
1

A Fast Hash Family for Memory Integrity
Qiming Li, Sampo Sovio

Abstract—We give a first construction of an ϵ-balanced hash
family based on linear transformations of vectors in F2, where
ϵ = 1/(2n − 1) for n-bit hash values, regardless of the message
size. The parameter n is also the bit length of the input blocks
and the internal state, and can be chosen arbitrarily without
design changes, This hash family is fast, easily parallelized, and
requires no initial setup. A secure message authentication code
can be obtained by combining the hash family with a pseudo
random function. These features make the hash family attractive
for memory integrity protection, while allowing generic use cases.

Index Terms—ϵ-balanced hash family, message authentication
code, memory integrity

I. INTRODUCTION

HASH functions and Message Authentication Codes
(MAC) play important roles in information integrity

protection. A MAC is an algorithm that computes an authen-
tication tag from an input message using a secret key, and the
tag is then stored or transmitted together with the message. The
integrity of the message can later be verified by computing a
tag again using the same key and checking if it matches the
previous tag that has been stored or transmitted. A MAC is
usually said to be secure if it is computationally infeasible
for an adversary, with varying assumptions on computing
capabilities, such a limited number of accesses to an oracle,
to compute an unseen message and a tag that allow successful
verification without knowing the key in advance.

Krawczyk [5] showed that a MAC can be constructed by
first applying a traditional hash function on the input messages
and encrypting the result. The resulting MAC is secure if the
encryption scheme is secure and the hash function is randomly
chosen from an ϵ-balanced hash family, where the probability
of a randomly chosen hash function maps any given message
to a hash value is bounded by ϵ. Other schemes such as UMAC
[3] may require that the hash family is ϵ-universal, where the
probability that a randomly chosen hash function gives the
same hash value for two distinct messages is no more than
ϵ. The notion of ϵ-universal hash families is generalized from
Universal2 hash families (Carter and Wegman [4]), where a
hash family is called Universal2 if it is 2−n-universal for n-bit
hash values.

The hash families used in [5], [6] are based on linear
transformations on the input message, including division by a
polynomial or multiplication by a Toeplitz matrix. As observed
by Shoup [9], the bound ϵ under such schemes increases
linearly with the number of blocks in the input message. In
other words, the advantages of an adversary in breaking the
MAC increases proportionally as the message size grows. A

Authors are with Finland R&D Center, Huawei Technologies Oy (Finland)
Co. Ltd., Helsinki, Finland.

similar effect can be observed for other polynomial division
based schemes such as GCM encryption [7].

A theoretical nested MAC (NMAC) construction was later
proposed by Bellare, Canetti and Krawczyk [2], where a tag
is computed by first applying a hash family then a pseudo
random function (PRF). The popular HMAC scheme is a
concrete realization where both the inner hash family and the
outer PRF are based on cryptographic one-way hash functions
such as SHA-1. It was shown [2], [1] that the NMAC/HMAC
scheme is secure if the PRF is secure and the inner hash family
is computational ϵ-universal. The advantage of an adversary is
similarly amplified proportionally with the message size, as in
the case with hash families with information-theoretic bounds.

It is worth to note that such proportional amplification of
the adversarial advantage can be avoided by using a Universal2
hash family. However, known Universal2 hash families require
a hash key whose length is proportional to the message length.

On the other hand, we observe that protection of the in-
tegrity of the content stored in computer memory, such as CPU
instructions and dynamic data, poses different challenges com-
pared with generic use cases such as file integrity protection.
First, the performance of such schemes is a major concern.
As a result, it is desirable to have a block size that matches
the native memory word size, such as 32 bits or 64 bits in
modern CPU architectures, to avoid buffering and padding.
Furthermore, while the requirement on the hash collision
probability can be somewhat relaxed in practical memory
protection use cases (say, 2−30 is considered sufficient), it is
desirable to have a bound that is independent of the message
size or the number of messages to be hashed using a single
key. In addition, such a hash family should allow efficient
hardware implementations and easy integration into existing
memory and CPU architectures, where parallelization and
pipelines may be helpful. Last but not the least, it is desirable
to configure the hash family such that the security level evolves
naturally as the computer architecture advances, instead of
requiring redesigns for newer CPUs or larger memory sizes.

Therefore, it is interesting to investigate if it is possible
to construct an ϵ-balanced hash family for an ϵ as close to
the optimal 2−n as possible, where the key size and the ϵ
bound does not depend on the input size, since such a hash
family would imply a practical and secure MAC, and perhaps
many other hash-based security schemes, where the adversarial
advantage does not increase proportionally with the input size.

Contributions: In this paper we propose an ϵ-balanced
(and ϵ-universal) hash family for ϵ = 1/(2n − 1) with the
following characteristics.

1) Flexible block size n to match the target computer
architecture.

2) The parameter n also defines the key size (n2 bits), the
bound ϵ, and the internal state size (n bits), regardless

2

of message size.
3) Fast software/hardware implementations with only log-

ical x-or operations.
4) Easily parallelized and integrated to pipelines.
These features makes the proposed hash family attractive for

constructing MAC schemes using known composition methods
such as NMAC and UMAC for memory integrity protection,
while allowing generic use cases.

II. NOTATIONS

Capital letters in bold font (such as K) denote matrices,
and small letters in bold font (such as m) denote vectors.
Small letters in italic font (such as n) denote scalars. Matrices
enclosed by square brackets, such as [M1 M2], refer to an
augmented matrix formed by horizontally joining the columns
of M1 and M2, assuming the number of rows in M1 and M2

are the same. Matrices (or vectors) enclosed by parenthesis,
such as (v1,v2), refer to an augmented matrix or vector
formed by vertically joining the rows of v1 and v2. We use
vertical bars, such as |v|, to denote the length of the vector
v (i.e., the number of coordinates), and vertical bars with a
subscript |v|n to mean the length of the vector in number of
blocks of n coordinates.

We denote by B the set of Boolean values, i.e., B = {0, 1},
and by Bn the vector space of Boolean vectors of n coordi-
nates, where n is referred to as the block size. A data block of
n bits is interpreted as a vector in Bn. Similarly, we denote by
Brn the vector space representation of r data blocks, and Bn∗

the set of vectors in all vector spaces Brn for integer r ≥ 1,
which forms the message space of the proposed hash family.

We denote by N the set of n-by-n nonsingular (invertible)
Boolean matrices, which is the key space for our schemes.

III. A HASH FAMILY

A. A Basic Construction

For n ≥ 1 and a constant nonzero initial state vector s0 ∈ Bn,
we define the hash family H : N × Bn∗ → Bn such that, for
any message m ∈ Bn∗, let r = |m|n be the number of blocks
in m, the hash value of m is given by

H(K,m) = [Kr Kr−1 . . . K]m+Krs0

where the multiplications and additions are done over F2. We
can write m = (m1,m2, . . . ,mr) as a representation in n-
bit blocks. Expanding the left multiplication of the augmented
key matrix [Kr Kr−1 . . . K] with the message m, and re-
organizing the terms, the hash family is equivalently

H(K,m) = [Kr Kr−1 . . . K]m+Krs0
= Krm1 +Kr−1m2 + · · ·+Kmr +Krs0
= [Kr Kr−1 . . . K](m1 + s0,m2, . . . ,mr)

Furthermore, let m′
i = (m1,m2, . . . ,mi) be the sub-vector

composed from m1 to mi for 1 ≤ i ≤ r. We note that the
hash family can also be defined recursively as H(K,m′

i) =
K(H(K,m′

i−1) +mi) for i ≥ 1, and H(K,m0) = s0.
In other words, to compute the hash, we start from a state

vector s that is initially s0, and for each message block mi,
we add mi to s and left multiply the result by K to yield the

next state. The hash value is simply the final state vector after
all message blocks are processed. This gives the pseudo-code
in Algorithm 1 for computing H .

Algorithm 1 Basic Hash
1: procedure HASH(s0, K, m)
2: s← s0
3: for i = 1, 2, . . . , r do
4: s← K(s+mi)
5: end for
6: return s
7: end procedure

Since the arithmetic is in F2, the addition in line 4 is simply
an x-or between the two vectors, and the matrix multiplication
is similarly done by at most n − 1 x-or of the n-bit column
vectors of K.

a) Main Result: The hash family H as defined above is
ϵ-balanced and ϵ-universal for ϵ = 1/(2n − 1), regardless of
the message size. Detailed analysis is given in Section IV.

B. Parallelization

An advantage of the proposed hash family is that the com-
putation of messages with multiple blocks can be easily
parallelized.

Recall that |v|n refers to the number of n-bit blocks in
vector v. For an r-block messages m (i.e., |m|n = r), we
can choose a parameter p ≤ r and break m into p chunks of
at most t blocks each. We write m = (c1, c2, . . . , cp), where
|ci|n = t for 2 ≤ i ≤ p and |c1|n = r − (p − 1)t. In other
words, all chunks except the first have the same size.

Then, we can process the chunks in parallel, and combine
the results to get the final hash. For example, to compute the
hash value of m given initial state s0 and randomly chosen
key K, a bottom up approach (Algorithm 2) groups every t
blocks into a chunk, computes the hash value of all the chunks
in parallel, and compute the hash value of the resulting data
(line 11) again using the same bottom up approach, until the
number of chunks is 1.

Algorithm 2 Parallel Hash (Bottom-Up)
1: procedure PHASH1(s0, t, K, m)
2: p← ⌈|m|n/t⌉ ▷ p chunks of at most t blocks each
3: if p = 1 then
4: return HASH(s0,K,m)
5: end if
6: (c1, c2, . . . , cp)←m, where |ci|n = t for 2 ≤ i ≤ p.
7: d1 ← HASH(s0,K, c1)
8: for i = 2, 3, . . . , p do
9: di ← HASH(0,K, ci)

}
in parallel

10: end for
11: return PHASH1(0, t,Kt, (d1,d2, . . . ,dp−1)) + dp

12: end procedure

The correctness of Algorithm 2 follows from the identity
below.

3

HASH(s0,K,m)
= [Kr Kr−1 · · · K](m1 + s0,m2, · · · ,mr)
= [Kr · · · K(p−1)t+1](m1 + s0, · · · ,mr−(p−1)t) +

[K(p−1)t · · · K(p−2)t+1](mr−(p−1)t+1, · · · ,mr−(p−2)t)
+ · · · +
[K2t · · · Kt+1](mr−2t+1, · · · ,mr−t) +
[Kt · · · K](mr−t+1, · · · ,mr)

= K(p−1)t[Kr−(p−1)t · · · K]c1 +K(p−2)t[Kt · · · K]c2
+ · · · +
Kt[Kt · · · K]cp−1 + [Kt · · · K]cp

= K(p−1)td1 +K(p−2)td2 + · · · +Ktdp−1 + dp

= [K(p−1)t · · · Kt](d1,d2, · · · ,dp−1) + dp

= HASH(0,Kt, (d1,d2, · · · ,dp−1)) + dp

On the other hand, we can also follow a top-down approach
and repeatedly break a long message into p chunks until the
message is no more than p0 blocks for some threshold p0 ≥
p. This gives the top-down version of the parallel hashing
(Algorithm 3).

Algorithm 3 Parallel Hash (Top-Down)
1: procedure PHASH2(s0, p0, p, K, m)
2: if |m|n ≤ p0 then
3: return HASH(s0,K,m)
4: end if
5: t← ⌈|m|n/p⌉ ▷ p chunks of at most t blocks each
6: (c1, c2, . . . , cp)←m, where |ci|n = t for 2 ≤ i ≤ p.
7: d1 ← PHASH2(s0, p0, p,K, c1)
8: for i = 2, 3, . . . , p do
9: di ← PHASH2(0, p0, p,K, ci)

}
in parallel

10: end for
11: return PHASH2(0, p0, p,Kt, (d1,d2, . . . ,dp−1)) +

dp

12: end procedure

Note that there can be many variations of the above men-
tioned algorithms. For example, instead of using fixed param-
eters such as p, t and p0, such parameters can be dynamically
chosen according to the circumstances. Furthermore, in some
cases it may be beneficial to apply a hybrid approach, where
intermediate hash values can be computed from bottom-up
while the entire data message is broken down and processed
in a top-down manner.

IV. ANALYSIS

As shown in [2], [3], a secure MAC can be constructed from
an ϵ-balanced (ϵ-universal) hash family and a pseudo random
function (PRF). To analyze the security of such a secure MAC
using the hash family H as the hash family, it suffices to show
that H is ϵ-balanced and ϵ-universal.

More precisely, for some message space M and key space
K, we have

Definition 1. A hash family H : K×M→ Bn is ϵ-balanced
if for any x ∈ M and y ∈ Bn, Pr[H(K,x) = y] ≤ ϵ,
where K is uniformly chosen from K at random. Similarly, H

is ϵ-universal if for any distinct x,w ∈ M, Pr[H(K,x) =
H(K,w)] ≤ ϵ,

Essentially we follow the definitions in [4], [5], [6] with
unsubstantial adaptations. In particular, we note that if a hash
family is ϵ-balanced by Definition 1, then it is also ϵ-balanced
by their definitions. Also note that two messages x and w are
considered distinct if either their lengths differ, or x−w ̸= 0.
Furthermore, in some definitions found in prevoius work, the
input of the hash family is limited to nonzero values. Such an
assumption is useful in analysis and zero values are avoided
by having nonzero initial values or paddings in practice.

As a preparatory step, we observe that, the inner product of
any nonzero block with a uniformly random block is uniformly
random.

Proposition 1. For n > 0, any nonzero x ∈ Bn and b ∈ B,
the number of vectors k ∈ Bn such that k · x = b is 2n−1.

Proof. Let k = (k1, . . . , kn), x = (x1, . . . , xn) and let i be
an index such that xi = 1 (1 ≤ i ≤ n). Now the condition
k · x = b is equivalent to ki = b +

∑n
j=1,j ̸=i kjxj . There

are 2n−1 choices for the values of kj , where 1 ≤ j ≤ n and
j ̸= i. For each choice, kj is completely determined. Hence,
the total number of choices for k is 2n−1 as claimed.

Next we consider the likelihood that a matrix K ∈ N
happens to map one vector in Bn to another, where the vectors
are not both zero.

Lemma 1. For n > 0 and all x,y ∈ Bn, where x and y
are not both zero, the number of K ∈ N such that Kx = y
is at most N/(2n − 1), where N = #N is the total number
of nonsingular Boolean matrices. That is, Pr[Kx = y] ≤
1/(2n − 1) when K is uniformly chosen from N at random.

Proof. First, it is easy to see that if one of x and y is zero, the
other must be nonzero and there is no K ∈ N that satisfies
Kx = y. Hence, we only need to consider the cases where
both x and y are nonzero.

We write x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn),
where xi, yi ∈ B. Without loss of generality, assume that y1 =
1, since otherwise we can simply permute the rows of K and y
simultaneously such that y1 = 1, without affecting the number
of possible candidates for K.

From Proposition 1, the number of vectors k ∈ Bn such that
k ·x = y1 is 2n−1. Since y1 = 1, such vectors do not include
the zero vector and therefore are all possible candidates for
the first row k1 of K.

Now consider kj the j-th row of K, where 2 ≤ j ≤ n.
Similar to the first row, the number of vectors k such that
k · x = yj is 2n−1. However, for K to be nonsingular, it is
required that kj is not a linear combination of all the previous
rows k1, . . . ,kj−1.

Let c = (c1, c2, . . . , cj−1) be the coefficient vector of a
linear combination of the first j−1 rows, and clearly there are
2j−1 such linear combinations. Let c̃ = c1k1+ · · ·+cj−1kj−1

be the result of such a linear combination.
We note that exactly half of the choices of c result in c̃ that

satisfies c̃ · x = yj . To see this, we observe that for any such

4

c̃, we have

c̃ · x = c1k1x+ · · ·+ cj−1kj−1x = c1y1 + · · ·+ cj−1yj−1

Since y1 = 1, from Proposition 1 we know that the number
of choices of c such that c̃ · x = yj is 2j−2.

Therefore, the number of candidate vectors for kj such that
kj is not a linear combination of k1, . . . ,kj−1 and that kjx =
yj is 2n−1 − 2j−2.

Let Nk be the total number of candidates for K such that
Kx = y, we have Nk = 2n−1(2n−1−1)(2n−1−2) · · · (2n−1−
2n−2). Considering that the total number of n-by-n nonsingu-
lar Boolean matrices is N = (2n−1)(2n−2) · · · (2n−2n−1),
we have Nk = N/(2n − 1) as claimed.

Now we consider hash families Hr : N×Brn → Bn defined
below where the input messages are of the same lengths (r
blocks). We observe that Hr is linear in the sense that for any
two messages x1,x2 ∈ Brn, it holds for any key K ∈ N and
scalar c that Hr(K,x1) + Hr(K,x2) = Hr(K, (x1 + x2)),
and Hr(K, cx) = cHr(K,x).

Lemma 2. For n, r > 0, and ϵ = 1/(2n− 1), the hash family
Hr : N×Brn → Bn where Hr(K,m) = [Kr Kr−1 · · · K]m
is ϵ-balanced and ϵ-universal.

Proof. Let x,w ∈ Brn be distinct messages such that x ̸= 0,
and y ∈ Bn be any hash value. We write x = (x′

r−1,xr),
where xr is the last n-bit block of x, and x′

r−1 is the prefix
of x that contains all but the last block, We similarly write
w = (w′

r−1,wr).
For r = 1, it follows from Lemma 1 directly that

Pr[H1(K,x) = y] = Pr[Kx = y] ≤ 1/(2n − 1). Hence,
H1 is ϵ-balanced. Also, H1 is trivially ϵ-universal, since no K
satisfies Kx = Kw for distinct x and w.

Now, assuming that Hr−1 is ϵ-balanced and ϵ-universal for
r ≥ 2, we show that the bounds also apply to Hr. Since Hr

is linear, we have

Hr(K,x) = Hr(K,w)
⇐⇒ K(Hr−1(K,x′

r−1) + xr)
= K(Hr−1(K,w′

r−1) +wr)
⇐⇒ Hr−1(K,x′

r−1) + xr = Hr−1(K,w′
r−1) +wr

⇐⇒ Hr−1(K, (x′
r−1 −w′

r−1)) = wr − xr

Now, x′
r−1 − w′

r−1 ̸= 0, since otherwise xr − wr =
Hr−1(K, (x′

r−1 − w′
r−1)) = 0, implying that x = w,

contradicting with the assumption that x and w are distinct.
By the induction hypothesis, we have

Pr[Hr(K,x) = Hr(K,w)]
= Pr[Hr−1(K, (x′

r−1 −w′
r−1)) = wr − xr]

≤ 1/(2n − 1)
(1)

Hence, Hr is ϵ-universal.
Furthermore, for any y ∈ Bn, we can construct w by choos-

ing any w′
r−1 ̸= x′

r−1, and wr = K−1y+Hr−1(K,w′
r−1). In

this case, we have Hr(K,w) = y and w ̸= x. From Equation
1, we have

Pr[Hr(K,x) = y] = Pr[Hr(K,x) = Hr(K,w)] ≤ 1/(2n−1)

Hence, Hr is also ϵ-balanced.

Now we show how to make use of a nonzero initial state
s0 to handle messages with only zero blocks and messages
with different lengths, thereby completing the analysis. Es-
sentially, hashing a message with a nonzero s0 is equivalent
to prepending the nonzero block K−1s0.

Theorem 1. For n > 0, ϵ = 1/(2n−1), and nonzero s0 ∈ Bn,
the hash family H : N × Bn∗ → Bn, defined as H(K,m) =
[Kr Kr−1 . . . K]m+Krs0, where r = |m|n, is ϵ-balanced.
That is, for any x ∈ Bn∗ and y ∈ Bn, Pr[H(K,x) = y] ≤ ϵ.
Furthermore, H is ϵ-universal. That is, for any x,w ∈ Bn∗, if
|x| ≠ |w| or x−w ̸= 0, then Pr[H(K,x) = H(K,w)] ≤ ϵ.
Both probabilities are taken over random K uniformly chosen
from N .

Proof. Since K is invertible, v = K−1s0 is a nonzero block.
For any r-block message x, let x̂ = (v,x) be the (r+1)-block
vector obtained by prepending v to x, we have

H(K,x) = [Kr Kr−1 . . . K]x+Kr+1v
= [Kr+1 Kr Kr−1 . . . K](v,x)
= Hr+1(K, x̂)

where Hr+1 is as defined in Lemma 2.
Hence, for any y ∈ Bn, since x̂ ̸= 0, from Lemma 2, we

have

Pr[H(K,x) = y] = Pr[Hr+1(K, x̂) = y] ≤ 1/(2n − 1) (2)

Furthermore, without loss of generality, let w ∈ Bsn be
another s-block message where 1 ≤ s ≤ r, such that either w
is a shorter message (i.e., s < r), or x and w are of the same
length (s = r) and x ̸= w.

Now, let ŵ = (0, . . . ,0,v,w) be the result of prepending
r − s zero blocks (if s < r) and v to w. In this case, x̂
and ŵ are of the same length (r + 1)n, and x̂ ̸= ŵ. Also,
by construction H(K,w) = Hr+1(K, ŵ). Therefore, from
Lemma 2, we have

Pr[H(K,x) = H(K,w)]
= Pr[Hr+1(K, ŵ) = Hr+1(K, ŵ)] ≤ 1/(2n − 1)

(3)

Hence, the hash family H is ϵ-balanced and ϵ-universal as
claimed.

V. IMPLEMENTATION CONSIDERATIONS

A. Key Decomposition and Precomputation

For an n by n key matrix K, and n = st for some factors
s and t, we can further divide it into s2 sub-keys, which are
sub-matrices of size t by t, as illustrated below.

K =

K1,1 K1,2 . . . K1,s

K2,1 K2,2 . . . K2,s

...
...

...
...

Ks,1 Ks,2 . . . Ks,s

For an n-bit data block b, we similarly divide it into s sub-

blocks of t bits each, b = (b1,b2, . . . ,bs), and the matrix
multiplication can be done by computing Ki,jbj for each 1 ≤
i, j ≤ s.

To speed up the computation, we can pre-compute the
values of Ki,jv for each Ki,j and all possible values of the

5

vector v. The results can be grouped by Ki,j and stored as an
array indexed by the integer value v of v when viewed as an
t-bit integer. We denote such a pre-computed value as Ki,j [v].
Subsequently, the computation Ki,jbj = Ki,j [bj] amounts to
a simple table lookup.

The amount of memory required for the precomputed table
is s22tt = ns2t bits. To perform a multiplication by K on a
block b, we need s2 table look-ups and s2 x-or operations.
In comparison, a straightforward implementation of the multi-
plication takes n table look-ups and n x-or operations on the
key columns. Therefore, the precomputed version may have
an advantage when s2 < n.

For example, if n = 32, we can choose s = 4 and the
amount of memory required for the precomputation is 32 ·
4 · 28 = 215 bits, or 4 KB, and 16 table look-ups and 16 x-
or operations are required to perform a multiplication by K,
compared to 32 table look-ups and 32 x-or operations when
implemented without precomputation.

Furthermore, we note that the matrix decomposition method
presented can also be applied without precomputation when
the required hash size n is larger than the CPU register size.
For example, to compute 128-bit hash values with only 32-bit
registers, it would be natural to decompose the key matrix as
the above where s = 4.

B. Key Generation

In our scheme we require the key K to be a uniformly random
nonsingular Boolean matrix. We follow the approach in [8] and
give a practical key generation algorithm. It is observed that
random number generators in practice typically generate out-
put in blocks of bytes instead of a stream of bits. Furthermore,
it is a common practice to extend a short key by applying a key
derivation function or a (non-cryptographic) random number
generator algorithm. On the other hand, operations such as
swapping data in the main memory can be expensive. Hence,
it makes sense to optimize the speed instead of the use of
randomness. It is also noted that matrices are stored as arrays
of columns to speed up multiplications.

In particular, we propose the following algorithm to imple-
ment the method by Randall [8], where R denotes a random
generator function from which we can draw k random bits by
calling R(k). Each n-bit vector is represented as an integer and
the logical operations are bitwise operations on the integers.
Each matrix is an n-by-n Boolean matrix, represented as an
array of integers.

Essentially, we observe that the Randall method, when
ignoring the amount of randomness used, is equivalent to the
following steps: (1) generate a random unit upper triangular
matrix T, (2) generate a random unit lower triangular matrix
A, (3) generate n random numbers, say, r1, r2, . . . , rn, (4) for
the i-th column of A, permute it to the ri-th column, and at
the same time, for the ri-th column of T, clear the bits in the
column except those that are in the locations r1, r2, . . . , ri. The
Randall method avoids step (3) above by using the randomness
already used to generate rows of T. Instead, we explicitly
generate these values. In this way, we can generate columns
of T directly instead of generating the rows of T and then

Algorithm 4 Key Generation
1: procedure GENKEY(n, R)
2: A← 0. Write A = [a1, · · · , an] as an array of n-bit

integers.
3: T← Random unit upper triangular matrix. Write T =

[t1, · · · , tn].
4: mask ← 0
5: for i = 1, . . . , n do
6: v ← 0
7: while v = 0 do
8: v ← R(n) ∧ ¬mask
9: end while

10: r ← The index of the first nonzero coordinate of
v.

11: ar ← R(n− i) ∨ (1≪ (n− i))
12: mask ← mask ∨ (1≪ (n− r − 1))
13: tr ← tr ∧mask
14: end for
15: return A ∗T
16: end procedure

transposing the result. Furthermore, we use a bit mask to
keep track of the rows already generated in A, which allows
iterative generation of A instead of recursively generating
minor matrices. These optimizations allow fast key generation
without affecting the distribution of the generated matrices.
The resulting algorithm is shown as Algorithm 4, where ≪
denotes left bit shift of an integer, ∨ and ∧ denote bit-wise
logical-or and logical-and operations respectively.

VI. PERFORMANCE EVALUATION

A. Key Generation

The performance evaluations of the proposed algorithms are
done on a Ubuntu desktop PC with an x86 64 CPU running
at 2.20 GHz. The algorithms are implemented in standard C,
compiled using GCC with -O3 optimization.

For comparison, we also implemented a naı̈ve key gen-
eration method, where we keep generating random Boolean
matrices until we have a full rank matrix. We repeatedly
generate n-by-n key matrices for 5000 times and record the
average time it takes to generate one key matrix.

For n = 32, the naı̈ve method takes 0.031 milliseconds in
average to generate one key, whereas the proposed Algorithm
4 takes 0.010 milliseconds. For n = 64, the values are 0.090
milliseconds and 0.034 milliseconds respectively. In other
words, the proposed algorithm of implementing the Randall
method takes roughly one third of the time taken by the
naı̈ve method. Considering that the probability that a random
Boolean matrix is nonsingular is slightly less than 0.3 (as
observed in [8]), the proposed algorithm is near-optimal in
practice.

B. Serial Hashing

To avoid complicating the evaluation process, we only imple-
ment the Basic Hash as in Algorithm 1 in a single thread,

6

TABLE I
AVERAGE PROCESSING TIME PER MB (SINGLE PASS, n = 32)

Algorithm B=10 20 50 100 200
Basic Hash 29.8 (ms) 18.4 12.5 10.8 9.9
SHA1 24.3 13.0 6.4 4.3 3.2
SHA256 31.6 19.7 11.1 8.3 6.6

TABLE II
AVERAGE PROCESSING TIME PER MB (SINGLE PASS, n = 64)

Algorithm B=10 20 50 100 200
Basic Hash 15.5 (ms) 9.6 6.8 5.8 5.4
SHA1 14.6 7.4 4.4 3.2 2.7
SHA256 22.8 12.2 8.4 6.6 6.0

and compare its performance with SHA1 and SHA256 im-
plementation from the stock mbedTLS package from Ubuntu
20.04. It should be noted that a major advantage of our scheme
is the ability of flexible parallel processing, and the result
presented here shows its performance in a single thread only.
Further performance gain is expected for a multi-threaded or
distributed implementation.

The tests are done by repeatedly hashing messages of
different sizes and gathering the average processing time per
megabyte (MB) of data. The messages are randomly generated
and are always multiples of the block size n. In the tables
below, B represent the number of blocks in the messages, and
the entries represent the average time (in milliseconds) it takes
to hash 1 MB.

In Table I and II, we first present the results where, for each
test, the entire message is fed to the hash function at once. In
other words, there is only a single pass for each message.

For memory integrity protection, it would make more sense
to compare the performance where the input messages are fed
to the hash function block by block (incremental hashing),
instead of sending the entire message at the same time.
Unsurprisingly, the proposed hash function exhibits much
better comparative performance, as illustrated in Table III and
IV.

TABLE III
AVERAGE PROCESSING TIME PER MB (INCREMENTAL HASHING, n = 32)

Algorithm B=10 20 50 100 200
Basic Hash 198.2 (ms) 178.9 168.9 167.5 165.4
SHA1 231.8 192.7 171.7 166.7 163.1
SHA256 240.4 199.6 176.7 171.5 166.7

TABLE IV
AVERAGE PROCESSING TIME PER MB (INCREMENTAL HASHING, n = 64)

Algorithm B=10 20 50 100 200
Basic Hash 105.8 (ms) 95.9 91.8 89.9 88.8
SHA1 119.4 96.7 88.3 84.0 81.4
SHA256 127.5 101.8 93.4 89.1 86.2

As can be seen from these tables, the throughput of the
hash functions become higher for longer messages in general.
In single pass hashing (Table I and II), the performance of the
proposed Basic Hash is comparable to SHA1 and SHA256 for
short messages. However, in the incremental hashing setup
(Table III and IV), the proposed hash function clearly out-
performs both SHA1 and SHA256 for short messages, and
performs equally well for long messages. Furthermore, as
mentioned earlier, further performance gain is expected when
hashing is done in parallel.

VII. CONCLUSIONS

In this paper, we propose an ϵ-balanced (and ϵ-universal) hash
family, where the key size is n2 and the bound ϵ = 1/(2n−1),
which only depends on the hash size n, and does not increase
with the message size as in previously work. The proposed
hash family is also easily parallelized and the division of
the input message can be arbitrary. The parameter n is also
the input block size and internal state size, which can be
chosen arbitrarily to match the required CPU and memory
architectures and security requirements without redesign. The
simple mathematical structure of the scheme not only allows
for rigorous information-theoretic proofs but also efficient
software and hardware implementations with high perfor-
mance. The proposed hash family can be used as a building
block to construct secure message authentication codes, and
is particularly suitable for memory integrity protection.

REFERENCES

[1] Mihir Bellare. New proofs for NMAC and HMAC: Security without
collision-resistance. In Advances in Cryptology - CRYPTO, volume 4117
of LNCS, pages 602–619, 2006.

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. In Advances in Cryptology - CRYPTO,
volume 1109 of LNCS, pages 1–15, 1996.

[3] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:
Fast and secure message authentication. In Advances in Cryptology -
CRYPTO, volume 1666 of LNCS, pages 216–233, 1999.

[4] L. Carter and M. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(2):143–154, 1979.

[5] Hugo Krawczyk. LFSR-based hashing and message authentication. In
Advances in Cryptology - CRYPTO, volume 839 of LNCS, pages 129–
139, 1994.

[6] Hugo Krawczyk. New hash functions for message authentication. In
Advances in Cryptology - EUROCRYPT, volume 921 of LNCS, pages
301–310, 1995.

[7] David A. McGrew and John Viega. The security and performance of the
galois/counter mode (GCM) of operation. In Progress in Cryptology -
INDOCRYPT, volume 3348 of LNCS, pages 343–355, 2004.

[8] Dana Randall. Efficient generation of random nonsingular matrics.
Random Structures and Algorithms, 1993.

[9] Victor Shoup. On fast and provably secure message authentication based
on universal hashing. In Advances in Cryptology - CRYPTO, volume
1109 of LNCS, pages 313–328, 1996.

