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Abstract

Optimal simple rules for the monetary policy of the first stochastically
dominant crypto-currency are derived in a Dynamic Stochastic General
Equilibrium (DSGE) model, in order to provide optimal responses to
changes in inflation, output, and other sources of uncertainty.

The optimal monetary policy 1 stochastically dominates all the pre-
vious crypto-currencies, thus the efficient portfolio is to go long on the
stochastically dominant crypto-currency: a strategy-proof arbitrage fea-
turing a higher Omega ratio with higher expected returns, inducing an
investment-efficient Nash equilibrium over the crypto-market.

Zero-knowledge proofs of the monetary policy are committed on the
blockchain: an implementation is provided.

Keywords: optimal monetary policy, optimal simple rules, stochastic
dominance, stochastic calculus, DSGE model, strategy-proof, Nash equi-
librium, zero-knowledge, crypto-currency
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1 STATEMENT ON MONETARY POLICY GOALS AND STRATEGY:

The primary mandate is (stochastic) dominance.
The primary means of adjusting the policy stance is through changes in money growth.
The monetary policy is implemented with pre-committed policy rules, only to be revised in
case of technology shocks or in the event of a financial crisis: the stance of monetary policy
will adjust as appropriate if risks emerge that could impede the attainment of its goals, and
this document will be reviewed and updated with any changes.
Unlike other crypto-currencies, this monetary policy synchronises with macro-economic
observables, other fiat currencies and CBDCs: its primary goal is to follow cooperative
equilibria, falling back to non-cooperative equilibria as last resort.
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1 Introduction
One of the notorious deficiencies of crypto-currencies is their lack of monetary
policy, as currently defined and studied in the field of macroeconomics: non-
etheless, monetary crypto-policymakers must act in an optimal manner. In this
paper, we initiate the study of optimal monetary policies for crypto-currencies in
order to derive optimal simple rules that stochastically dominate the monetary
policy of other previous crypto-currencies, and ultimately, prove that the efficient
portfolio is to go long on the stochastically dominant crypto-currency.

1.1 Contributions
In summary, we make the following contributions:

• pioneer the introduction of the first optimal monetary policy for crypto-
currencies

• devise the first stochastically dominant crypto-currency, its dominance
arising from its optimal monetary policy

• derive optimal simple rules for a crypto-currency in a Dynamic Stochastic
General Equilibria model

• prove that the efficient portfolio is to go long on stochastically dominant
crypto-currencies: in fact, it’s a strategy-proof arbitrage featuring a higher
Omega ratio with a higher expected return, inducing a Nash equilibrium
over the crypto-currency market

• describe how zero-knowledge proofs for the implemented monetary policy
are committed on the blockchain

In a nutshell, we contribute a new methodology for analysing and deriving optimal
simple rules for the monetary policy of stochastically dominant crypto-currencies,
in order to create efficient portfolios of stochastically dominant crypto-currencies.
This paper intends to be a self-contained guide covering all the necessary theory
and practical aspects.

In section 2, we discuss related literature and prior work. In section 3, we
introduce our economic environment, analysis framework, and efficient portfolio.
In section 4, we describe our economic model and optimal monetary policies.
Finally, we detail some features of the technical implementation in section 5,
including how to commit the implemented zero-knowledge policy, and then we
conclude in section 6.

The reader interested in less theoretic and most empirical analysis may skip
to subsection 4.2,

2 Related Literature
The seminal contribution of this paper is to start the study of the first optimal
monetary policy for crypto-currencies: until now, all the study of the field
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was concentrated on the monetary policies for stablecoins [MIOT19, Cer19a] or
the models of the interaction between crypto-currencies, fiat currencies and/or
CBDCs with a view of understanding their shocks to the economy (starting from
the seminal [BK16]).

Figure 2.1: Relative supply of crypto-currencies[Gal19]

Figure 2.2: China’s simulated quantity rule and actual M2 growth [LZ09]
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However, the study of the monetary policy of crypto-currencies has always
been relegated to matters related to their supply [Gal19], as shown in the previous
Figure 2.1, in stark contrast with the quantity rules of money used in the real
world (e.g., China’s policy rule as shown in the previous Figure 2.2). In fact, the
equational expression of both policy rules couldn’t be more different: Bitcoin’s
supply equation St in period t can be given by

SBTCt = 21× 107 ×
(
1− αt

)
where α is the growth rate (α ≈ 0.825 for yearly periods and α ≈ 0.953 for
quarterly periods, see 4.5), and China’s quantity rule of money [LZ09] for the
previous Figure 2.2 can be given by

∆Mt = ∆M∗t + θ1∆Mt−1 − θ2Ŷt − θ3 (πt − π∗t )

with ∆M denoting the nominal money growth, ∆M∗t the log of equilibrium
money growth, θ1 = 0.88 the lag of nominal money growth, Ŷt the output gap,
θ2 = 0.16 the coefficient of response to changes of the output gap, πt the inflation
rate in period t, π∗t the target inflation rate, and θ3 = 0.06 the coefficient of
response to changes in inflation.

There is no related literature about what should be the optimal monetary
policy of a crypto-currency according to the methods of modern macro-economics,
as customarily practised on central banks: in fact, current crypto-currencies
are designed for anarcho-autarkic settings on which they don’t have to keep
track of inflation, GDP, or money growth, not even the exchange rate of other
crypto-currencies.

Moreover, previous sources of dominance in the crypto-currency market
were the first mover advantage of Bitcoin, or the network effects inherent to
payment networks [HG16] : as a novel contribution, this paper introduces optimal
monetary policies as a source of dominance in the crypto-currency market.

Furthermore, simple rules are preferred over complex models [FV20]: in the
foreseeable future, simple rules will still dominate the design of markets over
complex models due to their many strengths and few weaknesses [Tay20].

2.1 Comparison with prior work
Previous work from the same author [Cer19a] described methods to conduct the
monetary policy in a decentralised fashion, but with the following differences:

1. Previous work [Cer19a] focused on a stablecoin, but this paper targets the
volatile crypto-currency market.

(a) However, this paper introduces the novelty of stochastic dominance of
monetary policy rules and its usefulness to dominate other previous
crypto-currencies.

2. The technical implementation of this paper is significantly simpler than
[Cer19a], without compromising the security model: that is, it provides
similar cryptographic guarantees on a decentralised blockchain.
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Additionally, the results of this paper are also valid for the setting of [Cer19a] :
the optimal simple policy rules obtained in this paper (3.2.2 and 4.2) could be
directly incorporated into the “Economic Model for a Central-Banked Currency”
(Section 4.3 of [Cer19a]).

2.2 Survey of the Monetary Policy Impact on Crypto-
currencies

Although crypto-currencies such as Bitcoin were designed to replace the discre-
tionary decisions of monetary policymakers from central banks, even to insulate
them from macro-economic shocks, in reality their decisions continue impacting
their price and volatility. In this subsection, a survey of recent research about
this topic is presented, which shall inform the design of monetary policy rules in
the next subsection (4.2):
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Paper Period Results
[Hsi21] 2010-2020 Unanticipated 1 bp on 2-year Treasury yield is

about a 0.25% decrease in Bitcoin price and 1.23%
three days later (stronger at high and low quantiles)

[Kar21] 2014-2021 Disinflationary ECB policy shocks (2-year interest
rates of 10 basis points) lead to a persistent decrease
in Bitcoin price (-20%), whereas inflationary ECB

information shocks lead to price increases;
conversely, contractionary US policy shocks (2-year
interest rates of 10 basis point) increase Bitcoin
prices (+7%) but fall during expansionary US
information shocks (due to flows to foreign
exchanges with emerging market currencies)

[PF21] 2016-2021 Cointegration between Bitcoin prices and M2,
deeper with time delays

[CS20] 2010-2018 SVAR model shows no response of Bitcoin prices to
shocks to nominal interest rate (1-year US treasury

rate), only to stocks, VIX; but increase after a
positive shock to the price level (Billion prices

index)
[CLL+17] 2013-2017 Mineable crypto-currencies show US volatility

spillovers during FOMC announcement period, but
not dApp or protocols

[PL19] 2010-2018 Bitcoin price increases 0.26% at no FOMC
announcement, 0.96% on the day before and

decreases 1% on the announcement day. Bitcoin
price doesn’t change on CPI, PPI or employment

rate announcements
[CMC21] 2010-2021 Positive link between cryptocurrencies and forward

inflation rates is identified only during COVID-19
[CS21] 2010-2020 Bitcoin prices appreciate against inflation (or

inflation expectation) shocks, but do not decrease
after policy (1-year US treasury rate) uncertainty
shocks (i.e., only when excluding ZLB constraint)

[BGW21] 2019-2020 Daily changes in Bitcoin prices Granger cause
changes in the forward inflation rate in a significant

and persistent way, but not vice-versa
[BGW14] 2010-2014 In the short term, Bitcoin price adjusts to changes

in money supply, GDP, inflation, and interest rate

Table 1: Survey of Monetary Policy Impact on Crypto-currencies
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A practical example of the effects of inflation on Bitcoin price can be found
below, shedding $1K on 13/9/2022 in just 3 minutes (10% of market
capitalization) as US CPI inflation for August overshoots at 8.3% year-on–year
(expected 8.1%):

Figure 2.3: Effect of inflation on BTC/USD

3 Environment, Framework and Efficient Portfo-
lio

We consider pre-commitment rules in rational expectations models by a Bayesian
risk-averse policymaker that is given the task to choose a policy feedback coef-
ficient function mapping the parameter space into the set of policy feedback
coefficients interpreted as random variables with probability distributions given
from the posterior distributions of the model parameters, in order to minimise
the expected disutilities of welfare loss for all disutility functions by ranking the
policy rules according to a stochastic dominance criterion that is robust against
all of the parameter uncertainty about the structure of the economic model.

3.1 Economic Environment
The setting of this paper is the general form of linear rational expectations
models with uncertainty as set out in [And08]: many Dynamic Stochastic
General Equilibrium models can be approximated by linear rational expectation
(LRE) equations,

F1 (θ1, θ2) Etxt+1 + F1 (θ1, θ2) Etxt+1 + F2 (θ1, θ2) Etut+1

+ F3 (θ1, θ2)xt + F4 (θ1, θ2)ut + F (θ1, θ2) vt = 0, (3.1)
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G2 (φ) Etxt+1 +G3 (φ)xt +G (φ) vt = G1 (φ)ut, (3.2)
M1 (θm)xt +M2 (θm)ut +M (θm) vm,t = yt, t = 0, 1, 2, . . . (3.3)

with the equation 3.1 describing the dynamics of the private sector around the
deterministic steady-state, 3.2 being the policy equation, and 3.3 the measurement
equations, all the above using the following notation:

• xt is a vector of n non-policy endogenous variables

• ut a vector of k policy variables

• yt a vector of m ≤ n+ k observable variables

• Et is the operator of conditional expectation with respect to an information
set in period t

• Fi, F,Gi, G,Mi, and M are matrices depending on the parameters

• vm,t and vt are vectors of independent and identically distributed innova-
tions with zero mean and identity variance-covariance matrix I

• θ1 is a vector of structural non-policy random parameters

• θ2 is a vector of structural non-policy calibrated parameters

• θm is a vector of measurement parameters

• φ is a vector of random policy parameters (feedback or response coefficients)

The solution to the system of linear rational expectation equations 3.1 - 3.2 is
given by a state equation of the form

zt = A (θs, φ) zt−1 +B (θs, φ) vt, t = 1, 2, . . . , (3.4)

for the initial vector of states variables z0 =
[
x
′

0, u0

]′
and for unknown matrices

A (θs, φ), B (θs, φ) with θs =
[
θ
′

1, θ
′

2

]′
.

The parameter uncertainty in model 3.3 - 3.4 is measured by the posterior
probability distribution function according to the following Bayes rule:

p (θ, φ|Yt) =
p (θ, φ) p (Yt|θ, φ)

p (Yt)
, (3.5)

where θ =
[
θs, θ

′

m

]′
, Yt =

[
y
′

1, y
′

2, . . . , y
′

t

]′
is a sequence of observable vectors

at time t, p (Yt|θ, φ) is a likelihood function, and p (θ, φ) = p (θ) p (φ) is a
prior posterior probability distribution function. The elements of A (θs, φ),
and B (θs, φ)are usually non-linear functions of the vectors θs and φ, and the
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posteriors are not analytically available so we use the likelihood principle to treat
posteriors as a measure of uncertainty about the parameters; thus, simulations
are used to find approximations to the marginal posterior distributions θ and φ.

With this approach, optimal policy coefficients are assumed to be random
variables with probability distributions inherited from the posterior distributions
of the structural model parameters observed with parameter uncertainty, avoiding
treating optimal feedback coefficients as fixed numbers much like policymakers
usually do.

3.2 Decision Framework
In this subsection, we use a decision procedure to evaluate and rank simple
policy rules in rational expectation models. A Bayesian policymaker formulates a
statistical decision problem to choose a policy rule under parameter uncertainty
with the following tuple

(Yt, p (θ) , p (φl) ,Θ, D,M,Lt)

in which each term defines:

• Yt denotes the history of the observable variables over t periods

• subjective prior distributions p (θ) for the structural parameters θ =[
θ
′

s, θ
′

m

]′
∈ Θ = Θs ×Θm

• subjective prior distributions p (φl)for the policy parameters φl ∈ Φl for
l = 1, 2, . . . , N

• a set D of actions

• a setM =
{
Pz|θs,d : θs ∈ Θs, d ∈ D

}
of linear rational expectations models

under consideration, differing in the values of the structural parameters
θs ∈ Θs and the values of the policymaker’s action d ∈ D

• loss function Lt (θ, d) that quantifies the policymaker’s choice of applying
a given policy rule when a particular model holds

Considering how to rank a set of policy rules in the model of 3.2 with N ≥ 2
different functional forms

G1l (φl)ul,t = G2l (φl) Etxt+1 +G3l (φl)xt +Gl (φl) vt, t = 0, 1, 2, . . . (3.6)

with l = 1, 2, . . . , N , the vector φl ∈ Φl collecting the policy feedback coefficients,
with Gil and Gl being matrices that depend on the policy feedback parameters.

The decision space D is of the form

D = {(l, fl) : l = 1, 2, . . . , N (3.7)
fl : Θ → Φl} (3.8)

in which the following conditions hold:
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• the admissible policies d = (l, fl) is a rule from 3.6

• fl : Θ → Φl is a policy feedback coefficient from a given class of measurable
functions Fl such that the system of linear rational expectation equations
3.1 and 3.6, with φl = fl (θ) for all θ ∈ Θ has a solution which is given by
the state equation

zl,t = Al (θs, φl) zl,t−1 +Bl (θs, φl) vt, t ≥ 1 (3.9)

with z0 being an initial state, zl,t =
[
x
′

t, u
′

l,t

]′
, zl,0 = z0, andAl (θs, φl) , Bl (θs, φl)

are unknown matrices with θs =
[
θ
′

1, θ
′

2

]′
• every set Fl includes all constant functions fl (θ) = const

• the parameters space Φl consists of all vectors of policy parameters φl for
every l = 1, 2, . . . such that for all θs ∈ Θs, the system of linear rational
expectation equations 3.1 and 3.6 has a unique solution

The procedure of the Bayesian policymaker is to first observe the history of
the observable variables Yt over t periods, and for every l = 1, 2, . . . , N sets the
subjective prior distributions p (θ) of the structural parameters and p (φl) of the
policy parameters φl ∈ Φl. Then, it analyses the following set of linear rational
expectation models,

M =
{
Pz|θs,d : θs ∈ Φs, d ∈ D

}
for endogenous non-policy xt described by 3.1 and policy variables ul,t described
by 3.6. The predictive probability distribution Pz|θs,d of the future state variables
z = (zl,t+s)s=0,1,2,... ∈ Z evolves according to 3.9.

3.2.1 Welfare Loss Function

The welfare loss function of the Bayesian decision maker’s objective at time t is
defined by

Lt : Zt × V ×Θ ×D → [0,∞)

receiving the following parameters:

• a vector of current state variables zt ∈ Zt

• all future shocks v = {(vt+s, vm,t+s)}s=1,2,... ∈ V

• all vectors of structural parameters θ from the parameter space Θ

• all admissible decisions d from the decision space D
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In order to evaluate the objective function, the Bayesian policymaker could take
the unconditional average of the welfare losses over the current state and all
possible future shocks:

Lt (θ, d) =

∫
Zt

∫
V

Lt (zt, v, θ, d) dPv (v) dPzt (zt) (3.10)

or the conditional expected value of the welfare loss given zt:

Lt (θ, d|zt) =

∫
V

Lt (zt, v, θ, d) dPv (v) (3.11)

with θ =
[
θ
′

s, θ
′

m

]′
∈ Θ and the policymaker decision d ∈ D that is able to

modify the model structure Pz|θs,d, the posterior distribution of the structural
parameters Pθ|Yt,d, and the value of the expected welfare loss Lt (θ, d).

In this paper, we will use a quadratic welfare loss function given by:

Lt (θ, d) = tr

(
W
∑
zl

(θs, d)

)
= varθs,d (π̂t) + wyvarθs,d (ŷt) (3.12)

for all d = (l, fl) ∈ D and θs ∈ Θs where varθ,d (zl,t,i) is the unconditional
variance of the state variable zl,t,i in the l-th specification of the DSGE model,
while wy is the diagonal weight of W for the output gap. These diagonal weights
reflect the monetary policy preferences of the central bank over the objectives:
specifically, we set wy = 0.05 and wπ = 1.

3.2.2 Ranking Simple Policy Rules

Now we can start formulating robust optimality criteria to generate rankings of
simple policy rules 3.6 based on the optimal Bayesian policymaker’s objective
function Lt: first, a fixed vector of structural parameters θ̂ ∈ Θ is chosen from
the parameter space Θ, and then the expected welfare loss Lt

(
θ̂, d
)
is minimised

subject to the recursive state equations 3.9 under criteria of k-degree stochastic
dominance (SDk) [Lev16]. Stochastic dominance is a useful concept for analysing
risky decision-making under uncertainty when only partial information about
the decision maker’s risk preferences is available.

Definition 1. (SDk ordering) . Defined by the indefinitely many inequalities∫ L∗

0

u (x) dFL1
(x) ≤

∫ L∗

0

u (x) dFL2
(x) (3.13)

between the expected disutilities of non-negative valued random losses L1 ≤SDk
L2 with the cumulative distribution functions L1 ∼ FL2 and L2 ∼ FL2 , for
all functions u ∈ Uk with strict inequality for some u, where Uk is the set of
all disutility functions with the i-th derivative of u such that u′ ≥ 0, u′′ ≥
0, . . . , u(k) ≥ 0. Note that SDk implies SDl for all k > l, and that the SD∞
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dominance of L2 over L1 implies that L1 ≤SDk L2 holds for some finite k.
Additionally, we denote with ≤SDk the inequality between random welfare losses
defined by the SDk ordering for k = 1, 2, . . . ,∞. Recall that SD1 ordering
assumes all non-decreasing disutility functions (non-satiable); SD2 is for risk-
averse policymakers towards welfare losses, restricting the disutility functions to
convex and non-decreasing; SD3 additionally prefers negatively skewed welfare
loss distributions (prudence); and SD4 requires that u4 ≤ 0 (temperance).

Accordingly, simple policy rules can be analysed using the SDk ordering from
the previous Definition 1.

Definition 2. (SDk-optimal policy) . Finding the best SDk-optimal simple
policy under parameter uncertainty is solved by searching for the SDk-optimal
decision dSDk

1 =
(
lSDk
1 , flSDk

1

)
∈ D from the set of all admissible decisions D

such that the corresponding distribution of welfare loss Lt
(
·, dSDk

1

)
satisfies

Lt
(
·, dSDk

1

)
≤SDk Lt (·, d) (3.14)

for all d ∈ D and subject to 3.9: dSDk
1 generates the distribution of minimised

welfare loss, the smallest in terms of the SDk ordering.

Assume that the Bayesian policymaker solves a parameterised optimisation
problem to find the value of the optimal policy feedback coefficient function
fmin
l (θ):

Lmin
l,t (θ) = min

φl∈Φl

Lt (θ, (l, φl)) = Lt
(
θ,
(
l, fmin (θ)

))
(3.15)

for each value of the structural parameters θ ∈ Θ and for every policy specification
l = {1, 2, . . . , N} given in 3.6. Note that fmin

l (θ) is a selection from the optimal
choice correspondence set:

fmin
l (θ) ∈ Φmin

l (θ) =
{
φmin
l ∈ Φl : Lmin

l,t (θ) = Lt
(
θ,
(
l, φmin

l

))}
We define φmin

l = fmin
l (θ) to be the vector of optimal policy feedback coefficient

of rule l calculated for the vector of structural parameters θ: thus, the optimal
policy feedback coefficient function fmin

l : Θ → Φl is measurable and the pair(
l, fmin

l

)
belongs to D.

The uncertainty of the structural parameters is considered in order to find
the probability distribution of the optimal policy response coefficients

φmin
l ∼ pθ

((
fmin
l

)−1 |Yt, l) (3.16)

and the minimised welfare loss is given by

Lmin
l,t ∼ pθ

((
Lt ◦ fmin

l

)−1 |Yt, l) (3.17)

where the inverse image of A ∈ B (Φ) under θ → fmin
l (θ) is(

fmin
l

)−1
(A) =

{
θ ∈ Θ : fmin

l (θ) ∈ A
}
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and the inverse image of B ∈ B (Φ) under θ → Lt
(
θ, fmin

l (θ)
)
is(

Lt ◦ fmin
l

)−1
(B) =

{
θ ∈ Θ : Lt

(
θ, fmin

l (θ)
)
∈ B

}
Next theorem 3.18 gives sufficient conditions for the optimal solution to 3.14

and shows how the SDk-optimal decision can be found.

Theorem 3. Assume that the decision sets Φl for l = 1, 2, . . . , N are non-empty
compact subsets of Rr, the parameter space Θ is an open subset of Rp, and
the policymaker’s welfare loss Lt is a Carathéodory-type integrable function. If
d∗ = (l∗, fl∗) ∈ D is a policymaker decision such that l∗ is defined by

Lmin
l∗,t ≤SDk L

min
l,t , ∀l ∈ {1, 2, . . . , N} (3.18)

where Lmin
l,t , l ∈ {1, 2, . . . , N} are random minimised welfare losses as defined in

3.15, 3.16 and 3.17; and fl∗ = fmin
l∗ is the optimal policy feedback coefficient

function that solves 3.15, as denoted by

min
φl∗∈Φl∗

Lt (θ, (l∗, φl∗)) = Lt (θ, (l∗, fl∗ (θ))) = Lmin
l∗,t (θ) , ∀θ ∈ Θ (3.19)

then d∗ = dSDk
1 is the SDk-optimal decision.

3.3 Efficient Portfolio
In this subsection, we derive an efficient portfolio for stochastically dominant
crypto-currencies providing the best expected returns in comparison with the
other crypto-currencies. Instead of using the mean-variance framework, we prefer
to use marginal conditional stochastic dominance [SY84]: all risk-averse investors
prefer a portfolio A over a portfolio B if the portfolio return of A is stochastically
dominant over that of B, moving out all dominated assets. Furthermore, almost
marginal conditional stochastic dominance [MJYW14] could be used to prevent
extreme utility functions in the set of risk-averse investors.

3.3.1 Pricing Stochastic Dominance

In order to ease exposition, suppose there are only two crypto-currencies in two
separate, segmented markets: a stochastically dominant crypto-currency, D, and
Bitcoin, B (resp. any other PoW/PoS crypto-currency). Consumption in the
dominant market at time t is denoted by cDt , and cBt in the Bitcoin denominated
market (resp. any other PoW/PoS crypto-currency). Consumers can transact
in one market but not both simultaneously, that is, utility uj (Cj,t ·msj,t) at
time t in market j ∈ {D,B}, where Cj,t denotes complete-market consumption
that is distorted by the non-hedgeable monetary policy shock msj,t, rendering
incomplete the system of markets: moreover, we assume that msj,t and Cj,t are
statistically independent for any j ∈ {D,B}.
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Lemma 4. Suppose the utility function u (x) is of the form Constant Relat-
ive Risk-Aversion (CRRA), then the Stochastic Discount Factor (SDF) in the
dominant market is given by

MD
t+1 =

(
msD,t+1CD,t+1

msD,tCD,t

)−γ
= MCD

t+1M
msD
t+1 (3.20)

and in the Bitcoin market (resp. any other PoW/PoS crypto-currency) is given
by

MB
t+1 =

(
msB,t+1CB,t+1

msB,tCB,t

)−γ
= MCB

t+1M
msB
t+1 (3.21)

where γ is the coefficient of relative risk aversion, and

M
Cj

t+1 =

(
Cj,t+1

Cj,t

)−γ
,M

msj
t+1 =

(
msj,t+1

msj,t

)−γ

Lemma 5. (Fundamental Pricing Equation). The Euler equation for hold-
ers of the stochastically dominant crypto-currency is given by:

Et

[
MB
t+1

Qt+1

Qt

]
= Et

[
MD
t+1

MmsB
t+1

MmsD
t+1

]
=

1

RDt+1

(3.22)

and the Euler equation for the Bitcoin holder (resp. any other PoW/PoS crypto-
currency) is given by:

Et

[
MD
t+1

Qt+1

Qt

]
= Et

[
MB
t+1

MmsD
t+1

MmsB
t+1

]
=

1

RBt+1

(3.23)

where Qtis the real exchange rate, and RDt+1 and RBt+1 are the risk-free rate in
the dominant and Bitcoin market, respectively.

We assume that the logarithm of the Stochastic Discount Factors (SDFs) in
the two markets are normally distributed: mD, mB, mmsD , mmsB , mCD and
mCB (i.e., we denote logarithms of capitalised variables with their lowercase
variant).

Lemma 6. The arbitrage-free expected return on the stochastically-dominant
crypto-currency is given by:

Et (∆qt+1) = rBt − rDt +
1

2

[
Vart

(
mB
t+1

)
−Vart

(
mD
t+1

)]
+ Etm

msB
t+1 − Etm

msD
t+1

(3.24)
thus a relative rise of EtmmsB

t+1 over EtmmsD
t+1 leads to the appreciation of the

stochastically dominant crypto-currency.

Definition 7. (Logarithmic utility function). The utility function is

u (x) = log (x)
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thus we have the following additively separable representation for the two shocks,
consumption and monetary (resp. cs and ms):

u (cs ·ms) = log (cs ·ms) = u1 (cs) · u2 (ms) = log (cs) + log (ms)

with values for D1 and B1 for u1 and D2 and B2 for u2: D1 and D2are marginals
of the joint probability distribution D (cs,ms) in the dominant market, while
B1 and B2 are marginals of the joint probability distribution B (cs,ms) in the
Bitcoin market (resp. any other PoW/PoS crypto-currency).

Lemma 8. (First-order Stochastic Dominance). A necessary and suffi-
cient condition for the first-order stochastic dominance of the stochastically dom-
inant crypto-currency over Bitcoin (resp. any other PoW/PoS crypto-currency)
is

B1 (cs) ≥ D1 (cs)

and
B2 (cs) ≥ D2 (cs)

with strong inequality for at least some values in cs or in ms.

Given the definitions 7, the stochastically dominant crypto-currency in the
dominant market with a joint probability distribution D (cs,ms), is preferred to
the Bitcoin market with B (cs,ms) if:

EDu (cs,ms)− EBu (cs,ms) (3.25)

=

∫
(B1 (t)−D1 (t)) du1 (t) +

∫
(B2 (s)−D2 (s)) du2 (s) (3.26)

=

∫
(B1 (t)−D1 (t))

1

t
du (t) +

∫
(B2 (s)−D2 (s))

1

s
du (s) ≥ 0 (3.27)

Lemma 9. (Second-order Stochastic Dominance). A necessary and suffi-
cient condition for the second-order stochastic dominance of the stochastically
dominant crypto-currency over Bitcoin (resp. any other PoW/PoS crypto-
currency) ∫ ∞

t

(B1 (s)−D1 (s)) ds ≥ 0

and ∫ ∞
t

(B2 (s)−D2 (s)) ds ≥ 0

for all s > t with at least one strict inequality.

We assume that the consumption shocks in the two markets, dominant and
Bitcoin, are roughly the same,

D1 ≈ B1

as both crypto-currencies are part of the same general economy (i.e., cs is
rendered C as in its initial definition), thus monetary shocks play a pivotal role:
users prefer the stochastically dominant crypto-currency given the projected
expected utility of its stochastically dominant monetary policy, D2, over Bitcoin’s
B2 (resp. any other PoW/PoS crypto-currency).
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Theorem 10. (Dominant Expected Returns). A dominance relation-
ship between the distribution of the monetary policy shock of the stochastically
dominant crypto-currency, msD (D2), over Bitcoin, msB (B2), implies a rise
Et (∆qt+1) 6 of the price of the stochastically dominant crypto-currency D in
terms of Bitcoin (resp. any other PoW/PoS crypto-currency).

Proof. When D2 dominates B2 in the first-order sense 8, then

Etm
msB
t+1 − Etm

msD
t+1 > 0

and vice versa. Thus,

Etm
msB
t+1 − Etm

msD
t+1 = msB,tEt

(
1

msB,t+1

)
−msD,tEt

(
1

msD,t+1

)
=

∫
1

t
dB2 (t)−

∫
1

t
dD2 (t)

=

∫
1

t
d (B2 −D2)

=

∫
(D2 −B2) d

1

t

= −
∫

(D2 −B2)
1

t²
dt > 0

and the consequent rise of Et (∆qt+1) as given by 6.

3.3.2 Efficient Stochastically Dominant Portfolio

The stochastic dominance between two crypto-currencies of 8 and 9 further
extends into a stochastically dominant portfolio of crypto-currencies. As in
previous sections, we can distinguish between different orders of portfolio domin-
ance: first (Definition 11), second (Definition 13), ..., SDk-orders (Definition 15)
of portfolio dominance. Note that recent empirical research corroborates that
the inclusion of crypto-currencies in portfolios is itself stochastically dominant
[HNP+21, Rah20, MBN20, Coh21, TT18, AAT21].

Given N alternatives and a random vector of their outcomes %, a decision
maker can combine them into portfolios and all portfolio possibilities are denoted
by

Λ =
{
λ ∈ RN |1′λ = 1, λn ≥ 0, n = 1, 2, . . . , N

}
Definition 11. Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the first-order
stochastic dominance (%′λ ≤SD1 %

′τ) if

F%′λ (x) ≤SD1 F%′τ (x) , ∀x ∈ R

with strict inequality for at least one x ∈ R and with F%′λ (x) denoting the
cumulative probability distribution of returns of portfolio λ. Necessary and
sufficient conditions for the first-order stochastic dominance (%′λ ≤SD1 %

′τ) if:

17



• Eu (%′λ) ≥ Eu (%′τ) for all expected utility (Eu) functions and strict
inequality holds for at least some utility function

• F−1%′λ (y) ≤ F−1%′τ (y) for all y ∈ [0, 1] with strict inequality for at least one
y ∈ [0, 1]

• V aRα (−%′λ) ≤ V aRλ (−%′τ) for all α ∈ [0, 1] with strict inequality for at
least one α ∈ [0, 1]

Definition 12. A given portfolio τ ∈ Λ is first-order stochastic dominant
(Definition 11) inefficient if there exists portfolio λ ∈ Λ such that %’λ ≤SD1 %’λ.
Otherwise, portfolio τ is first-order stochastic dominant efficient.

Second-order stochastic dominance can be similarly defined as first-order:

Definition 13. Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the second-order
stochastic dominance (%′λ ≤SD2 %

′τ) if and only if

F
(2)
%′λ (y) ≤SD2 F

(2)
%′τ (y) , ∀y ∈ R

with strict inequality for at least one y ∈ R and with F (2)
%′λ (y) denoting the twice

cumulative probability distribution of returns of portfolio λ. Necessary and
sufficient conditions for the second-order stochastic dominance (%′λ ≤SD1 %

′τ)
if:

• Eu (%′λ) ≥ Eu (%′τ) for all expected concave utility functions and strict
inequality holds for at least some concave utility function

• Non-satiable and risk-averse decision maker prefers portfolio τ to portfolio
λ and at least one prefers λ to τ

• F−2%′λ (y) ≤ F−2%′τ (y) for all y ∈ [0, 1] with strict inequality for at least one
y ∈ [0, 1], where F−2%′λ (y) is a cumulated quantile function

• CV aRα (−%′λ) ≤ CV aRλ (−%′τ) for all α ∈ [0, 1] with strict inequality for
at least one α ∈ [0, 1], where

CV aRα (−r′λ) = min
v∈R,zt∈R+

v +
1

1− α

S∑
t=1

ptzt

such thatzt ≥ −xtλ− v, t = 1, 2, . . . , S

Definition 14. A given portfolio τ ∈ Λ is second-order stochastic dominant
(Definition 11) inefficient if there exists portfolio λ ∈ Λ such that %’λ ≤SD2 %’λ.
Otherwise, portfolio τ is second-order stochastic dominant efficient.

The previous two definitions, first-order and second-order, can be generalised
to the k-order:
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Definition 15. Portfolio λ dominates portfolio τ with respect to the k-order
stochastic dominance (λ ≤SDk τ) if Eu (%′λ) ≥ Eu (%′τ) for all utility functions
u ∈ Un with strict inequality for at least one such utility function, with UN
being the set of N times differentiable utility functions such that: (−1)

i
u(i) ≤ 0

for all i = 1, 2, . . . , N .

Definition 16. A given portfolio τ is SDk-efficient (k ≥ 2) if there exists at
least one utility function u ∈ UN such that Eu (%′τ)−Eu (%′λ) ≥ 0 for all λ ∈ Λ
with strict inequality for at least one λ ∈ Λ.

And the previous one period stochastic dominance can be generalised to the
multi-period setting:

Theorem 17. ( [Lev73] ). Let Fn (x) and Gn (x) be the cumulative distributions
of two n-period risks where n is the number of periods and x is the product of
the returns corresponding to each period (x = x1, x2, . . . , xn). Then, a sufficient
condition for Fn dominance over Gn by first-order stochastic dominance for
every non-decreasing utility function is that such dominance exists in each period,
namely:

Fi (xi) ≤ Gi (xi) , ∀i, (i = 1, 2, . . . , n)

and there is at least one strict inequality, namely:

Fi (xi0) < Gi (xi0)

for some xi0 .

Theorem 18. ( [Lev73] ). A sufficient condition for Fn dominance over Gn by
second-order stochastic dominance for all non-decreasing concave utility functions
is that such dominance exists in each period, namely:∫ xi

0

[Gi (ti)− Fi (ti)] dti ≥ 0, ∀i, (i = 1, 2, . . . , n)

and there is at least one strict inequality.

Finally, note that the concept of stochastic dominance also extends to strategy-
proof allocation rules and game strategies:

Definition 19. . A strategy s is stochastic dominance strategy-proof if, for all
investors i ∈ I, all security ranking profiles (Ri, R−i) ∈ RI , and all misreports
R
′

i ∈ R, investor i’s assignment xi,j ∈ si (Ri, R−i) stochastically dominates
yi,j ∈ si

(
R
′

i, R−i

)
at Ri (i.e., independent of the other investors’ ranking

reports), that is, ∑
si(Ri,R−i)

xi,j ≥
∑

si(R′i,R−i)

yi,j
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Alternatively, stochastic dominance strategy-proof can also be defined in terms
of expected utility if, for all utility functions ui ∈ URi , we have that

Eusi(Ri,R−i) (ui) ≥ Eusi(R′i,R−i) (ui)

All the previous definitions naturally lead to the following theorem regarding
the stochastically dominant crypto-currency:

Theorem 20. The efficient portfolio is to go long on the stochastically domin-
ant crypto-currency: thus, the stochastically dominant strategy-proof allocation
rule for any investor is to hold this efficient portfolio with the stochastically
dominant crypto-currency. Furthermore, a higher return can be expected from
the stochastically-dominant crypto-currency.

Proof. Given a stochastic ranking of policy rules 3.14 of a stochastic ordering
(Definition 1) of monetary policy rules 3.6 that generates a stochastically dom-
inant crypto-currency by first-order 8 or second-order 9 dominance: then, the
SDk-efficient portfolio 16 (also, first-order 12 or second-order 14 efficient) that
dominates with respect to the k-order stochastic dominance 15 (also, first-order
11 or second-order 13 dominant) is the portfolio containing the stochastically
dominant crypto-currency as, by definition, this the one crypto-currency with
the SDk-optimal policy rule 3.14 that SDk dominates (Definition 1) all the other
policy rules. The proof extends trivially to the multi-period case by Theorems
17 and 18.

Moreover, for all investors i ∈ I, the stochastically dominant strategy-proof
allocation rule 19 is to hold the SDk-efficient portfolio 16 with the crypto-currency
with the SDk-optimal policy rule 3.14.

Furthermore, a higher return can be expected from the stochastically-
dominant crypto-currency by the iterated deletion of strictly dominated strategies
when extending Theorem 10 to the market portfolio setting.

Finally, the efficient and strategy-proof portfolio of Theorem 20 induces an
investment-efficient Nash equilibrium:

Definition 21. A mechanismM induces efficient investment within ε by investor
i ∈ I if, for all valuation functions vIr{i} ∈ VIr{i}, if

v̂i ∈ arg max
ṽi∈Vi

{
E(vi,vIr{i})

[
ui
(
M
(
vi, vIr{i}

)
; vi
)]
− ci

(
ṽi
)}

then we have(
E(v̂i,vIr{i})

[
V
(
M
(
vi, vIr{i}

)
;
(
vi, vIr{i}

))])
− ci

(
v̂i
)

+ ε

≥ sup
vi∈Vi

{(
E(ṽi,vIr{i})

[
V
(
M
(
vi, vIr{i}

)
;
(
vi, vIr{i}

))])
− ci

(
ṽi
)}

for all cost functions ci. In other words, a mechanism induces efficient in-
vestment by i within ε if, assuming agents report truthfully, every expected
utility-maximising investment choice by i maximises expected social welfare
within ε.
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Theorem 22. For any stochastic uncertainties ε ≥ 0 and η ≥ 0, if the portfolio is
approximately strategy-proof 19 within ε for investor i and approximately efficient
within η (i.e., first-order 12, second-order 14 or SDk-efficient 16 ), then it induces
an approximately efficient investment within (ε+ η) · (#Crypto-currencies) to i,
independent of the other investors’ investments. Furthermore, the stochastically
dominant crypto-currency induces a Nash equilibrium over the crypto-currency
market that maximises ex-ante social welfare.

Proof. Follows trivially from Theorem 5 and Corollary 2 of [HKK19]. It also
holds in expectations for any given investment choice profile of the other agents
using Theorem 7 from [HKK19].

Remark 23. On the immovable commitment of crypto-currency monet-
ary policy rules and the lack of discretion: most crypto-currencies follow
the example of Bitcoin, where the monetary policy was fixed since its launch and
it was pre-announced that it will never change. This is in stark contrast with
the monetary policy of fiat currencies, where discretion is preferred in case of a
financial crisis. In other words, the widely accepted monetary policy stance of
crypto-currencies to fix their monetary policies not only leaves them vulnerable
to a financial crisis, but also turns them into dominated crypto-currencies by
stochastically dominant crypto-currencies.

3.3.3 Omega ratio of Stochastically Dominant Crypto-currencies

The Omega ratio[KS02] is a risk-return performance measure of an asset, portfolio,
or strategy which takes into account all the higher moment information in the
returns distribution and also incorporates sensitivity to return levels, unlike the
Sharpe ratio. It is defined as the probability-weighted ratio of gains versus losses
for some threshold return target θ,

Ω (θ) =

∫∞
θ

[1− F (r)] dr∫ θ
−∞ F (r) dr

=
wTE (r)− θ

E
[
(θ − wT r)+

] + 1

Note that first-order stochastic dominance 11 implies Omega ratio dominance:

Theorem 24. (Theorem 2, [GJW17]). For any two returns X and Y with means
µX and µY and Omega ratios ΩX (η) and ΩY (η), respectively, if X ≤SD1 Y ,
then ΩX (η) ≥ ΩY (η) for any η ∈ R.

Corollary 25. The efficient portfolio long on the stochastically dominant crypto-
currency of Theorem 20 has a higher Omega ratio for any return threshold.

3.3.4 Arbitraging with Stochastic Dominance

If there exists a First-order Stochastic Dominance between two assets 8, under
certain conditions, arbitrage opportunities will also exist: thus investors will
increase not only their expected utilities, but also their wealth if they shift
their holdings to the dominant asset from the dominated one (i.e., a risk-free
investment opportunity with positive returns).
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Theorem 26. (Arbitrage versus Stochastic Dominance - [Jar86]). Given a
complete market M , there exists an arbitrage opportunity if and only if there
exists assets x and y ∈M such that:

• x ≤SD1 y

• [Pi (y ≤ α)− Pi (x ≤ α)] ≤ 0 for all α ∈ R and for some investor i ∈ I,
where Pi ()is the ith investor’s subjective probability belief over the finite
number of states of nature

In other words, arbitrage implies First-order Stochastic Dominance but the
inverse is not necessarily true: it’s only true when the cumulative distribution
functions of the assets are perfectly correlated or the risky asset is a monotone
function of the asset even in the absence of perfect correlation. Note that
crypto-currency markets are unusually highly correlated compared to other asset
markets.

In practice, empirical studies may statistically detect First-order Stochastic
Dominance, but arbitrage opportunities may not exist: nonetheless, investors
can increase their expected utilities, as well as their expected wealth, if they
shift their holdings to the dominant asset from the dominated one [WPL08].

4 Model and Policies
DSGE models constitute the modern workhorse of monetary policy analysis,
with a recent survey finding 84 models used by 58 institutions [Yag20]. In this
section, a Dynamic Stochastic General Equilibrium (DSGE) parsimonious model
is introduced to an economy featuring a Central-Bank Digital Currency (CBDC)
and a crypto-currency, calibrated and estimated for the United States.

The model is further simplified by opting for a closed-economy instead of a
small open-economy, justified by previous results showing that optimal policies
under parameter uncertainty lack exchange rate responses [JP10] and that welfare
loss functions for small open economies do not include foreign variables when
the calibration is imposed [GM05].

4.1 Monetary Policy Rules
The following monetary policy rules are implemented in this model.

4.1.1 Central Bank

Taylor’s rule for the monetary policy:

it = (ρ2 − ρ1) (̄i) + ρ1 it−1 + ρ3

(
1− Mt−1

Yt−1

)
+ (ρ2 − ρ1) (φπ (πt − π̄) + φy (log (Yt)− log (Yt−1))) + εit

(4.1)

where ρi are smoothing parameters and φπ is the inflation feedback coefficient.
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4.1.2 Bitcoin’s Monetary Policy

Although Bitcoin’s monetary policy is not described in its paper, its implementa-
tion appears in the source code [Nak09a]: the initial reward of 50 BTC is halved
every 210,000 blocks (4 years), and each block is mined approximately every 10
minutes. The supply formula in block time is given by,

B (t) =

min(t,T )∑
t=1

50

2H(t)
(4.2)

H (t) =

⌊
t

210000

⌋
(4.3)

where t is the block height, H (t) is the number of reward halvings up to block t,
and T = 33x210000. Bitcoin supply is limited beyond block T , given by

Btotal =

32∑
i=0

50

2i
× 210000 ≈ 2.1× 107 (4.4)

Equation 4.2 can be fitted as an exponential curve, given by:

SBTCt = 2.1× 107 ×
(
1− αt

)
(4.5)

where St is the supply in period t, and α is the growth rate with α ≈ 0.825 for
yearly periods and α ≈ 0.953 for quarterly periods. The previous exponential
curve can be rewritten in recursive form as:

f0 = 2.1× 107 (4.6)
ft = 0.825× ft−1 (4.7)

SBTCt = 2.1× 107 − ft (4.8)

or equivalently:

SBTCt+1 = SBTCt + (1− α)
(
2.1× 107 − SBTCt

)
(4.9)

= α · SBTCt + (1− α) · 2.1× 107 (4.10)

The following figure displays the evolution of bitcoin supply assuming exact
10-minute confirmation times.
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Figure 4.1: Bitcoin’s controlled supply[Wik22]

As previously pointed out in Figure 2.1 comparing the relative supply of
crypto-currencies, most crypto-currencies follow similar supply curves but use
different parameters: therefore, without loss of generality we will only consider
Bitcoin in this paper in representation of all the other crypto-currencies.

Note that Bitcoin’s monetary policy is independent of any observable variable
(e.g., inflation, output, ....) and Satoshi Nakamoto pre-committed not to ever
modify it: in macro-economics, this monetary policy can be interpreted as a
deflationary version of Friedman’s k-percent rule[FS63] (i.e., constant money
growth). Following Poole’s classical Keynesian analysis [Poo70] in a stochastic IS-
LMmodel, monetary policies targeting only the money stock allow money demand
shocks to contribute to macroeconomic volatility: indeed, recent analysis in
modern New Keynesian models [Ire00, CD05, Gal15] demonstrate that constant
money growth rules lead to excess volatility in both output and inflation when
the economy faces money demand shocks, or other disturbances that require
output and inflation to adjust. This situation is further aggravated by an inelastic
supply curve in both the short and the long term: as the following comparative
chart shows 4.2, supply inelasticities imply dramatic price changes with even
minor changes in demand, thus contributing to Bitcoin’s volatility.
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Figure 4.2: Elastic v. Inelastic Supply Charts

However, money growth rules perform much better when they are able to
adjust to movements in the output gap and inflation as exemplified by the two
following rules 4.11 and 4.12: advantageously, these money growth rules are
able to stabilise inflation by pre-committing to an average rate of money growth
and focusing directly on stabilising the output gap over shorter time horizons,
instead of the aggressive responses to inflation needed by interest rate rules (i.e.,
Taylor’s rule).

4.1.3 Ethereum 2.0’s Monetary Policy

Other crypto-currencies feature a much more complex monetary policy than
Bitcoin’s monetary policy 4.1.2, although in essence they all suffer from the same
shortcoming: they fail to react to changes in inflation, output gap, or any other
macro-economic aggregate (unlike the monetary policy presented in this paper).

For the particular case of Ethereum 2.0 after transitioning to Proof-of-Stake
(a.k.a., “the Merge”), the monetary policy will be described by the following
features:

• almost deflationary by default: issuance reduced from 2 Ether/block to a
variable number depending on the total amount of Ether at stake (currently
around 13.3MM ETH), which will be around 600K ETH/year, implying a
90% reduction

• deflationary burning of transaction fees (EIP-1559)

• double use as store of value and gas for smart contracts
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Accounting in a monetary policy rule for all the previous features will only
make it more deflationary, thus less reactive to changes in the macro-economic
environment (i.e., a narrower path of policy responses) and therefore much more
stochastically dominated even than Bitcoin’s monetary policy 4.1.2.

4.1.4 McCallum’s Policy Rule

A classical monetarist policy, McCallum’s rule [MN99] is specified by:

∆bt = ∆x∗ − (xt−1 − bt−1 − xt−17 + bt−17)

16
+ λ

(
x∗t−1 − xt−1

)
(4.11)

where the previous variables are defined as:

• bt is the logarithm of the adjusted monetary base

• xt is the logarithm of the adjusted nominal GDP

• x∗t is the target value of xt for quarter t (growing smoothly at the rate
∆x∗).

The second term provides a velocity growth adjustment intended to reflect long-
lasting institutional changes, while the third term features feedback adjustment
in ∆bt in response to cyclical departures of xt from the target path x∗t , with
λ ≥ 0 chosen to balance the speed of eliminating x∗t −xt gaps against the danger
of instrument instability.

4.1.5 A Reconsideration of Money Growth Rules

If the Federal Reserve would have used a money rule targeting money growth
instead of the interest rate during the 2007-2009 recession, the US economy would
have recovered more quickly, and during the 2009-2015 period of zero nominal
interest rates, it would have stabilised output and inflation with comparable
performance [BI22]. While the recent consensus was that policy rules using
constant rates of money growth would have performed poorly in comparison
to Taylor rules, recent work [BI22] shows that money growth rules augmented
to adjust to movements in the output gap and inflation in a manner similar to
the Taylor rule will perform significantly better, on par with more conventional
Taylor rules for the interest rate. Thus, the reconsidered money growth rule is
given by

ln (µt/µ) = ρmm ln (µt−1/µ) + ρmπ ln (πt/π) + ρmx ln (xt/x) (4.12)

where the previous variables are defined as:

• µt = Mt/Mt−1 denotes the growth rate of nominal money

• µ denotes the steady-state rate of money growth

• π denotes the steady-state rate of inflation
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• x denotes the steady-state values of the output gap

Depending on the values of the parameters, the following cases can be considered:

• ρm = ρmπ = ρmx = 0 is the constant money growth rule as advocated by
Friedman [FS63]

• ρmπ < 0 and ρmx < 0 allow to stabilise inflation and the output gap in
response to shocks

• ρmπ < 0, ρmx < 0 and ρmm > 0 prescribe a gradual response of money
growth to movements in inflation and the output gap, much like the Taylor
rule with interest rate smoothing

4.2 Ranking of Policy Rules

5 Implementation Details
The calculation of the stochastically-dominant optimal monetary policy is imple-
mented using Dynare [ABJ+22] with an additional 225.000 MATLAB/Octave
LOCs.

5.1 Global Implementation
Different countries feature different macro-economic indicators (inflation, interest
rate, output, GDP growth, exchange rates...), thus it is very important for the
consensus protocol to be aware of the different nationalities of its participants
(nodes and/or users): Pravuil [Cer21] is specifically designed for an international
setting as it integrates national identity cards and biometric passports in layer 1,
making it ideal to implement different monetary policies in different countries.

Furthermore, the combination of Zero-Knowledge Proof of Identity[Cer19b]
with the Zero-Knowledge Stochastically Dominant crypto-currency induces the
following pincer manoeuvre:
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Figure 5.1: Pincer manoeuvre inducing a downward spiral on PoW/PoS crypto-
currencies (in red) and a virtuous cycle for the Zero-Knowledge Stochastically
Dominant crypto-currency (in green)

5.2 Zero-Knowledge Monetary Policy
To understand the reason behind the lack of advanced monetary policies in
crypto-currencies as the ones described in this paper in subsections 4.1, one
has to look back to a reply by Satoshi Nakamoto [Nak09b] on its original post
announcing the first implementation of Bitcoin:

Indeed there is nobody to act as central bank or federal reserve
to adjust the money supply as the population of users grows. That
would have required a trusted party to determine the value, because I
don’t know a way for software to know the real world value of things.
If there was some clever way, or if we wanted to trust someone to
actively manage the money supply to peg it to something, the rules
could have been programmed for that.

Fortunately, the author of this paper is more knowledgeable: this subsection
describes a zero-knowledge protocol to securely compute monetary policies using
authenticated economic series and commit their resulting zero-knowledge proofs
on the blockchain.
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Figure 5.2: Committing zero-knowledge monetary policies on a blockchain

As pictured in the Figure 5.2 above, there are 3 parties to the protocol:

• Miner: commits transactions to the blockchain and gets rewarded accord-
ing to a monetary policy rule using data from providers of authenticated
economic series, and optionally its own private data.

• Providers of Authenticated Economic Series: take economic series
from public providers (e.g., FRED, db.nomics, ...) and authenticate their
data on the blockchain by signing with their private keys skecon, so it can
later be verified by everyone with the public key pkecon.

• Blockchain Validators: blockchain nodes that verify transactions, blocks,
and proofs. As previously discussed 5.1, they should be running the Pravuil
[Cer21] consensus protocol.

5.2.1 Security Model

The security model is defined with an ideal functionality FzkMonetaryPolicy that
rigorously sets the security requirements of the zero-knowledge protocol:

• Initialisation: the blockchain is initialised with public input data p and
a computation circuit C

• AuthenticateEconomicData: the provider of Authenticated Economic
Series sends a data authentication request to obtain the digital signature
secon over (datapublic).

• zk-CommitMonetaryPolicy: miners request with authenticated data
containing inputpublic, inputprivate, the hash h of inputs, and the outputminer.
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Ideal Functionality FzkMonetaryPolicy

FzkMonetaryPolicy interacts with the adversary A, the miner, the providers of
authenticated economic series, the ideal functionality Fsig and the ideal
blockchain ledger functionality L with the following queries:

• Initialisation: upon receiving (init, C, p) on initialisation:

– store the circuit C and the public input data p

– send (init, C, p) to A

• AuthenticateEconomicData: upon receiving
(authenticate, datapublic) from a provider of authenticated economic
series:

– send (sign, provider, datapublic) to Fsig and receives signature secon
– send (sign, provider, datapublic) to A

• Validate: upon receiving
(
validate, outputminer, inputpublic, inputprivate, h, secon

)
from a miner:

– send (verify, provider, h, secon) to Fsig and check that it’s correct

– check that
(
p, outputminer, inputpublic, inputprivate, h

)
satisfies the

circuit C

– send
(
validate, outputminer, inputpublic, h, secon

)
to A

The ideal functionality FzkMonetaryPolicy captures the following design goals:

• Authenticity: blockchain validators execute only on resulted computa-
tions from providers of authenticated economic series, rejecting otherwise.

• Privacy: the private data of the miner is never exposed to anyone, and
the blockchain validators are executed correctly without the private data
using the zero-knowledge proof.

5.2.2 Protocol Description and Implementation

Using a zero-knowledge SNARK scheme Λ, the steps of the proposed scheme
would be as follows:

• Initialisation: A security parameter 1λ is picked in accordance with the
security requirements, and a circuit C is constructed for the computation
over the authenticated data. Then, a trusted generator or a MPC protocol
setups the zk-SNARK with

(
1λ, C

)
to create the Common Reference String

for proof generation and verification.
Concurrently, the provider of authenticated economic series chooses a
public/private key pair (pkecon, skecon). Only then, (CRS, pkecon) are
published on the blockchain for everyone to check their validity.
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• AuthenticateEconomicData: providers of authenticated economic series
obtain signatures secon with parameters (skecon, (h,datapublic)).

• zk-CommitMonetaryPolicy: miner uses circuit C of the monetary
policy to obtain the result outputminer and a hash h of

(
inputpublic, inputprivate

)
;

then, the miner executes the zk-SNARK for proving with parameters(
CRS, p, inputpublic, inputprivate, outputminer, h

)
obtaining the zero-knowledge

proof π. Then, the miner sends a transaction to the blockchain validators
as follows:

txskminer =
(
validate, π, inputpublic, outputminer, h

)
• Validation: blockchain validators verify the zk-SNARK with parameters(

CRS, pkecon, π, p, inputpublic, outputminer, h
)
: only in case it’s found valid,

then the block from the miner is accepted with the computed monetary
policy.

31



zk −MonetaryPolicy Protocol

Miner:

• zk-CommitMonetaryPolicy: on input(
commit, p, inputpublic, inputprivate, outputminer, h

)
– prove with zk-SNARK:

π = Prove
(
CRS, p, inputpublic, inputprivate, outputminer, h

)
– send txskminer =

(
validate, π, inputpublic, outputminer, h

)
to the

blockchain validator

Providers of Authenticated Economic Series:

• Initialisation:

– (pkecon, skecon) = KeyGeneration
(
1λ
)

• Commit Authenticated Economic Data:

– compute h = Hash(datapublic) and secon =
Sign (skecon, (h, datapublic))

– send (h, secon) to the blockchain

Blockchain Validators:

• Initialisation: upon receiving (init, C, p, CRS, pkecon)

– Store the public input data p for C

– Store the common reference string CRS and pkecon

• Validation: upon receiving
(
validate, π, inputpublic, outputminer, h

)
– Check that h is stored on the blockchain

– Check that zk-SNARK
(
CRS, pkecon, π, p, inputpublic, outputminer, h

)
is valid

– If valid, proceed to store the transactions, block, and associated
zk-proof π

The following theorem formalises the security and privacy of the above
scheme:

Theorem 27. If Λ is a simulation-extractable zk-SNARK with data authentica-
tion scheme, then the above scheme is a privacy-preserving scheme under the
universally composable framework.

Proof. See I.

Corollary 28. In the implementation, a simulation-extractable zk-SNARK such
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as Plonk must be used [GKK+21], even if it has larger proofs than other more
succinct zk-SNARKs.

An implementation in Go using gnark[BPH+22] is available at https://
github.com/Calctopia-OpenSource/cothority/tree/zkmonpolicy

6 Conclusion
The present paper has tackled and successfully solved the problem of optimal
monetary policies specifically tailored for crypto-currencies, stochastically domin-
ating all the other previous crypto-currencies. Furthermore, the efficient portfolio
is to hold the stochastically dominant crypto-currency implementing the optimal
monetary policy, a strategy-proof arbitrage featuring a higher Omega ratio with
a higher expected return, inducing a Nash equilibrium over the crypto-currency
market.
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Part I

Appendix
Proof. (Theorem 27 ). The protocol 5.2.2 securely realises the ideal function-
ality FzkMonetaryPolicy 5.2.1: by using the universal composability framework,
we first show an ideal-world simulator for the dummy adversary A automatically
passing messages to and from the actual adversary, the environment E ; then, we
show the indistinguishability of the ideal and the Fsig-Hybrid worlds.

Ideal-world simulator . For conciseness, we only focus on the simulator S
and not on the blockchain functionality.

- Initialisation: simulator S obtains ĈRS and a trapdoor τ by running a
simulated setup algorithm of the zk-SNARK scheme Λ. Then, simulator S keeps
τ and sends ĈRS to E .

- Simulating honest parties (note that only zk-CommitMonetaryPolicy
needs to be simulated): E sends

(
validate, outputminer, inputpublic, inputprivate, h

)
to an honest miner and simulator S receives

(
validate, outputminer, inputpublic, h

)
from the ideal functionality FzkMonetaryPolicy; then, simulator S generates an
indistinguishable proof π using trapdoor τ (i.e., without knowing inputprivate).
Finally, S sends

(
validate, π, inputpublic, outputminer, h

)
to the blockchain val-

idators.
- Simulating corrupted parties: E requests to the simulator S on be-

half of corrupted parties; then S processes as follows: S receives (validate,
outputminer, inputpublic, inputprivate, h) and extracts inputprivate from the proof
π using the trapdoor τ , then sends

(
validate, π, inputpublic, outputminer, h

)
to

FzkMonetaryPolicy.
Indistinguishability between the ideal and the Fsig-Hybrid worlds:

a series of games from the Fsig-Hybrid protocol execution until the ideal world.
- Fsig-Hybrid model: a dummy adversary passes messages for the environ-

ment E , the actual adversary.
- Hybrid H1: adds to the Fsig-Hybrid world calls to the simulated setup

that generates τ (kept by the simulator) and ĈRS, sent to E . H1 replaces the
real proofs with the simulated proofs using ĈRS and τ : due to the computational
zero-knowledge property, H1 is computationally indistinguishable from the Fsig-
Hybrid world.

- Hybrid H2: adds the simulation of the blockchain to the H1 world. From
the adversary E ’s point of view, H2 is indistinguishable from H1 because the
blockchain functionality is public.

- Hybrid H3: adds to the H2 world, the extraction of the private witness
from a zero-knowledge proof π by S if it is a valid proof, otherwise aborts. H3

is indistinguishable from H2 because the abort probability is negligible due to
the simulation extractability property of the zk-SNARK.

Finally, the ideal and the Fsig-Hybrid world are computationally indistin-
guishable because H3 is computationally indistinguishable for E from the ideal
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simulation. Note that any universal-composable signature scheme can implement
Fsig due to the universal composition theorem.
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