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Abstract. A hash-and-sign signature based on a preimage-sampleable
function (PSF) (Gentry et al. [STOC 2008]) is secure in the Quan-
tum Random Oracle Model (QROM) if the PSF is collision-resistant
(Boneh et al. [ASIACRYPT 2011]) or one-way (Zhandry [CRYPTO
2012]). However, trapdoor functions (TDFs) in code-based and multivariate-
quadratic-based (MQ-based) signatures are not PSFs; for example, un-
derlying TDFs of the Courtois-Finiasz-Sendrier (CFS), Unbalanced Oil
and Vinegar (UOV), and Hidden Field Equations (HFE) signatures are
not surjections. Thus, such signature schemes adopt probabilistic hash-
and-sign with retry. This paradigm is secure in the (classical) Ran-
dom Oracle Model (ROM), assuming that the underlying TDF is non-
invertible, that is, it is hard to find a preimage of a given random value
in the range (e.g., Sakumoto et al. [PQCRYPTO 2011] for the modified
UOV/HFE signatures). Unfortunately, there is currently no known secu-
rity proof for the probabilistic hash-and-sign with retry in the QROM.
We give the first security proof for the probabilistic hash-and-sign with
retry in the QROM, assuming that the underlying non-PSF TDF is non-
invertible. Our reduction from the non-invertibility assumption is tighter
than the existing ones that apply only to signature schemes based on
PSFs. We apply the security proof to code-based and MQ-based signa-
tures. Additionally, we extend the proof into the multi-key setting and
propose a generic method that provides security reduction without any
security loss in the number of keys.
keywords: Post-quantum cryptography, digital signature, hash-and-sign,
quantum random oracle model (QROM), preimage sampleable function.

1 Introduction

Hash-and-Sign Signature in the Random Oracle Model (ROM): A digital signa-
ture is an essential and versatile primitive since it supports non-repudiation and
authentication; if a document is signed, the signer indeed signed it and cannot
repudiate the signature. The standard security notion of the digital signature
is existential unforgeability against chosen-message attack (EUF-CMA) [31].
Roughly speaking, a signature scheme is said to be EUF-CMA-secure if no effi-
cient adversary can forge a signature even if the adversary can access to a signing
oracle, which captures non-repudiation and authentication. Hash-and-sign [5, 6]



is a widely adopted paradigm for constructing practical signatures, along with
Fiat-Shamir [28], in the ROM [5]. This paper focuses on hash-and-sign.

A hash-and-sign signature scheme is realized by a hard-to-invert function
F : X → Y, its trapdoor I : Y → X , and a hash function H : {0, 1}∗ → Y modeled
as a random oracle. To sign on a message m, a signer first computes y = H(r,m),
where r is a random string, computes x = I(y), and outputs σ = (r, x) as
a signature. A verifier verifies the signature σ with the verification key F by
checking if H(r,m) = F(x) or not. We refer to this construction as probabilistic
hash-and-sign; if r is an empty string, then deterministic hash-and-sign.

A prime example is a full-domain hash using a trapdoor permutation (TDP-
FDH) such as RSA. TDP-FDH is EUF-CMA-secure in the ROM, assuming the
one-wayness (OW) or non-invertibility (INV) of TDP [5].3 Gentry, Peikert, and
Vaikuntanathan proposed FDH and probabilistic FDH (PFDH) signatures with
a preimage-sampleable function (PSF) [30], which is a trapdoor function (TDF)
with additional conditions, e.g., surjection. Gentry et al. showed a tight reduc-
tion from the collision-resistance (CR) property of PSF to the strong EUF-CMA
(sEUF-CMA) security of PSF-FDH (and PSF-PFDH), and they constructed
a collision-resistant PSF from lattices. Unfortunately, it is hard to build PSFs
in code-based and multivariate-quadratic-based (MQ-based) cryptography; for
example, F is not a surjection. In this case, the trapdoor I fails to invert y whose
preimage does not exist. For such TDFs, we employ the probabilistic hash-and-
sign with retry, where a signer takes randomness r until r allows inversion of
y = H(r,m). The Courtois-Finiasz-Sendrier (CFS) signature [19] in code-based
cryptography and the Unbalanced Oil and Vinegar (UOV) [38] and Hidden Field
Equations (HFE) signatures [48] in MQ-based cryptography use this paradigm.

Hash-and-Sign Signature in Quantum Random Oracle Model (QROM): Large-
scale quantum computers will be able to break widely deployed public-key cryp-
tography such as RSA and ECDSA because of Shor’s algorithm [55]. Con-
sequently, there has been a growing interest in post-quantum cryptography
(PQC). Recently NIST selected PQC candidates of public-key encryption/key-
encapsulation mechanism (KEM) and digital signature for standardization [47].
Furthermore, NIST initiated an additional call for PQC digital signatures [46]. In
the context of PQC, it is essential for signature schemes to provide EUF-CMA
security in the QROM (Quantum Random Oracle Model) [14] since it models
real-world quantum adversaries having offline access to the hash function. Un-
fortunately, schemes that are secure in the ROM are not always secure in the
QROM, as demonstrated by separation results, including a signature scheme, by
Yamakawa and Zhandry [59].

Table 1 summarizes studies on the EUF-CMA security of hash-and-sign
signatures in the QROM. Boneh et al. [14] showed a tight reduction from the
CR of PSF using the history-free reduction. Zhandry [61] gave a reduction from

3 An adversary tries to find a preimage of a challenge y that is uniformly chosen in
the INV game [33] and that derived by F(x) for x chosen from some distribution on
X in the OW game [5].
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Table 1: Summary of the security proofs for hash-and-sign in the QROM. DHaS,
PHaS, and PHaSwR denote deterministic hash-and-sign, probabilistic hash-and-
sign, and probabilistic hash-and-sign with retry. ε denotes the adversary’s advan-
tage in the game of the underlying assumption. q denotes the number of queries
to the signing oracle or random oracle.

Name DHaS PHaS PHaSwR Assumption Security Bound

[14] X X – CR O(εcr)
[61] X X – OW/INV O(q2

√
εow/inv)

ext. of [58] X X – OW/INV O(q4εow/inv)
[17] – X – EUF-NMA O(εnma)

Ours - X X INV O(q2εinv)

the OW/INV4, using a technique called semi-constant distribution.5 Unfortu-
nately, the semi-constant distribution technique incurs a square-root loss in the
success probability. Yamakawa and Zhandry [58] gave the lifting theorem that
shows that any search-type game is hard in the QROM if the game is hard in
the ROM. They used the lifting theorem to show that an EUF-NMA-secure
signature in the ROM is EUF-NMA-secure in the QROM, where NMA stands
for No-Message Attack. By extending the results of [58], we obtain a reduction
from the OW/INV of PSF. Chailloux and Debris-Alazard [17] gave a security
proof of the probabilistic hash-and-sign based on non-PSF TDFs. Also, Grilo,
Hövelmanns, Hülsing, and Majenz [32] gave a reduction from the EUF-RMA
security of a signature scheme for fixed-length messages, where RMA stands
for Random-Message Attack.6 However, there is no known reduction to the
EUF-RMA security of the underlying signature from the OW/INV of TDF.

Based on the summary of previous studies, there are currently no security
proofs for the probabilistic hash-and-sign with retry in the QROM, which has
an impact on the security evaluation of code-based and MQ-based signatures.
Our central question is:

Q1. Is there an EUF-CMA security proof for the probabilistic hash-and-sign
with retry? How tight is the security proof?

Provable Security in Multi-key Setting: The EUF-CMA security is sometimes
insufficient to ensure the security of the digital signature in the real world since
exploiting one of many users may be sufficient for a real-world adversary to
intrude into a system. We must consider the EUF-CMA security in the multi-
key setting, the M-EUF-CMA security in short. The adversary, given multiple
4 For PSF, tight reductions exist both from OW to INV and from INV to OW.
5 Zhandry [61] proved the EUF-CMA security of TDP-FDH in the QROM, assuming

that the underlying TDP is one-way. The security proof applies to the case for the
OW/INV of PSF.

6 A signer chooses r, computes m′ = H(r,m), and signs on m′ by using a signing
algorithm of the signature scheme for fixed-length messages, and outputs (r, σ).
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Fig. 1: A diagram illustrating reductions of hash-and-sign in the QROM. Red ar-
rows represent our results, while solid, double, and dashed arrows represent tight
reductions, reductions with linear or quadratic loss, and non-tight reductions.

verification keys, tries to forge a valid signature for one of the verification keys.
If the adversary can gain an advantage by targeting multiple keys (multi-key
attack), the M-EUF-CMA security degrades with the number of keys (or users).
NIST mentioned resistance to multi-key attacks as a “desirable property” in
their call for proposals [45] of the PQC standardization project. We can ensure
resistance against multi-key attacks if there is no security loss in the number of
keys. Thus, our additional question is:

Q2. Is there an M-EUF-CMA security proof for hash-and-sign without any
security loss in the number of keys?

The technique of including an entire verification key as part of the input
for the hash function is known as key prefixing, which enables one to separate
the domain of the hash function for each verification key. Schnorr signature
adopts key prefixing to show a tight reduction in the multi-key setting [43].
Similarly, Duman et al. [25] proposed a technique called prefix hashing for the
Fujisaki-Okamoto transform of KEM. Prefix hashing is a technique in which the
hash function includes only a small unpredictable portion of a verification key,
resulting in a smaller increase in execution time compared to key prefixing.

1.1 Contributions

Security Proof of Probabilistic Hash-and-Sign with Retry in the QROM: We affir-
matively answer Q1 by giving the first reduction from the INV of the underlying
TDF to the EUF-CMA security of the probabilistic hash-and-sign with retry
in the QROM (main theorem). Additionally, the main theorem applies to the
probabilistic hash-and-sign without retry. Furthermore, we show that a signature
scheme is sEUF-CMA-secure if the underlying TDF is an injection. Our reduc-
tion is tighter than the existing ones from the INV that apply to the probabilistic
hash-and-sign without retry only [61, 17, 58]. Fig. 1 shows a diagram of the reduc-
tion. The main theorem comprises two reductions; EUF-NMA ⇒ EUF-CMA
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and INV ⇒ EUF-NMA, where X ⇒ Y inidicates a reduction from X to Y.
The main theorem has a security bound (2qqro+1)2εinv, where qqro is a bound on
the number of random oracle queries and εinv is an advantage of the INV game.

Proof Idea: We provide a technical overview of the main theorem: To prove
EUF-NMA ⇒ EUF-CMA, we first reprogram the random function to sim-
ulate the signing oracle. We employ the tight adaptive reprogramming tech-
nique [32]. Given a message m, the signing oracle repeatedly reprograms H such
that H(r,m) = y holds for randomly chosen (r, y) ∈ R × Y, and this repro-
gramming continues until the trapdoor I can provide a preimage x ∈ X of y
(F(x) = y). In this context, we assume that the following two values are indis-
tinguishable:

– x obtained after retrying y until y becomes invertible by the trapdoor I.
– x obtained by a simulator that does not use I.

If the reprogramming during retries can be canceled, the signing oracle can be
simulated by outputting (r, x) and reprogramming H such that H(r,m) = F(x)
holds. Unfortunately, a cancelation using the tight adaptive reprogramming tech-
nique introduces a bias in the distribution of the random function. We carefully
cancel the reprogramming during retries using the semi-classical One-way to Hid-
ing lemma [1]. After this cancelation, the EUF-NMA adversary can simulate
the signing oracle in the absence of the signing key I.

As for INV ⇒ EUF-NMA, we use the measure-and-reprogram technique
developed by Don et al. [23], incurring a security loss of (2qqro + 1)2. As far as
we know, this usage is new in the context of the probabilistic hash-and-sign.

Applications: Applying the main theorem, we enhance the EUF-CMA security
of Wave [2] and give the first proof for the sEUF-CMA security of the mod-
ified CFS signature [20] as well as the EUF-CMA security of Rainbow [22],
GeMSS [16], MAYO [10], QR-UOV [29], and PROV [26] in the QROM. To the
best of our knowledge, the main theorem encompasses all existing hash-and-sign
signatures such that reductions from the INV are known in the ROM.

NIST has recently announced additional candidates for post-quantum signa-
tures. NIST has the intention of standardizing schemes that are not based on
structured lattices [46]. The main theorem has wide application in code-based
and MQ-based cryptography, promising candidate for this call. The additional
candidates include Wave, MAYO, QR-UOV, and PROV. Notably, QR-UOV and
PROV have utilized the main theorem in their specifications [29, 26].

Security Proof in Multi-Key Setting: We introduce a generic method for estab-
lishing a reduction from the security of TDFs in the single-instance setting to
the security of the hash-and-sign with prefix hashing in the multi-key setting.
The core idea behind this generic method is to apply pairs of randomly gener-
ated transformations {Lj ,Rj}j to a single verification key F′. Here, F′ belongs to
another TDF, assumed to be non-invertible. This process effectively simulates
multiple verification keys through {Lj ◦F′◦Rj}j . Assuming the indistinguishabil-
ity between {Lj ◦ F′ ◦Rj}j and real verification keys {Fj}j , we show a reduction
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of INV ⇒ M-EUF-CMA with a security bound (2qqro + 1)2εinv and a tight
reduction of CR⇒M-sEUF-CMA. Since there is no security loss in the num-
ber of keys, we can affirmatively answer Q2. Furthermore, we apply the generic
method to some hash-and-sign signatures. In these applications, we introduce
computational problems that can computationally ensure the indistinguishabil-
ity between {Lj ◦ F ◦ Rj}j and {Fj}j .

Concurrent Work: Liu, Jiang, and Zhao [40] show the EUF-CMA security of the
TDP-FDH and TDP-PFDH in the QROM by using the measure-and-reprogram
technique by Don et al. [23]. Their security bound is (2(qqro + qsign +1)+1)2εinv,
where qsign is a bound on the number of signing queries. They also give an analysis
for (H)IBE in the QROM. Our work has two advantages over their work on
hash-and-sign. First, the main theorem applies to the TDP-PFDH and has wider
applications in existing signature schemes. Although no post-quantum signatures
adopting TDP-FDH/TDP-PFDH have been proposed, numerous post-quantum
signatures adopt the probabilistic hash-and-sign (with retry). Second, the main
theorem has the security bound (2qqro + 1)2εinv, which does not include qsign.

Two papers [21, 3] recently pointed out a subtle flaw in the security proofs
of Fiat-Shamir with aborts [41] in the QROM [36, 32]. The flaw stems from the
bias introduced by the simulation with abort, which we treat in EUF-NMA⇒
EUF-CMA carefully. We note that the games in the corrected proof in [3] are
defined in the same spirit as our proof of EUF-NMA⇒ EUF-CMA while the
proof techniques and the details are different. Leveraging its structural resem-
blance to the probabilistic hash-and-sign with retry, we present an alternative
security proof for the Fiat-Shamir with aborts by employing the same techniques
used in the main theorem of this paper.

Organization: Section 2 gives notations, definitions, and so on. Section 3 reviews
the existing security proofs in the (Q)ROM. Section 4 presents the main theorem
and discusses applications. In Section 5, we describe the generic method applied
in the multi-key setting. Appendix A demonstrates a flaw in the security proof
of concurrent work. Appendix B presents security proofs of hash-and-sign signa-
tures reviewed in Appendix C. Appendices D and E show missing proofs for the
theorem in the multi-key setting. Appendix F shows applications of the generic
method in the multi-key setting. Appendix G provides a security proof for the
Fiat-Shamir with aborts, employing the same techniques as the main theorem.

2 Preliminaries

2.1 Notations and Terminology

For n ∈ N, we let [n] := {1, . . . , n}. We write any symbol for sets in calligraphic
font. For a finite set X , |X | is the cardinality of X and U(X ) is the uniform
distribution over X . By x ←$ X and x ← DX , we denote the sampling of an
element from U(X ) and DX (distribution on X ). We denote a set of functions
having a domain X and a range Y by YX .
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Game: EUF-CMA
1 Q := ∅
2 (vk , sk)← Sig.KeyGen(1λ)

3 (m∗, σ∗)← ASign
cma(vk)

4 if m∗ ∈ Q then
5 return 0
6 return Sig.Verify(vk ,m∗, σ∗)

Sign(mi)

1 σi←Sig.Sign(sk ,mi)
2 Q := Q ∪ {mi}
3 return σi

Game: EUF-NMA

1 (vk , sk)← Sig.KeyGen(1λ)
2 (m∗, σ∗)← Anma(vk)
3 return Sig.Verify(vk ,m∗, σ∗)

Fig. 2: EUF-CMA and EUF-NMA games

We write any symbol for functions in sans-serif font and adversaries in cal-
ligraphic font. Let F be a function, and A be an adversary. We denote by
y ← FH(x) and y ← AH(x) (resp., y ← F|H〉(x) and y ← A|H〉(x)) probabilistic
computations of F and A on input x with a classical (resp., quantum) oracle
access to a function H. If F and A are deterministic, we write y := FH(x) and
y := AH(x). For a random function H, we denote by Hx∗ 7→y∗ a function such
that Hx∗ 7→y∗

(x) = H(x) for x 6= x∗ and Hx∗ 7→y∗
(x∗) = y∗. The notation GA⇒y

denotes an event in which a game G played by A returns y.
We denote 1 if the Boolean statement is true > and 0 if the statement is false

⊥. A binary operation a
?
= b outputs > if a = b and outputs ⊥ otherwise.

2.2 Digital Signature and Trapdoor Function

Definition 2.1 (Digital Signature). A digital signature scheme Sig consists
of three algorithms:

Sig.KeyGen(1λ): This algorithm takes the security parameter 1λ as input and
outputs a verification key vk and a signing key sk .

Sig.Sign(sk ,m): This algorithm takes a signing key sk and a message m as input
and outputs a signature σ.

Sig.Vrfy(vk ,m, σ): This algorithm takes a verification key vk , a message m, and
a signature σ as input, and outputs > (acceptance) or ⊥ (rejection).

Definition 2.2 (Security of Signature). Let Sig be a signature scheme. Us-
ing games given in Fig. 2, we define advantage functions of adversaries playing
EUF-CMA (Existential UnForgeability against Chosen-Message Attack) and
EUF-NMA (No-Message Attack) games against Sig as AdvEUF-CMA

Sig (Acma) =

Pr
[
EUF-CMAAcma⇒1

]
and AdvEUF-NMA

Sig (Anma) = Pr
[
EUF-NMAAnma⇒1

]
, re-

spectively. Also, we define an advantage function for an sEUF-CMA (strong
EUF-CMA) game as AdvsEUF-CMA

Sig (Acma) = Pr
[
sEUF-CMAAcma⇒1

]
, where the

sEUF-CMA game is identical to the EUF-CMA game except that Line 4 is
changed as “ if (m∗, σ∗) ∈ Q′ then” and Q′ keeps messages and signatures in
the signing oracle. We say Sig is EUF-CMA-secure, sEUF-CMA-secure, or
EUF-NMA-secure if its corresponding advantage is negligible for any efficient
adversary in the security parameter.
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Game: INV

1 (F, I)← Gen(1λ)
2 y ←$ Y
3 x∗ ← Binv(F, y)

4 return F(x∗)
?
= y

Game: OW

1 (F, I)← Gen(1λ)
2 x← DX
3 y := F(x)
4 x∗ ← Bow(F, y)

5 return F(x∗)
?
= y

Game: CR

1 (F, I)← Gen(1λ)
2 (x∗

1 , x
∗
2)← Bcr(F)

3 return F(x∗
1)

?
= F(x∗

2)

Fig. 3: INV (non-INVertibility), OW (One-Wayness), and CR (Collision-
Resistance) games

Definition 2.3 (Trapdoor Function (TDF)). A TDF T consists of three
algorithms:

Gen(1λ): This algorithm takes the security parameter 1λ as input and outputs
a function F with a trapdoor I of F.

F(x): This algorithm takes x ∈ X and deterministically outputs F(x) ∈ Y.
I(y): This algorithm takes y∈Y and outputs x∈X , s.t., F(x)=y, or outputs ⊥.

Definition 2.4 (Security of TDF). Let T be a TDF. Using games given in
Fig. 3, we define advantage functions of adversaries playing the INV (non-
INVertibility) 7, OW (One-Wayness), and CR (Collision-Resistance) games
against T as AdvINV

T (Binv) = Pr
[
INVBinv⇒1

]
, AdvOW

T (Bow) = Pr
[
OWBow⇒1

]
,

and AdvCR
T (Bcr) = Pr

[
CRBcr⇒1

]
, respectively.

2.3 Preimage-Sampleable Function

In the ROM, hash-and-sign is EUF-CMA-secure when instantiated with a
preimage-sampleable function (PSF) [30]. We first define its weakened version.

Definition 2.5 (Weak Preimage-Sampleable Function (WPSF)). A WPSF
T is a TDF that is equipped with an additional function SampDom(F), which
takes as input F ∈ YX and outputs some x ∈ X .

We then review PSF:

Definition 2.6 (Preimage-Sampleable Function (PSF) [30]). A WPSF
T is said to be a PSF if it satisfies three conditions for any (F, I)← Gen(1λ):

Condition 1: F(x) is uniform over Y for x← SampDom(F).
Condition 2: x ← I(y) follows a distribution of x ← SampDom(F) given

F(x) = y.
Condition 3: I(y) outputs x satisfying F(x) = y for any y ∈ Y.

If T is collision-resistant PSF, it satisfies the above conditions plus the following:
7 In general, non-invertibility of TDFs is called one-wayness [30, 52, 17]. We make

a distinction between them depending on the way to choose challenges (INV fol-
lows [33] and OW follows [5]).
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Game: PSb

1 (F, I)← Gen(1λ)

2 b∗ ← DSampleb
ps (F)

3 return b∗

Sample0()

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 until xi 6= ⊥
5 return xi

Sample1()

1 xi ← SampDom(F)
2 return xi

Fig. 4: PS (Preimage Sampling) game

Condition 4: For any y ∈ Y, the conditional min-entropy of x← SampDom(F)
given F(x) = y is at least ω(log(λ)).

In the proof of EUF-CMA security, a TDF may not be a PSF, but it must
be a WPSF that satisfies a relaxed version of Condition 2 that ensures indis-
tinguishability between x ← SampDom(F) and x ← I(y). To define this relaxed
condition, we introduce the following game:

Definition 2.7 (Preimage Sampling (PS) Game). Let T be a WPSF. Us-
ing a game defined in Fig. 4, we define an advantage function of an adversary
playing the PS game against T as AdvPS

T (Dps) =
∣∣Pr[PS0Dps⇒1

]
− Pr

[
PS1
Dps⇒1

]∣∣.
The condition that AdvPS

T (Dps) is negligible is a relaxation of Condition 2 in
which we can use computational indistinguishability.

2.4 Security Games in Multi-key/Multi-instance Settings

Definition 2.8 (Security of Signature in Multi-key Setting [37]). Let
Sig be a signature scheme. Using a game given in Fig. 5, we define advantage
functions of adversaries playing the M-EUF-CMA and M-sEUF-CMA (Multi-
key EUF-CMA/sEUF-CMA) games against Sig as AdvM-EUF-CMA

Sig (Acmam) =

Pr
[
M-EUF-CMAAcmam⇒1

]
and AdvM-sEUF-CMA

Sig (Acmam)=Pr
[
M-sEUF-CMAAcmam⇒1

]
,

where the M-sEUF-CMA game is identical to the M-EUF-CMA game except
that Line 5 is changed as “ if (j∗,m∗, σ∗) ∈ Q′ then” and Q′ keeps key IDs,
messages, and signatures in the signing oracle. We say Sig is M-EUF-CMA-
secure or M-sEUF-CMA-secure if its corresponding advantage is negligible for
any efficient adversary in the security parameter.

Definition 2.9 (INV, CR, and PS in Multi-instance Setting). Let T be
a TDF or a WPSF. Using games given in Fig. 6, we define advantage func-
tions of adversaries playing the M-INV (Multi-instance INV), M-CR (Multi-
instance CR), and M-PS (Multi-instance PS) against T as AdvM-INV

T (Binvm) =
Pr

[
M-INVBinvm⇒1

]
, AdvM-CR

T (Bcrm) = Pr
[
M-CRBcrm⇒1

]
, and AdvM-PS

T (Dpsm) =∣∣Pr[M-PS0
Dpsm⇒1

]
− Pr

[
M-PS1

Dpsm⇒1
]∣∣, respectively.
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Game: M-EUF-CMA
1 Q := ∅
2 for j ∈ [qkey] do
3 (vkj , skj)← Sig.KeyGen(1λ)

4 (j∗,m∗, σ∗)← ASign
cmam({vkj}j∈[qkey])

5 if (j∗,m∗) ∈ Q then
6 return 0
7 return Sig.Verify(vkj∗ ,m∗, σ∗)

a

Sign(j,mi)

1 σi ← Sig.Sign(skj ,mi)
2 Q := Q ∪ {(j,mi)}
3 return σi

Fig. 5: M-EUF-CMA (Multi-key EUF-CMA) game

Game: M-INV
1 for j ∈ [qinst] do
2 (Fj , Ij)←$ Gen(1λ)
3 yj ←$ Y
4 (j∗, x∗)← Binvm({(Fj , yj)}j∈[qinst])

5 return Fj∗(x∗)
?
= yj∗

Game: M-CR
1 for j ∈ [qinst] do
2 (Fj , Ij)←$ Gen(1λ);
3 (j∗, x∗

1 , x
∗
2)← Bcrm({Fj}j∈[qinst])

4 return Fj∗(x∗
1)

?
= Fj∗(x∗

2)

Game: M-PSb

1 for j ∈ [qinst] do
2 (Fj , Ij)←$ Gen(1λ)

3 b∗ ← DSampleb
psm ({Fj}j∈[qinst])

4 return b∗

a

Sample0(j)

1 repeat
2 yi,←$ Y
3 xi ← Ij(yi)
4 until xi 6= ⊥
5 return xi

a

Sample1(j)

1 xi←SampDom(Fj)
2 return xi

Fig. 6: M-INV, M-CR, and M-PS (Multi-instance INV, CR, and PS) games

2.5 Quantum Random Oracle Model (QROM)

In the ROM, a hash function H : R×M→ Y is modeled as a random function
H ←$ YR×M. The random function is under the control of the challenger, and
the adversary makes queries to the random oracle (random oracle queries) to
compute the hash values. In the ROM, the challenger can choose y ←$ Y and
reprogram H := H(r,m) 7→y for queried (r,m) on-the-fly instead of choosing H←$

YR×M at the beginning (lazy sampling technique).
In the QROM, the adversary makes queries to H in a superposition of many

different values, e.g.,
∑

(r,m) αr,m |r,m〉 |y〉. The challenger computes H and gives
a superposition of the results to the adversary,

∑
(r,m) αr,m |r,m〉 |y ⊕ H(r,m)〉.

Due to the nature of superposition queries in the QROM, traditional proof tech-
niques like lazy sampling used in the ROM cannot be directly applied in the
QROM. However, some works enable one to adaptively reprogram H in the se-
curity game [57, 34, 23, 32]. Among the works, we use the tight adaptive repro-
gramming technique [32] and the measure-and-reprogram technique [23]. Also,
we use the semi-classical O2H technique [1].

2.6 Proof Techniques in QROM

We introduce three techniques employed in proving Theorem 4.1.

10



Game: ARb

1 H0 ←$ YR×M

2 H1 := H0

3 b∗ ← D|Hb〉,Repro
ar ()

4 return b∗

Repro(mi)

1 ri ← DR
2 yi ←$ Y
3 H1 := H

(ri,mi) 7→yi

1
4 return ri

Fig. 7: AR (Adaptive Reprogramming) game

Tight Adaptive Reprogramming Technique [32]: Fig. 7 shows a game called AR
(Adaptive Reprogramming) game, in which the adversary Dar attempts to dis-
tinguish H0 (no reprogramming) from H1 (reprogrammed by Repro). For i-th
reprogramming query, the challenger reprograms H1 for ri ← DR and yi ←$ Y,
and gives ri to Dar. Let ε be a bound on the maximum probability of r ← DR,
that is, maxr̂∈R Pr[r = r̂ : r ← DR] ≤ ε. A distinguishing advantage of the AR
game is defined by AdvAR

H (Dar) =
∣∣Pr[AR0

Dar⇒1
]
− Pr

[
AR1
Dar⇒1

]∣∣.
Lemma 2.1 (Tight Adaptive Reprogramming Technique [32, Propo-
sition 2]). For any quantum AR adversary Dar issuing at most qrep classical
reprogramming queries and qqro (quantum) random oracle queries to Hb, the
distinguishing advantage of the AR game is bounded by

AdvAR
H (Dar) ≤

3

2
qrep
√
qqroε.

Especially, if DR is the uniform distribution U(R), then ε is equal to 1
|R| .

Measure-and-Reprogram Technique [23]: Let A be a quantum adversary playing
a search-type game making qqro quantum queries to H ←$ YR×M. A two-stage
algorithm S comprises S1 and S2, and it operates with black-box access to A as
follows:

1. Choose (i, b)←$ ([qqro]× {0, 1}) ∪ {(qqro + 1, 0)}.
2. Run A with H until i-th query.
3. Measure i-th query and output (r,m) as the output of S1.
4. Given a random θ, reprogram H′ = H(r,m)7→θ.
5. If i = qqro + 1, then go to Step 8.
6. Answer i-th query with H (if b = 0) or H′ (if b = 1).
7. Run A with H′ until the end.
8. Output A’s output z (possibly quantum) as the output of S2.

Then, the following lemma holds for S and A:

Lemma 2.2 (Measure-and-Reprogram Technique [23, Theorem 2]).
For any quantum adversary A issuing at most qqro (quantum) random oracle
queries to H ←$ YR×M, there exists a two-stage algorithm S given uniformly

11



chosen θ such that for any (r̂, m̂) ∈ R×M and any predicate V,

Pr
[
(r,m) = (r̂, m̂) ∧ V(r,m, θ, z) : (r,m)← SA1 (), z ← SA2 (θ)

]
≥ 1

(2qqro + 1)2
Pr

[
(r,m) = (r̂, m̂) ∧ V(r,m,H(r,m), z) : (r,m, z)← A|H〉()

]
.

Semi-classical O2H Technique [1]: We define punctured oracle following a nota-
tion of [12].

Definition 2.10 (Punctured Oracle [12, Definition 1]). Let S ⊂ R×M
be a set. Let fS : R ×M → {0, 1} be a predicate that returns 1 if and only if
(r,m) ∈ S. Punctured oracle H\S (H punctured by S) of H ∈ YR×M runs
as follows: on input (r,m), computes whether (r,m) ∈ S in an auxilliary qubit
|fS(r,m)〉, measures |fS(r,m)〉, runs H(r,m), and returns the result. Let FIND
be an event that any of measurements of |fS(r,m)〉 returns 1.

The answer from the oracle H\S depends on the measurement results. Let us con-
sider a query

∑
(r,m) αr,m |r,m〉 |y〉. H\S computes

∑
(r,m) αr,m |r,m〉 |y〉 |fS(r,m)〉

and measures the third register. If the result is 0, then the query is transformed to∑
(r,m) 6∈S αr,m |r,m〉 |y〉 |0〉 and H\S returns

∑
(r,m)6∈S αr,m |r,m〉 |y ⊕ H(r,m)〉

to the adversary. If the results is 1 (and thus, FIND = > holds), H\S returns∑
(r,m)∈S αr,m |r,m〉 |y ⊕ H(r,m)〉 to the adversary. Thus, if FIND = ⊥, then

the adversary cannot obtain any information on H(r,m) for (r,m) ∈ S. Hence,
we have the following:

Lemma 2.3 (Indistinguishability of Punctured Oracles [1, Lemma 1]).
Let H0,H1 : R ×M → Y and S ⊂ R ×M, and z be a bitstring. (S, H0, H1,

and z are taken from arbitrary joint distribution satisfying H0(r,m) = H1(r,m)
for any (r,m) 6∈ S.) For any quantum adversary A and any event E,

Pr
[
E ∧ FIND = ⊥ : b← A|H0\S〉(z)

]
= Pr

[
E ∧ FIND = ⊥ : b← A|H1\S〉(z)

]
.

The following lemma provides a bound on the advantage gap between the original
game and a game with a punctured oracle by considering the probability of
FIND = >. Note that we omit unnecessary statements from [1, Theorem 1] and
do not consider the parallelization of queries.

Lemma 2.4 (Semi-classical O2H Technique [1, Theorem 1]). Let H : R×
M → Y and S ⊂ R ×M, and z be a bitstring. (S, H, and z are taken from
arbitrary joint distribution.) For any quantum adversary A issuing at most qqro
(quantum) random oracle queries to H,∣∣∣Pr[1← A|H〉(z)]− Pr

[
1← A|H\S〉(z) ∧ FIND = ⊥

]∣∣∣
≤

√
(qqro + 1)Pr

[
FIND = > : b← A|H\S〉(z)

]
.
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HaS[T,H].KeyGen(1λ)

1 (F, I)← Gen(1λ)
2 return (F, I)

HaS[T,H].Sign(I,m)

1 repeat
2 r ←$ R
3 x← I(H(r,m))
4 until x 6= ⊥
5 return (r, x)

HaS[T,H].Vrfy(F,m, (r, x))

1 return F(x)
?
= H(r,m)

Fig. 8: Algorithms of the probabilistic hash-and-sign with retry

Furthermore, the following provides a bound on Pr
[
FIND = > : b← A|H\S〉(z)

]
.

Lemma 2.5 (Search in Semi-classical Oracle [1, Theorem 2 and Corol-
lary 1]). Let A be a quantum adversary issuing at most qqro (quantum) random
oracle queries to H. Let B|H〉(z) be an algorithm that runs as follows: Picks
i ←$ [qqro], runs A|H〉(z) until just before i-th query, measures a query input
register in the computational basis, and outputs the measurement outcome as
(r,m). Then,

Pr
[
FIND = > : b← A|H\S〉(z)

]
≤ 4qqro Pr

[
(r,m) ∈ S : (r,m)← B|H〉(z)

]
.

In particular, if for each (r,m) ∈ S, Pr[(r,m) ∈ S] ≤ ε (conditioned on z, on
other oracles A has access to, and on other outputs of H), then

Pr
[
FIND = > : b← A|H\S〉(z)

]
≤ 4qqroε.

2.7 Hash-and-Sign Paradigm

Fig. 8 shows algorithms of the probabilistic hash-and-sign with retry, and HaS[T,H]
is a signature scheme using a TDF T and a hash function H. If HaS[T,H].Sign
outputs a signature without retry, HaS[T,H] instantiates the probabilistic hash-
and-sign. If r is empty, HaS[T,H] instantiates the deterministic hash-and-sign.

3 Existing Security Proofs

We review the existing security proofs, including our own, and summarize them
in Table 2.

Security Proof in the ROM [6, 30]: Let Tpsf be a PSF. A reduction from the
INV of Tpsf to the EUF-CMA security of HaS[Tpsf ,H] in the ROM is given by
lazy sampling and programming. The INV adversary Binv, given a challenge
(F, y), simulates the EUF-CMA game played by an adversary Acma as fol-
lows: For a random oracle query (r,m), Binv returns F(x) for x← SampDom(F)
and stores (r,m, x) in a database D. If (r,m, x) ∈ D with some x, then Binv
gives F(x) to Acma. For a signing query m, Binv chooses (r, x) by r ←$ R and
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Table 2: Summary of the existing and our security proofs. In “Conditions of
TDF”, X indicates this condition of PSF (see Definition 2.6) is necessary, and
X1/X2 indicate that Condition 2 is relaxed as “A bound δ on average of
δF,I is negligible” and “εps = AdvPS

Twpsf
(Dps) is negligible”. In “Target scheme”,

d/p/pr stand for the deterministic hash-and-sign, probabilistic hash-and-sign,
and probabilistic hash-and-sign with retry.

Security Conditions Target
proof Security Bound Assumption of TDF scheme

1 2 3 4

[14] 1

1−2−ω(log(λ)) εcr CR X X X X d/p

[61] 2
√(

qsign +
8
3
(qsign + qqro + 1)4

)
εow/inv OW/INV X X X – d/p

ext. of [58] 4qsign(qqro + 1)(2qqro + 1)2εow/inv OW/INV X X X – d/p

[40] (2(qqro + qsign + 1) + 1)2εow/inv OW/INV X X X – d/p

[17] 1
2

(
εnma +

8π√
3
q

3
2
qro

√
δ + qsign

(
δ +

qsign
|R|

))
EUF-NMA – X1 X – p

ours
(2qqro + 1)2εinv + εps +

3
2
q′sign

√
q′sign+qqro+1

|R|

+2(qqro + 2)
√

q′sign−qsign
|R|

INV – X2 – – p/pr

ours
εnma + εps +

3
2
q′sign

√
q′sign+qqro+1

|R|

+2(qqro + 2)
√

q′sign−qsign
|R|

EUF-NMA – X2 – – p/pr

ours (2qqro + 1)2εow/inv +
3
2
qsign

√
qsign+qqro+1

|R| OW/INV X X X – p

x ← SampDom(F). If (r,m, ∗) 6∈ D, Binv returns (r, x) and stores (r,m, x) in D;
otherwise Binv returns stored (r, x).

From Condition 1 of PSF (F(x) is uniform), Binv can use F(x) as an out-
put of the random function. Also from Conditions 2 and 3, Binv can simulate
an honestly generated signature xi ← I(H(ri,mi)) by xi ← SampDom(F). To
win the INV game, Binv gives his query y to Acma in one of (qsign + qro + 1)
queries to H. If Acma outputs a valid signature (m∗, r∗, x∗), H(r∗,m∗) = y holds
and Binv can win the INV game with probability 1

qsign+qro+1 . Hence, we have
AdvEUF-CMA

HaS[Tpsf ,H]
(Acmac) ≤ (qsign+qro+1)AdvINV

Tpsf
(Binv), where Acmac is an adversary

who can make only classical queries to H.
Note that AdvINV

Tpsf
(Binv) = AdvOW

Tpsf
(Bow) holds (DX is defined as SampDom(F)

in the OW game (see Fig. 3)) since the OW adversary can simulate the INV
game by giving a uniform y = F(x) to the INV adversary, and vice versa.

Security Proof by Semi-constant Distribution [61]: Zhandry showed the reduction
from the OW of TDP in the QROM using a technique known as semi-constant
distribution. This technique leads to a reduction from the INV of PSF. Binv
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simulates the EUF-CMA game by generating signatures without the trapdoor
as the above security proof in the ROM. Instead of adaptively programming H,
Binv replaces H as H′ = F(DetSampDom(F, H̃(r,m))), where H̃ ←$ WR×M is a
random function to output randomness w and DetSampDom is a deterministic
function of SampDom [14]. From Condition 1, H′ is indistinguishable from H.
Binv programs H′ that outputs y with probability ε (semi-constant distribu-

tion). In the signing oracle, if H′(ri,mi) outputs y, Binv aborts this game. A
bound on the statistical distance between the random function and the pro-
grammed one with the semi-constant distribution is 8

3 (qsign + qqro + 1)4ε2 [61,
Corollary 4.3]. When Acma wins the EUF-CMA game, Binv can win the INV
game with probability (1−ε)qsignε ≈ ε−qsignε2. Minimizing the bound 1

εAdvINV
Tpsf

+(
qsign +

8
3 (qsign + qqro + 1)4

)
ε gives [61, Theorem 5.3]

AdvEUF-CMA
HaS[Tpsf ,H](Acma) ≤ 2

√(
qsign +

8

3
(qsign + qqro + 1)

4

)
AdvINV

Tpsf
(Binv).

Zhandry proposed another technique called small-range distribution [60] that
also yields a security bound with a square root loss. Chatterjee, Das, and Pan-
dit [18] used this technique to show the EUF-CMA security of the modified
UOV signature [52] in the QROM.

Application of Lifting Theorem [58]: Yamakawa and Zhandry gave the lifting
theorem for search-type games. As an application of the lifting theorem, they
showed AdvEUF-NMA

Sig (Anma) ≤ (2qqro + 1)2AdvEUF-NMA
Sig (Anmac), where Anmac is

an EUF-NMA adversary making classical queries to H [58, Corollary 4.10].
For a hash-and-sign signature HaS[Tpsf ,H], they showed AdvEUF-CMA

HaS[Tpsf ,H](Acma) ≤
4qsignAdvEUF-NMA

HaS[Tpsf ,H]
(Anma) [58, Theorem 4.11]. Extending the results of [58] using

the security proof in the ROM, we have a bound:

AdvEUF-CMA
HaS[Tpsf ,H](Acma) ≤ 4qsign(qqro + 1)(2qqro + 1)2AdvINV

Tpsf
(Binv).

Reduction from EUF-NMA for WPSF [17]: The security proofs mentioned
above hold only if the underlying TDF is PSF. Unfortunately, some TDFs can-
not satisfy some conditions. To relax the conditions on TDFs, Chailloux and
Debris-Alazard gave EUF-NMA⇒ EUF-CMA for the probabilistic hash-and-
sign. 8 The authors assumed a WPSF with Condition 3 and a weaker version
of Condition 2, that is, there is a bound δ on the average of statistical dis-
tance δF,I = ∆(SampDom(F), I(U(Y))) over all (F, I) ← Gen(1λ) (see details in
Appendix B.1). Let Twpsf be a WPSF. The EUF-NMA adversary Anma replaces
the random function H by H′, which outputs H(r,m) with probability 1

2 and

8 The authors of [17] defined a problem called claw with random function problem;
however, its definition is identical to EUF-NMA game for hash-and-sign.
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F(DetSampDom(F, w)) with probability 1
2 . A bound on the advantage of distin-

guishing H from H′ is 8π√
3
q
3/2
qro

√
δ. The authors gave [17, Theorem 2]

AdvEUF-CMA
HaS[Twpsf ,H](Acma)≤

1

2

(
AdvEUF-NMA

HaS[Twpsf ,H]
(Anma)+

8π√
3
q

3
2
qro

√
δ+qsign

(
δ +

qsign
|R|

))
.

(1)

Reduction from Collision-resistance [14]: Boneh et al. [14] gave a reduction
from the CR of Tpsf to the sEUF-CMA security of HaS[Tpsf ,H]. Let us assume
that the CR adversary Bcr given F simulates the sEUF-CMA game for Acma.
For a random function H̃ ←$ WR×M, Bcr replaces the random function H as
H′(r,m) = F(DetSampDom(F, H̃(r,m))), where H and H′ are indistinguishable
from Condition 1. Also, the CR adversary simulates the signing oracle using
Conditions 2 and 3. If Acma wins by (m∗, r∗, x∗), then F(x∗) = H′(r∗,m∗) =

F(x′) holds for x′ = DetSampDom(F, H̃(r∗,m∗)). When x∗ 6= x′, Bcr can obtain
a collision pair (x∗, x′). Since x∗ 6= x′ holds with probability 1− 2−ω(log(λ)) (see
Condition 4),

AdvsEUF-CMA
HaS[Tpsf ,H]

(Acma) ≤
1

1− 2−ω(log(λ))
AdvCR

Tpsf
(Bcr). (2)

Concurrent Work [40]: Liu, Jiang, and Zhao [40] showed OW ⇒ EUF-CMA
for the TDP-FDH and TDP-PFDH in the QROM. Their reduction can be ex-
tended to INV ⇒ EUF-CMA for the deterministic/probabilistic hash-and-
sign based on PSF. As in [18, 14, 61], the random function H is replaced as
H′ = F(DetSampDom(F, H̃(m))) to answer the signing queries without using the
trapdoor. From Condition 1, this modification does not incur any security
loss. Then, their reduction for TDP-FDH uses the measure-and-reprogram tech-
nique [23, Theorem 2] (see Lemma 2.2 in Section 2.6) as in our security proof.
Their reduction has a security bound that includes qsign in the multiplicative
loss: 9

AdvEUF-CMA
HaS[Tpsf ,H](Acma) ≤ (2(qqro + qsign + 1) + 1)2AdvINV

Tpsf
(Ainv). (3)

4 New Security Proof

The main theorem is as follows:

Theorem 4.1 (INV ⇒ EUF-CMA (Main Theorem)). For any quantum
EUF-CMA adversary Acma of HaS[Twpsf ,H] issuing at most qsign classical queries
to the signing oracle and qqro (quantum) random oracle queries to H←$ YR×M,
9 In the latest version of [40], a term qsign has been removed from Eq. (3); however, we

have identified a flaw in the proof (see Appendix A).
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there exist an INV adversary Binv of Twpsf and a PS adversary Dps of Twpsf

issuing qsign sampling queries such that

AdvEUF-CMA
HaS[Twpsf ,H]

(Acma) ≤ (2qqro + 1)2AdvINV
Twpsf

(Binv) + AdvPS
Twpsf

(Dps)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

, (4)

where q′sign is a bound on the total number of queries to H in all the signing
queries, and the running times of Binv and Dps are about that of Acma.

Here, we provide a proof sketch, while Section 4.1 contains the complete proof.

Proof Sketch: The main theorem comprises two reductions: EUF-NMA ⇒
EUF-CMA and INV⇒ EUF-NMA. To establish EUF-NMA⇒ EUF-CMA,
we introduce modifications to the signing oracle, enabling simulation by SampDom.
We employ the tight adaptive reprogramming technique [32] (see Section 2.6)
to modify the signing oracle. This modification involves sampling r ←$ R and
y ←$ Y, and reprogramming H as H(r,m)7→y every time the signing oracle calls
H. A straightforward way to simulate the signing oracle by SampDom is to sam-
ple x ← SampDom(F) instead of x ← I(y) and reprogram H as H(r,m)7→F(x).
However, x ← SampDom(F) cannot simulate x ← I(y) when it outputs x = ⊥
during retries. The hardness of the PS game (see Definition 2.7) only ensures
that x ← SampDom(F) can simulate x ← I(y) that is obtained after some re-
tries until x 6= ⊥ holds. Fortunately, if we can cancel the reprogramming done
during retries, we can simulate the signing oracle by selecting r ←$ R and
x ← SampDom(F), and then reprogramming H as H(r,m)7→F(x). To achieve this,
we use the semi-classical O2H technique [1] (see Section 2.6). By puncturing H
for reprogrammed points during retries, we prevent the adversary from obtaining
the values associated with those points. As a result, the reprogramming during
retries can be canceled because it does not affect the adversary’s advantage. This
cancellation enables the EUF-NMA adversary to simulate the signing oracle,
completing the reduction.

For INV⇒ EUF-NMA, we utilize the measure-and-reprogram technique [23].
The INV adversary Binv is given a challenge (F, y) and interacts with Anma in
the EUF-NMA game. Binv measures and reprograms the random function H ac-
cessed by Anma. Binv measures one of the random oracle queries made by Anma.
Let (r,m) denote the observed value, and H is reprogrammed as H′ = H(r,m)7→y.
Then, Binv runs Anma again with H′ and obtains (m, r, x). Finally, Binv outputs
x as a preimage of y. From [23, Theorem 2] (see Section 2.6), we can achieve a
reduction with a security loss of (2qqro + 1)2 in INV⇒ EUF-NMA. ut

Theorem 4.1 has the following two advantages:

Advantage 1: Wide applications: Our reduction gives security proofs for code-
based and MQ-based hash-and-sign signatures. Relaxation of Condition 2 is
necessary for such applications. The existing security proofs replace the random
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function H with H′ all at once, requiring statistical indistinguishability between
H and H′. On the other hand, our proof adaptively reprograms H in each signing
query. This approach enables us to provide the security proof under a weaker
assumption compared to the one required by PSF.

Advantage 2: Tighter proof: Our reduction is tighter than the existing ones [61,
58]. While we cannot guarantee the optimality of our reduction, we can infer
from several observations that a multiplicative loss of (2qqro +1)2 appears to be
unavoidable in the generic (black-box) reduction. The reduction incurs a loss of
the number of queries to the random function, even in the ROM (see Section 3).
Second, the security loss of a generic reduction from ROM to QROM using the
lifting theorem [58] is at least (2qqro + 1)2. Third, in the Fiat-Shamir paradigm,
a generic reduction from arbitrary ID schemes incurs the same security loss (see
Remark 4.4).

We give some remarks on Theorem 4.1.
Remark 4.1. If HaS[Twpsf ,H] adopts the probabilistic hash-and-sign, then q′sign =
qsign holds and the last term of Eq. (4) becomes 0.

Remark 4.2. We have a tight reduction in EUF-NMA⇒ EUF-CMA with the
following bound:

AdvEUF-CMA
HaS[Twpsf ,H]

(Acma) ≤ AdvEUF-NMA
HaS[Twpsf ,H]

(Anma) + AdvPS
Twpsf

(Dps)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

. (5)

Comparing this bound with the one presented in [17] (refer to Eq. (1) in Sec-
tion 3), we observe that our requirement for Twpsf is weaker, and there are no
square-root terms associated with Condition 2.

Remark 4.3. When the underlying TDF is PSF (or TDP), we have:

AdvEUF-CMA
HaS[Tpsf ,H](Acma) ≤ (2qqro + 1)2AdvINV

Tpsf
(Binv) +

3

2
qsign

√
qsign + qqro + 1

|R|
.

As HaS[Tpsf ,H].Sign produces a signature without retry (Condition 3), q′sign =
qsign holds. In the PS game, the outputs of I and SampDom(F) are equivalent
due to Condition 2, resulting in AdvPS

Tpsf
(Dps) = 0. This bound is tighter than

existing ones for HaS[Tpsf ,H] (see Table 2).

Remark 4.4. Grilo et al. showed a tight reduction of EUF-NMA⇒ EUF-CMA
in the Fiat-Shamir (without aborts) paradigm, assuming that the underlying
ID scheme is honest verifier zero-knowledge (HVZK) [32, Theorem 3]. Also,
Don et al. gave a generic reduction in the Fiat-Shamir transform of arbitrary ID
schemes with a security loss (2qqro + 1)2 [24, Theorem 8]. The above reductions
use the tight adaptive reprogramming technique and the measure-and-reprogram
technique, respectively.
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4.1 Proof of Theorem 4.1

In the beginning, we show that we can set q′sign as q′sign = c
ρ qsign for some constant

c > 1, where ρ = Pr[x 6= ⊥ : y ←$ Y, x← I(y)]. In q′sign trials, at least qsign
signatures are generated if the number of successful trials (where I(H(r,m))
outputs a preimage) is qsign or more. Let S be a random variable for the number
of successful trials. E(S) = ρq′sign = cqsign holds. From the Chernoff bound, we
have Pr[S ≤ (1− γ)E(S)] ≤ e−

1
2γ

2E(S). Substituting γ =
E(S)−qsign+1

E(S) , the LHS
becomes Pr[S ≤ qsign − 1] that is a probability that we cannot generate qsign
signatures with q′sign trials. Since we set q′sign = c

ρ qsign, the exponent of the RHS

becomes − ((c−1)qsign+1)2

2cqsign
≥ − c−1

2c qsign and the bound on Pr[S ≤ qsign − 1] becomes
negligible for qsign = ω(log(λ)).

EUF-NMA ⇒ EUF-CMA: Figs. 9 and 10 show the games and simulations
described below. Without loss of generality, we assume that Acma makes a query
(r∗,m∗) (the final ouput) to H. Then, the total number of queries to H is qqro+1.

Game G0 (EUF-CMA game): This is the original EUF-CMA game and
Pr

[
G0
Acma⇒1

]
= AdvEUF-CMA

HaS[Twpsf ,H]
(Acma) holds.

Game G1 (adaptive reprogramming of H): The signing oracle SignH uniformly
chooses (ri, yi) and reprograms H := H(ri,mi) 7→yi until I(yi) does not output
⊥ (see Lines 2 to 5 in SignH for G1). Considering the number of retries, H is
reprogrammed for at most q′sign times.

The AR adversary Dar can simulate G0/G1 (the top row of Fig. 10). If Dar

plays AR0, Dar simulates G0; otherwise it simulates G1. From Lemma 2.1, we
have

∣∣Pr[G0
Acma⇒1

]
− Pr

[
G1
Acma⇒1

]∣∣ ≤ AdvAR
H (Dar) ≤ 3

2q
′
sign

√
q′sign+qqro+1
|R| .

Game G2 (pre-choosing r for unsuccessful trials): In the beginning, the chal-
lenger chooses r ←$ R for q′sign − qsign times and keeps them in a sequence
S (elements of S are ordered and may be duplicated.). In the signing oracle,
ri = S[ctr] is used for reprogramming if I(yi) outputs ⊥ for yi ←$ Y (see
Lines 6 and 9 of SignH for G2), where S[j] is j-th element of S and ctr is
a counter that increments just before using S[ctr]. In G1, the challenger can
choose ri in the beginning since ri is chosen independently of mi queried by
Acma. Also, ri is always uniformly chosen whatever I(yi) outputs. Therefore,
the challenger can use ri chosen in the beginning only when I(y) outputs ⊥.
Hence, Pr

[
G1
Acma⇒1

]
= Pr

[
G2
Acma⇒1

]
holds.

Game G3 (puncturing H): Let S ′ = {(r,m) : r ∈ S,m ∈M} be a set induced by
S. Instead of H,Acma makes queries to H\S ′ (H punctured by S ′). Also, G3 out-
puts 0 if FIND = > (see the definitions of H\S ′ and FIND in Definition 2.10).
We use Lemma 2.4 to bound

∣∣Pr[G2
Acma⇒1

]
− Pr

[
G3
Acma⇒1

]∣∣. Suppose that
Pr

[
G2
Acma⇒1

]
= Pr

[
1← ASign,|H〉

cma (F)
]
. Since G3 uses H\S ′ and outputs 0 if

FIND = >, we have Pr
[
G3
Acma⇒1

]
= Pr

[
1← ASign,

∣∣H\S′〉
cma (F) ∧ FIND = ⊥

]
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Game: G0-G1

1 Q := ∅
2 H←$ YR×M

3 (F, I)← Gen(1λ)

4 (m∗, r∗, x∗)← ASign,|H〉
cma (F)

5 if m∗ ∈ Q then
6 return 0

7 return F(x∗)
?
= H(r∗,m∗)

SignH(mi) for G0

1 repeat
2 ri ←$ R
3 xi ← I(H(ri,mi))
4 until xi 6= ⊥
5 Q := Q ∪ {mi}
6 return (ri, xi)

SignH(mi) for G1

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 ri ←$ R
5 H := H(ri,mi) 7→yi

6 until xi 6= ⊥
7 Q := Q ∪ {mi}
8 return (ri, xi)

Game: G2

1 Q := ∅
2 H←$ YR×M

3 ctr := 0
4 S := ∅
5 for j ∈ [q′sign − qsign] do
6 r ←$ R
7 S := S ∪ {r}
8 (F, I)← Gen(1λ)

9 (m∗, r∗, x∗)← ASign,|H〉
cma (F)

10 if m∗ ∈ Q then
11 return 0

12 return F(x∗)
?
= H(r∗,m∗)

SignH(mi) for G2

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 if xi = ⊥ then
5 ctr := ctr + 1
6 ri := S[ctr]
7 else
8 ri ←$ R
9 H := H(ri,mi) 7→yi

10 until xi 6= ⊥
11 Q := Q ∪ {mi}
12 return (ri, xi)

Game: G3-G5

1 Q := ∅
2 H←$ YR×M

3 FIND := ⊥
4 ctr := 0
5 S := ∅
6 for j ∈ [q′sign − qsign] do
7 r ←$ R
8 S := S ∪ {r}
9 S′ := {(r,m) : r ∈ S,m ∈ M}

10 (F, I)← Gen(1λ)

11 (m∗, r∗, x∗)← ASign,|H\S′〉
cma (F)

12 if m∗ ∈ Q ∨ FIND = > then
13 return 0

14 return F(x∗)
?
= H(r∗,m∗)

SignH(mi) for G3

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 if xi = ⊥ then
5 ctr := ctr + 1
6 ri := S[ctr]
7 else
8 ri ←$ R
9 H := H(ri,mi) 7→yi

10 until xi 6= ⊥
11 Q := Q ∪ {mi}
12 return (ri, xi)

SignH(mi) for G4

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 until xi 6= ⊥
5 ri ←$ R
6 H := H(ri,mi) 7→yi

7 Q := Q ∪ {mi}
8 return (ri, xi)

SignH(mi) for G5

1 xi ← SampDom(F)
2 ri ← R
3 H := H(ri,mi) 7→F(xi)

4 Q := Q ∪ {mi}
5 return (ri, xi)

Fig. 9: Games for EUF-NMA⇒ EUF-CMA

and Pr
[
FIND = > : G3

Acma⇒b
]
= Pr

[
FIND = > : b← ASign,

∣∣H\S′〉
cma (F)

]
. Then,

∣∣Pr[G2
Acma⇒1

]
− Pr

[
G3
Acma⇒1

]∣∣ ≤√
(qqro + 2)Pr

[
FIND = > : G3

Acma⇒b
]
,

(6)

by Lemma 2.4. We will show a bound on Eq. (6) after defining G4.
Game G4 (reprogramming only for successful trials): The signing oracle repro-

grams H := H(ri,mi)7→yi only for ri ← R, yi ←$ Y, and xi ← I(yi) satisfying
xi 6= ⊥. Notice that Acma makes queries to the punctured oracle H\S ′. By the
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D|Hb〉
ar () simulates G0/G1

1 Q := ∅
2 (F, I)← Gen(1λ)

3 (m∗, r∗, x∗)← ASign,|Hb〉
cma (F)

4 if m∗ ∈ Q then
5 return 0

6 return F(x∗)
?
= Hb(r

∗,m∗)

SignHb,Repro(mi)

1 repeat
2 ri ← Repro(mi)
3 xi ← I(Hb(ri,mi))
4 until xi 6= ⊥
5 Q := Q ∪ {mi}
6 return (ri, xi)

DSampleb
ps (F) simulates G4/G5

1 Q := ∅
2 H←$ YR×M

3 FIND := ⊥
4 S := ∅
5 for j ∈ [q′sign − qsign] do
6 r ←$ R
7 S := S ∪ {r}
8 S′ := {(r,m) : r ∈ S,m ∈ M}
9 (m∗, r∗, x∗)← ASign,|H\S′〉

cma (F)
10 if m∗ ∈ Q ∨ FIND = > then
11 return 0

12 return F(x∗)
?
= H(r∗,m∗)

SignH,Sampleb(mi)

1 ri ←$ R
2 xi ← Sampleb()

3 H := H(ri,mi) 7→F(xi)

4 Q := Q ∪ {mi}
5 return (ri, xi)

A|H〉
nma(F) simulates G5

1 Q := ∅
2 H′ := H
3 FIND := ⊥
4 S := ∅
5 for j ∈ [q′sign − qsign] do
6 r ←$ R
7 S := S ∪ {r}
8 S′ := {(r,m) : r ∈ S,m ∈ M}
9 (m∗, r∗, x∗)← ASign,|H′\S′〉

cma (F)
10 if m∗ ∈ Q ∨ FIND = > then
11 return 0

12 return F(x∗)
?
= H′(r∗,m∗)

SignH
′
(mi)

1 ri ←$ R
2 xi ← SampDom(F)

3 H′ := H′(ri,mi) 7→F(xi)

4 Q := Q ∪ {mi}
5 return (ri, xi)

Fig. 10: Simulations for EUF-NMA⇒ EUF-CMA

definition of FIND, if FIND = ⊥, that is, the measurements of |fS′(r,m)〉 are
0 for all queries, then Acma’s queries never contain any (r,m) ∈ S ′ and Acma

cannot obtain H(r,m) for (r,m) ∈ S ′. Hence, if FIND = ⊥, then Acma cannot
distinguish whether H is reprogrammed at (r,m) ∈ S ′ in G3 or not in G4 and
we have

Pr
[
FIND = ⊥ : G3

Acma⇒b
]
= Pr

[
FIND = ⊥ : G4

Acma⇒b
]

(7)

(as Lemma 2.3). Especially, if G3 or G4 outputs 1, then FIND should be
⊥ (Line 12 of G3-G5). Thus, we also have Pr

[
G3
Acma⇒1

]
= Pr

[
G4
Acma⇒1

]
.

Moreover, Pr
[
FIND=> : G3

Acma⇒b
]
= Pr

[
FIND=> : G4

Acma⇒b
]

holds from
Eq. (7).

Let G′4 be a game given in Fig. 11 (identical to G4 except that Bcma out-
puts (r′,m′) and H is not punctured). Choosing j ←$ [qqro + 1], Bcma runs
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Game: G′
4

1 Q := ∅
2 H←$ YR×M

3 S := ∅
4 for j ∈ [q′sign] do
5 r ←$ R
6 S := S ∪ {r}
7 S′ = {(r,m) : r ∈ S,m ∈ M}
8 (F, I)← Gen(1λ)

9 (r′,m′)← BSign,|H〉
cma (F)

10 return (r′,m′)
?
∈ S′

SignH(mi) for G′
4

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 until xi 6= ⊥
5 ri ←$ R
6 H := H(ri,mi) 7→yi

7 Q := Q ∪ {mi}
8 return (ri, xi)

Fig. 11: A game G′4 used in the application of Lemma 2.5

Acma playing G4. Just before Acma makes j-th query to H, Bcma measures
a query input register of Acma and outputs the measurement outcome as
(r′,m′). Since the oracles of G′4 reveal no information on S, Bcma has no infor-
mation on S; therefore, Pr

[
G′4
Bcma⇒1

]
≤ Pr[r′ ∈ S] ≤ q′sign−qsign

|R| holds. Hence,

Pr
[
FIND = > : G4

Acma⇒b
]
≤ 4(qqro+1)

q′sign−qsign
|R| holds from Lemma 2.5 and an

upper bound on Eq. (6) is 2(qqro + 2)
√

q′sign−qsign
|R| .

Game G5 (simulating the signing oracle by SampDom): The signing oracle
generates signatures by ri ←$ R and xi ← SampDom(F). The PS adversary
Dps can simulate G4/G5 as in the second row of Fig. 10. If Dps plays PS0, the
procedures of the original and simulated G4 are identical. If Dps plays PS1, he
simulates G5. Thus, we have

∣∣Pr[G4
Acma⇒1

]
− Pr

[
G5
Acma⇒1

]∣∣ ≤ AdvPS
Twpsf

(Dps).

We show that the EUF-NMA adversary Anma can simulate G5 as in the bottom
row of Fig. 10. In the simulation, Acma makes queries to H′\S ′, where H′ outputs
whatever H outputs except for {(ri,mi)}i∈[qsign]. Since m∗ 6∈ Q holds if Acma wins,
H′(r∗,m∗) = H(r∗,m∗) holds for (m∗, r∗, x∗) that Acma returns. Therefore, Anma

wins his game if Acma wins the EUF-CMA game. Hence, Anma can perfectly
simulate G5 with the same number of queries and almost the same running time
as Acma, and Pr

[
G5
Acma⇒1

]
≤ AdvEUF-NMA

HaS[Twpsf ,H](Anma) holds. We finally stress that
the number of queries Anma made to H is qqro rather than qqro + qsign since Anma

never queries to its random oracle in the simulation of the signature.
Summing up, we have Eq. (5) for EUF-NMA⇒ EUF-CMA.

INV ⇒ EUF-NMA: We use Lemma 2.2. Let S be a two-stage algorithm that
consists of S1 and S2 and runs Anma in the EUF-NMA game as follows:

1. Choose (i, b)←$ ([qqro]× {0, 1}) ∪ {(qqro + 1, 0)}.
2. Run Anma with H until i-th query.
3. Measure i-th query and output (r,m) as the output of S1.
4. Given a random θ, reprogram H′ = H(r,m)7→θ.
5. If i = qqro + 1, then go to Step 8.
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6. Answer i-th query with H (if b = 0) or H′ (if b = 1).
7. Run Anma with H′ until the end.
8. Output Anma’s output (m∗, r∗, x∗) as the output of S2.

The INV adversary Binv runs S. Since y is uniform in the INV game, Binv can
set the input for S2 as θ := y. When the predicate is F(x)

?
= H(r,m), we have

Pr
[
(r,m) = (r̂, m̂) ∧ F(x) = y : (r,m)← SAnma

1 (), (m, r, x)← SAnma
2 (y)

]
≥ 1

(2qqro + 1)2
Pr

[
(r,m) = (r̂, m̂) ∧ F(x) = H(r,m) : (m, r, x)← A|H〉nma(F)

]
,

for any (r̂, m̂) ∈ R×M from Lemma 2.2. By summing over all (r̂, m̂) ∈ R×M,

Pr
[
F(x) = y : (r,m)← SAnma

1 (), (m, r, x)← SAnma
2 (y)

]
≥ 1

(2qqro + 1)2
Pr

[
F(x) = H(r,m) : (m, r, x)← A|H〉nma(F)

]
. (8)

Notice that the probability in the RHS of Eq. (8) is the EUF-NMA advantage.
Also, AdvINV

Twpsf
(Binv) ≥ Pr

[
F(x) = y : (r,m)← SAnma

1 (), (m, r, x)← SAnma
2 (y)

]
holds

since Binv runs S. Hence, we have

AdvEUF-NMA
HaS[Twpsf ,H]

(Anma) ≤ (2qqro + 1)2AdvINV
Twpsf

(Binv). (9)

From Eqs. (5) and (9), we have Eq. (4). ut

4.2 Extension to sEUF-CMA Security

If F of the underlying TDF is injective, HaS[Twpsf ,H] is sEUF-CMA secure.

Corollary 4.1 (INV ⇒ sEUF-CMA). Suppose that F of Twpsf is an in-
jection. For any quantum sEUF-CMA adversary Acma of HaS[Twpsf ,H] issuing
at most qsign classical queries to the signing oracle and qqro (quantum) random
oracle queries to H ←$ YR×M, there exist an INV adversary Binv of Twpsf and
a PS adversary Dps of Twpsf issuing qsign sampling queries such that

AdvsEUF-CMA
HaS[Twpsf ,H]

(Acma) ≤ (2qqro + 1)2AdvINV
Twpsf

(Binv) + AdvPS
Twpsf

(Dps)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

, (10)

where q′sign is a bound on the total number of queries to H in all the signing
queries, and the running times of Binv and Dps are about that of Acma.

Proof. The sEUF-CMA game outputs 0 if (m∗, r∗, x∗) ∈ Q′. Due to the injec-
tion of F, if (m∗, r∗) = (mi, ri), it implies x∗ = xi. Therefore, we can rephrase
the condition for outputting 0 as follows: the game outputs 0 if (m∗, r∗) ∈ Q′,

23



where Q′ = {(mi, ri)}i∈[qsign]. With this reinterpretation, we demonstrate that
the same bound as Eq. (5) holds for EUF-NMA⇒ sEUF-CMA.

In Corollary 4.1, we can use the same games as defined in Theorem 4.1,
and the bound on

∣∣Pr[G0
Acma⇒1

]
− Pr

[
G5
Acma⇒1

]∣∣ remains unchanged. In the
simulation of G5 (see the bottom row of Fig. 10), Acma uses H′\S ′ reprogrammed
on {(ri,mi)}i∈[qsign] instead of the original H. By (m∗, r∗) 6∈ Q′, H′(r∗,m∗) =
H(r∗,m∗) holds and Anma can win his game if F(x∗) = H′(r∗,m∗). Therefore,
Pr

[
G5
Acma⇒1

]
≤ AdvEUF-NMA

HaS[Twpsf ,H](Anma) holds, which implies that Eq. (5) holds.

4.3 Applications of New Security Proof

By applying Theorem 4.1, we can establish security proofs for Wave [2], the
original/modified UOV signatures [38, 52], the modified HFE signature [52], and
MAYO [10]. Additionally, by utilizing Corollary 4.1, we can provide a security
proof for the modified CFS signature [20]. QR-UOV [29] and PROV [26] are
provable securire since they follow the modified UOV signature. If Rainbow [22]
makes the same modification as the modified UOV signature, the scheme can
be provably secure. Also, GeMSS [16] is provable secure since it follows the
modified HFE signature. The security proofs for these schemes, obtained by
applying Theorem 4.1 and Corollary 4.1, are provided in Appendix B.

4.4 Extenstion to Security Proof of Fiat-Shamir with Aborts

The Fiat-Shamir with aborts paradigm [41] shares a similar structure with the
probabilistic hash-and-sign with retry. Concurrent works by Devevey et al. [21]
and Barbosa et al. [3] independently demonstrate reductions from EUF-NMA
to EUF-CMA for the Fiat-Shamir with aborts. Devevey et al. rely on the strong
HVZK assumption [21, Definition 6], which allows for statistical simulation of
protocol outputs, even in cases of failure. Their proof utilizes the tight adaptive
reprogramming technique to alter the game such that the EUF-NMA adversary
can simulate. In contrast, Barbosa et al. rely on a weaker HVZK assumption
called accepting HVZK [3, Definition 1]. The accepting HVZK assumes that
protocol outputs can be statistically simulated conditioned on that the protocol
does not fail. This definition closely resembles the existence of a statistical bound
on the PS advantage (see Definition 2.7).

Given the structural similarity to the probabilistic hash-and-sign with retry,
it is natural to explore the possibility of establishing a security proof for the Fiat-
Shamir with aborts using the same techniques as presented in Theorem 4.1.
In Appendix G, we present an alternative tight reduction of EUF-NMA ⇒
EUF-CMA for the Fiat-Shamir with aborts. The security bound, assuming the
accepting HVZK, is almost identical to that of Barbosa et al. [3, Theorem 2].
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Game: STb

1 (F′, I′)← Gen′(1λ)

2 b∗ ← DNewKeyb
st ()

3 return b∗

a

NewKey0()

1 (Fj , Ij)← Gen(1λ)
2 return Fj

a

NewKey1()

1 Lj ← DL

2 Rj ← DR

3 Fj := Lj ◦ F′ ◦ Rj

4 return Fj

Fig. 12: ST (Sandwich Transformation) game

5 Security Proof of Hash-and-Sign with Prefix Hashing
in Multi-key Setting

In prefix hashing, the hash function H includes a small unpredictable portion of
the verification key. Let H : U×R×M→ Y be a hash function and HaSph[T,H,E]
be a signature scheme adopting the probabilistic hash-and-sign with retry and
prefix hashing, where E : YX → U is a deterministic function to extract a small
unpredictable part of F into a key ID u ∈ U . We assume that E(F) is uniform
over U for (F, I) ← Gen(1λ). 10 For a message m, HaSph[T,H,E].Sign repeats
r ←$ R and x ← I(H(E(F), r,m)) until x 6= ⊥ holds, and outputs (r, x). For
a verification key F, a message m, and a signature (r, x), HaSph[T,H,E].Vrfy

verifies by F(x)
?
= H(E(F), r,m).

We show that M-INV ⇒ M-EUF-CMA and M-CR ⇒ M-sEUF-CMA
hold without any security loss in the number of keys (see Lemma D.1 in Ap-
pendix D and Lemma E.1 in Appendix E). We note that there exist trivial reduc-
tions: AdvM-INV

T (Binvm) ≤ qinstAdvINV
T (Binv) and AdvM-CR

T (Bcrm) ≤ qinstAdvCR
T (Bcr),

and equality may hold in these inequalities if adversaries can target multiple in-
stances concurrently. To address this issue, we propose a generic method to show
reductions from INV or CR by assuming the hardness of the computational
problem on keys’ distributions.

Let {Fj}j∈[qkey] be verification keys generated by Gen of a TDF T. Given a
verification key F′ : X ′ → Y ′ generated by Gen′ of another TDF T′, we simulate
{Fj}j∈[qkey] by {Lj ◦ F′ ◦ Rj}j∈[qkey], where Lj : Y ′ → Y and Rj : X → X ′. Let
DL and DR be some distributions of Lj and Rj . We note that the domains and
ranges of F′ and Fj ’s may differ. We define a new game to give a bound on the
distinguishing advantage of {Fj}j∈[qkey] and {Lj ◦ F′ ◦ Rj}j∈[qkey].

Definition 5.1 (ST (Sandwich Transformation) Game). Let T and T′ be
TDFs. Using a game given in Fig. 12, we define an advantage function of
an adversary Dst playing the ST game against T and T′ as AdvST

T,T′ (Dst) =∣∣Pr[ST0
Dst⇒1

]
− Pr

[
ST1
Dst⇒1

]∣∣.
We have the following reductions assuming some conditions on Lj and Rj

(see the proofs in Appendices D and E).

10 If unpredictable parts do not exist or are computationally expensive to include in
H, a fixed nonce can be used instead (the nonce is put in the verification key).
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Lemma 5.1 (INV + ST⇒M-EUF-CMA). Let T′ be a TDF with F′ : X ′ →
Y. Suppose that Lj : Y → Y and Rj : X → X ′ are used to simulate Fj by Lj◦F′◦Rj

in the ST game, where Lj is a bijection.
For any quantum M-EUF-CMA adversary Acmam of HaSph[Twpsf ,H,E] with

qkey keys and issuing at most qsign classical queries to the signing oracle and
qqro (quantum) random oracle queries to H ←$ YU×R×M, there exist an INV
adversary Binv of T′ with qinst instances, an M-PS adversary Dpsm of Twpsf with
qkey instances and issuing qsign sampling queries, and an ST adversary Dst of
(Twpsf ,T

′) issuing qkey new key queries such that

AdvM-EUF-CMA
HaSph[Twpsf ,H,E]

(Acmam) ≤ (2qqro + 1)2AdvINV
T′ (Binv) + AdvM-PS

Twpsf
(Dpsm)

+ AdvST
Twpsf ,T′(Dst) +

3

2
q′sign

√
q′sign + qqro + 1

|R|

+ 2(qqro + 2)

√
q′sign − qsign
|R|

+
q2key
|U|

, (11)

where q′sign is a bound on the total number of queries to H in all the signing
queries, EF,I(qinst) ≤ qkey

(
|U|

|U|−qkey+1

)
holds, and the running times of Binv, Dpsm ,

and Dst are about that of Acmam .

Lemma 5.2 (CR + ST⇒M-sEUF-CMA). Let T′ be a TDF with F′ : X ′ →
Y. Suppose that Lj : Y ′ → Y and Rj : X → X ′ are used to simulate Fj by Lj◦F′◦Rj

in the ST game, where Lj and Rj are injections.
For any quantum M-sEUF-CMA adversary Acmam of HaSph[Tpsf ,H,E] with

qkey keys and issuing at most qsign classical queries to the signing oracle and qqro
(quantum) random oracle queries to H←$ YU×R×M, there exist a CR adversary
Bcr of Tpsf with qinst instances and an ST adversary Dst of (Tpsf ,T

′) issuing qkey
new key queries such that

AdvM-sEUF-CMA
HaSph[Tpsf ,H,E]

(Acmam) ≤
1

1−2−ω(log(λ))

(
AdvCR

T′ (Bcr)+AdvST
Tpsf ,T′(Dst)

)
+

q2key
|U|

,

where EF,I(qinst) ≤ qkey

(
|U|

|U|−qkey+1

)
holds and the running times of Bcr and Dst

are about that of Acmam .

In Appendix F, we applly the generic method to some frameworks of hash-
and-sign signatures in lattice-based, code-based, and MQ-based cryptography.
To bound the ST advantage, we introduce multi-instance variants of established
computational problems in code-based and MQ-based cryptography, that is, per-
mutation/linear equivalence [50] and morphism of polynomials [49].

Open problems: There are two open problems for the generic method. First,
the computational problems defined in Appendix F used for bounding the ST
advantage have not been studied deeply; therefore, future studies are necessary
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to guarantee the hardness of the problems. Second, we currently fail to use the
generic method to show the M-EUF-CMA security under adaptive corruptions
of signing keys. Solving this issue is the second open problem.
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A Issue with Security Proof of [40]

We have identified a security flaw in the proof of OW⇒ EUF-CMA presented
in Theorem 2 of the latest version of [40]. Ttdp is a trapdoor permutation with
(F, I), and HaS[Ttdp,H] is a TDP-FDH signature scheme, where F : X → Y and
H :M → Y. In the security proof, the random function H is replaced by H =
F(H̃(m)), where H̃ ←$ XM, and the signing oracle returns H̃(m). The security
proof relies on the measure-and-reprogram technique and involves a two-stage
algorithm S composed of S1 and S2, which interacts with Acma in the modified
EUF-CMA game. The algorithm S behaves as follows:

1. Choose (i, b)←$ ([q]× {0, 1}) ∪ {(q + 1, 0)}.
2. Run Acma with H̃ until i-th query.
3. Measure i-th query and output m as the output of S1.
4. Given a random θ, reprogram H̃′ = H̃m 7→θ.
5. If i = qqro + 1, then go to Step 8.
6. Answer i-th query with H̃ (if b = 0) or H̃′ (if b = 1).
7. Run Acma with H̃′ until the end.
8. Output Acma’s output (m∗, x∗) as the output of S2.
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The authors argue that the following inequality holds from Lemma 2.2.

Pr
[
x = θ : m← SAcma

1 (), (m,x)← SAcma
2 (θ)

]
≥ 1

(2q + 1)2
Pr

[
x = θ : (m,x)← A|H〉cma(F)

]
. (12)

In the original version, i is chosen from all the queries to H̃ (q = qqro + qsign),
while in the latest version, it is chosen only from queries to H̃ outside the signing
oracle (q = qqro). The latter implies that query inputs for H̃ are not measured
and H̃ is not reprogrammed in the signing oracle.

In the proof of [32, Theorem 2], the measure-and-reprogram technique relies
on the assumption that when applying 1−|m〉〈m| (where 1 is the identity oper-
ator) onto the query input register at the i-th query, the quantum states in the
following two cases are identical:

– Answers the i-th query by H̃ and responds to subsequent queries by H̃′.
– Answers the i-th query by H̃′ and responds to subsequent queries by H̃′.

If i indicates the index of queries to H̃ outside the signing oracle, either H̃ (in the
first case) or H̃′ (in the second case) is queried in the signing oracle between the
i-th and (i+1)-th queries. Due to this difference in the signing oracle’s behavior,
the quantum states are not necessarily identical. The authors claim that queries
to H̃ within the signing oracle can be disregarded based on the observation that
when Acma does not output 0, it implies that m has not been queried for the
signing oracle. However, they need to clearly demonstrate how this fact affects
the above assumption and Eq. (12).

B Security Proofs of Hash-and-sign Signatures by
Theorem 4.1 and Corollary 4.1

This section shows the applications of Theorem 4.1 and Corollary 4.1 to some
code-based and MQ-based hash-and-sign signatures.

B.1 Code-based Cryptography

Application to the Modified CSF Signature: Dallot [20] proposed a modification
to the CFS signature, that is, the adaption of the probabilistic hash-and-sign
with retry. For the details of the (modified) CFS signature, see Appendix C.2.

Let us assume that (n, k)-Goppa code over Fq can decode up to t errors. Let
Tcfs = (Gencfs,Fcfs, Icfs) be the underlying TDF of the modified CFS signature
and Xn,≤t = {x ∈ Fn

q : 0 < hw(x) ≤ t} be a domain of Fcfs, where hw(x)

denotes a Hamming weight of x. Fcfs = UH0P (Fcfs : Xn,≤t → Fn−k
q ) consists of a

parity-check matrix of an (n, k)-binary Goppa code H0 ∈ F(n−k)×n
q , an invertible

matrix U ∈ F(n−k)×(n−k)
q , and a permutation matrix P ∈ Fn×n

q . One-to-one
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correspondence exists between Xn,≤t and Ydec, where Icfs outputs ⊥ for y /∈ Ydec.
Therefore, Fcfs : Xn,≤t → Fn−k

q is an injection. Using the fact, Morozov et al.
gave a reduction of INV ⇒ sEUF-CMA in the ROM [44, Theorem 3.1]. We
show that the modified CFS signature is sEUF-CMA-secure in the QROM,
assuming that Tcfs is non-invertible.

Proposition B.1 (INV⇒ sEUF-CMA (Modified CFS Signature)). For
any quantum sEUF-CMA adversary Acma of HaS[Tcfs,H] issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H←$ YR×M, there exists an INV adversary Binv of Tcfs such that

AdvsEUF-CMA
HaS[Tcfs,H] (Acma) ≤ (2qqro + 1)2AdvINV

Tcfs
(Binv) +

3

2
q′sign

√
q′sign + qqro + 1

|R|

+ 2(qqro + 2)

√
q′sign − qsign
|R|

,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running time of Binv is about that of Acma.

Proof. When we define SampDom(Fcfs) as x ←$ Xn,≤t, Tcfs becomes WPSF.
Since Fcfs is an injection, we can apply Corollary 4.1 to the modified CFS sig-
nature. In the PS game, we show that SampDom(Fcfs) in Sample1 can perfectly
simulate xi output by Sample0. From the one-to-one correspondance between
Xn,≤t and Ydec, x ← Icfs(y) for y ←$ Ydec follows U(Xn,≤t). Also, Sample0
outputs xi after retrying yi ←$ Fn−k

q until Icfs(yi) 6= ⊥ holds; therefore yi is
uniformly chosen from Ydec. Hence, the distribution of xi output by Sample0 is
equivalent to that of xi ← SampDom(Fcfs) and, thus, AdvPS

Tcfs
(Dps) = 0 holds. ut

Application to Wave: Wave is a practical and unbroken hash-and-sign signa-
ture [2]. See Appendix C.3 for the details.

Wave adopts the probabilistic hash-and-sign (without retry) and Wave’s
TDF Twave = (Genwave,Fwave, Iwave) satisfies conditions of average trapdoor PSF
(ATPSF) [17, Definition 2] that is a special case of WPSF satisfying:
1. There is a bound δ on the average of δF,I over all (F, I) ← Gen(1λ), that is,

EF,I(δF,I) ≤ δ, where δF,I = ∆(SampDom(F), I(U(Y))) is a statistical distance
between SampDom(F) and I(y) for y ←$ Y (relaxed Condition 2).

2. I(y) outputs x satisfying F(x) = y for any y ∈ Y (Condition 3).

We show that Wave is EUF-CMA-secure using the above conditions.
Proposition B.2 (INV⇒EUF-CMA(Wave)). For any quantum EUF-CMA
adversary Acma of HaS[Twave,H] issuing at most qsign classical queries to the sign-
ing oracle and qqro (quantum) random oracle queries to H←$ YR×M, there exists
an INV adversary Binv of Twave such that

AdvEUF-CMA
HaS[Twave,H](Acma)≤(2qqro +1)2AdvINV

Twave
(Binv)+qsignδ+

3

2
qsign

√
qsign + qqro + 1

|R|
,
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where the running time of Binv is about that of Acma.

Proof. Since Twave is ATPSF [17] that is a special case of WPSF, we can ap-
ply Theorem 4.1 to Wave. Since HaS[Twave,H].Sign generates signatures with-
out retry, q′sign = qsign holds (the last term of Eq. (4) is 0). From the first
condition of ATPSF, there is a bound δ on the expectation of δF,I ; therefore,
AdvPS

Twave
(Dps) ≤ qsignδ holds from the union bound. ut

Compared with the existing reduction using Eq. (1) [17], the factor of δ is
not a square root in our reduction. Also, its security can be proved on the basis
of hardness assumption of the syndrome decoding since there is a tight reduction
from the syndrome decoding to the INV of Twave [17, Proposition 8].

B.2 Multivariate-quadratic-based Cryptography

Many schemes based on the UOV [38] and HFE [48] signatures have been pro-
posed. Sakumoto et al. proposed modifications of the schemes adopting the prob-
abilistic hash-and-sign with retry, and the modified schemes are EUF-CMA-
secure in the ROM [52]. 11 We prove that the original/modified UOV signatures
and the modified HFE signature are EUF-CMA-secure in the QROM if their
TDFs are non-invertible. Also, we prove the EUF-CMA security of MAYO [10].

Application to the Original UOV Signature: We briefly review the Original UOV
scheme. For the details, see Appendix C.4.

Let Tuov = (Genuov,Fuov, Iuov) be a TDF used in the original UOV signature.
Fuov = P◦S (Fuov : Fn

q → Fo
q) consists of an invertible affine map S : Fn

q → Fn
q and

a multivariate quadratic map P : Fn
q → Fo

q. Variables in P are called vinegar vari-
ables zv ∈ Fv

q and oil variables zo ∈ Fo
q, where n = v+ o. By design of P, P(zv, ·)

becomes a set of linear functions on oil variables zo by fixing zv. Iuov chooses
zv ←$ Fv

q and obtains zo after retrying zv until {zo : P(zv, zo) = H(r,m)} 6= ∅
holds (or P(zv, zo) is full-rank).12 See Fig. 13 for the signing algorithm and Iuov.

We show the EUF-CMA security of the original UOV signature in the
QROM if it adopts the probabilistic hash-and-sign.

Proposition B.3 (INV ⇒ EUF-CMA (Original UOV Signature)). For
any quantum EUF-CMA adversary Acma of HaS[Tuov,H] issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries

11 Chatterjee et al. [18] pointed out that the security proof of [52] is flawed slightly,
that is, ignorance of the bias of the programmed random oracle introduced by the
simulation of the signature. They resolved the issue by making the failure probability
negligible, which employs exponential q. We note that the security proof of [52]
can easily be corrected using the ROM version of our technique that is used in
Theorem 4.1.

12 The original UOV [38] does not use r, but we here employ r.
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HaS[Tuov,H].Sign(Iuov,m)

1 r ←$ R
2 x← Iuov(H(r,m))
3 return (r, x)

Iuov(y)

1 repeat
2 zv ←$ Fv

q

3 until {zo : P(zv, zo) = y} 6= ∅
4 zo ←$ {zo : P(zv, zo) = y}
5 x := S−1(zv‖zo)
6 return x

Fig. 13: Signature generation algorithm of the original UOV signature

to H←$ YR×M, there exist an INV adversary Binv of Tuov and a PS adversary
Dps of Tuov issuing qsign sampling queries such that

AdvEUF-CMA
HaS[Tuov,H](Acma) ≤ (2qqro + 1)2AdvINV

Tuov
(Binv) + AdvPS

Tuov
(Dps)

+
3

2
qsign

√
qsign + qqro + 1

|R|
,

where the running times of Binv and Dps are about that of Acma.

Proof. Defining SampDom(Fuov) as x←$ Fn
q , Tuov becomes WPSF; therefore, we

can apply Theorem 4.1. Note that HaS[Tuov,H].Sign generates signatures without
retry to take r. Thus, q′sign = qsign holds as in Proposition B.2. ut

If the PS advantage AdvPS
Tuov

(Dps) is negligible, the original UOV signature is
provable secure. However, we must consider the computational indistinguisha-
bility of x ← Iuov(y) for y ←$ Fo

q (b = 0) and x ←$ Fn
q (b = 1) in the PS

game since x output by HaS[Tuov,H].Sign is not uniform. Note that we can ap-
ply Proposition B.3 to the UOV signature scheme recently submitted to the
NIST PQC standardization [11] since it follows the original UOV signature.

Application to the Modified UOV Signature: Sakumoto et al. [52] proposed the
modified UOV signature to solve the problem of the original one, that is, the
non-uniformity of signatures. For the details, see Appendix C.4.

Let Tmuov = (Genmuov,Fmuov, Imuov) be a TDF used in the modified UOV sig-
nature (Genmuov = Genuov and Fmuov = Fuov) and Fig. 14 depicts HaS[Tmuov,H].Sign
and Imuov. The modified UOV signature retries r instead of zv and Imuov is divided
into two functions; I1muov and I2muov. I1muov chooses zv ←$ Fv

q and I2muov finds zo after
retrying r until {zo : P(zv, zo) = H(r,m)} 6= ∅ holds. Considering the difference
in the signing procedure, we show the EUF-CMA security of the modified UOV
signature in the QROM.

Proposition B.4 (INV⇒ EUF-CMA (Modified UOV Signature)). For
any quantum EUF-CMA adversary Acma of HaS[Tmuov,H] issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
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HaS[Tmuov,H].Sign(Imuov,m)

1 zv ← I1muov()
2 repeat
3 r ←$ R
4 x← I2muov(z

v,H(r,m))
5 until x 6= ⊥
6 return (r, x)

I1muov()

1 zv ←$ Fv
q

2 return zv

I2muov(z
v, y)

1 if {zo : P(zv, zo) = y} = ∅ then
2 return ⊥
3 zo ←$ {zo : P(zv, zo) = y}
4 x := S−1(zv‖zo)
5 return x

Fig. 14: Signature generation algorithm of the modified UOV signature

to H←$ YR×M, there exists an INV adversary Binv of Tmuov such that

AdvEUF-CMA
HaS[Tmuov,H](Acma) ≤ (2qqro + 1)2AdvINV

Tmuov
(Binv) +

3

2
q′sign

√
q′sign + qqro + 1

|R|

+ 2(qqro + 2)

√
q′sign − qsign
|R|

,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running time of Binv is about that of Acma.

Proof. Defining SampDom(Fmuov) as x←$ Fn
q , Tmuov becomes WPSF. Consider-

ing the signing procedure of the modified UOV signature, we modify the signing
oracles of G0-G4 and Sample0 of the PS game by adding zv ← I1muov() in the
beginning and replacing xi ← I(yi) with xi ← I2muov(z

v, yi). Then, Dps playing
the modified PS game can simulate G4 (b = 0) and G5 (b = 1) in the proof of
Theorem 4.1. Hence, we can apply Theorem 4.1 to the modified UOV signature.
In Sample0 of the PS game, xi ← I2muov(z

v, y) for zv ← I1muov() after retrying y
follows U(Fn

q ) form [52, Theorem 1] (we show the proof sketch in Appendix C.4);
therefore, xi ← SampDom(Fmuov) in Sample1 is indistinguishable form xi output
by Sample0. Hence, AdvPS

Tmuov
(Dps) = 0 holds. ut

We can apply Proposition B.4 to Rainbow [22], QR-UOV [29], and PROV [26]
if these schemes make the same modification as the modified UOV signature.

Application to the Modified HFE Signature: The modified HFE signature pro-
posed by Sakumoto et al. [52] is designed to be EUF-CMA secure in the ROM.
For the details, see Appendix C.5.

Let Tmhfe = (Genmhfe,Fmhfe, Imhfe) be a TDF used in the modified HFE scheme.
We show that the modified HFE signature is EUF-CMA secure.

Proposition B.5 (INV ⇒ EUF-CMA (Modified HFE Signature)). For
any quantum EUF-CMA adversary Acma of HaS[Tmhfe,H] issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
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to H←$ YR×M, there exists an INV adversary Binv of Tmhfe such that

AdvEUF-CMA
HaS[Tmhfe,H](Acma) ≤ (2qqro + 1)2AdvINV

Tmhfe
(Binv) +

3

2
q′sign

√
q′sign + qqro + 1

|R|

+ 2(qqro + 2)

√
q′sign − qsign
|R|

,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running time of Binv is about that of Acma.

Proof. Since Fmhfe has a domain Fn
q , we can define SampDom(Fmhfe) as x←$ Fn

q .
Then, Tmhfe becomes WPSF and we can apply Theorem 4.1 to the modified
HFE scheme. The authors of [52] showed that x ← Imhfe(y) after retrying y
is uniformly distributed over Fn

q (we show the proof sketch in Appendix C.5).
Therefore, in the PS game, xi ← SampDom(Fmhfe) in Sample1 is indistingushable
from xi output by Sample0, and thus, AdvPS

Tmhfe
(Dps) = 0 holds. ut

We can apply Proposition B.5 to GeMSS [16] since GeMSS takes the same mod-
ification as the modified HFE signature.

Application to MAYO: MAYO, proposed by Beullens [10], is a signature scheme
that adopts the probabilistic hash-and-sign and its TDF is based on UOV. For
the details, see Appendix C.6.

Let Tmayo = (Genmayo,Fmayo, Imayo) be a TDF used in MAYO. Imayo finds a
preimage x = xv + xo of y for a multivariate quadratic map P∗ : Fkn

q → Fm
q .

Once xv is uniformly chosen from (Fn−o
q × {0o})k ⊂ Fkn

q , where 0o denotes a
vector of o 0s, P∗(xv+xo) = y becomes a linear system of equations for xo. Imayo

outputs a preimage after retrying xv until P∗(xv + xo) has full rank. MAYO
is EUF-CMA-secure in the ROM [10, Theorem 6] assuming that it follows no
leakage parameter sets [10, Table 1]. For the parameter sets, x is uniformly
distributed over Fkn

q if Imayo outputs x without retaking xv. Let τ be a bound on
the probability that P∗(xv + xo) does not have full rank for a random xv. The
no-leakage parameter sets satisfy τ ≤ 2−65. We show the EUF-CMA security
of MAYO following the no leakage parameter sets in the QROM. 13

Proposition B.6 (INV⇒EUF-CMA(MAYO)). For any quantum EUF-CMA
adversary Acma of HaS[Tmayo,H] issuing at most qsign classical queries to the sign-
ing oracle and qqro (quantum) random oracle queries to H←$ YR×M, there exists
an INV adversary Binv of Tmayo such that

AdvEUF-CMA
HaS[Tmayo,H](Acma) ≤

(2qqro + 1)2

1− qsignτ
AdvINV

Tmayo
(Binv) +

3

2
qsign

√
qsign + qqro + 1

|R|
,

where the running time of Binv is about that of Acma.
13 For the other parameter sets, Proposition B.3 applies to MAYO.
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Proof. We apply Theorem 4.1 with defining an intermediate game G′1. G′1 is
the same as G1 except that G′1 aborts and outputs 0 whenever Imayo retakes xv.
The probability that G′1 does not abort while qsign signing queries is at least
1 − qsignτ . Therefore, Pr

[
G1
Acma⇒1

]
≤ 1

1−qsignτ Pr
[
G′1
Acma⇒1

]
holds. We define

SampDom(Fmayo) as x←$ Fkn
q . The adversary of G5 perfectly simulates the sign-

ing oracle in the case that G′1 does not abort by using his oracle since x← Imayo(y)
follows U(Fkn

q ) if Imayo never retakes xv. Therefore, the view of the adversary is
identical in the simulated one with the case that G′1 does not abort, and thus
Pr

[
G′1
Acma⇒1

]
≤ Pr

[
G5
Acma⇒1

]
holds. Since the EUF-NMA adversary can sim-

ulate G5, Pr
[
G5
Acma⇒1

]
≤ AdvEUF-NMA

HaS[Tmayo,H](Anma) holds, which yields the claimed
bound. ut

C Review of Hash-and-sign Signatures

C.1 GPV Framework [30]
Let Tgpv = (Gengpv,Fgpv, Igpv) be a TDF used in the GPV framework. Gengpv
outputs a full-rank matrix A ∈ Zn×m

q generating a q-ary lattice Λ as Fgpv and a
matrix B generating Λ⊥q that is orthogonal to Λ modulo q as Igpv. The function
Fgpv computes y = xAT for a short vector x ∈ {x ∈ Zm : ‖x‖ ≤ s

√
m}, where s

is a Gaussian parameter. The trapdoor Igpv outputs a short vector x for y ∈ Fn
q

using B. Tgpv is a collision-resistant PSF (see Definition 2.6) whose security is
based on the hardness of the short integer solution (SIS) problem [30, Theorem
4.9].

C.2 Modified CFS Signature [20]
Let Tcfs = (Gencfs,Fcfs, Icfs) be a TDF used in the modified CFS signature. We
assume that (n, k)-Goppa code over Fq can decode up to t errors. Xn,≤t = {x ∈
Fn
q : 0 < hw(x) ≤ t} denotes a set of vectors x ∈ Fn

q whose Hamming weight,
denoted by hw(x), is at most t. Gencfs generates a parity-check matrix H0 ∈
F(n−k)×n
q of an (n, k)-binary Goppa code, an invertible matrix U ∈ F(n−k)×(n−k)

q ,
and a permutation matrix P ∈ Fn×n

q , and outputs H = UH0P ∈ F(n−k)×n
q as

Fcfs and (U,H0, P ) as Icfs. On input x ∈ Xn,≤t, the function Fcfs computes a
syndrome y := xHT ∈ Fn−k

q . On input y ∈ Fn−k
q , the trapdoor Icfs composed

of (U,H0, P ) computes an error vector as follows: It decodes y(U−1)T using
H0 to obtain x′, and outputs an error vector x = x′(P−1)T ; if y(U−1)T is not
decodable, it outputs ⊥. Since the (n, k)-Goppa code over Fq can decode up to
t errors, which is our assumption, there is a one-to-one correspondence between
Xn,≤t and Ydec = {y ∈ Fn−k

q : y(U−1)T is decodable} (decodable syndromes).
Therefore, Fcfs is injective and Icfs(y) outputs a preimage for y ←$ Fn−k

q with
probability |Ydec|

|Fn−k
q |

=
|Xn,≤t|
|Fn−k

q |
. As shown in [19], |Xn,≤t|

|Fn−k
q |

≈ 1
t! holds.

We show that a preimage x output by HaS[Tcfs,H].Sign follows U(Xn,≤t).
First, x← Icfs(y) for y ←$ Ydec follows U(Xn,≤t) from the one-to-one correspon-
dance between Xn,≤t and Ydec. Next, HaS[Tcfs,H].Sign outputs x after retrying

38



y ←$ Fn−k
q until Icfs(y) 6= ⊥ holds; therefore y follows U(Ydec). Hence, x output

by HaS[Tcfs,H].Sign follows U(Xn,≤t).

C.3 Wave [2]

Let Twave = (Genwave,Fwave, Iwave) be a TDF used in Wave and H ∈ F(n−k)×n
q be

a parity-check matrix for an (n, k)-code over Fq. Xn,t = {x ∈ Fn
q : hw(x) = t}

denotes a set of vectors x ∈ Fn
q whose Hamming weight is exactly t, where t is

chosen such that Fwave : Xn,t → Fn−k
q is a surjection. Genwave outputs a parity-

check matrix H ∈ F(n−k)×n
q for an (n, k)-code over Fq as Fwave and parity-check

matrices of generalized (U,U+V )-codes as Iwave. On input x ∈ Xn,t, the function
Fwave computes a syndrome y := xHT ∈ Fn−k

q . On input y ∈ Fn−k
q , the trapdoor

Iwave outputs an element of Xn,t. Since a description of Iwave is out of the scope
of this paper, we omit the description.

Twave satisfies the conditions of ATPSF [17, Definition 2] and we can take a
statistical bound on the distinguishing advantage of honestly generated signa-
tures and simulated ones.

C.4 Original/Modified UOV Signature [38, 52]

Let Tuov = (Genuov,Fuov, Iuov) (resp., Tmuov = (Genmuov,Fmuov, Imuov)) be a TDF
used in the original (resp., modified) UOV signatures. Note that Genuov =
Genmuov and Fuov = Fmuov. Genuov generates an invertible affine map S : Fn

q → Fn
q

and a multivariate quadratic map P : Fn
q → Fo

q defined as P = (p1, p2, . . . , po),
where

pk(z
v, zo) =

∑
i∈[v+o]

∑
j∈[v]

αk
i,jzizj ,

and outputs P◦S as Fuov and (P,S) as Iuov. Variables in P are called vinegar vari-
ables zv = (z1, z2, . . . , zv) ∈ Fv

q and oil variables zo = (zv+1, zv+2, . . . , zv+o) ∈
Fo
q, where n = v + o. On input y ∈ Fo

q, Iuov chooses zv ←$ Fv
q and out-

puts x = S−1(zv‖zo) by solving a linear equation system P(zv, ·) = y. There
is possibly no solution. In the original UOV signature, Iuov retries zv until
{zo : P(zv, zo) = y} 6= ∅ holds or P(zv, ·) has full rank [11] (see Fig. 13).

Since x ← Iuov(y) for y ←$ Fo
q is not uniformly distributed, it is hard to

simulate a signature without using the trapdoor; therefore, the computational
indistinguishability of x ← Iuov(y) for y ←$ Fo

q and x ←$ Fn
q , that is, the PS

advantage, appears in the security bound (see Proposition B.3).

Modified UOV signature: To solve the above problem, Sakumoto et al. [52] pro-
posed the modified UOV signature. Instead of retaking zv, the modified UOV
signature retakes the randomness r for the hash function. The signing proce-
dure of the modified UOV signature (see Fig. 14) is different from the others.
HaS[Tmuov,H] using I1muov and I2muov generates a signature as follows: I1muov chooses
vinegar variables zv uniformly at random. Fixing zv, P becomes a set of linear
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functions on oil variables zo. I2muov finds a preimage of P ◦ S by solving a linear
equation system and taking the inverse of S. If there is no solution, I2muov outputs
⊥ and HaS[Tmuov,H] retakes r and executes I2muov again without retaking zv.

Sakumoto et al. showed that preimages generated by HaS[Tmuov,H].Sign are
uniformly distributed over Fn

q . For completeness, we give the proof sketch.
In the beginning, zv is uniformly chosen, that is, zv follows U(Fv

q). By fixing
zv, P(zv, ·) becomes a set of linear functions containing o× o matrix whose rank
is determined by choice of zv if solutions exist. When the rank is i, P(zv, ·)
becomes a qo−i-to-1 mapping for each element in the range Fo

q. There are only
qi possible outputs of H satisfying {zo : P(zv, zo) = H(r,m)} 6= ∅. When H is a
random function, one of the qi outputs is uniformly chosen after some retries.
Once the output is fixed, one of qo−i solutions is uniformly chosen. In this way,
zo follows U(Fo

q) and thus x = S−1(zv‖zo) follows U(Fn
q ).

In Proposition B.4, we cannot take q′sign as in the other schemes since the
probability that Imuov(z

v, y) outputs ⊥ varies depending on zv. We set q′sign =
qretryqsign, where qretry is a bound on the number of queries to H in each signing
query. Let Xi be a random variable for the number of queries to H in i-th queries
and X =

∑qsign
i=1 Xi. We have

Pr[Xi > qretry] =

o∑
j=1

pj(1− qj−o)qretry ,

where pj is a probability that P(zv, ·) has rank j for zv ←$ Fv
q . It is known

that a random o × o matrix over Fq has rank o − a for a ∈ {0, 1, . . . , o} with a
probability [7]:

1

qa2 ·
∏o

k=1(1− q−k)
∏o

k=a+1(1− q−k)∏o−a
k=1(1− q−k)

∏a
k=1(1− q−k)

. (13)

When we assume that P(zv, ·) becomes a random o × o matrix for any zv,
pj follows Eq. (13). Since X > q′sign implies ∃i,Xi > qretry, Pr[X > q′sign] ≤
qsign Pr[Xi > qretry] holds. To determine an appropriate value for q′sign = qretryqsign
in the security bound, we need to take qretry such that qsign Pr[Xi > qretry] is neg-
ligible for the security parameter.

C.5 Modified HFE Signature [52]

Let Tmhfe = (Genmhfe,Fmhfe, Imhfe) be a TDF used in the modified HFE signature
and φ : K → Fn

q be a standard linear isomorphism φ(a0+a1x+· · ·+an−1x
n−1) =

(a0, a1, . . . , an−1), where K = Fq[x]/g(x) for an irreducible polynomial g(x) of
degree n. Genmhfe generates invertible affine maps (S,S′) over Fn

q and a central
map P : K → K defined as

P(X) =
∑

(i,j)∈[n]×[n]
s.t. qi−1+qj−1<d

αi,jX
qi−1+qj−1

+
∑
i∈[n]

s.t. qi−1<d

βiX
qi−1

,
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Imhfe(y)

1 y′ ←$ Fm
q

2 z := φ−1(S′−1(y‖y′))
3 i←$ [N ]

4 if 1 ≤ i ≤
∣∣{z′ : P(z′) = z}

∣∣ then
5 return ⊥
6 z′ ←$ {z′ : P(z′) = z}
7 x := S−1(φ(z′))
8 return x

Fig. 15: Trapdoor of the modified HFE signature

where αi,j , βi ∈ K, and outputs S′ ◦φ ◦P ◦φ−1 ◦S as Fmhfe and (P,S,S′) as Imhfe.
On input y ∈ Fn−m

q , Imhfe computes a preimage x ∈ Fn
q as in Fig. 15.

As in the modified UOV signature, the authors of [52] showed that preimages
generated by HaS[Tmhfe,H].Sign are uniformly distributed over Fn

q . We give the
proof sketch.

When H is a random function, each z ∈ Fn
q is chosen with probability 1

qn .
With probability |{z

′:P(z′)=z}|
N , Imhfe chooses z′ out of |{z′ : P(z′) = z}| elements,

where N is set as d in general. Therefore, for any x ∈ Fn
q , HaS[Tmhfe,H].Sign

outputs x with probability

1

qn
· |{z

′ : P(z′) = z}|
N

· 1

|{z′ : P(z′) = z}|
=

1

qnN
.

Hence, preimages output by HaS[Tmhfe,H].Sign are uniformly distributed over
Fn
q . Also, Imhfe does not output ⊥ with probability

∑
x∈Fn

q

1
qnN = 1

N .

C.6 MAYO [10]

Let Tmayo = (Genmayo,Fmayo, Imayo) be a TDF used in MAYO. Genmayo generates a
multivariate quadratic map P : Fn

q → Fm
q with a subspace O ⊂ Fn

q of dimension
o called oil space such that P(x) = 0 for any x ∈ O, and outputs P as Fmayo and
a basis of O as Imayo. 14 Let P(x) = (p1(x), . . . , pm(x)), where pi(x) : Fn

q → Fq is
a multivariate quadratic polynomial. The polar form of p(x) is defined as

p′(x, y) := p(x+ y)− p(x)− p(y),

which is bilinear. We define the polar form of multivariate quadratic map P(x)
to be P′(x, y) = (p′1(x, y), . . . , p

′
m(x, y)).

Let I = {(i, j) ∈ [k] × [k] : i < j} and {Eij}(i,j)∈I be a set of invertible
matrices such that E = {Ei,j} is nonsingular. We set {Eij}(i,j)∈I as a system
parameter. On input x = (x1, . . . , xk) ∈ Fkn

q , Fmayo computes y = P∗(x) =∑
i∈[k] Ei,iP(xi) +

∑
(i,j)∈I Ei,jP

′(xi, xj). In MAYO, P∗ : Fkn
q → Fm

q is conjec-
tured to be non-invertible. Therefore, the INV game of Tmayo is defined as:
14 The notation of UOV in MAYO follows [9] which is a generalization of the traditional

description of Appendix C.4.
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Imayo(y)

1 P∗(x1, . . . , xk) :=
∑

i∈[k] Ei,iP(xi) +
∑

(i,j)∈I Ei,jP
′(xi, xj)

2 repeat
3 xv ←$ (Fn−m

q × 0m)k

4 until P∗(xv + xo) has full rank
5 xo ← {xo : P∗(xv + xo) = y}
6 x = xv + xo

7 return x

Fig. 16: Trapdoor of MAYO

given (P, {Eij}(i,j)∈I , y), find x∗ = (x∗1, . . . , x
∗
k) satisfying

∑
i∈[k] Ei,iP(x

∗
i ) +∑

(i,j)∈I Ei,jP
′(x∗i , x

∗
j ) [10, Definition 4]. On input y ∈ Fm

q , Imayo computes x as
in Fig. 16. Let x, xo and xv be vectors over Fkn

q . Imayo finds a preimage x = xv+xo

of y for P∗. In the beginning, xv is uniformly chosen from (Fn−o
q ×{0o})k ⊂ Fkn

q ,
where 0o denotes a vector of o 0s. Fixing xv, P∗(xv + xo) = y becomes a linear
system of equations for xo. If P∗(xv + xo) has full rank, Imayo outputs xv + xo

by solving P∗(xv + xo) = y. Otherwise, Imayo retakes xv. The probability that
P∗(xv+xo) does not have full rank is bounded by τ = qk−n+o+qm−ko

q−1 [10, Lemma
2]. For no leakage parameter sets [10, Table 1], τ ≤ 2−65 holds.

A preimage x← Imayo(y) is uniform over Fkn
q if Imayo does not retake xv in the

signature generation [10, Lemma 7]. Since this property is necessary for applying
Theorem 4.1, we show the proof sketch.

First, xv is uniformly chosen from (Fn−o
q ×{0o})k if it is not retaken. Next, xo

is uniformly chosen from Ok since P∗(xv + xo) has full rank. Hence, the output
x = xv + xo follows U(Fkn

q ) since (Fn−o
q × {0o}) +O = Fn

q holds.

D Proof of Lemma 5.1

First, we extend Theorem 4.1 to prove the following lemma:

Lemma D.1 (M-INV ⇒M-EUF-CMA). For any quantum M-EUF-CMA
adversary Acmam of HaSph[Twpsf ,H,E] with qkey keys and issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H←$ YU×R×M, there exist an M-INV Binvm of Twpsf with qinst instances and
an M-PS adversary Dpsm of Twpsf with qkey instances and issuing qsign sampling
queries such that

AdvM-EUF-CMA
HaSph[Twpsf ,H,E]

(Acmam) ≤ (2qqro + 1)2AdvM-INV
Twpsf

(Binvm) + AdvM-PS
Twpsf

(Dpsm)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

+
q2key
|U|

, (14)

where q′sign is a bound on the total number of queries to H in all the signing
queries, EF,I(qinst) ≤ qkey

(
|U|

|U|−qkey+1

)
holds, and the running times of Binvm and

Dpsm are about that of Acmam .
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Game: M-EUF-NMA
1 for j ∈ [qkey] do
2 (vkj , skj)← Sig.KeyGen(1λ)
3 (j∗,m∗, σ∗)← Anmam({vkj}j∈[qkey])

4 return Sig.Verify(vkj∗ ,m∗, σ∗)

Fig. 17: M-EUF-NMA (Multi-key EUF-NMA) game

Proof. We prove two reductions; M-EUF-NMA⇒M-EUF-CMA and M-INV⇒
M-EUF-CMA, where M-EUF-NMA stands for multi-key EUF-NMA. We
define an advantage function of the M-EUF-NMA game given in Fig. 17 as
AdvM-EUF-NMA

Sig (Anmam) = Pr
[
M-EUF-NMAAnmam⇒1

]
. Without loss of generality,

we assume that adversaries make random oracle queries while fixing key ID u to
be one of the qkey verification keys.

M-EUF-NMA⇒M-EUF-CMA:
Game G0 (M-EUF-CMA game): This is the original M-EUF-CMA game and
Pr

[
G0
Acmam⇒1

]
= AdvM-EUF-CMA

HaSph[Twpsf ,H,E]
(Acmam) holds.

Game G1 (adaptive reprogramming and puncturing of H): In the same man-
ner as G4 of Theorem 4.1, the challenger chooses r ←$ R for q′sign − qsign
times and keeps them in a sequence S, punctures H by S ′ = {u ∈ U , r ∈
S,m ∈ M}, and outputs 0 if FIND = >. Also, the signing oracle repro-
grams H := H(E(Fj),ri,mi) 7→yi after repeating ri ← R and yi ←$ Y until Ij(yi)
does not output ⊥. By analyzing the number of queries to H, the number
of times H is reprogrammed, and the number of punctured points of H, we
can derive the bounds on the advantage gaps of G0/G1, G1/G2, and G3/G4 in
Theorem 4.1. Since these numbers are the same in both the single-key and
multi-key settings, we can apply the same bound as G0/G4 in Theorem 4.1.
Thus, we have∣∣Pr[G0

Acmam⇒1
]
− Pr

[
G1
Acmam⇒1

]∣∣
≤ 3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

.

Game G2 (simulating the signing oracle by SampDom): The signing oracle
reprograms H := H(E(Fj),ri,mi) 7→Fj(xi) for ri ← R and xi ← SampDom(Fj),
and outputs (ri, xi). Since the M-PS adversary can simulate G1/G2, we have∣∣Pr[G1

Acmam⇒1
]
− Pr

[
G2
Acmam⇒1

]∣∣ ≤ AdvM-PS
Twpsf

(Dpsm).
Since the M-EUF-NMA adversary Anmam can simulate G2 by SampDom,

Pr
[
G2
Acmam⇒1

]
≤ AdvM-EUF-NMA

HaSph[Twpsf ,H,E]
(Anmam) holds.

As above, we have

AdvM-EUF-CMA
HaSph[Twpsf ,H,E]

(Acmam) ≤ AdvM-EUF-NMA
HaSph[Twpsf ,H,E]

(Anmam) + AdvM-PS
Twpsf

(Dpsm)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

. (15)
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M-INV⇒M-EUF-NMA:

Game G3 (M-EUF-NMA game): This is the original M-EUF-NMA game and
Pr

[
G3
Anmam⇒1

]
= AdvM-EUF-NMA

HaSph[Twpsf ,H,E](Anmam) holds.
Game G4 (abort with the collision on key IDs): When a collision on the key

IDs is detected, G4 aborts and outputs 0. From the collision probability of
uniformly chosen key IDs,

∣∣Pr[G3
Anmam⇒1

]
− Pr

[
G4
Anmam⇒1

]∣∣ ≤ q2key
|U| .

We use Lemma 2.2 to show a reduction from the M-INV of Twpsf . The M-INV
adversary Binvm given {(Fj , yj)}j∈[qinst] runs a two-stage algorithm S that runs
Anmam playing G4. In the second stage, the input θ of S2 is chosen from {yj}j∈[qinst].
To simulate G4 without collision on key IDs, Binvm needs to prepare qkey verifi-
cation keys with different key IDs. The expected number of instances E(qinst)
needed for obtaining qkey different key IDs is

qkey∑
i=1

|U|
|U| − i+ 1

≤ qkey

(
|U|

|U| − qkey + 1

)
.

A two-stage algorithm S composed of S1 and S2 operates as follows:

1. Choose (i, b)←$ ([qqro]× {0, 1}) ∪ {(qqro + 1, 0)}.
2. Run Anmam with H until i-th query.
3. Measure i-th query and output (u, r,m) as the output of S1.
4. Given a random θ, reprogram H′ = H(u,r,m)7→θ.
5. If i = qqro + 1, then go to Step 8.
6. Answer i-th query with H (if b = 0) or H′ (if b = 1).
7. Run Anmam with H′ until the end.
8. Output Anmam ’s output (j∗,m∗, r∗, x∗) as the output of S2.

Since there is no collision on key IDs, Binvm can understand the target key of the
observed random oracle query. If u = E(Fj), Binvm sets θ = yj , reprograms H as
H′ := H(u,r,m) 7→yj , and uses Fj(x)

?
=H(u, r,m) as the predicate. From Lemma 2.2,

we have the following for any ĵ ∈ [qkey]:

Pr
[
j = ĵ ∧ Fj(x) = yj : (E(Fj), r,m)← SA1 () , (j,m, r, x)← SA2 (yj)

]
≥ 1

(2qqro+1)2
Pr

[
j = ĵ ∧ Fj(x)=H

(
E(Fj), r,m

)
: (j,m, r, x)←A|H〉nmam

(
{Fj}j∈[qkey]

)]
By summing over all ĵ ∈ [qkey], we have AdvM-INV

Twpsf
(Binvm) ≥ 1

(2qqro+1)2 Pr
[
G4
Anmam⇒1

]
.

We obtain Eq. (14) by combining the two reductions. ut

Then, we extend the proof of M-INV ⇒ M-EUF-NMA in Lemma D.1 by
introducing a new game, G5. In G5, the verification keys {Fj}j∈[qkey] are replaced
with {Lj ◦F′◦Rj}, where F′ : X ′ → Y is generated by Gen′. The ST adversary Dst

can simulate G4 and G5 by setting the verification keys based on the outcomes of
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querying NewKeyb. When Dst plays ST0, we simulate G4; otherwise, we simulate
G5. This leads to

∣∣Pr[G4
Anmam⇒1

]
− Pr

[
G5
Anmam⇒1

]∣∣ ≤ AdvST
Twpsf ,T′(Dst).

To apply Lemma 2.2, we assume that Binv employs a two-stage algorithm
S within G5. As with Lemma D.1, Binv possesses knowledge of the target key
for the observed query. When the observed value targets the j-th verification
key, Binv sets Lj(y) as the input to S2. Because Lj is bijective, Lj(y) for y ←$

Y follows a uniform distribution. When Anmam submits x for Fj , Binv returns
Rj(x). If Lj(F(Rj(x))) = Lj(y) holds, since Lj is a bijection, we conclude that
F(Rj(x)) = y. In summary, Binv can win the INV game by submitting Rj(x),
yielding Pr

[
G5
Anmam⇒1

]
≤ (2qqro + 1)2AdvINV

T′ (Binv). Therefore, we have:

AdvM-EUF-NMA
HaSph[Twpsf ,H,E]

(Acmam) ≤ (2qqro + 1)2AdvM-INV
Twpsf

(Binvm) +
q2key
|U|

. (16)

By combining Eq. (15) and Eq. (16), we arrive at Eq. (11). ut

E Proof of Lemma 5.2

First, we show a reduction M-CR ⇒ M-sEUF-CMA extending the single-key
version of [14, Theorem 2].

Lemma E.1 (M-CR ⇒ M-EUF-CMA). For any quantum M-sEUF-CMA
adversary Acmam of HaSph[Twpsf ,H,E] with qkey keys and issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H←$ YU×R×M, there exist an M-CR Bcrm of Twpsf with qinst instances such
that

AdvM-sEUF-CMA
HaS[Tpsf ,H]

(Acma) ≤
1

1− 2−ω(log(λ))
AdvM-CR

Tpsf
(Bcrm) +

q2key
|U|

, (17)

where EF,I(qinst) ≤ qkey

(
|U|

|U|−qkey+1

)
holds and the running times of Bcrm and Dst

are about that of Acmam .

Proof. We define a sequence of games as follows:

Game G0 (M-sEUF-CMA game): This is the original M-sEUF-CMA game
and Pr

[
G0
Acmam⇒1

]
= AdvM-sEUF-CMA

HaSph[Tpsf ,H,E](Acmam) holds.
Game G1 (abort with collision on key IDs): When a collision of the key IDs is de-

tected, G1 aborts and outputs 0. We have
∣∣Pr[G0

Anmam⇒1
]
− Pr

[
G1
Anmam⇒1

]∣∣ ≤
q2key
|U| .

Game G2 (replacing H with H′): This game replaces H with H′ satisfying

H′
(
E
(
Fj

)
, r,m

)
= Fj

(
DetSampDom

(
Fj , H̃

(
E
(
Fj

)
, r,m

)))
,

where DetSampDom is a deterministic function of SampDom and H̃ : U×R×
M→W is another random function to output randomness for DetSampDom.
From Condition 1 of PSF, Fj(x) is uniform for x← SampDom(Fj). Since H

and H′ follow the same distribution, Pr
[
G1
Anmam⇒1

]
= Pr

[
G2
Anmam⇒1

]
holds.
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The M-CR adversary Bcrm can simulate G2. As in Lemma D.1, the expected num-
ber of instances is at most qkey

(
|U|

|U|−qkey+1

)
over all (F, I)← Gen(1λ). From Con-

ditions 2 and 3, the M-CR adversary Bcrm can simulate the signing oracle. When
responding to the i-th signing query mi for the j-th verification key Fj , Bcrm re-
turns (ri, xi), where ri ←$ R and xi := DetSampDom

(
Fj , H̃

(
E
(
Fj

)
, ri,mi

))
. If

the M-sEUF-CMA adversaryAcmam wins the game by submitting (j∗,m∗, r∗, x∗),
Fj∗(x

∗) = Fj∗(x
′) holds, where x′ = DetSampDom(Fj∗ , H̃(E(Fj∗), r

∗,m∗))).
From Condition 4, x∗ 6= x′ holds with probability 1 − 2−ω(log(λ)), and we
thus have Eq. (17). ut

Then, we show a reduction of CR⇒M-CR. We define a sequence of games
as follows:

Game G0 (M-CR game): This is the original M-CR game and Pr
[
G0
Bcrm⇒1

]
=

AdvM-CR
Tpsf

(Bcrm) holds.
Game G1 (replacing verification keys): We replace Fj with Lj ◦F′◦Rj . Since the

ST adversary can simulate G0/G1, we have
∣∣Pr[G0

Bcrm⇒1
]
− Pr

[
G1
Bcrm⇒1

]∣∣ ≤
AdvST

Tpsf ,T′(Dst).

The CR adversary Bcr simulates G1 as follows: Given F′, Bcr gives {Lj ◦ F′ ◦
Rj}j∈[qkey] to Bcrm . When Bcrm submits (j∗, x∗1, x∗2), Bcr outputs (Rj∗(x

∗
1),Rj∗(x

∗
2)).

Suppose that Lj∗(F(Rj∗(x
∗
1))) = Lj∗(F(Rj∗(x

∗
2))) holds. Since Lj is injective,

F(Rj∗(x
∗
1)) = F(Rj∗(x

∗
2)) holds and x∗1 6= x∗2 implies Rj∗(x

∗
1) 6= Rj∗(x

∗
2). There-

fore, Bcr can win the CR game and can perfectly simulate G4. Therefore, we
have

AdvM-CR
Tpsf

(Bcrm) ≤ AdvCR
T′ (Bcr) + AdvST

Tpsf ,T′(Dst). (18)

Combining Eq. (18) with Eq. (17), we obtain the security bound of Lemma 5.2.
ut

F Applications of Generic Method in Multi-key Setting

In this section, we explore the applications of the generic method presented
in Lemma 5.2 for lattice-based cryptography and Lemma 5.1 for code-based
and MQ-based cryptography. Rather than focusing on specific schemes such
as FALCON [51], our paper applies the generic method to frameworks of the
schemes, such as the GPV framework [30]. We leave the applicability to the
specific schemes for future works.

Lattice-based Cryptography: We apply the generic method to the GPV framework
(see Appendix C.1) [30]. For Lemma 5.2, we design simulation of verification keys
by {LjARj}j∈[qkey] where Lj is an n× n invertible matrix over Fq and Rj is an
m×m signed permutation matrix. Note that we require the orthogonality of Rj

for ‖x‖ = ‖xRT
j ‖ and any integer orthogonal matrices are signed permutation

matrices whose non-zero entries are ±1. Then, the ST advantage is bounded by
an advantage of the following problem.
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Definition F.1 (Multi-instance Signed Permutation Equivalence).
Given matrices {Gj}j∈[qinst] (Gj ∈ Fn×m

q ), do there exist a matrix G ∈ Fn×m
q ,

n × n invertible matrices {Lj}j∈[qinst] over Fq, and m × m signed permutation
matrices {Rj}j∈[qinst] over Fq such that Gj = LjGRj?

This problem is a variant of the well-studied problem called code equivalence
in code-based cryptography [50]. The code equivalence is defined as: Given a
pair of matrices (G,G′), do there exist an invertible matrix L and an isometric
matrix R such that G′ = LGR? There are variations of this problem in terms
of R. When R is a permutation matrix (resp., generalized permutation matrix),
this problem is called permutation equivalence (resp., linear equivalence)[54].

In lattice-based cryptography, there is a closely related problem called lat-
tice isomorphism, that is, given a pair of lattice bases (B,B′), do there exist a
unimodular matrix L and an orthogonal matrix R such that B′ = LBR? The
conditions on L and R are required to keep the geometry of lattices; however, it
is not necessary for our purpose.

Any variants of the code equivalence listed above are in the complexity class
coAM and not conjectured to be NP-hard [50]. Also, there are some algorithms
for the permutation equivalence and linear equivalence. In the general case,
Leon’s algorithm solves the problems by enumerating all the codewords with
Hamming weight w for some w [39], and Beullens [8] recently improved this al-
gorithm. The complexity of this approach grows exponentially with w, and we
cannot solve the problems with low w [4]. There is a special case where we can
easily solve the permutation equivalence with the Support Splitting Algorithm
(SSA) proposed by Sendrier [53]. The SSA runs in O(m3 +m2qh ln(m)), where
h is a dimension of the hull space of a code, that is, the intersection between the
code and its dual code [4]. Therefore, the SSA can efficiently solve the permu-
tation equivalence if the dimension of the hull space is low. Note that the SSA
does not apply to the case with an empty hull.

Code-based Cryptography: We apply the generic method to a TDF using a
parity-check matrix H ∈ Fn×m

q as in the modified CFS signature and Wave
(see Appendices C.2 and C.3). For Lemma 5.1, we simulate verification keys by
{LjHRj}j∈[qkey], where Lj is an m ×m invertible matrix over Fq and Rj is an
n × n generalized permutation matrix over Fq. Note that generalized permuta-
tion matrices preserve the Hamming weights of vectors. Then, the ST advantage
is bounded by an advantage of the following problem.

Definition F.2 (Multi-instance Linear Equivalence). Given matrices
{Gj}j∈[qinst] (Gj ∈ Fn×m

q ), do there exist a matrix G ∈ Fn×m
q , n × n invert-

ible matrices {Lj}j∈[qinst] over Fq, and m ×m generalized permutation matrices
{Rj}j∈[qinst] over Fq such that Gj = LjGRj?

As mentioned in the previous paragraph, some algorithms exist for the (single-
instance) linear equivalence.

Multivariate-quadratic-based Cryptography: We assume a TDF of the original/-
modified UOV signature or the modified HFE signature. Let F : Fn′

q → Fm
q and
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Fj : Fn
q → Fm

q be a multivariate quadratic map (n′ ≥ n). For Lemma 5.1, we
simulate verification keys by {Lj ◦ F ◦ Rj}j∈[qkey], where Lj is an invertible affine
map over Fq and Rj is an affine map over Fq. Then, the ST advantage is bounded
by an advantage of the following game.

Definition F.3 (Multi-instance Decision Morphism of Polynomials).
Given multivariate quadratic maps {Fj}j∈[qinst], do there exist a multivariate
quadratic map F and affine maps {Lj}j∈[qinst] and {Rj}j∈[qinst] over Fq such that
Fj = Lj ◦ F ◦ Rj?

The (single-instance) decision morphism of polynomials, that is, given a pair of
multivariate quadratic maps (F,F′), do there exist affine maps L and R such
that F′ = L ◦ F ◦ R?, is proven NP-complete [49]. If L and R are invertible affine
maps, this problem is called decision isomorphism of polynomials that is in the
complexity class coAM and not conjectured to be NP-hard [49]. For signature
schemes with some structures in their verification key, only invertible R may
preserve the structures, e.g., only block-anti-circulant matrices can maintain a
structure of BAC-UOV [56]; therefore, we need to use invertible R as in the
decision isomorphism of polynomials for such signature schemes.

A search version of the isomorphism of polynomials has been well-studied.
Bouillaguet, Fouque, and Véber [15] studied and surveyed the algorithms for
the isomorphism of polynomials. Their algorithms run in O(qn) · poly(n, q),
O(q2n/3) · poly(n, q), or O(qn/2) · poly(n, q) assuming that n = m. The Gröbner-
based algorithm proposed by Faugère and Perret [27] can efficiently solve random
instances of an inhomogeneous version of the problem. We also note that if L
and R are very structured, then the problems become easier (see, e.g., [35]).

G Security Proof of Fiat-Shamir with Aborts

We consider a signature scheme adopting the Fiat-Shamir with aborts paradigm.
We define a 3-round public-coin identification scheme with aborts.

Definition G.1 (3-round Public-coin Identification Scheme with Aborts).
A 3-round public-coin identification scheme with aborts, denoted as ID, consists
of four algorithms:

Gen(1λ): This algorithm takes the security parameter 1λ as input and outputs
a public key pk and a secret key sk.

P1(sk): This algorithm takes a secret key sk as input and outputs a commitment
w ∈ W and a state st.

P2(sk, w, c, st): This algorithm takes a secret key sk, a commitment w ∈ W, a
randomly chosen challenge c ←$ C, and a state st as input and outputs a
response z ∈ Z or outputs ⊥.

V(pk, w, c, z): This algorithm takes a public key pk, a commitment w ∈ W, a
challenge c ∈ C, and a response z ∈ Z (a transcript) as inputs and outputs
> (acceptance) or ⊥ (rejection).
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Game: A-HVZKb

1 (pk, sk)← Gen(1λ)

2 b∗ ← DSampleb
zk (pk)

3 return b∗

Sample0()

1 repeat
2 (wi, sti)← P1(sk)
3 ci ←$ C
4 zi ← P2(sk, wi, ci, sti)
5 until zi 6= ⊥
6 return (wi, ci, zi)

Sample1()

1 (wi, ci, zi)← Sim(pk)
2 return (wi, ci, zi)

Fig. 18: Accepting HVZK Game

FSwA[ID,H].KeyGen(1λ)

1 (pk, sk)← Gen(1λ)
2 return (pk, sk)

FSwA[ID,H].Sign(sk,m)

1 repeat
2 (w, st)← P1(sk)
3 c := H(w,m)
4 z ← P2(sk, w, c, st)
5 until z 6= ⊥
6 return (w, z)

FSwA[ID,H].V(pk,m, (w, z))

1 c := H(w,m)
2 return V(pk, w, c, z)

Fig. 19: Algorithms of the Fiat-Shamir with aborts

Let Sim denote a simulator for ID, which takes a public key pk as its input
and yields a transcript in the form of (w, c, z) as its output. To establish the
indistinguishability between a transcript generated honestly and one generated
through simulation, we introduce an accepting HVZK game.

Definition G.2 (Accepting HVZK (A-HVZK) Game). Let ID be a 3-
round public-coin identification scheme with aborts. Using a game defined in
Fig. 18, we define an advantage function of an adversary playing the A-HVZK
game against ID as AdvA-HVZK

ID (Dzk)=
∣∣Pr[A-HVZK0

Dzk⇒1
]
−Pr

[
A-HVZK1

Dzk⇒1
]∣∣.

We can construct a signature scheme, denoted as FSwA[ID,H], from ID as
depicted in Fig. 19. The security reduction for this scheme can be provided using
the same techniques as presented in Theorem 4.1.

Theorem G.1 (EUF-NMA ⇒ EUF-CMA). For any quantum EUF-CMA
adversary Acma of FSwA[ID,H] issuing at most qsign classical queries to the signing
oracle and qqro (quantum) random oracle queries to H ←$ CW×M, there exist
an EUF-NMA adversary Anma of FSwA[ID,H] issuing qqro (quantum) random
oracle queries to H and an A-HVZK adversary Dzk of ID issuing qsign sampling
queries such that

AdvEUF-CMA
FSwA[ID,H](Acma) ≤ AdvEUF-NMA

FSwA[ID,H](Anma) + AdvA-HVZK
ID (Dzk)

+
3

2
q′sign

√
(q′sign + qqro + 1) ε+ 4(qqro + 2)

√
(q′sign − qsign) ε, (19)

where q′sign is a bound on the total number of queries to H in all the signing
queries, maxŵ∈W Pr[w = ŵ : (w, st)← P1(sk)] ≤ ε holds except with negligible
probability, and the running times of Anma and Dzk are about that of Acma.
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Game: G0-G1

1 Q := ∅
2 H←$ CW×M

3 (pk, sk)← Gen(1λ)

4 (m∗, w∗, z∗)← ASign,|H〉
cma (pk)

5 if m∗ ∈ Q then
6 return 0
7 c∗ := H(w∗,m∗)
8 return V(pk, w∗, c∗, z∗)

SignH(mi) for G0

1 repeat
2 (wi, sti)←$ P1(sk)
3 ci := H(wi,mi)
4 zi←P2(sk, wi, ci, sti)
5 until zi 6= ⊥
6 Q := Q ∪ {mi}
7 return (wi, zi)

SignH(mi) for G1

1 repeat
2 (wi, sti)←$ P1(sk)
3 ci ←$ C
4 zi←P2(sk, wi, ci, sti)

5 H := H(wi,mi) 7→ci

6 until zi 6= ⊥
7 Q := Q ∪ {mi}
8 return (wi, zi)

Game: G2

1 Q := ∅
2 H←$ CW×M

3 (pk, sk)← Gen(1λ)
4 for i ∈ [qsign] do
5 Si := ∅
6 repeat
7 (w, st)← P1(sk)
8 c← C
9 z ← P2(sk, w, c, st)

10 if z = ⊥ then
11 Si := Si∪{(w, c, z)}
12 else
13 (wi, ci, zi) :=(w, c, z)
14 until z 6= ⊥
15 (m∗, w∗, x∗)←ASign,|H〉

cma (pk)
16 if m∗ ∈ Q then
17 return 0
18 c∗ := H(w∗,m∗)
19 return V(pk, w∗, c∗, z∗)

Game: G3-G4

1 Q := ∅
2 H←$ CW×M

3 (pk, sk)← Gen(1λ)
4 S = ∅
5 for i ∈ [qsign] do
6 Si := ∅
7 repeat
8 (w, st)← P1(sk)
9 c← C

10 z ← P2(sk, w, c, st)
11 if z = ⊥ then
12 Si := Si∪{(w, c, z)}
13 S := S ∪ {w}
14 else
15 (wi, ci, zi) :=(w, c, z)
16 until z 6= ⊥
17 S′ = {(w,m) : w ∈ S,m ∈ M}
18 FIND = ⊥
19 (m∗, w∗, x∗)← ASign,|H\S′〉

cma (pk)
20 if m∗ ∈ Q∨FIND = > then
21 return 0
22 c∗ := H(w∗,m∗)
23 return V(pk, w∗, c∗, z∗)

SignH(mi) for G2-G3

1 for (w, c, z) ∈ Si do
2 H := H(w,mi)7→c

3 H := H(wi,mi) 7→ci

4 Q := Q ∪ {mi}
5 return (wi, zi)

SignH(mi) for G4

1 H := H(wi,mi) 7→ci

2 Q := Q ∪ {mi}
3 return (wi, zi)

Game: G5

1 Q := ∅
2 H←$ CW×M

3 (pk, sk)← Gen(1λ)
4 for i ∈ [qsign] do
5 repeat
6 (w, st)← P1(sk)
7 c← C
8 z ← P2(sk, w, c, st)
9 until z 6= ⊥

10 (wi, ci, zi) :=(w, c, z)

11 (m∗, w∗, x∗)← ASign,|H〉
cma (pk)

12 if m∗ ∈ Q then
13 return 0
14 c∗ := H(w∗,m∗)
15 return V(pk, w∗, c∗, z∗)

Game: G6

1 Q := ∅
2 H←$ CW×M

3 (pk, sk)← Gen(1λ)
4 for i ∈ [qsign] do
5 (wi, ci, zi)← Sim(pk)

6 (m∗, w∗, x∗)← ASign,|H〉
cma (pk)

7 if m∗ ∈ Q then
8 return 0
9 c∗ := H(w∗,m∗)

10 return V(pk, w∗, c∗, z∗)

SignH(mi) for G5-G6

1 H := H(wi,mi) 7→ci

2 Q := Q ∪ {mi}
3 return (wi, zi)

Fig. 20: Games for EUF-NMA⇒ EUF-CMA for Fiat-Shamir with aborts.

Proof. As in Theorem 4.1, we can set q′sign = c
ρ qsign for some constant c >

1, where ρ = Pr[z 6= ⊥ : (w, st)← P1(sk), c←$ C, z ← P2(sk, w, c, st)]. To show
Eq. (19), we use a sequence of games defined in Fig. 20.
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Game G0 (EUF-CMA game): This is the original EUF-CMA game and
Pr

[
G0
Acma⇒1

]
= AdvEUF-CMA

FSwA[ID,H](Acma) holds.
Game G1 (adaptive reprogramming of H): The signing oracle SignH adap-

tively reprograms H. This reprogramming occurs as H := H(wi,mi)7→ci , where
(wi, sti)← P1(sk) and ci ← C, and this process repeats until P2(sk, wi, ci, sti)
no longer outputs ⊥. The AR adversary Dar can simulate the games G0 and
G1. When Dar playes AR0, it simulates G0; othereise, it simulates G1. Accord-
ing to Lemma 2.1, the difference between Pr

[
G0
Acma⇒1

]
and Pr

[
G1
Acma⇒1

]
can be bounded as follows:∣∣Pr[G0

Acma⇒1
]
− Pr

[
G1
Acma⇒1

]∣∣ ≤ AdvAR
H (Dar) ≤

3

2
q′sign

√
(q′sign + qqro + 1)ε.

Game G2 (pre-generating transcripts): At the start, the challenger pre-generates
qsign accepting transcripts for ID along with non-accepting ones. An accepting
transcript is denoted as (wi, ci, zi), and non-accepting transcripts are stored
in Si. During the i-th query, the signing oracle reprograms H as H(w,mi)7→c for
(w, c, z) ∈ Si as well as for (w, c, z) = (wi, ci, zi). This pre-generation of tran-
scripts is feasible since they are chosen independently of adaptively queried
messages mi from Acma in G1, ensuring that Pr

[
G1
Acma⇒1

]
= Pr

[
G2
Acma⇒1

]
.

Game G3 (puncturing H): Let S = {w : (w, ∗, ∗) ∈
⋃

i Si} and S ′ = {(w,m) : w ∈
S,m ∈ M}. We define a punctured oracle H\S ′ and an event FIND as in
Definition 2.10. In G3, instead of querying H, Acma makes queries to H\S ′,
and G3 outputs 0 if FIND = >. To apply Lemma 2.4, we use the nota-
tion of Lemma 2.4. Assume that Pr

[
G2
Acma⇒1

]
= Pr

[
1← ASign,|H〉

cma (F)
]
. Since

G3 differs from G2 in two aspects: the use of H\S ′ and the output of 0

when FIND = >, Pr
[
G3
Acma⇒1

]
= Pr

[
1← ASign,

∣∣H\S′〉
cma (F) ∧ FIND = ⊥

]
and

Pr
[
FIND = > : G3

Acma⇒b
]
= Pr

[
FIND = > : b← ASign,

∣∣H\S′〉
cma (F)

]
hold. Ap-

plying Lemma 2.4,∣∣Pr[G2
Acma⇒1

]
− Pr

[
G3
Acma⇒1

]∣∣ ≤√
(qqro + 2)Pr

[
FIND = > : G3

Acma⇒b
]
.

(20)

We will show a bound on Eq. (20) after defining G4.
Game G4 (reprogramming only for successful trials): The signing oracle repro-

grams H := H(wi,mi)7→ci only for accepting transcripts. It’s important to note
that Acma makes queries to the punctured oracle H\S ′. If FIND = ⊥, then
Acma’s queries never contain any (w,m) ∈ S ′, and as a result, Acma cannot
obtain H(w,m) for (w,m) ∈ S ′. Therefore, if FIND = ⊥, Acma cannot distin-
guish whether H is reprogrammed at (w,m) ∈ S ′ in G3 or not in G4. From
Lemma 2.3, we have

Pr
[
FIND = ⊥ : G3

Acma⇒b
]
= Pr

[
FIND = ⊥ : G4

Acma⇒b
]
. (21)

Especially, if G3 or G4 outputs 1, then FIND must be ⊥. Therefore, we con-
clude that Pr

[
G3
Acma⇒1

]
= Pr

[
G4
Acma⇒1

]
. Also, Pr

[
FIND=> : G3

Acma⇒b
]
=

Pr
[
FIND=> : G4

Acma⇒b
]

holds from Eq. (21).
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We show a bound on Eq. (20). Let G′4 be a modified G4 played by Bcma.
Bcma outputs (w′,m′) and wins the game if (w′,m′) ∈ S ′. Choosing j ←$

[qqro + 1], Bcma runs Acma playing G4. Just before Acma makes j-th query to
H, Bcma measures a query input register of Acma and outputs the measure-
ment outcome as (w′,m′). The oracles of G′4 reveal no information on S and
S ′. If we assume that maxŵ∈W Pr[w = ŵ : (w, st)← P1(sk)] ≤ ε holds, then
Pr

[
G′4
Bcma⇒1

]
≤ Pr[w′ ∈ S] ≤ (q′sign−qsign)ε holds. From Lemma 2.5, we have

Pr
[
FIND = > : G4

Acma⇒b
]
≤ 4(qqro + 1)(q′sign − qsign)ε.

Hence, an upper bound on Eq. (20) is 2(qqro + 2)
√
(q′sign − qsign)ε.

Game G5 (Canceling the punctuation on H): The challenger no longer punctures
H, and we remove the unused Si, S, and S ′ from the game. By applying
Lemma 2.4, we obtain the same bound as Eq. (20):∣∣Pr[G4

Acma⇒1
]
− Pr

[
G5
Acma⇒1

]∣∣ ≤ 2(qqro + 2)
√
(q′sign − qsign)ε.

Game G6 (simulating the signing oracle by Sim): The challenger generates
(wi, ci, zi)← Sim(pk) for i ∈ [qsign]. The A-HVZK adversary Dzk can simulate
G5 and G6. If Dzk plays A-HVZK0, the procedures of the original and simulated
G5 are identical. If Dzk plays A-HVZK1, he obviously simulates G6. Therefore,
we have: ∣∣Pr[G5

Acma⇒1
]
− Pr

[
G6
Acma⇒1

]∣∣ ≤ AdvA-HVZK
Twpsf

(Dps).

Since G6 can be simulated without using sk, the EUF-NMA adversary Anma can
simulate G6. Summing up, we have Eq. (19) for EUF-NMA⇒ EUF-CMA. ut

Notice that Theorem G.1 does not yield a worse bound than [3, Theorem 2],
except for a factor of 2 in the last term of Eq. (19).
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