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Abstract

In this note, we introduce a class of card-based protocols called single-shuffle full-open (SSFO) pro-
tocols and show that any SSFO protocol for a function f : {0, 1}n → [d] using k cards is generically
converted to a private simultaneous messages (PSM) protocol for f with (nk)-bit communication. As
an example application, we obtain an 18-bit PSM protocol for the three-bit equality function from the
six-card trick (Heather–Schneider–Teague, Formal Aspects of Computing 2014), which is an SSFO pro-
tocol in our terminology. We then generalize this result to another class of protocols which we name
single-shuffle single-branch (SSSB) protocols, which contains SSFO protocols as a subclass. As an exam-
ple application, we obtain an 8-bit PSM protocol for the two-bit AND function from the four-card trick
(Mizuki–Kumamoto–Sone, ASIACRYPT 2012), which is an SSSB protocol in our terminology.

1 Introduction

Card-based protocols [1,2,8] are secure computation protocols using a deck of physical cards. They have been
developed along with the conventional cryptography (i.e., cryptography without using physical objects), and
some of them are inspired by the techniques from the conventional cryptography (e.g., the circuit evaluation
technique [1,8], the garbled circuit technique [11], and the private permutation setting [9]). However, for the
opposite direction, as far as we know, it has not been known what implies from card-based cryptography to
the conventional cryptography. A natural question is: Is there any implication from card-based cryptography
to the conventional cryptography?

To answer this question, in this note, we show that any card-based protocol with certain properties
implies a private simultaneous messages (PSM) protocol [3, 5]. We first introduce a class of card-based
protocols called single-shuffle full-open (SSFO) protocols. An SSFO protocol is a card-based protocol with
the “single-shuffle” property, which requires a single shuffle only, and the “full-open” property, in which all
cards are opened at the end of the protocol. Our first contribution is to show that any SSFO protocol for
a function f : {0, 1}n → [d] = {1, 2, . . . , d} using k cards is generically converted to a PSM protocol for
f with (nk)-bit communication. We note that, starting from the same SSFO protocol, our conversion can
also generate a PSM protocol for a slightly more complicated function than the original function f . As
applications, we obtain a 10-bit PSM protocol for the two-bit AND function from the five-card trick [2],
an 18-bit PSM protocol for the three-bit equality function from the six-card trick [4], and an 18-bit PSM
protocol for the three-bit majority function from the six-card majority protocol in [12].

Although our protocol compiler supports a natural but limited class of card-based protocols, we hope
that a deeper connection from card-based protocols to other cryptographic primitives will be discovered in
future research. Towards this direction, we generalize our result to another class of protocols which we name
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single-shuffle single-branch (SSSB) protocols. An SSSB protocol is a card-based protocol with the single-
shuffle property and the “single-branch” property as follows. Right after applying a shuffle, it first opens
a single card and then opens some other cards, where the positions of the second opening depends on the
opened value of the first opening. Our second contribution is to show that any SSSB protocol for a function
f : {0, 1}n → [d] using k cards implies a PSM protocol for f with nk bits (and also a PSM protocol for a
slightly more complicated function). As an application, we obtain an 8-bit PSM protocol for the two-bit
AND function from the four-card trick [6]. We remark that any SSFO protocol can be viewed as an SSSB
protocol. Thus, our second compiler for SSSB protocols can be also applied to an SSFO protocol with k

cards, and it also generates a PSM protocol with nk bits, the same communication complexity as our first
compiler for SSFO protocols. The advantages of our first compiler are the simplicity of the construction and
the efficiency of the randomness, where it saves (k − 1) random bits compared to our second compiler.

It is worthwhile to note that our results capture card-based protocols with non-uniform shuffles (i.e.,
shuffles whose probability distributions are not uniform) or non-closed shuffles (i.e., shuffles whose permuta-
tion sets are not closed under composition). In card-based cryptography, they are considered to be difficult to
implement physically, and thus considered to be less practical. In contrast, our results do not matter whether
the underlying shuffle is non-uniform/non-closed since the permutations in the converted PSM protocol are
to be performed on an electronic computer which can feasibly choose permutations by even non-uniform/non-
closed distributions. We believe that our results shed light on non-uniform/non-closed shuffles, and provide
a new motivation to improve the efficiency of card-based protocols by using non-uniform/non-closed shuffles.

We note that the aim of our result is to show a connection from card-based protocols to the conventional
cryptography for the first time. We do not claim that our protocols obtained from card-based protocols
are the most efficient among the existing PSM protocols. Indeed, for example, there exists a (2 log2 3)-bit
PSM protocol for the two-bit AND protocol [3], which is more efficient than our 8-bit PSM protocol from
the four-card trick. Intuitively speaking, the less efficiency of the protocol by our conversion comes mainly
from the protocol design that an input of each party is encoded as a sparse bit string. Improvement of the
efficiency will be an important future research topic.

This note is organized as follows. In Section 2, we introduce card-based protocols and PSM protocols.
In Section 3, we define SSFO protocols, show that SSFO protocols imply PSM protocols, and give concrete
PSM protocols from some existing SSFO protocols. In Section 4, we define SSSB protocols, show that SSSB
protocols imply PSM protocols, and give concrete PSM protocols from some existing SSSB protocols. In
Appendix, we give the protocol descriptions of these SSFO and SSSB protocols.

2 Preliminaries

In Section 2.1, we define the basic notations. In Section 2.2, we briefly introduce card-based protocols. See
Mizuki–Shizuya’s paper [7] for the details. In Section 2.3, we give the definition of PSM protocols.

2.1 Notations

For an integer n ≥ 2, we denote [n] = {1, 2, . . . , n}. For an integer k ≥ 1, we denote the k-th symmetric
group by Sk. For a k-bit string s = (s1, s2, . . . , sk) ∈ {0, 1}

k and a permutation π ∈ Sk, we define the
permuted string of s by π, denoted by π(s), as follows:

π(s) = (sπ−1(1), sπ−1(2), . . . , sπ−1(k)).

For example, for a string s = 111000 ∈ {0, 1}6 and a cyclic permutation σ = (1 2 3 4 5 6) ∈ S6, we have
σ(s) = 011100.

2.2 Card-based Protocols

We use cards having two face-up symbols ♣ and ♥ whose backs are both ? . We assume that all cards
having the same symbol are indistinguishable, and all face-down cards are indistinguishable regardless of the
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face-up symbols. By using the encoding ♣ = 0 and ♥ = 1, we identify a sequence of k cards with a k-bit
string s ∈ {0, 1}k. For a bit x ∈ {0, 1}, a pair of face-down cards corresponding to (x, x) ∈ {0, 1}2 is called
a commitment to x, and depicted as follows:

? ?
︸ ︷︷ ︸

x

or ?
x

?
x

.

A card-based protocol for a function f : {0, 1}n → {0, 1} is a protocol, which takes n commitments to
x1, x2, . . . , xn ∈ {0, 1} with some helping cards, and outputs either a commitment to f(x1, x2, . . . , xn) or the
value f(x1, x2, . . . , xn) itself. A protocol of the former type is called a committed-format protocol, and of the
latter type is called a non-committed-format protocol. In this paper, we deal with non-committed format
protocols only, and also deal with functions f : {0, 1}n → [d] whose range is possibly non-binary.

In card-based protocols, a sequence of operations are applied to a card sequence. Let k be the number
of cards. A perm is an operation that arranges a card sequence along with a publicly known permutation
π ∈ Sk. A turn is an operation that turns over a set of cards on some position T ⊆ [k]. A shuffle is an
operation that arranges a card sequence along with a permutation π ∈ Π ⊆ Sk, where π is drawn from a
probability distribution F over a subset Π. Here, no player should know which permutation is chosen by the

shuffle when it is applied to a face-down card sequence ? ? · · · ? . We denote a shuffle with Π and F by
(shuffle,Π,F).

2.3 PSM Protocols

Let Y,R,Xi,Mi (1 ≤ i ≤ n) be finite sets. Set X = X1 × X2 × · · · × Xn and M = M1 × M2 × · · · ×
Mn. Let R be a probability distribution over R. Let f : X → Y, Enci : Xi × R → Mi (1 ≤ i ≤ n),
and Dec : M → Y be functions. A private simultaneous messages (PSM) protocol P for f is a tuple
(n,X, Y,M,R,R, (Enci)1≤i≤n,Dec). It is said to be correct if for any (x1, . . . , xn) ∈ X and any r ∈ R such
that Pr[r ← R] > 0, it holds that

Dec(Enc1(x1, r), . . . ,Encn(xn, r)) = f(x1, . . . , xn).

It is said to be secure if there exists an algorithm S called a simulator such that for any x ∈ {0, 1}n, the
distribution S(y) for y = f(x) and the message distribution (Enc1(x1, r), . . . ,Encn(xn, r)) for r ← R are
the same distribution. The communication complexity of the protocol P is defined by

∑n

i=1 log2 |Mi|. The
randomness complexity of the protocol P is defined by the Shannon entropy H(R) of R.

We note that the randomness distribution R is often restricted to be uniform in the standard definition
of PSM protocols. The reason why we allow a non-uniform distribution is to capture non-uniform shuffles.

3 PSM Protocols from Single-shuffle Full-open Protocols

In Section 3.1, we define single-shuffle full-open (SSFO) protocols. In Section 3.2, we show that any SSFO
protocol is converted into a PSM protocol. In Section 3.3, we give concrete PSM protocols from some existing
SSFO protocols as applications.

3.1 Single-shuffle Full-open Protocols

We define a class of protocols which we name single-shuffle full-open (SSFO) protocols. An SSFO protocol
is a card-based protocol consisting of the following three Steps:

1. Arrange the cards to the input card sequence s(x) (see below for the detail), which is a face-down card
sequence determined by the input x = (x1, x2, . . . , xn) ∈ {0, 1}

n, as follows:

? ? ? · · · ? ? ?
︸ ︷︷ ︸

s(x)

.
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2. Apply a shuffle (shuffle,Π,F) to the card sequence as follows:

? ? ? · · · ? ? ?
︸ ︷︷ ︸

s(x)

shuffle
−−−→ ? ? ? · · · ? ? ?

︸ ︷︷ ︸

π(s(x))

,

where π ∈ Π is a permutation drawn from the probability distribution F .

3. Open all cards and obtain the bit string π(s(x)) as follows:

? ? ? · · · ? ? ?
︸ ︷︷ ︸

π(s(x))

turn
−−→ ♣ ♥ ♥ · · · ♥ ♣ ♥

︸ ︷︷ ︸

π(s(x))

.

Determine the output value y ∈ [d] from π(s(x)).

We explain the detail of the input card sequence s(x). Let x1, x2, . . . , xn denote variable symbols, each
corresponding to an input of each player. For an SSFO protocol with k cards, an input template s(x) is
defined as a sequence of length k of the following form;

s(x) ∈ {0, 1, x1, x1, x2, x2, . . . , xn, xn}
k .

Given an input template s(x) = (s1, . . . , sk) and players’ concrete input values x1, . . . , xn ∈ {0, 1}, the input
card sequence s(x) (where x = (x1, . . . , xn)) consists of k face-down cards where the face-up symbol of the
j-th card in s(x) (j ∈ [k]) is

{

♣ if sj = 0; or sj = xi and xi = 0; or sj = xi and xi = 1 ,

♥ if sj = 1; or sj = xi and xi = 1; or sj = xi and xi = 0 .

Intuitively, s(x) is obtained by first substituting each input value xi ∈ {0, 1} into the variable xi appearing
in the input template s(x) and then encoding the resulting k-bit string as k face-down cards. More precisely,
if sj = xi (respectively, xi), then the j-th card in s(x) encodes the input value xi ∈ {0, 1} (respectively, the
negation of the input value xi ∈ {0, 1}) according to the encoding rule ♣ = 0 and ♥ = 1, therefore this
card can be chosen (and put into the card sequence) solely by the i-th player. On the other hand, if sj = 0
(respectively, 1), then the j-th card in s(x) is a helping card whose face-up symbol is always ♣ (respectively,
♥), therefore this card can be chosen (and put into the card sequence) in public. By abusing the notation,
the bit string corresponding to the sequence of face-up symbols for the cards in s(x) is also denoted by s(x).
For example, the input template for the five-card trick [2] can be expressed as s(x) = (x1, x1, 1, x2, x2), and
the face-up symbols of the input card sequence s(x) for input x = (1, 0) is ♣♥♥♣♥, which we also write as
s(x) = s(1, 0) = 01101. We note that though a formalization of card-based protocols in the literature often
strictly supposes that the initial card sequence is a sequence of commitments to x1, . . . , xn followed by some
helping cards, our definition of the input card sequence s(x) is more flexible and convenient for protocol
description while not compromising the feasibility of physical implementation.

Consequently, an SSFO protocol with k cards is defined as a tuple P = (k, s(x), (shuffle,Π,F), g), where
s(x) is an input template as above, (shuffle,Π,F) represents a shuffle with Π ⊆ Sk, and g : {0, 1}k → [d] is a
partial function called the output function indicating the rule of determining the output value y ∈ [d] from
the face-up card sequence π(s(x)) (identified with a bit string in {0, 1}k via the encoding rule ♣ = 0 and
♥ = 1) at the end of the protocol (it is a partial function because some bit sequence that never appears as
π(s(x)) is often ignored in a concrete protocol description).

Let P = (k, s(x), (shuffle,Π,F), g) be an SSFO protocol for a function f : {0, 1}n → [d]. The protocol P is
correct if g(π(s(x))) = f(x) for any input x ∈ {0, 1}n and any permutation π ∈ Π such that Pr[π ← F ] > 0.
The protocol P is secure if there exists an algorithm S (called a simulator) such that for any x ∈ {0, 1}n,
the output distribution of S(y) for y = f(x) and the distribution of π(s(x)) ∈ {0, 1}k for π ← F are the
same distribution.
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The five-card trick [2] is an example of an SSFO protocol for the two-bit AND function f(x1, x2) = x1∧x2.
It is described as (5, s(x), (shuffle,Π,F), g), where s(x) = (x1, x1, 1, x2, x2), Π = 〈(1 2 3 4 5)〉, F is the uniform
distribution over Π, and g : {0, 1}5 → {0, 1} is a partial function defined as follows:

g(x) =

{

1 if x ∈ {00111, 10011, 11001, 11100, 01110};

0 if x ∈ {01011, 10101, 11010, 01101, 10110}.

3.2 Single-shuffle Full-open Protocols Imply PSM Protocols

A central idea for our generic conversion from an SSFO protocol to a PSM protocol is based on the following
observation. For example, let s(x) = (x1, x1, 1, x2, x2) be the input template for the five-card trick. Then for
an input x = (x1, x2) ∈ {0, 1}

2, the bit string s(x) = s(x1, x2) can be written as

s(x) = (x1 ⊕ 1, x1, 1, x2, x2 ⊕ 1) = (1, 0, 1, 0, 1)⊕ (x1, x1, 0, 0, 0)⊕ (0, 0, 0, x2, x2) .

Moreover, any shuffle for s(x) is compatible with this decomposition; namely, for any permutation π ∈ S5,
we have

π(s(x)) = π(1, 0, 1, 0, 1)⊕ π(x1, x1, 0, 0, 0)⊕ π(0, 0, 0, x2, x2) . (1)

This observation also motivates us to introduce the following class of functions associated to a given
function f : {0, 1}n → [d] (which also includes the original function f). Let n′ ≥ 1, and for each i ∈ [n], let
Ii be a subset of [n′]. Let I = (I1, . . . , In). Then we define a function f I : {0, 1}n

′

→ [d] as follows, where
x = (x1, . . . , xn′):

f I(x) := f(x[I1], . . . , x[In]) where x[J ] :=
⊕

h∈J

xh for J ⊆ [n′] (x[∅] = 0) .

We note that f I with n′ = n and Ii = {i} (i ∈ [n]) coincides with the original function f . Moreover, for
any input template s(x) = (s1, . . . , sk) (with variables x1, x1, . . . , xn, xn), we define the local decomposition
(sI0, s

I
1(x1), . . . , s

I
n′(xn′)) of s(x) associated to I by sI0 := (sI0,1, . . . , s

I
0,k) and sIh(xh) := (sIh,1, . . . , s

I
h,k) for

h ∈ [n′], where for j ∈ [k],

sI0,j :=

{

0 if sj ∈ {0, x1, . . . , xn} ,

1 if sj ∈ {1, x1, . . . , xn} ,
sIh,j :=

{

xh if sj ∈ {xi, xi} and h ∈ Ii for some i ∈ [n] ,

0 otherwise .

For example, when s(x) = (x1, x1, 1, x2, x2), n
′ = 3, I1 = {1, 2}, and I2 = {1, 3}, we have

sI0 = (1, 0, 1, 0, 1) , sI1(x1) = (x1, x1, 0, x1, x1) , s
I
2(x2) = (x2, x2, 0, 0, 0) , s

I
3(x3) = (0, 0, 0, x3, x3) .

Now the definition of the local decomposition implies the following: for any b ∈ {0, 1}, let sIh(b) denote the

bit string obtained by substituting b into the variable xh in sIh(xh). Then for any x ∈ {0, 1}n
′

, we have

s(x[I1], . . . , x[In]) = sI0 ⊕
⊕

h∈[n′]

sIh(xh) . (2)

Let f : {0, 1}n → [d] be a function. Let P = (k, s(x), (shuffle,Π,F), g) be an SSFO protocol for f . Let
n′ ≥ 1, and let I = (I1, . . . , In) be a tuple of subsets Ii ⊆ [n′]. Let (sI0, s

I
1(x1), . . . , s

I
n′(xn′)) be the local

decomposition of s(x) associated to I. Then we construct a PSM protocol P ′ for the function f I : {0, 1}n
′

→
[d] as in Figure 1. We may omit the superscripts I when n′ = n and Ii = {i} for all i ∈ [n], i.e., in the case
f I = f . The correctness and security for P ′ are shown as follows.
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Randomness R := Π× ({0, 1}k)n
′

R outputs r = (π, r1, . . . , rn′) where π ← F , rh ∈ {0, 1}
k (1 ≤ h ≤ n′ − 1) is uniformly random,

rn′ =
⊕n′−1

h=1 rh

Messages Mh := {0, 1}k (h ∈ [n′])
m1 := π(sI0 ⊕ sI1(x1))⊕ r1, mh := π(sIh(xh))⊕ rh (2 ≤ h ≤ n′)

Decoding Dec(m1, . . . ,mn′) computes z ←
⊕n′

h=1 mh and outputs g(z) ∈ [d]

Communication Complexity
∑n′

h=1 log2 |Mh| = n′k

Randomness Complexity H(R) = H(F) + (n′ − 1)k

Figure 1: Our conversion from an SSFO protocol (k, s(x), (shuffle,Π,F), g) for function f : {0, 1}n → [d] to a
PSM protocol for function f I : {0, 1}n

′

→ [d] (here x = (x1, . . . , xn′) ∈ {0, 1}n
′

denotes an input tuple, and
we put mh := Ench(xh, r) for h ∈ [n′])

Correctness. By the compatibility of permutations and XOR operations such as in Eq.(1), we have

z = m1 ⊕m2 ⊕ · · · ⊕mn′

= (π(sI0 ⊕ sI1(x1))⊕ r1)⊕ (π(sI2(x2))⊕ r2)⊕ · · · ⊕ (π(sIn′(xn′))⊕ rn′)

= π(sI0 ⊕ sI1(x1)⊕ sI2(x2)⊕ · · · ⊕ sIn′(xn′))⊕ r1 ⊕ r2 ⊕ · · · ⊕ rn′

= π(s(x[I1], . . . , x[In]))

where we used Eq.(2) at the last equality. From the correctness of P , it holds that

g(z) = g(π(s(x[I1], . . . , x[In]))) = f(x[I1], . . . , x[In]) = f I(x) .

Therefore, P ′ is correct.

Security. It is sufficient to construct a simulator S ′ for P ′ from the simulator S for P . Given an output
value y ∈ [d] corresponding to an input x = (x1, . . . , xn′), the simulator S ′ invokes S(y) and obtains a
string s′ ∈ {0, 1}k corresponding to the opened values in P for input xI := (x[I1], . . . , x[In]) (note that
f(xI) = f I(x) = y). Then, the simulator S ′ uniformly samples r′h ∈ {0, 1}

k (1 ≤ h ≤ n′ − 1). The simulator

S ′ outputs (r′1, r
′
2, . . . , r

′
n′−1, s

′ ⊕
⊕n′−1

h=1 r′h) as the simulated messages. It is easily seen that the simulated
messages and the real messages follow the same distribution due to the choice of masking vectors r1, . . . , rn′

in P ′. Therefore, P ′ is secure.

Remark 3.1. In our PSM protocol P ′, when some player holds multiple input bits, say xh1
, . . . , xhµ

, a naive
operation for the protocol is to let the player receive multiple components rh1

, . . . , rhµ
of randomness and

output multiple messages mh1
, . . . ,mhµ

. Here we note that the efficiency can be improved by letting the
player output, instead, the XOR of the original messages mh1

⊕· · ·⊕mhµ
at once. Such a change of gathering

some messages preserves the security of the protocol in general, while it also preserves the correctness due to
the structure of the protocol P ′. Moreover, the components rh1

, . . . , rhµ
of randomness can also be gathered

into a single component rh1
⊕ · · · ⊕ rhµ

, which also reduces the randomness complexity of the protocol.
We also note that negation of some input value in the protocol P ′ can be handled by introducing

an additional input component (which is owned by some player as in the previous paragraph) and then
setting the additional component to be 1. For example, we have f(x1, x2, x3) = f I(x1, x2, x3, 1) where
f I(x1, x2, x3, x4) = f(x1 ⊕ x4, x2, x3 ⊕ x4) (i.e., I = (I1, I2, I3), I1 = {1, 4}, I2 = {2}, I3 = {3, 4}).

6



3.3 Applications

3.3.1 AND Protocol

Five-Card Trick. The five-card trick [2] (see also Appendix) is an SSFO protocol for the two-bit AND
function. It is described as (5, s(x), (shuffle,Π,F), g), where s(x) = (x1, x1, 1, x2, x2), Π = 〈(1 2 3 4 5)〉, F is
the uniform distribution over Π, and g : {0, 1}5 → {0, 1} is a partial function defined as follows:

g(z) =

{

1 if z ∈ {11100, 01110, 00111, 10011, 11001};

0 if z ∈ {11010, 01101, 10110, 01011, 10101}.

The local decomposition of s(x) is given as follows:

s0 = (1, 0, 1, 0, 1),

s1(x1) = (x1, x1, 0, 0, 0),

s2(x2) = (0, 0, 0, x2, x2).

Construction. The shared randomness r is a pair r = (π, r′), where π ∈ Π is a permutation drawn
from F , and r′ ∈ {0, 1}5 is a uniformly random bit string. The first player holding x1 computes m1 =
π(s0 ⊕ s1(x1))⊕ r′. The second player holding x2 computes m2 = π(s2(x2))⊕ r′. On receiving m1,m2, the
referee computes z = m1 ⊕m2 and outputs g(z).

Complexity. The communication complexity of the protocol is 10. The randomness complexity of the
protocol is 5 + log2 5.

Extension. For any n′ ≥ 1, any I1, I2 ⊆ [n′], and any b1, b2 ∈ {0, 1}, we also have a PSM protocol with
(5n′)-bit communication for the function f ′ : {0, 1}n

′

→ {0, 1} defined as follows:

f ′(x1, x2, . . . , xn′) =

(

b1 ⊕
⊕

i∈I1

xi

)

∧

(

b2 ⊕
⊕

i∈I2

xi

)

.

3.3.2 Equality Protocol

Six-Card Trick. The six-card trick [4] (see also Appendix) is an SSFO protocol for EQ3 : {0, 1}3 → {0, 1}
as follows:

EQ3(x1, x2, x3) =

{

1 if x1 = x2 = x3;

0 otherwise.

It is described as (6, s(x), (shuffle,Π,F), g), where s(x) = (x1, x2, x3, x1, x2, x3), Π = 〈(1 2 3 4 5 6)〉, F is the
uniform distribution over Π, and g : {0, 1}6 → {0, 1} is a partial function defined as follows:

g(z) =

{

1 if z ∈ {010101, 101010};

0 if z ∈ {000111, 100011, 110001, 111000, 011100, 001110}.

The local decomposition of s(x) is given as follows:

s0 = (0, 1, 0, 1, 0, 1),

s1(x1) = (x1, 0, 0, x1, 0, 0),

s2(x2) = (0, x2, 0, 0, x2, 0),

s3(x3) = (0, 0, x3, 0, 0, x3).
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Construction. The shared randomness r is a tuple r = (π, r1, r2, r3), where π ∈ Π is a permutation drawn
from F , r1, r2 ∈ {0, 1}

6 are uniformly random bit strings, and r3 = r1⊕r2 so that r1⊕r2⊕r3 = 000000. The
first player holding x1 computes m1 = π(s0 ⊕ s1(x1))⊕ r1. Each of the other players holding xi (i ∈ {2, 3})
computes mi = π(si(xi))⊕ri. On receiving m1,m2,m3, the referee computes z = m1⊕m2⊕m3 and outputs
g(z).

Complexity. The communication complexity of the protocol is 18. The randomness complexity of the
protocol is 12 + log2 6.

Extension. For any n′ ≥ 1, any I1, I2, I3 ⊆ [n′], and any b1, b2, b3 ∈ {0, 1}, we also have a PSM protocol
with (6n′)-bit communication for the function f ′ : {0, 1}n

′

→ {0, 1} defined as follows:

f ′(x1, x2, . . . , xn′) = EQ3

(

b1 ⊕
⊕

i∈I1

xi, b2 ⊕
⊕

i∈I2

xi, b3 ⊕
⊕

i∈I3

xi

)

.

3.3.3 Majority Protocol

Six-card Majority Protocol. The six-card majority protocol in [12] (see also Appendix) is an SSFO
protocol for MAJ3 : {0, 1}3 → {0, 1} as follows:

MAJ3(x1, x2, x3) =

{

1 if x1 + x2 + x3 ≥ 2;

0 otherwise.

It is described as (6, s(x), (shuffle,Π,F), g), which is defined as follows. The input template is s(x) =
(x1, x1, x2, x2, x3, x3). For τ = (1 2)(3 6) and σ = (2 3 4 5 6), the permutation set Π is defined as
Π = {σb ◦ τa | a ∈ {0, 1}, b ∈ {0, 1, 2, 3, 4}}, and F is the uniform distribution over Π. The output
function g : {0, 1}6 → {0, 1} is a partial function defined as follows:

g(z) =

{

1 if z ∈ {011100, 001110, 000111, 010011, 011001, 100101, 110010, 101001, 110100, 101010};

0 if z ∈ {011010, 001101, 010110, 001011, 010101, 100011, 110001, 111000, 101100, 100110}.

The local decomposition of s(x) is given as follows:

s0 = (0, 1, 0, 1, 1, 0),

s1(x1) = (x1, x1, 0, 0, 0, 0),

s2(x2) = (0, 0, x2, x2, 0, 0),

s3(x3) = (0, 0, 0, 0, x3, x3).

Construction. The shared randomness r is a tuple r = (π, r1, r2, r3), where π ∈ Π is a permutation drawn
from F , r1, r2 ∈ {0, 1}

6 are uniformly random bit strings, and r3 = r1⊕r2 so that r1⊕r2⊕r3 = 000000. The
first player holding x1 computes m1 = π(s0 ⊕ s1(x1))⊕ r1. Each of the other players holding xi (i ∈ {2, 3})
computes mi = π(si(xi))⊕ri. On receiving m1,m2,m3, the referee computes z = m1⊕m2⊕m3 and outputs
g(z).

Complexity. The communication complexity of the protocol is 18. The randomness complexity of the
protocol is 13 + log2 5.

Extension. For any n′ ≥ 1, any I1, I2, I3 ⊆ [n′], and any b1, b2, b3 ∈ {0, 1}, we also have a PSM protocol
with (6n′)-bit communication for the function f ′ : {0, 1}n

′

→ {0, 1} defined as follows:

f ′(x1, x2, . . . , xn′) = MAJ3

(

b1 ⊕
⊕

i∈I1

xi, b2 ⊕
⊕

i∈I2

xi, b3 ⊕
⊕

i∈I3

xi

)

.
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4 PSM Protocols from Single-shuffle Single-branch Protocols

In Section 4.1, we define single-shuffle single-branch (SSSB) protocols. In Section 4.2, we show that any
SSSB protocol is converted into a PSM protocol. In Section 4.3, we give an 8-bit PSM protocol from the
four-card trick, as an application.

4.1 Single-shuffle Single-branch Protocols

We define a class of protocols which we name single-shuffle single-branch (SSSB) protocols. An SSSB protocol
is a card-based protocol consisting of the following four Steps:

1. Arrange the cards to the input card sequence s(x) in the same way as an SSFO protocol.

2. Apply a shuffle (shuffle,Π,F) to the card sequence.

3. Open a single card at position j∗ ∈ [k]. Let b ∈ {0, 1} be the opened value.

4. Let S0, S1 ⊆ [k] \ {j∗} be the (predetermined) sets of positions. Depending on b, open the cards at
positions in Sb. Determine the output value y ∈ [d] from the opened values.

An SSSB protocol with k cards is defined as a tuple P = (k, s(x), (shuffle,Π,F), j∗, S0, S1, g), where s(x)
and (shuffle,Π,F) are an input template and a shuffle, respectively, similar to the case of SSFO protocols,
and g is an output function. Here the partially opened card sequence at the end of the protocol is identified
with a string α ∈ {0, 1, ?}k where each face-up card is regarded as 0 or 1 as usual and each face-down card
is regarded as the symbol ‘?’. Then g is a partial function {0, 1, ?}k → [d]. For simplifying the notation,
for any w = (w1, . . . , wk) ∈ {0, 1}

k and any S ⊆ [k], we define w|S := (w′
1, . . . , w

′
k) ∈ {0, 1, ?}

k where
w′

j = wj ∈ {0, 1} if j ∈ S and w′
j = ? if j 6∈ S. Using this notation, an input for g that may appear in the

protocol is of the form π(s(x))|Sb∪{j∗} with π ∈ Π and b ∈ {0, 1}.
Let f : {0, 1}n → [d] be a function. Let P = (k, s(x), (shuffle,Π,F), j∗, S0, S1, g) be an SSSB protocol for

f . For any x ∈ {0, 1}n and any π ∈ Π, we define the string αx,π ∈ {0, 1, ?}
k as follows, where γj∗ denotes

the j∗-th component of π(s(x)):

αx,π =

{

π(s(x))|S0∪{j∗} if γj∗ = 0; or γj∗ = xi and xi = 0; or γj∗ = xi and xi = 1;

π(s(x))|S1∪{j∗} if γj∗ = 1; or γj∗ = xi and xi = 1; or γj∗ = xi and xi = 0.

The protocol P is correct if g(αx,π)) = f(x) for any input x ∈ {0, 1}n and any permutation π ∈ Π such that
Pr[π ← F ] > 0. The protocol P is secure if there exists an algorithm S (called a simulator) such that for
any x ∈ {0, 1}n, the output distribution of S(y) for y = f(x) and the distribution of αx,π ∈ {0, 1, ?}

k for
π ← F are the same distribution.

4.2 Single-shuffle Single-branch Protocols Imply PSM Protocols

Let f : {0, 1}n → [d] be a function. Let P = (k, s(x), (shuffle,Π,F), j∗, S0, S1, g) be an SSSB protocol for
f . In the same way as the case of SSFO protocols, let n′ ≥ 1, and let I = (I1, . . . , In) be a tuple of subsets
Ii ⊆ [n′]. Let (sI0, s

I
1(x1), . . . , s

I
n′(xn′)) be the local decomposition of s(x) associated to I. Then we construct

a PSM protocol P ′ for the function f I : {0, 1}n
′

→ [d] as in Figure 2. We may omit the superscripts I when
n′ = n and Ii = {i} for all i ∈ [n], i.e., in the case f I = f .

In the following, we prove the correctness and security of our protocol P ′. For the purpose, we investigate

the properties of the masking vectors c
(0)
h ⊕ c

(1)
h ⊕ rh used in the protocol.

Lemma 4.1. In the protocol P ′ for input x = (x1, . . . , xn′) ∈ {0, 1}n
′

, let b ∈ {0, 1} and j ∈ Sb. Let
b′ ∈ {0, 1} be the j∗-th component of π(s(x[I1], . . . , x[In])). Let δ be the number of indices h ∈ [n′] satisfying

c
(b)
h,j = r(j). Then δ ≡ b⊕ b′ ⊕ 1 (mod 2).
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Randomness R := Π× ({0, 1}k)n
′

R outputs r = (π, r1, . . . , rn′) where π ← F , rh = (rh,1, . . . , rh,k) ∈ {0, 1}
k (h ∈ [n′]) are uniformly

random subject to
⊕n′

h=1 rh,j∗ = 0

Messages Mh := {0, 1}k (h ∈ [n′])

Let γj∗ be the j∗-th component of π(s(x)). For j ∈ [k], let r(j) =
⊕n′

h=1 rh,j ∈ {0, 1}. For i ∈ [n]
and h ∈ [n′], put εi,h := 1 if h ∈ Ii, and εi,h := 0 if h 6∈ Ii.

m1 := π(sI0 ⊕ sI1(x1))⊕ c
(0)
1 ⊕ c

(1)
1 ⊕ r1 ,

where for each b ∈ {0, 1}, c
(b)
1 = (c

(b)
1,1, . . . , c

(b)
1,k) ∈ {0, 1}

k satisfies that c
(b)
1,j = 0 if j 6∈ Sb, and for

j ∈ Sb,

c
(b)
1,j =

{

b · r(j) if γj∗ = 1; or γj∗ = xi and εi,1x1 = 1; or γj∗ = xi and εi,1x1 = 0;

(1− b) · r(j) otherwise.

mh := π(sIh(xh))⊕ c
(0)
h ⊕ c

(1)
h ⊕ rh (2 ≤ h ≤ n′) ,

where for each b ∈ {0, 1}, c
(b)
h = (c

(b)
h,1, . . . , c

(b)
h,k) ∈ {0, 1}

k satisfies that c
(b)
h,j = 0 if j 6∈ Sb, and for

j ∈ Sb,

c
(b)
h,j =

{

r(j) if γj∗ ∈ {xi, xi} and εi,hxh = 1;

0 otherwise.

Decoding Dec(m1, . . . ,mn′) computes z = (z1, . . . , zk) ←
⊕n′

h=1 mh and puts b := zj∗ . It defines
α = (α1, . . . , αk) ∈ {0, 1, ?}

k by αj := zj if j ∈ Sb ∪ {j
∗} and αj := ? otherwise. Then it outputs

g(α) ∈ [d].

Communication Complexity
∑n′

h=1 log2 |Mh| = n′k

Randomness Complexity H(R) = H(F) + n′k − 1

Figure 2: Our conversion from an SSSB protocol (k, s(x), (shuffle,Π,F), j∗, S0, S1, g) for function
f : {0, 1}n → [d] to a PSM protocol for function f I : {0, 1}n

′

→ [d] (here x = (x1, . . . , xn′) ∈ {0, 1}n
′

denotes an input tuple, and we put mh := Ench(xh, r) for h ∈ [n′])

Proof. We use case-by-case argument with respect to the j∗-th component γj∗ of π(s(x)). Let δ′ be the

number of indices h ∈ [n′] \ {1} satisfying c
(b)
h,j = r(j). We note that x[Ii] =

⊕n′

h=1(εi,hxh) for each i ∈ [n].

Case γj∗ ∈ {0, 1}: Now b′ = γj∗ . For the first player’s message, we have c
(b)
1,j = r(j) if (b, b′) = (0, 0) or

(1, 1) (i.e., b = b′), and c
(b)
1,j = 0 if (b, b′) = (0, 1) or (1, 0) (i.e., b 6= b′). For the h-th player’s message

(2 ≤ h ≤ n′), we have c
(b)
h,j = 0. Hence δ = 1 is odd if b = b′ (i.e., b ⊕ b′ ⊕ 1 = 1) and δ = 0 is even if

b 6= b′ (i.e., b⊕ b′ ⊕ 1 = 0), as desired.

Case γj∗ = xi and εi,1 = 0: Now b′ = x[Ii]. For the h-th player’s message (2 ≤ h ≤ n′), we have c
(b)
h,j = r(j)

if εi,hxh = 1, and c
(b)
h,j = 0 otherwise. This implies that δ′ ≡ x[Ii] = b′ (mod 2). Moreover, for the first

player’s message, we have c
(b)
1,j = r(j) if b = 0, and c

(b)
1,j = 0 if b = 1. Hence δ = δ′+1 ≡ b′+1 ≡ b⊕b′⊕1

(mod 2) if b = 0, and δ = δ′ ≡ b′ ≡ b⊕ b′ ⊕ 1 if b = 1, as desired.

Case γj∗ = xi and εi,1 = 0: Now b′ = x[Ii]. An argument as above implies that δ′ ≡ x[Ii] = b′⊕1 (mod 2).

Moreover, for the first player’s message, we have c
(b)
1,j = 0 if b = 0, and c

(b)
1,j = r(j) if b = 1. Hence
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δ = δ′ ≡ b′ ⊕ 1 ≡ b ⊕ b′ ⊕ 1 (mod 2) if b = 0, and δ = δ′ + 1 ≡ (b′ ⊕ 1) + 1 ≡ b ⊕ b′ ⊕ 1 if b = 1, as
desired.

Case γj∗ = xi and εi,1 = 1: Now b′ = x[Ii] = x[Ii \ {1}] ⊕ x1. An argument as above implies that δ′ ≡

x[Ii \ {1}] = b′ ⊕ x1 (mod 2). Moreover, for the first player’s message, c
(b)
1,j = r(j) if (b, x1) = (0, 0)

or (1, 1), and c
(b)
1,j = 0 if (b, x1) = (0, 1) or (1, 0). Hence, in the former case we have δ = δ′ + 1 ≡

b′ ⊕ x1 ⊕ 1 = b⊕ b′ ⊕ 1, and in the latter case we have δ = δ′ ≡ b′ ⊕ x1 ≡ b⊕ b′ ⊕ 1, as desired.

Case γj∗ = xi and εi,1 = 1: Now b′ = x[Ii] = x[Ii \ {1}] ⊕ x1 ⊕ 1. An argument as above implies that

δ′ ≡ x[Ii \ {1}] = b′ ⊕ x1 ⊕ 1 (mod 2). Moreover, for the first player’s message, we have c
(b)
1,j = r(j)

if (b, x1) = (0, 1) or (1, 0), and c
(b)
1,j = 0 if (b, x1) = (0, 0) or (1, 1). Hence, in the former case we have

δ = δ′ + 1 ≡ b′ ⊕ x1 = b ⊕ b′ ⊕ 1, and in the latter case we have δ = δ′ ≡ b′ ⊕ x1 ⊕ 1 ≡ b ⊕ b′ ⊕ 1, as
desired.

Hence the claim holds in any case.

Let b ∈ {0, 1} be the j∗-th component of π(s(x[I1], . . . , x[In])). For j ∈ [k], let J be the set of all indices

h ∈ [n′] satisfying c
(0)
h,j ⊕ c

(1)
h,j = r(j). Then Lemma 4.1 implies that |J | ≡ 1 (mod 2) if and only if j ∈ Sb. Let

Id denote the n′ × n′ identity matrix over F2, and let A denote an n′ × n′ matrix over F2 whose components

in the h-th row are all 1’s if h ∈ J and all 0’s if h 6∈ J . Put ρh := c
(0)
h,j ⊕ c

(1)
h,j ⊕ rh,j for h ∈ [n′]. Then we have

(ρ1, . . . , ρn′)T = (Id+A) · (r1,j , . . . , rn′,j)
T

where (· · · )T denotes the transposition of a vector. Now when r1,j , . . . , rn′,j ∈ {0, 1} are uniformly random
and independent of each other, the vector (ρ1, . . . , ρn′)T distributes uniformly at random over the image
Im(Id+A) of Id+A (as an F2-linear map (F2)

n′

→ (F2)
n′

). Then we have the following:

Lemma 4.2. In the setting above, we have Im(Id+ A) = (F2)
n′

if |J | ≡ 0 (mod 2), and Im(Id+ A) = V if
|J | ≡ 1 (mod 2), where V := {(v1, . . . , vn′)T ∈ (F2)

n′

| v1 + · · ·+ vn′ = 0}.

Proof. Let M1 and M2 be the results of the following elementary transformations applied to Id and A,
respectively: add the last column to each of the other n′ − 1 columns. Then M1 has components 1 at
the diagonal and the last row, and components 0 at the other positions; and M2 has components 1 at the
positions (h, n′) with h ∈ J , and components 0 at the other positions.

Let M ′
1 and M ′

2 be the results of the following elementary transformations applied to M ′
1 and M ′

2,
respectively: add the other n′−1 rows to the last row. Then M ′

1 = Id, and the first n′−1 columns of M ′
2 are

the zero vectors. Moreover, the (n′, n′)-component of M ′
2 is equal to |J | mod 2. This implies that M ′

1 +M ′
2

(which is obtained from Id+A by elementary transformations) is an upper triangular matrix with diagonal
components being (1, . . . , 1, 1) when |J | ≡ 0 (mod 2) and (1, . . . , 1, 0) when |J | ≡ 1 (mod 2). In the former
case, M ′

1+M ′
2 (hence Id+A) is non-singular, as desired. In the latter case, M ′

1+M ′
2 (hence Id+A) has rank

n′ − 1 and hence dim Im(Id+A) = n′ − 1 = dimV , while Im(Id+A) ⊆ V by the shape of Id+A. Therefore
we have Im(Id+A) = V , as desired.

By this lemma, it follows that ρ1, . . . , ρn′ ∈ {0, 1} are uniformly random when |J | ≡ 0 (mod 2) (or
equivalently, j 6∈ Sb), and ρ1, . . . , ρn′ ∈ {0, 1} are uniformly random subject to ρ1 ⊕ · · · ⊕ ρn′ = 0 when
|J | ≡ 1 (mod 2) (or equivalently, j ∈ Sb). Due to this and the following fact

π(sI0 ⊕ sI1(x1))⊕ π(sI2(x2))⊕ · · · ⊕ π(sIn′(xn′)) = π(s(x[I1], . . . , x[In]))

used in the argument for SSFO protocols, the distribution of the tuple of messages (m1, . . . ,mn′) in the
protocol P ′ with input x = (x1, . . . , xn′) is equal to the superposition, conditioned on π ← F , of the uniform
distributions over the following sets, where xI := (x[I1], . . . , x[In]) and π(s(xI)) = (σ1, . . . , σk) ∈ {0, 1}

k:
{

(m′
1, . . . ,m

′
n′) ∈ ({0, 1}k)n

′

|
m′

h = (m′
h,1, . . . ,m

′
h,k) for h ∈ [n′] ,

⊕n′

h=1 m
′
h,j∗ = σj∗ ,

⊕n′

h=1 m
′
h,j = σj for j ∈ Sσj∗

}

.
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This implies that the string α computed in the decoding algorithm of P ′ coincides with the string αxI ,π

defined in Section 4.1, therefore we have g(α) = g(αxI ,π) = f(xI) = f I(x) by the correctness of P . Hence
P ′ is correct. On the other hand, we construct the following simulator S ′ for P ′ by using the simulator S
for P : Given y ∈ [d], S ′ first invokes S(y) to obtain a string α = (α1, . . . , αk) ∈ {0, 1, ?}

k. Secondly, S ′

puts b := αj∗ (note that b ∈ {0, 1} by the property of the simulator S), and for each j ∈ [k], S ′ generates

(m′
1,j , . . . ,m

′
n′,j) ∈ {0, 1}

n′

uniformly at random if j 6∈ Sb ∪ {j
∗}, and uniformly at random subject to

⊕n′

h=1 m
′
h,j = αj if j ∈ Sb ∪ {j

∗}. Finally, S ′ outputs (m′
1, . . . ,m

′
n′) where m′

h := (m′
h,1, . . . ,m

′
h,k). Now by

the fact that the distribution of S(y) for y = f I(x) = f(xI) is the same as the distribution of αxI ,π with
π ← F , it follows that the distribution of S ′(y) is equal to the distribution of (m1, . . . ,mn′) described above.
Hence P ′ is secure.

4.3 Applications

4.3.1 AND Protocol

Four-Card Trick. The four-card trick [6] (see also Appendix) is an SSSB protocol for the two-bit AND
function. It is described as (4, s(x), (shuffle,Π,F), j∗ = 2, S0 = {4}, S1 = {1}, g), which is defined as follows.
The input template is s(x) = (x1, x1, x2, x2). For τ = (1 3)(2 4) and σ = (2 3), the permutation set Π is
defined as Π = {σb ◦ τa | a, b ∈ {0, 1}}. The probability distribution F is the uniform distribution over Π.
The output function g : {0, 1, ?}4 → {0, 1} is a partial function defined as follows:

g(α) =

{

1 if α ∈ {?0?0, 11??};

0 if α ∈ {?0?1, 01??}.

The local decomposition of s(x) is given as follows:

s0 = (0, 1, 0, 1),

s1(x1) = (x1, x1, 0, 0),

s2(x2) = (0, 0, x2, x2).

Construction. The shared randomness r is a tuple r = (π, r1, r2), where π ∈ Π is a permutation drawn
from F , and r1 = r1,1r1,2r1,3r1,4, r2 = r2,1r2,2r2,3r2,4 ∈ {0, 1}

4 are uniformly random bit strings with the
condition r1,2⊕ r2,2 = 0. Set r(1) = r1,1⊕ r2,1 and r(4) = r1,4⊕ r2,4. The i-th player holding xi ∈ {0, 1} first
computes ci ∈ {0, 1}

4 as follows, where γ2 denotes the second component of π(s(x)):

c1 =







(0, 0, 0, r(4)) if γ2 = x1 and x1 = 0;

(r(1), 0, 0, 0) if γ2 = x1 and x1 = 1;

(r(1), 0, 0, 0) if γ2 = x1 and xi = 0;

(0, 0, 0, r(4)) if γ2 = x1 and xi = 1;

(0, 0, 0, r(4)) if γ2 = x2;

(r(1), 0, 0, 0) if γ2 = x2.

c2 =

{

(r(1), 0, 0, r(4)) if γ2 ∈ {x2, x2} and x2 = 1;

(0, 0, 0, 0) otherwise.

Then, the first player computes m1 = π(s0 ⊕ s1(x1)) ⊕ c1 ⊕ r1 and the second player computes m2 =
π(s2(x2)) ⊕ c2 ⊕ r2. On receiving m1,m2, the referee computes z = m1 ⊕m2 =: z1z2z3z4. If z2 = 0, then
the referee outputs g(?0?z4). If z2 = 1, then the referee outputs g(z11??).

Complexity. The communication complexity of the protocol is 8. The randomness complexity of the
protocol is 9.
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Extension. For any n′ ≥ 1, any I1, I2 ⊆ [n′], and any b1, b2 ∈ {0, 1}, we also have a PSM protocol with
(4n′)-bit communication for the function f ′ : {0, 1}n

′

→ {0, 1} defined as follows:

f ′(x1, x2, . . . , xn′) =

(

b1 ⊕
⊕

i∈I1

xi

)

∧

(

b2 ⊕
⊕

i∈I2

xi

)

.
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Appendix

Five-Card Trick

The five-card trick [2] is a five-card two-party card-based protocol for the two-bit AND function. It proceeds
as follows.

1. Arrange commitments to x1, x2 and a helping card ♥ as follows:

?
x1

?
x1

?
♥

?
x2

?
x2

.

2. Apply a random cut to the five cards as follows:

〈

? ? ? ? ?
〉

→ ? ? ? ? ? .

3. Turn over all cards. If we have ♥ ♥ ♥ ♣ ♣ up to cyclic shifts, then the output value is 1. If we have
♥ ♣ ♥ ♣ ♥ up to cyclic shifts, then the output value is 0.

Six-Card Trick

The six-card trick [4] (independently rediscovered by [10]) is a six-card three-party card-based protocol for
the three-bit equality function EQ3 : {0, 1}3 → {0, 1}. It proceeds as follows.

1. Arrange commitments to x1, x2, x3 as follows:

?
x1

?
x2

?
x3

?
x1

?
x2

?
x3

.

2. Apply a random cut to the six cards as follows:

〈

? ? ? ? ? ?
〉

→ ? ? ? ? ? ? .

3. Turn over all cards. If we have ♥ ♥ ♥ ♣ ♣ ♣ up to cyclic shits, then the output value is 0. If we

have ♥ ♣ ♥ ♣ ♥ ♣ up to cyclic shits, then the output value is 1.
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Six-card Majority Protocol

The six-card majority protocol in [12] is a six-card three-party card-based protocol for the three-bit majority
function. It proceeds as follows.

1. Arrange commitments to x1, x2, x3 as follows:

?
x1

?
x1

?
x2

?
x2

?
x3

?
x3

.

2. Apply a shuffle (shuffle,Π,F), where Π = 〈(1 2)(3 6)〉 and F is a uniform distribution over Π, as
follows:

1

?

2

?

3

?

4

?

5

?

6

? →
1

?

2

?

3

?

4

?

5

?

6

? or
2

?

1

?

6

?

4

?

5

?

3

? .

3. Apply a random cut to the card sequence except the first card as follows:

?
〈

? ? ? ? ?
〉

→ ? ? ? ? ? ? .

4. Turn over all cards.

(a) Suppose that the first card is ♣ . If the remaining five cards are ♥ ♥ ♥ ♣ ♣ up to cyclic shifts,

then the output value is 1. If they are ♥ ♣ ♥ ♣ ♥ up to cyclic shifts, then the output value is
0.

(b) Suppose that the first card is ♥ . If the remaining five cards are ♣ ♣ ♣ ♥ ♥ up to cyclic shifts,

then the output value is 0. If they are ♣ ♥ ♣ ♥ ♣ up to cyclic shifts, then the output value is
1.

Four-Card Trick

The four-card trick [6] is a four-card two-party card-based protocol for the two-bit AND function. It proceeds
as follows.

1. Arrange commitments to x1, x2 as follows:

?
x1

?
x1

?
x2

?
x2

.

2. Apply a random bisection cut to the four cards as follows:

[

? ?

∣
∣
∣
∣
? ?

]

→ ? ? ? ? .

3. Apply a random cut to the second and third cards as follows:

?
〈

? ?
〉

? → ? ? ? ? .

4. Open the second card.

(a) If it is ♣ , then open the fourth card. If we have ? ♣ ? ♣ , then the output value is 1. If we

have ? ♣ ? ♥ , then the output value is 0.

(b) If it is ♥ , then open the first card. If we have ♣ ♥ ? ? , then the output value is 0. If we have
♥ ♥ ? ? , then the output value is 1.

15


	Introduction
	Preliminaries
	Notations
	Card-based Protocols
	PSM Protocols

	PSM Protocols from Single-shuffle Full-open Protocols
	Single-shuffle Full-open Protocols
	Single-shuffle Full-open Protocols Imply PSM Protocols
	Applications
	AND Protocol
	Equality Protocol
	Majority Protocol


	PSM Protocols from Single-shuffle Single-branch Protocols
	Single-shuffle Single-branch Protocols
	Single-shuffle Single-branch Protocols Imply PSM Protocols
	Applications
	AND Protocol



