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Abstract. Lightning Network (LN), the most widely deployed payment
channel for Bitcoin, requires channel parties to generate and store dis-
tinct revocation keys for all n payments of a channel to resolve fraudulent
channel closures. To reduce the required storage in a payment channel,
eltoo introduces a new signature type for Bitcoin to enable payment ver-
sioning. This allows a channel party to revoke all old payments by using
a payment with a higher version number, reducing the storage complex-
ity from O(n) to O(1). However, eltoo fails to achieve bounded closure,
enabling a dishonest channel party to significantly delay the channel
closure process. Eltoo also lacks a punishment mechanism, which may
incentivize profit-driven channel parties to close a payment channel with
an old state, to their own advantage.
This paper introduces Daric, a payment channel with unlimited lifetime
for Bitcoin that achieves optimal storage and bounded closure. Moreover,
Daric implements a punishment mechanism and simultaneously avoids
the methods other schemes commonly use to enable punishment: 1) state
duplication which leads to exponential increase in the number of transac-
tions with the number of applications on top of each other or 2) dedicated
design of adaptor signatures which introduces compatibility issues with
BLS or most post-quantum resistant digital signatures. We also formalise
Daric and prove its security in the Universal Composability model.

Keywords: Bitcoin · scalability · Payment channel · Lightning network
· Watchtower

1 Introduction

Due to its permissionless nature, Bitcoin suffers from poor transaction through-
put [13,19,30]. Payment channel constitutes a promising solution, which allows
two parties to perform several transactions without touching the blockchain ex-
cept for creating and closing the channel. In more details, two parties create a
payment channel by locking Bitcoins in a shared address. Then, they pay each
other arbitrarily many times by exchanging authenticated off-chain transactions
that spend the shared address and split the channel funds among parties. Each
party can finally close the channel by publishing the last authenticated transac-
tions on the blockchain. Payment channels can also be linked to form a payment
channel network (PCN) where each payment can be routed via intermediaries.
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Since each party’s share of coins in a channel changes over time, one might
attempt to close the channel with an old state to maximize her profit. Lightning
Network [29]–the most popular payment channel network–adopts a punishment
mechanism to prevent parties from acting dishonestly. In this network, upon
authorizing a new state, channel parties exchange some revocation secrets to
revoke the previous state. Then, if a party publishes a revoked state, her counter-
party, who is supposed to be always online, uses the corresponding revocation
secrets to take all the channel funds. Parties might also delegate the punishing
job to a third party, called the watchtower [29].

Although elegantly designed, the Lightning Network has some shortcomings.
Firstly, since channel parties must store all the revocation secrets, received from
their counter-parties, their storage amount increases linearly with the number
of channel updates. Moreover, to detect and punish the misbehaving party, the
channel state is duplicated meaning each party has its own copy of the state.
Then, when for adding an application (e.g. Virtual channel [9]) on top of the
channel, parties have to split their channel into sub-channels, the state of each
sub-channel is duplicated and it must propagate on both duplicates of the parent
channel. Thus, state duplication causes the number of transactions to exponen-
tially rise with the number of applications k built on top of each other [8].

Towards a different direction, the payment channel eltoo [18] introduces
ANYPREVOUT [17] (also known as NOINPUT) as a new Bitcoin signature type to
deploy the concept of versioning. This allows channel parties to override the
current channel state by creating a state with a higher version number, which
can be published upon fraud. So, channel parties in eltoo do not store any revo-
cation secrets from old channel states. This simplifies the key management and
offers more affordable watchtowers as the transaction with the highest version
invalidates all previous states. Furthermore, if an honest party forgets about an
update and publishes an outdated state, it does not result in the loss of funds.

However, eltoo is incentive incompatible because its lack of punishment might
encourage a dishonest party to publish an old state; Either the other side corrects
it or the dishonest party wins [28]. The only discouraging factor–the fee for
publishing the old state–is also determined by the dishonest party. Thus, she
can set it to the minimum possible value, i.e. few cents for some blockchains
such as Bitcoin hard forks (e.g. Litecoin and Bitcoin Cash) and less than 1 USD
for Bitcoin. Moreover, the transaction fee is independent of the channel capacity
(i.e. the total funds in the channel). Therefore, even for payment channels with
huge capacity of several BTCs (e.g., channels listed in [3]), the dishonest party’s
cost will be still below 1 USD (See Section 6.2 for detailed analysis). Additionally,
enforcing a large transaction fee or restricting the channel capacity (proposed in
[6]) might be unfavourable to the honest party.

Furthermore, a dishonest party in eltoo might publish multiple outdated
states to delay the channel closure process [5]. Thus, eltoo fails to achieve bounded
closure, i.e. honest party is not guaranteed that the channel closure completes
within a bounded time. This compromises the security of time-based payments,
e.g. Hash-Time Lock Contract (HTLC) (See Section 6.1 for further analysis).
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Therefore, the main motivation of this paper is designing a Bitcoin payment
channel that (1) provides optimal storage, (2) achieves bounded closure, (3)
provides incentive compatibility, and (4) avoids state duplication.

1.1 Contributions

The contributions of the paper are as follows:

– We present a new Bitcoin payment channel, called Daric, which (i) is prov-
ably secure in the Universal Composability (UC) framework, (ii) achieves
constant size storage for both channel parties and the watchtower, (iii)
provides bounded closure, (iv) provides punishment mechanism and hence
achieves incentive compatibility, (v) avoids state duplication without needing
any particular property (e.g. adaptor signature properties) for the underly-
ing digital signature, and (vi) attains unlimited lifetime, given that channel
parties on average pay each other at most once per second. Table 1 compares
Daric with other Bitcoin payment channels.

Table 1. Comparison of different payment channels with n channel updates and k
recursive channel splitting.

Scheme Party’s Watch. Lifetime Incent. # of Ada. Sig. Bnd.
St. Req. St. Req. Compat. Txs Avoid. Cls.

Lightning† [29] O(n) O(n) Unlimited Yes O(2k) Yes Yes

Generalized† [8] O(n) O(n) Unlimited Yes O(1) No Yes

Outpost [23] O(n) O(log(n)) Limited Yes O(2k) Yes Yes
FPPW [26] O(n) O(n) Unlimited Yes O(1) No Yes

Cerberus [11] O(n) O(n) Unlimited Yes O(2k) Yes Yes

Sleepy† [10] O(n) N/A Limited Yes O(2k) Yes Yes

eltoo [18] O(1) O(1) Unlimited§ No O(1) Yes No

Daric (this work) O(1) O(1) Unlimited§ Yes O(1) Yes Yes

†: If parties pre-generate n keys in a merkle tree, their storage requirements decrease
to O(log(n)) but the channel lifetime becomes limited to n channel updates.

§: Given that the channel update rate is at most one update per second.

– We compare Daric and eltoo and show Daric is robust against an attack [5]
to eltoo, that we also formalize in this paper. We further perform a cost
benefit analysis to assess the attacker’s revenue in practice. We also show (i)
Daric provides a higher deterrent effect against profit-driven attackers than
eltoo and (ii) unlike eltoo, Daric’s deterrent effect is flexible.

– We compare Daric, eltoo, Lightning, Generalized, Sleepy, Cerberus, FPPW
and Outpost channels with respect to the amount of data that is published
on the blockchain in different channel closure scenarios (See Table 3). We
show that Daric in the dishonest closure scenario outperforms Lightning with
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at least 1 HTLC output as well as all other schemes. In the non-collaborative
closure scenario, Daric outperforms Lightning with at least 7 HTLC outputs
as well as Generalized, eltoo and FPPW. Moreover, we compute the number
of operations required for each channel update and show that (i) Unlike
Lightning, Daric values are independent of the number of HTLC outputs m
and (ii) Daric is comparable with other schemes (see Table 3).

1.2 Related works

The first payment channel [31] is unidirectional and hence cannot continue work-
ing if the payer’s balance is depleted. DMC [19] uses decrementing timelocks but
suffers from limited channel lifetime. For Lightning channel [29], an existing
state is replaced upon authorizing a new state and then revoking the previous
one where each party has his own version of transactions. Generalized channel
[8] uses adaptor signatures to distinguish the publisher of a revoked state from
her counter-party. In this way, Generalized channel avoids state duplication.

Outpost [23], Cerberus [11], FPPW [26] and the very recent work Garri-
son [27] are other payment channels, which focus on improving their watch-
tower properties. Sleepy channel [10] is a bi-directional payment channel without
watchtowers where parties can go offline for prolonged periods of time. Towards
a different direction, Teechain [25] requires channel parties to possess Trusted
Execution Environment (TEE).

2 Background and Notations

2.1 Outputs and Transactions

Throughout this work, we define different attribute tuples. Let U be a tuple of
multiple attributes including the attribute attr. To refer to this attribute, we
use U.attr. Our focus in this work is on Bitcoin or any other blockchains with
Unspent Transaction Output (UTXO) model. In this model, units of value–which
we call coins–are held in outputs. Each output contains a condition that needs
to be fulfilled to spend the output. Satisfying a condition might require one
or multiple parties’ signatures. Such a condition contains public keys of all the
involved parties and we say those parties own the output. A condition might also
have several subconditions, one of which must be satisfied to spend the output.

A transaction changes ownership of coins, meaning it takes a list of existing
outputs and transfers their coins to a list of new outputs. To distinct between
these two lists, we refer to the list of existing outputs as inputs. A transaction TX

is formally defined as the tuple (txid, Input, nLT,Output,Witness). The identifier
TX.txid ∈ {0, 1}∗ is computed as TX.txid := H([TX]), where [TX] is called the
body of the transaction defined as [TX] := (TX.Input, TX.nLT, TX.Output) and H
is a hash function, which is modeled as a random oracle. The attribute TX.nLT
denotes the value of the parameter nLockT ime, where TX is invalid unless its
nLockT ime is in the past. The attribute TX.Input is a list of identifiers for all
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inputs of TX. The attribute TX.Output is a list of new outputs. The attribute
TX.Witness is a list where its ith element authorizes spending the output that
is taken as the ith input of TX. We also use [TX] and TX to denote (TX.nLT,
TX.Output) and (TX.nLT, TX.Output, TX.Witness), respectively.

Floating Transactions Each signature in a Bitcoin transaction contains a flag,
called SIGHASH, which specifies which part of the transaction has been signed.
Typically, signatures are of type SIGHASH ALL, meaning the signature authorizes
all inputs (i.e. references to previous outputs) and outputs. The SIGHASH of type
ANYPREVOUT indicates that the signature does not authorize the inputs. This
allows the signer to refer to any arbitrary UTXO whose condition is met by the
transaction witness data. Such a transaction is called a floating transaction.

Timelocks The relative timelock of T rounds (a round in our paper is considered
the same as the round in [8,10]) in an output condition is denoted by T+ and
means the output cannot be spent unless at least T rounds passed since the
output was recorded on the blockchain. The absolute timelock of i in an output
condition is shown by i≥ and means the output cannot be spent unless the
nLockT ime parameter in the spending transaction is equal to or greater than i.
Since a transaction may only be recorded on the blockchain if its nLockT ime is
in the past, i≥ in an output condition ensures the output cannot be spent unless
i is expired (i.e. i is in the past). Table 2 summarizes the notations.

Table 2. Summary of notations

Notation Description

TX Transaction TX = (txid, Input, nLT,Output,Witness)
TX Tuple (TX.nLT, TX.Output, TX.Witness)
[TX] Tuple (TX.Input, TX.nLT, TX.Output)

[TX] Tuple (TX.nLT, TX.Output)
T+ The relative timelock of T rounds

i≥ The absolute timelock of i

Representation of Transaction Flows We use charts to illustrate transac-
tion flows. As Fig. 1 shows, doubled edge and single edge rectangles represent
published and unpublished transactions, respectively. Since the output of TX

with the value of a+ b has two subconditions, it is denoted by a diamond shape
with two arrows. One of the subconditions can be fulfilled by both A and B and
is relatively timelocked by T rounds and another subcondition can be fulfilled by
C and contains an absolute timelock of i. Dotted arrow to TX′′ shows it is a float-
ing transaction whose signature matches the public key pkC . This transaction
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is denoted by TX′′ to emphasize that since it is a floating transaction, its input
is unspecified and can be any output with matching condition. The nLockT ime
parameter for TX and TX′ is 0, so it is not shown inside these transactions.

Fig. 1. A sample transaction flow.

2.2 Payment Channel

A payment channel between two parties Alice (or A) and Bob (or B) allows them
to perform a number of transactions without publishing every single transaction
on the blockchain. To create a channel with channel capacity of a + b coins, A
and B respectively deposit a and b coins into a joint address that is controlled
by both parties. Parties can update their balance in the channel off-chain by
agreeing on a new way to split the channel funds. Each party can close the
channel at any time by enforcing the latest channel state on the blockchain
where dispute between channel parties are resolved on the blockchain.

Lightning Channels [29] To create a Lightning channel, A and B publish a
funding transaction to respectively deposit a and b coins into a joint address.
Each party also has its own copy of an off-chain transaction, called the commit
transaction, that spends the joint address and splits the channel funds between
A and B accordingly, i.e. each commit transaction has two outputs: one output
holding a coins owned by A and the other output holding b coins owned by B.
Each party can publish the commit transaction to close the channel, but parties
typically create new commit transactions to update their shares in the channel.

As one may submit an intermediate state (which is already replaced by a
later state) to the blockchain, the channel parties will need to punish such mis-
behaviours. Thus, after each channel update, parties revoke their previous state
by exchanging two revocation transactions (one version for each party) that take
the output of the old commit transactions and give the balance of the dishonest
party to the honest party. However, the honest party (e.g. A) must publish the
revocation transaction before the dishonest party (e.g. B) can claim his balance.
So, to give precedence to the revocation transaction, B has to wait for a relative
timelock of T rounds (in practice, one day) before he can claim his output. This
gives some time to A to publish the revocation transaction.
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eltoo [18] An eltoo channel is created like a Lightning channel, but each state is
represented by two transactions: (i) the update transaction and (ii) the settlement
transaction, where both parties have the same version of these two transactions.
Each update transaction is a floating transaction that transfers all the channel
funds to a new joint address. The update transaction’s output can be spent by
its corresponding settlement transaction, which splits the channel funds among
parties. If A submits an old update transaction, she has to wait for a relative
timelock of T rounds before she can publish the corresponding settlement trans-
action. It gives some time to B to publish the latest update transaction (which
is a floating transaction) and override the already published update transaction.

3 Solution Overview

To provide a high level overview of our solution, we start by reviewing the
limitations of the Lightning channel and then gradually present our work.

Revocation Per State Parties’ and their watchtower’s storage in a Lightning
channel increases over time as they should store some revocation-related data
for each revoked state. Our main idea to reduce their storage is transforming the
revocation transactions into floating transactions. Thereby, participants only
need to store the latest revocation transaction with the largest version number
and use it upon fraud. However, for a Lightning channel, (i) the monetary value
of each revocation transaction typically differs from one state to another, and
(ii) each commit transaction might have multiple HTLC outputs and hence the
number of revocation transactions might also differ from one state to another.
So, since revocation transactions of different states differ in value and number,
it is infeasible to replace them all with the latest revocation transactions.

Therefore, our first modification is following the punish-then-split mecha-
nism, introduced in [8]. According to this mechanism, the commit transaction
sends the channel funds to a new joint output, which is controlled by both
parties. Output of this commit transaction can be spent by its corresponding
split transaction after T rounds where outputs of the split transaction split the
channel funds between A and B. If A publishes a revoked commit transaction,
B must spend its output within T rounds with the corresponding revocation
transaction. This revocation transaction gives all the channel funds to B. Fig.
2 depicts the transaction flows for this channel where each party stores a single
revocation transaction with fixed monetary value (i.e. a+ b coins) per state.

Revocation Per Channel In the scheme, depicted in Fig. 2, channel parties
need to store a revocation transaction for each revoked state. Therefore, storage
requirements of channel parties (or their watchtower) increase with each channel
update. To solve this issue, we transform revocation transactions into floating
transactions, i.e. the signatures in a revocation transaction, held by A, are of type
ANYPREVOUT and meet the output condition of all commit transactions, held by
B, and vice versa. It allows parties to only store the last revocation transaction.
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Fig. 2. Transaction flows for a Lightning channel with punish-then-split mechanism
where TXFU denotes the funding transaction and TXACM,i, TX

A
SP,i and TXARV,i (or respectively

TXBCM,i, TX
B
SP,i and TXBRV,i) denote the commit, split and revocation transactions held by

A (or respectively held by B) for state i.

Avoiding State Duplication Since each state in the introduced scheme con-
tains two split transactions (one for each party), the scheme suffers from state
duplication. To avoid this, we transform split transactions into floating trans-
actions. Then, each state contains one split transaction (held by both parties),
which spends any of two commit transactions of that state.

State Ordering Since split and revocation transactions are floating, it must be
guaranteed that the latest commit transaction cannot be spent using any split
or revocation transaction from previous states. Otherwise, the honest party, who
has published the latest commit transaction, might lose some funds in the chan-
nel. To achieve this requirement, we repurpose [18] the nLockT ime parameter of
split and revocation transactions to store the state number : the number of times
the channel has been updated to date. Furthermore, we add the state number
to the output condition of each commit transaction as an absolute timelock.
Then, since the absolute timelock in output condition of the last commit trans-
action would be larger than the nLockT ime parameter in any split or revocation
transaction from previous states, the mentioned requirement is met.

Putting Pieces Together The transaction flow for state i of Daric is depicted
in Fig. 3. Let channel be in state n. To close the channel, each party (e.g. A) can
publish the latest commit transaction (e.g. TXACM,n), wait for T rounds and finally
publish the latest split transaction TXSP,n. There is no revocation transaction for
the latest state. If party B publishes a revoked commit transaction (i.e. TXBCM,i
with i < n), then party A instantly publishes the latest revocation transaction
TXARV,n−1 to take all the channel funds.
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Fig. 3. Transaction flows for state i of a Daric channel.

4 Protocol Description

This section presents our protocol using the transaction flows depicted in Fig. 3.
The lifetime of a Daric channel can be divided into 4 phases including create,
update, close, and punish. We introduce these phases through sections 4.1 to
4.4. Appendix D provides the formal description of the protocol.

4.1 Create

To create the channel, A and B sign and publish the funding transaction TXFU on
the blockchain. By publishing this transaction, A and B fund the channel with
a and b coins, respectively, but since output of the funding transaction can only
be spent if both parties agree, one party might become unresponsive to raise a
hostage situation. To avoid this, before signing the funding transaction, parties
commit to the initial channel state, i.e. state 0, by exchanging signatures for the
corresponding commit and split transactions. Let us explain different steps of
the channel creation phase in more details.

Step 1: At the first step, A and B send their funding sources (i.e. txidA
and txidB) to each other. This enables them to create the body of the funding
transaction [TXFU]. Step 2: Having the transaction identifier of TXFU, parties
create the body of the commit transactions, i.e. [TXACM,0] and [TXBCM,0]. Steps 3:
Parties exchange the required signatures (with SIGHASH of type ANYPREVOUT) to
create the floating transaction TXSP,0. This floating transaction could take output
of TXACM,0 or TXBCM,0 as its input. Step 4: Parties exchange the required signatures

to create the commit transactions TXACM,0 and TXBCM,0. Step 5: Parties exchange
the required signatures to create the funding transactions TXFU. Step 6: Parties
publish the funding transaction on the blockchain.

The absolute timelock in output script of commit transactions and corre-
spondingly the nLockT ime parameter in the split transaction must be in the
past. Otherwise, parties have to wait to publish such transactions. As explained
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in Section 3, the timelock is set to the state number and hence its value in-
creases with each channel update. Absolute timelocks lower than 500,000,000
specify the block number after which the transaction can be included in a block.
According to the value of the current block height, if we set the initial timelock
to the first state number, i.e. 0, the channel can be updated around 700,000
times. However, absolute timelocks equal to or larger than 500,000,000 specify
the UNIX timestamp after which the transaction will be valid. According to
the value of the current timestamp, if we set the initial timelock (and corre-
spondingly nLockT ime parameter) to 500,000,000, the channel can be updated
around 1 billion times [18]. Moreover, the current timestamp increases one unit
per second, meaning if the average rate of the channel update is up to once per
second, the channel can be updated an infinite number of times.

4.2 Update

Let the channel be in state i ≥ 0 and channel parties decide to update it to
state i + 1. The update process is performed in two sub-phases. The first sub-
phase is similar to steps 2 to 4 of channel creation phase where channel parties
create two new commit transactions TXACM,i+1 and TXBCM,i+1 as well as a new split

transaction TXSP,i+1 for the new state. In the second sub-phase, channel parties

revoke the state i by signing two revocation transactions TXARV,i and TXBRV,i. The

revocation transaction TXARV,i (or respectively TXBRV,i) contains no input yet and

can spend output of any commit transaction TXBCM,j (or respectively TXACM,j) with
j ≤ i. With each channel update, the state number and hence the timelock value
in the output condition of each commit transaction and nLockT ime in split and
revocation transactions increase by one unit. Let us explain different steps of the
channel update phase in more details.

Step 1: Parties create the body of the commit transactions, i.e. [TXACM,i+1]

and [TXBCM,i+1]. Steps 2: Parties exchange the required signatures (with SIGHASH

of type ANYPREVOUT) to create the floating transaction TXSP,i+1. This floating
transaction takes output of TXACM,i+1 or TXBCM,i+1 as its input. Step 3: Parties

exchange the required signatures to create the commit transactions TXACM,i+1 and

TXBCM,i+1. Step 4: Parties exchange the required signatures (with SIGHASH of type

ANYPREVOUT) to create the floating transactions TXARV,i and TXBRV,i.
One of the parties might misbehave by receiving the signature on the split or

commit transactions in steps 2 or 3 (or respectively by receiving the signature
on the revocation transaction in step 4) but avoiding signing the correspond-
ing transaction for the other party. In such situations, the honest party non-
collaboratively closes the channel with the latest valid channel state, i.e. state i
(or respectively state i+1). More technical details can be found in Appendix D.

4.3 Close

Assume while the channel between A and B is in state n, they decide to collab-
oratively close it. To do so, A and B exchange signatures for a new transaction,
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called modified split transaction TXSP, and publish it on the blockchain. This
transaction takes the funding transaction’s output as its input and splits the
channel funds among channel parties. If one of the channel parties, e.g. party B,
becomes unresponsive, its counter-party A can still non-collaboratively close the
channel by publishing TXACM,n, adding the output of TXACM,n as an input to TXSP,n
to transform it into TXSP,n, and finally publishing TXSP,n after T rounds.

4.4 Punish

Let the channel be in state n. If a dishonest channel party, let’s say A, publishes
an old commit transaction TXACM,i with i < n on the ledger, party B adds the

output of TXACM,i as an input to TXBRV,n−1 in order to transform it into TXBRV,n−1

and instantly publishes TXBRV,n−1 on the blockchain.

5 Security Analysis

In this section, we firstly provide some payment channel notations as well as our
security model, which follow previous works on layer-2 solutions [8,22,20,21].
Then, we present desired properties of a payment channel and an ideal func-
tionality F that attains those properties. Finally, we show Daric protocol is a
realization of the ideal functionality F and hence achieves its desired properties.

5.1 Notation and Security Model

We use an extended version of the universal composability framework [15] to
formally model the security of our construction. This extended version [16], called
Global Universal Composability framework (GUC), supports a global setup. To
simplify our model, we assume that the communication network is synchronous,
meaning that the protocol is executed through multiple rounds and parties in
the protocol are connected to each other via an authenticated communication
channel which guarantees 1-round delivery. Transactions are recorded by a global
ledger L(∆,Σ), where Σ is a signature scheme used by the blockchain and ∆
is an upper bound on the blockchain delay: the number of rounds it takes a
transaction to be accepted by the ledger. Appendix C provides more details on
our security model.

A payment channel γ is defined as an attribute tuple γ := (id, users, cash, st,
sn, flag, st′), where γ.id ∈ {0, 1}∗ defines the channel identifier, γ.users represents
the identities of the channel users, γ.cash ∈ R≥0 is the total funds locked in
the channel, γ.st := (θ1, . . . , θl) is a list of l outputs defining the channel state
after the last complete channel update and γ.sn is the state number. The flag
γ.flag ∈ {1, 2} and the state γ.st′ will be explained below.

The initial value of γ.flag and γ.st′ are 1 and ⊥, respectively. Assume that
the channel has been updated n ≥ 0 times and the channel state after the nth

update is st and hence we have γ.st = st. Now, assume that parties start the
update process to update the state of the channel from state st to st′. From a
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particular point in the channel update process onward, at least one of the parties
has sufficient data to enforce the new state st′ on the blockchain when parties
have not completely revoked the state γ.st yet. The flag γ.flag is set to 2 to
identify such occasions and γ.st′ is set to st′ to maintain the new state. Thus,
when γ.flag = 2, the channel might be finalized with either γ.st or γ.st′. At the
end of the channel update process, once the state st was revoked by both parties,
γ.st and γ.st′ are set to st′ and ⊥, respectively, and γ.flag is set to 1.

5.2 Ideal Functionality

This section closely follows [8] to introduce desired security and efficiency prop-
erties of a payment channel as following:

– Consensus on creation: A channel γ is created only if both channel parties
in the set γ.users agree to create it.

– Consensus on update: A channel γ is updated only if both channel parties
in the set γ.users agree to update it. Also, parties reach agreement on update
acceptance or rejection within a bounded number of rounds (the bound might
depend on the ledger delay ∆).

– Bounded closure with punish: An honest user P ∈ γ.users has the assur-
ance that within a bounded number of rounds (the bound might depend on
the ledger delay ∆), she can finalize the channel state on the ledger either by
enforcing a state that gives her γ.cash coins, or by enforcing γ.st if γ.flag = 1
or by enforcing either γ.st γ.st′ otherwise.

– Optimistic update: If both parties in γ.users are honest, the channel up-
date completes with no ledger interaction.

Appendix A introduces an ideal functionality F that achieves these proper-
ties. Theorem 1 shows Daric protocol, denoted by π, is a realization of F and
hence achieves its desired properties. It follows from 14 Lemmas. Due to space
limits, we refer readers to Appendix G for the full security proof.

Theorem 1. Let Σ be an EUF− CMA secure signature scheme. Then, for any
ledger delay ∆ ∈ N, the protocol π UC-realizes the ideal functionality F(T ) with
any T > ∆.

We formally define π in Appendix D and then provide a simulator S in
Appendix G where S has interaction with the ideal functionality F and L. The
simulator simulates content and timing of all messages of the honest party to the
adversary and also translates any message from the adversary into a message to
the ideal functionality, such that an indistinguishable execution of the protocol
in the ideal world is emulated. Thus, our protocol would be as secure as the ideal
functionality F . We also prove for any action that causes the ideal functionality
to output Error with non-negligible probability, the simulator constructs a re-
duction against the existential unforgeability of the underlying signature scheme
Σ with non-negligible success probability, which contradicts with our assump-
tion regarding the security of Σ. This proves our protocol provides the desirable
properties of F .
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6 Daric Versus Eltoo

In section 6.1, we present an attack to eltoo whose main purpose is to postpone
the channel closure. We show this attack is practically profitable when applied
to eltoo but it cannot be applied to Daric. In section 6.2, we analyze Daric and
eltoo to compare their robustness against profit-driven attackers. We use the
statistical data derived from the Lightning network to enable such an analysis.

6.1 HTLC Security

This section presents an attack against HTLC security in eltoo (previously in-
formally discussed in [5]) and analyzes the attacker’s revenue. Let the adversary
represent two nodes on the PCN: node M1 and node M2. Assume that the ad-
versary has established N channels from M1 to victim nodes V1, . . . , VN and N
channels from victim nodes to M2. The channel between M1 and Vi is denoted
with γi. The adversary performs N simultaneous HTLC payments from M1 to
M2 through V1, . . . , VN . Let the payment value for all HTLCs be A coins and
the timelock for all these payments for M1’s channels be T . Assume that M2

accepts the payments and provides the required secrets for all HTLC payments
and hence M2 is paid N ·A coins in total. Then, victims provide the secrets to the
node M1. However, M1 does not update her channels with victims. Therefore,
victims attempt to claim all HTLCs on-chain. To prevent victims from closing
their channels in time, M1 takes the following steps:

1. Submit a valid Delay transaction TXDe with N +1 inputs and N +1 outputs
where the ith input-output pair corresponds with an outdated state of the
channel γi and the last input-output pair adds further funds to be used as
the transaction fee, which is set to any value larger than A.

2. If TXDe is published and the timelock T is still unexpired, go to step 1.
3. Once the timelock T is expired, submit the latest channel state for all chan-

nels and claim their HTLC outputs.

In the explained scenario, to replace the already submitted transaction TXDe with
the latest state of the channel γi, Vi has to set a transaction fee that is larger
than the total absolute transaction fee of TXDe [32]. But since the transaction fee
for TXDe is larger than A, Vi will be unwilling to pay such a transaction fee.

Once the HTLC timelock is expired and the latest channel state is added to
the ledger, there will be a race between M1 and each victim to claim the HTLC
output. The adversary will have a better chance to win the race if she has a
better network connection with a higher number of nodes.

Now we perform a cost benefit analysis to determine if the attack is profitable
to the attacker. For a fixed value of A, with setting N to the largest possible
value, the adversary 1) reduces the fee per channel for each delay transaction
and 2) reduces the pace at which outdated states are added to the blockchain. A
Bitcoin transaction can contain up to 100,000 VBytes (where each VByte equals
four weight units) and each input-output pair contains 222 bytes of witness data
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and 84 bytes of non-witness data (See Appendix H.4 for more details). Therefore,
TXDe can cover up to around 100,000

0.25×222+84 ≈ 715 eltoo channels. The minimum
possible fee rate is 1 Satoshi per VByte. Thus, if A is set to 100,000 Satoshi, the
total fee for each delay transaction would be 100,000 Satoshi.

At the time of writing this paper (in April 2022), the average transaction
fee is quite low and hence transactions with the minimum fee rate are added
to the blockchain in 30 minutes. It means if HTLC timelocks are set to 3 days,
144 delay transactions are published before timelocks getting expired. In other
words, the adversary pays 144A as transaction fee to earn up to 715A. In more
congested times, it might take several hours for a transaction with minimum
fee rate to be added to the blockchain. Thus, the attack could be even more
profitable to the attacker. This attack is inapplicable to Daric because once the
attacker publishes an old commit transaction, the only valid transactions are the
revocation transactions held by her counter-party.

6.2 Punishment Mechanism

Prior to providing a formal analysis, we provide intuitions as follows. The only
cost for a dishonest party in eltoo is the fee for publishing the old state, which
could be (i) less than 1 USD for Bitcoin and (ii) independent of the channel
capacity. However, given that the balance of each party in a Daric channel cannot
be less than 1% of the channel capacity (which is currently deployed in the
Lightning network), the minimum amount that a dishonest party might lose
would have the following properties: (i) It is proportional to the channel capacity,
(ii) Its value (around 20 USD on average in the Lightning network in April 2022)
is typically significantly larger than the transaction fee and (iii) It is easily raised
by increasing the minimum possible balance of each channel party from 1% of
the channel capacity to a higher proportion. Therefore, Daric’s deterrent effect
against profit-driven attackers is higher and more flexible than that of eltoo.

Now, we perform a more formal comparison between eltoo and Daric. We
assume the channel party either stays online or employs a watchtower that is
fair w.r.t the hiring party [26] (i.e. the watchtower guarantees its client’s funds
in the channel). For the former case, let p denote the probability that the honest
channel party successfully reacts upon fraud, i.e. 1−p is the probability that the
honest party, due to crash failures or DoS attacks, fails to react. We show that (i)
to discourage attacks by profit-driven parties, p for eltoo must be more significant
than that of Daric, and (ii) unlike Daric, increase in the channel capacity in
eltoo channels raises the minimum value of p that is required to prevent fraud.
However, achieving large values of p (e.g. 0.9999) could be difficult for ordinary
users. This indicates eltoo needs a way to punish profit-driven attackers.

To monitor a channel, the watchtower’s collateral equals the channel capacity
[26,11]. Let C denote the total capacity of Bitcoin payment channel network
and CW denote the total capital that fair watchtowers have spent to watch
their clients’ channels. Then, the probability that a randomly selected payment
channel is monitored by a fair watchtower is roughly computed as CW

C .
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Assume that a dishonest party A creates an eltoo channel with channel ca-
pacity of CA coins, where the initial balance of A and her counter-party are CA
and 0, respectively. For now, we assume that parties know if their counter-parties
are using a fair watchtower. We will relax this assumption later. If the channel is
being monitored by a fair watchtower, A continues using the channel in an hon-
est way. Otherwise, she sends all her balance to her counter-party in exchange
for some products or services and then submits the initial channel state to the
blockchain. In such a case, with probability of 1− p and p, A’s revenue and her
loss would be CA − f and f , respectively, where f denotes the transaction fee.
Thus, A is discouraged to attack iff:

(CA − f)(1− p)− f · p < 0⇔ p > 1− f

CA
.

For a Daric channel, A is discouraged to attack iff:

0.99 · CA · (1− p)− 0.01 · CA · p < 0⇔ p > 0.99.

The threshold value for eltoo is typically more significant than that of Daric.
At the time of writing this paper, the average values of f for a transaction and CA
for a Lightning channel are around 0.000055 BTC and 0.04 BTC, respectively,
leading to 1− f

CA
≈ 0.999. But the adversary can practically set f to the lowest

possible value (i.e. 1 Satoshi per VByte) leading to f ≈ 0.00000211 BTC and
1− f

CA
≈ 0.9999 for eltoo. Therefore, (i) to discourage attacks, the honest party

would require to meet a higher p in eltoo than in Daric, (ii) the threshold for
eltoo depends on the channel capacity, and (iii) the threshold for Daric can
simply decrease from 0.99 to lower values.

In the above analysis, we assumed that A knows whether her counter-party
is hiring any fair watchtower. Considering the opposite case, the probability that
the channel is not being monitored by any fair watchtower and the honest party
fails to react upon fraud would be p0 := (1− CW

C )(1−p). Thus, with probability
of p0 and 1− p0, A’s revenue and her loss in an eltoo channel would be CA − f
and f , respectively. Thus, A is discouraged to attack iff:

(CA − f) · p0 − f · (1− p0) < 0⇔ p > 1−
f

CA

1− CW

C

.

Similarly, for a Daric channel we have:

0.99 · CA · p0 − 0.01 · CA · (1− p0) < 0⇔ p > 1− 0.01

1− CW

C

.

As explained earlier, the threshold value for eltoo depends on CA and is typically
more significant than that of Daric.

1 Each update transaction in eltoo contains 332 byte of witness data and 125 bytes of
non-witness data leading to 208 VBytes. See Appendix H.4 for more details
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7 Performance Analysis

Table 3 shows the total number of weight units of transactions, published on the
blockchain for different payment channels in different channel closure scenarios.
Since the weight units of a transaction directly impacts its fee, we use this
parameter to compare different schemes. Payment channels perform similarly
in the collaborative channel closure, so we do not consider this scenario in our
analysis. Since the funding transaction is the same in all schemes, we do not
involve it in our comparison results either. To do a consistent comparison, we
assume that each transaction output is either P2WSH2 or P2WPKH3, each
public key and signature are respectively 33 bytes and 73 bytes, shared outputs
are implemented using the OP CHECKMULTSIG opcode (rather than using multi-
party signing), and each state contains m HTLC outputs with 0 ≤ m ≤ 966 [2]
where each party is the payer for m

2 HTLC outputs and the payee for the rest.
Once a dishonest party in a Lightning channel publishes a revoked commit

transaction, m+ 1 revoked outputs are created. For simplicity, we assume that
the victim claims all the revoked outputs through one transaction. Cerberus [11],
Sleepy [10] and Outpost [23] have not explained ways HTLC is added to these
schemes and discussing it is out of the scope of this paper, so Table 3 contains
their figures with m = 0.

As Table 3 shows, in the dishonest closure scenario, (1) the weight units
for Lightning and eltoo increase linearly with the number of HTLC outputs m
compared to Daric, Generalized and FPPW and (2) Daric (with weight unit
equal to 1239) is more cost effective than other schemes with m ≥ 1. In the non-
collaborative closure scenario with m ̸= 0, Daric outperforms Generalized, eltoo
and FPPW channels with any value of m and Lightning channel with m > 6.

Table 3 also compares the number of operations performed by each party
for a channel update. To count the operations, we additionally assume that i)
channel parties delegate the monitoring task to a watchtower and ii) they do
not compute a signature unless it is supposed to be sent to their counter-party
or their watchtower. Appendix H provides complete details regarding the way
figures of Table 3 have been computed.

8 Discussions

Compatibility with P2WSH transactions: Let output of commit transac-
tions be of type P2WSH, meaning that it can be spent based on the fulfilment
of the script whose hash is included in the condition part of the output. Now,
assume that while the channel is in state n, party A publishes TXACM,i with i < n.
According to the protocol, party B is supposed to instantly publish the latest
revocation transaction TXBRV,n−1. To do so, he must create the original script of

the main output of TXACM,i and add it to the witness data of TXBRV,n−1. Since the

2 Pay-to-Witness-Script-Hash: Used to lock bitcoin to a SegWit script hash.
3 Pay-to-Witness-Public-Key-Hash: Used to lock bitcoin to a SegWit public key hash.
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Table 3. On-chain cost of different closure scenarios and number of operations per-
formed by each party for a channel update for different payment channels with m
HTLC outputs (0 ≤ m ≤ 966). Cerberus [11], Sleepy [10] and Outpost [23] have not
explained ways that HTLC outputs can be added to their schemes, so their figures in
this table are for m = 0 only.

dishonest closure non-coll. closure num. of operations
Scheme #Tx weight units #Tx weight units Sign Verify Exp.

Lightning [29] ≥ 2 ≥1209+582.5m 1+m 724+793m 2+2m 1+m
2

2
Generalized [8] 2 1342 2+m 1432+696m 3 2 1
FPPW [26] 2 2045 2+m 1562+696m 6 10 1
Cerberus [11] 2 1798 1 772 3 6 0
Outpost [23] 3 2632 3 3018 4 4 0
Sleepy [10] 3 2172 3 2558 5 5 0
eltoo [18] 3 2268+696m 2+m 1588+696m 2 2 1
Daric (this work) 2 1239 2+m 1363+696m 4 3 0

parameter i is a part of the script, B must extract the value of i from the pub-
lished commit transaction. However, i varies in different commit transactions
and its value cannot be directly derived from the hash of the script in the com-
mit transaction output. Therefore, the value of i must be encoded in TXACM,i.nLT

or in the parameter sequence of TXACM,i.Input.
Fee handling: Once a dishonest channel party publishes a revoked com-

mit transaction, her counter-party has T rounds time to publish the revocation
transaction on the ledger. However, the time it takes for a transaction to be
published depends on two factors: i) network congestion at the time when the
transaction is submitted to the blockchain network, and ii) the transaction fee.
Revocation transactions in Daric have a single input and a single output. Since
based on BIP 143 [24], the ANYPREVOUT flag may be combined with SINGLE flag,
it is possible for a channel party to add a new input and a new output to the
latest revocation transaction before submitting it to the blockchain. The differ-
ence between value of the new output and the new input can be collected by
miners. Similar approach can also be used for commit transactions.

Compatibility with any digital signature scheme: Generalized and
FPPW payment channels leverage adaptor signatures and hence may not work
if the current Bitcoin digital signature scheme changes to BLS [14] or a post-
quantum resistant digital signature. However, Daric is compatible with any dig-
ital signature and can benefit from their properties.

Extending Daric to multi-hop payments: Payment channels typically
use HTLC to establish a PCN, where parties who do not have a shared channel
can still exchange coins by using other nodes as relays. HTLC outputs can simply
be added to outputs of split transactions and since state duplication is avoided
there is not any complications in their deployment.

Other applications: To have a new application on top of a Daric channel,
parties must update the channel state such that the new split transaction has one
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or multiple outputs for the new application. For example, assume that channel
parties want to create multiple channels on top of their existing channel. To do
so, they update their channel such that the new split transaction of the channel
consists of multiple outputs where each output is a 2-of-2 multisignature address
shared between channel parties and acts like the output of a funding transaction
for a new Daric channel. The only difference between this new channel and the
original one is that since the split transaction for the original channel is floating,
its transaction identifier depends on its input and so cannot be determined in ad-
vance. Hence, the commit transactions of new established channels must be also
floating. The only important criteria for new channels is that each channel must
have its own set of public keys. Otherwise, for example, a commit transaction
from one channel can spend funding transaction output of another channel.

Channel reset: If the lifetime of a Daric channel is close to its end (which
occurs if the channel update rate is more than once per second), channel parties
can reset the channel off-chain. To do so, they update the channel such that
output of the split transaction in the latest state acts like the output of the
funding transaction for a new channel. All the state numbers also reset and
the new established channel can be updated at least for about 1 billion times
again. Along with required data from the new established channel, each party
must also maintain the last commit, split and revocation transactions from the
original channel.

9 Conclusion and Future Work

In this work, we presented an efficient payment channel with unlimited life-
time for Bitcoin, called Daric, that achieves optimal storage. Moreover, the new
scheme allows the honest channel party to penalize her dishonest counter-party
by taking all the channel funds. Daric also guarantees that channel parties can
close the channel within a bounded time. Furthermore, the new scheme is com-
patible with any digital signature algorithm and simultaneously avoids state
duplication. We proved Daric is secure in Universal Compsability model.

An interesting open topic to study is extending Daric to an efficient m-
party scheme with m > 2. Moreover, one of the main advantages of Daric is
that storage requirements of the watchtower for each channel could be constant
over time. However, there are also other factors for a watchtower (e.g. privacy,
fairness, and coverage [26]) which must be carefully taken into account. Designing
a watchtower for Daric which can achieve the mentioned properties could be
another subject of future research.
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A Ideal Functionality

This section defines an ideal functionality F(T ) with T > ∆ that achieves the
desired properties stated in Section 5.2. To simplify the notations, we abbreviate
F := F(T ). The ideal functionality F stores a set Γ of all the created channels
and their corresponding funding transactions. The set Γ can also be treated as
a function s.t. Γ (id) = (γ, TX) with γ.id = id if γ exists and Γ (id) =⊥ otherwise.
Before presenting the ideal functionality F in details, we briefly introduce its
different phases and explain the way F achieves the desired properties.

a) Create: In this phase, F receives messages (INTRO, γ, tidP ) and (CREATE,
γ.id) from both parties in rounds τ0 and τ0+1, respectively, where tidP specifies
the funding source of the user P . Then, if the corresponding funding transaction
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appears on the ledger L within 2+∆ rounds, F sends the message (CREATED, γ.id)
to both parties and stores γ and the funding transaction in Γ (γ.id). If the CREATE
message is not received from both parties but the funding transaction appears
on L within 2 +∆ rounds, F outputs Error. Since the message CREATED might
be sent to the parties only if they both have sent the message CREATE to F , the
ideal functionality achieves consensus on creation.

b) Update: One of the parties, denoted by P , initiates this phase by send-

ing the message (UPDATE, id, θ⃗, tstp) to F , where id is the channel identifier, θ⃗
is the new channel state and tstp is the number of rounds needed to prepare
prerequisites of the channel update (e.g. preparing the needed HTLCs). Due to
disagreeing with the new state or failure in preparing its prerequisites, party
Q can stop it by not sending the message (UPDATE− OK, id) in step 2. Abort
by P or Q in next steps causes the procedure ForceClose(id) to be executed.
The property optimistic update is satisfied because if both parties act honestly,
the channel can be updated without any blockchain interaction. Furthermore,
if P or Q disagree to update the channel, they can stop sending the UPDATE or
UPDATE− OK messages, respectively. This stops the channel update process with-
out changing the latest channel state. Also, in cases where either P or Q stop
cooperating, the procedure ForceClose(id) is executed. This procedure takes at
most ∆ rounds to complete. This also guarantees consensus on update.

c) Close: If F receives the message (CLOSE, id) from both parties, a trans-
action TX is expected to appear on L within ∆ + 1 rounds. This transaction
spends the output of the funding transaction and its outputs equal the latest
channel state γ.st. If the CLOSE message is received only from one of the parties,
F executes the procedure ForceClose(id). In both cases, output of the funding
transaction must be spent within ∆+ 1 rounds. Otherwise, F outputs Error.

d) Punish: If a transaction TX spends the funding transaction’s output of a
channel γ, one of the following events is expected to occur: 1) another transaction
appears on L within ∆ rounds where this transaction spends output of TX and
sends γ.cash coins to the honest party P ; or 2) another transaction whose outputs
correspond to the channel state γ.st or γ.st′ appears on L within T +∆ rounds.
Otherwise, F outputs Error. According to its definition, bounded closure with
punish is achieved, if F returns no Error in the close and punish phases.

We describe the ideal functionality below. Normally, once F receives a mes-
sage, it performs several validations on the message. But to simplify the descrip-
tion, we assume that messages are well-formed. Data exchange between F and
other parties is represented by directed arrows. If F sends the message m to

party P in round τ0, we denote it with m
τ0
↪−→ P . Similarly, if F is supposed to

receive the message m from party P in round τ0, we denote it with m
τ0←−↩ P .

Ideal Functionality F(T )
Create

upon (INTRO, γ, tidP )
τ0←−↩ P :

– If (INTRO, γ, tidQ)
τ0←−↩ Q, then continue. Else stop.
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– If (CREATE, id)
τ0+1←−−−↩ γ.users:

• Wait if in round τ1 ≤ τ0 + 3 + ∆ a transaction TXFU with TXFU.Input =
(tidP , tidQ) and TXFU.Output = {(γ.cash, φ)} appears on the ledger L. If
yes, set Γ (γ.id) := (γ, TXFU) and (CREATED, γ.id)

τ1
↪−→ γ.users. Else stop.

Otherwise:
• Wait if in round τ1 ≤ τ0 + 3 + ∆ a transaction TXFU with TXFU.Input =
(tidP , tidQ) and TXFU.Output = {(γ.cash, φ)} appears on the ledger L. If
yes, Output Error

τ1
↪−→ γ.users. Else, stop.

Update

Upon (UPDATE, id, θ⃗, tstp)
τ0←−↩ P , parse (γ, TX) := Γ (id) and proceed as follows:

1. Send (UPDATE− REQ, id, θ⃗, tstp)
τ0+1
↪−−−→ Q.

2. If (UPDATE− OK, id)
τ1≤τ0+1+tstp←−−−−−−−−−↩ Q, then set γ.flag := 2 and γ.st′ := θ⃗ and

send (SETUP, id)
τ1+1
↪−−−→ P . Else stop.

3. If (SETUP− OK, id)
τ1+1←−−−↩ P , then (SETUP′, id)

τ1+2
↪−−−→ Q. Else ForceClose(id)

and stop.

4. If (SETUP′ − OK, id)
τ1+2←−−−↩ Q, then (UPDATE− OK, id)

τ1+3
↪−−−→ P . Else execute

ForceClose(id) and stop.

5. If (REVOKE, id)
τ1+3←−−−↩ P , then (REVOKE− REQ, id)

τ1+4
↪−−−→ Q. Else execute

ForceClose(id) and stop.

6. If (REVOKE′, id)
τ1+4←−−−↩ Q, set γ.st := θ⃗, γ.flag := 1, γ.st′ :=⊥, γ.sn :=

γ.sn + 1, Γ (id) := (γ, TX), (UPDATED, id)
τ1+5
↪−−−→ γ.Users and stop. Else ex-

ecute ForceClose(id) and stop.

Close

upon (CLOSE, id)
τ0←−↩ P , distinguish:

Both agreed: If (CLOSE, id)
τ0←−↩ Q, let (γ, TXFU) := Γ (id) and distinguish:

– If in round τ1 ≤ τ0 + 1 +∆, TXSP, with TXSP.Output = γ.st and TXSP.Input =

TXFU.txid||1 appears on L, set Γ (id) := (⊥, TXFU), (CLOSED, id)
τ1
↪−→ γ.users

and stop.

– If in round τ0+1+∆, the TXFU is still unspent, output Error
τ0+1+∆
↪−−−−−→ γ.users

and stop.

Q disagreed: Else, execute ForceClose(id) in round τ0 + 1.

Punish (executed at the end of every round τ0)

For each (γi, TXi) ∈ Γ check if there is a transaction TX on the ledger L s.t.
TX.Input = TXi.txid∥1 and γi ̸=⊥. If yes, distinguish:
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1. Punish: For the honest P ∈ γi.users, in round τ1 ≤ τ0 + ∆, a transaction
TXj with TXj .Input = TX.txid∥1 and TXj .Output = (γ.cash, pkP ) appears on

L. Then, (PUNISHED, id) τ1
↪−→ P , set Γ (id) := (⊥, TXi) and stop.

2. Close: In round τ1 ≤ τ0+T+∆ a transaction TXj appears on L where one of
the following two sets of conditions hold: 1) γ.flag = 1, TXj .Input = TX.txid∥1
and TXj .Output = γ.st or 2) γ.flag = 2, TXj .Input = TX.txid∥1 and either
TXj .Output = γ.st or TXj .Output = γ.st′ . Then, set Γ (id) := (⊥, TXi) and

(CLOSED, id)
τ1
↪−→ γ.users.

3. Error: Otherwise, Error
τ0+T+∆
↪−−−−−→ γ.users.

Subprocedure ForceClose(id)

Let τ0 be the current round and (γ, TXFU) := Γ (id). If within ∆ rounds,

TXFU.Output is still an unspent output on L, then output Error
τ0+∆
↪−−−→ γ.users.

B Daric Transactions Scripts

Funding transaction has one output with the following script where Com pubkeyA

and Com pubkeyB are public keys of A and B, respectively:
2 ⟨Com pubkeyA⟩ ⟨Com pubkeyB⟩ 2 OP CHECKMULTISIG

Commit transactions have one input that takes the output of the funding
transaction with the witness script of 0 ⟨Com pubkeyA sig⟩ ⟨Com pubkeyB sig⟩.
The commit transaction TXACM,i has one output with the following script:
⟨absolute time S0 + i ⟩ OP CHECKLOCKTIMEVERIFY OP DROP

OP IF

# Revocation

2 ⟨Rev pubkeyA⟩ ⟨Rev pubkeyB⟩ 2 OP CHECKMULTISIG

OP ELSE

# Split

⟨delay T⟩ OP CHECKSEQUENCEVERIFY OP DROP

2 ⟨Spl pubkeyA⟩ ⟨Spl pubkeyB⟩ 2 OP CHECKMULTISIG

OP ENDIF

where ⟨Rev pubkeyA⟩ and ⟨Spl pubkeyA⟩ are public keys of A and ⟨Rev pubkeyB⟩
and ⟨Spl pubkeyB⟩ are public keys of B. The script of the commit transaction
TXBCM,i is similar to that of TXACM,i but its revocation keys are ⟨Rev′ pubkeyA⟩ and
⟨Rev′ pubkeyB⟩.

The split transaction TXSP,i spends the output of TXACM,i or TXBCM,i with the
witness script:

0 ⟨Spl pubkeyA Sig⟩ ⟨Spl pubkeyB Sig⟩ 0

The revocation transactions TXARV,i and TXBRV,i spend the output of a revoked
commit transaction with the witness scripts

0 ⟨Rev′ pubkeyA sig⟩ ⟨Rev′ pubkeyB sig⟩ 1
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and
0 ⟨Rev pubkeyA sig⟩ ⟨Rev pubkeyB sig⟩ 1,

respectively. The transactions TXARV,i and TXBRV,i have one output with the scripts
⟨pubkeyA⟩ OP CHECKSIG and ⟨pubkeyB⟩ OP CHECKSIG, respectively.

C UC Framework

We model the security of our protocol in the synchronous version of global UC
framework (GUC) [16] which is an extension of standard UC framework [15].
In the synchronous version, we can have a global setup which is used to model
the ledger. The model in this work closely follows that of some works on layer-2
solutions to scalability of blockchains [7,22,20].

Let π be a protocol executed among parties of a set P = {P1, · · · , Pn}.
Assume that there exists an adversary A that takes as input a security parameter
λ ∈ N and an auxiliary input z ∈ {0, 1}∗. Before execution of the protocol
π, the adversary A can select any party Pi ∈ P to learn their internal state
and fully control them. Anything outside the protocol execution is modeled by
the environment E . Each protocol party as well as the adversary take their
inputs from the environment. Outputs of all parties are also observed by the
environment. There are also ideal functionalities F1, · · · ,Fm whose functions
might be called by parties. Then, the protocol π is denoted by πF1,··· ,Fm .

To simplify our model, we assume that the communication network is syn-
chronous, meaning that we let the protocol be executed through several rounds.
The ideal functionality Fclock represents a global clock that increases by one unit
once all parties are prepared to proceed to the next round. All entities know the
value of the current round.

We assume that parties of the protocol are connected to each other via an
authenticated communication channel which guarantees that messages are deliv-
ered to recipient parties after exactly one round. In other words, if party P sends
a message m to the party Q in round τ , the message reaches Q in the beginning
of round τ +1 and Q can ensure that the sender is P . The adversary A observes
the message m and can even change the order of messages that are sent in the
same round. However, the adversary cannot drop, delay or change any transmit-
ted message or insert new messages. The ideal functionality FGDC models such
a communication channel between the channel parties. Other communications in
which some other entities, e.g. A or E , are involved take zero rounds to complete.
Moreover, to simplify the model, we assume that any required computation is
also performed within zero rounds.

In this work we focus on UTXO-based cryptocurrencies such as Bitcoin. The
global ideal functionality L models such ctyptocurrencies where it is param-
eterized by two parameters: 1) a digital signature scheme Σ, and 2) a delay
parameter ∆ which is an upper bound on the number of rounds it takes for a
valid transaction that has been posted to the blockchain network to be published
on the blockchain. To simplify the model, we assume that the set of parties P is
fixed and transactions are published one by one rather than being published on
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the blockchain in blocks. Badertscher et. al [12] provided a more accurate model
of Bitcoin blockchain.

The environment E initiates the ledger functionality L by 1) instructing L to
generate the public parameters of the signature scheme Σ, 2) instructing each
party P ∈ P to create a key pair (pkP , skP ) and submit its public key to L, and
3) creating an initial state TX that contains all the accepted transactions. The
set TX is accessible to everyone including the protocol parties, the environment
and the adversary. Once a party P ∈ P posts a transaction tx to the bockchain,
L waits for τ ≤ ∆ rounds where τ is selected by the adversary. Then, if the
validity of tx is successfully verified, it is added to the set TX.

Ideal Functionality L(∆,Σ)

The set P defines the set of all parties who can send messages to the function-
ality. The functionality maintains the set PKI for the parties in P. The sets TX
and UTXO respectively define all the transactions accepted to date and all the
unspent transaction outputs. The set of valid output conditions is represented
by V.

Public key Registration: Upon (register, pkP )
τ0←−↩ P , check if it is the first

registration message received from P ∈ P. If not drop the message, else add
(pkP , P ) to PKI.

Post transaction: Upon (post, tx)
τ0←−↩ P , check if |PKI| = |P|, If not drop the

message, else wait for τ ≤ ∆ rounds where τ is selected by the adversary. Then,
check if:

1. id uniqueness: For all (t, tx′) ∈ TX, tx′.txid ̸= tx.txid holds.
2. Input and witness validity: For each (txid∥i) ∈ tx.Input, there exists (t, txid, i,

θ) ∈ UTXO s.t. tx.Witness with inputs tx.nLT, the current round τ0 + τ and
t satisfies θ.φ.

3. Output validity: For each θ ∈ tx.Output, θ.Cash > 0 and θ.φ ∈ V hold.
4. Value validity: Let I := {utxo := (t, txid, i, θ) | utxo ∈ UTXO ∧ (txid∥i) ∈

tx.Input}. Then, Σθ′∈tx.Outputθ
′.cash ≤ Σutxo∈Iutxo.θ.cash holds.

5. Absolute timelock validity: For the transaction tx, tx.nLT ≤ τ0 + τ holds.

If any of the above checks fail, drop the message. Else, set TX := TX
⋃
(τ0 +

τ, tx), UTXO := UTXO\I and UTXO := UTXO
⋃
{(τ0 + τ, tx.txid, i, θi)}i∈[n] for

(θ1, · · · , θn) := tx.Output.

Let π be a protocol that has access to the global ledger L(∆,Σ) as well as
the global clock Fclock and φF denote the ideal protocol for an ideal functional-

ity F with access to the same global functionalities. Let EXE
L(∆,Σ),Fclock

π,A,E (λ, z)
denote the output of the environment E which interacts with a protocol π and
an adversary A on input a security parameter λ and an auxiliary input z and

similarly EXE
L(∆,Σ),Fclock

φF ,S,E (n, z) denote the output of the environment E which
interacts with a protocol φF and an adversary S (also called the simulator) on
input a security parameter λ and an auxiliary input z.
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The following definition is informally saying that should a protocol π UC-
realize F , any attack against the protocol π can be transformed into an attack
against the ideal protocol φF and vice versa.

Definition 1. A protocol π UC-realizes an ideal functionality F with respect to
a global ledger L(∆,Σ) and a global clock Fclock if for every adversary A there
exists an adversary S such that we have

{EXE
L(∆,Σ),Fclock

π,A,E (λ, z)}n∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

φF ,S,E (λ, z)}n∈N,z∈{0,1}∗ (1)

where ≈ denotes computational indistinguishability.

D Protocol

In this appendix, details of different phases of Daric will be presented. Before
presenting the protocol, some notations are introduced. Formally, an output θ
is a tuple of two attributes, θ = (cash, φ), where θ.cash denotes the number of
coins held in this output and θ.φ denotes the condition that needs to be fulfilled
to spend the output θ. The condition θ.φ is encoded using any script supported
by the underlying blockchain. If the condition θ.φ contains a user P ’s public key,
we say that P controls or owns the output θ. If satisfying a condition requires
authorizations by multiple parties, such a condition contains public keys of all
the involved parties separated by ∧ operation(s). Different subconditions of an
output are separated by ∨ operation(s).

The attribute Tx.Witness = (W1, . . . ,Wm) is a list of tuples where its ith

tuple authorizes spending the output that is taken as the ith input of Tx. The
tuple Wi = (η, ζ) of the witness Tx.Witness contains two attributes where Wi.ζ
denotes the data, e.g. the signature(s), that is (are) required to meet the Wi.η

th

subcondition of the output that is taken as the ith input of Tx. The signature
of party P for Tx.Witness.Wi.ζ is denoted by σP,i

Tx , where i can be removed for
transactions with single input. If the signature is created using the ANYPREVOUT
flag, it is denoted by σ̃P,i

Tx .
In different steps of the protocol, channel participants generate (or verify)

some signatures on protocol transactions. When a signature with SIGHASH of
type SIGHASH ALL or ANYPREVOUT is going to be generated (or verified) for the
transaction TX, the input message to the signing (or verification) algorithm is
denoted by f(TX) or f̃([TX]), respectively [24].

The set ΓP , maintained by each party P ∈ P, stores information of latest
channel state for all the open channels that P is involved in, where ΓP (id) cor-
responds with the channel with identifier of id. In the channel update phase,
while γ.flag = 2, the channel has two active states where the information about
the new state is maintained by P ∈ P in Γ ′P (id) with id = γ.id. To refer to the
ith element of Γ ′P (id) we use ΓP (id)[i] with i ≥ 1. The party P also maintains
a signature from his counter-party on the latest revocation transaction for each
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open channel that P is a party of. These signatures are maintained by P in
the set ΘP where ΘP (id) corresponds with the channel with identifier of id. We
use directional arrows to show exchange of messages. To simplify the protocol
description, we remove some validations that must be normally done by channel
parties. The protocol wrapper WP in Appendix F defines those validations.

Daric protocol:

Create

Party P upon (INTRO, γ, tidP )
τ0←−↩ E

1. Set id := γ.id, generate (pkPSP, sk
P
SP) ← Gen, (pkPRV, sk

P
RV) ← Gen and (pk′PRV ,

sk′PRV )← Gen and send (createInfo, id, tidP , pk
P
SP, pk

P
RV, pk

′P
RV )

τ0
↪−→ Q.

2. If (createInfo, id, tidQ, pk
Q
SP, pk

Q
RV, pk

′Q
RV )

τ0+1←−−−↩ Q, create:

[TXFU] := GenFund((tidP , tidQ), γ)

([TXPCM,0], [TX
Q
CM,0]) :=

GenCommit([TXFU].txid∥1, IP , IQ, 0)

[TXSP,0] := GenSplit(γ.st, 0)

for IP := (pkPSP, pk
P
RV, pk

′P
RV ) and IQ := (pkQSP, pk

Q
RV, pk

′Q
RV ). Else stop.

3. Compute σ̃P
TXSP,0

:= SignskP
SP
(f̃([TXSP,0])) and σP

TX
Q
CM,0

:= SignskP
(f([TXQCM,0]))

and send (createCom, id, σ̃P
TXSP,0

, σP
TX

Q
CM,0

)
τ0+1
↪−−−→ Q.

4. If (createCom, id, σ̃Q
TXSP,0

, σQ

TXPCM,0
)

τ0+2←−−−↩ Q, s.t. VrfypkQ
SP
(f̃([TXSP,0]); σ̃

Q
TXSP,0

) = 1

and also VrfypkQ
(f([TXPCM,0]);σ

Q

TXPCM,0
) = 1, then σP

TXFU
:= SignskP

(f([TXFU])) and

send (createFund, id, σP
TXFU

)
τ0+2
↪−−−→ Q. Else stop.

5. If (createFund, id, σQ
TXFU

)
τ0+3←−−−↩ Q, s.t. VrfypkQ

(f([TXFU]);σ
Q
TXFU

) = 1, create the

transaction TXFU := (H([TXFU]), [TXFU], ((x, σP
TXFU

), (y, σQ
TXFU

))) and (post, TXFU)
τ0+3
↪−−−→ L. Else, create a transaction TX with TX.Input := tidP and TX.Output.φ

:= pkP and (post, TX)
τ0+3
↪−−−→ L.

6. If TXFU is accepted by L in round τ1 ≤ τ0 + 3 + ∆, compute σP
TXPCM,0

=

SignskP
(f([TXPCM,0])), create TX

P
CM,0 := (H([TXPCM,0]), [TXPCM,0], (1, {σP

TXPCM,0
, σQ

TXPCM,0
}),

set TXSP,0 := ([TXSP,0], (1, {σ̃P
TXSP,0

, σ̃Q
TXSP,0
})), store ΓP (γ.id) := (γ, TXFU, TX

P
CM,0,

[TXQCM,0], TXSP,0) and (CREATED, id)
τ1
↪−→ E . Else ΓP (γ.id) := (⊥, TXFU,⊥,⊥,⊥)

and stop.

Update
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Party P upon (UPDATE, id, θ⃗, tstp)
τ0←−↩ E

1. Send (updateReq, id, θ⃗, tstp)
τ0
↪−→ Q.

Party Q upon (updateReq, id, θ⃗, tstp)
t0←−↩ P

2. Send (UPDATE− REQ, id, θ⃗, tstp)
t0
↪−→ E .

3. If (UPDATE− OK, id)
t1≤t0+tstp←−−−−−−−↩ E , then extract TXFU and i := γ.sn from

ΓQ(id), create ([TXPCM,i+1], [TX
Q
CM,i+1]) := GenCommit([TXFU].txid∥1, IP , IQ, i +

1), and [TXSP,i+1] := GenSplit(θ⃗, i + 1) for IP := (pkPSP, pk
P
RV, pk

′P
RV ) and

IQ := (pkQSP, pk
Q
RV, pk

′Q
RV ), compute σ̃Q

TXSP,i+1
= SignskQ

SP
(f̃([TXSP,i+1])), and send

(updateInfo, id, σ̃Q
TXSP,i+1

)
t1
↪−→ P .

Party P upon (updateInfo, id, σ̃Q
TXSP,i+1

)
τ1≤τ0+2+tstp←−−−−−−−−−↩ Q

4. Extract TXFU and i := γ.sn from ΓP (id) and create the transactions ([TXPCM,i+1],

[TXQCM,i+1]) := GenCommit([TXFU].txid∥1, IP , IQ, i+1) and [TXSP,i+1] := GenSplit

(θ⃗, i + 1) for IP := (pkPSP, pk
P
RV, pk

′P
RV ) and IQ := (pkQSP, pk

Q
RV, pk

′Q
RV ). If VrfypkQ

SP

(f̃([TXSP,i+1]); σ̃
Q
TXSP,i+1

) = 1, compute σ̃P
TXSP,i+1

:= SignskP
SP
(f̃([TXSP,i+1])), set

TXSP,i+1 := ([TXSP,i+1], (1, {σ̃P
TXSP,i+1

, σ̃Q
TXSP,i+1

})), store Γ ′P (id) = (⊥, [TXQCM,i+1],

TXSP,i+1), set γ.flag = 2 and γ.st′ = θ⃗ and send (SETUP, id)
τ1
↪−→ E . Else stop.

5. If (SETUP− OK, id)
τ1←−↩ E , sign σP

TX
Q
CM,i+1

:= SignskP
(f([TXQCM,i+1])) and output

(updateComP, id, σ̃P
TXSP,i+1

, σP
TX

Q
CM,i+1

)
τ1
↪−→ Q. Else, execute ForceCloseP (id)

and stop.

Party Q

6. If (updateComP, id, σ̃P
TXSP,i+1

, σP
TX

Q
CM,i+1

)
t1+2←−−−↩ P , such that VrfypkP

SP
(f̃([TXSP,i+1]);

σ̃P
TXSP,i+1

) = 1 and also VrfypkP
(f([TXQCM,i+1]);σ

P
TX

Q
CM,i+1

) = 1, compute σQ

TX
Q
CM,i+1

=

SignskQ
(f([TXQCM,i+1])), set TXSP,i+1 := ([TXSP,i+1], (1, {σ̃P

TXSP,i+1
, σ̃Q

TXSP,i+1
})), set

TX
Q
CM,i+1 = ([TXQCM,i+1], (1, {σP

TX
Q
CM,i+1

, σQ

TX
Q
CM,i+1

})), γ.flag = 2 and γ.st′ = θ⃗, store

Γ ′Q(id) = (TXQCM,i+1, [TX
P
CM,i+1], TXSP,i+1), and output (SETUP′, id)

t1+2
↪−−−→ E .

Else, execute ForceCloseQ(id) and stop.

7. If (SETUP′ − OK, id)
t1+2←−−−↩ E , sign σQ

TXPCM,i+1

= SignskQ
(f([TXPCM,i+1])) and send

(updateComQ, id, σQ

TXPCM,i+1

)
t1+2
↪−−−→ P . Else, execute ForceCloseQ(id) and

stop.

Party P
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8. If (updateComQ, id, σQ

TXPCM,i+1

)
τ1+2←−−−↩ Q, s.t. VrfypkQ

(f([TXPCM,i+1]);σ
Q

TXPCM,i+1

) =

1, compute σP
TXPCM,i+1

:= SignskP
(f([TXPCM,i+1], 1)), set TX

P
CM,i+1 := (H([TXPCM,i+1]),

[TXPCM,i+1], (1, {σP
TXPCM,i+1

, σQ

TXPCM,i+1

})), set Γ ′P (id)[1] := TXPCM,i+1 and then out-

put (UPDATE− OK, id)
τ1+2
↪−−−→ E . Else, execute the procedure ForceCloseP (id)

and stop.

9. If (REVOKE, id)
τ1+2←−−−↩ E , create ([TXPRV,i], [TX

Q
RV,i]) := GenRevoke(pkP , pkQ,

γ.cash, i + 1), compute σ̃P
TX

Q
RV,i

:= SignskP
RV
(f̃([TXQRV,i])) if P = A or σ̃P

TX
Q
RV,i

=

Signsk′P
RV
(f̃([TXQRV,i])) otherwise and send (revokeP, id, σ̃P

TX
Q
RV,i

)
τ1+2
↪−−−→ Q. Else,

execute the procedure ForceCloseP (id) and stop.

Party Q

10. Create ([TXPRV,i], [TX
Q
RV,i]) := GenRevoke(pkP , pkQ, γ.cash, i+1). If (revokeP, id,

σ̃P
TX

Q
RV,i

)
t1+4←−−−↩ P , such that VrfypkP

RV
(f̃([TXQRV,i]); σ̃

P
TX

Q
RV,i

) = 1 ifQ = B or Vrfypk′P
RV

(f̃([TXQRV,i]); σ̃
P
TX

Q
RV,i

) = 1 otherwise, set ΘQ(id) := (σ̃P
TX

Q
RV,i

), γ.sn := i + 1,

γ.st := θ⃗, ΓQ(id) := (γ, TXFU, TX
Q
CM,i+1, [TX

P
CM,i+1], TXSP,i+1), γ.flag = 1, and

Γ ′Q(id) = (⊥,⊥,⊥) and send (REVOKE− REQ, id)
t1+4
↪−−−→ E . Else, execute the

procedure ForceCloseQ(id) and stop.

11. If (REVOKE′, id)
t1+4←−−−↩ E , then compute σ̃Q

TXPRV,i
:= SignskQ

RV
(f̃([TXPRV,i])) if Q = A

or compute σ̃Q

TXPRV,i
:= Signsk′Q

RV
(f̃([TXPRV,i])) otherwise, output (revokeQ, id,

σ̃Q

TXPRV,i
)

t1+4
↪−−−→ P and (UPDATED, id)

t1+5
↪−−−→ E . Else, execute the procedure

ForceCloseQ(id) and stop.

Party P

12. If (revokeQ, id, σ̃Q

TXPRV,i
)

τ1+4←−−−↩ Q, such that it holds that VrfypkQ
RV
(f̃([TXPRV,i]);

σ̃Q

TXPRV,i
) = 1 if P = B or Vrfypk′Q

RV
(f̃([TXPRV,i]); σ̃

Q

TXPRV,i
) = 1 otherwise, as-

sign ΘP (id) := (σ̃Q

TXPRV,i
), γ.sn := i + 1, γ.st := θ⃗, ΓP (id) := (γ, TXFU,

TXPCM,i+1, [TX
Q
CM,i+1], TXSP,i+1), γ.flag := 1, and Γ ′P (id) := (⊥,⊥,⊥) and send

(UPDATED, id)
τ1+4
↪−−−→ E . Else, execute the procedure ForceCloseP (id) and

stop.

Close

Party P upon (CLOSE, id)
τ0←−↩ E
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1. Extract TXFU, i := γ.sn, TXSP,i from ΓP (id) and create [TXSP] := GenFinSplit

(TXFU.txid∥1, γ.st).
2. Compute σP

TXSP
:= SignskP

(f([TXSP])) and send (CloseP, id, σP
TXSP

)
τ0
↪−→ Q.

3. If (CloseQ, id, σQ
TXSP

)
τ0+1←−−−↩ Q s.t. VrfypkQ

(f([TXSP]);σ
Q
TXSP

) = 1,

create the transaction TXSP := (H([TXSP]), [TXSP], (1, {σP
TXSP

, σQ
TXSP
})) and send

(post, TXSP)
τ0+1
↪−−−→ L. Else, execute the procedure ForceCloseP (id) and stop.

4. If in round τ1 ≤ τ0 + 1 + ∆, the transaction TXSP is accepted by L, set
ΓP (id) :=⊥, ΘP (id) :=⊥ and send (CLOSED, id)

τ1
↪−→ E .

Punish (executed at the end of every round τ0)

Party P

For each id ∈ {0, 1}∗, extract i := γ.sn and flag := γ.flag from ΓP (id).
If flag = 1:

– Set (γ, TXFU, TX
P
CM,i, [TX

Q
CM,i], TXSP,i) := ΓP (id) and I := {[TXPCM,i], [TX

Q
CM,i]}.

Check if TXFU.Output is spent by a transaction TX s.t. [TX] /∈ I . If yes:

• Create ([TXPRV,i−1], [TX
Q
RV,i−1]) := GenRevoke(pkP , pkQ, γ.cash, i) and then

set [TXPRV,i−1] := (TX.txid∥1, [TXPRV,i−1]).

• compute σ̃P
TXPRV,i−1

= SignskP
RV
(f̃([TXPRV,i−1])) if P = B or σ̃P

TXPRV,i−1
= Signsk′P

RV

(f̃([TXPRV,i−1])) otherwise.

• Set σ̃Q

TXPRV,i−1

:= ΘP (id), and create TXPRV,i−1 := (H([TXPRV,i−1]), [TX
P
RV,i−1],

(2, {σ̃P
TXPRV,i−1

, σ̃Q

TXPRV,i−1

})).

• Post (post, TXPRV,i−1)
τ0
↪−→ L.

• Let TXPRV,i−1 be accepted by L in round τ1 ≤ τ0 + ∆. Set ΘP (id) :=⊥,
ΓP (id) :=⊥ and output (PUNISHED, id)

τ1
↪−→ E .

If no, set [TXSP,i] := (TX.txid∥1, TXSP,i.nLT, TXSP,i.Output), set TXSP,i := (H
([TXSP,i]), TX.txid∥1, TXSP,i) and then post (post, TXSP,i)

τ0+T
↪−−−→ L. Let TX be

spent in round τ1 ≤ τ0 + T +∆. Set ΘP (id) :=⊥, ΓP (id) :=⊥ and output

(CLOSED, id)
τ1
↪−→ E .

If flag = 2:

– Set (γ, TXFU, TX
P
CM,i, [TX

Q
CM,i], TXSP,i) := ΓP (id), and (TXPCM,i+1, [TX

Q
CM,i+1], TXSP,i+1)

:= Γ ′P (id) and also I := {[TXPCM,i], [TX
Q
CM,i], [TX

P
CM,i+1], [TX

Q
CM,i+1]}. Check if

TXFU.Output is spent by a transaction TX s.t. [TX] /∈ I. If yes:

• Create ([TXPRV,i−1], [TX
Q
RV,i−1]) := GenRevoke(pkP , pkQ, γ.cash, i). and then

set [TXPRV,i−1] := (TX.txid∥1, [TXPRV,i−1]).

• compute σ̃P
TXPRV,i−1

:= SignskP
RV
(f̃([TXPRV,i−1])) if P = B or σ̃P

TXPRV,i−1
:=

Signsk′P
RV
(f̃([TXPRV,i−1])) otherwise.
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• Set σ̃Q

TXPRV,i−1

:= ΘP (id), and create TXPRV,i−1 := (H([TXPRV,i−1]), [TX
P
RV,i−1],

(2, {σ̃P
TXPRV,i−1

, σ̃Q

TXPRV,i−1

})).

• Post (post, TXPRV,i−1)
τ0
↪−→ L.

• Let TXPRV,i−1 be accepted by L in round τ1 ≤ τ0 + ∆. Set ΘP (id) :=⊥,
ΓP (id) :=⊥ and output (PUNISHED, id)

τ1
↪−→ E .

If no, set [TXSP,i+1] := (TX.txid∥1, TXSP,i+1.nLT, TXSP,i+1.Output), TXSP,i+1 :=
(H([TXSP,i+1]), TX.txid∥1, TXSP,i+1), wait for T rounds and post (post, TXSP,i+1)
τ0+T
↪−−−→ L. Let TXSP,i+1 be accepted by L in round τ1 ≤ τ0 + T +∆. Then, set

ΘP (id) :=⊥, ΓP (id) :=⊥ and output (CLOSED, id)
τ1
↪−→ E .

Subprocedures

ForceCloseP (id):
Let τ0 be the current round. Extract i := γ.sn, flag := γ.flag, TXPCM,i and

TXSP,i from ΓP (id). Also, extract TXPCM,i+1 and TXSP,i+1 from Γ ′P (id) if flag = 2.

If i) flag = 1 or ii) flag = 2 and TXPCM,i+1 =⊥, then post (post, TXPCM,i)
τ0
↪−→ L.

Otherwise, post (post, TXPCM,i+1)
τ0
↪−→ L.

(Publishing the corresponding split transaction takes place in the Punish
phase.)

GenFund((tidP , tidQ), γ):
Return [TXFU] where [TXFU].Input := (tidP , tidQ), [TXFU].nLT := 0 and [TXFU].

Output := (γ.Cash, pkP ∧ pkQ)

GenCommit([TXFU].txid∥1, (pkPSP, pkPRV, pk′PRV ), (pk
Q
SP, pk

Q
RV, pk

′Q
RV ), i):

Return [TXPCM,i] and [TXQCM,i] where TX
P
CM,i.nLT := 0, TXPCM,i.Input := TXFU.txid∥1,

and TXPCM,i.Output := {(TXFU.Output.cash, (φ1 ∨φ2)}, TXQCM,i.nLT := 0, TXQCM,i.Input

:= TXFU.txid∥1 , and TX
Q
CM,i.Output := {(TXFU.Output.cash, (φ1 ∨ φ′

2)} with φ1 :=

(pkPSP ∧ pkQSP ∧ CSVT ∧ CLTVS0+i), φ2 := (pkPRV ∧ pkQRV ∧ CLTVS0+i), φ′
2 :=

(pk′PRV ∧ pk′QRV ∧ CLTVS0+i).

GenSplit(θ⃗, i):

Return [TXSP,i] where [TXSP,i].nLT := S0 + i and [TXSP,i].Output := θ⃗.

GenRevoke(pkP , pkQ, γ.cash, i+ 1):

Return [TXPRV,i] and [TXQRV,i] where [TXPRV,i].nLT := S0 + i, [TXPRV,i].Output :=

{(γ.cash, pkP )}, [TXQRV,i].nLT := S0 + i and [TXQRV,i].Output := {(γ.cash, pkQ)}

E Functionality Wrapper

The functionality F is supposed to perform several checks once he receives a
message from another party. The functionality F must perform those checks
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in order to ensure that the received messages are well-formed. The following
wrapper summarizes those checks.

Functionality Wrapper:WF

Create

Upon (INTRO, γ, tidP )
τ0←−↩ P check if: P ∈ γ.users; Γ (γ.id) ̸=⊥; there is no chan-

nel γ′ with γ.id = γ′.id, γ.sn = 0; γ.st = {(cP , One− SigpkP
), (cQ, One− SigpkQ

)}
with cP , cQ ∈ R>0 and cP + cQ = γ.cash; there exist (t, id, i, θ) ∈ L.UTXO such
that θ = (cP , One− SigP ) with id∥i = tid; and none of the other channels that
are being created at the moment, must use tidP . Drop the message if any above
checks fails. Else proceed as F .

Upon (CREATE, id)
τ←−↩ P check if: you accepted messages (INTRO, γ, tidP )

τ0←−↩
P and (INTRO, γ, tidQ)

τ0←−↩ Q with P,Q ∈ γ.users, τ0 + 1 = τ and id = γ.id. Else
proceed as F .

Update

Upon (UPDATE, id,
→
θ , tstp)

τ0←−↩ P set (γ, TXFU) := Γ (id) and check if: γ ̸=⊥,
there is no other update being preformed; let

→
θ = (θ1, · · · , θl) = ((c1, φ1), · · · ,

(cl, φl)), then Σi∈[l]ci=γ.cash and φi ∈ L.V. Drop the message if any above checks
fails. Else proceed as F .

Upon (UPDATE− OK, id)
τ←−↩ P check if: the message is a reply to the message

(UPDATE− REQ, id,
→
θ , tstp) sent to P in round τ . If not, drop the message. Else

proceed as F .
Upon (SETUP− OK, id)

τ←−↩ P check if: the message is a reply to the message
(SETUP, id) sent to P in round τ0 where τ = τ0 + tstp. If not, drop the message.
Else proceed as F .

Upon (SETUP′ − OK, id)
τ←−↩ P check if: the message is a reply to the message

(SETUP′, id) sent to P in round τ . If not, drop the message. Else proceed as F .
Upon (REVOKE, id)

τ←−↩ P check if: the message is a reply to the message
(UPDATE− OK, id) sent to P in round τ . If not, drop the message. Else proceed
as F .

Upon (REVOKE′, id)
τ←−↩ P check if: the message is a reply to the message

(REVOKE− REQ, id) sent to P in round τ . If not, drop the message. Else proceed
as F .

Close

Upon (CLOSE, id)
τ←−↩ P , set (γ, TXFU) := Γ (id) and check if: P ∈ γ.users,

Γ (γ.id) ̸=⊥ and γ.flag = 1. Drop the message if any above checks fails. Else
proceed as F .
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F Protocol Wrapper

Each party in Daric protocol F is supposed to perform several checks once he
receives a message from another party. Parties perform those checks to ensure
that the received messages are well-formed. The following wrapper summarizes
those checks.

Protocol Wrapper: WP

Create

Upon (INTRO, γ, tidP )
τ0←−↩ E check if: P ∈ γ.users; Γ (γ.id) ̸=⊥; there is

no channel γ′ with γ.id = γ′.id, γ.sn = 0; γ.st = {(cP , One− SigpkP
), (cQ,

One− SigpkQ
)} with cP , cQ ∈ R>0 and cP +cQ = γ.cash; there exist (t, id, i, θ) ∈

L.UTXO such that θ = (cP , One− SigP ) with id∥i = tid; and none of the other
channels that are being created at the moment, must use tidP . Drop the message
if any above checks fails. Else proceed as P in Daric protocol.

Upon (CREATE, id)
τ←−↩ E check if: you accepted messages (INTRO, γ, tidP )

τ0←−↩
P and (INTRO, γ, tidQ)

τ0←−↩ Q with P,Q ∈ γ.users, τ0 + 1 = τ and id = γ.id. Else
proceed as P in Daric protocol.

Update

Upon (UPDATE, id,
→
θ , tstp)

τ0←−↩ E set (γ, TXFU) := Γ (id) and check if: γ ̸=⊥,
there is no other update being preformed; let

→
θ = (θ1, · · · , θl) = ((c1, φ1), · · · ,

(cl, φl)), then Σi∈[l]ci=γ.cash and φi ∈ L.V. Drop the message if any above checks
fails. Else proceed as P in Daric protocol.

Upon (UPDATE− OK, id)
τ←−↩ E check if: the message is a reply to the message

(UPDATE− REQ, id,
→
θ , tstp) sent to E in round τ . If not, drop the message. Else

proceed as P in Daric protocol.

Upon (SETUP− OK, id)
τ←−↩ E check if: the message is a reply to the message

(SETUP, id) sent to E in round τ0 where τ = τ0 + tstp. If not, drop the message.
Else proceed as P in Daric protocol.

Upon (SETUP′ − OK, id)
τ←−↩ E check if: the message is a reply to the message

(SETUP′, id) sent to E in round τ . If not, drop the message. Else proceed as P in
Daric protocol.

Upon (REVOKE, id)
τ←−↩ E check if: the message is a reply to the message

(UPDATE− OK, id) sent to E in round τ . If not, drop the message. Else proceed
as P in Daric protocol.

Upon (REVOKE′, id)
τ←−↩ E check if: the message is a reply to the message

(REVOKE− REQ, id) sent to E in round τ . If not, drop the message. Else proceed
as P in Daric protocol.

Close

Upon (CLOSE, id)
τ←−↩ E , set (γ, TXFU) := Γ (id) and check if: P ∈ γ.users,

Γ (γ.id) ̸=⊥ and and γ.flag = 1. Drop the message if any above checks fails. Else
proceed as P in Daric protocol.
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G Security Analysis

In this section, we prove the Theorem 1. To do so, a simulator for the protocol π
in the ideal world is provided and then we formally show that the Daric protocol
(introduced in Appendix D) UC-realizes the ideal functionality F (introduced
in Section 5.2).

Simulator:
Create

Case A is honest and B is corrupted.

Upon A sending (INTRO, γ, tidA)
τ0
↪−→ F ,

1. Set id := γ.id, generate (pkASP, sk
A
SP) ← Gen, (pkARV, sk

A
RV) ← Gen and (pk′ARV ,

sk′ARV )← Gen and send (createInfo, id, tidA, pk
A
SP, pk

A
RV, pk

′A
RV )

τ0
↪−→ B.

2. If B sends (createInfo, id, tidB , pk
B
SP, pk

B
RV, pk

′B
RV )

τ0
↪−→ A, then (INTRO, γ, tidB)

τ0
↪−→ F on behalf of B. Else stop.

3. If A sends (CREATE, id)
τ0+1
↪−−−→ F , then create [TXFU] := GenFund((tidA, tidB),

γ), ([TXACM,0], [TX
B
CM,0]) := GenCommit([TXFU].txid∥1, IA, IB , 0), and [TXSP,0] :=

GenSplit(γ.st, 0) for IA := (pkASP, pk
A
RV, pk

′A
RV ) and IB := (pkBSP, pk

B
RV, pk

′B
RV ).

Else stop.
4. Compute σ̃A

TXSP,0
= SignskA

SP
(f̃([TXSP,0])) and σA

TXBCM,0
= SignskA

CM
(f([TXBCM,0])) and

send (createCom, id, σ̃A
TXSP,0

, σA
TXBCM,0

)
τ0+1
↪−−−→ B.

5. If B sends (createCom, id, σ̃B
TXSP,0

, σB
TXACM,0

)
τ0+1
↪−−−→ A, s.t. VrfypkB

SP
(f̃([TXSP,0]);

σ̃B
TXSP,0

) = 1 and VrfypkB
CM
(f([TXACM,0]);σ

B
TXACM,0

) = 1, send (CREATE, id)
τ0+1
↪−−−→ F

on behalf of B. Else stop.

6. Compute σA
TXFU

= SignskA
(f([TXFU])) and send (createFund, id, σA

TXFU
)

τ0+2
↪−−−→ B.

7. If B sends (createFund, id, σB
TXFU

)
τ0+2
↪−−−→ A, s.t. VrfypkB

(f([TXFU]);σ
B
TXFU

) = 1,

create TXFU := (H([TXFU]), [TXFU], ((x, σA
TXFU

), (y, σB
TXFU

))) and (post, TXFU)
τ0+3
↪−−−→

L. Else create a transaction TX with TX.input := tidA and TX.Output.φ := pkA

and (post, TX)
τ0+3
↪−−−→ L.

8. If TXFU is accepted by L in round τ1 ≤ τ0 + 3 + ∆, compute σA
TXACM,0

=

SignskA
CM
(f([TXACM,0])), create TX

A
CM,0 := (H([TXACM,0]), [TXACM,0], (1, {σA

TXACM,0
, σB

TXACM,0
}),

set TXSP,0 := ([TXSP,0], (1, {σ̃A
TXSP,0

, σ̃B
TXSP,0
})), store ΓA(γ.id) := (γ, TXFU, TX

A
CM,0,

[TXBCM,0], TXSP,0) and (CREATED, id)
τ1
↪−→ E . Else ΓA(γ.id) := (⊥, TXFU,⊥,⊥,⊥)

and stop.

Update

Case A is honest and B is corrupted.

Upon A sending (UPDATE, id,
→
θ , tstp)

τ0
↪−→ F , proceed as follows:
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1. Send (updateReq, id,
→
θ , tstp)

τ0
↪−→ B.

2. If B sends (updateInfo, id, σ̃B
SP,i+1)

τ1≤τ0+1+tstp
↪−−−−−−−−−→ A, extract TXFU and i :=

γ.sn from ΓA(id) and create ([TXACM,i+1], [TX
B
CM,i+1]) := GenCommit([TXFU].txid∥1,

IA, IB , i+1), and [TXSP,i+1] := GenSplit(γ.st, i+1) for IA := (pkASP, pk
A
RV, pk

′A
RV )

and IB := (pkBSP, pk
B
RV, pk

′B
RV ). If VrfypkB

SP
(f̃([TXSP,i+1]); σ̃

B
TXSP,i+1

) = 1, then com-

pute σ̃A
TXSP,i+1

:= SignskA
SP
(f̃([TXSP,i+1])), set TXSP,i+1 := ([TXSP,i+1], (1, {σ̃A

TXSP,i+1
,

σ̃B
TXSP,i+1

})), store Γ ′A(id) := (⊥, [TXBCM,i+1], TXSP,i+1), set γ.flag := 2 and

γ.st′ :=
→
θ and send (UPDATE− OK, id)

τ1
↪−→ F on behalf of B. Else stop.

3. IfA sends (SETUP− OK, id)
τ1+1
↪−−−→ F , compute σA

TXBCM,i+1
:= SignskA

SP
(f([TXBCM,i+1]))

and send (updateComA, id, σ̃A
TXSP,i+1

, σA
TXBCM,i+1

)
τ1+1
↪−−−→ B. Else, execute the pro-

cedure ForceCloseA(id) and stop.

4. If B sends (updateComB, id, σB
TXACM,i+1

)
τ1+2
↪−−−→ A, s.t. VrfypkB

CM
(f([TXACM,i+1]);

σB
TXACM,i+1

) = 1, compute σA
TXACM,i+1

= SignskA
SP
(f([TXACM,i+1])), set TXACM,i+1 :=

(H([TXACM,i+1]), [TX
A
CM,i+1], (1, {σA

TXACM,i+1
, σB

TXACM,i+1
})), store Γ ′A(id)[1] := TXACM,i+1,

and send (SETUP′ − OK, id)
τ1+2
↪−−−→ F on behalf of B. Else, execute the proce-

dure ForceCloseA(id) and stop.

5. If A sends (REVOKE, id)
τ1+3
↪−−−→ F , then create ([TXARV,i], [TX

B
RV,i]) := GenRevoke

(pkA, pkB , γ.cash, i + 1), compute σ̃A
TXBRV,i

= SignskA
RV
(f̃([TXBRV,i])) and send

(revokeA, id, σ̃A
TXBRV,i

)
τ1+3
↪−−−→ B. Else, execute the procedure ForceCloseA(id)

and stop.

6. If B sends (revokeB, id, σ̃B
TXARV,i

)
τ1+4
↪−−−→ A, s.t. VrfypkB

RV
(f̃([TXARV,i+1]); σ̃

B
TXARV,i

) =

1, then set ΘA(id) := (σ̃B
TXARV,i

), γ.sn := i + 1, γ.st :=
→
θ , ΓA(id) := (γ, TXFU,

TXACM,i+1, [TX
B
CM,i+1], TXSP,i+1), γ.flag = 1, and Γ ′A(id) = (⊥,⊥,⊥) and send

(REVOKE′, id)
τ1+4
↪−−−→ F on behalf of B. Else, execute ForceCloseA(id) and

stop.

Case B is honest and A is corrupted.

Upon A sending (updateReq, id,
→
θ , tstp)

τ0
↪−→ B, proceed as follows:

1. Send (UPDATE, id,
→
θ , tstp)

τ0
↪−→ F on behalf of A.

2. If B sends (UPDATE− OK, id)
τ1≤τ0+1+tstp
↪−−−−−−−−−→ F , extract TXFU and i := γ.sn from

ΓB(id), create ([TXACM,i+1], [TX
B
CM,i+1]) := GenCommit([TXFU].txid∥1, IA, IB , i +

1), and [TXSP,i+1] := GenSplit(γ.st, i + 1) for IA := (pkASP, pk
A
RV, pk

′A
RV ) and

IB := (pkBSP, pk
B
RV, pk

′B
RV ), compute σ̃B

TXSP,i+1
= SignskB

SP
(f̃([TXSP,i+1])) and send

(updateInfo, id, σ̃B
TXSP,i+1

)
τ1
↪−→ A.
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3. If A sends (updateComA, id, σ̃A
TXSP,i+1

, σA
TXBCM,i+1

)
τ1+1
↪−−−→ B, such that VrfypkA

SP

(f̃([TXSP,i+1]); σ̃
A
TXSP,i+1

) = 1 and VrfypkA
CM
(f([TXBCM,i+1]);σ

A
TXBCM,i+1

) = 1, com-

pute σB
TXBCM,i+1

= SignskB
CM
(f̃([TXBCM,i+1])), set TXSP,i+1 = ([TXSP,i+1], (1, {σ̃A

TXSP,i+1
,

σ̃B
TXSP,i+1

})), TXBCM,i+1 = ([TXBCM,i+1], (1, {σA
TXBCM,i+1

, σB
TXBCM,i+1

})), γ.flag = 2 and

γ.st′ =
→
θ , store Γ ′B(id) = (TXBCM,i+1, [TX

A
CM,i+1], TXSP,i+1), set γ.flag = 2 and

γ.st′ =
→
θ and send (SETUP− OK, id)

τ1+1
↪−−−→ F on behalf of A. Else execute

the procedure ForceCloseB(id) and stop.

4. If (SETUP′ − OK, id)
τ1+2←−−−↩ B, compute σB

TXACM,i+1
= SignskB

SP
(f̃([TXACM,i+1])) and

send (updateComB, id, σB
TXACM,i+1

)
τ1+2
↪−−−→ A. Else, execute ForceCloseB(id)

and stop.

5. Create ([TXARV,i], [TX
B
RV,i]) := GenRevoke(pkA, pkB , γ.cash, i + 1). If A sends

(revokeA, id, σ̃A
TXBRV,i

)
τ1+3
↪−−−→ B, s.t. VrfypkA

RV
(f̃([TXBRV,i+1]); σ̃

A
TXBRV,i+1

) = 1, set

ΘB(id) := (σ̃A
TXBRV,i

), γ.sn := i + 1, γ.st :=
→
θ , ΓB(id) := (γ, TXFU, TX

B
CM,i+1,

[TXACM,i+1], TXSP,i+1), γ.flag = 1, and Γ ′B(id) = (⊥,⊥,⊥) and send (REVOKE,

id)
τ1+3
↪−−−→ F on behalf of A. Else, execute the procedure ForceCloseB(id)

and stop.

6. If B sends (REVOKE′, id)
τ1+4
↪−−−→ F , compute σ̃B

TXARV,i
= SignskB

RV
(f̃([TXARV,i], 1)),

send (revokeB, id, σ̃B
TXARV,i

)
τ1+4
↪−−−→ A. Else, execute ForceCloseB(id) and stop.

Close

Case A is honest and B is corrupted.

1. UponA sending (CLOSE, id)
τ0
↪−→ F , extract TXFU, i := γ.sn, TXSP,i from ΓA(id)

and create [TXSP] := GenFinSplit(TXFU.txid∥1, γ.st)).
2. Compute σA

TXSP
:= SignskA

CM
(f([TXSP])) and send (CloseA, id, σA

TXSP
)

τ0
↪−→ B.

3. If B sends (CloseB, id, σB
TXSP

)
τ0
↪−→ A s.t. VrfypkB

CM
(f([TXSP]);σ

B
TXSP

) = 1, then

send (CLOSE, id)
τ0
↪−→ F on behalf of B. Otherwise, execute the simulator

code of the procedure ForceCloseA(id) and stop.

4. Create TXSP := ([TXSP], (1, {σA
TXSP

, σB
TXSP
})) and send (post, TXSP)

τ0+1
↪−−−→ L.

5. If τ1 ≤ τ0+1+∆ is the round in which TXSP is accepted by L, set ΓA(id) =⊥,
ΘA(id) =⊥.

Punish

Case A is honest and B is corrupted.

For each id ∈ {0, 1}∗, extract i := γ.sn and flag := γ.flag from ΓA(id).
If flag = 1:
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– Parse (γ, TXFU, TX
A
CM,i, [TX

B
CM,i], TXSP,i) := ΓA(id) and set I := {[TXACM,i], [TXBCM,i]}.

Check if TXFU.Output is spent by a transaction TX s.t. [TX] /∈ I and TX.Output ̸=
γ.st. If yes:

1. Create ([TXARV,i−1], [TX
B
RV,i−1]) := GenRevoke(pkASP, pk

B
SP, γ.cash, i) and then

set [TXARV,i−1] := (TX.txid∥1, [TXARV,i−1]).

2. compute σ̃A
TXARV,i−1

= Signsk′A
RV
(f̃([TXARV,i−1])) (for the case where B is hon-

est and A is corrupted, skBRV is used to compute the signature).
3. Set σ̃B

TXARV,i−1
:= ΘA(id), and create TXARV,i−1 := (H([TXARV,i−1]), [TX

A
RV,i−1],

(1, {σ̃A
TXARV,i−1

, σ̃B
TXARV,i−1

})).

4. Post (post, TXARV,i−1)
τ0
↪−→ L.

5. Let TXARV,i−1 be accepted by L in round τ1 ≤ τ0 + ∆. Set ΘA(id) :=⊥,
ΓA(id) :=⊥ and output (PUNISHED, id)

τ1
↪−→ E .

Otherwise, if TX.Output = γ.st, then set ΘA(id) :=⊥, ΓA(id) :=⊥ and output

(CLOSED, id)
τ0
↪−→ E . Else, set [TXSP,i] := (TX.txid∥1, TXSP,i.nLT, TXSP,i.Output),

TXSP,i := (H([TXSP,i]), TX.txid∥1, TXSP,i) and post (post, TXSP,i)
τ0+T
↪−−−→ L. Let

TXSP,i be accepted by L in round τ1 ≤ τ0 + T + ∆. Set ΘA(id) :=⊥,
ΓA(id) :=⊥ and output (CLOSED, id)

τ1
↪−→ E .

If flag = 2:

– Parse (γ, TXFU, TX
A
CM,i, [TX

B
CM,i], TXSP,i) := ΓA(id) as well as (TXACM,i+1, [TX

B
CM,i+1],

TXSP,i+1) := Γ ′A(id) and set I = {[TXACM,i], [TXBCM,i], [TXACM,i+1], [TX
B
CM,i+1]}. Check

if TXFU.Output is spent by a transaction TX s.t. [TX] /∈ I, TX.Output ̸= γ.st,
and TX.Output ̸= γ.st′. If yes:

1. Create ([TXARV,i−1], [TX
B
RV,i−1]) := GenRevoke(pkA, pkB , γ.cash, i) and then

set [TXARV,i−1] := (TX.txid∥1, [TXARV,i−1]).

2. compute σ̃A
TXARV,i−1

:= Signsk′A
RV
(f̃([TXARV,i−1])) (for the case where B is hon-

est and A is corrupted, skBRV is used to compute the signature).
3. Set σ̃B

TXARV,i−1
:= ΘA(id), and create TXARV,i−1 := (H([TXARV,i−1]), [TX

A
RV,i−1],

(2, {σ̃A
TXARV,i−1

, σ̃B
TXARV,i−1

})).

4. Post (post, TXARV,i−1)
τ0
↪−→ L.

5. Let TXARV,i−1 be accepted by L in round τ1 ≤ τ0 + ∆. Set ΘA(id) :=⊥,
ΓA(id) :=⊥ and output (PUNISHED, id)

τ1
↪−→ E .

Otherwise, if TX.Output = γ.st or TX.Output = γ.st′ hold, then setΘA(id) :=⊥,
ΓA(id) :=⊥ and output (CLOSED, id)

τ0
↪−→ E . Else, set [TXSP,i+1] = (TX.txid∥1,

TXSP,i+1.nLT, TXSP,i+1.Output), TXSP,i+1 := (H([TXSP,i+1]), TX.txid∥1, TXSP,i+1)

and post (post, TXSP,i+1)
τ0+T
↪−−−→ L. Let TXSP,i+1 be accepted by L in round

τ1 ≤ τ0+T +∆. Then, set ΘP (id) :=⊥, ΓA(id) :=⊥ and (CLOSED, id)
τ1
↪−→ E .

Subprocedure ForceCloseP (id)
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Let τ0 be the current round. Extract i := γ.sn, flag := γ.flag, TXPCM,i and

TXSP,i from ΓP (id) and TXPCM,i+1 and TXSP,i+1 from Γ ′P (id).
If flag = 1:

1. Post (post, TXPCM,i)
τ0
↪−→ L.

2. Let τ1 ≤ τ0 +∆ be the round in which TXPCM,i is accepted by the blockchain.

Wait for T rounds, set [TXSP,i] = (TXPCM,i.txid∥1, TXSP,i.nLT, TXSP,i.Output),

TXSP,i := (H([TXSP,i]), TXPCM,i.txid∥1, TXSP,i) and post (post, TXSP,i)
τ2:=τ1+T
↪−−−−−−→

L.
3. Once TXSP,i is accepted by L in round τ3 ≤ τ2 + ∆ set ΘP (id) :=⊥ and

ΓP (id) :=⊥ and output (CLOSED, id)
τ3
↪−→ γ.users .

Otherwise, extract TXPCM,i+1 and TXSP,i+1 from Γ ′P (id):

1. If TXPCM,i+1 =⊥, Send (post, TXPCM,i)
τ0
↪−→ L. Else, Send (post, TXPCM,i+1)

τ0
↪−→ L.

2. Let τ1 ≤ τ0+∆ be the round in which either TXPCM,i or TX
P
CM,i+1 is accepted by

the blockchain. Wait for T rounds, set [TXSP,i+1] = (TX.txid∥1, TXSP,i+1.nLT,
TXSP,i+1.Output), TXSP,i+1 := (H([TXSP,i+1]), TX.txid∥1, TXSP,i+1) and then post

(post, TXSP,i+1)
τ2:=τ1+T
↪−−−−−−→ L.

3. Once TXSP,i+1 is accepted by L in round τ3 ≤ τ2 + ∆ set ΘP (id) :=⊥ and

ΓP (id) :=⊥ and output (CLOSED, id)
τ3
↪−→ γ.users .

Lemma 1. Let Σ be a secure signature scheme. Then, the Create phase of pro-
tocol π GUC-emulates the Create phase of functionality F .

Proof. We define the following messages.

– m0 := (createCom, id, σ̃B
TXSP,0

, σB
TXACM,0

),

– m1 := (createFund, id, σA
TXFU

),

The proof is composed of multiple hybrids, where we gradually modify the
initial experiment.

Hybrid H0: This corresponds to the Create phase of protocol π.
Hybrid H1: For the honest party A in hybrid H0, if the corrupted party

B publishes the funding transaction TXFU on the ledger L without sending the
message m0 to A in round τ0 + 1, then the experiment outputs Error and fails.

Simulator S: This corresponds to the Create phase of the simulator, as defined
in beginning of this Appendix.

Lemma 2. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H0,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

H1,A,E (λ, z)}λ∈N,z∈{0,1}∗
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Proof. Two hybrids differ if the experiment outputs Error. Thus, we must bound
the probability that this event occurs. The experiment outputs Error, if and
only if the corrupted party B publishes the funding transaction TXFU on the
ledger L without sending the message m0 to A. Furthermore, according to the
protocol π, if A does not receive the message m0, he does not send the message
m1 including the signature σA

TXFU
to B. However, this signature must be part of

TXFU.Witness if TXFU is published on L and hence the signature σA
TXFU

must be
created by the adversary. Thus, given that the experiment outputs Error with
non-negligible probability, as will be shown in the next paragraph, we construct
a reduction against the existential unforgeability of the underlying signature
scheme Σ with non-negligible success probability which contradicts with our
assumption regarding the security of Σ.

Assume that Pr[Error | H0] ≥ 1
poly(λ) . The reduction receives as input

a public key pk from the challenger and registers it by sending the message
(register, pk) to L. Now assume that the honest party A, upon receiving the
message (INTRO, γ, tidA) from E , initiates the Create phase of protocol π. If in
this process, m0 is received from the adversary, the hybrid H1 does not output
Error and the reduction aborts. If the experiment outputs Error, meaning that
for this channel the corresponding funding transaction TXFU is accepted by L,
then the reduction outputs (m∗, σ∗) with m∗ = [TXFU] and σ∗ ∈ TXFU.Witness.
This reduction is clearly efficient, and wheneverH1 outputs Error, the reduction
succeeds in forging the signature. Moreover, the reduction has never called the
signing oracle for any messages. Therefore, the reduction outputs a valid forgery
with probability at least 1

poly(λ) , which contradicts with our assumption regarding

the security of the signature scheme Σ. This proves that Pr[Error | H0] <
1

poly(λ) .

Lemma 3. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H1,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

φF ,S,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. The two experiments are identical, and hence, indistinguishability follows.

This concludes the proof of Lemma 1.

Lemma 4. The Update phase of protocol π GUC-emulates the Update phase of
functionality F .

Proof. The two experiments are identical, and hence, indistinguishability follows.

Lemma 5. The Close phase of protocol π GUC-emulates the Close phase of
functionality F .

Proof. The proof is composed of multiple hybrids, where we gradually modify
the initial experiment.

Hybrid H0: This corresponds to the Close phase of protocol π.
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Hybrid H1: If the honest party A initiates hybrid H0 in round τ0 and in
round τ0 + 1 +∆, the output TXFU.Output is still unspent, then the experiment
outputs Error and fails.

Simulator S: This corresponds to the Close phase of the simulator, as defined
in beginning of this Appendix.

Lemma 6. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H0,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

H1,A,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. Similar to the proof of Lemma 2, we must bound the probability that H1

outputs Error. According to H1, the honest party A sends either (post, TXSP)
τ0+1
↪−−−→ L or (post, TXACM,i)

τ0+1
↪−−−→ L. Since both TXSP and TXACM,i are valid and

both take output of TXFU as their input, based on the ledger functionality L,
TXFU.Output becomes spent within at most ∆ rounds. Therefore, H1 will never
output Error. This completes the proof.

Lemma 7. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H1,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

φF ,S,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. The two experiments are identical, and hence, indistinguishability follows.

This concludes the proof of Lemma 5.

Lemma 8. Let Σ be a secure signature scheme. Then, the Punish phase of
protocol π GUC-emulates the Punish phase of functionality F .

Proof. The proof is composed of multiple hybrids, where we gradually modify
the initial experiment.

– Hybrid H0: This corresponds to the Punish phase of the protocol π.
– Hybrid H1: For the honest party A in hybrid H0, if a transaction TX is

published s.t. [TX] = [TXBCM,j ] with j ∈ [0, i − 1] but TXARV,i−1 is not accepted
by L within ∆ rounds, then the experiment outputs Error and fails.

– Hybrid H2: For the honest party A in hybrid H1, if a transaction TX is
published s.t. [TX] = [TXBCM,i] given that γ.flag = 1 or [TX] ∈ {[TXBCM,i],
[TXBCM,i+1]} given that γ.flag = 2, and then a transaction TX′ is published
s.t. TX′.Input = TX.txid∥1 and TX′.Witness.η = 2 (i.e. TX′.Witness satisfies the
second subcondition of TX.Output), then the experiment outputs Error and
fails.

– Hybrid H3: For the honest party A in hybrid H2, if either of the following
cases occur, the experiment outputs Error and fails.
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• While γ.flag = 1, a transaction TX is published s.t. [TX] = [TXACM,i],
and then a transaction TX′ is published s.t. TX′.Input = TX.txid∥1 and
TX′.Witness.η = 2 (i.e. TX′.Witness satisfies the second subcondition of
TX.Output).

• While γ.flag = 2, a transaction TX is published s.t. [TX] = [TXACM,i] given

that Γ ′A(id)[1] =⊥ or [TX] = [TXACM,i+1] otherwise, and then a transaction
TX′ is published s.t. TX′.Input = TX.txid∥1 and TX′.Witness.η = 2 (i.e.
TX′.Witness satisfies the second subcondition of TX.Output).

– Hybrid H4: For the honest party A in hybrid H3, if either of the following
cases occur, the experiment outputs Error and fails.
• While γ.flag = 1, a transaction TX with [TX] ∈ {[TXACM,i], [TXBCM,i]} is pub-

lished, but TXSP,i is not accepted by L within T +∆ rounds.
• While γ.flag = 2, a transaction TX with [TX] ∈ {[TXACM,i], [TXBCM,i], [TXBCM,i+1]}

is published, but TXSP,i or TXSP,i+1 is not accepted by L within T + ∆
rounds.

– Hybrid H5: For the honest party A in hybrid H4, if either of the following
cases occur, the experiment outputs Error and fails.
• While γ.flag = 1, a transaction TX with TX.Input = TXFU.txid∥1 is pub-
lished s.t. [TX] /∈ {[TXACM,i], [TXBCM,j ]}, j = [0, i] and TX.Output ̸= γ.st.

• While γ.flag = 2, a transaction TX with TX.Input = TXFU.txid∥1 is pub-
lished s.t. [TX] /∈ {[TXACM,i], [TXACM,i+1], [TX

B
CM,j ]}, j = [0, i+1] and TX.Output ̸=

γ.st.
– Simulator S: This corresponds to the Punish phase of the simulator, as

defined in beginning of this Appendix.

Lemma 9. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H0,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

H1,A,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. Two hybrids differ if the experiment outputs Error. Thus, we must bound
the probability that this event occurs. The hybrid H1 does not output Error

unless TXFU.Output is spent by a transaction TX s.t. [TX] = [TXBCM,j ] with j ∈
[0, i − 1]. According to H1, once this transaction is observed by A at the end

of round τ0, A posts (post, TXARV,i−1)
τ0
↪−→ L. Since TXARV,i−1 with TXARV,i−1.Input =

TX.txid∥1 is a valid transaction, it is accepted by L within ∆ rounds unless
another valid transaction TX′ is published within this ∆-round interval with
TX′.Input = TX.txid∥1. The output TX.Output has two subconditions, one of which
must be satisfied by TX′. The first subcondition φ1 = pkASP ∧ pkBSP ∧CLTVS0+j ∧
CSVT cannot be satisfied within T rounds and since we have T > ∆, φ1 cannot
be met within ∆ rounds. Satisfying the second subcondition φ2 = pk′ARV ∧ pk′BRV ∧
CLTVS0+j requires A’s signature and according to the protocol π, A does not
grant such an authorization to anyone. Thus, if the experiment outputs Error
with non-negligible probability, we construct a reduction against the existential
unforgeability of the underlying signature scheme Σ with non-negligible success
probability which contradicts with our assumption regarding the security of Σ.
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Assume that Pr[Error | H0] ≥ 1
poly(λ) . The reduction receives a public key pk

from the challenger as input, and in the channel creation phase sets pk′ARV := pk.
The channel might be updated any arbitrary number of times and might be
closed at any time using any method (peacefully or forcefully) selected by the
adversary. Assume that the channel has been updated i times. If the output
of the funding transaction is spent by a transaction TX s.t. [TX] ̸= [TXBCM,j ] with
j = [0, i − 1], the hybrid H1 does not output Error and hence the reduction
aborts. If a transaction TX with [TX] ∈ [TXBCM,j ] with j = [0, i − 1] is published,

the reduction calls the signing oracle for the message [TXARV,i−1], creates TX
A
RV,i−1

and posts it to the ledger L. If TXARV,i−1 is published on L within ∆ rounds, the
hybrid H1 does not output Error and hence the reduction aborts. Otherwise,
since TXARV,i−1 is a valid transaction, based on our assumptions on L, another
transaction TX′ with [TX′] ̸= [TXARV,i−1] and TX′.Input = TX.txid∥1 appears on
the ledger within this ∆ round interval. This causes H1 to output Error. As
mentioned earlier, TX′.Witness satisfies the condition pk′ARV ∧ pk′BRV ∧CLTVS0+j of
the output TX.Output. Now, the reduction outputs (m∗, σ∗) with m∗ = [TX′] and
σ∗ ∈ TX′.Witness.ζ. Moreover, the reduction has never called the signing oracle
for m∗ before, because the signing oracle was called only once for [TXARV,i−1] ̸=
m∗. Therefore, the reduction outputs a valid forgery with probability at least

1
poly(λ) , which contradicts with our assumption regarding the security of Σ. This

contradiction proves that Pr[Error | H0] <
1

poly(λ) .

Lemma 10. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H1,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

H2,A,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. Similar to the proof of Lemma 9, we show that if the experiment outputs
Error with non-negligible probability we construct a reduction against the exis-
tential unforgeability of the underlying signature scheme Σ with non-negligible
success probability. Assume that Pr[Error | H1] ≥ 1

poly(λ) . The reduction receives

as input a public key pk, and in the channel creation phase sets pk′ARV := pk. The
channel is updated any arbitrary number of times and might be closed at any
time using any method (peacefully or forcefully) selected by the adversary. As-
sume that the channel has been updates i times. If the output of the funding
transaction is spent by a transaction TX with [TX] ̸= [TXBCM,i] given that γ.flag = 1

or [TX] /∈ {[TXBCM,i], [TXBCM,i+1]} given that γ.flag = 2, the experiment does not out-
put Error and the reduction aborts. Otherwise, the reduction waits for T rounds
and then publishes the latest split transaction. If TX.Output is spent by a trans-
action TX′ s.t. TX′.Witness.η = 1, the experiment does not output Error and the
reduction aborts. However, if TX′.Witness.η = 1, the experiment outputs Error.
Since TX′.Witness satisfies the condition pk′ARV ∧ pk′BRV ∧ CLTVS0+i of the output
TX.Output, reduction outputs (m∗, σ∗) with m∗ = [TX′] and σ∗ ∈ TX′.Witness.ζ.
Moreover, the reduction has never called the signing oracle. Therefore, the reduc-
tion outputs a valid forgery with probability at least 1

·poly(λ) , which contradicts
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with our assumption regarding the security of Σ. This contradiction proves that
Pr[Error | H1] <

1
poly(λ) .

Lemma 11. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H2,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

H3,A,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. We bound the probability that the experiment outputs Error. Assume
that Pr[Error | H2] ≥ 1

poly(λ) . The reduction receives as input a public key pk

from the challenger and in the channel creation phase sets pk′ARV := pk. The
channel is updated any arbitrary number of times and might be closed at any
time using any method (peacefully or forcefully) selected by the adversary. For
the jth channel update, to generate the signature on TXBRV,j−1, a call to the

signing oracle for the message [TXBRV,j−1] is performed. We know that the channel
has been updated i times. Assume that TXFU.Output is spent by a transaction
TX. If one of the following cases occur, the experiment does not output Error

and the reduction aborts: 1) γ.flag = 1 and [TX] ̸= [TXACM,i], 2) γ.flag = 2, and

[TX] ̸= [TXACM,i] given that Γ ′A(id)[1] =⊥ or [TX] ̸= [TXACM,i+1] otherwise. Otherwise,
the reduction waits for T rounds and then publishes the latest split transaction.
If TX.Output is spent by a transaction TX′ s.t. TX′.Witness.η = 1, the experiment
does not output Error and hence the reduction aborts. If TX′.Witness.η = 2,
the experiment outputs Error. Now either of the following cases might have
occurred:

– We have γ.flag = 1 or γ.flag = 2 and Γ ′A(id)[1] =⊥ and hence [TX] = [TXACM,i]
holds. Also, since TX′.Witness.η = 2, TX′.Witness.ζ satisfies the condition
pk′ARV ∧pk′BRV ∧CLTVS0+i. The reduction outputs (m∗, σ∗) with m∗ = [TX′] and
σ∗ ∈ TX′.Witness.ζ. Moreover, the signing oracle was only called for messages

[TXBRV,j ] with j < i and since for these transactions we have [TXBRV,j ].nLT =

S0 + j < S0 + i, according to L, TXBRV,j can not spend TX.Output and hence

m∗ ̸= [TXBRV,j ] with j < i.

– We have γ.flag = 2 and Γ ′A(id)[1] ̸=⊥ and hence [TX] = [TXACM,i+1] holds.

Also, since TX′.Witness.η = 2, TX′.Witness.ζ satisfies the condition pk′ARV ∧
pk′BRV ∧ CLTVS0+i+1. The reduction outputs (m∗, σ∗) with m∗ = [TX′] and
σ∗ ∈ TX′.Witness.ζ. Moreover, the signing oracle was only called for messages

[TXBRV,j ] with j ≤ i and since for these transactions we have [TXBRV,j ].nLT =

S0+j < S0+ i+1, according to L, TXBRV,j cannot spend TX.Output and hence

m∗ ̸= [TXBRV,j ] with j ≤ i.

Therefore, the reduction has never called the signing oracle for the message
m∗ and hence the reduction outputs a valid forgery with probability at least

1
poly(λ) , which contradicts with our assumption regarding the security of Σ. This

contradiction proves that Pr[Error | H2] <
1

poly(λ) .
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Lemma 12. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H3,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

H4,A,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. Similar to previous proofs, assume that Pr[Error | H3] ≥ 1
poly(λ) . The

reduction receives as input a public key pk, and in the channel creation phase,
sets pkASP = pk. The channel is updated any arbitrary number of times and might
be closed at any time using any method (peacefully or forcefully) selected by the
adversary. Once the channel is created or once it is updated for the jth time, a call
to the signing oracle is performed to receive the signature on TXSP,0 and TXSP,j ,
respectively. Assume that the channel has been updated i times. If the output of
the funding transaction is spent by a transaction TX with [TX] ∈ {[TXACM,i], [TXBCM,i]
given that γ.flag = 1 or [TX] ∈ {[TXACM,i], [TXBCM,i], [TXACM,i+1], [TX

B
CM,i+1] given that

γ.flag = 2, the experiment does not output Error and the reduction aborts.
Otherwise, the reduction waits for T rounds and then posts the transaction TX′

on the ledger L with TX′ = TXSP,i given that γ.flag = 1 or TX′ = TXSP,i+1 given
that γ.flag = 2.

If TX′ is accepted by L, the experiment does not output Error and the re-
duction aborts. If TX.Output is spent by a transaction TX′′ with [TX′′] ̸= [TX′]
we know that either the first or the second subcondition of TX.Output is satis-
fied by TX′′.Witness. The second subcondition of TX.Output is not satisfied by
TX′′.Witness otherwise H2 or H3 would output Error which contradicts with
our assumptions. Thus, TX′′.Witness satisfies the first subcondition of TX.Output.
Therefore, the reduction outputs (m∗, σ∗) withm∗ = [TX′′] and σ∗ ∈ TX′′.Witness.ζ.
Moreover, the signing oracle was only called for messages [TXSP,j ] with j = [0, i]
given that γ.flag = 1 or j = [0, i + 1] given that γ.flag = 2. However, m∗ /∈
{[TXSP,i], [TXSP,i+1]}. Otherwise, H4 would not output Error. Also, m∗ /∈ {[TXSP,j ]
with j = [0, i− 1] because for these transactions we have [TXSP,j ].nLT = S0+ j <
S0+ i, and hence according to L, TXSP,j can not spend TX.Output. Therefore, the
reduction has never called the signing oracle for the message m∗ and hence the
reduction outputs a valid forgery with probability at least 1

poly(λ) , which contra-

dicts with our assumption regarding the security of Σ. This contradiction proves
that Pr[Error | H3] <

1
poly(λ) .

Lemma 13. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H4,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

H5,A,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. Similar to previous proofs, we construct a reduction against the existen-
tial unforgeability of the underlying signature scheme Σ. Assume that Pr[Error |
H4] ≥ 1

poly(λ) . The reduction receives as input a public key pk from the challenger

and in the channel creation phase sets pkA := pk. The channel is updated any
arbitrary number of times and might be closed at any time using any method
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(peacefully or forcefully) selected by the adversary. All calls to the signing al-
gorithm are redirected to the signing oracle. Assume that the channel has been
updated i times. Now assume that the output of the funding transaction is spent
by a transaction TX s.t. either of the following two sets of conditions hold:

– γ.flag = 1, [TX] /∈ {[TXACM,i], [TXBCM,j ]}, j = [0, i] and TX.Output ̸= γ.st.

– γ.flag = 2, [TX] /∈ {[TXACM,i], [TXACM,i+1], [TX
B
CM,j ]}, j = [0, i+ 1] and TX.Output ̸=

γ.st.

Then, the hybrid outputs Error. The reduction also outputs (m∗, σ∗) with m∗ =
[TX] and σ∗ ∈ TX.Witness.ζ. The signature σ∗ is a valid signature on m∗ because
TX.Witness satisfies the condition of TXFU.Output which is pkA ∧ pkB . Moreover,
as we will show in the next paragraph, the signing oracle was never called for
the message m∗.

Once the channel is created or each time it is updated, a call to the signing
oracle is performed to receive the signature on the funding transaction as well
as the new commit transaction held by B, i.e. [TXBCM,j ] with j = [0, i] if γ.flag = 1
or j = [0, i + 1] otherwise. Also, if the channel is closed forcefully, A calls the
signing oracle to receive the signature on [TXACM,i] if γ.flag = 1 or either [TXACM,i] or

[TXACM,i+1] otherwise. If the channel is closed peacefully, A calls the signing oracle
to receive the signature on [TX] with TX.Output = γ.st. Therefore, the reduction
has never called the oracle for the message m∗.

Lemma 14. For all PPT distinguishers E it holds that

{EXE
L(∆,Σ),Fclock

H5,A,E (λ, z)}λ∈N,z∈{0,1}∗ ≈

{EXE
L(∆,Σ),Fclock

φF ,S,E (λ, z)}λ∈N,z∈{0,1}∗ .

Proof. The two experiments are identical, and hence, indistinguishability follows.

This concludes the proof of Lemma.

*

Proof. This theorem follows directly from Lemma 1, Lemma 4, Lemma 5 and
Lemma 8.

H Performance analysis

H.1 Lightning channel

1) Non-collaborative Closure: To compute the total number of published bytes in
the non-collaborative closure scenario, we assume that the latest commit trans-
action includes m

2 offered HTLC outputs and m
2 received HTLC outputs (in

addition to the to local and to remote outputs). We also assume that once the
latest commit transaction is published, half of the offered HTLC outputs are
redeemed by payee (through publishing some transactions that we call Redeem
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transactions) and the rest are claimed back by the payer through publishing
the HTLC-timeout transactions. Also, half of the received HTLC outputs are
claimed by the payee through publishing the HTLC-Success transactions and
the rest are claimed back by the payer (through publishing some transactions
that we call Claimback transactions). We compute the size of each transaction,
hereinafter.

Commit transaction

The commit transaction with m HTLC outputs contains 224 bytes of witness
data and 125 + 43m bytes of non-witness data [1].

HTLC-Timeout transaction

Each HTLC-Timeout transaction contains 287 bytes of witness data and 94
bytes of non-witness data [1].

HTLC-Success transaction

Each HTLC-Success transaction contains 326 bytes of witness data and 94
bytes of non-witness data [1].

Redeem transaction

The Redeem transaction contains (244 bytes of witness data and 82 bytes of
non-witness data):

– witness data:
• header: 2 bytes
• witness to claim an offered HTLC output: 242 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input including 41 bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

The witness to claim an offered HTLC output includes (242 bytes):

– number of witness elements: 1 byte
– preimage length: 1 byte
– preimage: 32 byte
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 133 bytes

The witness script contains 133 bytes [1].
Claimback transaction

The Claimback transaction contains (219 bytes of witness data and 82 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim a received HTLC output: 217 bytes.
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– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input including 41 bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

The witness to claim a received HTLC output includes (217 bytes):

– number of witness elements: 1 byte
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 140 bytes

The witness script contains 140 bytes [1].
So, one commit transaction, m

4 HTLC-Timeout, m
4 HTLC-Success, m

4 Re-
deem and m

4 Claimback transactions contain 224+269m bytes of witness data
and 125 + 131m bytes of non-witness data, in total.

2) Dishonest Closure: If a revoked commit transaction is published, we as-
sume that the victim claims all revoked outputs, i.e. m

2 offered HTLC outputs,
m
2 received HTLC outputs, and one to local output, through a revocation trans-
action. The revocation transaction contains (157+246.5m byte of witness data
and 82+41m bytes of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim to local output: 155 bytes.
• witnesses to claim m

2 offered HTLC outputs, each including 243 bytes:
in total 121.5m

• witnesses to claim m
2 received HTLC outputs, each including 250 bytes:

in total 125m bytes.
– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• m+ 1 inputs, each including 41 bytes: in total 41 + 41m bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

The witness to claim to local output includes (155 bytes):

– number of witness elements: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– 1: 1 byte
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– witness script length: 1 byte
– witness script: 78 bytes

The witness script is as follows (78 bytes):
OP IF (1 byte)

#Penalty transaction

⟨revocationpubkey⟩ (1 byte for OP DATA and 33 bytes for the public key)
OP ELSE (1 byte)

‘to self delay‘(4 bytes)
OP CHECKSEQUENCEVERIFY (1 byte)
OP DROP (1 byte)
⟨local delayedpubkey⟩ (1 byte for OP DATA and 33 bytes for the public

key)
OP ENDIF (1 byte)
OP CHECKSIG (1 byte)

The witness to claim an offered output includes (243 bytes):

– number of witness elements: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– public key length: 1 byte
– public key: 33 bytes
– witness script length: 1 byte
– witness script: 133 bytes

The witness to claim a received output includes (250 bytes):

– number of witness elements: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– public key length: 1 byte
– public key: 33 bytes
– witness script length: 1 byte
– witness script: 140 bytes

The witness script for accepted output and offered output can be found in
[1].

So, one commit transaction and a revocation transaction contain 381+246.5m
bytes of witness data and 207 + 84m bytes of non-witness data.

3) Number of Operations: For each channel update, channel parties must
create the following signatures:

– signature on the commit transaction for their counter-party
– m

4 signatures on HTLC-Timeout transactions for their counter-party
– m

4 signatures on HTLC-Success transactions for their counter-party

Each party must verify the above signatures from their counter-party. Each
party must also create the following signatures to give to the watchtower:
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– one signature for the revocation transaction spending each output of the
commit transaction (except to remote output): m+ 1 signatures in total

– one signature for the revocation transaction spending the output of each
HTLC-Timeout transaction: m

4 signatures in total
– one signature for the revocation transaction spending the output of each

HTLC-Success transaction: m
4 signatures in total

Each party must also perform one exponentiation operation to generate a
revocation key pair and one exponentiation operation to verify the revocation
key pair of their counter-party.

H.2 Generalized channel

1) Non-collaborative Closure: In the non-collaborative closure scenario, the latest
commit and split transactions are published on-chain. Then, we assume half of
the HTLC outputs are redeemed by the payee (via Redeem’ transactions) and
the rest are claimed back by the payer (via Claimback’ transaction). As we will
see, specifications of Redeem’ and Claimback’ transactions are different from
their corresponding transactions in a Lightning channel. We compute the size of
each transaction, hereinafter.

Commit transaction

The commit transaction contains (224 byte of witness data and 94 bytes of
non-witness data):

– witness data:

• header: 2 bytes
• witness to claim a 2-of-2 multisignature output: 222 bytes.

– non-witness data:

• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• one P2WSH output: 43 bytes
• locktime: 4 bytes

The witness to claim a 2-of-2 multisignature output includes (222 bytes):

– number of witness elements: 1 byte
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 71 bytes
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The witness script is as follows (71 bytes):
OP 2 (1 byte)
⟨pubkey1⟩ (1 byte for OP DATA and 33 bytes for the public key)
⟨pubkey2⟩ (1 byte for OP DATA and 33 bytes for the public key)
OP 2 (1 byte)
OP CHECKMULTSIG (1 byte)
Split transaction

The split transaction (with two P2WPKH and m HTLC P2WSH outputs)
contains (380 byte of witness data and 113+43m bytes of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim commit transaction’s output: 378 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• two P2WPKH outputs: 62 bytes
• m P2WSH outputs: 43m bytes
• locktime: 4 bytes

The witness to claim commit transaction’s output includes (378 bytes):

– number of witness elements: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 228 bytes

The witness script is as follows [4] (228 bytes):
⟨pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)
OP CHECKSIG (1 byte)
OP SWAP (1 byte)
⟨pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)
OP CHECKSIG (1 byte)
OP IF (1 byte)

OP IF (1 byte)
delta (4 bytes)
OP CHECKSEQUENCEVERIFY (1 byte)
OP DROP (1 byte)

OP ELSE (1 byte)
adaptor pubkeyA (1 byte for OP DATA and 33 bytes for the public key)
OP CHECKSIGVERIFY (1 byte)
OP HASH256 (1 byte)
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hashedsecret rev A (1 byte for OP DATA and 32 bytes for the secret)
OP EQUALVERIFY (1 byte)

OP ENDIF (1 byte)
OP ELSE (1 byte)

OP IF (1 byte)
adaptor pubkeyB (1 byte for OP DATA and 33 bytes for the public key)
OP CHECKSIGVERIFY (1 byte)
OP HASH256 (1 byte)
hashedsecret rev B (1 byte for OP DATA and 32 bytes for the secret)
OP EQUALVERIFY (1 byte)

OP ELSE (1 byte)
OP RETURN (1 byte)

OP ENDIF (1 byte)
OP ENDIF (1 byte)
1 (1 byte)
Redeem’ transaction

The Redeem’ transaction contains (212 bytes of witness data and 82 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness for HTLC output: 210 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input including 41 bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

The witness to claim the HTLC output includes (210 bytes):

– number of witness elements: 1 byte
– preimage length: 1 byte
– preimage: 32 bytes
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 101 bytes

The witness script contains (101 bytes) [33]:
OP SHA160 (1 byte) ⟨digest⟩ (1 byte for OP DATA and 20 bytes for the

digest)
OP EQUAL (1 byte)
OP IF (1 byte)
⟨payee pubkey⟩ (1 byte for OP DATA and 33 bytes for public key)

OP ELSE (1 byte)
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T (4 bytes)
OP CHECKSEQUENCEVERIFY (1 byte)
OP DROP (1 byte)
⟨payer pubkey⟩ (1 byte for OP DATA and 33 bytes for public key)

OP ENDIF (1 byte)
OP CHECKSIG (1 byte)
Claimback’ transaction

The Claimback’ transaction contains (180 bytes of witness data and 82 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness for HTLC output: 178 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input including 41 bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

The witness to claim HTLC output includes (178 bytes):

– number of witness elements: 1 byte
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 101 bytes

So, one commit, one split, m
2 Redeem’ and m

2 Claimback’ transactions contain
624+195m bytes of witness data and 207+125m bytes of non-witness data, in
total.

2) Dishonest Closure: If a revoked commit transaction is published, the vic-
tim must create a revocation transaction and sends all the channel funds to his
own P2WPKH address.

The revocation transaction contains (414 bytes of witness data and 82 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness for commit transaction’s output: 412 bytes

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• one P2WPKH outputs: 31 bytes
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• locktime: 4 bytes

The witness to claim the commit transaction’s output includes (412 bytes):

– number of witness elements: 1 byte
– revocation secret length: 1 byte
– revocation secret: 32 bytes
– signature length: 1 byte
– signature: 73 bytes
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 228 bytes

So, commit and revocation transactions contain 638 bytes of witness data
and 176 bytes of non-witness data, in total.

3) Number of Operations: For each channel update, channel parties must
create the following signatures:

– pre-signature on the commit transaction for their counter-party
– signature on the split transaction for their counter-party
– signature on the revocation transaction for the watchtower

Each party must verify the first two above signatures from their counter-
party. Each party must also perform an exponentiation operation to generate a
statement/witness pair to be used in the adaptor signature.

H.3 Daric channel

1) Non-collaborative Closure: In a non-collaborative closure, the latest commit
and split transactions are published on-chain. Then, we assume half of the HTLC
outputs are redeemed by the payee (via Redeem’ transactions) and the rest are
claimed back by the payer (via Claimback’ transaction).

Commit transaction

The commit transaction contains 224 bytes of witness data and 94 bytes of
non-witness data (For more details, see the figures for the Generalized channel).

Split transaction

The split transaction (with two P2WPKH and m HTLC P2WSH outputs)
contains (311 bytes of witness data and 113+43m bytes of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim the commit transaction’s output: 309 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
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• number of outputs: 1 byte
• two P2WPKH outputs: 62 bytes bytes
• m P2WSH outputs: 43m bytes
• locktime: 4 bytes

The witness to claim the commit transaction’s output includes (309 bytes):

– number of witness elements: 1 byte
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– 0: 1 byte
– witness script length: 1 byte
– witness script: 157 bytes

The witness script is as follows (157 bytes):
⟨absolute time S0 + i ⟩ (4 byte)
OP CHECKLOCKTIMEVERIFY (1 byte)
OP DROP (1 byte)
OP IF (1 byte)

# Revocation

2 (1 byte)
⟨Rev pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)
⟨Rev pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)
2 (1 byte)
OP CHECKMULTISIG (1 byte)

OP ELSE (1 byte)
# Split

⟨delay T⟩ (4 bytes)
OP CHECKSEQUENCEVERIFY (1 bytes)
OP DROP (1 bytes)
2 (1 bytes)
⟨Spl pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)
⟨Spl pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)
2 (1 bytes)
OP CHECKMULTISIG (1 bytes)

OP ENDIF (1 bytes)
Redeem’ transaction

The Redeem’ transaction contains 212 bytes of witness data and 82 bytes of
non-witness data (For more details, see the figures for the Generalized channel).

Claimback’ transaction

The Claimback’ transaction contains 180 bytes of witness data and 82 bytes of
non-witness data (For more details, see the figures for the Generalized channel).
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So, one commit, one split, m
2 Redeem’ and m

2 Claimback’ transactions contain
535+196m bytes of witness data and 207+125m bytes of non-witness data, in
total.

2) Dishonest Closure: If a revoked commit transaction is published, the vic-
tim must create a revocation transaction and sends all the channel funds to his
own P2WPKH address. We computed the size of a commit transaction in the
previous section.

The revocation transaction contains (311 bytes of witness data and 82 bytes
of non-witness data):

– witness data:

• header: 2 bytes

• witness to claim the commit transaction’s output: 309 bytes.

– non-witness data:

• version: 4 bytes

• number of inputs: 1 byte

• one input: 41 bytes

• number of outputs: 1 byte

• one P2WPKH outputs: 31 bytes bytes

• locktime: 4 bytes

The witness to claim the commit transaction’s output includes (309 bytes):

– number of witness elements: 1 byte

– 0: 1 byte

– signature length: 1 byte

– signature: 73 bytes

– signature length: 1 byte

– signature: 73 bytes

– 1: 1 byte

– witness script length: 1 byte

– witness script: 157 bytes

So, commit and revocation transactions contain 535 byte of witness data and
176 bytes of non-witness data, in total.

3) Number of Operations: For each channel update, channel parties must
create the following signatures:

– signature on the commit transaction for their counter-party

– signature on the split transaction for their counter-party

– signature on their counter-party’s revocation transaction

– signature on their own revocation transaction for their watchtower

Each party must verify the first three above signatures
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H.4 eltoo

An eltoo channel has a trigger transaction between the funding transaction and
all update transactions. Since the update transactions are floating, if the public
keys that are used in the output of the funding transaction are the same as the
update public keys that are used in the output of the update transactions, it is
possible to remove the trigger transaction. In this section, we consider such a
simpler version.

1) Non-collaborative Closure: In a non-collaborative closure, the latest up-
date and settlement transactions are published on-chain. Similar to other pay-
ment channels, we assume that the settlement transaction contains m HTLC
outputs where half of the HTLC outputs are redeemed by the payee (via Re-
deem’ transactions) and the rest are claimed back by the payer (via Claimback’
transaction). We compute the size of each transaction, hereinafter.

update transaction

The update transaction contains (332 byte of witness data and 125 bytes of
non-witness data):

– witness data:
• header: 2 bytes
• witness to claim a 2-of-2 multisignature output: 222 bytes.
• witness to claim a P2WPKH output: 108 bytes (This input is added to
the transaction for fee purposes).

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• one P2WSH output: 43 bytes
• one P2WPKH output: 31 bytes (This input is added to the transaction
for fee purposes)

• locktime: 4 bytes

The witness to claim a 2-of-2 multisignature output includes (222 bytes):

– number of witness elements: 1 byte
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 71 bytes

The witness script is as follows (71 bytes):
OP 2 (1 byte)
⟨pubkey1⟩ (1 byte for OP DATA and 33 bytes for the public key)
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⟨pubkey2⟩ (1 byte for OP DATA and 33 bytes for the public key)
OP 2 (1 byte)
OP CHECKMULTSIG (1 byte)
The witness to claim a P2WPKH output includes (108 bytes):

– signature length: 1 byte
– signature: 73 bytes
– public key length: 1 byte
– public key: 33 bytes

Settlement transaction The settlement transaction (with two P2WPKH and
m HTLC P2WSH outputs) contains (304 byte of witness data and 113+43m
bytes of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim the update transaction’s output: 302 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• two P2WPKH outputs: 62 bytes bytes
• m P2WSH outputs: 43m bytes
• locktime: 4 bytes

The witness to claim the update transaction’s output includes (302 bytes):

– number of witness elements: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– 1: 1 byte
– witness script length: 1 byte
– witness script: 151 bytes

The witness script is as follows [18] (151 bytes):
OP IF (1 byte)

# settlement

2 (1 byte)
⟨set pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)
⟨set pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)
2 (1 byte)
OP CHECKMULTISIG (1 byte)

OP ELSE (1 byte)
# Update
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⟨delay T⟩ (4 bytes)
OP CHECKSEQUENCEVERIFY (1 bytes)
OP DROP (1 bytes)
2 (1 bytes)
⟨upd pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)
⟨upd pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)
2 (1 bytes)
OP CHECKMULTISIG (1 bytes)

OP ENDIF (1 bytes)
Redeem’ transaction

The Redeem’ transaction contains 212 bytes of witness data and 82 bytes of
non-witness data (For more details, see the figures for the Generalized channel).

Claimback’ transaction

The Claimback’ transaction contains 180 bytes of witness data and 82 bytes of
non-witness data (For more details, see the figures for the Generalized channel).

So, one update, one settlement, m
2 Redeem’ and m

2 Claimback’ transactions
contain 636+196m bytes of witness data and 238+125m bytes of non-witness
data, in total.

2) Dishonest Closure: If an old update transaction is published, the vic-
tim must publish the latest update transaction and then the latest settlement
transaction and finally all Claimback’ and Redeem’ transaction. In the previous
section, we computed the size of all mentioned transactions except an update
transaction which spends output of an old update transaction. We compute the
size of such a transaction, hereinafter.

The latest update transaction contains (412 byte of witness data and 125
bytes of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim the old update transaction’s output: 302 bytes.
• witness to claim a P2WPKH output: 108 bytes (This input is added to
the transaction for fee purposes).

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• one P2WSH output: 43 bytes
• one P2WPKH output: 31 bytes (This input is added to the transaction
for fee purposes)

• locktime: 4 bytes

The witness to claim the old update transaction’s output includes (302 bytes):

– number of witness elements: 1 byte
– signature length: 1 byte
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– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– 0: 1 byte
– witness script length: 1 byte
– witness script: 151 bytes

So, one old update transaction, the latest update transaction, the latest settle-
ment transaction, m

2 Redeem’ and m
2 Claimback’ transactions contain 940+196m

bytes of witness data and 332+125m bytes of non-witness data, in total.
3) Number of Operations: For each channel update, channel parties must

create the following signatures:

– signature on the update transaction for their counter-party
– signature on the settlement transaction for their counter-party

Each party must verify two above signatures from their counter-party. Each
party must also perform one exponentiation operation to create a settlement key
pair to be used in the condition of the update transaction.

H.5 FPPW channel

1) Non-collaborative Closure: In a non-collaborative closure, the latest commit
and split transactions are published on-chain. Then, we assume half of the HTLC
outputs are redeemed by the payee (via Redeem’ transactions) and the rest are
claimed back by the payer (via Claimback’ transaction).

Commit transaction

The commit transaction contains (224 bytes of witness data and 137 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim a 2-of-2 multisignature output: 222 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• two P2WSH output: 86 bytes
• locktime: 4 bytes

Split transaction

The split transaction (with two P2WPKH and m HTLC P2WSH outputs)
contains (338 bytes of witness data and 113+43m bytes of non-witness data):

– witness data:
• header: 2 bytes
• witness for commit transaction’s output: 336 bytes.
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– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• two P2WPKH outputs: 62 bytes bytes
• m P2WSH outputs: 43m bytes
• locktime: 4 bytes

The witness to claim the commit transaction’s output includes (336 bytes):

– number of witness elements: 1 byte
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– 0: 1 byte
– witness script length: 1 byte
– witness script: 184 bytes

The witness script is as follows (184 bytes):
OP IF (1 byte)

# Revocation
3 (1 byte)
⟨Rev pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)
⟨Rev pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)
⟨Rev pubkeyW⟩ (1 byte for OP DATA and 33 bytes for the public key)
3 (1 byte)
OP CHECKMULTISIG (1 byte)

OP ELSE (1 byte)
# Split
⟨delay t ⟩ (4 bytes)
OP CHECKSEQUENCEVERIFY (1 byte)
OP DROP (1 byte)
2 (1 byte)
⟨Spl pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)
⟨Spl pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)
2 (1 byte)

OP ENDIF (1 byte)
Redeem’ transaction

The Redeem’ transaction contains 212 bytes of witness data and 82 bytes of
non-witness data (For more details, see the figures for the Generalized channel).

Claimback’ transaction

The Claimback’ transaction contains 180 bytes of witness data and 82 bytes of
non-witness data (For more details, see the figures for the Generalized channel).
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So, one commit, one split, m
2 Redeem’ and m

2 Claimback’ transactions contain
562+196m bytes of witness data and 250+125m bytes of non-witness data, in
total.

2) Dishonest Closure: If a revoked commit transaction is published, the vic-
tim must publish a revocation transaction to spend both outputs of the commit
transaction and sends all the channel funds to his own P2WSH address. We
computed the size of a commit transaction in the previous section.

The revocation transaction contains (897 bytes of witness data and 94 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim the first output of the commit transaction: 410 bytes.
• witness to claim the second output of the commit transaction: 485 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• one P2WSH outputs: 43 bytes bytes
• locktime: 4 bytes

The witness to claim the first output of the commit transaction includes (410
bytes):

– number of witness elements: 1 byte
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– 1: 1 byte
– witness script length: 1 byte
– witness script: 184 bytes

The witness to claim the second output of the commit transaction includes
(485 bytes):

– number of witness elements: 1 byte
– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
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– signature: 73 bytes

– 1: 1 byte

– witness script length: 1 byte

– witness script: 259 bytes

The witness script is as follows (259 bytes):

OP IF (1 byte)

# Revocation

3 (1 byte)

⟨Rev pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)

⟨Rev pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)

⟨Rev pubkeyW⟩ (1 byte for OP DATA and 33 bytes for the public key)

3 (1 byte)

OP CHECKMULTISIG (1 byte)

OP ELSE (1 byte)

⟨delay t⟩ (4 byte)

OP CHECKSEQUENCEVERIFY (1 byte)

OP DROP (1 byte)

OP IF (1 byte)

# Penalty1 or Penalty2 by party B

2 (1 byte)

⟨Pen pubkeyB⟩ (1 byte for OP DATA and 33 bytes for the public key)

⟨YA⟩ (1 byte for OP DATA and 33 bytes for the public key)

2 (1 byte)

OP CHECKMULTISIG (1 byte)

OP ELSE (1 byte)

# Penalty1 or Penalty2 by party A

2 (1 byte)

⟨Pen pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)

⟨YB⟩ (1 byte for OP DATA and 33 bytes for the public key)

2 (1 byte)

OP CHECKMULTISIG (1 byte)

OP ENDIF (1 byte)

OP ENDIF (1 byte)

So, commit and revocation transactions contain 1121 bytes of witness data
and 231 bytes of non-witness data, in total.

3) Number of Operations: For each channel update, channel parties must
create the following signatures:

– pre-signature on the commit transaction for their counter-party

– signature on the split transaction for their counter-party

– two signature on the revocation transactions for their counter-party and the
watchtower

– two signature on penalty transactions for their counter-party
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Each party must verify 6 above signatures from their counter-party as well as
four signatures from the watchtower on the revocation transaction and penalty
transactions. Each party must also perform one exponentiation operation to
create a statement/witness pair.

H.6 Cerberus channel

To compute the total number of published bytes in different channel closure
scenarios, we assume that the channel states do not contain any HTLC output.

1) Non-collaborative Closure: In this scenario, a commit transaction is pub-
lished on-chain. We compute the size of this transaction, hereinafter.

Commit transaction

The commit transaction contains (224 bytes of witness data and 137 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim a 2-of-2 multisignature output: 222 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• two P2WSH outputs: 86 bytes
• locktime: 4 bytes

2) Dishonest Closure: If a revoked commit transaction is published, the vic-
tim uses the corresponding revocation transaction to claim both outputs of the
commit transaction. The revocation transaction contains (534 bytes of witness
data and 123 bytes of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim the to local output: 266 bytes.
• witness to claim the to remote output: 266 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• 2 inputs, each including 41 bytes: in total 82 bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

The witness to claim the to local (and similarly to remote) output includes
(266 bytes):

– number of witness elements: 1 byte
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– 0: 1 byte
– signature length: 1 byte
– signature: 73 bytes
– signature length: 1 byte
– signature: 73 bytes
– witness script length: 1 byte
– witness script: 115 bytes

The witness script is as follows (115 bytes) [11]:
OP IF (1 byte)

# Revocation

2 (1 byte)
⟨revocation pubkey1⟩ (1 byte for OP DATA and 33 bytes for the public

key)
⟨revocation pubkey2⟩ (1 byte for OP DATA and 33 bytes for the public

key)
2 (1 byte)
OP CHECKMULTISIG (1 byte)

OP ELSE (1 byte)
# Normal

⟨delay T⟩ (4 bytes)
OP CHECKSEQUENCEVERIFY (1 bytes)
OP DROP (1 bytes)
⟨delayed pubkeyA⟩ (1 byte for OP DATA and 33 bytes for the public key)
OP CHECKMULTISIG (1 bytes)

OP ENDIF (1 bytes)
So, one commit transaction and its revocation transaction contain 758 bytes

of witness data and 260 bytes of non-witness data.
3) Number of Operations: For each channel update, channel parties must

create the following signatures:

– signature on the commit transaction for their counter-party
– signature on their counter-party’s revocation transaction for their counter-

party
– signature on their own revocation transaction for their watchtower

Each party must verify 2 signatures from their counter-party on commit
and revocation transactions as well as two signatures from the watchtower on
the revocation transaction. Each party must also verify two signatures from the
watchtower on penalty transaction.

H.7 Outpost channel

To compute the total number of published bytes in different channel closure
scenarios, we assume that the channel states do not contain any HTLC output.
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1) Non-collaborative Closure: In this scenario, a commit transaction 1, an
auxiliary transaction and a commit transaction 2 are published on-chain. We
compute the size of each transaction, hereinafter.

Commit transaction 1

The commit transaction 1 contains (224 bytes of witness data and 168 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim a 2-of-2 multisignature output: 222 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• two P2WSH outputs: 86 bytes
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

Auxiliary transaction

The auxiliary transaction contains (224 bytes of witness data and 240 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim a 2-of-2 multisignature output: 222 bytes

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• one P2WSH outputs: 43 bytes
• one OP RETURN output: two 73 byte signatures
• locktime: 4 bytes

Commit transaction 2

The commit transaction 2 contains (446 bytes of witness data and 123 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim the multisignature condition in the first output of the
commit transaction 1: 222 bytes.

• witness to claim the multisignature condition in the first output of the
auxiliary transaction: 222 bytes.

– non-witness data:
• version: 4 bytes
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• number of inputs: 1 byte
• two inputs: 82 bytes
• number of outputs: 1 byte
• one P2WPKH outputs: 31 bytes
• locktime: 4 bytes

So, commit transaction 1, auxiliary transaction and commit transaction 2
contain 894 bytes of witness data and 531 bytes of non-witness data.

2) Dishonest Closure: In the dishonest closure, a revoked commit transac-
tion 1 and then its corresponding auxiliary transaction and justice transaction
are published on the blockchain. The justice transaction contains (224 bytes of
witness data and 82 bytes of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim the multisignature condition in the first output of the
commit transaction 1: 222 bytes.

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one input with 41 bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

So, commit transaction 1, its corresponding auxiliary transaction and justice
transaction contain 672 bytes of witness data and 490 bytes of non-witness data.

3) Number of Operations: For each channel update, channel parties must
create the following signatures:

– signature on the commit transaction 1 for their counter-party
– signature on the auxiliary transaction for their counter-party
– 2 signatures on the commit transaction 2 for their counter-party
– signature on the justice transaction for their counter-party

Each party must verify 4 signatures from their counter-party on the above
mentioned transactions.

H.8 Sleepy channel

To compute the total number of published bytes in different channel closure
scenarios, we assume that the channel states do not contain any HTLC output.

1) Non-collaborative Closure: In this scenario, a payment transaction, a fast-
finish transaction and an enabler transaction are published on-chain. We com-
pute the size of each transaction, hereinafter.

Payment transaction

The payment transaction contains (224 bytes of witness data and 168 bytes
of non-witness data):
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– witness data:

• header: 2 bytes
• witness to claim a 2-of-2 multisignature condition: 222 bytes

– non-witness data:

• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• two P2WSH outputs: 86 bytes
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

Fast-finish transaction

The fast-finish transaction contains (224 bytes of witness data and 125 bytes
of non-witness data):

– witness data:

• header: 2 bytes
• witness to claim a 2-of-2 multisignature condition: 222 bytes

– non-witness data:

• version: 4 bytes
• number of inputs: 1 byte
• one input: 41 bytes
• number of outputs: 1 byte
• one P2WSH outputs: 43 bytes
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

Enabler transaction

The enabler transaction contains (446 bytes of witness data and 123 bytes of
non-witness data):

– witness data:

• header: 2 bytes
• witness to claim the 2-of-2 multisignature condition in the second output
of the payment transaction: 222 bytes

• witness to claim the 2-of-2 multisignature condition in the first output
of the fast-finish transaction: 222 bytes

– non-witness data:

• version: 4 bytes
• number of inputs: 1 byte
• two inputs: 82 bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes
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So, payment transaction, fast-payment transaction and enabler transaction
contain 894 bytes of witness data and 416 bytes of non-witness data.

1) Dishonest Closure: In this scenario, payment transaction, punishment
transaction and fast-finish transaction are published on the blockchain. We com-
pute the size of each transaction, hereinafter. Payment transaction

The payment transaction contains 224 bytes of witness data and 168 bytes
of non-witness data.

Punishment transaction

The punishment transaction contains (224 bytes of witness data and 82 bytes
of non-witness data):

– witness data:
• header: 2 bytes
• witness to claim the 2-of-2 multisignature condition in the second output
of the payment transaction: 222 bytes

– non-witness data:
• version: 4 bytes
• number of inputs: 1 byte
• one inputs: 41 bytes
• number of outputs: 1 byte
• one P2WPKH output: 31 bytes
• locktime: 4 bytes

Fast-finish transaction

The fast-finish transaction contains 224 bytes of witness data and 125 bytes
of non-witness data.

So, payment transaction, punishment transaction and fast-payment transac-
tion contain 672 bytes of witness data and 375 bytes of non-witness data.

3) Number of Operations: For each channel update, channel parties must
create the following signatures:

– signature on the payment transaction for their counter-party
– signature on the fast-finish transaction for their counter-party
– signature on the punishment transaction for their counter-party
– two signatures on the enabler transaction for their counter-party

Each party must verify 5 signatures from their counter-party on the above
mentioned transactions.


	Daric: A Storage Efficient Payment Channel With Penalization Mechanism

