
QCCA-Secure Generic Transformations in the
Quantum Random Oracle Model

Tianshu Shan1,2 �, Jiangxia Ge1,2 �, and Rui Xue1,2(�) �

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing
100049, China

{shantianshu, gejiangxia, xuerui}@iie.ac.cn

Abstract. The post-quantum security of cryptographic schemes assumes
that the quantum adversary only receives the classical result of compu-
tations with the secret key. Further, it is unknown whether the post-
quantum secure schemes still remain secure if the adversary can obtain
a superposition state of the results.
In this paper, we formalize one class of public-key encryption schemes
named oracle-masked schemes. Then we define the plaintext extraction
procedure for those schemes and this procedure simulates the quantum-
accessible decryption oracle with a certain loss.
The construction of the plaintext extraction procedure does not need
to take the secret key as input. Based on this property, we prove the
IND-qCCA security of the Fujisaki-Okamoto (FO) transformation in the
quantum random oracle model (QROM) and our security proof is tighter
than the proof given by Zhandry (Crypto 2019). We also give the first
IND-qCCA security proof of the REACT transformation in the QROM.
Furthermore, our formalization can be applied to prove the IND-qCCA
security of key encapsulation mechanisms with explicit rejection. As an
example, we present the IND-qCCA security proof of TCH transforma-
tion, proposed by Huguenin-Dumittan and Vaudenay (Eurocrypt 2022),
in the QROM.

Keywords: FO transformation · REACT transformation · quantum
random oracle model · quantum chosen ciphertext attack.

1 Introduction

There are two criteria for a practical encryption scheme: security and efficiency.
Many generic transformations are proposed to enhance the security of public-
key encryption schemes (PKEs) to achieve the indistinguishable under chosen
ciphertext attacks (IND-CCA) security [2,8,11,23]. As for efficiency, Cramer and
Shoup proposed the KEM-DEM hybrid construction that combines an IND-CCA
key encapsulation mechanism (KEM) with a one-time chosen ciphertext secure
secret-key encryption scheme (SKE) to obtain an IND-CCA PKE [9].

https://orcid.org/0000-0002-1918-7464
https://orcid.org/0000-0002-1671-7933
https://orcid.org/0000-0001-6024-3635

Cryptographic schemes often have efficient constructions in the random or-
acle model (ROM) [2], in which schemes are proven to be secure assuming the
existence of the publicly accessible random oracle. Many generic transforms are
relative to random oracles. For instance, the Fujisaki-Okamoto (FO) transfor-
mation turns an arbitrary PKE that is one-way under chosen plaintext attacks
(OW-CPA) into an IND-CCA PKE in the ROM [11], and the REACT transfor-
mation turns an arbitrary PKE that is one-way under plaintext checking attacks
(OW-PCA) into an IND-CCA PKE in the ROM [23].

Typically, the random oracle is instantiated with a cryptographic hash func-
tion. Thus in the real world attack, a quantum attacker can evaluate the hash
function in superposition. To capture this issue, Boneh et al. [4] proposed the
quantum random oracle model (QROM) where the quantum adversary can query
the random oracle with superposition states. Further, classical schemes may be
implemented on quantum computers, which potentially gives quantum attack-
ers more power. For this case, Boneh and Zhandry [5] introduced the indistin-
guishability under quantum chosen ciphertext attacks (IND-qCCA) for encryp-
tion schemes, where the adversary can make quantum queries to the decryption
oracle. Following it, Gagliardoni et al. [13] focused on SKE and proposed new
notions of indistinguishability and semantic security in the quantum world, e.g.
quantum semantic security under chosen plaintext attacks (qSEM-qCPA). On
the other hand, Xagawa and Yamakawa [26] presented the IND-qCCA security of
KEMs, where the adversary can query the decapsulation oracle in superposition.

Boneh et al. [4] summarized four proof techniques that are commonly used
in the ROM but not appropriate to the quantum setting straightforwardly. "Ex-
tractability", as one of them, is that the simulator learns the preimages the
adversary takes interest in when simulating the random oracle for the adversary.

Extractability is the core to simulate answers to decryption queries in the
IND-CCA security proof for both FO and REACT in the ROM. However, in
the quantum setting, the non-existence of this technique had been an obstacle
to their security proofs in QROM. To circumvent it, Targhi and Unruh [25] and
the follow-up work by Ambainis et al. [1] modified the FO transformation by
appending an extra hash function to the ciphertext, then applied the One-way
to Hiding (O2H) Theorem and its variant to prove the IND-CCA security of the
modified FO in the QROM.

Hofheinz et al. [14] divided KEMs into two types: explicit rejection and im-
plicit rejection. The explicit rejection (resp. implicit rejection) type returns a
symbol ⊥ (resp. a pseudorandom value) if the ciphertext is invalid. For both
two types, they presented the IND-CCA security proof of transformations with
additional hash in the QROM. Later, transformations with implicit rejection
had been free from the additional hash and proved to be IND-CCA and even
IND-qCCA in the QROM [3,17,19,20,21,24,26]. Nonetheless, for explicit rejec-
tion type, the IND-CCA security proofs in the QROM were only given for those
transformations either with additional hash [18] or with non-standard security
assumptions [19]. It seemed infeasible to give post-quantum security proof of
unmodified transformations due to the non-existence of extractability.

2

In his seminal paper [28], Zhandry proposed the compressed oracle technique,
with which the simulator can "record" quantum queries to the random oracle
while simulating it efficiently. This enables to use extractability technique in
the quantum setting and thus makes it possible to give security proofs of the
unmodified FO and those transformations with explicit rejection in QROM.

Indeed in the full version of [28], Zhandry gave a proof that the unmodified
FO turns any OW-CPA PKE into an IND-qCCA PKE in the QROM. However,
in this proof, as was pointed out by Don et al. [10], the answers to decryption
queries in Hybrids 2 to 4 are simulated by applying (purified) measurements on
the internal state of the compressed oracle, yet these measurements are hard
to be determined explicitly from their respective descriptions. Until now, this is
considered as the gap that prevents the analysis of the disturbance caused by
those measurements.

As for transformations with explicit rejection, Don et al. [10] presented the
first IND-CCA security proof of FO⊥m, a variant of FO transformation, in the
QROM, as well as its concrete security bound. Based on their work, Hövelmanns
et al. [15] improved the proof in [10] resulting in a tighter bound. However, as
far as we know, there are only a few results on the IND-qCCA security proof of
any transformations with explicit rejection [26].

1.1 Our Results

In this paper, we improve the IND-qCCA security proof in [28] and avoid the gap
mentioned in [10]. Especially, we simplify that proof with our tool and present a
tighter proof. We also give the first IND-qCCA security proof for transformation
REACT and TCH in the QROM, where TCH is a KEM variant of REACT with
explicit rejection proposed in [16]. The concrete security bounds for these three
transformations are shown in Table 1.

Table 1. Concrete security bounds for FO, REACT and TCH in the QROM. The "Un-
derlying security" column omits the one-time security of the underlying SKE for both
FO and REACT. εasy is the advantage of the reduced adversary against the security of
the underlying PKE. εsy is the advantage against the security of the underlying SKE. d
is the number of decryption or decapsulation queries. q is the total number of random
oracle queries. γ is from the γ-spreadness of the underlying PKE. n is the length of the
hash value being one part of the ciphertext of the achieved PKE or KEM.

Transform Underlying
security

Achieved
security Security bound(≈)

FO OW-CPA IND-qCCA d/
√
2γ + (q + d) ·

√
εasy + εsy

REACT OW-qPCA IND-qCCA d/
√
2n + q · d ·

√
εasy + εsy

TCH OW-qPCA IND-qCCA d/
√
2n + (q + d) ·

√
εasy

Our main tool to prove our results is a unitary UExt named the plaintext
extraction procedure for a class of PKE called oracle-masked schemes. Informally,
the oracle-masked scheme is defined as follows.

3

Definition 1 (Oracle-Masked Scheme, informal). For random oracle O
with codomain Y, we call Π = (Gen,EncO,DecO) an oracle-masked scheme if
EncO and DecO are constructed as in Fig. 1. Parameter η of Π is defined to be

η := max
(pk,sk), c

∣∣{y ∈ Y : c = A2 (pk,A3(sk, c), y)}
∣∣/|Y| ,

where (pk, sk) is generated by Gen and c ∈ C is such that A3(sk, c) 6= ⊥.

EncO(pk,m; r) DecO(sk, c)

x := A1(pk,m, r) x := A3(sk, c) if c 6= c′, return ⊥
y := O(x) if x = ⊥, return ⊥ m := A4(x)
c := A2(pk, x, y) y := O(x) return m
return c c′ := A2(pk, x, y)

Fig. 1. Algorithm EncO and DecO of an oracle-masked scheme Π, and the tuple of
algorithm A1, A2, A3 and A4 is called the decomposition of Π.

According to the above definition, oracle-masked schemes contains PKEs ob-
tained by several transformations, including FO transformation, REACT trans-
formation and T in the modular FO toolkit [14]. We then present the plaintext
extraction procedure UExt for oracle-masked scheme Π as below.

Definition 2 (Plaintext Extraction Procedure, informal). Suppose that
O is simulated by the compressed standard oracle CStO with database register D.
Then the plaintext extraction procedure UExt of oracle-masked scheme Π applied
on register C, Z, D is that UExt|c, z,D〉 = |c, z ⊕ f(c,D), D〉, where

f(c,D) :=

{
A4(x) if c 6= c∗ and∃x s.t.A2(pk, x,D(x)) = c, A3(sk, c) = x
⊥ otherwise.

Plaintext extraction procedure UExt is to apply extractability technique to
simulate the quantum-accessible decryption oracle in the IND-qCCA security
proof of Π. When random oracle O is simulated by CStO, the random ora-
cle queries is recorded on the database register D. Note that the queries is
not recorded perfectly, but the simulator can still learn some information from
the state on D by quantum measurements or computing functions defined on
database [7,10]. Following this fact, UExt extracts plaintext m(:= A4(x)) for ci-
phertext c by computing a classical function f(c,D) defined as above. Moreover,
UExt is performed efficiently if f can be computed efficiently.

With the notions defined as above, we then prove the IND-qCCA security
of transformation FO, REACT and TCH. Our proofs can be outlined as the
following three steps.

Firstly, we represent the schemes obtained by transformations as oracle-
masked schemes relative to O and specify their decomposition (A1,A2,A3,A4).
In the IND-qCCA security games of these schemes, random oracle O is simulated

4

by CStO and accordingly, the quantum decryption oracle DecO is simulated by
unitary USim.

Next, we replace unitary USim with the plaintext extraction procedure UExt.
We also present the detailed construction of UExt without the secret key.

Finally, we apply the semi-classical O2H theorem to reprogram the com-
pressed oracle at some points, which results in a new game. We then connect it
to the security game of the underlying schemes.

Here we analyze the security loss introduced by the second and third step.
For the second step, we need to bound the security loss caused by the replace-

ment of the simulation of the decryption oracle DecO. Since CStO perfectly sim-
ulates the random oracle, USim and DecO are perfectly indistinguishable for any
adversary. Then we analyze the loss introduced by performing unitary UExt. For
one type of state |ψ〉, we compute the difference between UExt|ψ〉 and USim|ψ〉
and obtain the following lemma.

Lemma 1 (Informal). Let |ψ〉 be a quantum state on register C, Z, D that is
orthogonal to

∑
c,z,D,x αc,z,D,x|c, z,D∪(x, β0)〉. Then ‖(USim−UExt)|ψ〉‖ ≤ 5

√
η.

As is argued in [10], there are at least two requirements of refining the proof
in [28]: To rigorously specify the quantum measurements in Hybrid 3 and 4,
respectively; To analyze the disturbance of the state of CStO caused by quantum
measurements.

Our proofs meet the first requirement by providing the plaintext extraction
procedure UExt of oracle-masked schemes. Indeed, UExt and the scan operation
in Hybrid 4 act similarly. They both learns the information from the database.
But our UExt is represented in a more specific form and can also be viewed as
a formalization of the scan operation. As for the second requirement, we apply
Lemma 1 to bound the disturbance caused by performing UExt. If the adversary
makes at most q decryption queries, then by the hybrid argument, the loss caused
by UExt is upper bounded by 5q

√
η.

For the third step, we stress that we can not reprogram CStO only by applying
the semi-classical O2H theorem. As an explanation, suppose that we puncture
CStO on point x via the semi-classical oracle OSC{x}, which forbids the adversary
from querying CStO by x if event Find does not occur. However, the performance
of UExt disturbs the database state on register D, which disturbs the simulation
of random oracle O. Thus, it can not be concluded that CStO on x is uniformly
random even if the adversary never queries CStO on point x (i.e., Find does not
occur).

To fix it, before reprogramming the compressed oracle on x, we change UExt

into StdDecompx ◦UExt ◦StdDecompx, where StdDecompx, the local decompres-
sion procedure defined in [28], is an involution performed on the database register
D. Then by the definition of UExt, StdDecompx ◦ UExt ◦ StdDecompx does not
disturb any database state in the form of |D∪StdDecompx(x, y)〉, which in con-
trast to the disturbance made by UExt. Then we apply the following lemma to
bound the difference between UExt and StdDecompx ◦UExt ◦ StdDecompx.

5

Lemma 2 (Informal). For any x and state |ψ〉 on register C, Z, D,∥∥(UExt ◦ StdDecompx − StdDecompx ◦UExt)|ψ〉
∥∥ ≤ 7

√
η .

Overall, we propose the notion of oracle-masked schemes and define plaintext
extraction procedure UExt for these schemes. They can be used to avoid the gap
in the FO proof in [28]. And our proof outline can also be applied to the IND-
qCCA security proofs of other transformations in the QROM.

1.2 Related work

Abstract frameworks were proposed to simplify the application of the compressed
oracle technique in different situations [6,7,10]. They formalized properties that
are satisfied in the presence of random oracle, and lifted them to the quantum
setting.

Existing proofs from [28] already implicitly were using compressed oracles
for some sort of extractability. Don et al. [10] then considered extractability in a
general form. Specifically, they define a simulator S that simulates the random
oracle and also allows the extraction query that is replied with a guess of the
plaintext of the query. They then prove that this simulation of the random oracle
is statistically indistinguishable from the real one if some properties are satisfied.
In their security proof, the extraction query is restricted to be classical in the
simulation. Therefore, their result seems to be tailored for post-quantum security
proofs, yet are not sufficient to prove the IND-qCCA security.

Based on [10], Hövelmanns et al. [15] proposed a variant of semi-classical
O2H theorem as the core to prove the post-quantum security of FO⊥m. Roughly
speaking, this theorem states that the probabilities of classical event EXT and
FIND can bound the loss caused by the reprogramming of the oracle simulated
by S. Different from their work, our argument allows the adversary to make
quantum extraction query, which makes event EXT no longer make sense.

2 Preliminaries

2.1 Notation

DenoteM, C and R as key space, message space and ciphertext space, respec-
tively. A function f(λ) is negligible if f(λ) = λ−ω(1). Algorithms take as input
a security parameter λ, and we omit it for convenience. Time(A) is denoted as
the running time of algorithm A.

For a finite set X , denote |X | as the number of elements X contains, and
denote x $←− X as uniformly choose a random element x from X . [b = b′] is an
integer, that is 1 if b = b′ and 0 otherwise. Pr[P : Q] is the probability that
predicate P keeps true where all the variables in P are assigned according to the
program in Q.

6

2.2 Quantum Random Oracle Model

We refer to [22] for basics of quantum computation and quantum information.
In the ROM, we assume the existence of the random oracle O : X → Y, and

O is publicly accessible to all parties. For concreteness, let Y = {0, 1}n. O is
initialized by choosing H $←− ΩH , where ΩH is the set of all functions from X to
Y. In the QROM, quantum algorithms can query O with superposition states,
and the oracle performs the unitary mapping |x, y〉 7→ |x, y⊕H(x)〉 on the query
state. Oracle O also allows making classical queries. To query x, set the input
and output state to be |x, 0〉 and measure it after querying O to obtain H(x).

Below, we introduce several tools for QROM, that are used in this paper. We
begin with two ways for the simulation of the quantum random oracle.

Theorem 1 ([27, Theorem 6.1]). Let H be a function chosen from the set
of 2q-wise independent functions uniformly at random. Then for any quantum
algorithm A with at most q queries,

Pr[b = 1 : b← AH()] = Pr[b = 1 : b← AO()] .

The Compressed Oracle. Here we briefly introduce the compressed oracle
technique, and we only consider the Compressed Standard Oracles(CStO), one
version of the compressed oracle, with query number at most q. We refer to the
full version of [28] for more details of the compressed oracle.

The core idea of the compressed oracle technique is the purification of the
quantum random oracle, and the purified oracle imperfectly records quantum
queries to the random oracle. In the QROM, random oracle O is initialized by
uniformly sampling a function H from ΩH . If O is queried with a quantum
state |x, y〉, then the replied state is a mixed state and can be represented as
{pi, |x, y ⊕ Hi(x)〉}, where pi = 1/|ΩH |, i = 1, . . . , |ΩH |. This mixed state can
be purified to state 1/|ΩH |

∑
H |x, y⊕H(x), H〉, where |H〉 is the internal state

of oracle O and H of |H〉 is a truth table of function H.
Instead of a superposition state of H, CStO takes a superposition of database

as its internal state and simulates random oracle O. We denote this simulated
oracle by CStO directly, and database by D. Here D is an element of set Dl :=
(X × Ȳ)l where Ȳ = Y ∪ {⊥}, l is the length of D. For any x ∈ X , if (x, y)
exists as an entry of D, then (x, y) ∈ D and D(x) = y. Otherwise, D(x) = ⊥.
Denote |D| as the total number of x ∈ X such that D(x) 6= ⊥. Then for any
y ∈ Y and D that D(x) = ⊥, |D| < l, define D ∪ (x, y) to be the database
that D ∪ (x, y)(x′) = D(x′) for any x′ 6= x and D ∪ (x, y)(x) = y. Moreover,
any D is written in the form of ((x1, y1), . . . , (xs, ys), (0,⊥), . . . , (0,⊥)) such that
|D| = s ≤ l, x1 < x2 < · · · < xs.

For any x ∈ X , define the local decompression procedure StdDecompx applied
on the database state |D〉 ∈ C[Dl] as below:

- For D that D(x) = ⊥ and |D| = l, StdDecompx|D〉 = |D〉.

7

- ForD thatD(x) = ⊥ and |D| < l, StdDecompx|D∪(x, βr)〉 = |D∪(x, βr)〉 for
any r 6= 0, StdDecompx|D ∪ (x, β0)〉 = |D〉, StdDecompx|D〉 = |D ∪ (x, β0)〉,
where state |D ∪ (x, βr)〉 = 1/

√
2n
∑
y∈Y(−1)y·r|D ∪ (x, y)〉 for any r ∈ Y.

CStO initializes a database state |(0,⊥)q〉 with length q. For any query |x, y〉
to random oracleO, CStO does three steps: First, perform the unitary |x, y,D〉 7→
|x, y〉StdDecompx|D〉 in superposition. Next, apply the map |x, y,D〉 7→ |x, y ⊕
D(x), D〉. Finally, repeat the first step.

Theorem 2 ([28, Lemma 4]). CStO and random oracle O are indistinguish-
able for any quantum algorithm A, i.e.,

Pr[b = 1 : b← ACStO()] = Pr[b = 1 : b← AO()] .

It is also observed that any quantum state on the database register is orthog-
onal to state |D ∪ (x, β0)〉 in the simulation of CStO. Therefore, the database
state should be the superposition state of |D ∪ (x, βr)〉 for r 6= 0. This fact will
be used later.

Semi-classical Oracle. For set X and S, define fS : X → {0, 1} to be an
indicator function such that fS(x) = 1 if x ∈ S and 0 otherwise. Then we
define the semi-classical oracle OSCS : X → {0, 1}. For any quantum query, OSCS
does the following steps. First, initialize a qubit T to be |0〉. Then evaluate
the mapping |x, 0〉 7→ |x, fS(x)〉 in superposition. Finally, measure T in the
computational basis and obtain a bit b ∈ {0, 1} as its output.

Theorem 3 (Semi-classical O2H [1, Theorem 1]). Let S be a random sub-
set of X , H : X → Y a random function, z a random bitstring. And H,S,z may
have arbitrary joint distribution. Let H \ S be an oracle that first queries OSCS
and then queries H. Let A be a quantum oracle algorithm with query depth d. In
the execution of AH\S(z), let Find be the event that OSCS ever outputs 1. Then∣∣∣Pr[b = 1 : b← AH(z)]− Pr[b = 1 : b← AH\S(z)]

∣∣∣ ≤√(d+ 1) · Pr[Find] .

The following theorem gives an upper bound for the probability that Find occurs.

Theorem 4 ([1, Theorem 2]). Let S ⊆ X and z ∈ {0, 1}∗. And S, z may
have arbitrary joint distribution. Let A be a quantum oracle algorithm making
at most d queries to OSCS with domain X . Let B be an algorithm that on input

z, chooses i $← {1, . . . , d} , runs AO
SC
∅ (z) until (just before) the i-th query, and

then measures all query input registers in the computational basis. Denote by T
the set of measurement outcomes. Then

Pr
[
Find : AO

SC
S (z)

]
≤ 4d · Pr[S ∩ T 6= ∅ : T ← B(z)] .

8

3 Plaintext Extraction of the Oracle-Masked Scheme

In this section, we start by the formalization of the class of PKE Π named
the oracle-masked scheme. Then we will introduce plaintext extraction game
GameExt

A,Π for adversary A, and end this section with a theorem that bounds
the difference of the output distributions of GameIND-qCCA

A,Π and GameExt
A,Π . The

definition of the IND-qCCA security game GameIND-qCCA
A,Π is shown in the ap-

pendix B.2.

Definition 3 (Oracle-Masked Scheme). Let Π = (Gen,EncO,DecO) be a
PKE relative to random oracle O with codomain Y. We say that Π is an oracle-
masked scheme if there exist deterministic polynomial time algorithm A1, A2,
A3, A4 such that for any (pk, sk) generated by Gen, EncO and DecO are written
as in Fig. 2. Tuple (A1,A2,A3,A4) is called the decomposition of Π.

EncO(pk,m; r) DecO(sk, c)

x := A1(pk,m, r) x := A3(sk, c) if c 6= c′, return ⊥
y := O(x) if x = ⊥, return ⊥ m := A4(x)
c := A2(pk, x, y) y := O(x) return m
return c c′ := A2(pk, x, y)

Fig. 2. Algorithm EncO and DecO of an oracle-masked scheme Π

For an oralce-masked scheme Π, parameter η of Π is defined to be

η := max
(pk,sk), c

∣∣{y ∈ Y : c = A2 (pk,A3(sk, c), y)}
∣∣/|Y| ,

where (pk, sk) is generated by Gen and c ∈ C is such that A3(sk, c) 6= ⊥.

Let Π be an oracle-masked scheme. For quantum adversary A in the security
game GameIND-qCCA

A,Π in the QROM, it can query random oracle O and decryp-
tion oracle DecO both in superposition. Write C and Z to denote the input and
output register of the decryption query of A, respectively. The decryption oracle
DecO in GameIND-qCCA

A,Π can be simulated by a unitary operator UDec applied
on register C and Z, i.e., for any computational basis state |c, z〉, UDec acts as
follows:

UDec|c, z〉 =

{
|c, z ⊕⊥〉 if c∗ is defined and c = c∗

|c, z ⊕DecO(c)〉 else.

where c∗ is the challenge ciphertext in GameIND-qCCA
A,Π .

Then we introduce a new game GameSimA,Π , that is identical with GameIND-qCCA
AΠ

except that random oracle O is simulated by CStO. In this game, quantum
queries to oracle O are recorded in the database register D imperfectly. The

9

decryption oracle answers queries in the same process as in Fig. 2 and it can
be simulated by a unitary operator on register C, Z, D. We denote this opera-
tor by USim. Then by Theorem 2, UDec and USim, these two simulations of the
decryption oracle are perfectly indistinguishable for any quantum adversary.

Notice that in the process of the decryption algorithm DecO, A3 is computed
first to obtain x and then A2 is applied to check if c = A2(pk, x,O(x)). Then the
query x to oracle O is recorded in the database D imperfectly if the decryption
oracle is simulated by USim. With this property, we design a new unitary to reply
decryption queries, and it is defined as follows.

Definition 4 (Plaintext Extraction Procedure). Let Π be an oracle-masked
scheme and (A1,A2,A3,A4) be its decomposition. For any (pk, sk) of Π, define
unitary operation UExt, as the plaintext extraction procedure of Π, applied on
register C, Z, D as follows.
UExt|c, z,D〉 :

1. If the challenge ciphertext c∗ is defined and c = c∗, return |c, z ⊕⊥, D〉.
2. Else if database D contains no pair (x,D(x)) such that A2(pk, x,D(x)) = c,

return |c, z ⊕⊥, D〉.
3. Else, for each tuple (x,D(x)) that A2(pk, x,D(x)) = c, check if A3(sk, c) = x

and do the following procedure:
(a) If a tuple (x,D(x)) passes this test,1 compute m := A4(x) and return
|c, z ⊕m,D〉.

(b) Otherwise, return |c, z ⊕⊥, D〉.

In addition, the detailed construction of UExt is shown in appendix A.

Compared with USim, UExt does not follow the decryption algorithm to pro-
duce the plaintextm(:= DecO(sk, c)), but just searches (x,D(x)) on D to obtain
m. Therefore, we call UExt the plaintext extraction procedure.

By the definition of UExt, for any computational basis state |c, z,D〉, UExt has
no effect on |D〉, and does not need to query oracle O. And for any oracle-masked
scheme, such a plaintext extraction procedure UExt exists, and it can be used to
answer quantum decryption queries. Then we introduce two properties of UExt

by the following two lemmas. Except register C, Z and D, we abbreviate other
registers (e.g. other registers of adversary A) into W and the detailed proofs of
these lemmas are shown in appendix C.

Lemma 3. Let |ψ〉 be a quantum state on register W , C, Z and D such that |ψ〉
is orthogonal to any state in the form of

∑
w,c,z,D,x αw,c,z,D,x|w, c, z,D∪(x, β0)〉.

Then
‖(USim −UExt)|ψ〉‖ ≤ 5

√
η .

Lemma 4. Given any x ∈ {0, 1}∗, unitary StdDecompx is performed on register
D. For any quantum state |ψ〉 on register W , C, Z and D,∥∥(UExt ◦ StdDecompx − StdDecompx ◦UExt)|ψ〉

∥∥ ≤ 7
√
η .

1 Such a tuple is unique, since c and sk determines the value of A3(sk, c).

10

Here we define a new game GameExt
A,Π named plaintext extraction game that

differs from GameSimA,Π in the way of answering decryption queries: In GameExt
A,Π ,

the decryption oracle is simulated by unitary UExt while that in GameSimA,Π is
simulated by unitary USim. With Lemma 3, we obtain Theorem 5 as follows to
bound the output difference of GameIND-qCCA

A,Π and GameExt
A,Π .

Theorem 5. Let Π be an oracle-masked scheme. For any quantum adversary
A against the IND-qCCA security of Π in the QROM, if A makes at most q
decryption queries, then∣∣Pr[GameIND-qCCA

A,Π → 1]− Pr[GameExt
A,Π → 1]

∣∣ ≤ 5q · √η .

Proof. Given Π and A, recall that GameSim
A,Π is identical with GameIND-qCCA

A,Π

except that the random oracle is simulated by CStO. By Theorem 2,

Pr[GameIND-qCCA
A,Π → 1] = Pr[GameSim

A,Π → 1] .

In the following, we prove that∣∣Pr[GameSimA,Π → 1]− Pr[GameExt
A,Π → 1]

∣∣ ≤ 5q · √η .

For any fixed (pk, sk), the decryption oracle in GameSimA,Π and that in GameExt
A,Π

are simulated by unitary USim and UExt, respectively.
For any i = 1, . . . , q, define Gi to be a game that is the same as GameSim

A,Π

until just before the i-th decryption query of A, then simulates the decryption
oracle with unitary UExt instead of USim. Then G1 is exactly GameExt

A,Π . We also
denote GameSim

A,Π by Gq+1.
For i = 1, . . . , q + 1, denote by σi the final joint state of the registers of Gi

including the register of A and the database register. By the triangle inequality
of the trace distance,

TD(σ1, σq+1) ≤ TD(σ1, σ2) + . . .+ TD(σq, σq+1) ,

where TD(ρ, τ) is the trace distance of state ρ and τ .
Fix 1 ≤ i ≤ q. Since game Gi and Gi+1 only differ in the i-th decryption

query, we denote by ρ the joint state of A and the database register just before
the i-th decryption query. All the operations after the i-th decryption query can
be represented by a trace-preserving operation, that is denoted by E . Then σi
and σi+1 can be represented by σi = E(USim ρU

†
Sim) and σi+1 = E(UExt ρU

†
Ext),

respectively. And we have

TD(σi, σi+1) ≤ TD(USim ρU
†
Sim,UExt ρU

†
Ext) .

11

Let ρ =
∑
j pj |ψj〉〈ψj | be a spectral decomposition of ρ, where

∑
j pj = 1. Then

by the convexity of the trace distance,

TD(USim ρU
†
Sim,UExt ρU

†
Ext)

= TD
(∑

j

pjUSim|ψj〉〈ψj |U†Sim,
∑
j

pjUExt|ψj〉〈ψj |U†Ext

)
≤
∑
j

pjTD(USim|ψj〉〈ψj |U†Sim,UExt|ψj〉〈ψj |U†Ext)

≤
∑
j

pj‖(USim −UExt)|ψj〉‖ .

Note that before the i-th decryption query, the decryption procedure is USim
and A can be considered as being in GameSim

A,Π . Thus, any state |ψj〉 in the
spectral decomposition of ρ is in the form of the superposition state in Lemma 3.
By Lemma 3, ‖(USim −UExt)|ψj〉‖ ≤ 5

√
η. Then for every 1 ≤ i ≤ q,

TD(σi, σi+1) ≤
∑
j

pj · ‖(USim −UExt)|ψj〉‖ ≤
∑
j

pj · 5
√
η = 5

√
η .

Thus, TD(σ1, σq+1) ≤ 5q · √η. Further, the output difference of GameSimA,Π and
GameExt

A,Π is upper bounded by the trace distance of σ1 and σq+1, the states of
these two games. This completes the proof. ut

4 Application in the Quantum Security Proof

In this section, we apply Theorem 5 of oracle-masked schemes to provide the
IND-qCCA security proof for transformation FO, REACT and TCH in the QROM.

4.1 FO: from OW-CPA to IND-qCCA in the QROM

Let Πasy = (Genasy,Encasy,Decasy) be a PKE with message spaceMasy, ran-
domness spaceRasy(= {0, 1}n) and ciphertext space Casy. LetΠsy = (Encsy,Decsy)
be a SKE with key space Ksy, message spaceMsy and ciphertext space Csy. Let
H : {0, 1}∗ → Rasy and G : {0, 1}∗ → Ksy be hash functions. We review the
FO transformation in the following definition, and then provide its IND-qCCA
security proof in the QROM.

Definition 5. FO[Πasy, Πsy, H,G] = (Gen,Enc,Dec) obtained from the FO
transformation is constructed as shown in Fig. 3.

Lemma 5. Assume that H is the random oracle and Πasy is γ-spread, then
FO[Πasy, Πsy, H,G] is an oracle-masked scheme relative to H, and its parameter
η is such that η ≤ 1/2γ .

Proof. We define deterministic polynomial-time algorithm A1, A2, A3 and A4:

12

Gen Enc(pk,m; δ) Dec(sk, (c, d))

(pk, sk)← Genasy d := Encsy(G(δ),m) δ′ := Decasy(sk, c)
return (pk, sk) c := Encasy(pk, δ;H(δ, d)) if δ′ = ⊥, return ⊥

return (c, d) c′ := Encasy(pk, δ′;H(δ′, d))
if c′ 6= c, return ⊥
m := Decsy(G(δ′), d)
return m

Fig. 3. PKE FO[Πasy, Πsy, H,G] obtained from FO transformation

- A1 on input δ and m, evaluates k := G(δ) and d := Encsy(k,m), then
outputs (δ, d).

- A2 takes pk, (δ, d) and y ∈ Rasy as input, computes c := Encasy(pk, δ; y),
then outputs (c, d).

- A3 takes sk and (c, d) as input, evaluates δ := Decasy(sk, c). If δ 6= ⊥, output
(δ, d). Otherwise, output ⊥.

- A4 on input (δ, d), computes k := G(δ) and m := Decsy(k, d), outputs m.

It can be verified that with these four algorithms, algorithm Enc and Dec
given in Fig. 3 are written as EncO and DecO in Definition 3 with O = H, respec-
tively. Thus, FO[Πasy, Πsy, H,G] is an oracle-masked scheme, and its parameter
η is

η = max
(pk,sk), c

∣∣{r ∈ Rasy : c = Encasy(pk,Decasy(sk, c); r)}
∣∣/|Rasy| ,

where (pk, sk) and c ∈ Casy are such that Decasy(sk, c) ∈Masy.
Since Πasy is γ-spread, for any (pk, sk) and m ∈Masy,

max
c∈Casy

∣∣{r ∈ Rasy : c = Encasy(pk,m; r)}
∣∣/|Rasy| ≤ 1/2γ .

Therefore, η ≤ 1/2γ . ut

Note that the above evaluation of function G can be replaced by querying an
oracle that computes G. Then algorithm A1 and A4 become oracle algorithms
denoted by AG

1 and AG
4 , respectively. In this case, the notions in Definition 3 still

work, and Theorem 5 holds. Then we apply Theorem 5 to prove the IND-qCCA
security of oracle-masked scheme FO[Πasy, Πsy, H,G] in the QROM.

Theorem 6. Let Πasy be γ-spread, for any adversary against the IND-qCCA
security of scheme Π = FO[Πasy, Πsy, H,G], making at most qD queries to the
decryption oracle, at most qH queries to random oracle H and at most qG queries
to random oracle G, there exist an adversary Aasy against the OW-CPA security
of Πasy and an adversary Asy against the OT security of Πsy such that

AdvIND-qCCA
A,Π ≤ qD·

12√
2γ

+2(d+1)
√

AdvOW-CPA
Aasy,Πasy+4d·AdvOW-CPA

Aasy,Πasy+AdvOT
Asy,Πsy ,

where d = qD+qH+2qG, Time(Asy) ≈ Time(A)+O
(
d2 + qH · qD · Time(Encasy)

)
and Time(Aasy) ≈ Time(Asy).

13

Proof. Define Game 0 to be GameIND-qCCA
A,Π as in Fig. 4. Then we obtain∣∣∣∣Pr[Game 0→ 1]− 1

2

∣∣∣∣ = AdvIND-qCCA
A,Π . (1)

In the following, we will introduce a sequence of games to bound AdvIND-qCCA
A,Π .

GameIND-qCCA
A,Π Deca(sk, (c, d))

G
$←− ΩG, H

$←− ΩH if (c, d) = a, return ⊥
(pk, sk)← Gen δ′ := Decasy(sk, c)
(m0,m1)← AH,G,Dec⊥(pk) if δ′ = ⊥, return ⊥
b

$←− {0, 1}, δ∗ $←−Masy c′ := Encasy(pk, δ′;H(δ′, d))
d∗ := Encsy(G(δ∗),mb) if c′ 6= c, return ⊥
c∗ := Encasy(pk, δ∗;H(δ∗, d∗)) m′ := Decsy(G(δ′), d)

b′ ← AH,G,Dec(c∗,d∗)(pk, (c∗, d∗)) return m′

return [b = b′]

Fig. 4. GameIND-qCCA
A,Π for FO transformation in the QROM, where oracle H, G and

Deca are all quantum-accessible.

Starting from Game 1, random oracle H is simulated with CStO and its
database register is denoted as D. This change is undetectable for A by Theo-
rem 2. Moreover, δ∗ is sampled uniformly at the beginning of the game, which
is also undetectable for any adversary.

Game 1: In this game, the decryption oracle is simulated by the plaintext ex-
traction procedure UExt of Π. We refer to appendix A for the detailed construc-
tion of UExt of Π without sk.

Omitting the (c, d) = (c∗, d∗) case, UExt can also be rephrased as UExt =

U†E ◦UC ◦UE, based on Lemma 5. Here unitary UE is used to extract (δ′, d) cor-
responding to (c, d) from database and unitary UC is used to compute plaintext
m′ from (δ′, d). And UE acts as follows.

UE|(c, d), z1, D〉 =

{
|(c, d), z1 ⊕ (1, (δ′, d)), D〉 if Encasy(pk, δ′;D(δ′, d)) = c

|(c, d), z1 ⊕ (0, 0n), D〉 otherwise.

It is obvious that Game 1 is the plaintext extraction game GameExt
A,Π . Then

by Theorem 5, we obtain
∣∣Pr[Game 0→ 1]−Pr[Game 1→ 1]

∣∣ ≤ 5qD ·
√
η for

any fixed G ∈ ΩG. Therefore,∣∣Pr[Game 0→ 1]− Pr[Game 1→ 1]
∣∣ ≤ 5qD ·

√
η ≤ qD ·

5√
2γ
, (2)

where variable G, both inGame 0 andGame 1, is sampled from ΩG uniformly.

14

Game 2: This game is identiacal with Game 1 except that the decryption
oracle is simulated by the following steps after the challenge query.

1. Perform unitary StdDecomp(δ∗,d∗) to register D.
2. Apply UExt on register C, Z and D.
3. Perform StdDecomp(δ∗,d∗) to register D a second time.

We define unitary SUExt := StdDecomp(δ∗,d∗) ◦ UExt ◦ StdDecomp(δ∗,d∗).
If we flip the order of the last two steps of SUExt, then StdDecomp(δ∗,d∗) ◦
StdDecomp(δ∗,d∗) is an identity operator and in this way, SUExt performs identi-
cally as UExt. Since Lemma 4 states that UExt commutes with StdDecomp(δ∗,d∗)
by a loss, we have

TD(UExtρU
†
Ext, SUExtρ SU

†
Ext) ≤ 7

√
η ≤ 7√

2γ

for any joint state ρ on registers in Game 2. At most qD decryption queries are
made after the challenge query, and then by the hybrid argument,

|Pr[Game 1→ 1]− Pr[Game 2→ 1]| ≤ qD ·
7√
2γ
. (3)

Game 3: Differing from Game 2, we change the way to answer random oracle
queries in some cases: when random oracle H or G is queried by A or G is applied
in the decryption process, we query E and then query the random oracle, where
E is a constant zero function with quantum access.

Since E is a constant zero function, the random oracle query does not change
after querying E, and we have

Pr[Game 2→ 1] = Pr[Game 3→ 1] . (4)

Game 4: The only difference btween Game 3 and Game 4 is that the semi-
classical oracle OSCS is applied before each query to E, and set S := {δ∗, δ∗‖·}.

Let z := δ∗, andBE(δ∗) be the algorithm that runsA and simulatesGame 3.
Then we have

Pr[Game 3→ 1] = Pr[b = 1 : b← BE(δ∗), δ∗
$←−Masy] ,

Pr[Game 4→ 1] = Pr[b = 1 : b← BE\S(δ∗), δ∗
$←−Masy] ,

Pr[Find : Game 4] = Pr[Find : BE\S(δ∗), δ∗
$←−Masy] .

It can be verifid that B makes at most qH + qG + 2qD queries to E. We let
d = qH + qG + 2qD and apply Theorem 3 to obtain

|Pr[Game 3→ 1]− Pr[Game 4→ 1]| ≤
√

(d+ 1) Pr[Find : Game 4] . (5)

Notice that by A4 defined in Lemma 5, G is queried in the process of UC

when performing UExt. Then oracle OSCS should be queried in the process of
UC in Game 4. We denote by U′C the modified UC. Accordingly, before the

15

challenge query, the decryption oracle in Game 4 is simulated by UE ◦ U′C ◦
U†E, that is denoted by U′Ext. After that, the decryption oracle is simulated by
StdDecomp(δ∗,d∗) ◦U′Ext ◦ StdDecomp(δ∗,d∗), that is denoted by SU′Ext.

We assume that Find does not occur inGame 4. In this case, A never queries
H by (δ∗, d∗), and the database D is such that D(δ∗, d∗) = ⊥ until the challenge
query. To produce the challenge ciphertext, r∗ := H(δ∗, d∗) is computed and then
the joint state is in a superposition of StdDecomp(δ∗,d∗)|w,D∪((δ∗, d∗), r∗)〉, here
w is other registers of this game and D(δ∗, d∗) = ⊥. Then by the definition of
UE, we can conclude that for any ciphertext (c, d) 6= (c∗, d∗),

UE|(c, d), z1, D ∪ ((δ∗, d∗), r∗)〉 = |(c, d), z1 ⊕ (b, x), D ∪ ((δ∗, d∗), r∗)〉

if and only if UE|(c, d), z1, D〉 = |(c, d), z1 ⊕ (b, x), D〉.
Furthermore, observe that StdDecomp(δ∗,d∗) commutes with U′C of U′Ext.

Then for any ciphertext (c, d) 6= (c∗, d∗),

SU′Ext◦StdDecomp(δ∗,d∗)|(c, d), z,D ∪ ((δ∗, d∗), r∗)〉
=StdDecomp(δ∗,d∗)|c, z ⊕m′, D ∪ ((δ∗, d∗), r∗)〉

if and only if U′Ext|(c, d), z,D〉 = |(c, d), z⊕m′, D〉. This means that the database
state on (δ∗, d∗) is not involved in the decryption process ofGame 4. Therefore,
if Find does not occur, then random oracle H and G are never queried by (δ∗, d)
and δ∗ by the adversary. Meanwhile, the adversary A can not get information on
H(δ∗, d∗) either by making decryption queries. Therefore, it is undetectable for
adversary A to produce the challenge ciphertext with uniformly chosen k∗ ∈ Ksy
and r∗ ∈ Rsay, which is the difference between Game 4 and Game 5.

Game 5: In this game, we pick k∗ ∈ Ksy and r∗ ∈ Rasy uniformly and use them
to produce the challenge ciphertext (c∗, d∗). And we replace SU′Ext with U′Ext.

As analysis in Game 4, the view of A in Game 4 and that in Game 5 are
identical until Find occurs. Therefore,

Pr[Find : Game 4] = Pr[Find : Game 5] , (6)
Pr[¬Find ∧Game 4→ 1] = Pr[¬Find ∧Game 5→ 1] . (7)

Lemma 6. There exists a quantum adversary Asy invoking A such that∣∣∣∣Pr[Game 5→ 1]− 1

2

∣∣∣∣ = AdvOT
Asy,Πsy (8)

and Time(Asy) ≈ Time(A) +O((qH + qG + 2qD)2 + qH · qD · Time (Encasy)).

Proof. A quantum algorithm Asy that runs A and breaks the one-time security
of Πsy is constructed as follows.

Asy generates (pk, sk)← Gen, picks δ∗ $←−Masy and simulates Game 5 for
A. Random oracle G is simulated by a 2(qG + 2qD)-wise independent function,
and other oracles used inGame 5 can be implemented efficiently by Asy. For A’s

16

challenge query (m0,m1), Asy sends it to the challenger in GameOT
Asy,Πsy . After

receiving d∗, Asy picks r ∈ Rasy uniformly, then computes c∗ := Encasy(pk, δ∗; r)
and sends (c∗, d∗) back to A. After receiving b′ from A, Asy output b′.

From the construction of Asy, the output of Asy is correct if and only if A
guesses correctly. Moreover, the view of A invoked by Asy is identical with that
in Game 5. Therefore,∣∣∣∣Pr[Game 5→ 1]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[GameOT
Asy,Πsy → 1]− 1

2

∣∣∣∣ = AdvOT
Asy,Πsy .

Denote by TO the time needed to simulate oracle O, then the running time
of B is given by Time(B) = Time(A) + TG + TH + Time(UExt), where TG =
O
(
(qG + 2qD)2

)
, TH = O(q2H), Time(UExt) = O(qD · qH · Time(Encasy)) by

appendix A.1. ut

Lemma 7. There is a quantum adversary Aasy invoking A such that

Pr[Find : Game 5] ≤ 4d ·AdvOW-CPA
Aasy,Πasy (9)

and Time(Aasy) ≈ Time(A) +O((qH + qG + 2qD)2 + qH · qD · Time (Encasy)).

Proof. Define BO
SC
S as a quantum oracle algorithm that on input pk, c∗, runs

A and simulates Game 5 for it. Then we have Pr[Find : Game 5] = Pr[Find :

BO
SC
S (pk, c∗)], where c∗ ← Encasy(pk, δ∗), δ∗ is sampled uniformly fromMasy.

As analyzed in Game 4, B makes at most d = qH + qG + 2qD queries, then by
Theorem 4,

Pr[Find : BO
SC
S (pk, c∗)] ≤ 4d · Pr[(δ, d) ∈ S : (δ, d)← D(pk, c∗)] .

Here D is a quantum algorithm invoking B. On input (pk, c∗), D chooses i $←−
{1, . . . , d}, runs BO

SC
∅ (pk, c∗) until (just before) i-th query of B, and then mea-

sures the state on the input register of OSC∅ to obtain (δ, d). Note that the
running time of D and that of B are almost the same.

Because S = {δ∗, δ∗‖·}, (δ, d) ∈ S is equivalent to δ = δ∗. Then D can be
considered as a quantum algorithm Aasy that breaks the OW-CPA security of
Πasy. Therefore,

Pr[(δ, d) ∈ S : (δ, d)← D(pk, c∗)] = AdvOW-CPA
Aasy,Πasy .

The running time of B is Time(B) = Time(A)+TG+TH+Time(UExt), where
TG = O

(
(qG + 2qD)2

)
, TH = O(q2H), Time(UExt) = O(qD · qH ·Time(Encasy)).

ut

Summarizing equation (1) to (9), we have

AdvIND-qCCA
A,Π ≤ qD·

12√
2γ

+2(d+1)
√

AdvOW-CPA
Aasy,Πasy+4d·AdvOW-CPA

Aasy,Πasy+AdvOT
Asy,Πsy .

ut

17

Furthermore, compared with Zhandry’s proof for FO transformation, we no-
tice that the plaintext extraction procedure in this proof acts the same as the
decryption procedure defined in Hybrid 4 in his proof on input (c, d) such that
c 6= c∗. With Theorem 5, we can prove that any polynomial time quantum adver-
sary distinguishes Hybrid 1 from Hybrid 4 with a negligible probability. On the
other hand, by equation (2), it seems unnecessary to restrict that the decryption
oracle outputs ⊥ directly for query (c, d) such that c = c∗.

4.2 REACT: from OW-qPCA to IND-qCCA in the QROM

Let Πasy = (Genasy,Encasy,Decasy) be a PKE with key space Kasy, message
space Masy, randomness space Rasy and ciphertext space Casy. Let Πsy =
(Encsy,Decsy) be a SKE with message space Msy, ciphertext space Csy, key
space Ksy. Let H : {0, 1}∗ → {0, 1}n and G : {0, 1}∗ → Rsy be hash func-
tions. We recall the REACT transformation in the following definition, and then
provide its IND-qCCA security proof.

Definition 6. REACT[Πasy, Πsy, H,G] = (Gen,Enc,Dec) obtained from the
REACT transformation is constructed as in Fig. 5.

Gen Enc(pk,m; (R, r)) Dec(sk, (c1, c2, c3))

(pk, sk)← Genasy c1 := Encasy(pk,R; r) R := Decasy(sk, c1)
return (pk, sk) c2 := Encsy(G(R),m) m := Decsy(G(R), c2)

c3 := H(R,m, c1, c2) if R = ⊥ or m = ⊥
return (c1, c2, c3) return ⊥

c′3 := H(R,m, c1, c2)
if c′3 6= c3, return ⊥
return m

Fig. 5. PKE REACT[Πasy, Πsy, H,G] obtained from REACT transformation

Lemma 8. Let H be the random oracle, then REACT[Πasy, Πsy, H,G] is an
oracle-masked scheme relative to H, and its parameter η is 1/2n.

Proof. We define deterministic polynomial time algorithm A1, A2, A3 and A4:

- A1 takes pk, (R, r) and m as input, evaluates c1 := Encasy(pk,R; r), k :=
G(R), c2 := Encsy(k,m), and then outputs (R,m, c1, c2).

- A2 on input (R,m, c1, c2) and y ∈ {0, 1}n, lets c3 := y and outputs (c1, c2, c3).
- A3 takes sk and (c1, c2, c3) as input, computes R := Decasy(sk, c1). If R = ⊥,
output ⊥. Else, compute k := G(R) andm := Decsy(k, c2). Ifm = ⊥, output
⊥. Otherwise, output (R,m, c1, c2).

- A4 on input (R,m, c1, c2), outputs m directly.

18

We can verify that with four algorithms defined as above, algorithm Enc and
Dec given in Fig. 5 are written as EncO and DecO in Definition 3 with O = H.
And thus Π is an oracle-masked scheme, and its η is

η = max
(pk,sk),(c1,c2,c3)

1/2n
∣∣{y ∈ {0, 1}n : (c1, c2, c3) = A2(pk,A3(sk, (c1, c2, c3)), y)}

∣∣
= max

(pk,sk),(c1,c2,c3)
1/2n

∣∣{y ∈ {0, 1}n : c3 = y}
∣∣ = 1/2n ,

where (pk, sk) is generated by Gen, (c1, c2, c3) ∈ Casy×Csy×{0, 1}n is such that
A3(sk, (c1, c2, c3)) 6= ⊥. ut

Theorem 7. For any adversary A against the IND-qCCA security of Π =
REACT[Πasy, Πsy, H,G] in the QROM, making at most qD queries to the de-
cryption oracle, at most qG queries to random oracle G and at most qH queries to
random oracle H, there exist an adversary Aasy against the OW-qPCA security
of Πasy and an adversary Asy against the OT security of Πsy such that

AdvIND-qCCA
A,Π ≤ qD·

12√
2n

+2(d+1)
√

AdvOW-qPCA
Aasy,Πasy+4d·AdvOW-qPCA

Aasy,Πasy+AdvOT
Asy,Πsy ,

where d = qH + qG + 2qH · qD, Time(Asy) ≈ Time(Aasy) ≈ Time(A) +O(d2).

Proof. Let Game 0 be GameIND-qCCA
A,Π as shown in Fig. 6.∣∣∣∣Pr[Game 0→ 1]− 1

2

∣∣∣∣ = AdvIND-qCCA
A,Π . (10)

We then introduce a sequence of games to bound AdvIND-qCCA
A,Π .

The IND-qCCA security proof of REACT transformation follows the proof
outline for FO transformation as presented in the proof of Theorem 6, and thus
we only give a brief analysis here.

GameIND-qCCA
A,Π Deca(sk, (c1, c2, c3))

G
$←− ΩG, H

$←− ΩH if (c1, c2, c3) = a
(pk, sk)← Gen return ⊥
(m0,m1)← AH,G,Dec⊥(pk) R := Decasy(sk, c)

b
$←− {0, 1}, R∗ $←−Masy m := Decsy(G(R), c2)

c∗1 ← Encasy(pk,R∗) if R = ⊥ or m = ⊥
c∗2 := Encsy(G(R∗),mb) return ⊥
c∗3 := H(R∗,mb, c

∗
1, c
∗
2) c′3 := H(R,m, c1, c2)

b′ ← A
H,G,Dec(c∗1 ,c∗2 ,c∗3)(pk, (c∗1, c

∗
2, c
∗
3)) if c′3 6= c3, return ⊥

return [b = b′] return m

Fig. 6. GameIND-qCCA
A,Π for REACT transformation in the QROM, where oracle H, G

and Deca are quantum-accessible.

19

Starting from Game 1, random oracle H is simulated with CStO and its
database register is denoted as D.
Game 1: Differing from Game 0, we simulate the decryption oracle by the
plaintext extraction procedure UExt of Π. Note that as presented in appendix A,
UExt is constructed by invoking plaintext checking oracle PCO, instead of using
sk directly.

Since Game 1 is the plaintext extraction game GameExt
A,Π , we apply Theo-

rem 5 to obtain

|Pr[Game 0→ 1]− Pr[Game 1→ 1]| ≤ 5qD ·
√
η = qD ·

5√
2n

. (11)

Game 2: This game is identical withGame 1 except that the decryption oracle
is simulated by the following steps after the challenge query.

1. Perform unitary StdDecomp(R∗,mb,c∗1 ,c
∗
2)

to register D.
2. Apply UExt on register C, Z and D.
3. Perform unitary StdDecomp(R∗,mb,c∗1 ,c

∗
2)

to register D again.

Define unitary SUExt := StdDecomp(R∗,mb,c∗1 ,c
∗
2)
◦UExt◦StdDecomp(R∗,mb,c∗1 ,c

∗
2)
.

By Lemma 4, unitary StdDecomp(R∗,mb,c∗1 ,c
∗
2)

commutes with UExt by a loss, and

TD(UExtρU
†
Ext, SUExtρ SU

†
Ext) ≤ 7

√
η = 7/

√
2n

holds for any joint state ρ on registers in Game 2. Further, adversary A issues
at most qD decryption queries after the challenge query, and then by the hybrid
argument,

|Pr[Game 1→ 1]− Pr[Game 2→ 1]| ≤ qD ·
7√
2n

. (12)

Game 3: We change the process of replying random oracle queries: when random
oracles are queried by A or oracleG is applied in the decryption process, we query
E and then query the random oracle, where E is a constant zero function with
quantum access. Then we have

Pr[Game 2→ 1] = Pr[Game 3→ 1] . (13)

Game 4: In this game, the only change is that semi-classical oracle OSCS is
applied before performing E, and set S := {R∗, R∗‖ · ‖ · ‖· }.

E is queried at most qH + qG + 2qH · qD times in Game 4. We let d =
qH + qG + 2qH · qD. By applying Theorem 3, we obtain

|Pr[Game 3→ 1]− Pr[Game 4→ 1]| ≤
√

(d+ 1) Pr[Find : Game 4] . (14)

Game 5: the difference betweenGame 5 andGame 4 is that we pick k∗ ∈ Ksy
and c∗3 ∈ {0, 1}n uniformly, then use them to compute c∗2 := Encsy(k∗,mb) and
c∗3 to produce (c∗1, c

∗
2, c
∗
3). And we replace SUExt with UExt.

20

If Find does not occur, the decryption process in Game 4 does not disturb
the database state on (R∗,mb, c

∗
1, c
∗
2), and the decryption oracles of Game 4

and Game 5 act identically in the view of the adversary. Then we have

Pr[Find : Game 4] = Pr[Find : Game 5] , (15)
Pr[¬Find ∧Game 4→ 1] = Pr[¬Find ∧Game 5→ 1] . (16)

Lemma 9. There is a quantum adversary Asy invoking A such that∣∣∣∣Pr[Game 5→ 1]− 1

2

∣∣∣∣ = AdvOT
Asy,Πsy (17)

and Time(Asy) ≈ Time(A) +O
(
(qH + qG + 2qH · qD)2

)
.

Proof. A quantum algorithm Asy that runs A and breaks the one-time security
of Πsy is constructed as follows.

Asy generates (pk, sk)← Gen, picks R∗ $←−Masy and simulates Game 5 for
A. Random oracle G is simulated by CStO, and other oracles used in Game 5
can be implemented efficiently by Asy. When A makes challenge query (m0,m1),
Asy sends it to the challenger in GameOT

Asy,Πsy . After receiving c∗, Asy picks
r∗ ∈ Rasy and c∗3 ∈ {0, 1}n uniformly, then computes c∗1 := Encasy(pk,R∗; r∗)
and sends (c∗1, c

∗, c∗3) back to A. After receiving b′ from A, Asy output b′.
By the construction of Asy, the view of A invoked by Asy and that inGame 5

are identical, and the output of Asy is correct if and only if A guesses correctly.
Thus,∣∣∣∣Pr[Game 5→ 1]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[GameOT
Asy,Πsy → 1]− 1

2

∣∣∣∣ = AdvOT
Asy,Πsy .

Moreover, the running time of Asy is Time(Asy) = Time(A) + TG + TH +
Time(UExt), where TG = O

(
(qG + 2qH · qD)2

)
, TH = O(q2H) and Time(UExt) =

O(qD · qH) by appendix A.2. ut

Lemma 10. There is a quantum adversary Aasy invoking A such that

Pr[Find : Game 5] ≤ 4d ·AdvOW-qPCA
Aasy,Πasy (18)

and Time(Aasy) ≈ Time(A) +O
(
(qH + qG + 2qH · qD)2

)
.

Proof. Define BO
SC
S as a quantum oracle algorithm that on input pk, c∗, runs

A and simulates Game 5 for it. Then we have Pr[Find : Game 5] = Pr[Find :

BO
SC
S (pk, c∗)], where c∗ ← Encasy(pk,R∗), R∗ is sampled uniformly fromMasy.

B makes at most d = qH + qG + 2qH · qD queries, then by Theorem 4,

Pr[Find : BO
SC
S (pk, c∗)] ≤ 4d · Pr[(R,m, c1, c2) ∈ S : (R,m, c1, c2)← D(pk, c∗)] .

21

Here D is a quantum algorithm invoking B. On input (pk, c∗), D chooses i $←−
{1, . . . , d}, runs BO

SC
∅ (pk, c∗) until (just before) i-th query of B, and then mea-

sures the state on the input register of OSC∅ and obtains (R,m, c1, c2). Note that
the running time of D and that of B are almost the same.

By the definition of S, (R,m, c1, c2) ∈ S is equivalent to R = R∗. Then D
can also be considered as a quantum algorithm Aasy that breaks the OW-qPCA
security of Πasy. Therefore,

Pr[(R,m, c1, c2) ∈ S : (δ, d)← D(pk, c∗)] = AdvOW-qPCA
Aasy,Πasy .

The running time of Aasy is Time(Aasy) = Time(A)+TG+TH+Time(UExt),
where TG = O

(
(qG + 2qH · qD)2

)
, TH = O(q2H), Time(UExt) = O(qD · qH). ut

Finally, we summarize equation (10) to (18), and obtain

AdvIND-qCCA
A,Π ≤ qD·

12√
2n

+2(d+1)
√

AdvOW-qPCA
Aasy,Πasy+4d·AdvOW-qPCA

Aasy,Πasy+AdvOT
Asy,Πsy .

ut

4.3 TCH: from OW-qPCA to IND-qCCA in the QROM

Transformation TCH transforms a OW-PCA secure PKE to a q-IND-CCA2 secure
KEM in the quantum random oracle model [16].

Let Πasy = (Genasy,Encasy,Decasy) be a PKE with message space Masy.
Let H,G : {0, 1}∗ → {0, 1}n be hash functions. We then introduce TCH and a
new transformation T̃ to prove the IND-qCCA security of TCH.

Definition 7. PKE T̃[Πasy, H] = (Gen,Enc,Dec) and KEM TCH[Πasy, H,G] =
(Gen,Encaps,Decaps) are as shown in Fig. 7, respectively. Particularly, TCH

is composited of transformation T̃ and modular FO transformation U⊥m, i.e.,
TCH[Πasy, H,G] = U⊥m[T̃[Πasy, H], G].

Lemma 11. T̃[Πasy, H] is an oracle-masked scheme relative to random oracle
H, and its parameter η is 1/2n.

Proof. Tuple (A1,A2,A3,A4), as the decomposition of scheme T̃[Πasy, H], is
defined as follows.

- A1 takes pk,m and r as input, computes c1 := Encasy(pk,m; r), then outputs
(m, c1).

- A2 takes (m, c1) and c2 ∈ {0, 1}n as input, then outputs (c1, c2).
- A3 takes (c1, c2) as input, evaluates m := Decasy(sk, c1). If m = ⊥, output
⊥. Otherwise, output (m, c1).

- A4 on input (m, c1), outputs m.

2 Here q is a constant and indicates q classical decryption queries.

22

Gen Enc(pk,m; r) Dec(sk, (c1, c2))

(pk, sk)← Genasy c1 := Encasy(pk,m; r) m′ := Decasy(sk, c1)
return (pk, sk) c2 := H(m, c1) if H(m′, c1) 6= c2

return (c1, c2) return ⊥
return m′

Gen Encaps(pk) Decaps(sk, (c1, c2))

(pk, sk)← Genasy m
$←−Masy m′ := Decasy(sk, c1)

return (pk, sk) c1 ← Encasy(pk,m) if H(m′, c1) 6= c2
c2 := H(m, c1) return ⊥
K := G(m) return G(m′)
return (K, (c1, c2))

Fig. 7. PKE T̃[Πasy, H] and KEM TCH[Π
asy, H,G]

Then its parameter η is calculated by

η = max
(pk,sk),(c1,c2)

1/2n · |{y ∈ {0, 1}n : (c1, c2) = A2(pk,A3(sk, (c1, c2)), y)}|

= max
(pk,sk),(c1,c2)

1/2n · |{y ∈ {0, 1}n : c2 = y}| = 1/2n ,

where (pk, sk) and (c1, c2) ∈ Casy × {0, 1}n are such that A3(sk, (c1, c2)) 6= ⊥.
ut

Theorem 8. If Πasy is δ-correct, for any adversary A against the IND-qCCA
security of Π = TCH[Πasy, H,G] in the QROM, making at most qD queries to
decapsulation oracle Decaps, at most qH queries to random oracle H and at
most qG queries to random oracle G, there exists an adversary Aasy against the
OW-qPCA security of Πasy such that

AdvIND-qCCA
A,Π ≤ qD ·

24√
2n

+ 4(d+ 1)
√

AdvOW-qPCA
Aasy,Πasy + 4d ·AdvOW-qPCA

Aasy,Πasy ,

where d = qD + qH + qG, Time(Aasy) ≈ Time(A) +O
(
d2
)
.

Proof. Game 0: This game is exactly GameIND-qCCA
A,Π , that is given in Fig. 8.

Then we have ∣∣∣∣Pr[Game 0→ 1]− 1

2

∣∣∣∣ = AdvIND-qCCA
A,Π .

Starting from Game 1, random oracle H is simulated with CStO and its
database register is denoted by D.
Game 1: In this game, we replace decapsulation oracle Decaps with oracle
Decaps1. Decaps1 replies quantum query |(c1, c2), z〉 in three steps:

1. Perform the plaintext extraction procedure UExt of T̃[Πasy, H] to obtain m.
2. If m = ⊥, return |(c1, c2), z ⊕⊥〉. Otherwise, return |(c1, c2), z ⊕G(m)〉.
3. Perform UExt a second time to uncompute m.

23

GameIND-qCCA
A,Π Decapsa(sk, (c1, c2))

H
$←− ΩH , G

$←− ΩG if (c1, c2) = a, return ⊥
(pk, sk)← Gen m′ := Decasy(sk, c1)

b
$←− {0, 1}, m∗ $←−Masy if H(m′, c1) 6= c2, return ⊥

c∗1 ← Encasy(pk,m∗), c∗2 := H(m∗, c∗1) return G(m′)

K∗0 := G(m∗), K∗1
$←− {0, 1}n

b′ ← A
H,G,Decaps(c∗1 ,c∗2)(pk,K∗b , (c

∗
1, c
∗
2))

return [b = b′]

Fig. 8. GameIND-qCCA
A,Π for TCH transformation, where oracle H, G and Decaps are all

quantum-accessible

Note that the construction of UExt of T̃[Πasy, H] is presented in appendix A.
We then can construct Decaps1 by invoking plaintext checking oracle PCO, in-
stead of using sk directly.

That Decaps1 answers qD decapsulation queries requires performing plaintext
extraction procedure 2qD times. By applying Theorem 5,

|Pr[Game 0→ 1]− Pr[Game 1→ 1]| ≤ 10qD ·
√
η = qD ·

10√
2n

.

Game 2: In this game, we change oracle Decaps1 by Decaps2. Decaps2 differs
from Decaps1 only after the challenge query: Decaps2 performs StdDecomp(m∗,c∗1)
on register D before and after applying Decaps1.

To consider the commutativity of StdDecomp(m∗,c∗1) and Decaps1, note that
the second step of Decaps1 commutes with StdDecomp(m∗,c∗1). Then by Lemma 4,
the first and last step commute with StdDecomp(m∗,c∗1) by a loss. Therefore,

|Pr[Game 1→ 1]− Pr[Game 2→ 1]| ≤ 14qD ·
√
η = qD ·

14√
2n

.

Game 3: In this game, we change the process of replying random oracle queries:
When random oracles are queried in the execution of A, we query a constant
zero function E and then query these random oracles. Then we have

Pr[Game 2→ 1] = Pr[Game 3→ 1] .

Game 4: In this game, the only change is that the semi-classical oracle OSCS is
applied before querying E, where set S = {m∗,m∗‖·}.

E is queried at most qD+qH +qG times. We let d = qD+qH +qG, and apply
Theorem 3 to obtain

|Pr[Game 3→ 1]− Pr[Game 4→ 1]| ≤
√

(d+ 1) Pr[Find : Game 4] .

Game 5: In this game, we pick c∗2 ∈ {0, 1}n and K∗0 ∈ {0, 1}n uniformly to
produce (c∗1, c

∗
2) and K∗. And we replace Decaps2 with Decaps1.

24

By similar analysis in the proof of Theorem 6, the process of oracle Decaps2
in Game 4 does not disturb the database state on (m∗, c∗1) if Find does not
occur. Moreover, Game 4 and Game 5 are indistinguishable for adversary A
until Find occurs. Thus,

Pr[Find : Game 4] = Pr[Find : Game 5] ,

Pr[¬Find ∧Game 4→ 1] = Pr[¬Find ∧Game 5→ 1] .

Furthermore,
Pr[Find : Game 5] ≤ 4d ·AdvOW-qPCA

Aasy,Πasy ,

where adversary Aasy invokes A and breaks the OW-qPCA security of Πasy.
The running time of Aasy is Time(Aasy) ≈ Time(A) +O

(
d2
)
.

Game 6: In this game, OSCS is removed from the process of E.
The output difference of Game 5 and Game 6 is bounded by Theorem 3.

And in Game 6, K∗0 and K∗1 are both chosen from {0, 1}n uniformly, which
means that Game 6 outputs 1 with probability 1/2.

Summarizing the above arguments, we obtain

AdvIND-qCCA
A,Π ≤ qD ·

12√
2n

+ 4(d+ 1)
√

AdvOW-qPCA
Aasy,Πasy + 4d ·AdvOW-qPCA

Aasy,Πasy .

ut

Acknowledgments. We thank the anonymous reviewers of PKC 2023, and
Shujiao Cao for their insightful comments and suggestions. This work is sup-
ported by National Natural Science Foundation of China (Grants No. 62172405).

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Annual International Cryptology Conference. pp. 269–295.
Springer (2019). https://doi.org/10.1007/978-3-030-26951-7_10

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer
and Communications Security. pp. 62–73 (1993). https://doi.org/10.1145/168588.
168596

3. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of cca security in the quantum random oracle model. In: Theory of Cryp-
tography - 17th International Conference, TCC 2019, Nuremberg, Germany, De-
cember 1-5, 2019, Proceedings, Part II. pp. 61–90. Springer (2019). https://doi.
org/10.1007/978-3-030-36033-7_3

4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: International conference on the theory
and application of cryptology and information security. pp. 41–69. Springer (2011).
https://doi.org/10.1007/978-3-642-25385-0_3

25

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

5. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in
a quantum computing world. In: Annual cryptology conference. pp. 361–379.
Springer (2013). https://doi.org/10.1007/978-3-642-40084-1_21

6. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random
oracle model. In: Theory of Cryptography Conference. pp. 1–29. Springer (2019).
https://doi.org/10.1007/978-3-030-36033-7_1

7. Chung, K.M., Fehr, S., Huang, Y.H., Liao, T.N.: On the compressed-oracle tech-
nique, and post-quantum security of proofs of sequential work. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
pp. 598–629. Springer (2021). https://doi.org/10.1007/978-3-030-77886-6_21

8. Coron, J.S., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: Gem:
A generic chosen-ciphertext secure encryption method. In: CT-RSA. vol. 2271, pp.
263–276. Springer (2002). https://doi.org/10.1007/3-540-45760-7_18

9. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003). https://doi.org/10.1137/S0097539702403773

10. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quan-
tum random-oracle model. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 677–706. Springer (2022).
https://doi.org/10.1007/978-3-031-07082-2_24

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual international cryptology conference. pp. 537–554.
Springer (1999). https://doi.org/10.1007/3-540-48405-1_34

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of cryptology 26(1), 80–101 (2013). https://doi.org/10.
1007/s00145-011-9114-1

13. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. In: Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part III. pp. 60–89. Springer (2016). https:
//doi.org/10.1007/978-3-662-53015-3_3

14. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Theory of Cryptography Conference. pp. 341–371. Springer
(2017). https://doi.org/10.1007/978-3-319-70500-2_12

15. Hövelmanns, K., Hülsing, A., Majenz, C.: Failing gracefully: Decryption failures
and the fujisaki-okamoto transform. In: Advances in Cryptology - ASIACRYPT
2022 - 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part
IV. Lecture Notes in Computer Science, vol. 13794, pp. 414–443. Springer (2022).
https://doi.org/10.1007/978-3-031-22972-5_15

16. Huguenin-Dumittan, L., Vaudenay, S.: On ind-qcca security in the ROM and its
applications - CPA security is sufficient for TLS 1.3. In: Advances in Cryptology
- EUROCRYPT 2022 - 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Trondheim, Norway, May 30 - June
3, 2022, Proceedings, Part III. pp. 613–642. Springer (2022). https://doi.org/10.
1007/978-3-031-07082-2_22

17. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Ind-cca-secure key encap-
sulation mechanism in the quantum random oracle model, revisited. In: An-
nual International Cryptology Conference. pp. 96–125. Springer (2018). https:
//doi.org/10.1007/978-3-319-96878-0_4

26

https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/3-540-45760-7_18
https://doi.org/10.1007/3-540-45760-7_18
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-031-22972-5_15
https://doi.org/10.1007/978-3-031-22972-5_15
https://doi.org/10.1007/978-3-031-07082-2_22
https://doi.org/10.1007/978-3-031-07082-2_22
https://doi.org/10.1007/978-3-031-07082-2_22
https://doi.org/10.1007/978-3-031-07082-2_22
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4
https://doi.org/10.1007/978-3-319-96878-0_4

18. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejec-
tion in the quantum random oracle model. In: IACR International Workshop on
Public Key Cryptography. pp. 618–645. Springer (2019). https://doi.org/10.1007/
978-3-030-17259-6_21

19. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation
mechanism in the quantum random oracle model. In: International Conference on
Post-Quantum Cryptography. pp. 227–248. Springer (2019). https://doi.org/10.
1007/978-3-030-25510-7_13

20. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.: Measure-rewind-measure:
Tighter quantum random oracle model proofs for one-way to hiding and cca secu-
rity. In: Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part III. pp. 703–728. Springer (2020).
https://doi.org/10.1007/978-3-030-45727-3_24

21. Liu, X., Wang, M.: Qcca-secure generic key encapsulation mechanism with tighter
security in the quantum random oracle model. In: IACR International Conference
on Public-Key Cryptography. pp. 3–26. Springer (2021). https://doi.org/10.1007/
978-3-030-75245-3_1

22. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
23. Okamoto, T., Pointcheval, D.: React: Rapid enhanced-security asymmetric cryp-

tosystem transform. In: CT-RSA 2001. pp. 159–174. Springer (2001). https://doi.
org/10.1007/3-540-45353-9_13

24. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 520–551. Springer
(2018). https://doi.org/10.1007/978-3-319-78372-7_17

25. Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto and oaep
transforms. In: Theory of Cryptography Conference. pp. 192–216. Springer (2016).
https://doi.org/10.1007/978-3-662-53644-5_8

26. Xagawa, K., Yamakawa, T.: (tightly) qcca-secure key-encapsulation mechanism
in the quantum random oracle model. In: International Conference on Post-
Quantum Cryptography. pp. 249–268. Springer (2019). https://doi.org/10.1007/
978-3-030-25510-7_14

27. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7417, pp. 758–775. Springer (2012).
https://doi.org/10.1007/978-3-642-32009-5_44

28. Zhandry, M.: How to record quantum queries, and applications to quantum
indifferentiability. In: Annual International Cryptology Conference. pp. 239–
268. Springer (2019). https://doi.org/10.1007/978-3-030-26951-7_9, Full Version:
https://eprint.iacr.org/2018/276

27

https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-17259-6_21
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-030-25510-7_13
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-75245-3_1
https://doi.org/10.1007/978-3-030-75245-3_1
https://doi.org/10.1007/978-3-030-75245-3_1
https://doi.org/10.1007/978-3-030-75245-3_1
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-030-25510-7_14
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9
https://eprint.iacr.org/2018/276

A The Construction of UExt

To implement UExt, we first give some notations, then introduce algorithm
Extract, as a primitive of UExt, and finally present the construction of UExt.

As is shown in definition 4, O is simulated by CStO and we introduce two
definitions related to database D: For any c ∈ C, a completion in D is defined
to be a pair (x, y) ∈ D such that A2(pk, x, y) = c and A3(sk, c) = x. Define Dc

to be the subset of D such that A2(pk, x, y) = c for any (x, y) in Dc. Then any
completion of c in set D is necessarily in set Dc. Note that D contains at most
one completion of c, since c determines A3(sk, c).

Define relation R1(pk, sk) and R2(pk, sk) for any (pk, sk) of Π as below.

R1(pk, sk) := {(x, c) ∈ X × C : ∃ y ∈ Y s.t. A2(pk, x, y) = c} ,

R2(pk, sk) := {(x, c) ∈ X × C : A3(sk, c) = x} ,

where X is the output space of algorithm A1. And we give the definition of the
verification oracle V(pk, sk, ·, ·) of Π. V(pk, sk, ·, ·) takes input (x, c) ∈ X × C
and outputs a bit b ∈ {0, 1}. For any (x, c) ∈ R1(pk, sk), V(pk, sk, x, c) = 1 if
and only if (x, c) ∈ R2(pk, sk).

Next, we define a classical algorithm Extract. Extract takes pk, sk, c and
D as input. It looks for a completion of c in D. If a completion (x, y) ∈ D is
found, Extract outputs (1, x). Otherwise, it outputs (0, 0).

Then we give a construction of Extract relative to oracle V. Extract on
input c and D, finds a completion in two steps: For each pair (x, y) in D, it
computes c′ = A2(pk, x, y) and compares c′ with c for equality to check whether
(x, y) ∈ Dc. Then to extract a completion from Dc, it invokes V and com-
putes V(pk, sk, x, y) for each pair (x, y) ∈ Dc. If (x, y) ∈ D exists such that
V(pk, sk, x, y) = 1, Extract outputs (1, x). Otherwise, it outputs (0, 0).

Then we construct UExt with Extract, and we start with the case when the
challenge query does not happen.

1. Evaluate (b, x) = Extract(pk, sk, c,D) in superposition and xor the output
into a newly created register.

2. Apply the following conditional procedures in superposition:
3. Condition on b = 0, evaluate the map |c, z,D, b, x〉 7→ |c, z ⊕⊥, D, b, x〉.
4. Condition on b = 1, evaluate the map |c, z,D, b, x〉 7→ |c, z ⊕A4(x), D, b, x〉.
5. Uncompute (b, x) by evaluating Extract(pk, sk, c,D) in superposition again.

Then discord the new register.

After the challenge query, the challenge ciphertext c∗ is produced and UExt
is implemented below.

1. Apply the following conditional procedures in superposition:
2. Condition on c = c∗, evaluate the map |c, z,D〉 7→ |c, z ⊕⊥, D〉.
3. Condition on c 6= c∗, apply the procedure in the case when c∗ is undefined.

28

In addition, the running time of UExt is upper bounded as follows. Denote the
length of database by l. For each database D, |D| ≤ l and Extract invokes A2

and V at most l times during the execution. Thus O(l ·Time(A2) + l ·Time(V))
is an upper bound of the running time of UExt.

Then we will give respective constructions of UExt for FO[Πasy, Πsy, H,G],
REACT[Πasy, Πsy, H,G] and T̃[Πasy, H]. Since the implementation of V is suf-
ficient to determine the construction of UExt for an oracle-masked scheme Π, we
only give constructions of the verification oracle V for these three schemes.

A.1 The Construction of UExt for FO

For scheme Π = FO[Πasy, Πsy, H,G], we first present relation R1(pk, sk) and
R2(pk, sk) to determine the input form of the verification oracle V, then give
an implementation of V.

By Lemma 5, relation R1(pk, sk) and R2(pk, sk) are subsets ofMasy×Csy×
Casy × Csy for any (pk, sk) of Π. Tuple (δ, d1, c, d2) ∈ R1(pk, sk) if d1 = d2 and
r ∈ Rasy exists such that c := Encasy(pk, δ; r). Tuple (δ, d1, c, d2) ∈ R2(pk, sk)
if d1 = d2 and Decasy(sk, c) = δ.

Further, tuple (δ, d1, c, d2) ∈ R1(pk, sk) also satisfies Decasy(sk, c) = δ by
the correctness of Πasy, and thus (δ, d1, c, d2) ∈ R2(pk, sk). Then R1(pk, sk) is
a subset ofR2(pk, sk). By similar arguments, we also conclude that (δ, d1, c, d2) /∈
R1(pk, sk) implies (δ, d1, c, d2) /∈ R2(pk, sk) for any (pk, sk). Thus for any (pk, sk)
of Π, R1(pk, sk) = R2(pk, sk) and

R2(pk, sk) = {(δ, d, c, d) : c ∈ Casy, δ = Decasy(sk, c), d ∈ Csy} .

By the definition of the verification oracle, V for Π can be simply simulated
by an algorithm that takes as input tuple (δ, d1, c, d2) and trivially outputs 1.
Moreover, notice that sk is not used in the construction of UExt except for the
verification oracle. Therefore, UExt for Π can be implemented without sk.

Finally, the running time of UExt is given by O(l · Time(Encasy)).

A.2 The Construction of UExt for REACT

For scheme Π = REACT[Πasy, Πsy, H,G], we only give an implementation of
oracle V here.

By Lemma 8, R1(pk, sk) and R2(pk, sk) are subsets ofMasy×Msy×Casy×
Csy × Casy × Csy × {0, 1}n for any (pk, sk). Any tuple (R,m, c1, c2, c

′
1, c
′
2, c
′
3) ∈

R1(pk, sk) if c1 = c′1, c2 = c′2. And this tuple is an element of R2(pk, sk) if
R = Decasy(sk, c′1), m = Decsy(G(R), c′2), c1 = c′1, c2 = c′2. Thus, we have
R1(pk, sk) = {(R,m, c1, c2, c1, c2, c3) : R ∈ Masy,m ∈ Msy, c1 ∈ Casy, c2 ∈
Csy, c3 ∈ {0, 1}n} and R2(pk, sk) = {(R,m, c1, c2, c1, c2, c3) : c1 ∈ Casy, c2 ∈
Csy, c3 ∈ {0, 1}n, R = Decasy(sk, c1),m = Decsy(G(R), c2)}. Then we assume
the input form of V to be (R,m, c1, c2, c1, c2, c3) according to R1(pk, sk) of Π.

We present an algorithmVSim relative to plaintext checking oracle PCO.VSim
takes as input tuple (R,m, c1, c2, c1, c2, c3). It first invokes PCO and obtain b :=

29

PCO(R, c1). If b = 0, VSim outputs 0. Else, it computesm′ := Decsy(G(R), c2). If
m 6= m′, output 0. Else, output 1. Then by the definition of PCO in appendix B.2,
it is easily verified that V can be simulated by VSim. In this way, UExt for Π is
implemented by invoking PCO instead of using sk directly. Moreover, the running
time of UExt is given by O(l).

A.3 The Construction of UExt for T̃

For scheme T̃[Πasy, H], we give a straightforward way to simulate oracle V here.
According to Lemma 11, tuple ((m, c1), (c′1, c

′
2)) ∈ R1(pk, sk) if c1 = c′1, while

tuple ((m, c1), (c′1, c
′
2)) ∈ R2(pk, sk) if c1 = c′1 and m = Decasy(sk, c1). Then we

can assume the input form of V to be (m, c1, c1, c2).
We construct an oracle VSim relative to plaintext-checking oracle PCO and

use it to simulate V. On input (m, c1, c1, c2), VSim first invokes PCO and obtains
b := PCO(m, c1). If b = 0, it outputs 0. Otherwise, it outputs 1. Then UExt can
be implemented without sk, and its running time is O(l).

B Cryptographic Primitives

Here we introduce secret-key encryption schemes (SKE), public-key encryption
schemes (PKE), key encapsulation mechanisms (KEM) and their security no-
tions.

B.1 Secret-Key Encryption

Definition 8. A SKE Πsy consists of a pair of polynomial-time algorithms
(E,D) as follows.

1. E, the encryption algorithm, takes as input a message m and a key k, and
outputs a ciphertext c.

2. D, the decryption algorithm, on input a ciphertext c and a key k outputs
either a message m or a special symbol ⊥ if c is invalid.

Let Πsy = (E,D) be a SKE and define one-time (OT) security for it.

Definition 9 (OT). Define the advantage of adversary A against the OT secu-
rity of Πsy as AdvOT

A,Πsy :=
∣∣Pr[GameOT

A,Πsy → 1]− 1/2
∣∣ and Pr[GameOT

A,Πsy → 1]

is written by Pr[b′ = b : (m0,m1) ← A, b
$←− {0, 1}, c∗ ← E(k,mb), b

′ ← A(c∗)].
Then Πsy is OT secure if AdvOT

A,Πsy is negligible for any polynomial-time adver-
sary A.

B.2 Public-Key Encryption

Definition 10. A PKE Πasy consists of a triple of polynomial-time algorithms
(Gen,Enc,Dec) as follows.

30

1. Gen, the key generation algorithm, on input 1λ outputs a public/secret key-
pair (pk, sk).

2. Enc, the encryption algorithm, on input a public key pk and a message m
outputs a ciphertext c.

3. Dec, the decryption algorithm, on input a secret key sk and a ciphertext c
outputs either a message m or a special symbol ⊥ if c is invalid.

Let Πasy = (Gen,Enc,Dec) be a PKE with message space M. Then we
introduce γ-spread and δ-correct property for it.

Definition 11 (γ-spread [12]). Πasy is γ-spread if for any pk produced by
Gen(1λ) and any message m ∈M,

max
c∈{0,1}∗

Pr[c′ = c : c′ ← Enc(pk,m)] ≤ 1/2γ .

And Πasy is called well-spread in λ if γ = ω(log(λ)).

Definition 12 (δ-correct [14]). Πasy is δ-correct if

E
(pk,sk)←Gen

[
max
m∈M

Pr[Dec(sk, c) 6= m : c← Enc(pk,m)]

]
≤ δ.

And Πasy is called perfectly correct if δ = 0.

In the following, we define one-wayness under chosen plaintext attacks (OW-
CPA), one-wayness under quantum plaintext checking attacks (OW-qPCA) and
indistinguishability under quantum chosen ciphertext attacks (IND-qCCA) these
three security notions for Πasy.

Definition 13 (OW-CPA). The OW-CPA game for Πasy is defined in Fig. 9.
The advantage of an adversary A against the OW-CPA security of Π is defined
to be AdvOW-CPA

A,Πasy := Pr[GameOW-CPA
A,Πasy → 1]. Then Πasy is OW-CPA secure if

AdvOW-CPA
A,Πasy is negligible for any polynomial-time adversary A.

Definition 14 (OW-qPCA [17]). The OW-qPCA game for Πasy is defined
in Fig. 9. The advantage of an adversary A against the OW-qPCA security of
Πasy is defined as AdvOW-qPCA

A,Πasy := Pr[GameOW-qPCA
A,Πasy → 1]. Πasy is OW-qPCA

secure if AdvOW-qPCA
A,Πasy is negligible for any polynomial-time adversary A.

Definition 15 (IND-qCCA [5]). The IND-qCCA game for Πasy is defined
in Fig. 10. The advantage of an adversary A against the IND-qCCA security
of Πasy is defined as AdvIND-qCCA

A,Πasy := |Pr[GameIND-qCCA
A,Πasy → 1] − 1/2|. Then

Πasy is IND-qCCA secure if AdvIND-qCCA
A,Πasy is negligible for any polynomial-time

adversary A.

31

GameOW-ATK
A,Πasy PCO(m, c)

(pk, sk)← Gen m′ := Dec(sk, c)

m∗
$←−M return [m = m′]

c∗ ← Enc(pk,m∗)
m′ ← AOATK(pk, c∗)
return [m = m′]

ATK CPA qPCA

OATK ⊥ PCO

Fig. 9. Game OW-ATK for Πasy (ATK ∈ {CPA, qPCA}), where oracle OATK is
quantum-accessible.

GameIND-qCCA
A,Πasy GameIND-qCCA

A,Πkem Deca(sk, c)

(pk, sk)← Gen (pk, sk)← Gen if c = a, return ⊥
(m0,m1)← ADec⊥(pk) b

$←− {0, 1} m′ := Dec(sk, c)

b
$←− {0, 1} (K∗0 , c

∗)← Encaps(pk) return m′

c∗ ← Enc(pk,mb) K1
$←− K Decapsa(sk, c)

b′ ← ADecc∗ (pk, c∗) b′ ← ADecapsc∗ (pk,K∗b , c
∗) if c = a, return ⊥

return [m = m′] return [b = b′] K := Decaps(sk, c)
return K

Fig. 10. Game IND-qCCA for Πasy and Πkem, where oracle Deca and Decapsa are
both quantum-accessible.

B.3 Key Encapsulation

Definition 16. A KEM Πkem consists of a triple of polynomial-time algorithms
(Gen,Encaps,Decaps) as follows.

1. Gen, the key generation algorithm,on input 1λ outputs a public/secret key-
pair (pk, sk).

2. Encaps, the encapsulation algorithm, takes as input a public key pk and
outputs a ciphertext c and a key k.

3. Decaps, the decapsulation algorithm, on input a secret key sk and a cipher-
text c outputs either a key k or a special symbol ⊥ if c is invalid.

LetΠkem = (Gen,Encaps,Decaps) be a KEM and define IND-qCCA security
for it.

Definition 17 (IND-qCCA [26]). The IND-qCCA game for Πkem is defined
in Fig. 10. The advantage of an adversary A against the IND-qCCA security
of Πkem is defined as AdvIND-qCCA

A,Πkem := |Pr[GameIND-qCCA
A,Πkem → 1] − 1/2|. Then

Πkem is IND-qCCA secure if AdvIND-qCCA
A,Πkem is negligible for any polynomial-time

adversary A.

C The Properties of UExt

Let Π = (Gen,EncH ,DecH) be an oracle-masked scheme with parameter η. Let
tuple (A1,A2,A3,A4) be Π’s decomposition. Fix any (pk, sk) generated by Gen

32

and then we give some notations. Let {0, 1}n be the codomain of H. Relation
R1(pk, sk) and R2(pk, sk) of Π is as defined in appendix A:

R1(pk, sk) := {(x, c) ∈ X × C : ∃ y ∈ {0, 1}n s.t. A2(pk, x, y) = c},

R2(pk, sk) := {(x, c) ∈ X × C : A3(sk, c) = x},

where X is the output space of algorithm A1. For any c ∈ C, define Sc := {y ∈
{0, 1}n : x = A3(sk, c), c = A2(pk, x, y)}, and |Sc| ≤ 2n · η by the definition of η.

C.1 Proof of Lemma 3

Proof. Let4 := USim−UExt. Denote by c∗ the challenge ciphertext. The decryp-
tion oracle DecH(sk, ·) corresponds to unitary operator USim. Given ciphertext
c and database D, let x := A3(sk, c) and then we define several cases for x, c,
D.

1. c = c∗, or x = ⊥, or (x, c) /∈ R1(pk, sk). Then DecH(sk, c) = ⊥ and
USim|w, c, z,D〉 = |w, c, z ⊕⊥, D〉. On the other hand, except for the c = c∗

case, no (x, y) ∈ D exists such that A2(pk, x, y) = c and A3(sk, c) = x. And
therefore, UExt|w, c, z,D〉 = |w, c, z ⊕⊥, D〉.
Let P1 be the projection onto c, D that c = c∗ or x = ⊥, or (x, c) /∈
R1(pk, sk). Then for any pure state |ψ〉, 4 ◦ P1|ψ〉 = 0.

2. c 6= c∗, (x, c) ∈ R1(pk, sk) but D(x) = ⊥. Then we have UExt|w, c, z,D〉 =
|w, c, z ⊕ ⊥, D〉. In this case, x 6= ⊥, DecH first queries CStO the value of
H(x), and then decrypts with H(x). Thus, unitary USim performs as follows.

USim|w, c, z,D〉 =
∑
r∈Sc

1√
2n

StdDecompx|w, c, z ⊕A4(x), D ∪ (x, r)〉

+
∑
r/∈Sc

1√
2n

StdDecompx|w, c, z ⊕⊥, D ∪ (x, r)〉 .

Then

4|w, c, z,D〉 =
∑
r∈Sc

1√
2n

(
|w, c, z⊕A4(x)〉−|w, c, z⊕⊥〉

)
StdDecompx|D∪(x, r)〉 .

We define P2 to be the projection onto c, D such that (x, c) ∈ R1(pk, sk)
and D(x) = ⊥.

3. c 6= c∗, (x, c) ∈ R1(pk, sk) and D(x) = ⊥, r 6= 0.

UExt|w, c, z,D ∪ (x, βr)〉 =
∑
s∈Sc

(−1)s·r√
2n
|w, c, z ⊕A4(x), D ∪ (x, s)〉

+
∑
s/∈Sc

(−1)s·r√
2n
|w, c, z ⊕⊥, D ∪ (x, s)〉 .

33

By similar arguments in case 2,

USim|w, c, z,D ∪ (x, βr)〉 =
∑
s∈Sc

(−1)s·r√
2n

StdDecompx|w, c, z ⊕A4(x), D ∪ (x, s)〉

+
∑
s/∈Sc

(−1)s·r√
2n

StdDecompx|w, c, z ⊕⊥, D ∪ (x, s)〉 .

Thus we obtain

4|w, c, z,D ∪ (x, βr)〉

=
∑
s∈Sc

(−1)s·r√
2n

(StdDecompx − I) |w, c, z ⊕A4(x), D ∪ (x, s)〉

+
∑
s/∈Sc

(−1)s·r√
2n

(StdDecompx − I) |w, c, z ⊕⊥, D ∪ (x, s)〉

=
∑
s∈Sc

(−1)s·r√
2n
|w, c, z ⊕A4(x)〉(1√

2n
|D〉 − 1√

2n
|D ∪ (x, β0)〉)

+
∑
s/∈Sc

(−1)s·r√
2n
|w, c, z ⊕⊥〉(1√

2n
|D〉 − 1√

2n
|D ∪ (x, β0)〉) .

For any r 6= 0 and subset S of {0, 1}n,
∑
s∈S

(−1)s·r√
2n

+
∑
s/∈S

(−1)s·r√
2n

= 0

holds, and therefore 4|w, c, z,D ∪ (x, βr)〉 equals∑
s∈Sc

(−1)s·r√
2n

(|w, c, z ⊕A4(x)〉 − |w, c, z ⊕⊥〉)(1√
2n
|D〉 − 1√

2n
|D ∪ (x, β0)〉) .

Let P3 be the projection onto states
∑
w,c,z,D,r 6=0 αw,c,z,D,r|w, c, z,D∪(x, βr)〉,

where the support is over c and D such that (x, c) ∈ R1(pk, sk), D(x) = ⊥.

For any quantum state |ψ〉 on register W , C, Z and D, we give an upper bound
of ‖4|ψ〉‖ in the following.

For any quantum state |ψ〉, P2|ψ〉 =
∑
w,c,z,D αw,c,z,D|w, c, z,D〉, where the

support is over c, D defined as in case 2. By the calculation in case 2,

4◦P2|ψ〉 =
∑

w,c,z,D,r∈Sc

αw,c,z,D√
2n

(
|w, c, z⊕A4(x)〉−|w, c, z⊕⊥〉

)
StdDecompx|D∪(x, r)〉 .

Then we have

‖4 ◦ P2|ψ〉‖2

=

∥∥∥∥∥∥
∑

w,c,z,D,r∈Sc

αw,c,z,D√
2n

· (|w, c, z ⊕A4(x)〉 − |w, c, z ⊕⊥〉) StdDecompx|D ∪ (x, r)〉

∥∥∥∥∥∥
2

=
∑

w,c,z,D,r∈Sc

1

2n
· |αw,c,z,D|2 · ‖|w, c, z ⊕A4(x)〉 − |w, c, z ⊕⊥〉‖2 .

34

Since ‖|a〉 − |b〉‖2 ≤ 2
(
‖|a〉‖2 + ‖|b〉‖2

)
holds for any state |a〉 and |b〉 on the

same register,

‖4 ◦ P2|ψ〉‖2 ≤
∑

w,c,z,D,r∈Sc

2

2n
· |αw,c,z,D|2 ·

(
‖|w, c, z ⊕A4(x)〉‖2 + ‖|w, c, z ⊕⊥〉‖2

)
=

∑
w,c,z,D

4

2n
· |Sc| · |αw,c,z,D|2 ≤

∑
w,c,z,D

4η · |αw,c,z,D|2 = 4η · ‖P2|ψ〉‖2.

For any |ψ〉, P3|ψ〉 =
∑
w,c,z,D,r 6=0 αw,c,z,D,r|w, c, z,D ∪ (x, βr)〉 where c, D, r is

defined as in case 3. By the calculation in case 3, we let |φ〉 = |D〉−|D∪ (x, β0)〉,
and 4 ◦ P3|ψ〉 equals∑

w,c,z,D,r 6=0

αw,c,z,D,r ·

(∑
s∈Sc

(−1)s·r

2n
(|w, c, z ⊕A4(x)〉 − |w, c, z ⊕⊥〉)|φ〉

)
.

Then we have∥∥4 ◦ P3|ψ〉
∥∥2

=

∥∥∥∥∥∥
∑

w,c,z,D,r 6=0

α ·

(∑
s∈Sc

(−1)s·r

2n
(|ϕ〉 − |w, c, z ⊕⊥〉)|φ〉

)∥∥∥∥∥∥
2

=
∑

w,c,z,D

∣∣∣∣∣∣
∑
r 6=0

α ·

(∑
s∈Sc

(−1)s·r

2n

)∣∣∣∣∣∣
2

· ‖|ϕ〉 − |w, c, z ⊕⊥〉‖2 · ‖|φ〉‖2

≤
∑

w,c,z,D

2

∣∣∣∣∣∣
∑
r 6=0

α ·

(∑
s∈Sc

(−1)s·r

2n

)∣∣∣∣∣∣
2

·
(
‖|ϕ〉‖2 + ‖|w, c, z ⊕⊥〉‖2

)
· ‖|φ〉‖2

=
∑

w,c,z,D

8

∣∣∣∣∣∣
∑
r 6=0

α ·

(∑
s∈Sc

(−1)s·r

2n

)∣∣∣∣∣∣
2

,

where we denote αw,c,z,D,r as α and |w, c, z ⊕A4(x)〉 as |ϕ〉 for convenience.
Meanwhile, ‖P3|ψ〉‖2 = ‖

∑
w,c,z,D,r 6=0 αw,c,z,D,r|w, c, z,D∪ (x, βr)〉‖2, which

can be rewritten as∥∥∥∥∥∥
∑

w,c,z,D,r 6=0

αw,c,z,D,r
∑
s

(−1)r·s√
2n
|w, c, z,D ∪ (x, s)〉

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

w,c,z,D,s

∑
r 6=0

αw,c,z,D,r
(−1)r·s√

2n
|w, c, z,D ∪ (x, s)〉

∥∥∥∥∥∥
2

=
∑

w,c,z,D,s

∣∣∣∣∣∣
∑
r 6=0

(−1)r·s√
2n

αw,c,z,D,r

∣∣∣∣∣∣
2

.

35

Therefore,

∥∥4 ◦ P3|ψ〉
∥∥2 ≤ ∑

w,c,z,D

8/2n ·

∣∣∣∣∣∣
∑
r 6=0

αw,c,z,D,r

(∑
s∈Sc

(−1)s·r√
2n

)∣∣∣∣∣∣
2

=
∑

w,c,z,D

8/2n ·

∣∣∣∣∣∣
∑
s∈Sc

∑
r 6=0

αw,c,z,D,r
(−1)s·r√

2n

∣∣∣∣∣∣
2

≤
∑

w,c,z,D

8/2n · |Sc| ·

∑
s∈Sc

∣∣∣∣∣∣
∑
r 6=0

αw,c,z,D,r
(−1)s·r√

2n

∣∣∣∣∣∣
2


≤
∑

w,c,z,D

8 · η ·

∑
s∈Sc

∣∣∣∣∣∣
∑
r 6=0

(−1)s·r√
2n

αw,c,z,D,r

∣∣∣∣∣∣
2


≤
∑

w,c,z,D

8 · η ·

∑
s

∣∣∣∣∣∣
∑
r 6=0

(−1)s·r√
2n

αw,c,z,D,r

∣∣∣∣∣∣
2
 = 8 · η · ‖P3|ψ〉‖2 .

Notice that for any state |ψ〉 in Lemma 3, (P1 +P2 +P3)|ψ〉 = |ψ〉, and thus

‖4|ψ〉‖ ≤
3∑
i=1

‖4 ◦ Pi|ψ〉‖ ≤ (2 + 2
√

2) · √η ≤ 5
√
η .

C.2 Proof of Lemma 4

Proof. Let4 := UExt◦StdDecompx∗−StdDecompx∗ ◦UExt. For any x∗ ∈ {0, 1}∗,
we define several cases for x∗, ciphertext c and database D.

1. (x∗, c) 6∈ R1(pk, sk), or (x∗, c) 6∈ R2(pk, sk). Then the value of D(x∗) does
not affect the decryption of c. StdDecompx∗ only affects the value of database
D on x∗, and therefore 4|w, c, z,D〉 = 0.
Let P1 be the projection onto x∗, c, D such that c = c∗, or (x∗, c) 6∈
R1(pk, sk), or (x∗, c) 6∈ R2(pk, sk). Then for any state |ψ〉, 4 ◦ P1|ψ〉 = 0.

2. (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk) but D(x∗) = ⊥. We obtain

StdDecompx∗ ◦UExt|w, c, z,D〉
= StdDecompx∗ |w, c, z ⊕⊥, D〉 = |w, c, z ⊕⊥, D ∪ (x∗, β0)〉 ,

and

UExt ◦ StdDecompx∗ |w, c, z,D〉 = UExt
∑
r

1√
2n
|w, c, z,D ∪ (x∗, r)〉

=
1√
2n

∑
r∈Sc

|w, c, z ⊕A4(x∗), D ∪ (x∗, r)〉+
1√
2n

∑
r/∈Sc

|w, c, z ⊕⊥, D ∪ (x∗, r)〉 .

36

Therefore,

4|w, c, z,D〉 =
1√
2n

∑
r∈Sc

(|w, c, z ⊕A4(x∗)〉 − |w, c, z ⊕⊥〉)|D ∪ (x∗, r)〉 .

Let P2 be the projection onto x∗, c,D such that (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈
R2(pk, sk) and D(x∗) = ⊥.

3. (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk) and D(x∗) /∈ Sc. Rewrite D as
D′ ∪ (x∗, y), where D′(x∗) = ⊥, y = D(x∗). Then we compute

StdDecompx∗ ◦UExt|w, c, z,D′ ∪ (x∗, y)〉
= StdDecompx∗ |w, c, z ⊕⊥, D′ ∪ (x∗, y)〉

= |w, c, z ⊕⊥〉
(
|D′ ∪ (x∗, y)〉+

1√
2n
|D′〉 − 1√

2n
|D′ ∪ (x∗, β0〉

)
,

and

UExt ◦ StdDecompx∗ |c, z,D′ ∪ (x∗, y)〉

= UExt|c, z〉
(
|D′ ∪ (x∗, y)〉+

1√
2n
|D′〉 − 1√

2n
|D′ ∪ (x∗, β0)〉

)
,

where UExt|w, c, z,D′∪(x∗, y)〉 = |w, c, z⊕⊥, D′∪(x∗, y)〉, UExt|w, c, z,D′〉 =
|w, c, z ⊕⊥, D′〉 and UExt|w, c, z,D′ ∪ (x∗, β0)〉 equals

1√
2n

∑
r∈Sc

|w, c, z⊕A4(x∗), D′ ∪ (x∗, r)〉+ 1√
2n

∑
r/∈Sc

|w, c, z⊕⊥, D′ ∪ (x∗, r)〉 .

Thus,

4|w, c, z,D′∪(x∗, y)〉 =
1

2n

∑
r∈Sc

(|w, c, z⊕⊥〉−|w, c, z⊕A4(x∗)〉)|D′∪(x∗, r)〉 .

Let P3 be the projection onto x∗, c, D′, y such that (x∗, c) ∈ R1(pk, sk),
(x∗, c) ∈ R2(pk, sk), D′(x∗) = ⊥, y /∈ Sc.

4. (x∗, c) ∈ R1(pk, sk), (x∗, c) ∈ R2(pk, sk) and D(x∗) ∈ Sc. We represent D
as D′ ∪ (x∗, y), where D′(x∗) = ⊥, y = D(x∗). Then we have

StdDecompx∗ ◦UExt|w, c, z,D′ ∪ (x∗, y)〉
= StdDecompx∗ |w, c, z ⊕A4(x∗), D′ ∪ (x∗, y)〉

= |w, c, z ⊕A4(x∗)〉
(
|D′ ∪ (x∗, y)〉+

1√
2n
|D′〉 − 1√

2n
|D′ ∪ (x∗, β0〉

)
,

and

UExt ◦ StdDecompx∗ |w, c, z,D′ ∪ (x∗, y)〉

= UExt|w, c, z〉
(
|D′ ∪ (x∗, y)〉+

1√
2n
|D′〉 − 1√

2n
|D′ ∪ (x∗, β0〉

)
,

37

where UExt|w, c, z,D′∪(x∗, y)〉 = |w, c, z⊕A4(x∗), D′∪(x∗, y)〉, UExt|w, c, z,D′〉 =
|w, c, z ⊕⊥, D′〉 and UExt|w, c, z,D′ ∪ (x∗, β0)〉 equals

1√
2n

∑
r∈Sc

|w, c, z⊕A4(x∗), D′ ∪ (x∗, r)〉+ 1√
2n

∑
r/∈Sc

|w, c, z⊕⊥, D′ ∪ (x∗, r)〉 .

Then we obtain

4|w, c, z,D′ ∪ (x∗, y)〉

=
1√
2n

(|w, c, z ⊕⊥〉 − |w, c, z ⊕A4(x∗)〉)|D′〉

+
∑
r/∈Sc

1

2n
(
|w, c, z ⊕A4(x∗)〉 − |w, c, z ⊕⊥〉

)
|D′ ∪ (x∗, r)〉 .

Let P4 be the projection onto x∗, c, D′, y such that (x∗, c) ∈ R1(pk, sk),
(x∗, c) ∈ R2(pk, sk), D′(x∗) = ⊥ and y ∈ Sc.

For any quantum state |ψ〉, P2|ψ〉 =
∑
w,c,z,D αw,c,z,D|w, c, z,D〉, and ‖P2|ψ〉‖2 =∑

w,c,z,D |αw,c,z,D|2, where w, c, z, D is defined as in case 2. By the calculation
in case 2, 4 ◦ P2|ψ〉 equals

∑
w,c,z,D

αw,c,z,D

(
1√
2n

∑
r∈Sc

(
|w, c, z ⊕A4(x∗)〉 − |w, c, z ⊕⊥〉

)
|D ∪ (x∗, r)〉

)
.

Then we have

‖4 ◦ P2|ψ〉‖2

=
∑

w,c,z,D,r∈Sc

1

2n
· |αw,c,z,D|2 ·

∥∥(|w, c, z ⊕A4(x∗)〉 − |w, c, z ⊕⊥〉
)
|D ∪ (x∗, r)〉

∥∥2
≤

∑
w,c,z,D,r∈Sc

2

2n
· |αw,c,z,D|2 ·

(
‖|z ⊕A4(x∗)〉‖2 + ‖|z ⊕⊥〉‖2

)
≤ 4 · η · ‖P2|ψ〉‖2 .

For any |ψ〉, P3|ψ〉 =
∑
w,c,z,D′,y 6∈Sc αw,c,z,D′,y|w, c, z,D

′∪(x∗, y)〉, and ‖P3|ψ〉‖2 =∑
w,c,z,D′,y 6∈Sc |αw,c,z,D′,y|

2, where w, c, z, D′, y is as defined in case 3. By the
calculation in case 3, 4 ◦ P3|ψ〉 equals

∑
w,c,z,D′,y 6∈Sc

αw,c,z,D′,y
2n

(∑
r∈Sc

(|w, c, z ⊕⊥〉 − |w, c, z ⊕A4(x∗)〉) |D′ ∪ (x∗, r)〉

)
.

38

Therefore,

‖4 ◦ P3|ψ〉‖2

=
∑

w,c,z,D′

1

4n
· |Sc| ·

∣∣∣∣∣∣
∑
y 6∈Sc

αw,c,z,D′,y

∣∣∣∣∣∣
2

· ‖|w, c, z ⊕⊥〉 − |w, c, z ⊕A4(x∗)〉‖2

≤
∑

w,c,z,D′

2

4n
· |Sc| ·

∣∣∣∣∣∣
∑
y 6∈Sc

αw,c,z,D′,y

∣∣∣∣∣∣
2

·
(
‖|z ⊕⊥〉‖2 + ‖|z ⊕A4(x∗)〉‖2

)

=
∑

w,c,z,D′

4

4n
· |Sc| ·

∣∣∣∣∣∣
∑
y 6∈Sc

αw,c,z,D′,y

∣∣∣∣∣∣
2

≤
∑

w,c,z,D′

4

4n
· |Sc| · (2n − |Sc|) ·

∑
y/∈Sc

|αw,c,z,D′,y|2


≤
∑

c,z,D′,y /∈Sc

4η · |αw,c,z,D′,y|2 = 4η · ‖P3|ψ〉‖2 .

For any |ψ〉, P4|ψ〉 =
∑
w,c,z,D′,y∈Sc αw,c,z,D′,y|w, c, z,D

′∪(x∗, y)〉 and ‖P4|ψ〉‖2 =∑
w,c,z,D′,y∈Sc |αw,c,z,D′,y|

2, where w, c, z, D′, y is defined as in case 4. By the
calculation in case 4,

4 ◦ P4|ψ〉 =
∑

w,c,z,D′,y∈Sc

αw,c,z,D′,y

(
1√
2n

(|w, c, z ⊕⊥〉 − |w, c, z ⊕A4(x∗)〉)|D′〉

+
∑
r/∈Sc

1

2n
(
|w, c, z ⊕A4(x∗)〉 − |w, c, z ⊕⊥〉

)
|D′ ∪ (x∗, r)〉

)
,

Then we obtain

‖4 ◦ P4|ψ〉‖2

=
∑

w,c,z,D′

1

2n
·

∣∣∣∣∣∣
∑
y∈Sc

α

∣∣∣∣∣∣
2

·
∥∥|ϕ〉 − |w, c, z ⊕⊥〉‖2 · ‖|D′〉∥∥2

+
∑

w,c,z,D′,r /∈Sc

1

4n
·

∣∣∣∣∣∣
∑
y∈Sc

α

∣∣∣∣∣∣
2

· ‖|w, c, z ⊕⊥〉 − |ϕ〉‖2 · ‖|D′ ∪ (x∗, r)〉‖2 ,

where we denote αw,c,z,D,r as α, and |w, c, z ⊕A4(x∗)〉 as |ϕ〉 for convenience.

39

Furthermore,

‖4 ◦ P4|ψ〉‖2

≤
∑

w,c,z,D′

2

2n
·

∣∣∣∣∣∣
∑
y∈Sc

αw,c,z,D′,y

∣∣∣∣∣∣
2

·
(
‖|z ⊕A4(x∗)〉‖2 + ‖|z ⊕⊥〉‖2

)

+
∑

w,c,z,D′,r /∈Sc

2

4n
·

∣∣∣∣∣∣
∑
y∈Sc

αw,c,z,D′,y

∣∣∣∣∣∣
2

·
(
‖|z ⊕⊥〉‖2 + ‖|z ⊕A4(x∗)〉‖2

)

=
∑

w,c,z,D′

4

2n
·

∣∣∣∣∣∣
∑
y∈Sc

αw,c,z,D′,y

∣∣∣∣∣∣
2

+
∑

w,c,z,D′

4

4n
· (2n − |Sc|) ·

∣∣∣∣∣∣
∑
y∈Sc

αw,c,z,D′,y

∣∣∣∣∣∣
2

≤
∑

w,c,z,D′

4

2n
· |Sc| ·

∑
y∈Sc

|αw,c,z,D′,y|2


+
∑

w,c,z,D′

4

4n
· (2n − |Sc|) · |Sc| ·

∑
y∈Sc

|αw,c,z,D′,y|2


≤
∑

w,c,z,D′,y∈Sc

8 · η · |α2
w,c,z,D′,y| = 8 · η · ‖P4|ψ〉‖2.

Since P1+P2+P3+P4 = I, ‖4|ψ〉‖ ≤
∑4
i=1 ‖4◦Pi|ψ〉‖ ≤ (4+2

√
2)·√η ≤ 7

√
η.

40

	QCCA-Secure Generic Transformations in the Quantum Random Oracle Model

