid∗)g J(gid∗))r

)
= f 〈ax ,Fu〉

q f
〈ψ̃x,p ,Fu〉

p

(
( f F(gid∗)g J(gid∗))r

)
= f 〈ψ̃x ,Fu〉H(gid∗)r

K3 = g r

where the second equality follows from the fact that 〈ax ¯d ,Fu〉 = dµ with µ ∈ZN is known
to the challenger B. So from the formation of the matrix F, we have F(v (0) − v (1)) = e1 and
for gid = gid∗, the queried secret key associated with the vector u satisfies the condition
〈v (0) −v (1),u〉 = 0. Therefore, we have 〈e1,Fu〉 = 0 which implies that 〈ax ¯d ,Fu〉 =
〈(ad , ax,2d , ax,3d , . . . , ax,md),Fu〉 = dµ for some µ ∈ZN .

Challenge ciphertext simulation: To the generates the challenge ciphertext, B chooses the
random exponent tp ← ZN and implicitly set tq = c. In the following, we show that how B

simulates the challenges ciphertext using the D3DH instances of assumption 1.

For x ≥ x∗, Ax =Cβsx
q

Bx =C
βsx Jq (gid∗)
q

= Hq (gid∗)βsx t [Since, N −k ′
1s + z ′+ ∑

i∈V ∗
zi = N = pq =⇒ f N

q = 1]

Ix, j = I 1
x, j =

(
e(gq , gq )F>(Fv (0)−be1)e(gq , gq )βsx cαx e(gq , g

cdF>(a,ax,2,...,ax,m )
q )βsx

)
j

=
(
e(gq , gq )F>(Fv (0)−be1)e(gq , gq )βsx cαx e(gq , gq )βsx cdF>(a,ax,2,...,ax,m )

)
j

=
(
e(gq , gq )F>(Fv (0)−be1)e(gq , gq )βsx cαx e(gq , fq )βsx cF>(a,ax,2,...,ax,m )

)
j
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=
(
e(gq , gq )F>(Fv (0)−be1)e(gq , gq )βsx tαx e(gq , fq )βsx tF>ψ̃x

)
j

For x = x∗, Ax = (Cq g
tp
p )sx ,Bx = (Cq g

tp
p )sx J(gid∗),

Ix, j = I 2
x, j =

(
e(gq , gq )F>(Fv (0)−be1)e(gq , gq )sx cαx e(gp , gp )sx tpαx e(gq , g

cdF>(a,ax,2 ,...,ax,m )
q )sx e(gp , fp )sx tp F>ψ̃x,p

)
j

=
(
e(gq , gq )F>(Fv (0)−be1)e(gq , gq )sx cαx e(gp , gp )sx tpαx e(gq , gq )sx cdF>(a,ax,2 ,...,ax,m )e(gp , fp )sx tp F>ψ̃x,p

)
j

=
(
e(gq , gq )F>(Fv (0)−be1)e(gq , gq )sx cαx e(gp , gp )sx tpαx e(gq , fq )sx cF>(a,ax,2 ,...,ax,m )e(gp , fp )sx tp F>ψ̃x,p

)
j

=
(
e(gq , gq )F>(Fv (0)−be1)e(gq , gq )sx tqαx e(gp , gp )sx tpαx e(gq , fq )sx tq F>ψ̃x,q e(gp , fp )sx tp F>ψ̃x,p

)
j

Table 47: Simulation of row components of the challenge ciphertext for x ∈ [n̂]

Rx, j R̃x, j Ax Bx Ix, j

x > x∗ E sx
q,x, j F sxτ

q,x, j C
βsx
q C

βsx J(gid∗)
q I 1

x, j

x = x∗ E sx
x, j F sxτ

x, j (Cq g
tp
p )sx (Cq g

tp
p )sx J(gid∗) I 2

x, j

x < x∗ g sxσ j hsxτν j g ex (Cq g
tp
p )sx J(gid∗) e(g , g ) fxφ j ·e( f , f ) fxφ j

Table 48: Computing column components of the ciphertext for (y,`,b) ∈ [ñ]× [k]× {0,1}

Cy,`,b C̃y,`,b

(y > y∗)∨ (y = y∗∧ (`,b) 6= (`∗,b∗)) (Cq g
tp
p )cy,`,b ·hwy,`,bτ g wy,`,b

(y < y∗)∨ (y,`,b) = (y∗,`∗,b∗)) (Cq g
tp
p )cy,`,b ·hwy,`,bτV

vy,`,bτ

`,b g wy,`,b · Ṽ vy,`,b

`,b

Guess. If A guesses the challenge bit b← {0,1} correctly, then B returns 1 otherwise it out-
puts 0. We consider wx = dc(a, ax,2, . . . , ax,m) = (τ,dcax,2, . . . ,dcax,m) where g τq are the chal-
lenge elements. If τ = adc, then all the secret key and the challenge ciphertext is properly
distributed. In particular, the challenge ciphertext is an encryption of message vector v (b).
Therefore, in this case, A outputs b= b′ with advantages 1

2 +negl(λ) where negl(λ) is the ad-
vantage of A in the message-hiding security game of the EIPL-IBIPFE. Otherwise, if τ is ran-
domly generated from Zq then the challenge ciphertext components Ix, j uniform element
from the target group GT . So the A can not get any information about the challenge bit b
from this component. So, A wins the game with the probability 1

2 . Hence, from the hardness
of assumption 1, it can conclude that A has a non-negligible advantage against the proposed
EIPL-IBIPFE scheme achieves the selective security. This completes the message-hiding se-
curity. ut

Therefore, it concludes the security of our EIPL-IBIPFE. ut

11 EIPL-IBIPFE from ABIPFE and MFE

Let us considerABIPFE= (ABIPFE.Setup, ABIPFE.KeyGen, ABIPFE.Enc, ABIPFE. Dec) be
an attribute-based IPFE scheme for a class of functions F = {Fλ}λ∈N, a predicate space
X = {Xλ}λ∈N and a message space X = {Yλ}λ∈N and MFE = (MFE.Setup, MFE.PK-Enc,
MFE.SK-Enc, MFE.KeyGen, MFE.Dec) be a mixed FE for a class of functions F . We provide
a generic transformation of EIPL-IBIPFE from ABIPFE and MFE. Let k̄ be the functionality
index representing the function class { fi ,`,b,gid} defined in the special encryption algorithm
below. The syntax and security definitions of ABIPFE, MFE are given in Definitions 3.4 and
3.5 respectively.
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Setup(1λ, n, 1k , 1k ′
, 1m) → (msk, mpk, key): The setup algorithm performs the following

steps:

– runs the setup algorithm of ABIPFE and computes its master public and master secret
key pair as (ABIPFE.msk,ABIPFE.mpk) ← ABIPFE.Setup(1λ,1m ,1κ+k ′

) where κ = κ(λ) is
the length of an MFE ciphertext.

– runs the setup algorithm ofMFE and computes (MFE.msk,MFE.mpk) ←MFE.Setup(1λ,1k̄ ).
– outputs mpk= (ABIPFE.mpk,MFE.mpk),msk= key= (ABIPFE.msk,MFE.msk).
KeyGen(msk, i , id,gid, u) → sku : The key generation algorithm works as follows:

– parse msk= (ABIPFE.msk,MFE.msk).
– computes MFE.ski ,id,gid ←MFE.KeyGen(MFE.msk, (i , id,gid)).
– define a circuit Ci ,id,gid(·, ·) as

Ci ,id,gid(MFE.ct,gid′) =
{

1−MFE.Dec(MFE.ski ,id,gid,MFE.ct), if gid= gid′

⊥, otherwise.

– computes ABIPFE.sku ←ABIPFE.KeyGen(ABIPFE.msk,Ci ,id,gid(·, ·),u).
– returns sku =ABIPFE.sku .

Enc(mpk,gid′, v ) → ctv : The encryption algorithm proceeds as follows:
– parse mpk= (ABIPFE.mpk, MFE.mpk).
– computes MFE.ct←MFE.PK-Enc(MFE.mpk).
– computes ABIPFE.ctv ←ABIPFE.Enc(ABIPFE.mpk, (MFE.ct,gid′), v ).
– returns ctv =ABIPFE.ctv .

SplEnc(key,gid′, v , (i∗,`∗, b∗)) → ctv : The special encryption algorithm executes the fol-
lowing steps:

– here key=msk.
– construct a function fi∗,`∗,b∗,gid′( j , id,gid) as follows:

fi∗,`∗,b∗,gid′( j , id,gid) =


1, if ( j ≥ i∗+1)∨ (i∗,`∗) = ( j ,⊥)∨

(i∗, id`∗) = ( j ,1−b∗)∧ (gid= gid′)
0, otherwise.

– computes MFE.ct←MFE.SK-Enc(MFE.msk, fi∗,`∗,b∗,gid′).
– computes ABIPFE.ctv ←ABIPFE.Enc(ABIPFE.mpk, (MFE.ct,gid′), v ).
– returns ctv =ABIPFE.ctv .

Dec(sku ,ctv ) → ζ/ ⊥: On input the secret key sku and ciphertext ctv , the decryptor runs the
ABIPFE and returns the output ABIPFE.Dec(sku ,ctv ).

11.1 Correctness

For any λ,n ∈ N, a message vector v ∈ Yλ, the master public key, master secret key pair
(ABIPFE.msk, ABIPFE.mpk) ←ABIPFE.Setup(1λ,1m ,1κ+k ′

) and (MFE.msk,MFE.mpk) ←MFE.
Setup(1λ,1k̄ ), the secret keys are generated fromABIPFE keys as sku =ABIPFE.sku for i ∈ [n].
In the following, we discuss two types of correctness in our proposed scheme.
1. Normal encryption. If gid = gid′ then, for any ciphertext computed as ABIPFE.ctv ←

ABIPFE.Enc(ABIPFE.mpk,att, v ) where att= (MFE.ct,gid′). From the correctness ofABIPFE
scheme, we can write,

ABIPFE.Dec(sku ,ctv ) = 〈u, v〉 if Ci ,id,gid(MFE.ct,gid′) = 0

which follows from the correctness of our underlying decryption algorithm ofMFE scheme
as MFE.Dec(MFE.ski ,id,gid,MFE.ct) = 1.
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2. Special encryption. If gid = gid′, then for any ciphertext computed as ABIPFE.ctv ←
ABIPFE.Enc(ABIPFE.mpk,att, v ) where att= (MFE.ct,gid′). From the correctness of MFE
scheme,

MFE.Dec(MFE.ski ,id,gid,MFE.SK-Enc(MFE.msk, fi ,`,β,gid′))

=MFE.Dec(MFE.ski ,id,gid,MFE.PK-Enc(MFE.mpk)) = 1

i.e., fi∗,`∗,b∗,gid′(i , id,gid) = 1−Ci ,id,gid(MFE.ct,gid′) = 1 this implies that Ci ,id,gid(MFE.ct,gid′)
= 0. So, from the correctness of ABIPFE, we have that with all but negligible probability,

ABIPFE.Dec(sku ,ctv ) = 〈u, v〉.

11.2 Security Analysis

Theorem 10 If the underlying ABIPFE is IND-CPA secure as per Definition 3 and the MFE
scheme is secure as per Definitions 4, 5, then our EIPL-IBIPFE scheme is secure as per Defini-
tions 11 to 15.

Proof. We prove this theorem by using the following Lemmas 16 to 20.

Lemma 16 If the underlying MFE scheme is 1-bounded restricted A-IND secure, then our EIPL-
IBIPFE scheme achieves 1-bounded normal-hiding security as per Definition 11.

Proof. We prove the normal-hiding security depending on the 1-bounded restricted A-IND
security of MFE scheme. Let B1 be an A-IND adversary of the underlying MFE scheme. On
receiving (1k ,1k ′

,gid∗,1m ,n) from A , it sets the parameter k̄ as in the MFE scheme (which
is the functionality index of the function class containing fi ,`,b,gid) and set the challenge
function f ∗ = f(1,⊥,0,gid∗). By performing the following steps, B simulates the normal-hiding
game.

Simulation of B1(1k̄ , f ∗) :

Public key simulation:
1. The MFE challenger creates the challenge for B as follows.

1.1 Generates (MFE.msk,MFE.mpk) ←MFE.Setup(1λ,1k̄ ).
1.2 Choose b← {0,1}.
1.3 Run encryption algorithm and generates MFE.ct0 ← MFE.PK-Enc(MFE.mpk) and

MFE.ct1 ←MFE.SK-Enc(MFE.msk, f ∗).
1.4 The challenger sends (MFE.mpk,MFE.ctb) to B1.

2. B1 chooses (`′,β′) ← ([k]∪ {⊥})× {0,1} and makes a SK-Enc query for f(1,`′,β′,gid∗). It re-
ceives a ciphertext MFE.ct from its challenger.

3. B1 computes (ABIPFE.msk,ABIPFE.mpk) ←ABIPFE.Setup(1λ,1m ,1κ+k ′
).

4. B1 sends mpk= (ABIPFE.mpk,MFE.mpk) to A .

Secret key simulation:
5. A can make queries (i , id,gid,u) to KeyGen oracle.

5.1 B1 sends (i , id,gid) to its challenger to get MFE secret key as MFE.ski ,id,gid ←
MFE.KeyGen(MFE.msk, (i , id,gid)).

5.2 B1 construct the circuit Ci ,id,gid(·, ·) and sends ABIPFE secret key as ABIPFE.sku ←
ABIPFE.KeyGen (ABIPFE.msk,Ci ,id,gid,u) to A .
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Special encryption simulation:
6. A can make at most one SplEnc query for (v ,gid∗, (1,`,β)). Then B1 responds to the

query as follows.
6.1 If (`′,β′) 6= (`,β), then return ⊥.
6.2 B1 uses the attribute (MFE.ct, gid∗) corresponding to the function f(1,`′,β′,gid∗) obtain

in Step 2 and computes ABIPFE.ctv ← ABIPFE.Enc(ABIPFE.mpk, (MFE.ct, gid∗), v ).
6.3 B1 sends ctv =ABIPFE.ctv to A .

Note 1. B1 needs to guess (`,β) in advance successfully to answer the A ’s query. Thus,
it makes a polynomial security loss of 1

2(k+1) . The reduction algorithm need to guess the
value `, we extend the analysis to prove q-bounded EIPL-IBIPFE (adaptive) security as-
suming that the q-bounded restricted MFE security for a constant q. One more obser-
vation is that a q-bounded EIPL-IBIPFE selective security can be proven directly from
q-bounded restricted MFE security without any security loss.

Challenge ciphertext simulation:
7. A now sends the challenge message v to B1 and B1 produces the respond as follows.

7.1 B1 uses the attribute (MFE.ctb,gid∗) obtain in Step 1 and then computes the cipher-
text ABIPFE.ctv ←ABIPFE.Enc (ABIPFE.mpk, (MFE.ctb,gid∗), v ).

7.2 B1 sends ct(b)
v =ABIPFE.ctv to A .

Post-challenge key-query simulation:
8. A can repeat key generation phase, special encryption query phase if SplEnc oracle is not

queried before.

Guess:
9. Finally, A submits a guess bit b′ which is then output of B1 for its own guess.

Analysis of simulation. Note that, B1 is an admissible adversary for 1-query restrictedA-IND
security of MFE. It correctly simulates the normal-hiding security game for the adversary A .
Thus if A ′s advantage is non-negligible then B1 breaks the A-IND security of MFE schemes
with non-negligible advantage. ut
Lemma 17 If the underlying MFE scheme is 1-bounded restricted F-IND secure, then our EIPL-
IBIPFE scheme achieves the 1-bounded index-hiding security as per Definition 12.

Proof. We prove the index-hiding security game depending on the 1-bounded restricted F-
IND security of MFE scheme. Let B2 be an F-IND adversary of the underlying MFE scheme.
On receiving (1k ,1k ′

,1m ,1n ,gid∗, i∗) from A , it sets the parameter k̄ as in the MFE scheme
and take the challenge functions as f (0) = f(i∗,⊥,0,gid∗), f (1) = f(i∗+1,⊥,0,gid∗). In the following,
B2 performs the following steps to simulate the index-hiding game.

Simulation of B2(1k̄ , f (0), f (1)) :

Public key simulation:
1. The MFE challenger creates the challenge for B2 as follows.

1.1 Generates (MFE.msk,MFE.mpk) ←MFE.Setup(1λ,1k̄ ).
1.2 Choose b← {0,1}.
1.3 Computes MFE.ctb ←MFE.SK-Enc(MFE.mpk, f (b)).
1.4 The challenger sends (MFE.mpk,MFE.ctb) to B2.
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2. B2 samples uniformly (i ′,`′,β′) ← {i∗, i∗+1}× ([k]∪ {⊥})× {0,1} and makes a secret en-
cryptionSK-Encquery for fi ′,`′,β′,gid∗ and receives a ciphertextMFE.ct from its challenger.

3. B2 computes (ABIPFE.msk,ABIPFE.mpk) ←ABIPFE.Setup(1λ,1m ,1κ+k ′
).

4. B2 sends mpk= (ABIPFE.mpk,MFE.mpk) to A .

Secret key simulation:
5. A can make queries {(τ, id,gid,u)} with (τ,gid) 6= (i∗,gid∗) to KeyGen oracle.

5.1 B2 sends (τ, id,gid) to its challenger to get MFE secret key as MFE.skτ,id,gid ←
MFE.KeyGen(MFE.msk, (τ, id,gid)).

5.2 B2 constructs the circuit Cτ,id,gid(·, ·) and sends theABIPFE secret key to the adversary
as ABIPFE.sku ←ABIPFE.KeyGen(ABIPFE.msk,Cτ,id,gid,u) to A .

Special encryption simulation:
6. A can make at most one SplEnc query for (v ,gid∗, (τ,`,β)) with τ ∈ {i∗, i∗+1}. Then B2

responds to the query as follows.
6.1 If (τ,`,β) 6= (i ′,`′,β′), then return ⊥.
6.2 B2 uses the attribute (MFE.ct, gid∗) corresponding to the function f(i ′,`′,β′,gid∗) obtain

in Step 2 and computes ABIPFE.ctv ←ABIPFE.Enc(ABIPFE.mpk, (MFE.ct,gid∗), v ).
6.3 B2 sends ctv =ABIPFE.ctv to A .

Note 2. As B2 needs to guess the correct (τ,`,β) from the set {i∗, i∗ + 1}× ([k]∪ {⊥})×
{0,1} before the adversary A makes any query to SplEnc oracle. So, it makes a polynomial
security loss of 1

4(k+1) .

Challenge ciphertext simulation:
7. A now sends the challenge message vector v to B2 and B2 produces the respond as

follows.
7.1 B2 uses the attribute (MFE.ctb,gid∗) obtain in Step 1 and then computes ABIPFE ci-

phertext as ABIPFE.ctv ←ABIPFE.Enc (ABIPFE.mpk, (MFE.ctb, gid∗), v ).
7.2 B2 sends ct(b)

v =ABIPFE.ctv to A .

Post-challenge secret key simulation:
8. A can repeat key generation phase special encryption query phase if SplEnc oracle is not

queried before.

Guess:
9. Finally, A submits a guess b′ which is the output of B2 for its own guess.

Note that, f (0)(τ, id,gid) = f (1)(τ, id,gid) for all queries (τ, id,gid) made by B2 in key queries.
Since (τ,gid) 6= (i∗,gid∗) we have,

f (0)(τ, id,gid) = fi∗,⊥,0,gid∗(τ, id,gid) = 0

f (1)(τ, id,gid) = fi∗+1,⊥,0,gid∗(τ, id,gid) = 0

}
if (τ≤ i∗)∧ (gid 6= gid∗)

f (0)(τ, id,gid) = fi∗,⊥,0,gid∗(τ, id,gid) = 1

f (1)(τ, id,gid) = fi∗+1,⊥,0,gid∗(τ, id,gid) = 1

}
if (τ> i∗)∧ (gid= gid∗)

Analysis of simulation. Thus B2 is an admissible adversary for 1-query restricted F-IND se-
curity of MFE scheme. If b= 0 then the challenge ciphertext corresponds to the index i∗ and
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if b= 1 then it corresponds to the index i∗+1. Thus, B2 simulates A except for a polynomial
security loss of 1

4(k+1) . Thus if A ′s advantage is non-negligible then B2 breaks the F-IND se-
curity of MFE schemes with non-negligible advantage. In other words, if the advantage of A

is non-negligible ε in the index-hiding game, then B2 breaks the F-IND security of MFE with
probability of ε

4(k+1) . ut

Lemma 18 If the underlying MFE scheme is 1-bounded restricted F-IND secure, then our EIPL-
IBIPFE scheme achieves the 1-bounded upper identity-hiding security as per Definition 14.

Proof. We prove the upper identity-hiding security depending on the 1-bounded restricted
F-IND security of the MFE scheme. Let B3 be an F-IND adversary for the underlying MFE
scheme. On receiving (1k ,1k ′

,1m ,1n ,gid∗, i∗,`∗,b∗) from A , it sets the parameter k̄ as in the
MFE scheme and sets the challenge functions as f (0) = fi∗+1,⊥,0,gid∗ , f (1) = fi∗,`∗,b∗,gid∗ . B3

performs the following simulation as follows:

Simulation of B3(1k̄ , f (0), f (1)) :

Public key simulation:
1. The MFE challenger creates the challenge for B3 as follows.

1.1 Generates (MFE.msk,MFE.mpk) ←MFE.Setup(1λ,1k̄ ).
1.2 Choose b← {0,1}.
1.3 Computes MFE.ctb ←MFE.SK-Enc(MFE.mpk, f (b)).
1.4 The challenger sends (MFE.mpk,MFE.ctb) to B3.

2. B3 selects randomly (i ′,`′,β′) ← {i∗, i∗+1}×([k]∪{⊥})×{0,1} which makes aSK-Encquery
for fi ′,`′,β′,gid∗ and receives a ciphertext MFE.ct from its challenger.

3. B3 computes (ABIPFE.msk,ABIPFE.mpk) ←ABIPFE.Setup(1λ,1m ,1κ+k ′
).

4. B3 sends mpk= (ABIPFE.mpk,MFE.mpk) to A .

Secret key simulation:
5. A can make queries (τ, id,gid,u) to KeyGen oracle with the restriction that, if τ= i∗ then

id`∗ = b∗.
5.1 B3 sends (τ, id,gid) to its challenger to get MFE secret key as MFE.skτ,id,gid ←

MFE.KeyGen(MFE.msk, (τ, id,gid)).
5.2 B3 constructs the circuit Cτ,id,gid(·, ·) and sends theABIPFE secret key asABIPFE.sku ←

ABIPFE.KeyGen (ABIPFE.msk,Cτ,id,gid,u) to A .

Special encryption simulation:
6. A can make at most one SplEnc query for (v ,gid∗, (τ,`,β)) where τ ∈ {i∗, i∗+1}. Then B3

responds to the query as follows.
6.1 If (τ,`,β) 6= (i ′,`′,β′), then return ⊥.
6.2 B3 uses the attribute (MFE.ct,gid∗) corresponding to the function fi ′,`′,β′,gid∗ obtained

in Step 2 and computes ABIPFE.ctv ← ABIPFE.Enc(ABIPFE.mpk, (MFE.ct, gid∗), v ).
6.3 B3 sends ctv =ABIPFE.ctv to A .

Note 3. Note that, B3 needs to guess the correct (τ,`,β) from the set {i∗, i∗+1}× ([k]∪
{⊥})× {0,1} before the adversary A makes any query to SplEnc. Hence, we have a polyno-
mial security loss of 1

4(k+1) .
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Challenge ciphertext simulation:
7. A now sends the challenge message v to B3 and B3 produces the respond as follows.

7.1 B3 uses the attribute (MFE.ctb,gid∗) obtained in Step-1 and computes ABIPFE ci-
phertext as ABIPFE.ctv ←ABIPFE.Enc (ABIPFE.mpk, (MFE.ctb, gid∗), v ).

7.2 B3 sends ct(b)
v =ABIPFE.ctv to A .

Post-challenge secret key simulation:
8. A can repeat key generation phase special encryption query phase if SplEnc oracle is not

queried before.

Guess:
9. Finally, A submits a guess b′ which is then the output of B3 for its own guess.

Note that, f (0)(τ, id,gid) = f (1)(τ, id,gid) for all queries (τ, id,gid) made by B3 in the secret key
query phase should satisfy the conditions that if (τ,gid) = (i∗,gid∗) then id`∗ 6= b∗.

f (0)(τ, id,gid) = fi∗+1,⊥,0,gid∗(τ, id,gid) = 0

f (1)(τ, id,gid) = fi∗,`∗,b∗,gid∗(τ, id,gid) = 0

}
if (τ≤ i∗)∧ (id`∗ = b∗)

∧(gid 6= gid∗);

f (0)(τ, id,gid) = fi∗+1,⊥,0,gid∗(τ, id,gid) = 1

f (1)(τ, id,gid) = fi∗,`∗,b∗,gid∗(τ, id,gid) = 1

}
if (τ> i∗)‘∧ (gid= gid∗);

Analysis of simulation. Thus, B3 is an admissible adversary for 1-query restricted F-IND
security of MFE scheme. If b = 0 then the challenge message corresponds to (i∗ + 1,⊥,0)
and if b = 1 then it corresponds to the index (i∗,`∗,b∗). Hence, B3 simulates A except for
a polynomial security loss of 1

4(k+1) . Thus if A ′s advantage is non-negligible then B3 breaks
the F-IND security of MFE schemes with non-negligible advantage. In other words, if the
advantage of A is non-negligible ε(·) in the upper identity-hiding game, then B3 breaks the
F-IND security of MFE with probability of ε

4(k+1) . ut

Lemma 19 If the underlying MFE scheme is 1-bounded restricted F-IND secure, then our EIPL-
IPFE scheme achieves the 1-bounded lower identity-hiding security as per Definition 13.

Proof of above Lemma 19 is similar with the Lemma 18.

Lemma 20 If the underlying ABIPFE scheme is IND-CPA secure, then our EIPL-IBIPFE scheme
achieves 1-bounded message-hiding security as per Definition 15.

Proof. We prove the message-hiding security based on the IND-CPA security of ABIPFE
scheme. Let B5 be an adversary against IND-CPA of ABIPFE. On receiving (1k ,1k ′

,1m ,1n , i∗,
gid∗, v (0), v (1)) from A , it sets the parameter k̄ as theMFE scheme and simulates A as follows.

Simulation of B5(1k̄ ,1m ,1n ,1k ,1k ′
, i∗,gid∗, v (0), v (1)) :

Public key simulation:
1. B5 receives ABIPFE.mpk from ABIPFE challenger.

2. It generates (MFE.msk,MFE.mpk) ←MFE.Setup(1λ,1k̄ ).

3. Then B5 sends mpk= (ABIPFE.mpk,MFE.mpk) to A .
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Secret key simulation:
4. A makes secret key queries for (i , id,gid,u) to KeyGen oracle and B5 responds as follows.

4.1 Generates MFE.ski ,id,gid ← MEF.KeyGen(MFE.msk, (i , id,gid)).
4.2 Construct Ci ,id,gid(·, ·) using MFE.ski ,id,gid and sends Ci ,id,gid(·, ·) to ABIPFE challenger.
4.3 It receives ABIPFE.sku ←ABIPFE.KeyGen(ABIPFE.msk,Ci ,id,gid,u) and sent it to A .

Special encryption simulation:
5. A can make at most one SplEnc query for (v ,gid∗, (i∗,`,γ)) to which B5 responds as

follows.
5.1 Computes fi∗,`,γ,gid∗ and generates MFE.ct←MFE.SK-Enc(MFE.msk, fi∗,`,γ,gid∗).
5.2 B5 computes ABIPFE.ctv ← ABIPFE.Enc(ABIPFE.mpk, (MFE.ct,gid), v ) and sends it

to A .

Challenge ciphertext simulation:

6. A submits two challenge message vectors v (0), v (1) such that for the tuple (i , id,gid,u)
queried in Step 4 we have 〈u, v (0)〉 = 〈u, v (1)〉. B5 generates the challenge ciphertext as
follows.

6.1 B5 computes the function fi∗,⊥,0,gid∗ and sends the challenge attribute as MFE.ct ←
MFE.Enc(MFE.msk, fi∗,⊥,0,gid∗) (One observation is that if B5 sends the challenge at-
tribute at the beginning of the experiment then we only need a selective secureABIPFE
scheme).

6.2 B5 sends ((MFE.ct,gid∗), v (0), v (1)) to the ABIPFE challenger and gets ABIPFE cipher-
text as ABIPFE.ctv (b) ←ABIPFE.Enc(ABIPFE.mpk, (MFE.ct, gid∗), v (b)).

6.3 B5 sends the challenge ciphertext as ctv (b) =ABIPFE.ctv (b) to the adversary.

Post-challenge secret key simulation:
7. A can repeat Step 4 with same restriction given in key query phase and special encryp-

tion query phase if SplEnc oracle is not queried before.

Guess:
8. Finally, A submits a guess b′ which is then the output of B5 for its own guess.

Analysis of simulation. First, we note that the challenge attribute att = (MFE.ct,gid∗) corre-
sponds to fi∗,⊥,0,gid∗ . Any secret key query of the form {Ci ,id,gid(·, ·),u} to the ABIPFE satisfies
the following:

Ci ,id,gid(MFE.ct,gid∗) =
{

1, if (i ≥ i∗)∧ (gid= gid∗)

0, otherwise

Thus, for each secret-key query (Ci ,id,gid(·, ·),u) of the ABIPFE-adversary B5 it holds that
either Ci ,id,gid(att) = 0 or 〈u, v (0)〉 = 〈u, v (1)〉. Hence, the B5 is an admissible adversary of
ABIPFE. Therefore, the message-hiding security of EIPL-IBIPFE follows from Sel-IND-CPA
security of the ABIPFE scheme. ut

This concludes the proof of the Theorem 10. ut
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A Security Analysis of Tracing

In this section, we present the security analysis of tracing of Theorem 4.

Proof. Correctness of Tracing. Next, we show that the false trace probability is bounded by
a negligible function, and the correct trace probability is close to the probability of A out-
putting an ε-successful decoding box for some non-negligible ε(·). This proof technique is
inspired from the Goyal et al. [GKW19] tracing mechanism.

Let us consider the following notations for the further proof of this Theorem. Given any
pirate decoder box D and messages v (0), v (1) for all i ∈ [n +1],` ∈ [k], suppose

pD
i ,⊥ = Pr

D(ctv (b) ) = b :
ctv (b) ←EIPL-IPFE.SplEnc(key,gid, v (b), (i ,⊥,0)),

b← {0,1}


pD

i ,` = Pr

D(ctv (b) ) = b :
ctv (b) ←EIPL-IPFE.SplEnc(key,gid, v (b), (i ,`,0)),

b← {0,1}


pD

nrml = Pr

D(ctv (b) ) = b :
ctv (b) ←EIPL-IPFE.Enc(key,gid, v (b)),

b← {0,1}


The above probabilities are computed depending on the randomness used in the special en-
cryption.

99



False Trace Probability. Now we will prove that probability of the false tracing by the Trace
algorithm is negligible. Now, we prove the following Lemma.

Lemma 21 If the scheme EIPL-IBIPFE is a 1-query secure as per Definitions 11 to 15, then
for every PPT adversary A , polynomial q(·) and non-negligible function ε(·), there exists a
negligible function negl(·) such that for all λ ∈N satisfying ε(λ) > 1/q(λ),

Pr-Fal-TrA ,ε(λ) ≤ negl(λ)

where Pr-Fal-TrA ,ε(·) is defined in Definition 17.

Proof. Let S ⊆ [n]×{0,1}k×{0,1}k ′×X be the set of query tuples by the adversary A for secret
keys and Sindex be the set of indices queried by the adversary A for secret keys, and let D be
the decoder box output by A .
For i ∈ [n],` ∈ [k] and gid= gid∗, we define events

AD
i : pD

i ,⊥−pD
i+1,⊥ > ε/8n

BD
i ,`,lwr : pD

i ,⊥−pD
i ,` > ε/16n

CD
i ,`,upr : pD

i ,`−pD
i+1,⊥ > ε/16n

Diff-AdvD :
∨

i∈[n]\Sindex

AD
i

∨
(i ,id)∈S,`∈[k] s.t. id`=1

BD
i ,`,lwr

∨
(i ,id)∈S,`∈[k] s.t. id`=0

CD
i ,`,upr

For simplicity of notations, we will drop dependence on decoder D whenever clear from
context. Next, note that the probability of the event false trace can be rewritten (using union
bound) as follows by conditioning on the events defined above

Pr[Fal-Tr] ≤ Pr[Fal-Tr|Diff-Adv]+ ∑
i∈[n]

Pr[i ∉ Sindex∧ Ai ]

+ ∑
(i ,`)∈[n]×[k]

Pr

∃id ∈ {0,1}k s.t. (i , id) ∈ S ∧

 (Bi ,`,lwr∧ id` = 1)

∨(Ci ,`,upr∧ id` = 0)




Now, we will show that each term is bounded by a negligible function.

Claim 5. For every PPT adversary A , there exists a negligible function negl1(·) such that for
all λ ∈N, Pr[Fal-Tr|Diff-Adv] ≤ negl1(λ).

Proof. Here we give a high level sketch of proof. The proof follows from Chernoff bounds
and similar to Lemma 4.4 of [GKW18], and Lemma 5.3 of [GKRW18]. Note that the tracing
algorithm outputs a user identity which was not allowed to key query by the adversary iff the
event Fal-Tr occurs. Recall that the tracing algorithm first trace the key indices of the cor-
rupted keys then trace the corresponding identities. There are two sources of error in incor-
rect tracing. First, during step one of tracing the algorithm might incorrectly include some
index i ∉ Sindex in the traitor’s index-set T index. In the second phase of the tracing procedure,
it may happen that this outputs a non-corrupt identity id for some index i ∈ Sindex, that is for
some i ∈ Sindex the ID-Trace algorithm traces the id incorrectly at least one bit position. By us-
ing the union bound, we can represent it as follows: (recall that T and T index are introduced
in the description of Trace algorithm)

Pr[Fal-Tr|Diff-Adv] ≤ ∑
i∈[n]

Pr[Fal-Tr∧ i ∉ Sindex∧ (∃p, q : (i , p, q) ∈ T index)|Diff-Adv]

+ ∑
(i ,l )∈[n]×[k]

Pr[Fal-Tr∧∃id, ĩd : (id, ĩd) ∈ S ∧ ĩd ∈ T ∧ id` 6= ĩd`|Diff-Adv].
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In the above inequality, the first term on the right side bounds the type 1 error (i.e., faulty
step one tracing) and the second term bounds the type 2 error (i.e., faulty step two tracing).
Now we explictly discuss about the first term. Note that, if event

Diff-Adv occurs =⇒ ∀i ∉ Sindex, Ai occurred

This, it must hold that for every i ∈ [n]

Pr[i ∉ Sindex∧ (∃p, q : (i , p, q) ∈ T index)|Diff-Adv] ≤ 2−O(λ).

Using Chernoff bound we can argue that Ai provides that pi ,⊥−pi+1,⊥ ≤ ε/8n and event
(∃p, q : (i , p, q) ∈ T index) suggest that p̂i ,⊥− p̂i+1,⊥ > ε/4n where p̂ denotes the corresponding
estimate computed by the tracing algorithm.

We now concentrate the second term. For a fixed index-position pair (i ,`) corresponding
a particular event where the ID-Trace algorithm outputs identity of a traitor ĩd`( 6= id`). Here,
the adversary can able to query for the secret keys associated to the index-position pair (i , id).
Note that, in each index position A is allowed to ask secret only one at a time. Therefore, by
conditioning on the event Diff-Adv we get that for every (i , id) ∈ S,` ∈ [k], event Diff-Advi ,`,X

always occurs where X = lwr if id` = 1 else X = upr.
Therefore, for all (i , id) ∈ S,` ∈ [k] the following probability always satisfy:

Pr[∃id, ĩd : (id, ĩd) ∈ S ∧ ĩd ∈ T ∧ id` 6= ĩd`|Diff-Adv] ≤ 2−O(λ).

If we assume that (i , id,`) and let id` = 1. From the Chernoff bound the above inequality
holds as since we know that event B i occurs thus we have p̂i ,⊥− p̂i ,` ≤ ε/16n and the event
ĩd ∈ T ∧ id` = 0 suggests that p̂i ,⊥− p̂i ,` > ε/8n. Therefore, combining all the above inclusion
we get that

Pr[Fal-Tr|Diff-Adv] ≤ n ·2−O(λ) +n ·k ·2−O(λ) = negl1(λ)

ut
Claim 6. If our EIPL-IBIPFE is a 1-query index-hiding secure as per Definition 12, then for
every PPT adversary A , polynomial q(·) and non-negligible function ε(·), there exists a neg-
ligible function negl2(·) such that for all λ ∈N satisfying ε(λ) > 1/q(λ) and i ∈ [n],

Pr[i ∉ Sindex∧Diff-Advi ] ≤ negl2(λ),

where n is the index bound chosen, and Sindex is the set of indices queried by A .

Proof. The proof of this claim follows from the Lemma 4.5 of [GKW18] and Lemma 5.4 of
[GKRW18]. ut
Claim 7. If our EIPL-IBIPFE scheme is a 1-query lower and upper identity-hiding secure
as per Definitions 13 and 14, then for every PPT adversary A , polynomial q(·) and non-
negligible function ε(·), there exists a negligible function negl3(·) such that for all λ ∈N sat-
isfying ε(λ) > 1/q(λ) and i ∈ [n], ` ∈ [k],

Pr
[
∃id ∈ {0,1}k s.t. (i , id) ∈ S ∧

(Bi ∧ id` = 1)∨
(Ci ∧ id` = 0)

]
≤ negl3(λ).

where n is the index bound chosen, and S is the set of all queried tuple by A in of the form
(i .id,gid,u).
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Proof. Suppose there exists a PPT adversary A , polynomial q(·) and non-negligible function
ε(·), δ(·) such that for all λ ∈N satisfying ε(λ) > 1/q(λ) and i ′ ∈ [n], `′ ∈ [k],

Pr
[
∃id ∈ {0,1}k s.t. (i , id) ∈ S ∧

(Bi ′,`′,lwr∧ id`′ = 1)∨
(Ci ′,`′,upr∧ id`′ = 0)

]
≥ δ(λ).

Then we can use A to build a PPT reduction algorithm B that breaks the upper/lower iden-
tity hiding security property of EIPL-IBIPFE. The reduction algorithm B first receives 1n ,1k ,
1k ′

,1m from the adversary. It chooses a index i ← [n], position ` ∈ [k], and bit b ∈ {0,1}, and
sends the challenge index-position-bit tuple (i ,`,0) and (1n ,1k ,1k ′

,1m) to the EIPL-IBIPFE
challenger. It then receives the EIPL-IBIPFE public key mpk from the challenger, which it
sends to A (the reduction algorithm randomly guess (i∗,`∗) as well as b = 0 it interacts with
EIPL-IBIPFE lower identity-hiding challenger, otherwise if b = 1 it interacts withEIPL-IBIPFE
upper identity-hiding game). Then A makes secret key queries for the tuple ( j , id,gid,u), if
j = i and id` = b then B aborts and sends a random bit as guess bit to the EIPL-IBIPFE
challenger. Else, on key query for ( j , id,gid,u) from A , the reduction algorithm B forwards
( j , id,gid,u) to the EIPL-IBIPFE challenger, EIPL-IBIPFE’s challenger generates his response
and sends it to B then it forwards the challengers response to the adversary. After all key
queries, the adversary outputs the challenge tuple (gid∗, v (0), v (1)) with a decoding box Du to
B and then B chooses two random bits α,β. Then, B sends message vector v (α) as its chal-
lenge message, and receives challenge ciphertext ct∗ from EIPL-IBIPFE challenger. It also
queries the EIPL-IBIPFE challenger for a special-encryption of v (α) to the index-position-bit
tuple (i ,`,0) if β= 0, else for (i +b,⊥,0). Let ct be the challenger’s response. Finally, B runs
decoder box Du on ct and ct∗ independently, and if Du(ct) = ct∗, it outputs b′ =β, else it out-
puts b′ = 1−β as it guess. Since in the upper identity/lower identity-hiding security B is an
admissible adversary, in other words if b = 0 then lower identity-hiding else it achieves upper
identity-hiding security respectively. As B does not query for the secret key corresponding
to the tuple ( j , id,gid,u) such that id` = b. Also, B can make only one query to the special
encryption oracle to the index-position-bit tuple (i ,`,0) and (i +b,⊥,0). Therefore, from the
Lemma 4.1 and 4.5 of [GKW18] and Lemma 5.4 of [GKRW18], we compute the advantage of
the reduction algorithm is at least 1

2kn · ( ε
16n )2. Thus the claim follows. ut

Therefore, it follows that the probability of the false trace is at most negl1(λ)+n ·negl2(λ)+
nk ·negl3(λ). ut
Correct trace probability. In the following, we show that if the adversary outputs a good
decoder, then the tracing algorithm outputs a non-empty set T with negligible probability.
The correctness of the tracing follows from the Lemma 21. We provide a formal reduction for
the correct trace in the following.

Lemma 22 If our EIPL-IBIPFE is 1-query secure as per Definitions 11 to 15. Then for every
PPT adversary A , polynomial q(·), there exist a negligible function negl such that λ ∈N,ε(λ) >
1/q(λ) such that

Pr-Cor-TrA ,ε(λ) ≥ Pr-G-DA ,ε(λ)−negl(λ)

where Pr-Cor-TrA ,ε(·) and Pr-G-DA ,ε(λ) are defined in Definition 17.

Proof. First we analysis that teh tracing algorithm outputs a non-empty index set T. As it is
known that if the event Good-Decoder occurs occurs then pD

nrml(λ) ≥ 1/2+ ε for some non-

negligible function ε(·). Let Sindex ⊆ with pD
i ,⊥−pD

i+1,⊥.1/2+λ. From Claim 5, for all i ∈ Sindex
we have

Pr[p̂D
i ,⊥− p̂D

i+1,⊥ < ε

4n
] ≤ 1

2O(λ)
[using Chernoff bound] (31)
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where p̂ represents the corresponding estimate evaluated by tracing algorithm. From the
message-hiding and normal-hiding security, we have

for τ≥ i , pD
τ,⊥ ≤ 1/2+negl2(λ), pD

nrml−pD
1,⊥ ≤ negl3(λ).

Recall that in the message-hiding security game, all key queries for the tuple (τ.id,gid∗,u)
must satisfy the fact that 〈u, v (0)〉 = 〈u, v (1)〉 for all τ≥ i . For some negligible functions negl2,
negl3. Therefore, we can write

pD
1,⊥−pD

τ,⊥ ≥ ε−negl2(λ)−negl3(λ) > ε/2

Therefore, Sindex 6= φ whenever the event Good-Decoder occurs. So from the above Eq. 31, it
can be concluded that whenever Good-Decoder occurs then

T index 6=φ∧ [∀(i , p, q) ∈ T index : p −q > ε/4n]

Therefore, for every (i , p, q) tuple, from ID-Trace algorithm it outputs some identity id. Since
for all ` ∈ [k], either pD

i ,` > (p + q)/2 then the algorithm put id` = 1 otherwise, it outputs

id` = 0. Therefore, T index 6=φ =⇒ T 6=φ. Hence, it follows that

Pr[T 6=φ] ≥ (1−n ·negl1(λ)) ·Pr-G-DA ,ε(λ) ≥ Pr-G-DA ,ε(λ)−negl(λ).

From Lemma 21, we conclude that

Pr-Cor-TrA ,ε(λ) ≥ Pr-G-DA ,ε(λ)−negl(λ)

This conclude the proof. ut
The concludes the proof of EI-TIBIPFE security Theorem 2 follows. ut

B IBIPFE from DBDH

In this section, we present our construction of IBIPFE from the DBDH assumption. Techni-
cally, we extend the framework of Water’s IBE [Wat05] and add inner product functionality
into it for building our IBIPFE. It consists of four PPT algorithms IBIPFE =
(Setup,KeyGen,Enc,Dec) and details about these algorithms are given below.

Setup(1λ, 1m , 1k ′
) → (msk, mpk): The setup algorithm performs as follows:

– Consider a bilinear groupBG←GBG.Gen(1λ) whereBG= (p, g ,G,GT ,e(·, ·)) andG is a prime-
order group with order p.

– Chooses a random generator g ∈G and a random group element g2 from the group G.
– Sets g1,i = gαi and g2,i = gαi

2 for all i ∈ [m], where αi ’s are the random exponents chosen
from Zp .

– Additionally, the authority chooses a random group element u′ ∈ G and a random k ′-
length vector u = (ui ) ∈Gk ′

whose elements are chosen at random from G.
– Sets the master public key mpk = (

{g1,i }m
i=1, g2,u′,u, g

)
and the master secret key msk =(

{g2,i }m
i=1

)
.

KeyGen(msk,gid, y) → sky : The key generation algorithm executes the following steps:
– Let gid be an k ′-bit string representing an identity, where gidi denotes the i -th bit of gid

and V ⊆ {1,2, . . . ,k ′} be set of all i for which gidi = 1. We consider an identity encoding
function H : ID →G be defined as H(gid) = u′∏

j∈V ui for gid ∈ID where ID be the set
of identities.

– Chooses r ←Zp .

– Outputs the secret key sky = (d1,d2) where d1 = g 〈α,y〉
2 H(gid)r , d2 = g r

103



Enc(mpk,gid′, x) → ctx : The encryption algorithm works the following steps:
– Choose a random value t from Zp .
– Outputs the ciphertext ctx as

ctx = (
C1 = e(g , g2)αt+x ,C2 = g t ,C3 = H(gid′)t )

Dec(sky ,ctx ) →⊥ or 〈x , y〉: The decryption algorithm performs as follows:

ζ= 〈C1, y〉 · e(d2,C3)

e(d1,C2)

Correctness. If gid= gid′, then correctness holds as follows:

ζ= 〈C1, y〉 · e(d2,C3)

e(d1,C2)

= e(g , g2)〈αt+x ,y〉 · e(g r ,H(gid)t )

e(g 〈α,y〉
2 H(gid)r , g t )

= e(g , g2)t〈α,y〉 ·e(g , g2)〈x ,y〉 · e(g ,H(gid))r t

e(g2, g )t〈α,y〉e(H(gid), g )r t

= e(g , g2)〈x ,y〉

B.1 Security Analysis

Theorem 11 If the plain DBDH assumption 4 holds over the bilinear group BG, then our
IBIPFE scheme is selective secure as per the Definition 2.

Proof. Suppose A be a PPT adversary against the selective security of our IBIPFE scheme.
We construct an algorithm B for breaking the DBDH assumption that uses A as a subrou-
tine. To prove Theorem 11, we consider two games. The first game is the same as the original
selective security game of IBIPFE as per Definition 2. In the next game, we change the dis-
tribution of the master public key, secret keys, and the challenge ciphertext where we first
sample a random vector α̃ and set α = F>α̃. The matrix F is a full rank matrix chosen such
that F(x (0) − x (1)) = (1,0, · · · ,0)> where x (0), x (1) are the challenge message vectors submitted
by the A . Assuming DBDH holds in the bilinear group BG, we show that the adversary has a
negligible advantage in distinguishing between the challenge ciphertexts.

Game 0: This game is exactly same as selective security of IBIPFE.

Game 1: The game is same as the previous game except for each identity, the challenger
samples the master secret key msk as follows:
(a) Samples uniformly random vector α̃= (α̃1, α̃2, · · · , α̃m) for each α̃i ∈Z.
(b) Samples a full rank matrix F ∈ Zm×m

p satisfying the relation F(x (0) − x (1)) = (1,0, · · · ,0)>

where x (0), x (1) are the challenge message vectors of length m.
(c) Setsα= F>α̃ instead of sampling uniformly random as in Game 0.
In adversary’s view, the master public key mpk, the secret key sky is associated with a vector
y with an identity gid and the challenge ciphertext ctx (b) ←Enc(mpk,gid∗, x (b)) are simulated
as follows:

Public key: mpk= g F>α̃.
Secret key: For secret key query corresponding to the identity gid and predicate vector y ,
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we consider V ⊆ {1, · · · ,k ′} be the set of all i for which gidi = 1. Then, the secret key sky =(
g 〈α̃,Fy〉

2 H(gid)r , g r
)

Challenge ciphertext: For challenge identity gid∗, let V ∗ ⊆ {1, · · · ,k ′} be the set of all i for
which gid∗

i = 1.

C1 = e(g , g2)αt+b(x (1)−x (0))+x (0)
C2 = g t

= e(g , g2)F>(α̃t−be1+Fx (0)) C3 = H(gid∗)t

Since, F ∈Zm×m
p is an orthogonal matrix, then the following two distributions are identical.

{α :α←Zm
p } ≡ {F>α̃ : α̃←Zm

p }

Therefore, the advantage of any PPT adversary A in distinguishing between Game 0 and
Game 1 is negligible in the security parameter λ.

Without loss of generality, we assume that the adversary makes maximum Q number
of secret keys queries and the challenge identity gid∗. In this case, the simulator chooses a
random integer k̂ ← [k ′] and sets an integer s = 10Q. Then, it chooses a random k ′-length
vector z = (zi ) ← Zk ′

s and a value z ′ ← Zs . Additionally, simulator also chooses a random
value w ′ ←Zp and a random k ′-length vector w = (wi ) ←Zk ′

p . All these values are kept secret
to the simulator.

Let us consider V ∗ ⊆ {1,2, . . . ,k ′} be the set of all i for which the challenge identity gid∗
i = 1.

Let V ∗ = {i1, i2, . . . , iκ}. Now, we choose the zi values from z corresponding to the collection of
indices V ∗. Sets

∑
i∈V ∗ zi = k̂s − z ′ for uniformly chosen k̂ ∈ [k ′]. Now, we define the function

K(gid) as

K(gid) =
{

0, if z ′+∑
i∈V zi ≡ 0 mod s

1, elsewhere
So, from the above definition of the function K, we can say that K(gid∗) = 0 and for all gid( 6=
gid∗) it becomes non-zero. Additionally, we set another two functions as F(gid) = p − sk̂ +
z ′ +∑

i∈V zi and J(gid) = w ′ +∑
i∈V wi . The simulator assigns the public parameters u′ =

g p−k̂s+z ′
2 ·g w ′

and ui = g zi
2 ·g wi . From the adversarial perspective, the distribution of the pub-

lic parameter is identical to real construction.
We construct a PPT reduction B which breaks theDBDH assumption 4 with non-negligible

advantage. The reduction algorithm B first receives DBDH challenge instances from the
challenger as (BG, g a , g b , g c ,e(g , g )τ) where BG = (p, g ,G, GT ,e(·, ·)) is a group description
with a,b,c ← Zp and the element e(g , g )τ ∈ GT is either e(g , g )abc or a random group el-
ement from the target group GT . In the following, we discuss about the simulation of the
master public key, queried secret keys and the challenge ciphertext. The algorithm B works
as follows:

Public key simulation: The adversary B implicitly sets the following vectors of length m
as

a = (a, a2, . . . , am),b = (b,b, . . . ,b),c = (c,c, . . . ,c)

where it randomly samples a2, . . . , am ←Zp . Let us consider the notation u¯v by component
wise multiplication of the vectors u and v . In this case, the notation a¯b = (ab, a2b, . . . , amb) =
ba. To generate the public key, B implicitly set α̃= a and returns the master public key as

mpk=
(
g F>a , g2 = g b ,u′, g

)
where the exponent g a is computed as follows:

g a = (
g a , g a2 , . . . , g am

)= gα
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Note that, a2, . . . , am are distributed uniformly overZp and hence the public key components
are properly simulated by using the DBDH instances.

Challenge ciphertext simulation. To generate the challenge ciphertext, B chooses the ran-
dom exponent t ←Zp and implicitly sets c = t . We now show that how does B simulate the
challenge ciphertext by using the DBDH instances.

C1 = e(g , g )F>bc(a,a2,...,am ) ·e(g , g )F>(−bbe1+bFx (0)) C2 = g t = g c

= e(g , g2)F>(c(a,a2,...,am )−be1+Fx (0)) C3 = g cJ(gid∗) = H(gid∗)c

= e(g , g2)F>(c(a,a2,...,am )−be1+Fx (0))

= e(g , g2)F>(α̃t−be1+Fx (0))

Secret key simulation. B answers the secret key sky associated with an identity gid and a
predicate vector y as described below.

We consider two different cases based on queried identity gid. For an identity gid, con-
sider V ⊆ {1, . . . ,k ′} be the set of all i for which gidi = 1.

Case 1: If gid 6= gid∗, B simulates the secret key as follows:
By using the technique of Boneh and Boyen [BB04] and Waters IBE [Wat05] scheme, B

randomly chooses r ←Zp then it simulates the secret key sky = (d1,d2) corresponding to an
identity gid and a vector u as

d1 = g− J(gid)
F(gid) ·〈a,Fy〉(u′ ∏

i∈V

ui )r

= g 〈a,Fy〉
2 (g F(gid)

2 g J(gid))
−〈a,Fy〉
F(gid) (g F(gid)

2 g J(gid))r

= g 〈α̃,Fy〉
2 (g F(gid)

2 g J(gid))r− 〈a,Fy〉
F(gid)

= g 〈α̃,Fy〉
2 H(gid)r− 〈a,Fy〉

F(gid)

d2 = g r g−〈(a,a2,...,am ),Fy〉 1
F(gid)

= g r−〈a,Fy〉 1
F(gid)

= g r−〈α̃,Fy〉 1
F(gid)

We implicitly set r ′ = r −〈α̃,Fy〉 1
F(gid) . So, from the construction of K function, we can con-

clude that K(gid) 6= 0 for any key query corresponding to the identity gid 6= gid∗. This implies
that the function F(gid) 6= 0 mod N for any particular identity gid 6= gid∗ (as p > sn for any
reasonable values of p,n and s). We show this in Lemma 23.

Case 2: If gid= gid∗, in this case, B responds the secret key sky as follows:

d1 = g bµ(g F(gid∗)
2 g J(gid)∗)r

= g 〈a¯b,Fy〉(g F(gid∗)
2 g J(gid∗))r

= g 〈b(a,a2,...,am ),Fy〉(g F(gid∗)
2 g J(gid∗))r

= g 〈(a,a2,...,am ),Fy〉
2 (g F(gid∗)

2 g J(gid∗))r

= g 〈(a,a2,...,am ),Fy〉
2 (g F(gid∗)

2 g J(gid∗))r

= g 〈a,Fy〉
2 (g F(gid∗)

2 g J(gid∗))r

106



= g 〈α̃,Fy〉
2 H(gid∗)r

d2 = g r

where the second equality follows from the fact that 〈a ¯b,Fy〉 = bµ and µ ∈Zp is known to
the challenger B. From the formation of F, we have the relation F(x (0)−x (1)) = (1,0, . . . ,0)> =
e1. Since in this case, gid = gid∗ so, the queried secret key vector y should satisfy the re-
lation 〈x (0) −x (1), y〉 = 0. Therefore, we have 〈e1,Fy〉 = 0 which implies that 〈(a ¯b),Fy〉 =
〈(ab, a2b, . . . , amb),Fy〉 = bµ for any µ ∈Zp .

Guess. If A guesses the challenge bit b← {0,1} correctly then B returns 1, otherwise, it out-
puts 0. We consider w = bc(a, a2, . . . , am) = (τ,bca2, . . . ,bcam) where e(g , g )τ is the challenge
element. If τ= abc, then all the secret keys and challenge ciphertext are properly distributed.
In particular, the challenge ciphertext is an encryption of the message vector x (b). Therefore,
in this case, A outputs b′ = b with advantages 1

2 +negl(λ) where 1
2 +negl(λ) is the advantage

of A in the selective security game of the IBIPFE. Otherwise, if τ is randomly generated from
Zp then the challenge ciphertext component C1 uniform element from the target group GT .
So, A can not get any information about the challenge bit b from this component. So, A

wins the game with the probability 1
2 . Hence, from the hardness of DBDH assumption, it

can conclude that A has a non-negligible advantages against the proposed IBIPFE scheme
which achieves the selective security. This completes the proof. ut
Lemma 23 For any Q-secret key query corresponding to the identities gid(1),gid(2), . . . ,gid(Q)

to the key generation oracle, the probabilities of K(gid(`)) = 1 with z ′+∑
i∈V ∗ zi = k̂s is non-

negligible for all `.

Proof. For any set of Q-queries corresponding to the identities gid(1),gid(2), . . . ,gid(Q) and the
challenge identity gid∗, we compute the following probability.

Pr

[
Q∧
`=1

(K(gid(`)) = 1)|(z ′+ ∑
i∈V ∗

zi ) = k̂s

]

= Pr

[
Q∧
`=1

(K(gid(`)) = 1|K(gid∗) = 0)

]

=
(

1−Pr

[
Q∨
`=1

(K(gid(`)) = 0)|K(gid∗) = 0)

])

≥
(

1−
Q∑
`=1

Pr
[

(K(gid(`)) = 0)|K(gid∗) = 0)
])

=
(
1− Q

s

)
= 0.9

We can optimize the last equation by setting s = 10Q (as we did in the simulation), where Q
is the maximum number of queries. This above result shows that for all queried identities in
the key generation oracle except the challenge identity gid, the K values should be equals to
1 with overwhelming probability. ut
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