
Breaking RSA Generically is Equivalent to
Factoring, with Preprocessing

Dana Dachman-Soled1 ⋆, Julian Loss2 ⋆⋆, and Adam O’Neill3 ⋆ ⋆ ⋆

1 University of Maryland
danadach@umd.edu

2 CISPA Helmholtz Center for Information Security
loss@cispa.de

3 Manning College of Information and Computer Science, University of
Massachusetts Amherst
adamo@cs.umass.edu

Abstract. We investigate the relationship between the classical RSA
and factoring problems when preprocessing is considered. In such a model,
adversaries can use an unbounded amount of precomputation to produce
an “advice” string to then use during the online phase, when a problem
instance becomes known. Previous work (e.g., [Bernstein, Lange ASI-
ACRYPT ’13]) has shown that preprocessing attacks significantly im-
prove the runtime of the best-known factoring algorithms. Due to these
improvements, we ask whether the relationship between factoring and
RSA fundamentally changes when preprocessing is allowed. Specifically,
we investigate whether there is a superpolynomial gap between the run-
time of the best attack on RSA with preprocessing and on factoring with
preprocessing.
Our main result rules this out with respect to algorithms in a careful
adaptation of the generic ring model (Aggarwal and Maurer, Eurocrypt
2009) to the preprocessing setting. In particular, in this setting we show
the existence of a factoring algorithm with polynomially related param-
eters, for any setting of RSA parameters.

1 Introduction

1.1 Motivation and Main Results.

Background. Use of the RSA function [27] fN,e(x) = xe mod N where N =
pq is ubiquitous in practice, and attacks against it have been the subject of
intensive study, see e.g. [4]. A key question about its security is its relationship
to factoring N . While it is trivial to see that factoring N allows one to invert

⋆ Supported in part by NSF grants #CNS-1933033, #CNS-1453045 (CAREER), and
by financial assistance awards 70NANB15H328 and 70NANB19H126 from the U.S.
Department of Commerce, National Institute of Standards and Technology.

⋆⋆ Part of this work was done while the author was a postdoc at the University of
Maryland and Carnegie Mellon University.

⋆ ⋆ ⋆ Supported in part by a gift from Cisco.

RSA, the converse is a major open problem. To make progress on this question,
researchers have studied it in restricted (aka. idealized) models of computation.
To our knowledge, this approach was initiated by Boneh and Venkatesan [5],
who showed that a reduction from factoring to low-exponent RSA that is a
straight-line program (SLP) gives rise to an efficient factoring algorithm. An
SLP is simply an arithmetic program (performing only ring operations) that
does not branch. A complementary approach, which we pursue in this work, is
to consider RSA adversaries that are restricted. The best known result of this
nature is due to Aggarwal and Maurer (which we abbreviate as AM) [1], who
showed that breaking RSA and factoring are equivalent wrt. so-called “generic-
ring algorithms” (GRAs), namely ones that treat the ring ZN like a black-box,
only performing ring operations and equality checks that allow branching. Put
another way, GRAs work in any efficient ring isomorphic to ZN . Note that SLPs
are a special case of GRAs.

In the context of any cryptographic problem or protocol it is valuable to
consider preprocessing attacks, because an adversary may be willing to perform
highly intensive computation to break many instances of the problem, if that
computation only has to be performed once. To model this, one considers an
unbounded algorithm that produces a short “advice” string that can be used
to efficiently solve a problem instance once it becomes known (much more effi-
ciently than without the advice string). Note that above-mentioned attacks on
RSA from [4] do not take advantage of preprocessing. However, in the prepro-
cessing setting, Bernstein and Lange [3] describe a Number Field Sieve (NFS)
with preprocessing, based on work by Coppersmith [7], which significantly re-
duces the exponent in the running-time compared to the standard NFS factoring
algorithm, and they use this to get an improved attack on RSA. Thus, a natural
question is:

Does the relationship between RSA and factoring fundamentally change
in the preprocessing setting?

The Need for a New Model. To answer this question, we need to formalize
a model of computation for this setting. First, we will briefly survey some re-
lated models in the literature. The generic ring model (GRM) of AM considers
an algorithm (called a generic ring algorithm or GRA) to be a directed acyclic
graph where nodes are labelled with constants (or the input indeterminate) in
ZN and operations (+, ×, ÷); execution corresponds to a walk in the graph
according to suitable rules. One can contrast this with Shoup’s generic group
model (GGM) [30], where the group representation is random and accessible
only via an oracle; otherwise, an algorithm is allowed arbitrary computation. A
Shoup-style GGM has also been considered by Dodis et al. [14] for the group
Z∗N , but where the adversary additionally learns the modulus N . We consider a
hybrid of this model and AM’s over the ring ZN , wherein the ring representation
is random and accessible via an oracle, but an algorithm is restricted (though
more general than in AM). To understand the rationale, it is instructive to see
why AM’s model, extended to the preprocessing setting in the obvious way, is

2

not suitable. In this model, after the preprocessing stage the adversary outputs
a GRA to run in the online stage. But then observe that the best the adver-
sary could do in the preprocessing stage is to pick a single GRA of size at most
some T that obtains optimal advantage, where the advantage is computed with
respect to the random choice of N with bitlength at most security parameter κ
and random choice of y = xe (mod N). The description of this optimal GRA
would then be passed to the online stage. This process does not capture our intu-
ition of what can be done with preprocessing. For example, the following simple
algorithm would not be captured: Create a table of many input/output pairs
((y = xe (mod N), N), x) in the preprocessing stage, then, in the online stage,
perform a lookup on the challenge input (y∗, N∗). Output the trivial GRA that

outputs the constant x∗ = y∗1/e (mod N) if (y∗, N∗) is found in the table, and
output the aforementioned optimal GRA otherwise. This algorithm cannot be
captured in AM’s model since the table lookup (via a binary tree or hash table
structure) requires use of the bit-representation of the input (y∗, N∗), while a
GRA is agnostic of the particular representation of the ring. While this is a sim-
ple example, it captures the techniques originating from Hellman’s tables [18],
which are common strategies for preprocessing algorithms in practice.

Our New “GRM-with-Preprocessing” Model. To allow these types of
representation-specific strategies, we will associate integers y of bitlength at
most κ with labels. This is somewhat analogous to moving Shoup’s model of
the GGM to the GRM setting. While Dodis et al. [14] made a significant step
in this direction by extending Shoup’s model to cover the group Z∗N (with N
known to the adversary), a version of the GRM that is analogous to Shoup’s
GGM has not been previously considered in full generality to the best of our
knowledge. In fact, arbitrary computation on labels seems extremely hard to
analyze in the ring setting. We therefore consider an intermediate model that
allows for representation-specific (using integer labels) yet structured algorithms
(that only perform ring operations). In particular, using integer labels enables
us to make use of compression arguments, while structure allows us to leverage
the techniques of AM.

In our model, an injective mapping π takes every element in {0, 1}κ to a
unique random string in {0, 1}m, where m > κ. We let the unbounded prepro-
cessing algorithm read the entire description π and perform arbitrary computa-
tion. It produces a short advice string st that is passed to the online phase. The
online algorithm is split into two parts, an intermediate algorithm, and a GRA.
The intermediate algorithm is bounded but not generic and gets the problem
instance (N, e, π(xe)), where N = pq has bit-length κ, but does not get access to
π. This intermediate algorithm is crucial to our model, since this is what allows
computation that depends on the input representation, and therefore allows the
online part of the algorithm to leverage the advice from the preprocessing stage.
Finally, this intermediate algorithm outputs an oracle-aided GRA that com-
putes relative to π, and which we then run on the RSA problem instance. For
example, an addition step of the oracle-aided GRA takes as input two strings

3

y1, y2 ∈ {0, 1}m and outputs π(π−1(y1) + π−1(y2) (mod N)). (Multiplication
and division proceed analogously.) We call S = |st| the space of the adversary
and its running-time is specified by the pair (T1, T2), where T1 is the runtime of
the intermediate algorithm, and T2 is the run-time of the GRA output by the
intermediate algorithm. (Note that we require that T2 ≤ T1.) We refer to this
model as the “GRM-with-preprocessing” for simplicity.

A Result in the Random Injective Function Model. We present two main
results below, which both emanate from a more basic result in random injec-
tive function model (RIM). In the RIM, the adversary has access to a random
injective function with suitable parameters. We show that in the GRM-with-
preprocessing model, any RSA algorithm with preprocessing implies the exis-
tence of a factoring algorithm with preprocessing in the RIM, with polynomially
related parameters. This gets us a long way in answering our question for RSA
algorithms in the GRM-with-preprocessing model and shows that the relation-
ship of RSA and factoring does not fundamentally change in this setting, as long
as we permit the factoring algorithm to operate in the RIM.

Theorem 1. (Informal.) Suppose there is an RSA adverary in the GRM with
preprocessing model with space Sr and running-time (T1,r, T2,r) that succeeds
with probability ϵr. Then there is a factoring adversary in the random injec-
tive function model (RIM) with space Sf = Sr + O(1) and running-time Tf =
poly(κ, T1,r, T2,r, 1/ϵr) that succeeds with probability ϵf = poly(ϵr).

See Theorem 6 for the formal statement. We will explain the bounds (which
are identical) in the context of our random oracle model result below. Since our
model allows an inefficient preprocessing phase, the RI function cannot easily
be removed from our final factoring algorithm while maintaining the desired
polynomially related space complexity and runtime from Theorem 1. The rea-
son is that in the preprocessing phase of the factoring algorithm, the entire RI
function could be queried and global information about it could be stored in the
preprocessing advice. In this case, it is no longer possible for the online part of the
factoring algorithm to simulate the RI “on the fly” since the responses generated
by the simulator need to be consistent with the global information learned in the
preprocessing phase. One approach to removing the RI would be to show that the
global information about the random injective function (which has length Sf)
can be simulated by fixing the input/output of some set of some q queries to the
random injective function, and showing that any remaining queries not in this
set can still be chosen “on the fly.” This “bit-fixing” technique has been studied
in a number of works, e.g. [9, 13]. However, this line of work proved a lower
bound that q must be larger than SfTf/(ϵf)

2 for simulation by the plain-model
adversary to be ϵf -indistinguishable to an RIM adversary making Tf queries
(note that we require ≈ ϵf -indistinguishability to guarantee that the factoring
algorithm in the plain model still succeeds with probability poly(ϵf) = poly(ϵr)).
For us, this would lead to trivial parameter settings.

Next, we extend the RIM result in two ways.

4

A result in the random oracle model. The RIM is much less natural to study
factoring-with-preprocessing in than its counterpart the random oracle model
(ROM) [2], hence we would like to obtain a result in the latter. The classical result
of Luby and Rackoff shows that a 4-round Feistel network with random oracles
in place of round functions is indistinguishable from a random permutation with
forwards and backwards access. However, the distinguishing probability of an

(unbounded) adversary is Ω(q2

2κ/2
), where κ/2 is the input/output length of the

random oracle, and q is the number of queries made by the adversary, and this
bound is known to be tight. In the preprocessing setting, the adversary can
query the entire random oracle q = 2κ/2, and so the distinguishing probability
becomes vacuous. We present a technique to lift the Luby-Rackoff result to the
case of unbounded preprocessing by using a slight modification of a 4-round
Feistel network to implement a random injective function, instead of a random
permutation. This 4-round Feistel will use round functions with input/output
length m/2 to implement an injective function with domain size of 2κ ≪ 2m/2

and will thus circumvent the issue discussed above. We thus obtain the following
result (see Theorem 8 for the formal statement), with the same concrete bounds
as the RIM result.

Theorem 2. (Informal.) Suppose there is an RSA adverary in the GRM with
preprocessing model with space Sr and running-time (T1,r, T2,r) that succeeds with
probability ϵr. Then there is a factoring adversary in the random oracle model
(ROM) with space Sf = Sr+O(1) and running-time Tf = poly(κ, T1,r, T2,r, 1/ϵr)
that succeeds with probability ϵf = poly(ϵr).

Note that the space complexity of our factoring algorithm is essentially the
same as that of the RSA algorithm, namely S + O(1). In terms of time com-
plexity and success probability, our bounds are similar to those achieved by AM,
which is to be expected. We differ from AM in that the success probability of
our factoring algorithm ϵf depends only on ϵr, and not on T1,r, T2,r. We discuss
additional differences between the time complexity and success probability of
our ROM factoring algorithm and that of AM in Section 5. We believe using the
ROM for the above result is reasonable since prior work on space/time tradeoffs
(such as the seminal results of Hellman [18] and Fiat-Naor [16]) either required
a random oracle or achieved simplified algorithms/improved parameters in the
random oracle model. Nevertheless, it begs the question of whether the situation
could change in the plain model.

A result in the plain model. Above we explained why it is difficult to
remove the RI function while maintaining the desired parameters. Nevertheless,
by developing new techniques for our setting we are finally able to show the
following theorem statement, which is in the plain model. The proof techniques
center around another compression argument.

Theorem 3. (Informal.) Suppose there is an RSA adverary in the GRM with
preprocessing model with space Sr and running-time (T1,r, T2,r) that succeeds
with probability ϵr. Then there is a factoring adversary in the plain model with

5

space Sf = O(Sr) and running-time Tf = poly(κ, T1,r, T2,r, 1/ϵr) that succeeds
with probability ϵf = poly(ϵr).

The main insight used for the above result is to note that the online stage
of the RI factoring algorithm we obtain has a particular form in which only a
single uniformly random query is made to the forward direction of π, and a set
of non-adaptive queries is made to the backward direction of π−1. Combining a
compression argument with a new argument based on a lemma of Drucker [15]
(which to the best of our knowledge has not been previously used in a generic
model setting) we are able to show that the online portion of the RIM factoring
algorithm can be efficiently simulated in the plain model. Note, however, that we
still include the ROM result above as it is obtained en route to our plain model
result, illustrating many of our main techniques, and it enjoys a tighter reduction.

On Interpretation of our Results. Our results above provide evidence that
speed-ups in breaking RSA, even with a non-generic preprocessing phase and
super-polynomial-time non-generic computation on N , must use non-generic
techniques, lest they imply corresponding speed-ups on factoring. In other words,
the “entire computation” needs to be non-generic for such a speed-up to be pos-
sible. We believe this agrees with practitioners’ viewpoints. Both our model and
main theorem are very general in the sense that they show existence of a fac-
toring algorithm with polynomially related parameters for any setting of RSA
parameters T1,r, T2,r, Sr, ϵr and for a general class of algorithms.

Our result does not restrict the relationship between (T1,r, T2,r, Sr) (other
than the requirement that T1,r ≥ T2,r, which is implied by the model) and we
show that generic RSA with preprocessing implies factoring with preprocessing,
even for unconventional parameter settings (such as setting Sr to be larger than
the time complexity of the best online factoring algorithm). We believe it is
important to cover all parameter regimes, as this ensures that our result actually
suggests a mathematical connection between the factoring and RSA problems
themselves, rather than just showing that for the typical parameter settings
used in practice the best factoring and RSA algorithms happen to have the
same complexity.

On Using Bit-Fixing Instead of Compression. Another question is whether
it is possible to rely on bit-fixing as alternative to our use of the compression
technique (cf. [8]). That is, one would first show that an RSA algorithm of the
form (A0, A1, A2) with advice of size Sr, making at most Tr number of queries,
and achieving success probability ϵr, implies the existence of an RSA algorithm of
the form (A′1, A

′
2) making at most T ′r number of queries, and achieving success

probability ϵ′r in the bit fixing model, which fixes the labelling function π in
q locations. It is possible that the AM reduction could then be applied more
directly to (A′1, A

′
2) to obtain a factoring algorithm without going through a

compression argument.
Unfortunately, similarly to the discussion above, this approach requires the

number of fixed locations q to be at least SrTr/(ϵr)
2. Since A′1 cannot itself

make oracle queries, for it to be able to choose A′2 adaptively in the bit-fixing

6

model, the information about the q fixed locations would need to be given to A′1
as non-uniform advice. This would mean that the space of the RSA algorithm,
and hence the resulting factoring algorithm, be at least SrTr/(ϵr)

2, leading to
trivial parameter settings.

1.2 Related Work

There is an extensive body of literature on the hardness of the RSA problem
and is relationship to factoring. Boneh and Venkatesan [5] gave the first among
these results. Their result shows that reducing low-exponent RSA from factoring
using a straight-line reduction is as hard as factoring itself. A similar result by
Joux et al. [19] shows that when given access to an oracle computing eth roots
modulo N of integers x+ c (where c is fixed and x varies), computing eth roots
modulo N of arbitrary numbers becomes easier than factoring.

A more closely related line of work initiated by Brown [6] shows that for
generic adversaries, computing RSA (or variants thereof), is as hard as factoring
the modulus N . Brown’s initial work considered only the case of SLPs without
division and was subsequently extended by Leander and Rupp [21] to the case
of GRAs without division.The work of Aggarwal and Maurer [1] finally showed
that the problems are equivalent even for GRAs with division. A subsequent
result of Jager and Schwenk showed that computing Jacobi symbols is equivalent
to factoring for GRAs. Their result puts into question the soundness of the
generic ring model (GRM), as it shows that there are problems which are hard
in the GRM, but easy in the plain model. On the other hand, this result has no
immediate implication for other computational problems like the RSA problems,
which may still be meaningful to consider in the GRM. A recent work by Rotem
and Segev also showed how the GRM can been used to analyze the security of
verifiable delay functions [29].

The Generic Group Model (with Preprocessing). Starting with Nechaev [25],
a long line of work has studied the complexity of group algorithm in the generic
group model (GGM) [30, 23]. Algorithms in this model are restricted to accessing
the group using handles and cannot compute on group elements directly. This
makes it possible to prove information theoretic lower bounds on the running
times and success probabilities of generic group algorithms for classic problems
in cyclic groups (e.g., DLP, CDH, DDH). To the best of our knowledge, only two
works have considered the RSA problem in idealized group models. The first of
these work is due to Damgard and Koprowski [11] who ported Shoup’s generic
group model [30] to the setting of groups with unknown order and showed the
generic hardness of computing eth roots in this model. The second work is that
of Dodis et al. [14] who considered the instantiability of the hash function in
FDH-RSA. On the one hand, unlike the GRA model that we use for online ad-
versary, they only model the multiplicative group Z∗N as generic. In other words,
they do not allow the adversary to take advantage of the full ring structure
of ZN . On the other, their model allows the online adversary to perform arbi-
trary side computations. Recall that we do not allow such computations in our

7

model, as the online adversary is a GRA. We face many additional technical
issues due to this point as well as preprocessing. Even more recently, the work of
Corrigan-Gibbs and Kogan [10] initiated the study of preprocessing algorithms
in the GGM. They considered generic upper and lower bounds for the discrete
logarithm problem and associated problems. Their modelling approach is very
similar to our own, in that the algorithm in the offline phase has access to the
labelling oracle π and can pass an advice string of bounded size to the online
phase of the algorithm. A key difference is that in their setting, the group is
fixed throughout the offline and online phase, whereas in our setting, the group
is fixed together with the RSA instance only in the online phase. Moreover, they
can also consider adversaries who, in the online phase, may perform arbitrary
side computations.

The Algebraic Group Model. More recently, a series of works has explored
the algebraic group model [17] as a means to abstract the properties of the
groups QRN and Z∗N more faithfully. The work of Katz et al. [20] introduced
a quantitative version of the algebraic group model called the strong algebraic
group model to relate the RSW assumption [28] over QRN to the hardness
of factoring (given that N is a product of safe primes p, q). Their model and
ideas were extended to Z∗N by Stevens and van Baarsen [31] who gave a general
framework for computational reductions in the (strong) algebraic group model
over Z∗N .

2 Technical Overview

Our main result shows that any generic attack on RSA with preprocessing gives
rise to a factoring algorithms with preprocessing in the random oracle model
and plain models with polynomially related parameters. We begin by recapping
the subclass of RSA algorithms we consider, and then discuss the high level
approach of our proof of equivalence.

The RSA algorithm. Recall that we consider RSA adversaries that are split
into two ‘fixed’ parts (Aπ0 , A1) and a third part Gπ that is adaptively chosen
by A1 upon seeing the RSA instance. In more detail, Aπ0 gets oracle access to
π : {0, 1}κ → {0, 1}m and is completely unbounded both in terms of computa-
tion and number of queries to π. Aπ0 finally outputs a state st of size Sr (called
A’s space). A1 takes as input st and the RSA instance (N, e, π(y) = π(xe)),
runs in time T1,r, and outputs a GRA Gπ of size (and hence running-time) T2,r.
The GRA Gπ is an oracle-aided program that computes relative to π. In other
words, each multiplication (resp. division, addition) step of Gπ with inputs y1, y2
outputs π(π−1(y1)·π−1(y2) (mod N)) (resp. π(π−1(y1)·(π−1(y2))−1 (mod N)),
π(π−1(y1)+π

−1(y2) (mod N))). A1 is computationally bounded but may run for
superpolynomial time. However, it may not make any queries to the oracle π. Fi-
nally, Gπ takes as input π(y) and evaluates Gπ(π(y)). In the following, we fix π, a
state st of some bounded size Sr output by A

π
0 , as well as a modulus N and value

e with gcd(e, ϕ(N)) = 1. We consider the success probability ϵr on input π(y)

8

of A1 relative to these fixed values in outputting Gπ such that Gπ(π(y)) = π(x)
and xe = y (mod N). Here, the success probability is taken over random choice
of y ← ZN and coins of A1. Fixing π, st, N, e simplifies our discussion and can
easily be justified by an averaging argument. Our final analysis, however, consid-
ers these values drawn from an appropriate distribution. Our goal is to construct
a factoring algorithm with preprocessing and with parameters Sf , Tf , ϵf (space,
time, and success probability) that are polynomially related to Sr, T1,r, T2,r, ϵr.
Specifically, we require that Sf = Sr + O(1), Tf = poly(κ, T1,r, T2,r, 1/ϵr) and
ϵf = poly(ϵr), where κ = log(N) is security parameter. We consider algorithms
with unbounded preprocessing. Moreover, the algorithm A1 does not have access
to π, but can perform arbitrary (and superpolynomially many) operations after
learning the modulus N and the RSA instance π(xe). Only then does it hand
over the remaining computation to the fully generic program Gπ. In order for
this to be possible, we must do several case analyses. To simplify this technical
overview, we will henceforth conflate the online portion of algorithm’s running
times by setting Tr = Tr,1 + Tr,2.
In the following, we first restrict our attention to the special case where A1

outputs a straight-line program (SLP) with addition/multiplication only (i.e.,
without equality checks). This special case already requires most of the key ideas
of our proof. We then briefly explain how to extend our result to the case where
A1 may output a generic ring algorithm (GRA).

First case analysis: Fiat-Naor argument. In the case that Tr ·Sr ≥ ϵr ·2κ/4,
we will completely ignore the RSA algorithm, and construct a different Factoring
algorithm in the RO model “from scratch.” The idea is to use a theorem of Fiat
and Naor [16], which extends Hellman’s seminal result on space/time tradeoffs for
inversion of a random function [18], to obtain space/time tradeoffs for inversion
of any function f . Specifically, Fiat and Naor consider an arbitrary function
f : D → D and show that f can be inverted with probability 1 − 1/|D| in the
random oracle (RO) model with space S and time T , as long as S2·T ≥ |D|3·q(f),
where q(f) is the probability that two random elements in D collide under f .4

We apply Fiat-Naor to the factoring problem by viewing f as the function that
takes two κ/2 bit strings and multiplies them to obtain a κ-bit string, where
κ = log(N). By carefully setting parameters and using properties of the second

moment of the divisor function, to bound q(f) as q(f) ∈ O(κ
3

2κ), we obtain a
factoring algorithm Sf = Sr, Tf = poly(κ) ·T 2

2,r and inversion probability O(ϵr).
Note that all parameters are polynomial in the parameters of the RSA algorithm.
See Section 8 for more details.

Factoring from RSA. We now consider the main parameter regime of interest,
where Tr · Sr < ϵr · 2κ/4. In this parameter regime, we will show how to use the
RSA algorithm to construct a factoring algorithm. However, before we can do
that, we need to eliminate a crucial case in which the RSA algorithm is unhelpful
for constructing a factoring algorithm. Let us first consider when and why the

4 Their final algorithm actually requires only k-wise independent hash functions in-
stead of a RO. For this overview, we assume a RO with O(1) evaluation time.

9

RSA algorithm is useful for factoring. Then we will show how to eliminate the
remaining case.

Note that if A is successful with probability ϵr, then with probability ϵr the
SLP S output by A1 is such that on a randomly chosen y = xe, Sπ(π(y)) = π(x).
We begin by defining an “inversion procedure” on SLP’s that, given Sπ with
oracle access to π and such that Sπ(π(y)) = π(x), outputs an SLP S̃ with
no oracle access such that S̃(y) = x. (Crucially, the inversion procedure itself
requires oracle access to π.) This, in turn, means that y is a root of the SLP
S̃(Y)e − Y , with respect to formal variable Y . In AM’s analysis, they were able
to conclude that if A is successful, then S̃(Y)e − Y must have many roots.
Then, they showed an algorithm that successfully factors, given as input a non-
zero SLP S̃(Y)e − Y with a sufficiently large fraction of roots. In our setting,
however, we cannot necessarily conclude this. This is because we allow A1 to
output a different SLP Sππ(y) after seeing input π(y) (we use the notation Sππ(y)
to emphasize that the chosen SLP may depend on π(y)). This means that the
SLP Sππ(y) output by A1 can be tailored to succeed on π(y) and on only few
other inputs. Note that it is possible for A1 to maintain an overall high success
probability with this strategy. So while w.h.p. y itself must still be a root of the
“inverted SLP” S̃π(y)(Y)e − Y , we are not guaranteed that S̃π(y)(Y)e − Y has
many roots overall. In this case, factoring fails.

The above reasoning leads to the second and third cases considered in our
proof: The second case is that w.h.p. y is a root of S̃π(y)(Y)e−Y , and S̃π(y)(Y)e−
Y has at most J roots. The third case is that w.h.p. the SLP S̃π(y)(Y)e−Y , has
at least J roots. The second case will lead to contradiction due to a compression
argument. We will therefore be left with a (comparatively simple) third case
which will imply existence of a factoring algorithm using the arguments of AM.

Second case analysis: Compression. For this case, we show how to construct
an encoding routine that compresses the function table of a random injection
π. Our main leverage to achieve this is the following idea. Suppose that y is a
root of S̃π(y)(Y)e − Y , and S̃π(y)(Y)e − Y has at most J roots. Then there is
a space-efficient way for an encoding routine Eπ (with oracle access to π) to
transmit y to a decoder D (without oracle access to π) who knows only S̃π(y):

Simply output the index of y among the J roots of S̃π(y)(Y)e − Y . (This takes
log(J) bits.) Intuitively, we save space when log(J) is small compared to the
trivial encoding of y, which specifies the index of y among all pre-images that
are not yet mapped to an image in the encoding which is being constructed by
Eπ. Making this intuition rigorous, however, is quite challenging.

First, we must show how the encoder can efficiently transmit the description
of S̃π(y) to the decoder. We may assume that A1 and st will be known to the
decoder (we can include st in the encoding). However, to obtain the correct SLP
S̃π(y), the decoder must run A1 on the correct random coins ρ and on the correct
input π(y). Furthermore, A1 is only guaranteed to output an SLP Sππ(y) that is

successful on π(y) w.h.p., when π(y) = π(xe) and ρ are chosen uniformly at
random. But we cannot afford to transmit the value of a random π(y), nor the
value of random coins ρ of A1, while still achieving compression. To solve both of

10

these problems, we rely, as prior work of Corrigan-Gibbs and Kogan [10] did, on
a lemma of De, Trevisan, and Tulsiani [12]. This lemma proves incompressibility
of an element x from a sufficiently large set X in a setting that allows the encoder
and decoder to pre-share a random string of arbitrary length. For our purposes,
this random string will allow us to both (1) select a random π(y) from the set of
images whose preimages are not yet known and (2) select the random tape ρ for
A1 to use together with input π(y). Thus, the successful randomness can simply
be encoded by its index within the shared random string, thus saving space.
We mention that Corrigan-Gibbs and Kogan avoided encoding successful π(y)
values by using the random self-reducibility property of the discrete log problem
to obtain an adversary that succeeds w.h.p. on every input. Unlike Corrigan-
Gibbs and Kogan, our argument does not require random self-reducibility, and
rather uses the random tape to select a random image π(y) instead. Thus, while
RSA also enjoys random self-reducibility, our proof does not make use of it,
potentially making our techniques applicable to broader settings.

The third challenge is that in order to obtain S̃π(y) from Sπ(y), the decoder
must run the SLP inversion procedure, which requires access to π. Therefore,
our encoder Eπ includes all the responses of queries to π during evaluation of
the SLP inversion procedure in the encoding, replacing any query to π−1(π(y))
itself with the formal variable Y . The final challenge is the delicate setting of
parameters needed for the result to go through. We must set the value J (the
number of roots in the SLP S̃π(y)(Y)e − Y) such that compression is achieved
when the number of roots is at most J and, looking ahead, such that efficient
factoring (with parameters Sf , Tf , ϵf that are polynomially related to Sr, Tr, ϵr)
is possible when the number of roots is at least J . We note that our techniques
for analyzing the encoding length are significantly different from those used by
Corrigan-Gibbs and Kogan and may be of independent interest. (See Section 6.2
for more details.)

Factoring and Extending to the GRA case. Once we have ensured that
the the SLP Sπ(y)(Y)e − Y has at least J roots w.h.p., we can directly apply a
theorem of AM to obtain a factoring algorithm. Our final step will then be to
extend the above discussion to a slightly broader setting in which A1 outputs
a GRA Gπ rather than an SLP Sπ. Here, we once again build on arguments of
AM, although we need to put in some additional effort to make them work in
our setting with preprocessing. In particular, the final factoring algorithm (with
preprocessing) that we obtain is in the random injection (RI) model, where
the algorithm requires access to both π and π−1. This is because our factoring
algorithm requires access to such a random injection in order to consistently
simulate the oracle π to the RSA adversary over the preprocessing phase and
the online phase in a space efficient manner. Thus, it remains to show how this
oracle can be simulated in order to obtain a factoring algorithm in the plain
model. For simplicity, we omit our intermediate result in the Random Oracle
Model from this technical overview.

Obtaining our plain model result. In the following, we denote the random
injective function by H and we denote by π the GRM oracle interface expected by

11

the RSA adversary. We note that using backwards and forwards access to H, one
can easily simulate queries made to π. We show that with some additional work
one can dispense with the RI in our result and obtain a result in the plain model.
To do so, we first observe that the online portion of our factoring algorithm in
the RI model makes only a single query to H in the forward direction (on a
uniformly random input modulo N), and makes a series of non-adaptive queries
to H−1. We will first show that we can simulate all the responses to the queries
to H−1 while adding only a small overhead to the non-uniform advice. We will
then show that the single query to the forward direction of H can be simulated
as well.

Simulating queries to H−1. Recall that A1 receives the non-uniform advice st and
the input (N, e, π(xe mod N)) and outputs a GRA. The factoring algorithm will
run the GRA inversion algorithm by evaluating π−1 on hardcoded labels in the
GRA that are not equal to the input label π(xe mod N). Intuitively, since π is
expanding, and since A1 may not query the oracle, the only way A1 can hardcode
a valid label into the GRA is if this label is somehow stored in st. To formalize
this intuition, for a fixed π, we consider the set Sπ of valid images of π that are
hardcoded into a GRA outputted by A1 with sufficiently high probability over
choice of input (N, e, π(xe mod N)) and the random coins of A1.
We use a compression argument to show that for most choices of π, the set Sπ is
sufficiently small such that it can be added to A1’s advice st. By definition, for a
fixed π, it is unlikely for A1 to hardcode images of π into its outputted GRA if
these images are not part of Sπ. Thus, queries to π

−1 can be simulated without
making a corresponding query to H by using st as a lookup table.

Simulating the query to H. There is still a single query to the forward direction of
H that must be taken care of. This is the query made by the factoring algorithm
when generating the input to A1. Specifically, it is a query with input y =
xe mod N and output π(y) = ỹ. To simulate this query without accessing H,
we construct a simulated plain model factoring algorithm as follows: In the
preprocessing phase, the plain model algorithm internally samples a random
injective function H, and the output of A0 in the preprocessing stage is computed
relative to this chosen H. Note that we can view A0’s input in the preprocessing
stage as the entire oracle, and in particular, this will include the input/output
pair (y, ỹ′), where y = xe mod N corresponds to the input value that will be
given to A1 in the online phase. In the online phase, our plain model factoring
algorithm will actually resample the output value of H on input y and replace it
with a uniform random string ỹ. This resampled value ỹ will then be given to A1

in the online phase as the supposed value of π(y). A lemma of Drucker [15] implies
that (on average) the output distribution of a compressing algorithm A0, which
outputs st, does not change much when a single input in a randomly chosen
location (location y) is switched from a fixed value to a randomly resampled
value. This implies that the RI factoring algorithm will behave roughly the same
when π is simulated in this manner. See Section 7 for further details.

12

3 Preliminaries

3.1 Notation and Conventions

We denote the sampling of a uniformly random element x from a set S as x← S.
Similarly, we denote the output y of a randomized algorithm A on input x as y ←
A(x). We sometimes also write y := A(x;ω) to denote that A deterministically
computes y on input x and random coins ω. To denote that an algorithm A has
access to an oracle O during runtime, we write AO. We denote as ZN the ring of
integers modulo N , and as [N] the set {1, ..., N}. We write νN (f) to denote the
fraction of roots of a polynomial f over ZN , i.e.,

νN (f) :=
|{a ∈ ZN | f(a) = 0}|

N
.

Throughout, we denote the security parameter as κ. For k,m ∈ N we denote
by Func[k,m] the set of functions F : {0, 1}k → {0, 1}m. Denote by Perm[m] the
set of permutations on {0, 1}m. We denote by FuncInj[k,m] the set of injective
functions I : {0, 1}k → {0, 1}m.

3.2 Incompressibility Lemmas

We use the following lemma by De et al. [12].

Lemma 1. (De, Trevisan, Tulsiani [12].) Let E : X ×{0, 1}ρ → {0, 1}m and D :
{0, 1}m → X×{0, 1}ρ be randomized encoding and decoding procedures such that,
for every x ∈ X ,Prr←{0,1}ρ [D(E(x, r), r) = x] ≥ γ. Then, m ≥ log |X | − log 1/γ.

Remark 1. As noted by [10], this lemma also holds when the encoding and de-
coding algorithms have access to a common random oracle.

The following lemma is from Drucker [15].

Lemma 2. (Drucker [15].) Let N,S,m ≥ 1 be integers. Given a possibly-randomized
mapping A0(ỹ0, . . . , ỹN−1) : {0, 1}N×m → {0, 1}S, and a collection D0, . . . ,DN−1
of mutually independent distributions over {0, 1}m, for y ∈ ZN , let

γy := Eỹ∼Dy [||A0(D0, . . . ,Dy−1, ỹ,Dy+1, . . . ,DN−1)−A0(D0, . . . ,DN−1)||stat],

where the notation || · − · ||stat denotes the statistical distance between two distri-
butions.

We have that

1

N

∑
y∈ZN

γy ≤
√

ln 2

2
· S + 1

N
.

13

3.3 Relevant Problems

In this subsection, we introduce the main relevant problems: the RSA Problem,
the Factoring Problem, and the general Function Inversion Problem (all with
preprocessing). Algorithm RSAGen on input 1κ generates (N, e, d, p, q) where
N = pq and p, q are primes of bit-length κ/2 with leading bit 1. Finally, ed =
1 mod ϕ(N).

Definition 1 (Factoring with Preprocessing). Let F = (F0,F1) be an algo-
rithm and RSAGen be an RSA generator. Consider the factoring-with-preprocessing
game facFRSAGen:

– Offline Phase. Run F0 on input 1κ to obtain an advice string st.
– Online Phase. Run RSAGen on input 1κ to obtain(N, e, d, p, q). Then run

F1 on input (N, st).
– Output Determination. When F1 returns p′, the experiment returns 1 if
p = p′ or q = p′. It returns 0 otherwise.

Define F’s advantage in the above experiment as

AdvfacRSAGen(F) = Pr[facFRSAGen = 1] .

We call F an (S, T)-factoring algorithm relative to RSAGen if F0 outputs advice
strings of size at most S and F1 runs in time at most T .

Definition 2 (RSA with Preprocessing). Let A = (A0,A1) be an adversary.
Consider the RSA-with-preprocessing game rsaARSAGen:

– Offline Phase. Run A0 on input 1κ to obtain an advice string st.
– Online Phase. Run RSAGen on input 1κ to obtain(N, e, d, p, q). Sample
x← ZN and run A1 on input (N, e, st, xe mod N).

– Output Determination. When A1 returns x′, the experiment returns 1 if
x = x′ (mod N). It returns 0 otherwise.

Define A’s advantage in the above experiment as

AdvrsaRSAGen(A) = Pr[rsaARSAGen = 1] .

We call A an (S, T)-RSA algorithm relative to RSAGen if A0 outputs advice
strings of size at most S and A1 runs in time at most T .

In the following, we consider a domain D of finite size along with a random-
ized point generator G that outputs points in D.

Definition 3 (Function Inversion with Preprocessing). Let D be a fi-
nite set and let f : D → D be a function. Let I = (I0, I1) be an adversary and
Gen a point generator. Consider the function-inversion-with-preprocessing game
funcIf,Gen:

– Offline Phase. Run I0 on input 1κ to obtain an advice string st.

14

– Online Phase. Run Gen on input 1κ to obtain a point y ∈ D. Run I1 on
input (y, st)

– Output Determination. When I1 returns x′, the experiment returns 1 if
f(x′) = y. It returns 0 otherwise.

Define I’s advantage in the above experiment as

Advfuncf,Gen(I) = Pr[funcIf,Gen = 1] .

We call I an (S, T)-function-inversion algorithm relative to Gen if I0 outputs
advice strings of size at most S and I1 runs in time at most T .

Definition 4 (Collision Probability). Let D be a finite set and let f : D → D
be a function. For z ∈ D, If (z) denotes the number of preimages for z under f ,
i.e.

If (z) := |{u ∈ D : f(u) = z}| .

The collision probability of f : D → D, denoted by q(f) is defined as follows:

q(f) :=

∑
z∈D I

2
f (z)

|D|2
.

Theorem 4 (Fiat-Naor [16]). For any D, f,Gen as in Definition 3 and any
S, T such that T ·S2 = |D|3 ·q(f), there is an (S, T)-function-inversion algorithm
I such that Advfuncf,Gen(I) ≥ 1− 1/|D|.5

4 Computational Models

In this section, we review some idealized models that will be relevant in our
analyses and discuss their relationships to each other.

Random Oracle Model (ROM). In the random oracle model [2] all algo-
rithms have oracle access to a uniformly random function from Func[m1,m2] for
some m1,m2 ∈ N specified by the model.

Random Injection Model (RIM). In the random injection model all algo-
rithms have forwards and backwards oracle access to a uniformly random func-
tion from FuncInj[n,m] for some n ≤ m specified by the model.

Random Permutation Model (RPM). In the random permutation model
all algorithms have forwards and backwards oracle access to a uniformly random
function from Perm[m] for some m ∈ N specified by the model.

5 This statement is weaker than the one proven in [16] but is sufficient for our purpose.

15

4.1 Switching from RIM to ROM

To switch from the RIM to the ROM, we need to show how to simulate oracle
access to a random injection (forward and backward), given oracle access to a
random function. We implement the random injection by padding the input and
using Luby-Rackoff’s strong pseudorandom permutation construction [22].

Luby-Rackoff. We first recall the Luby-Rackoff construction [22], which we
view as a construction of a random permutation oracle from a random oracle.
Formally, suppose ρ is a RO from {0, 1}m/2 to {0, 1}m/2 for m ∈ N. Define oracle
LubRac[ρ] on {0, 1}m as follows:

– Parse x as x1∥x2 with |x1| = |x2| = m/2 and apply a 4-round balanced
Feistel network with h as the round function to obtain y. Output y.

Oracle LubRack−1[ρ] is defined accordingly.

Theorem 5 (Luby-Rackoff [22]). For any (even unbounded) adversary A
making at most q queries it holds that

| Pr
ρ←Func[m/2,m/2]

[ALubRack[ρ](·),LubRack−1[ρ](·) outputs 1]−

Pr
π←Perm[m]

[Aπ(·),π
−1(·) outputs 1]| ∈ O(q2/2m/2).

Random Injection from Random Permutation. We next show a construc-
tion of a random injection oracle π from a random permutation oracle ψ. Suppose
ψ is a random permutation oracle on m bits and ψ−1 is its inverse. For n ≤ m,
define π[ψ] : {0, 1}n → {0, 1}m as π[ψ](x) := ψ(pad(x)) where pad(x) is the func-
tion that pads the LSBs of x with m − n zeros. Define π[ψ]−1 accordingly. It
should be clear that π[ψ] is a random injection oracle.

Now, composing the above constructions gives a construction of a random
injection oracle from a random oracle. Namely, suppose ρ : {0, 1}m/2 → {0, 1}m/2
is a RO. Define the random injection oracle π[ρ] : {0, 1}n → {0, 1}m as π[ρ](x) =
LubRac[ρ](pad(x)) and π[ρ]−1 accordingly. By a simple hybrid argument we have:

Proposition 1. (RIM-to-ROM.) For any (even unbounded) adversary A mak-
ing at most q queries it holds that

| Pr
ρ←Func[m/2,m/2]

[Aπ[ρ](·),π[ρ]
−1(·) outputs 1]−

Pr
π←FuncInj[n,m]

[Aπ(·),π
−1(·) outputs 1]| ∈ O(q2/2m/2).

4.2 Straight-Line Programs and Generic Ring Algorithms

Let N ∈ N and assume that m ≥ κ, where κ is the bit length of N . Below, we
define two types of programs (aka. algorithms) that use oracles, namely generic-
ring algorithms (GRAs) and straight-line programs (SLPs).

16

Program Graphs and Their Execution. The below is based on [1]. We
consider deterministic programs that perform arithmetic operations (mod N)
on indeterminate Y .

We associate a program on a single input with its program graph over ZN , a
labelled graph where a label of a node represents a (binary) operation and the
program implicitly stores all intermediate results. We only consider programs
whose graphs are binary trees. Vertices can be either branching or non-branching.

Execution of a program corresponds to traversing a labelled path in its pro-
gram graph over ZN . Non-branching vertices are used to execute arithmetic
operations (mod N) or to load inputs and constants into the program. They are
accordingly labelled with elements a ∈ ZN corresponding to constants in the
program, with a (unique) indeterminate Y corresponding the programs input,
or with an arithmetic operation label (i, j, ◦, b) which applies the arithmetic ring
operation ◦ (mod N) to operands at indices i and j that the program previ-
ously stored. (The flag b ∈ {−1, 1} indicates inversion of the second operand.)
Branching vertices are used to test two values i, j previously computed by the
program for equality (mod N). A branching vertex has two outgoing edges that
are labelled 0 (for left) and 1 (for right).

The program applies the operations indicated by the labels of the vertices
and edges it encounters in the order of traversal as follows:

– The first three vertices are a path and are always labelled 0, 1, and Y . That
is, they are used to load the constants 0 and 1, and the single input y of the
program. The program stores the intermediate results y0 = 0, y1 = 1, y2 = y
for these vertices, respectively, and continues execution along this path.

– For k ≥ 4:

• If the kth vertex vk is labelled with a ∈ ZN , the program stores yk ← a
as the intermediate result for this vertex. It continues execution along
this path.

• If the kth vertex vk is labelled with (i, j, ◦, b) then the program does
as follows. Here ◦ ∈ {·,+}, b ∈ {−1, 1}, and i, j < k correspond to
the ith and jth vertices on the path of traversal, which must be non-
branching. The program computes yk := yi ◦ ybj (mod N) and stores
the intermediate result yk for vertex v. In case ◦ = + and b = −1,
then ybj = −yj (mod N). In case ◦ = ·, b = −1, and yj = 0 (mod N),
yk := ⊥. In case yi = ⊥ or yj = ⊥, yk := ⊥. It continues execution along
this path.

• If the kth vertex vk is labelled (i, j) where i, j < k correspond to the ith
and jth vertices on the path of traversal, which must be non-branching,
the program makes an equality test whether yi = yj (mod N). If the
result is 1, the program continues its execution along the right edge;
otherwise, along the left.

– Whenever vk is the last vertex on the path, the program computes yk and
outputs it, terminating execution.

17

Oracle-Aided Programs. Apart from the types of programs we have discussed
above, we are also interested in programs that can perform arithmetic operations
via oracle access (as opposed to directly).

Hence, we define oracles π, eq, and opπ as follows. Oracle π initially samples
a random function π ∈ FuncInj[κ,m] and on query x ∈ ZN returns y = π(x) ∈
{0, 1}m. Here we refer to y ∈ {0, 1}m as a label. We slightly abuse notation by
referring to the oracle π and the internally sampled function indiscriminately.
We also make the convention of parsing x ∈ ZN as a κ-bit binary string. Given
π ∈ FuncInj[κ,m], we first consider an oracle eq for testing equality. On input
y1, y2 ∈ {0, 1}m, eq returns 1 iff π−1(y1) = π−1(y2) (mod N), and 0 otherwise.
Now, we define the behavior of the ring oracle opπ on input as y1, y2 ∈ {0, 1}m
as

opπ(y1, y2, ◦, b) := π
(
π−1(y1) ◦

(
π−1(y2)

)b
mod N

)
for all y1, y2 ∈ {0, 1}m, ◦ ∈ {+, ·}, b ∈ {1,−1}, where the inverse is additive
in case ◦ = +, b = −1. We implicitly assume that in case ◦ = ·, b = −1, opπ
internally queries eq(y2, 0). opπ returns ⊥ in case either of the operands is ⊥ or
the call to eq returns 1, i.e., if π−1(y2) = 0 (mod N).

Remark 2. Throughout the paper, when there is no possibility of confusion we
abbreviate oracles opπ and eqπ by π. That is, for an oracle-aided program P we
abbreviate P opπ,eqπ by Pπ.

Oracle-aided program graphs over ZN are labelled very similarly to plain
program graphs over ZN . Roughly speaking, all values in ZN are now replaced
with their labels, according to π. Thus, a non-branching vertex is now labelled in
one of two ways. Either it is labelled with (i, j, ◦, b) where i and j correspond to
the ith and jth non-branching vertex among the vertices previously encountered
on the path and ◦ ∈ {+, ·}, b ∈ {1,−1}. Otherwise, it is labelled with some m-bit
label σ in the image of π.

As before, a branching vertex is labeled with (i, j), where i and j correspond
to the ith and jth non-branching vertex among the vertices previously encoun-
tered on the path. It has two outgoing edges labelled 0 (for left edge) and 1 (for
right edge). The only difference is that the program now has to invoke eq on the
intermediate values yi and yj so as to test their equality (rather simply testing
whether they are equal).

Execution of an oracle-aided program corresponds to its program graph by
adapting the above correspondence in the straight forward manner:

– The first two nodes on a path are always labelled as π(0), π(1), respectively;
that is, they are used to load the constants 0 and 1. The third node on a
path is used to load the (single) input π(y) to the program. It is labelled
with a special label ϕ. The program stores the intermediate results y0 =
0, y1 = 1, y3 = π(y) for these vertices, respectively, and continues execution
along this path.

– When the program encounters a non-branching vertex v:

18

• If v is labelled with (i, j, ◦, b), where i, j are indices and b ∈ {0, 1}, and
this is the kth non-branching vertex on the path of traversal for some
k ≥ 4, and, then the program invokes the oracle opπ on input (yi, yj , ◦, b).
It stores the output of opπ as yk.

• If v is labelled with σ and this is the kth non-branching index on the path
of traversal for some k ≥ 4, store yk ← σ and continue the execution of
the program along this path.

– If the program encounters a branching vertex v: if v is labelled (i, j), the
program invokes the oracle eq on input (yi, yj). If the result is 1, the program
continues its execution along the right edge; otherwise, along the left.

– If k is the last vertex on the path, the program outputs yk and terminates.

Types of Programs. We define two types of programs:

Definition 5. A T -step (possibly oracle-aided) straight line program (SLP) S
over ZN is a program whose program graph over ZN is a labelled path v0, . . . , vT+3.

A deterministic generic ring algorithm (GRA) is a generalization of SLPs
that allows equality tests. As explained above, such queries are represented as
branching vertices in our graph representation of a GRA. Thus, an SLP can be
seen as special case GRA, where an SLP is a GRA that contains no branching
vertices.

Definition 6. A T -depth deterministic (possibly oracle-aided) generic ring al-
gorithm (GRA) G over ZN is a program whose program graph over ZN is a
depth-(T + 3) vertex-labelled and partially edge-labelled binary tree.

To keep the distinction between oracle aided vs. regular programs clear, we
will always make the dependency on π explicit by superscripting oracle-aided
programs with π, i.e., Gπ.

The following definition applies only to non-oracle aided programs. It induc-
tively defines the polynomial corresponding to an execution of a program on
input x ∈ ZN . Essentially, if the program encounters a non-branching vertex v
and v corresponds to an arithmetic operation, then we associate the resulting
tuple (PGv (x), QGv (x)) with vertex v. Here, PGv (x) and QGv (x) are interpreted as
the numerator and denominator of a rational function PGv (x)/QGv (x) that is the
result of applying the arithmetic operation to the rational functions associated
with prior vertices w, u.

Definition 7. For a GRA G (or SLP S) over ZN of size T and non-branching
vertex v in its execution graph, the pair (PGv (x), QGv (x)) of polynomials in ZN [x]
associated with v is defined inductively, as follows:

1. The root has associated the pair (0, 1), the child of the root the pair (1, 1),
and the child of that child has the pair (x, 1).

2. A vertex v labelled with a ∈ ZN is associated with (a, 1).

19

3. For each non-branching vertex v, labelled with operation (u,w,+, b), we have:

(PGv (x), QGv (x)) :={
(PGu (x) ·QGw(x) + PGw (x) ·QGu (x), QGu (x) ·QGw(x)) b = 1

(PGu (x) ·QGw(x)− PGw (x) ·QGu (x), QGu (x) ·QGw(x)) b = −1

4. For each non-branching vertex v, labelled with operation (u,w, ·, b), we have:

(PGv (x), QGv (x)) :=
(PGu (x) · PGw (x), QGu (x) ·QGw(x)) b = 1

(PGu (x) ·QGw(x), QGu (x) · PGw (x)) b = −1, QGu (x) ̸= 0 (mod N)

⊥ b = −1, QGu (x) = 0 (mod N)

Note that PGv (x) and QGv (x)) can each be represented as an SLP of size at most
T .

Definition 8. For an SLP S over ZN of size T , we denote by (PS(x), QS(x))
the pair of polynomials in ZN [x] associated with the final vertex on the evaluation
path. If QS(x) ≡ 1, we denote by fS the polynomial PS(x). Note that PS(x)
and QS(x)) can each be represented as an SLP of size at most T .

Definition 9. For each non-branching vertex v in the program graph over ZN
of an ℓ-step GRA G with corresponding pair of polynomials (PGv (a), QGv (a)), we
associate the function

fGv : ZN → ZN ∪ {⊥} : a 7→
PGv (a)

QGv (a)

where the function is undefined if QGv (a) = 0, which is denoted as fGv (a) =⊥,
and where PGv (a) and QGv (a) are evaluated over ZN . Moreover, for an argument
a ∈ ZN , the computation path from the root v0 to a leaf vℓ+3(a) is defined by tak-
ing, for each equality test of the form (u,w), the edge labeled 0 if fGv (a) = fGw (a),
and the edge labeled 1 if fGu (a) ̸= fGw (a). The partial function fG computed by
G is defined as

fG : ZN → ZN ∪ {⊥} : a 7→ fGvℓ+3(a)
.

We define the output of G on input x ∈ ZN as G(x) := fG(x).

4.3 Model Specific Versions of the RSA Assumption

We introduce a new variant of the RSA game with preprocessing model specif-
ically tailored to the oracle-aided computational models from the previous sec-
tion. In the following, we fix the security parameter κ and an integerm ∈ Z,m ≥
κ.

Definition 10 (Generic RSA Problem with Preprocessing). For a tuple
of algorithms A = (Aπ0 ,A1) and an RSA instance generator RSAGen, define
experiment crsaARSAGen as follows:

20

– Offline Phase. Sample π ← FuncInj[κ,m]. Run Aπ0 on input 1κ. Let st
denote the return value of Aπ0 .

– Online Phase. Compute (N, e, d)← RSAGen(1κ) and sample x← ZN . Run
A1 on input (N, e, π(xe), st) and let Gπ denote the output. If Gπ does not
correspond to the description of a GRA, abort. Note that A1 does not get
access to oracle π.

– Output Determination. Run Gπ on input (N, e, π(xe)). When Gπ outputs
z ∈ {0, 1}m, the experiment evaluates to 1 iff z = π(x).

Define A’s advantage relative to RSAGen as

AdvcrsaRSAGen(A) = Pr[crsaARSAGen = 1] .

We call A = (Aπ0 ,A1) an (S, T1, T2)-generic-RSA-with-preprocessing algorithm
(GP-RSA) relative to RSAGen if Aπ0 outputs advice strings st of size at most S,
A1 runs in time at most T1, and and any program Gπ in the output of A1 runs
in time at most T2. Note that we require that T1 ≥ T2.

We also give an alternative version of this game in which π ∈ FuncInj[κ,m]
and (N, e, d) ∈ RSAGen(1κ) are a fixed.

Definition 11 (Fixed Generic RSA Problem with Preprocessing). Fix
integers (N, e, d) ∈ RSAGen(1κ), let π ∈ FuncInj[κ,m], and let st be of size at
most S. Define experiment fcrsaA(N,e,d,st,π) as follows:

– Online Phase. Sample x← ZN . Run A on input (N, e, π(xe), st) and let Gπ

denote the output. If Gπ does not correspond to the description of a GRA,
abort. Note that A does not have oracle access to π.

– Output Determination. Run Gπ on input (N, e, π(xe)). When Gπ outputs
z ∈ {0, 1}m, the experiment evaluates to 1 iff z = π(x).

Define A’s advantage relative to (N, e, d, st, π) as

Advfcrsa(N,e,d,st,π)(A) = Pr[fcrsaA(N,e,d,st,π)(1
κ) = 1],

We call A an (S, T1, T2)-fixed-generic-RSA-with-preprocessing (FGP-RSA) al-
gorithm relative to (N, e, d, st, π) if A runs in time at most T1, and and any
program Gπ in the output of A runs in time at most T2.

Note that in the above definition we do not require the advice string st to be
output by a preprocessor Aπ0 . However, by a standard averaging argument, we
obtain the following lemma:

Lemma 3. Let A = (Aπ0 ,A1) be an (S, T1, T2)-GP-RSA algorithm and sup-
pose that AdvcrsaRSAGen(A) ≥ ϵ. Then with probability at least ϵ/2 over the coins
of RSAGen, the choice of π, and coins of Aπ0 , A

π
0 outputs st and RSAGen outputs

(N, e, d) s.t. Advfcrsa(N,e,d,st,π)(A1) ≥ ϵ/2.

21

5 Main Results

We begin by stating two theorems that will be used to obtain both our plain
model and RO model results.

Theorem 6. Let Sr := Sr(κ), T1,r := T1,r(κ), T2,r := T2,r(κ), ϵ = ϵ(κ) such that
for sufficiently large κ, Sr ·T2,r ≤ ϵ/162κ. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-
GP-RSA algorithm relative to RSAGen, and let AdvcrsaRSAGen(A) = ϵ.

Then there exists a (Sf , Tf)-factoring algorithm B in the random injective
function model relative to RSAGen such that

AdvfacRSAGen(B) ∈ Ω(ϵ3),

such that Tf := poly(κ) · (T1,r + T 5
2,r +

T
7/2
2,r

ϵ3/2
), and such that Sf := Sr.

This theorem is proved in Section 6.

Remark 3. We give a comparison here of the bounds we achieve in Theorem 6
versus those achieved by AM’s factoring algorithm. First, we consider our run-

time of Tf := poly(κ) · (T1,r + T 5
2,r +

T
7/2
2,r

ϵ3/2
), and focus on the (T1,r + T 5

2,r +
T

7/2
2,r

ϵ3/2
)

part. The first term’s dependence on T1,r is unavoidable, since the factoring al-
gorithm must run the RSA algorithm at least once. The second term of T 5

2,r

comes from running the SLPFACπ algorithm with M ′ := poly(κ) · (T2,r)2. This
corresponds exactly to running AM’s Algorithm 1 M ′ number of times, whereas
they only run it once. The reason for one of the T2,r factors in M ′ is that the
success probability of AM’s Algorithm 1 depended linearly on 1/T2,r (the size of
the SLP) and we wanted to remove the dependence on T2,r from our factoring
algorithm’s success probability. The reason for the second T2,r factor is that the
success probability of AM’s Algorithm 1 also depends linearly on the fraction
of roots in the SLP. For them, this is essentially equivalent to the RSA algo-
rithm’s success probability. But for us, due to our compression argument, the
fraction of roots in the SLP is only guaranteed to be at least J/N ≈ ϵ/T2,r. Since
we want to remove the dependence on T2,r from the success probability of the
factoring algorithm, this accounts for the second factor of T2,r in our runtime.

Moving to the third term of
T

7/2
2,r

ϵ3/2
, this comes from the runtime of Alg2AM which

is essentially the same as Algorithm 2 of AM. We are able to reduce from ϵ3/2

to ϵ5/2 in the denominator, since we assume that ϵ > 1/N and since we ignore
polylog(N) = poly(κ) factors in our analysis.

Next we move on to our success probability. We have ϵ3 compared to linear
dependence on ϵ in AM because we only provide a factoring algorithm when a
certain event occurs. The event that we consider is only guaranteed to occur
with probability ϵ with respect to ϵ-fraction of oracles.

Remark 4. Note that achieving the desired factoring algorithm when Tr,2 ≥
2κ/10 or ϵ′ ≤ 1/2κ/6 is trivial since there is a trivial factoring algorithm that

22

runs in time Tf = O
(
(2κ/10)5

)
= O

(
2κ/2

)
, with zero pre-processing and suc-

cess probability 1, as well as a trivial factoring algorithm that achieves success
probability Ω

(
(2−κ/6)3

)
= Ω

(
2−κ/2

)
with zero pre-processing and poly(κ) time

(which just guesses a random number in [2κ/2] as one of the factors of N). We
therefore assume WLOG that Tr,2 < 2κ/10 and ϵ′ > 2−κ/6.

The following theorem instantiates the algorithm of Fiat-Naor in the setting
of factoring-with-preprocessing.

Theorem 7. Let S̃ = S̃(κ), T̃ = T̃ (κ), ϵ̃ = ϵ̃(κ) such that for sufficiently large κ,
S̃ ·T̃ ≥ ϵ̃2κ. Then there exists a plain-model (Sf , Tf)-factoring-with-preprocessing
algorithm A such that for κ ∈ N, we have

AdvfacRSAGen(A) ∈ Ω(ϵ̃),

we further have that Sf = S̃, and Tf = poly(κ) · T̃ 2.

This theorem is proved in Section 8.
In Sections 5.1 and 5.2 we formally state our results for the RO and plain

model and explain how Theorems 6 and 7 are used to obtain those results.

5.1 The RO model result

Theorem 8. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative
to RSAGen, and let ϵ := AdvcrsaRSAGen(A).

Then there exists a (Sf , Tf)-factoring algorithm B in the random injective
function model relative to RSAGen such that

AdvfacRSAGen(B) ∈ Ω(ϵ3),

such that Tf := poly(κ) · (T1,r + T 5
2,r +

T
7/2
2,r

ϵ3/2
), and such that Sf := Sr +O(1).

To prove Theorem 8 we first show that the RI-model factoring algorithm from
Theorem 6 (which gets backwards and forwards access to the random injective
function), can be converted into a factoring algorithm in the Random Oracle
model with the same parameters.

Specifically, in Proposition 1 we take A to be our final factoring algorithm
FACπ (see Lemma 10) and q = 2κ. Now set L such that

22κ/L ∈ O(N2/L) ≤ 1/(2N) .

As ϵf ∈ Ω(1/N) where ϵf is the advantage FACπ relative to a random injection
on [L], we have

ϵ′f ≥ ϵf/2

where ϵ′f is the advantage of the factoring algorithm in RO model that runs FACπ,
answering its queries via Luby-Rackoff. This RO-model factoring algorithm is
for the case that for sufficiently large κ, Sr · T2,r ≤ ϵ/162κ.

23

Setting S̃ = Sr, T̃ = T2,r, ϵ̃ = ϵ/16 and applying Theorem 7, we obtain a
plain model factoring algorithm with parameters Sf = Sr, Tf = poly(κ) · T 2

2,r,
and advantage ϵf ∈ Ω(ϵ). This plain-model factoring algorithm is for the case
that for sufficiently large κ, Sr · T2,r ≥ ϵ/162κ.

Note that it is also possible that neither of the above cases is satisfied and
that, rather, for infinitely many κ, Sr(κ) · T2,r(κ) ≥ ϵ(κ) · 2κ/16, and simulta-
neously, for infinitely many κ, Sr(κ) · T2,r(κ) < ϵ(κ) · 2κ/16. If this occurs, we
obtain our factoring algorithm by having the unbounded pre-processing stage
of the factoring algorithm do the following: On fixed input κ, it will run the
GP-RSA algorithm exhaustively on all possible random coins and inputs to
determine the exact constants Sr(κ), Tr,2(κ), ϵ(κ). It will then check whether
Sr(κ) · Tr,2(κ) ≥ ϵ(κ) · 2κ/16 or Sr(κ) · Tr,2(κ) < ϵ(κ) · 2κ/16. If the former is
true, it will append a “0” bit to the preprocessing advice st to tell the online
portion of the factoring algorithm to run the factoring algorithm for the first
case. If the latter is true, it will append a “1” bit to the preprocessing advice to
tell the online portion of the factoring algorithm to run the factoring algorithm
for the second case. Thus, the preprocessing advice increases by a single bit (so it
still satisfies Sf = Sr+O(1)) and the other parameters Tf ,Adv

fac
RSAGen(B) remain

the same and therefore satisfy the required constraints of Theorem 8.

5.2 The plain model result

Theorem 9. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative
to RSAGen, and let ϵ := AdvcrsaRSAGen(A).

Then there exists a (Sf , Tf)-factoring algorithm B in the plain model relative
to RSAGen such that

AdvfacRSAGen(B) ∈ Ω(ϵ6),

such that Tf := poly(κ) · (T1,r + T 5
2,r +

T
7/2
2,r

ϵ3/2
), and such that Sf := O(Sr).

To prove Theorem 9 we start from the RI model factoring algorithm obtained
in Theorem 6 and prove the following theorem:

Theorem 10. Let Sr := Sr(κ), T1,r := T1,r(κ), T2,r := T2,r(κ), ϵ = ϵ(κ). Let
A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative to RSAGen, and
let ϵ := AdvcrsaRSAGen(A).

There exists a constant c such that, if for sufficiently large κ, Sr·T2,r ≤ c·ϵ62κ,
then there exists a (Sf , Tf)-factoring algorithm B in the plain model relative to
RSAGen such that

AdvfacRSAGen(B) ∈ Ω(ϵ6),

such that Tf := poly(κ) · (T1,r + T 5
2,r +

T
7/2
2,r

ϵ3/2
), and such that Sf := Sr.

The proof of Theorem 10 appears in Section 7. To obtain an algorithm for the
case that for sufficiently large κ, Sr ·T2,r ≥ c · ϵ62κ, we set S̃ = Sr, T̃ = T2,r, ϵ̃ =
c · ϵ6 and apply Theorem 7. This yields a plain model factoring algorithm with
parameters Sf = Sr, Tf = poly(κ) · T 2

2,r, and advantage ϵf ∈ Ω(ϵ6). Using the
same argument as in Section 5.1, we obtain a single factoring algorithm that
covers all cases in the plain model with the parameters of Theorem 9.

24

6 Proof of Theorem 6

6.1 Notation and Algorithms

We begin by introducing some additional notation, terminology, and useful al-
gorithms. First, we denote by ϵ′ := ϵ/4. Recall that at a branching vertex v with
label (u,w) in the program graph of a GRA G, the program performs an equality
test on rational functions PGu /Q

G
u and PGw /Q

G
w , evaluated at the input y of the

program. As in AM, we refer to such a branching index as extreme if the test
consistently yields either 0 or 1 for most possible inputs y of the program.

Definition 12 (Extreme Branching Vertex). Let δ ∈ [0, 1] and N ∈ Z. A
(δ,N)-extreme branching vertex of a GRA G is a branching vertex v labeled with
(u,w) such that νN (PGu ·QGw − PGw ·QGu) ∈ [0, δ] ∪ [1− δ, 1].

Definition 13 (Negative Orientation). Let δ ∈ [0, 1], N ∈ Z, and let f be
a polynomial with νN (f) ∈ [0, δ] (resp. νN (f) ∈ [1 − δ, 1]). We say that y is
(δ,N)-negatively oriented with respect to f if f(y) = 0 (mod N) (resp. f(y) ̸= 0
(mod N)).

We now define algorithm PreGRAπ in Figure 1. Intuitively, the purpose of
this algorithm is to turn an oracle-aided GRA Gπ into a GRA G̃ that succesfully
computes the eth root x of y (mod N), whenever Gπ successfully computes
π(x) on input π(y). We prove this property of PreGRAπ in Lemma 4. A crucial
property of PreGRAπ is that it never queries π−1(σy) when run on input σy.

Algorithm PreGRAπ

Input: A GRA Gπ of size at most T , a label σy ∈ {0, 1}κ.
Output: A GRA G̃.

– Traverse the nodes of the execution graph of Gπ using a topological
ordering. Let vi be the i-th node.
• If vi corresponds to a non-branching vertex with label σy, then set

the i-th node ṽi of G̃ with value Y , where Y is the indeterminant
of the GRA G̃.

• If vi corresponds to a non-branching vertex with label σz, where
σz ̸= σy, then label the i-th node ṽi of the GRA G̃ with π−1(σz).

• If vi is a non-branching vertex labelled with (vu, vw, ◦, b), where vu
and vw are predecessor nodes of vi (according to the topological
order), label ṽi with (ṽu, ṽw, ◦, b).

• If vi is a branching vertex corresponding to the equality check of
two nodes vu, vw, where vu and vw are predecessor nodes of vi
(according to the topological order), set ṽi as the branching vertex
labelled with (vu, vw)

– Output G̃.

Fig. 1: Inversion algorithm for GRAs.

25

Lemma 4. Let Gπ be a T -depth oracle-aided GRA over ZN , and let y = xe

(mod N). Suppose that G̃ := PreGRAπ(Gπ, π(y)) and that Gπ(π(y)) = π(x).
Then G̃ is a T -depth GRA over ZN and G̃(y) = x (mod N).

Proof. The claim on the number of steps is immediate. For the second claim,
observe that for every intermediate value stored at a v node labeled with σz =
π(z) in the program graph of Gπ, PreGRAπ stores the value z ∈ ZN , unless
z = y (mod N). In the latter case, PreGRAπ stores Y . Hence, for every operation
(◦, b) ∈ {+, ·}×{−1, 1} or equality check performed by Gπ on two labels π(a) and
π(b) at some node vi of its program graph, G̃ performs the analogous operation
on a and b. It follows that if Gπ(π(y)) = π(x) then G̃(y) = x. ⊓⊔

Algorithm DomPath

Input: A GRA G over ZN of depth at most T , δ ∈ [0, 1].
Output: A list of Polynomials R1, . . . , Rψ+1 over ZN , where ψ ≤ T − 1.

– Let Gex be the tree obtained from G by truncating the sub-tree rooted
at v for all non-(δ,N)-extreme branching verteces v (in particular,
v must be branching). Thus the leaf vertices of Gex are either non-
branching or non-extreme branching vertices.

– Consider a traversal of Gex starting from the root and, at the i-th
extreme vertex v labeled with (u,w), going to the edge labeled 1 if
νN (fGu −fGw) ∈ [0, δ] and to the edge labeled 0 if νN (fGu −fGw) ∈ [1−δ, 1].
Let ψ be the number of extreme vertices encountered in the path from
the root to a leaf. Note that ψ ≤ T − 1. For each extreme vertex
labeled with (u,w), let Ri denote the polynomial (PGu ·QGw −PGw ·QGu).
Let R̂ψ+1 denote the final SLP formed by the path from the root to

the leaf (note that f R̂ψ+1 is different from Rψ, since the leaf is not an
extreme branching vertex).

– If the last vertex of R̂ψ+1 is a non-branching vertex with

(P R̂ψ+1 , QR̂ψ+1), then let Rψ+1(Y) := [P R̂ψ+1(Y)]e− Y · [QR̂ψ+1(Y)]e.
– If the last vertex of R̂ψ+1 is a non-extreme branching vertex labeled

with (u,w), then let Rψ+1 := PGu ·QGw − PGw ·QGu .

Fig. 2: Dominating Path Algorithm.

We next define the algorithm DomPath from AM in Figure 2. This algorithm
extracts the path most likely to be taken from a GRA G over ZN , when G is run
on a random input y, i.e., it extracts the ‘dominating path’ in G. When viewing a
GRA as its program graph, the dominating path can be seen as corresponding to
an SLP that corresponds to the nodes in this path. DomPath takes a sensitivity
parameter δ ∈ [0, 1] that determines how accurate its guess of the dominating
path will be. On top of the SLP corresponding to this path, DomPath outputs all
the SLPs induced by branching vertices encountered along the dominating path.
That is, if a node along the dominating path is labeled (u,w), then DomPath,
on input G, will include the SLP PGu − PGw in its output.

26

Note that for all the SLP’s R1, . . . , Rψ+1 with corresponding pairs
(PR1(Y), QR1(Y)), . . . , (PRψ+1(Y), QRψ+1(Y)) returned by DomPath, we have
that QR1(Y) ≡ · · · ≡ QRψ+1(Y) ≡ 1. We therefore denote by fR1 , . . . , fRψ+1

the
polynomials PR1(Y), . . . , PRψ+1(Y).

Finally, we define the algorithm ComGRAπ (see Figure 3). This algorithm
internally runs the online phase of an FGP-RSA algorithm to obtain the oracle
aided GRA Gπ. It then runs PreGRA on its input π(y) to obtain a GRA G̃, from
which it extracts the dominating path via DomPath.

Algorithm ComGRA[A]π

Input: A label π(y), a sensitivity parameter δ ∈ [0, 1]. Denote the random
coins as ρ.
Output: A list of polynomials {R1, . . . , Rψ+1} over ZN .

– Run A on input (N, e, π(y), st) and randomness ρ. Let Gπ denote the
output. If Gπ does not correspond to the description of a T2-depth GRA
over ZN , abort. Let G̃ := PreGRA(Gπ, π(y)).

– Return {R1, . . . , Rψ+1} ← DomPath(G̃, δ)

Fig. 3: Combined Algorithm. A is an (S, T1, T2) FGP-RSA algorithm relative to
N, e, st, π.

Lemma 5. Let A be an (Sr, T1,r, T2,r)-FGP RSA algorithm relative to N, e, π

and st. Suppose that AdvfcrsaN,e,d,st,π(A) ≥ ϵ/2 and let δ ∈ [0, 1]. Then with proba-
bility at least ϵ/2 over the coins of ComGRA[A]π and y ← ZN , at least one of
the following two events occurs when running ComGRA[A]π on input π(y), and
δ ∈ [0, 1].

1. ComGRA[A]π returns R1, ..., Rψ+1 such that y is (δ,N)-negatively oriented
with respect to Ri for some i ∈ [ψ + 1].

2. ComGRA[A]π returns R1, ..., Rψ+1 such that νN (Rψ+1) ≥ δ and Rψ+1 ̸≡ 0
(mod N).

Proof. Let Gπ be the oracle aided GRA output by A on input N, e, π(y), st,
where y = xe (mod N). We will show that whenever the algorithm is successful
(i.e. Gπ(π(y)) = π(x)) then the conclusion of Lemma 5 must hold. This is
sufficient to prove the lemma.

Let G̃ = PreGRA(Gπ, π(y)). Consider the execution of DomPath(G̃) and recall
that for each extreme vertex labeled with (u,w), Ri denotes the SLP

(P G̃u ·QG̃w − P G̃w ·QG̃u).

Finally, recall that R̂ψ+1 denotes the final SLP formed by the path from the

root to the leaf. If the last vertex of R̂ψ+1 is a non-extreme branching vertex

27

labeled with (u,w), then Rψ+1 is defined as Rψ+1 = P G̃u ·QG̃w −P G̃w ·QG̃u and by
definition of non-extreme branching vertex, νN (Rψ+1) ∈ (δ, 1− δ). This implies
that νN (Rψ+1) ≥ δ and Rψ+1 ̸≡ 0. (If Rψ+1 ≡ 0 then νN (Rψ+1) = 1.). So
the conclusion of Lemma 5 holds. We therefore assume w.l.o.g. that the last
vertex of R̂ψ+1 is a non-branching vertex — in which case Rψ+1 is defined as

Rψ+1 = [P R̂ψ+1(Y)]e − Y · [QR̂ψ+1(Y)]e — and that the algorithm is successful
(i.e. Gπ(π(y)) = π(x)).

Case 1: R̂ψ+1(y) = x. If νN (Rψ+1) ≥ δ then the conclusion of Lemma 5
holds. Otherwise, νN (Rψ+1) ∈ (0, δ). In this case, y is a root of Rψ+1, since

by Lemma 4, P R̂ψ+1(y)/QR̂ψ+1(y) = x and Rψ+1(Y) = [P R̂ψ+1(Y)]e − Y ·
[QR̂ψ+1(Y)]e. Moreover, Rψ+1(Y) ̸≡ 0, which was shown by Aggarwal and
Maurer [1] as part of the proof for their Corollary 1. Hence, y is negatively
oriented with respect to Rψ+1, and again the conclusion of Lemma 5 holds.

Case 2: R̂ψ+1(y) ̸= x. Since the algorithm is successful, Gπ(π(y)) = π(x)

and due to Lemma 4, we have that G̃(y) = x. Note that G̃(y) = x but
R̂ψ+1(y) ̸= x and the last vertex of R̂ψ+1 is a non-branching vertex. Hence,

the execution of G̃(y) takes a different branch than the execution of R̂ψ+1(y)
at some extreme branching vertex on the path from the root to the leaf
corresponding to R̂ψ+1. But then this means that for some i ∈ [ψ], either
νN (Ri) ∈ (0, δ) and Ri(y) = 0 or νN (Ri) ∈ (1 − δ, 1) and Ri(y) ̸= 0. By
definition, this implies that for some i ∈ [ψ], y is negatively oriented with
respect to Ri, so again the conclusion of Lemma 5 holds.

This concludes the proof of Lemma 5. ⊓⊔

Two Events. Fix A, N, e, π and st as in Lemma 5. We consider the probability
of two events over the randomness of ComGRA and choice of y ← ZN . Set

J := (1−ϵ′/2)ϵ′·N
8 logNT2,r

= (1−ϵ′/2)·N
4R1T2,r

= N · δ, where δ := J/N .

– Event E[N, e, st, π]1: ComGRA[A]π on input π(y) returns a list of polyno-
mials {R1, . . . , Rψ+1} s.t. y is negatively oriented with respect to one of
{R1, . . . , Rψ+1}.

– Event E[N, e, st, π]2: ComGRA[A]π on input π(y) returns a list of polynomials
{R1, . . . , Rψ+1} s.t. νN (Rψ+1) ∈ (δ, 1− δ).

Corollary 1 (of Lemma 5). Suppose that the conditions of Lemma 5 hold.
Then at least one of the events E[N, e, st, π]1 or E[N, e, st, π]2 occurs with prob-
ability at least ϵ/4.

Looking ahead, if E[N, e, st, π]1 occurs, then A will be useless for factoring.
Our task, therefore, is to prove that E[N, e, st, π]1 occurs with probability less
than ϵ′ = ϵ/4 (which we do next in Section 6.2 via a compression argument). We
therefore conclude that E[N, e, st, π]2 occurs with probability at least ϵ′ = ϵ/4.

28

6.2 Bounding the Probability of Event E[N, e, st, π]1

In this section, we upper bound the probability of the event E[N, e, st, π]1 as
defined in the previous section, given that Sr · T2,r ≤ ϵ′2κ/4, where ϵ′ := ϵ/4. In
particular, we fix the values of N, e, st, π throughout most of this section. We also
fix the length of the labels and interpret our labelling function as an injective
mapping π : ZN → ZL, where L ≥ N is chosen of appropriate size.

To achieve our upper bound, we will construct an encoding routine Ẽncπ

(which is itself a “wrapped” version of Encπ that includes the RSA instance
generation and preprocessing steps)6 that compresses the function table of π
whenever the event E[N, e, st, π]1 is likely to happen. We also present a corre-

sponding decoding routine Dec . Together, Ẽncπ,Dec will lead to a contradiction
of Lemma 1, given E[N, e, st, π]1 happens with too large of a probability. We

present our encoding routine Ẽncπ and decoding routine Dec in Figures 4, 5,
and 6 and argue their correctness. Here we set r1 := ⌈2 logN/ϵ′⌉, r2 := ⌊ ϵ

′N
2T2,r
⌋,

and J to be the maximum integer that satisfies J ≤ ⌊N/T2,r⌋−⌊ϵ′N/(2T2,r)⌋
8R1

and

r1JT2,r is a power of two. Note that we can lower bound J by J ≥ (1−ϵ′/2)N
32r1T2,r

.

Lemma 6. Suppose Ẽncπ with access to π and on random coins ρ outputs E.
Then Dec on input E and on random coins ρ outputs the function table Table[π]
of π.

Proof. The lemma follows by construction of Encπ and Dec. Specifically, Encπ

stores one tuple of the form (ζ, ℓ, k) per iteration of the outer loop. As Encπ

stores the tuples E in the order in which they are found, it follows that Dec
can deterministically recover the tuple corresponding to the jth iteration of the
outer loop. Since both algorithms parse the random tape ρπEnc[2] in the same
manner, Dec can also recover the proper index m = r1 · j+k and (via ρπEnc[1,m])
the image π(y) in order to run ComGRA[A1]

π. Moreover, Encπ ensures that any
call x to π that ComGRA[A1]

π makes during its run can be answered by looking
up the pair (x, π(x)) in E. Hence, Dec obtains from ComGRA[A1]

π the same list
of polynomials {R1, . . . , Rψ+1} as Encπ does. It can now identify the correct
polynomial Rζ among them and use the ℓ root y as the preimage y of π(y)
in order to complete the pair (y, π(y)) in Table[π]. Once Dec finds no further
points, it can easily recover the remaining points of the function table by using
the trivial encoding provided by Encπ.

We next present the main technical lemma of this subsection. The proof of
this lemma is deferred to Appendix A. Combining it with Lemma 8 below, we
get that the encoding routine is compressing with high probability.

6 Separating them is convenient as otherwise, we could not keep N fixed while arguing

about Encπ. We also comment that Ẽncπ uses more randomness than Encπ and Dec.
So when the non-wrapped routines read their shared random string ρ, they start at

the position corresponding to the number of random bits used by Ẽncπ.

29

Algorithm Encπ

Interface: Encπ takes as input (N, e, st). Denote Encπ’s random coins as ρ.
Encπ outputs an encoding E of the labelling function π : ZN → ZL.
Initialization: Initialize a set E = {st, N, e} and an (empty) table Table
that stores rows of the form (x, π(x)) for x ∈ ZN . Split random tape ρ into
ρ[1]||ρ[2] of appropriate size. Let I ⊆ ZL denote the image of π : ZN → ZL.
Add to E an encoding of I (of length log

(
L
N

)
).

Set j := 0. Repeat the following steps while j < r2:

– Set good := false. Parse ρ[1] as ρ[1] = ρ[1, 1], ..., ρ[1, r1 · r2] and ρ[2] as
ρ[2] = ρ[2, 1], . . . , ρ[2, r1 · r2].

– Set k := 0 and repeat the following steps while k ≤ r1 and ¬good:
• Set k := k + 1.
• Use ρ[1, j · r1 + k] to select a random image π(yk) from the images

that are not yet contained in Table.
• Run ComGRAπ[A1] on random coins ρ[2, j · r1 + k] and inputs
δ, π(yk).

• If ComGRAπ[A1] returns {R1, . . . , Rψ+1} such that yk is negatively
oriented with respect to Rζ for some ζ ∈ [ψ + 1], set good := true.

– If ¬good, abort. (Call this Failure Event 2.1; we will show it occurs
with probability at most 1/2.)

– Denote by 1 ≤ ℓ ≤ J the index of yk among the J roots or non-roots
of Rζ , depending on which case of Definition 13 Rζ , yk falls into.

– Add to E the entry (ζ, ℓ, k). Re-run ComGRAπ[A1] on random coins
ρ[2]j·r1+k and input δ, π(yk). If ComGRAπ[A1] internally queries (during
the execution of PreGRAπ) π−1(z) s.t. (π−1(z), z) is not yet stored in
Table add to E the trivial encoding of π−1(z) (of length log(N−|Table|))
and add (π−1(z), z) to Table. Add (yk, π(yk)) to Table.

– Set j := j + 1.

At this point there is a set of pre-images S and images S′ stored in Table.
Add an encoding to E of π restricted to (ZN \ S)→ (I \ S′).

Fig. 4: Non-wrapped encoding routine.

30

Algorithm Dec

Interface: Dec takes as input an encoding E and random coins ρ. It
outputs the function table Table[π] of a function π ∈ FuncInj.

– Initialize Table[π] = ⊥ and done := false.
– Recover from E the image of π and add it to Table[π].
– Interpret random coins ρ as ρRSAGen, ρA0 , ρ

π
Enc.

– Split ρπEnc into two parts ρπEnc[1]||ρπEnc[2] and parse these parts as ρπEnc[1] =
ρπEnc[1, 1], ..., ρ

π
Enc[1, r1 · r2] and ρπEnc[2] = ρπEnc[2, 1], ..., ρ

π
Enc[2, r1 · r2].

– Compute st = Aπ0 (1
κ; ρA0) and (N, e, d) = RSAGen(1κ; ρRSAGen). Let

δ := (1−ϵ′/2)
4r1T2,r

.

– While ¬done do:
• Find the next tuple t = (ζ, ℓ, k) in E. If this is the jth tuple of this

form, set m← r1 · j + k.
• Use random coins ρπEnc[1,m] to select a point π(y) in the image of
π.

• Run ComGRA[A1]
π on input (δ, π(y)) with random coins ρπEnc[2,m].

• If ComGRA[A1]
π queries π on input x, find π(x) in E and return it

to ComGRA[A1]
π.

• When ComGRA[A1]
π returns {R1, . . . , Rψ+1}, find the ℓth root y

of Rζ .
• Add to Table[π] the entry (y, π(y)).
• Remove t from E. If no further tuple of the above form exists in E,

set done := true.
– Add all remaining preimages stored in E to the appropriate positions

in Table[π].
– Return Table[π]

Fig. 5: Our decoding routine.

31

Lemma 7. Let Sr ≤ ϵ′2κ/(4T2,r) and fix some N, e, π and st of size at most Sr.

Let A be an (Sr, T1,r, T2,r)-FGP RSA algorithm. Suppose that Advfcrsa(N,e,st,π)(A) ≥
ϵ/2 and Pr [E[N, e, st, π]1] ≥ ϵ′ (over the random coins of ComGRA[A1]

π and
random choice of y ∼ ZN). Then with probability at least 1/2 over the coins of
Encπ, Encπ, on input (N, e, st), returns E of size at most log

(
L
N

)
+ log(N !) +

2 log(N)− ϵ′N/(2T2,r) + 2.

Algorithm Ẽncπ

Interface: Ẽncπ takes in random coins ρ. It outputs an encoding E of π.

– Parse ρ as ρ = (ρRSAGen, ρA0 , ρEnc).
– Compute st = Aπ0 (1

κ; ρA0) and (N, e, d) = RSAGen(1κ; ρRSAGen).
– Obtain an encoding E as E← Encπ(st, N, e; ρEnc). If Enc

π aborts, abort.
– Output E.

Fig. 6: Our final, wrapped encoding routine.

Lemma 8. Let RSAGen be an RSA generator and let A = (A0,A1) be an AG-
RSA algorithm with AdvcrsaRSAGen(A) ≥ ϵ s.t. Sr ·T2,r < 2κ ·ϵ/16. Then the following
happens with probability less than ϵ/2 over the choice of π, the random coins of
A0, and the random coins of RSAGen: Aπ0 outputs st of size at most Sr and
RSAGen outputs (N, e, d) s.t. E[N, e, st, π]1 occurs with probability at most ϵ/4
(over the random coins of ComGRA[A1]

π and random choice of y ← ZN).

Proof. Let A be as in the lemma statement and assume toward a contradiction
that with probability at least ϵ/2 (over their internal coins and choice of π), Aπ0
and RSAGen output st and (N, e, d) s.t. E[N, e, st, π]1 occurs with probability
at least ϵ′ = ϵ/4 over the randomness of ComGRA[A1]

π and random choice of
y ∼ ZN . Then by Lemma 7, given that π, st, and N, e are such that E[N, e, st, π]1
occurs with probability at least ϵ′ = ϵ/4 over the internal coins of ComGRA[A1]

π

and random choice of y ∼ ZN , we have that, for sufficiently large κ, Encπ outputs
an encoding E of size at most log

(
L
N

)
+ log(N !) + 2 log(N) − ϵ′N/(2T2,r) +

2 with probability at least 1/2 over its choice of random coins. Moreover if
Encπ returns E, then running Dec on E reproduces the function table of π with

probability 1 (when run with the same coins). Now consider the algorithm Ẽncπ

depicted in Figure 5. Ẽncπ gets access to π and internally runs A0 and RSAGen
on input 1κ to obtain st of size at most Sr and (N, e, d), respectively. It then
runs Encπ on input (N, e, st) with access to π. It returns the encoding E returned

by Encπ and aborts in case Encπ aborts. We can view (Ẽncπ,Dec) as a pair of
encoding/decoding routines that produce, for any input π, an encoding E which
successfully decodes to π with probability at least ϵ′ over the random coins of

Ẽncπ. We now use Lemma 1 where we set E = Encπ (here we give π as an

32

oracle, but this is equivalent to giving it as input as in the Lemma since Encπ

can make an unbounded number of queries), D = Dec, and X = {0, 1}log(
L!

(L−N)!
),

m = log(N !) + 2 log(N) − ϵ′N/(2T2,r) + 2, and γ = ϵ′. Note that our choice of

X is large enough to store the function table of π. Lemma 1 says that log
(
L
N

)
+

log(N !)+2 log(N)−ϵ′N/(2T2,r)+2 = m ≥ log |X |−log 1/γ = log(N !)−2+log(ϵ′).

Since log
(
L
N

)
+ log(N !) = log(L!

(L−N)!) = log |X |, we arrive at a contradiction

whenever ϵ′ > 16N2/2ϵ
′N/(2T2,r). Since we have assumed that ϵ′ > 2−κ/6 ≥

(1/(2N)1/6) and T2,r < 2κ/10 ≤ (2N)1/10, we indeed have that for sufficiently

large κ, ϵ′ > 16N2/2ϵ
′N/(2T2,r) ≥ 16N2/2N

3/5/219/15 > 16N2/2ϵ
′N/(2T2,r), which

yields the desired contradiction.

6.3 Constructing a Factoring Algorithm in the RI Model

Recall that in Lemma 5 we showed that, for properly generatedN, e, st, π, at least
one of the events E[N, e, st, π]1, E[N, e, st, π]2 occurs with probability at least
ϵ/4. Further, in Lemma 8 we showed that for a large fraction ϵ/2 of N, e, st, π, the
event E[N, e, st, π]1 occurs with probability at most ϵ/4, when Sr ·T2,r ≤ ϵ′2κ/4.
This means that (for ϵ/2-fraction of N, e, st, π) event E[N, e, st, π]2 occurs with
probability at least ϵ/4 = ϵ′, when Sr · T2,r ≤ ϵ′2κ/4. In this subsection, we will
first present a factoring algorithm in the RI model that succeeds when event
E[N, e, st, π]2 occurs with probability at least ϵ′. Put together with Lemmas 5
and 8, this means that the factoring algorithm presented in this section is guar-
anteed to succeed with high probability when Sr ·T2,r ≤ ϵ′2κ/4. Looking ahead,
at the end of this section, we will show how to switch the algorithm from the RI
model (with backwards and forwards access to the random injective function)
to the RO model. In Section 8, we will present a completely different factoring
algorithm in the RO model that succeeds when Sr · T2,r > ϵ′2κ/4.

We begin by recalling Algorithm 2 (denoted Alg2AM) from Aggarwal and
Maurer in Figure 7.

This algorithm runs in polynomial time and takes as input a GRA G and
an integer N . It outputs either a non-trivial factor of N or an SLP S with
many roots. In the former case, we are done. In the latter case, the idea is to
run Algorithm SLPFACπ (see Supplementary Material B) on input S and N ,
which similarly produces a non-trivial factor of N in polynomial running time.
SLPFACπ corresponds to Algorithm 1 of Aggarwal and Maurer [1]. The only
difference is that we repeat their algorithm M ′ times with independent random
coins in order to improve the success probability. For our purposes, we will set the
parameter M ′ as M ′ := logN · (T2,r)2. We next consider a simple augmentation
of Alg2AM in Figure 7. For sake of simplicity, in the following, we refer to an SLP
S as functionally equivalent to a polynomial R if for all x ∈ ZN , S(x) = R(x)
(mod N). Our main reason for distinguishing SLPs from polynomials is because
an SLP has an efficient representation. Note that this need not be true for a
polynomial in general.

Lemma 9. Let Gπ be a GRA, let y = xe, let G̃ = PreGRAπ(Gπ, π(y)), and let
{R1, . . . , Rψ+1} be the list of polynomials returned by DomPath(G̃). Then with

33

Algorithm Alg2AM

Input: A GRA G over ZN .
Output: A factor of N or an SLP S over ZN .

– Let v1, ..., v4 be the first 4 nodes on a path from the root of G.
– Initialize S to be a path of length 2 with v1, v2, v3. Let v = v4.
– While v.right is defined do:
• If v is a non-branching vertex, then append v with its label to Sπ.
• Else, let the label of v be (u,w).
• For i← 1 to M := log(N) · δ−3/2 do:

∗ Generate a uniformly random element x ∈ ZN
∗ Compute g as the gcd of PGu (x) ·QGw(x)− PGw (x) ·QGu (x) and
N

∗ If g ̸∈ {1, N}, then return g
• Generate a uniformly random element x′ ∈ ZN
• If PGu (x′) ·QGw(x′)− PGw (x′) ·QGu (x′) = 0 then v := v.left
• Else, v := v.right

• If the final vertex of S originated from a non-branching vertex v,
let (PS , QS) denote the SLP’s computed by the path S from the
root to v. Let Sψ+1(Y) := [PS(Y)]e−Y · [QS(Y)]e. I.e. Sψ+1(Y) is
the SLP obtained by exponentiating the outputs of SLP’s PS(Y)
and QS(Y) (which can be done in O(log(e)) steps, mutliplying the
second by indeterminate Y (which can be done in a single step)
and subtracting the two (which can be done in a single step).

• If the final vertex of S originated from a non-extreme branching
vertex labeled with (u,w), set Sψ+1 := PGu ·QGw−PGw ·QGu . I.e. Sψ+1

is the SLP obtained by multiplying the outputs of SLP’s PGu , Q
G
w

and PGw , Q
G
u (which can be done in two steps) and subtracting the

two (which can be done in a single step).
• Else, set Sψ+1 := ⊥.

– Return Sψ+1.

Fig. 7: Algorithm 2 from Aggarwal Maurer

probability 1− T2,r · δ = 1− T2,r · (1−ϵ
′/2)ϵ′

32κT2,r
≥ 1− ϵ/8 over the random coins of

Alg2AM, Alg2AM on input G̃ outputs a non-trivial factor g of N or outputs an
SLP Sψ+1 s.t. Sψ+1 is functionally equivalent to Rψ+1.

Proof. We consider the set V of all vertices v encountered during a run of
Alg2AM. Let p1 denote the probability that there is some v ∈ V that is a
non-extreme branching vertex. Let p2 = (1 − p1) denote the probability that
all v ∈ V are either non-branching vertices or extreme branching vertices. Let p3
denote the probability that Alg2AM outputs a factor g conditioned on all v ∈ V
being either non-branching vertices or extreme branching vertices. If there is
some v ∈ V that is a non-extreme branching vertex then (invoking Lemma 2 of
Aggarwal and Maurer [1]) Alg2AM outputs a factor g with probability at least
1−(1−δ3/2)M . Further, conditioned on (1) all v ∈ V being either non-branching

34

vertices or extreme branching vertices, and (2) Alg2AM not outputting a factor
g, we have that Sψ+1 is functionally equivalent to Rψ+1 with probability at least
1− T2,rδ. This follows directly from the fact that Alg2AM performs an identical

traversal of the nodes in G̃’s execution graph as does DomPath(G̃).
Thus, the overall success probability is at least

p1 · (1− (1− δ3/2)M) + p2 · (p3 + (1− p3)(1− T2,rδ))
≥ p1 · (1− (1− δ3/2)M) + p2(1− T2,rδ)
= p1 · (1− (1− δ3/2)M) + (1− p1)(1− T2,rδ)
≥ (1− T2,rδ),

where the final inequality follows due to setting parameter M = log(N) · δ−3/2

so that 1− (1− δ3/2)M ≥ 1− e−Mδ3/2 ≥ (1− 1/N) ≥ (1− T2,rδ).

Lemma 10. Let A = (Aπ0 , A1) be an (Sr, T1,r, T2,r)− FGP RSA algorithm.
Fix (N, e, π), let st ∈ Aπ0 (1

κ) and suppose that Sr · T2,r ≤ 2κ · ϵ′/4. If
E[N, e, st, π]2 occurs with probability at least ϵ′ over the randomness of ComGRA
and random y ∼ ZN , then Algorithm FACπ on input (N, e), st runs in time

O((κ2
κT2,r

(1−ϵ′/2)ϵ′)
3/2 + T 5

2,rκ
3 + T1,r) and outputs a non-trivial factor of N with

probability Ω((ϵ′)2(1− ϵ′/2)) over its choice of random coins.

Algorithm FACπ

Input: A tuple (N, e) and a state st.
Output: A factor g of N .

1. Sample y at random.
2. Run A1 on input (N,π(y), st) and let Gπ denote the output. If Gπ does

not correspond to the description of a GRA, abort.
3. Run G̃ := PreGRAπ(G)
4. Run Alg2AM(G̃). If it returns a factor, return the factor and abort.

Otherwise let Sψ+1 be the returned SLP.
5. Return the output of SLPFACπ on input (Sψ+1, N) with M ′ := logN ·

(T2,r)
2.

Fig. 8: Factoring Algorithm

Proof. We now analyze the success probability of the above algorithm in the
case that E[N, e, st, π]2 occurs with probability at least ϵ′.

First, Lemma 9 implies that if E[N, e, st, π]2 occurs with probability ϵ′, then
with probability at least ϵ′/2, E[N, e, st, π]2 occurs and Alg2AM either returns a
factor of N or Sψ+1 that is functionally equivalent to Rψ+1.

35

Algorithm F̃ACH

Offline Phase: Run Aπ0 on input 1κ to obtain state st of size Sr. Simulate
the oracle for Aπ0 by using random injective function H as the labelling
function.

Online Phase:

– Choose a random e conditioned on N .
– Return the output of FACπ run on input (N, e), st. Simulate the oracle
π using oracle H.

Fig. 9: Wrapped Factoring Algorithm

Let p1 denote the probability that E[N, e, st, π]2 occurs and Alg2AM returns
a factor of N Let p2 denote the probability that E[N, e, st, π]2 occurs and Sψ+1

is functionally equivalent to Rψ+1. Note that, by the above, p1 + p2 ≥ ϵ/8.
If E[N, e, st, π]2 occurs and Sψ+1 is functionally equivalent to Rψ+1, then

it means that νN (Sψ+1) ≥ δ. Using Lemma 13 we have that SLPFACπ factors
successfully on input Sψ+1 with probability p3 ∈ Ω(M ′ · νN (f)/T2,r) = Ω(M ′ ·
ϵ′(1−ϵ′/2)
logN(T2,r)2

) = Ω(ϵ′(1− ϵ′/2)).
Thus, in total, the probability of factoring successfully is at least p1+p2 ·p3 ≥

p3(p1 + p2) ≥ p3 · ϵ′/2 ∈ Ω((ϵ′)2(1− ϵ′/2)). This concludes the proof.

Corollary 2. Let A = (Aπ0 , A1) be an (Sr, T2,r)− GP-RSA algorithm with
advantage ϵ and let Sr · T2,r < 2κ/(16 · ϵ). Let Sf = Sr and Tf =

O(κ2
(κT2,r)

7/2

(1−ϵ′/2)ϵ′)3/2 +T
5
2,rκ

3+T1,r). Then F̃ACH is an (Sf , Tf)-factoring algorithm

and AdvfacRSAGen(F̃AC
H) ∈ Ω(ϵ3) in the random invertible injective function model.

Proof. By Lemma 8, with probability at least ϵ/2 over the random coins of A0,
choice of π, and coins of RSAGen, Aπ0 outputs st and RSAGen outputs (N, e, d)
s.t.

Pr
ComGRA,y←ZN

(E[N, e, st, π]2) ≥ 1− ϵ/4 ≥ ϵ/2 = ϵ′

By Lemma 10, we see that running Algorithm FACπ on input N, e, st takes
time O((κ2

κT2,r

(1−ϵ′/2)ϵ′)
3/2+T 5

2,rκ
3+T1,r) and returns a non-trivial factor ofN with

probability at least Ω((ϵ′)2(1 − ϵ′/2)) over its choice of random coins. Overall,

this implies that F̃ACH runs in online time O((κ2
κT2,r

(1−ϵ′/2)ϵ′)
3/2 + T 5

2,rκ
3 + T1,r)

and returns a factor of N with probability at least Ω(ϵ · (ϵ′)2(1− ϵ′/2)) ∈ Ω(ϵ3).

7 Proof of Theorem 10

Let F̃ACH be the RI-model (S, T)-factoring-with-preprocessing algorithm with
success probabiilty ϵ constructed in Corollary 2. Let π : Z2κ → ZL and let st ∈

36

Aπ0 (1
κ). For each y ∈ ZL such that y ∈ Img(π) define

ŷ := Pr[F̃ACH(N, e, st; coins) makes query for π−1(y)]

where the probability is over (N, e) ← RSAGen and coins ← CoinSp(1κ). For
each π, define Sπ := {y | ŷ ≥ ϵ3/(κ · 2κ)}.7 Note that for a fixed π, taking a
union bound over all Img(π) gives us that for all y′ ∈ Img(π) \ Sπ

Pr[F̃ACH(N, e, st; coins) makes query for π−1(y′)] ≤ ϵ3/κ

again over the choices of (N, e) ← RSAGen and coins. Looking ahead, this will
give us that the failure probability of our simulation of F̃ACH will be the same
as in the factoring-with-processing game. We have the following lemma which
ensures that the size of Sπ can not too be too large relative to the size of the
preprocessing advice S of the factoring routine.

Lemma 11. It holds that Prπ[|Sπ| ≤ (S + 3κ)/κ] ≥ 1− ϵ3/κ.

Proof. Considering the complement event to the above, assume towards con-
tradiction Prπ[|Sπ| > (S + 3κ)/κ] > ϵ3/κ. For arbitrary but fixed π, let
Sπ := {y1, . . . , ym}. For each i ∈ [m], let (Ni, ei, ui := π(zei mod Ni) ̸= yi)
be an input of Aπ1 for which

Pr[A1(Ni, ei, st, ui) queries for π
−1(yi)] ≥ ϵ3/(κ · 2κ)

over the coins of Aπ1 .
8 Note there can be many such ui and we choose one of them

arbitrarily. Let U := {u1, . . . , um}. We claim that there exists the the following
sets: (1) A set S1 := {yi1 , . . . , yiv} ⊆ Sπ. (2) A multiset S2 of inputs with w ≤ v
distinct elements, defined as S2 := {ui1 , . . . , uiv}. (3) S3 := {yj1 , . . . , yjz} ⊆ Sπ
and (4) S4 := {uj1 , . . . , ujz}, such that it holds that v + w + z = m and

S1 ∩ S2 = ∅, S3 ∩ (S1 ∪ S2) = ∅, S4 ⊆ S1.

We construct such S1,S2,S3,S4 as follows, where we assume w.l.o.g. that m is
even.

Algorithm FindSets(Sπ, U):
S1,S2,S3,S4 ← ∅
For i = 1 to m do:

If yi /∈ S1 ∪ S2 and ui /∈ S1 do:
S1 ← S1 ∪ {yi} ; S2 ← S2 ∪ {ui}
If |S1|+ |S2| = m+ 1 then S1 ← S1 \ {yi1} and goto Return
If |S1|+ |S2| = m then goto Return

For i = 1 to m do:
If yi /∈ S1 ∪ S2 then
S3 ← S3 ∪ {yi} ; S4 ← S4 ∪ {ui}
If |S1|+ |S2|+ |S3| = m then break

Return (S1,S2,S3,S4)
7 We leave dependence of Sπ on st implicit.
8 We may assume that at least one ui exists for every yi ∈ Sπ, as the definition of Sπ
ensures that at least one such Ni must exist.

37

Given that yi ̸= ui for all i ∈ [m], it is not hard to see that the sets S1,S2 and
S3 produced by FindSets are disjoint. Now, for every u ∈ S2, let Q(u) := {yi ∈
S1 | ui = u}. Note that

⋃i=w
i=1 Q(ui) = S1. Setting r = κ2 · 2κ/ϵ3, we have that

the image of such π can be described using

S + 2 log(2κ)

+ w(log(L) + log(2κ))

+ v(3 log(2κ) + 3 log(1/ϵ) + log(T) + 2 log(κ) + 3)

+ z(4 log(2κ) + 3 log(1/ϵ) + log(T) + 2 log(κ) + 3)

+ log

(
L− (v + w)

2κ − (v + w)

)
(1)

number of bits via the encoding routine in Figure 10. The corresponding decoding
routine (where we ignore the Failure event occurring) is given in Figure 11.

Specifically, 2 log(2κ) bits come from encoding (w||z) at the beginning of
the encoding routine. w(log(L)) bits come from encoding the u values in the
outer loop. w(log(2κ)) bits come from encoding value of |Q(u)| in the outer
loop, since |S1| ≤ 2κ. v(2 log(2κ)) bits come from encoding (N, e) in the nested
loop. v(log(2κ) + 3 log(1/ϵ) + log(T) + 2 log(κ)) bits comes from encoding the
index, k, of the successful random coins in the innermost loop. v(log(T)) bits
comes from encoding the index ζ of the successful query in the k-th run in the
innermost loop. z(log(2κ)) bits come from encoding the index of uℓ in the set S1.
z(2 log(2κ)) bits come from encoding (N, e) in the second part of the encoding
routine. z(log(2κ)+ 3 log(1/ϵ)+ log(T)+ 2 log(κ)) bits comes from encoding the
index, k, of the successful random coins in the inner loop of the second part
of the encoding routine. z(log(T)) bits comes from encoding the index ζ of the
successful query in the k-th run in the innermost loop.

Moreover, Failure Event 3 occurs with probability at most 1/2, which can be
seen as follows. For every value of i, the innermost loop is run at most 2κ many
times and fails to set good = true with probability at most (1−ϵ/(κ·2κ))r ≤ e−2κ
after r iterations each time it is run. Thus, the probability that for a particular
value of i, good is not set, is at most 2−κ · e−2κ. As there are at most 2κ possible
values for i, the probability that for any of them, good = true is not ever set and
thus Failure Event 3 occurs, is at most (2/e)−2κ ≤ 1

2 .

Assuming parameters are set such that 4 log(2κ) + 3 log(1/ϵ) + log(T) +
2 log(κ) < log(L), we have that (1) is maximized at z = 0, v = w = m/2.
In Lemma 1, we set γ = 1/2 and X to be any subset of all mappings π s.t. X
contains at least an ϵ3/κ fraction of all π that satisfy |Sπ| > m (for some value of
m). Note that X is therefore of size at least κ ·

(
L
2κ

)
/ϵ3. Using the above encoding

38

on elements π of the set X , we obtain contradiction to Lemma 1 when

S + 2 log(2κ)

+m/2(log(L) + 4 log(2κ) + 3 log(1/ϵ) + log(T) + 2 log(κ))

+ log

(
L−m
2κ −m

)
< log

(
L

2κ

)
− 2− 3 log(1/ϵ)− log(κ).

This occurs when

S + 3 log(2κ) < log

(
L · · · (L−m+ 1)

2κ · · · (2κ −m+ 1)

)
−m/2(log(L) + 4 log(2κ) + 3 log(1/ϵ) + log(T) + 2 log(κ)).

As we have set T ≤ 2κ/10, ϵ ≥ 2−κ/6, we obtain in particular that

S + 3 log(2κ) < log

(
L · · · (L−m+ 1)

2κ · · · (2κ −m+ 1)

)
−m/2(log(L) + 4 log(2κ) + 3 log(2κ/6) + log(2κ/10) + 2 log(κ))

= log

(
L · · · (L−m+ 1)

2κ · · · (2κ −m+ 1)

)
−m/2(log(L) + log(24κ) + log(2κ/2) + log(2κ/10) + 2 log(κ))

= log

(
L · · · (L−m+ 1)

2κ · · · (2κ −m+ 1)

)
−m ·

(
log
(
(4κL223κ/5)1/2

))
. (2)

Note that for L ≥ 2κ, we have that L···(L−m+1)
2κ···(2κ−m+1) ≥ (L2κ)

m. Thus, (2) is

implied by

S + 3 log(2κ) < m log

(
L1/2

(4κ)1/2223κ/10

)
.

Setting L = 28κ (so the number of bits in the output of π is 8 times the number of

input bits), we have that for sufficiently large κ, log
(

L1/2

(4κ)1/2223κ/10

)
≥ log(2κ) =

κ. Thus, to avoid contradiction with Lemma 1, we see that for any subset X of
size at least κ ·

(
L
2κ

)
/ϵ3 and for sufficiently large κ, it must hold that m ≤ S+3κ

κ
and the bitlength required to store preimages/images for Sπ s.t. π ∈ X is at
most 9(S+3κ) ∈ O(S). To arrive at a contradiction, we can choose X as the set
of all π s.t. |Sπ| > S+3κ

κ . By assumption, X is of size at least κ ·
(
L
2κ

)
/ϵ3. Thus,

it must contain at least one element π such that |Sπ| ≤ S+3κ
κ , which contradicts

its definition.

Given Lemma 11, we now present a modified factoring algorithm (see Fig-
ure 12) in the RI model. Note that the online portion of this algorithm queries
the forward direction of π a single time on an input that is chosen independently
and uniformly at random. It never queries the backward direction of π.

39

Algorithm EncImπ

Interface: EncImπ outputs an encoding E of the image of labelling function
π : ZN → ZL. EncImπ gets access to random tape ρ.
Initialization:

– Initialize the encoding E to st and count = 0.
– Compute Sπ and U .
– Use FindSets to find sets S2 = {u1, . . . , uw}, S1 =

⋃w
i=1Q(ui), S3 =

{y1, . . . , yz} as above.
– Add encoding of (w||z) to E and parse ρ as ρ = ρ[1], . . . , ρ[m · r].

Set i := 0. Repeat the following steps while i < w:

– Set i := i + 1. Add (ui, |Q(ui)|) to encoding E. Let Q(ui) =
(y1, . . . , y|Q(ui)|).

– Set j = 0. Repeat the following while j < |Q(ui)|:
• Set j := j+1 and good := false. Let (Nj , ej) be the value such that
Aπ1 (st, Nj , ej , ui) queries yj with probability at least ϵ3/(4 ·2κ) over
choice of random tape.

• Set k := 0 and repeat the following steps while k ≤ r and ¬good:
∗ Set k := k + 1.
∗ Run Aπ1 (st, Nj , ej , ui) on random coins ρ[(count) · r + k].
∗ If Aπ1 (st, Nj , ej , ui) queries yj , on the ζ-th query and good :=

false, then set good := true and add (Nj , ej , k, ζ) to the encod-
ing.

• Set count := count+ 1.
• If ¬good, abort. (Call this Failure Event 3; we will show it occurs

with probability at most 1/2.)

At this point the sets of images S1,S2 of sizes v and w have been specified.
Set ℓ := 0. Repeat the following steps while ℓ < z:

– Set ℓ := ℓ+ 1. Let (Nℓ, eℓ, uℓ) be the value such that Aπ1 (st, Nℓ, eℓ, uℓ)
queries yℓ with probability at least ϵ3/(4 · 2κ), where yℓ is the ℓ-th
element in S3, over choice of random tape.

– Recall that uℓ ∈ S1, since yℓ ∈ S3. Let ζ′ be the index of uℓ in S1. Add
ζ′ to the encoding.

– Set good := false.
– Set k := 0 and repeat the following steps while k ≤ r and ¬good:
• Set k := k + 1.
• Run Aπ1 (st, Nℓ, eℓ, uℓ) on random coins ρ[count · r + k].
• If Aπ1 (st, Nℓ, eℓ, uℓ) queries yℓ, on the ζ-th query and good := false,

then set good := true and add (Nℓ, eℓ, k, ζ) to the encoding.
– Set count := count+ 1.
– If ¬good, abort. (Call this Failure Event 3; we will show it occurs with

probability at most 1/2.)

At this point the set of images S1 ∪ S2 ∪ S3 of size m has been specified.
Add an encoding to E of the remaining image of π by specifying the set of
images of as a set of size N −m out of a total of L−m possible elements.

Fig. 10: Image encoding routine.

40

Algorithm DecIm

Interface: DecIm receives as input an encoding E and outputs a set corre-
sponding to the image of π. DecIm gets access to random tape ρ.
Initialization: Initialize the sets S1,S2,S3 to ∅. Intialize count := 0. Parse
the first 2 log 2κ bits of E as (w||z). Parse ρ as ρ = ρ[1], . . . , ρ[m · r].

Set i := 0. Repeat the following steps while i < w:

– Set i := i + 1. Parse the next logL + log 2κ bits of E as (ui, |Q(ui)|).
Add ui to S2.

– Set j = 0. Repeat the following while j < |Q(ui)|:
• Set j := j + 1. Parse the next 3 log 2κ + 3 log ϵ+ log κ+ log T bits

of the encoding as (Nj , ej , k, ζ).
• Run A1(st, Nj , ej , ui) on random coins ρ[count · r+ k]. Set yj to be

the ζ-th query made to π−1. Add yj to S1.
• Set count := count+ 1.

At this point the sets of images S1,S2 of sizes v and w have been specified.
Set ℓ := 0. Repeat the following steps while ℓ < z:

– Parse the next log 2κ bits of E as ζ′. Set uℓ to be the ζ
′-th lexicographical

element in S1.
– Parse the next 3 log 2κ + log T bits of E as (Nℓ, eℓ, k, ζ).
– Run A1(st, Nℓ, eℓ, uℓ) on random coins ρ[count · r+ k]. Set yℓ to be the
ζ-th query made to π−1. Add yℓ to S3.

– Set count := count+ 1.

At this point the set of images S1∪S2∪S3 of sizem has been specified. Parse
the next log(

(
L−m
2κ−m

)
) bits of E as specifying the remaining set of images as

a set of size 2κ −m out of a total of L−m possible elements.

Fig. 11: Image decoding routine.

41

Algorithm ˜FACAlmostPlainH

Offline Phase: Run A0 on input 1κ to obtain state st of size Sr. Simulate
the oracle for A0 by using random injective function H as the labeling
function.
Given st, compute the set Sπ as defined in Lemma 11. Let TableSπ consist
of pairs (x, y), where y ∈ Sπ and x = H−1(y).
The non-uniform advice consists of (st,TableSπ) and has size at most 9Sr.

Online Phase:

– On input N , choose a random e conditioned on N .
– Run FACπ run on input (N, e), st. FACπ will query π at most once when

it runs A1 on (N, e, π(xe)) on an input y = xe mod N that is uniform
random modulo N . When this occurs, return π(y). Whenever FACπ

queries y to π−1, perform a table lookup using TableSπ to find the pre-
image. If y is not in the table, return ⊥.

– Output whatever FACπ outputs.

Fig. 12: Another wrapped Factoring Algorithm in the RI Model.

Corollary 3. Let A = (Aπ0 , A1) be an (Sr, T2,r)-GP-RSA algorithm with advan-

tage ϵ and let Sr ·T2,r < 2κ/(16·ϵ). Let Sf = O(Sr) and Tf = O(κ2
(κT2,r)

7/2

(1−ϵ′/2)ϵ′)3/2 +

T 5
2,rκ

3 + T1,r). Then ˜FACAlmostPlainH is an (Sf , Tf)-factoring algorithm and

AdvfacRSAGen(
˜FACAlmostPlainH) ∈ Ω(ϵ3) in the RI model.

Specifically, Sf ≤ 9 · (Sr + 3κ) and there exists a constant c′ such that for

sufficiently large κ, AdvfacRSAGen(
˜FACAlmostPlainH) ≥ c′ · ϵ3.

The above corollary holds since a run of F̃ACH for H with corresponding

|Sπ| ≤ (Sf + 3κ)/κ differs from a run of ˜FACAlmostPlainH only if FACπ queries
a valid image y that is not contained in TableSπ . Using Lemma 11 and a union
bound over all valid images relative to a fixed π, this occurs with at most

2ϵ3/κ ∈ o(ϵ3) probability. Since the success probability of F̃ACH is Ω(ϵ3), the

success probability of ˜FACAlmostPlainH must therefore be at least Ω(ϵ3).

We next define two “mental experiments.” They don’t make sense as Factor-
ing algorithms, since the modulus N and the input ỹ = π(xe mod N) are fixed
in the pre-processing stage. However, we will argue the following:

– The output distribution of the first mental experiment Algorithm
˜FACMentalExp1H (Figure 13) is identical to Algorithm ˜FACAlmostPlainH.

This can be verified by inspection since the only difference between the two
is the order in which the random variables are sampled.

42

– The success probabilities of the first and second mental experiment (Algo-

rithm ˜FACMentalExp2H defined in Figure 14) differ by at most c′ · ϵ3/2.
– The output distribution of the second mental experiment is identical to

the output distribution of a plain-model factoring algorithm (Algorithm

˜FACPlain defined in Figure 15).

Taken together, this implies that Algorithm ˜FACPlain is a factoring algorithm
in the plain model with success probability at least c′ · ϵ3/2 ∈ Ω(ϵ3).

Algorithm ˜FACMentalExp1H

Offline Phase: Sample (N, e) ← RSAGen(1κ) and x ← Z∗
N . Query H on

y = xe mod N , where this is the same y that will be queried by FACπ in
the Online Phase. Let ỹ be the output.
Run A0 on input 1κ to obtain state st of size Sr. Simulate the oracle for A0

by using random injective function H as the labelling function.
Given st, compute the set Sπ as defined in Lemma 11. Let TableSπ consist
of pairs (x, y), where y ∈ Sπ and x = H−1(y).
The non-uniform advice consists of (st,TableSπ) and has size at most 9Sr.

Online Phase:

– On input N , set e to be as in the preprocessing.
– Run FACπ run on input (N, e), st. FACπ will query π on the same input
y = xe mod N as in the preprocessing. When this occurs, return ỹ.
Whenever FACπ queries y to π−1, perform a table lookup using TableSπ
to find the pre-image. If y is not in the table, return ⊥.

– Output whatever FACπ outputs.

Fig. 13: The first mental experiment in the RI Model.

Let AdvfacRSAGen(
˜FACMentalExp1H) denote the probability that factors of N are

returned by ˜FACMentalExp1H, when (N, e) ← RSAGen(1κ) and x ← Z∗N . Note

that AdvfacRSAGen(
˜FACMentalExp1H) = AdvfacRSAGen(

˜FACAlmostPlainH) ≥ c′ · ϵ3.
The following algorithm fixes ỹ = π(y = xe mod N) to a randomly chosen

value, but then runs A0 on an oracle that randomly re-samples the value of
π(y = xe mod N).

Let AdvfacRSAGen(
˜FACMentalExp2H) denote the probability that factors of N are

returned by ˜FACMentalExp1H, when (N, e)← RSAGen(1κ) and x← Z∗N .

Lemma 12. Let A = (Aπ0 , A1) be an (Sr, T2,r)-GP-RSA algorithm with advan-
tage ϵ and let Sr · T2,r < c · ϵ62κ. Then

AdvfacRSAGen(
˜FACMentalExp1H)− AdvfacRSAGen(

˜FACMentalExp2H) ≤ c′ · ϵ3/2.

43

Algorithm ˜FACMentalExp2H

Offline Phase: Sample (N, e) ← RSAGen(1κ) and x ← Z∗
N . Let y = xe

mod N , where this is the same y that will be queried by FACπ in the Online
Phase. Choose ỹ ← {0, 1}m.
Run A0 on input 1κ to obtain state st of size Sr. Simulate the oracle for A0

by using random injective function H as the labelling function.
Given st, compute the set Sπ as defined in Lemma 11. Let TableSπ consist
of pairs (x, y), where y ∈ Sπ and x = H−1(y).
The non-uniform advice consists of (st,TableSπ) and has size at most 9Sr.

Online Phase:

– On input N , set e to be as in the preprocessing.
– Run FACπ run on input (N, e), st. FACπ will query π on the same input
y = xe mod N as in the preprocessing. When this occurs, return ỹ.
Whenever FACπ queries y to π−1, perform a table lookup using TableSπ
to find the pre-image. If y is not in the table, return ⊥.

– Output whatever FACπ outputs.

Fig. 14: The second mental experiment in the RI Model.

The above implies that AdvfacRSAGen(
˜FACMentalExp2H) ≥ c′ · ϵ3/2 ∈ Ω(ϵ3).

Proof. We first assume that the random injective function H is in fact selected
uniformly at random from the set H of all functions {0, 1}κ → {0, 1}m. This
distribution is denoted by UH. Due to our choice of m = Ω(κ), the probability
that a uniformly selected function is not injective is less than 1/2κ and so does
not affect our result. Recall that x is chosen uniformly at random from ZN ,
which implies that y = xe mod N is also uniformly random in ZN , since the
RSA function is a bijection on ZN .

Further, let UNH denote the restriction of UH to functions with domain ZN .
Thus,

UNH := (D0, . . . ,DN−1),

where each Di, i ∈ ZN is the uniform distribution over {0, 1}κ → {0, 1}m.
We further denote by UNH (y = ỹ) the distribution

UNH (y = ỹ) := (D0, . . . ,Dj−1, ỹ,Dj+1, . . . ,DN−1).

While we have typically used the notation AH
0 and assumed that A0 gets or-

acle access to H, since A0 is computationally unbounded, we can WLOG assume
that the entire oracle H is given to A0 as input, and denote this by A0(H). We
also slightly abuse notation since we will write A0(H) to denote a slightly modi-
fied A0 that receives as input a partial oracle (defined only on ZN) sampled from
UNH or UNH and uses its internal randomness to sample the oracle at positions in
{0, 1}κ \ ZN uniformly at random from {0, 1}m. Such an A0 can be viewed as a

44

randomized mapping from {0, 1}N×m → {0, 1}S′
, where S′ ≤ 10(Sr +3κ) is the

size of the non-uniform advice in algorithm ˜FACAlmostPlainH.

We are now ready to prove the lemma. In fact, we will prove something
stronger: that for every N in the support of RSAGen, the difference in success

probabilities between ˜FACMentalExp1H and ˜FACMentalExp2H is at most c′ · ϵ3/2.

Assume towards contradiction that there is some N in the support of RSAGen
for which the difference in probability that FACπ succeeds in the first and second
mental experiments is greater than c′ · ϵ3/2. Then there exists a distinguisher D
such that

Pr
y←ZN

ỹ←{0,1}m
[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH (y = ỹ)]

− Pr
y←ZN

ỹ←{0,1}m
[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH] > c′ · ϵ3/2.

45

However, we also have

Pr
y←ZN

ỹ←{0,1}m
[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH (y = ỹ)] (3)

− Pr
y←ZN

ỹ←{0,1}m
[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH]

=
1

N

∑
y∈ZN

Pr
ỹ←{0,1}m

[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH (y = ỹ)]

− 1

N

∑
y∈ZN

Pr
ỹ←{0,1}m

[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH]

=
1

N

∑
y∈ZN

Eỹ←{0,1}m [Pr[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH (y = ỹ)]]

− 1

N

∑
y∈ZN

Eỹ←{0,1}m [Pr[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH]]

≤ 1

N

∑
y∈ZN

Eỹ←{0,1}m [|Pr[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH (y = ỹ)]]

− Pr[D(ỹ, st) = 1 : st = A0(H),H ∼ UNH]|] (4)

≤ 1

N

∑
y∈ZN

Eỹ←{0,1}m [||(A0(H),H ∼ UNH (y = ỹ))− (A0(H),H ∼ UNH)||stat] (5)

≤ 1

N

∑
y∈ZN

Eỹ←Dy [||A0(D1, . . . ,Dj−1, ỹ,Dj+1, . . . ,DN)−A0(D1, . . . ,DN)||stat]

(6)

≤
√

10(Sr + 3κ) + 1

N
(7)

≤ c′ · ϵ3/2, (8)

where (4) follows from the triangle inequality, (5) follows from the fact that the
distinguishing advantage of two distributions by any distinguisher D is upper-
bounded by their statistical distance, (6) follows from the definition of UNH and
UNH , (7) follows from Lemma 2, and (8) follows since we are in the case that
Sr · Tr ≤ c · ϵ62κ, and c is set to be a constant such that√

10(c · ϵ62κ) + 30κ+ 1

N
≤
√

10(c · ϵ62κ) + 30κ+ 1

2κ−1

=

√
20(c · ϵ6) + 30κ+ 1

2κ−1

≤ c′ · ϵ3/2.

We thus arrive at contradiction and so the lemma is proved.

46

The following plain model factoring algorithm is identical to the output of
˜FACMentalExp2H. Therefore, it must also succeed with probability at least c′ ·

ϵ3/2.

Algorithm ˜FACPlain

Offline Phase: Choose an injective function H at random.
Run A0 on input 1κ to obtain state st of size Sr. Simulate the oracle for A0

by using random injective function H as the labelling function.
Given st, compute the set Sπ as defined in Lemma ??. Let TableSπ consist
of pairs (x, y), where y ∈ Sπ and x = H−1(y).
The non-uniform advice consists of (st,TableSπ) and has size at most 9Sr.

Online Phase:

– Choose a prime e uniformly at random.
– Run FACπ run on input (N, e), st. FACπ will query π once on a uniform

random input y = xe mod N . When this occurs, return ỹ ← {0, 1}m,
chosen uniformly at random from the range. Whenever a query y to
π−1 is made, do a table lookup using TableSπ to find the pre-image. If
y is not in the table, return ⊥.

– Output whatever FACπ outputs.

Fig. 15: Wrapped Factoring Algorithm in the Plain Model

Corollary 4. Let A = (Aπ0 , A
π
1) be an (Sr, T2,r)− GP-RSA algorithm with

advantage ϵ and let Sr · T2,r < c · ϵ62κ. Let Sf = O(Sr) and Tf =

O(κ2
(κT2,r)

7/2

(1−ϵ′/2)ϵ′)3/2 + T 5
2,rκ

3 + T1,r). Then ˜FACPlain is an (Sf , Tf)-factoring al-

gorithm and AdvfacRSAGen(˜FACPlain) ∈ Ω(ϵ3) in the plain model.

8 Proof of Theorem 7

We begin by recapping Hellman’s construction [18] for inverting a function f :
{0, 1}κ → {0, 1}κ before presenting the main result of this section.

Hellman’s Inversion Algorithm w.r.t. hash functions hi. Hellman’s algorithm is
parameterized by (ℓ,m, t) and achieves space S = ℓ ·m and time T = ℓ · t.

Preprocessing Phase: The preprocessing phase outputs a table Table that con-
sists of ℓ smaller tables Table = Table1, . . . ,Tableℓ. For i ∈ [ℓ], each Tablei
consists of m entries entries [(spji , ep

j
i)]j∈[m], where sp

j
i is chosen at random

from {0, 1}κ, epji = gti(sp
j
i), and gi = hi ◦f , where each hi is an independent

hash function.
Online Phase: To invert an input z ∈ {0, 1}κ, for i ∈ [ℓ] do the following:

47

1. Set ui = hi(z).
2. Repeat for k ∈ [t]: (a) Search for ui in Tablei. If found (i.e. ui = epji for

some j), compute gt−ki (spji). If f(g
t−k
i (spji)) = z, then we have found a

pre-image of z and we say that (i, j) is useful for z. Return gt−ki (spji).
(b) Set ui = gi(ui).

Proof (of Theorem 7). We first construct a factoring algorithm that succeeds
with high probability and uses more space. We will then show how to reduce
the space at the cost of reducing the success probability (but still achieving the
required bounds).

We will invert the multiplication function f := Multκ(x, y) := ⟨x⟩ · ⟨y⟩, where
the brackets indicate encodings of x, y as κ/2-bit unsigned binary integers, for
x, y ∈ {0, 1}κ/2. Our point generator for the function inversion problem with
respect to f = Multκ(x, y) will be G(1κ) which outputs N = pq where p, q
are random κ/2-bit primes. Note that N outputted by RSAGen is identically
distributed to N outputted by G(1κ). Further, for N = pq where N has length
κ, and p, q are κ/2-bit primes, Mult−1κ (N) = {(p, q), (q, p)}; there are no other
inverses. Therefore inverting f = Multκ reveals its correct factorization.

For z ∈ {0, 1}κ, recall that If (z) denotes the number of preimages for z
under f = Multκ. Note that If (z) ≤ d(z), where d is the divisor function–i.e. the
function that returns the number of divisors of an integer (including 1 and the
number itself). We upperbound the collision probability q(f) of f as follows:

q(f) :=

∑2κ−1
z=0 I2f (z)

22κ
≤
I2f (0)

22κ
+

∑2κ

z=1 d
2(z)

22κ
.

An important line of work [24, 26, 32] proved that

2κ∑
z=1

d2(z) = O(2κ · κ3).

Combining the above two equations and using the fact that I(0) ≤ 2κ/2+1 yields

q(f) ≤ 4

2κ
+O

(
κ3

2κ

)
∈ O

(
κ3

2κ

)
. (9)

Applying a theorem of Fiat and Naor (see Theorem 4), we have that for any
choice of S′f , T

′
f such that T ′f ·(S′f)2 ≥ 23κ ·q(f), there exist settings of parameters

(ℓ′,m′, t′) such that Hellman’s technique instantiated with these parameters (and
with standard model hash functions) yields an algorithm that uses space S′f =
ℓ′ ·m′, time T ′f = ℓ′ · t′, and achieves an inversion probability of 1 − 1/2κ; our
analysis is agnostic to the hash function so it can be instantiated as in FN.
Recall that by assumption, S̃ · T̃ ≥ ϵ̃2κ/4, and that by (9) there is a constant c

such that for sufficiently large κ, q(f) ≤ c · κ
3

2κ . We set Sf ′ := 1/ϵ̃ · S̃ and and

Tf ′ := 16 · c · κ3 · T̃ . This setting satisfies the requirement T ′f · (S′f)2 ≥ 23κ · q(f)

48

when S̃ · T̃ ≥ ϵ̃2κ/4, therefore yielding an inversion algorithm that succeeds with
probability 1− 1/2κ.

We now modify the output of the preprocessing stage to reduce the space
requirements, at the cost of lowering the success probability. Let S be the subset
of {0, 1}κ which consists of strings N of the form N = pq, where p, q are primes of
length κ/2. Note that the algorithm described above inverts with some constant
probability, p, on the set S (actually it can be made to succeed with higher
advantage, but this is sufficient for our purposes). For N ∈ S, consider the set UN
of pairs (i, j) such that (i, j) is useful for N (see Step 2(a) of Hellman’s algorithm
at the beginning of the subsection for the definition of useful). Define entry(N) =
(i, j), to be the lexicographically first pair in the set UN , if the set is non-
empty, and define entry(N) = ⊥ otherwise. Let indicator variable Ientry(N)=(i,j)

be equal to 1 if entry(N) = (i, j). Note that
∑
N∈S

∑
(i,j)∈[ℓ′]×[m′] Ientry(N)=(i,j) =∑

(i,j)∈[ℓ′]×[m′]

∑
N∈S Ientry(N)=(i,j) ≥ p|S|. This implies that there must exist a

setR of ϵ̃·ℓ′ ·m′ number of entries (i, j) such that
∑

(i,j)∈R
∑
N∈S Ientry(N)=(i,j) ≥

ϵ̃p|S|. Consider a modified preprocessing algorithm that generates the table as
before, selects this set R of entries, and then outputs the table consisting only
of entries (spji , ep

j
i) such that (i, j) ∈ R to the online stage. Now, the online

stage of the new algorithm is guaranteed to succeed with probability pϵ̃, where
p is constant. Further the new running time Tf is equal to Tf ′ . However, Sf =

ϵ̃ · ℓ′ · m′ = ϵ̃ · Sf ′ = S̃. Note that, as desired, Sf = S̃, Tf ∈ poly(κ) · T̃ , and
ϵf = p · ϵ̃ ∈ Ω(ϵ̃).

Acknowledgements

We thank Nikki Sigurdson for collaboration in the early stages of this work.

References

1. D. Aggarwal and U. Maurer. Breaking RSA generically is equivalent to factoring. In
A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 36–53. Springer,
Heidelberg, Apr. 2009.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and
V. Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

3. D. J. Bernstein and T. Lange. Non-uniform cracks in the concrete: The power
of free precomputation. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 321–340. Springer, Heidelberg, Dec. 2013.

4. D. Boneh. Twenty years of attacks on the rsa cryptosystem. Notices of the Amer-
ican Mathematical Society (AMS), 46(2):203–213, 1999.

5. D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring. In
K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 59–71. Springer,
Heidelberg, May / June 1998.

6. D. R. L. Brown. Breaking rsa may be as difficult as factoring. Eprint Cryptology
Archive, 2006.

49

7. D. Coppersmith. Modifications to the number field sieve. J. Cryptol., 6(3):169–180,
1993.

8. S. Coretti, Y. Dodis, and S. Guo. Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In H. Shacham and A. Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 693–721. Springer, Heidel-
berg, Aug. 2018.

9. S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger. Random oracles and non-
uniformity. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 227–258. Springer, Heidelberg, Apr. / May 2018.

10. H. Corrigan-Gibbs and D. Kogan. The discrete-logarithm problem with prepro-
cessing. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part II,
volume 10821 of LNCS, pages 415–447. Springer, Heidelberg, Apr. / May 2018.

11. I. Damg̊ard and M. Koprowski. Generic lower bounds for root extraction and
signature schemes in general groups. In L. R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 256–271. Springer, Heidelberg, Apr. / May 2002.

12. A. De, L. Trevisan, and M. Tulsiani. Time space tradeoffs for attacks against one-
way functions and prgs. In T. Rabin, editor, Advances in Cryptology – CRYPTO
2010, pages 649–665, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

13. Y. Dodis, S. Guo, and J. Katz. Fixing cracks in the concrete: Random oracles
with auxiliary input, revisited. In J.-S. Coron and J. B. Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 473–495. Springer, Heidel-
berg, Apr. / May 2017.

14. Y. Dodis, I. Haitner, and A. Tentes. On the instantiability of hash-and-sign RSA
signatures. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 112–132.
Springer, Heidelberg, Mar. 2012.

15. A. Drucker. New limits to classical and quantum instance compression. In 53rd
FOCS, pages 609–618. IEEE Computer Society Press, Oct. 2012.

16. A. Fiat and M. Naor. Rigorous time/space tradeoffs for inverting functions. pages
534–541, 01 1991.

17. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applica-
tions. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 33–62. Springer, Heidelberg, Aug. 2018.

18. M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory,
26(4):401–406, 1980.

19. A. Joux, D. Naccache, and E. Thomé. When e-th roots become easier than fac-
toring. In K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages
13–28. Springer, Heidelberg, Dec. 2007.

20. J. Katz, J. Loss, and J. Xu. On the security of time-lock puzzles and timed
commitments. In R. Pass and K. Pietrzak, editors, TCC 2020, Part III, volume
12552 of LNCS, pages 390–413. Springer, Heidelberg, Nov. 2020.

21. G. Leander and A. Rupp. On the equivalence of RSA and factoring regarding
generic ring algorithms. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume
4284 of LNCS, pages 241–251. Springer, Heidelberg, Dec. 2006.

22. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2), 1988.

23. U. M. Maurer. Abstract models of computation in cryptography (invited paper).
In N. P. Smart, editor, 10th IMA International Conference on Cryptography and
Coding, volume 3796 of LNCS, pages 1–12. Springer, Heidelberg, Dec. 2005.

24. M. B. Nathanson. Elementary methods in number theory, volume 195. Springer
Science & Business Media, 2008.

50

25. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165–172, 1994.

26. S. Ramanujan. Some formulae in the analytic theory of numbers. Messenger of
Math, 45:81–84, 1916.

27. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the Association for
Computing Machinery, 21(2):120–126, 1978.

28. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, MIT, 1996.

29. L. Rotem and G. Segev. Generically speeding-up repeated squaring is equivalent
to factoring: Sharp thresholds for all generic-ring delay functions. In D. Micciancio
and T. Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
481–509. Springer, Heidelberg, Aug. 2020.

30. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidel-
berg, May 1997.

31. A. van Baarsen and M. Stevens. On time-lock cryptographic assumptions in abelian
hidden-order groups. In ASIACRYPT, pages 367–397, 2021.

32. B. Wilson. Proofs of some formulae enunciated by ramanujan. Proceedings of the
London Mathematical Society, 2(1):235–255, 1923.

A Proof of Lemma 7

Proof. Let A = (Aπ0 ,A1) be as in the lemma statement. We set r1 := ⌈2 logN/ϵ′⌉
and r2 := ⌊ ϵN

2T2,r
⌋. We will now use A1 to construct a compression algorithm

Encπ.

Analysis of Encπ. The length of the encoding E can be calculated as follows.
Encπ initially stores st, N in E, which are of size at most Sr and logN , respec-
tively. It then stores an encoding of I of length log

(
L
N

)
. In each of the r2 = ⌊ ϵ

′N
2T2,r
⌋

runs of the outer loop, Encπ stores a log(r1) bit encoding of the index among the
r1 runs of the inner loop that sets the condition good to true. It also stores the
index ℓ among the roots of the polynomial f s.t. f(y) = 0, where y is the value be-
ing encoded in that repetition of the outer loop. This takes another log(J) bits. It
also stores the index ζ ∈ [ψ+1] of the polynomial with respect to which y is nega-
tively oriented, and where ψ+1 ≤ T2,r. This takes another log(T2,r) bits. So, over-
all, the outer loop adds at most r2·(log(r1)+log(J)+log(T2,r)) = r2 log(r1·J ·T2,r)
bits to E in this manner. Note that we choose J in such a way to ensure that
r1 · J · T2,r is a power of 2.

Next, we consider the number of bits added to E via Table. Note that values
are added to Table in the order of iterating through the loops and so we can
encode them slightly more efficiently than using the trivial encoding by using
values already stored in Table. More concretely, suppose that Table has size
|Table| at the time when a new value is to be added to Table. Then we can store
this value using only log(N − |Table|) many (amortized) bits, (rather than N
many) by excluding all of the values already in Table.

51

For i ∈ [1, . . . , r2], let ti be the number of table entries modified in the i-th
run; define t0 := 0. Note that ti ≤ T2,r. During the ith run of the outer loop,
Table will be of size t1+ ...+ti+ℓ−1 when adding the ℓth value of run i to Table.
This means that we can encode this value using log(N−(ℓ+t1+...+ti−1)) many

bits. Overall, we get at most r2+
∑r2
m=2

∑tm−1
ℓ=0 log(N − (ℓ+ t1+ · · ·+ tm−1)) for

the size of Table, where the additive r2 comes from packing the ti entries into a
single encoding with an integer number of bits.

Finally, we can add the remaining points of the mapping π to E using log(N−
(t1 + · · · + tr2)) number of bits to specify the mapping, giving a final term of∑N−1
k=(t1+···+tr2)

log(N − k). Hence, we obtain overall:

|E| ≤

Sr + logN + log

(
L

N

)
+ r2(log(r1JT2,r) + 1) +

N−1∑
k=t1+···+tr2

log(N − k)

+

r2∑
m=1

tm−1∑
ℓ=0

log(N − (ℓ+ t1 + · · ·+ tm−1))

= Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

N−1∑
k=t1+···+t⌊ ϵ′N

2T2,r
⌋

log(N − k).

+

⌊ ϵ′N2T2,r
⌋∑

m=1

tm−1∑
ℓ=0

log(N − (ℓ+ t1 + · · ·+ tm−1))

To upper bound this encoding length in the worst case, we examine the size of
an element added to E as a result of the ith run of the outer loop. We distinguish
two types of elements. The first type are entries of Table; these are added after
the outer loop has terminated and they are size at least log(N − (t1 + · · ·+ tr2))
(amortized). The second type of element that is added are the pointers k, ℓ, and
ζ; they take up a combined space of at most log(r1JT2,r). Since elements of the
second type are larger than the size of the first type, it is clear that we want to
add as few of the latter type as possible, while as adding as many of the former
type as possible in order to maximize the size of E. Hence, we want to maximize
the number of added elements ti in each of these repetitions. We therefore set
for i ∈ [d], ti = T2,r.

52

Thus, we have:

Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+

⌊ ϵ′N2T2,r
⌋∑

m=1

tm−1∑
ℓ=1

log(N − (ℓ− 1 + t1 + · · ·+ tm−1)) +

N−1∑
k=t1+···+t⌊ ϵ′N

2T2,r
⌋

log(N − k)

≤ Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)+

⌊ ϵ′N2T2,r
⌋∑

m=1

T2,r−1∑
ℓ=1

log(N − (ℓ− 1 + (m− 1)T2,r)) +

N−1∑
k=⌊ ϵ′N2T2,r

⌋·T2,r

log(N − k)

= Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+

⌊ ϵ′N2T2,r
⌋∑

m=1

T2,r−1∑
ℓ=1

log(N − (ℓ− 1 + (m− 1)T2,r)) +

N−⌊ ϵ′N2T2,r
⌋·T2,r∑

k=1

log(k).

Note that ifm = 1, then log(N−(ℓ+(m−1)T2,r)) = log(N−ℓ) takes values from
log(N−1), ..., log(N−T2,r+1), as ℓ varies. Similarly, if m = 2, then log(N−(ℓ+
T2,r)) = log(N − ℓ− T2,r) takes values log(N − 1− T2,r), . . . , log(N − 2T2,r +1),
as ℓ varies. More generally, log(N − (ℓ+(m−1)T2,r)) takes all values log(N − j)

53

s.t. j ∈ [ϵ′N/2] and T2,r ∤ j. Hence, we continue with

Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[⌊ ϵ′N2T2,r

⌋·T2,r]

T2,r∤j

log(N − j + 1) +

N−⌊ ϵ′N2T2,r
⌋·T2,r∑

k=1

log(k)

= Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[⌊ ϵ′N2T2,r

⌋·T2,r]

log(N − j + 1)

−
∑

j∈[⌊ ϵ′N2T2,r
⌋·T2,r]

T2,r|j

log(N − j + 1) +

N−⌊ ϵ′N2T2,r
⌋·T2,r∑

k=1

log(k)

= Sr + logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+
∑
j∈[N]

log(N − j + 1)−
∑

j∈[⌊ ϵ′N2T2,r
⌋·T2,r]

T2,r|j

log(N − j + 1)

≤ Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+
∑
j∈[N]

log(N − j + 1)−
∑

j∈[⌊ ϵ′N2T2,r
⌋·T2,r]

T2,r|j

log(N − j)

= Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1)

+
∑
j∈[N]

log(N − j + 1)− log


∏

j∈[⌊ ϵ′N2T2,r
⌋·T2,r]

T2,r|j

(N − j)


= Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[N]

log(N − j + 1)

− log

 ∏
j∈[⌊ ϵ′N2T2,r

⌋]

(N − j · T2,r)


≤ Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[N]

log(N − j + 1)

− log

 ∏
j∈[⌊ ϵ′N2T2,r

⌋]

(
T2,r

(⌊
N

T2,r

⌋
− j
))54

The second to last step in the above derivation follows from the fact that we can
write any m ∈ [⌊ ϵ

′N
2T2,r
⌋ ·T2,r] s.t. T2,r | m as m = j ·T2,r, where j ∈ [⌊ ϵ

′N
2T2,r
⌋]. We

continue with

=Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[N]

log(N − j + 1)

− log

(T2,r)
⌊ϵ′N/(2T2,r)⌋

∏
j∈[⌊ ϵ′N2T2,r

⌋]

(⌊
N

T2,r

⌋
− j
)

=Sr + 2 logN + log

(
L

N

)
+

⌊
ϵ′N

2T2,r

⌋
(log(r1JT2,r) + 1) +

∑
j∈[N]

log(N − j + 1)

− log

(
⌊N/T2,r⌋!

(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r⌋))!
· (T2,r)⌊ϵ

′N/(2T2,r⌋)
)

=Sr + 2 logN + log

(
L

N

)
+ (log((r1JT2,r) + 1)⌊ϵ

′N/(2T2,r)⌋) + log(N !)

− log

(
⌊(N/T2,r)⌋!

(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r)⌋)!
· (T2,r)⌊ϵ

′N/(2T2,r)⌋
)

=Sr + log

(
L

N

)
+ log

(
N !N2(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r)⌋)!(2r1JT2,r)⌊ϵ

′N/(2T2,r)⌋

⌊(N/T2,r)⌋! · (T2,r)⌊ϵ
′N/(2T2,r)⌋

)

≤ log

(
2Sr ·N ! ·N2(2r1J)

⌊ϵ′N/(2T2,r)⌋

(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r)⌋)⌊ϵ′N/(2T2,r)⌋

)
.

Next, we analyze Encπ’s failure probability.

Claim. Failure Event 2.1 occurs with probability at most 1/2 over the random-
ness of Encπ.

Proof. Recall that we have set r1 = 2 logN/ϵ′. Moreover, we have assumed that
PrComGRA[A1],y←ZN [E[N, e, d, st, π]1] ≥ ϵ′. To bound the probability of Event 2.1,
we consider the binary matrix Q defined for fixed π, N , and the randomized
algorithm ComGRA[A1]

π in the following manner:

– Row i of Q is labelled with π(y), where y ∈ ZN is such that π(y) is the ith
value in lexicographical order in the range of π.

– Column j of Q is labelled with the jth bitstring ρ ∈ {0, 1}t in lexicographical
order, where t denotes the number of random coins ComGRA[A1]

π takes in.
– Let π(y) and ρ correspond to rows i and column j. Qi,j = 1 if ComGRA[A1]

π

on input π(y) and random coins ρ outputs a set of SLPs over ZN such that
y is (δ,N)-negatively oriented with respect to at least one of them. Qi,j = 0
otherwise.

If ComGRA[A1]
π succeeds with probability ϵ′ over random choice of π(y), ρ

then at least ϵ′ fraction of Q’s entries are 1. Furthermore, a random run of

55

ComGRA[A1]
π on input π(y) for random y ∈ ZN corresponds to choosing a

point in Q uniformly at random.
Consider a randomized procedure that in each step adds an entry (y, π(y))

to Table, where Table is initialized as empty.
Now consider the submatrix Q′ of Q with rows labeled by values in Y where

π(y) ∈ Y if y ∈ ZN and (y, π(y)) /∈ Table.
Then the submatrix Q′ has at least ϵ′ ·N ·2t−|Table| ·2t = (ϵ′ ·N −|Table|)2t

number of 1’s. If at each step of the randomized procedure, the size of Table is
upper bounded by ϵ′N/2, then at each step, the submatrix Q′ corresponding to
Y × {0, 1}t has at least (ϵ′N/2)2t number of 1’s. Further, the fraction of 1’s in
Q′ is at least

(ϵ′ ·N − |Table|)2t

(N − |Table|)2t
=
ϵ′ ·N − |Table|
N − |Table|

≥ ϵ′ ·N − ϵ′N/2
N

= ϵ′/2.

Further, the fraction of 1’s at each step is at least ϵ′/2.

Thus, Failure Event 2.1 occurs with probability at most (1−ϵ′/2)r1 ≤ e(−ϵ′r1/2) =
e(−2ϵ

′ log(N)/(2ϵ′)) ≤ 1/N in any repetition of the inner loop. As r2 = ϵ′N/(2T2,r),
by a union bound, the probability that any of the r2 repetitions of the outer loop
produce Event 2.1, is at most Nϵ′/(2T2,r) · 1/N ≤ 1/2. ⊓⊔

Recall that J is the maximum integer that satisfies J ≤ ⌊N/T2,r⌋−⌊ϵ′N/(2T2,r)⌋
8r1

and r1JT2,r is a power of two. Note that we can lower bound J by J ≥ (1−ϵ′/2)N
32r1T2,r

.

Plugging the value of J gives us that the length of the encoding is upperbounded
as follows:

log

(
2Sr ·

(
L
N

)
·N ! ·N2(2r1J)

⌊ϵ′N/(2T2,r)⌋

(⌊N/T2,r⌋ − ⌊ϵ′N/(2T2,r)⌋)⌊ϵ′N/(2T2,r)⌋

)

≤ log

(
2Sr ·

(
L

N

)
·N ! ·N2(1/4)⌊ϵ

′N/(2T2,r)⌋
)

= Sr + log

(
L

N

)
+ log(N !) + 2 log(N)− log

(
4⌊ϵ

′N/(2T2,r)⌋
)

= Sr + log

(
L

N

)
+ log(N !) + 2 log(N)− 2⌊ϵ′N/(2T2,r)⌋.

Thus, Encπ does not fail with probability at least 1/2 over its randomness and
returns an encoding E of the appropriate size. Since by assumption, Sr · T2,r ≤
ϵ′2κ/4, and since N ≥ 2κ/2, we have Sr · T2,r ≤ ϵ′N/2. Substituting Sr ≤
ϵ′N/(4T2,r) in the above expression yields, |E| < log

(
L
N

)
+ log(N !) + 2 log(N)−

ϵ′N/(2T2,r).

B SLP Factoring Algorithm

In this section we present SLPFACπ, which is a slightly modified version of Al-
gorithm 1 due to Aggarwal and Maurer [1] and is used in one of the cases of

56

the proof of our main result. In this algorithm, we let H(b(x), c(x)) denote the
non-trivial, non-invertible element output when Euclid’s algorithm is executed
on ZN [x] with input b(x) and c(x). The only difference from Algorithm 1 of
Aggarwal and Maurer [1] is that we repeat their entire algorithm M ′ times with
independent random coins in order to improve the success probability.

Algorithm SLPFACπ

Input: A T -step SLP S, a parameter M ′, and an integer N .
Output: A factor of N .

1. Repeat M ′ times, each with a freshly chosen random tape:
(a) Choose a monic polynomial h(x) uniformly at random from all

monic polynomials of degree T in ZN [x].
(b) Compute h′(x), the derivative of h(x) in ZN [x].
(c) Choose a random element r(x) ∈ ZN [x]/(h(x)).
(d) Compute z(x) = f(r(x)) in ZN [x]/(h(x)) using the instructions of

SLP S (where f is the polynomial function computed by SLP S).
(e) Run Euclid’s algorithm in ZN [x] on h(x) and z(x). If this fails,

return gcd(N,H(h(x), z(x))).
(f) Run Euclid’s algorithm in ZN [x] on h(x) and h′(x). If this fails,

return gcd(N,H(h(x), h′(x))).

Fig. 16: Modified version of Algorithm 1 from Aggarwal and Maurer

Lemma 13. Algorithm SLPFACπ takes as input N = pq where p, q > 3 are
primes, as well as T ∈ N, a T -step SLP S and, for any M ∈ N such that
M · νN (f)/(8T) ≤ 1/2, runs in time O(M · T 3κ2), and does the following: if
(PS(x), QS(x)) = (fS(x), 1), fS(x) ̸≡ 0 mod N, then SLPFACπ outputs a non-
trivial factor of N with probability at least Ω (M · νN (fS)/(16T)).

Proof. Algorithm 1 from [1] is identical to lines all lines of SLPFACπ inside the
loop (namely, lines 1.(a) through 1.(f)). The analysis of Algorithm 1 [1] gives
us that each run of this loop takes O(T 3 log2N) time, and if the given SLP
S is such that (PS(x), QS(x)) = (fS(x), 1) and f(x) ̸≡ 0 mod N, then the

algorithm returns a factor of N with probability at least
νN (fS)

8T
. Then the

runtime of SLPFACπ is O(M · T 3 log2N) and its failure probability is at most(
1− νN (fS)

8T

)M
=

(
1− νN (fS)

8T

)8T/νN (fS)·M ·νN (fS)/(8T)

= e−M ·νN (fS)/(8T)

≤ 1−M · νN (fS)/(16T),

where the inequality follows due to the fact that e−2x ≤ 1−x for x ≤ 1/2. Thus
the success probability is at least M · νN (fS)/(16T).

57

