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Abstract. Byzantine broadcast is one of the fundamental problems in distributed computing. Many
practical applications from secure multiparty computation to consensus mechanisms for blockchains
require increasingly weaker trust assumptions, as well as scalability for an ever-growing number of
users, which rules out existing solutions with linear number of rounds or trusted setup requirements.
In this paper, we propose the first sublinear-round and trustless Byzantine broadcast protocol. Unlike
previous sublinear-round protocols, our protocol does not assume the existence of a trusted dealer who
honestly issues keys and common random strings to the parties.
Our protocol is based on a new cryptographic protocol called verifiable graded consensus, designed
to act as an untrusted online setup, enabling n parties to almost agree on shared random strings.
We propose an implementation of the verifiable graded consensus protocol using transparent setup
verifiable delay functions and random oracles, which is then used to run a committee-based Byzantine
protocol, similar to Chan et al. (PKC 2020), in an unbiased fashion. Finally, we obtain a polylog-round
trustless Byzantine broadcast with amortized communication complexity of Õ(n2), which can be further
improved to Õ(n) per instance for multiple instances of parallel broadcast.



1 Introduction

In the problem of Byzantine broadcast, a sender distributes its input v to n parties. A protocol
for broadcast is deemed secure if it satisfies two properties in the presence of any t < n Byzantine
corruptions: (1) consistency : all honest parties output the same value, and (2) validity : all honest
parties output v if the sender honestly follows the protocol. Broadcast is essential in ensuring a
consistent view between parties, and has important applications in protocols for multiparty com-
putation (MPC), verifiable secret sharing (VSS) and state machine replication (SMR). To reduce
the overhead of such applications, a long line of works has focused on minimizing two metrics: (1)
round-efficiency : how many synchronous rounds does the protocol run for? and (2) communication-
efficiency : how many bits does the protocol exchange? By the famous works of Dolev and Strong [18],
and Dolev and Reischuk [17], t + 1 synchronous rounds and Ω(n · t) communication are both nec-
essary and sufficient to achieve broadcast deterministically. This severely limits the practicality of
such protocols as n grows large.

Fortunately, randomized protocols are known to bypass these lower bounds. Thus, an active area
of research has studied robust and efficient randomized broadcast protocols for the most challenging
setting with a dishonest majority of n/2 < t < n corrupted parties. While major progress has been
made toward this goal, existing round-efficient protocols fall into one of two unsatisfactory categories.

Protocols of the first category [10,44,45] achieve o(n) rounds for any constant fraction of cor-
rupted parties. However, they rely on a trusted dealer who securely generates and distributes crypto-
graphic parameters during a setup phase (e.g., signing key pairs). Unfortunately, assuming a trusted
dealer is unacceptable for high-stake scenarios as it lies at odds with the primary goal of distributed
systems: to eliminate single points of failure.

Due to the lower bound of Lamport et al. [33], we cannot hope to avoid some form of cryp-
tographic setup altogether. A natural question is whether it is possible to design a round efficient
broadcast protocol for the dishonest majority setting in the plain public key model. Rather than
relying on a trusted dealer, protocols for this model allow parties to generate their own secret and
public keys. In this manner, trusted setup is minimized to a public bulletin-board to which parties
can post their public keys before commencing protocol execution. On the downside, existing proto-
cols of this second category by Garay et al. [24] and Fitzi and Nielsen [21] achieve security only for
a very small margin where the number t of corrupted parties must satisfy t/n− 1/2 ≤ o(n).

In this work, we significantly improve over the state of the art. Concretely, we design broadcast
protocols in the plain public key model that are secure against an adaptive dishonest majority
of t ≤ (1 − ϵ)n, for constant ϵ ∈ (0, 1), except for negligible probability in a statistical security
parameter λ. Our contributions can be summarized as follows.

- Broadcast. We provide a stand-alone binary broadcast protocol with Õ(λ) round complexity
and Õ(n3) total communication complexity. Our protocol compares favorably to the Dolev-
Strong protocol [18], as it reduces the round complexity from O(n) without introducing trusted
dealers at the cost of only logarithmic increase in the communication cost compared to O(n3).

- Amortized Broadcast. We show how to amortize the setup cost, whenever multiple broadcast
instances have to be run. This is a problem that naturally comes up in many applications in
which broadcast is of relevance, e.g., VSS, MPC, and SMR. We obtain an amortized broadcast
communication complexity of Õ(n2) at a round complexity of Õ(λ) using n instances. This
compares favorably to the work of Chan et al. [10], which achieves the same complexity using a
trusted setup. Our techniques do not require these instances to be run in parallel.
Indeed, we can even further amortize the communication complexity per sender instance if we
are willing to consider the problem of parallel broadcast (n instances of broadcast run in parallel).
In this case, we show that it is possible to run n instances of parallel broadcast at an amortized
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cost of Õ(n2) per instance. (This amounts to Õ(n) per single sender instance of broadcast within
each parallel invocation.)
Our broadcast protocols are build over a Verifiable Graded Consensus on Random Strings

protocol, which provides an online setup for graded shared randomness that has O(λ) round com-
plexity and Õ(n4) communication complexity. We show how to reduce the communication to Õ(n3)
by using the gossip techniques of Tsimos et al. [43], with a round complexity polylogarithmic in n.

Our solution relies on the random oracle heuristic and delay functions, but we believe this to
be a minor restriction. Indeed, many works have considered setup-free protocols in the random
oracle model and resource-restricted cryptography assumptions, for example, Andrychowicz and
Dziembowski [2] and Garay et al. [25,26].

1.1 Technical Overview

We now provide an overview of our techniques.

Chan et al.’s Protocol. Our starting point is the construction of Chan et al. [10] which achieves
sublinear round complexity against (1−ϵ)n adaptive corruptions, for constant ϵ > 0. At a high level,
it delegates the message signing steps in the Dolev-Strong [18] protocol to a small ad-hoc committee
of roughly O(λ) parties. (To counter adaptive corruptions, there is one committee per bit.) If at least
one party in the committee is honest, their protocol achieves O(λ) round complexity and O(λ2n2)
communication. For committee election, a verifiable random function (VRF) is used, which allows
a party P to evaluate a pseudorandom function F on a point v privately, as y ← F (sk, v), where sk
is P ’s private key. The VRF also produces a proof π that can be used to verify y against P ’s public
key pk. Thus, each party can be independently elected a committee member with λ/n probability
if its VRF output y evaluated on, e.g., a fixed identifier id, falls below a certain threshold.

In [10], a trusted dealer generates the key pairs on behalf of all parties and securely distributes
them before the protocol execution. The approach as sketched above fails if parties generate their
VRF keys and register them to a public bulletin-board. Namely, a malicious party P can choose
its key to minimize its output when evaluated on the fixed identifier, thus becoming a committee
member with high probability. As such, an adversary controlling any constant fraction of the parties
can degrade Chan et al.’s protocol to O(n) rounds by electing all of them to the committee.

Removing the Trusted Dealer. One way of addressing the above issue is for parties to agree on
an unpredictable identifier id, after registering their keys to the public bulletin-board. Intuitively,
this should thwart any attempt of generating VRF keys in a way that minimizes the output when
evaluated on id. Unfortunately, this introduces a circular issue: how can parties agree on an unpre-
dictable string id if their ultimate goal is to agree on the sender’s output? To add to the difficulty,
note that the round complexity of the resulting broadcast protocol now has to take into account the
process of agreeing on id, in addition to any other steps. Therefore, agreement on id is only helpful
if it can be achieved in a round-efficient manner.

To break this circularity, our approach follows the template (see [19,30,2,26]) of boosting a weak
form of agreement on an unpredictable string to a strong form of agreement on an arbitrary sender
input. Compared to prior work, however, we face a major challenge: we are in a dishonest majority
setting with any constant fraction of adaptive corruptions. This disqualifies typical approaches such
as VSS [19,30] (which requires an honest majority) or reducing the number of Byzantine parties to
run an honest-majority broadcast protocol [24,21] (which requires either t/n−1/2 ≤ o(n) or trusted
setup). Thus, we have to develop novel techniques in order to reach our objective.

Verifiable Randomness. Let us describe the difficulty of agreeing on an unpredictable and unbi-
ased random string id. Consider a naïve protocol where parties locally generate random seeds and
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share them; then, parties combine them into an output. Setting aside for the moment the issue of
reaching agreement on these outputs, there is an obvious problem with bias: dishonest parties could
observe the honest parties’ strings and accordingly adjust or simply widthold their own strings, thus
biasing the outcome. These issues can be overcome using, e.g., VSS (but which requires honest ma-
jority), which commits a party P to a value s in such a way that s can be forcibly revealed without
P ’s contribution. Our idea is to try to mirror the properties of VSS in a dishonest majority setting,
which would be equivalent to associating to P an unpredictable random value that can be obtained
and verified by the honest parties even without the participation of P . At a lower level, what we
will ensure is that a dishonest party P ’s value that passes the honest verification is guaranteed to
be unpredictable and random.

To this end, we assume the existence of a verifiable delay function D. Critically, D cannot be
evaluated faster than within a certain predetermined time ∆, even when given access to paral-
lel computation. This suggests the following approach: first, have parties agree on locally sampled
random strings, then evaluate D on their concatenation S and set the output of D to be the final
identifier id that will be used as an input to the VRF. If ∆ is larger than the time it takes to agree
on S, it should be impossible for Byzantine parties to pick their contributions to S in a manner that
significantly biases id. Converting this approach into a working solution, however, turns out to be
very challenging. While there are prior works [42,41,15] on random beacons using verifiable delay
functions, they either require a trusted setup and/or additional assumptions on the computational
resources of Byzantine parties, an honest majority, broadcast, or do not run in o(n) rounds.

Resolving the Remaining Challenges. Our sketch above on how to use a VDF D as a “sub-
stitution” for VSS in the dishonest majority setting implicitly assumed that parties can broadcast
their individual contributions to the string S to be input to D. Naturally, we need to find a means
of replacing this with a suitable primitive that can be achieved using only a plain public key setup.

Following classical works in the area of round efficient agreement, we consider a weaker primitive
commonly referred to as gradecast (GC). In GC, parties output a grade g together with the output v.
Intuitively, g indicates their confidence in v. Thus, if the sender is honest, every party should output
the grade expressing the highest possible confidence. If the sender is dishonest, parties’ grades can
be lower and some parties might not learn the output at all. In this case, we would still like to
ensure that (i) even low grades correspond to the same output v (if any), and (ii) grades of honest
parties differ by at most one. The solution is not as straightforward as simply replacing all broadcast
channels with gradecasts. We need all Byzantine parties to evaluate D on some input S that includes
the contribution of at least one honest party. To this end, we study a generalized notion of moderated
gradecast (Mod-GC), introduced in [30].

In GC, the sender’s behaviour fully determines the parties’ confidence in the output. Mod-GC
designates a different party M as a moderator responsible for relaying the GC output of the sender to
all parties. Parties now output a grade that reflects their confidence in M rather than in the sender
directly. While the honest grades’ properties closely mirror those of GC, Mod-GC enables a more
refined strategy against dishonest parties. The main idea is for each party M to moderate (relay)
each other party P ’s GC instance. Each party can then assign M the minimum grade over all the
instances it moderated. This way, a party M who incorrectly forwards an honest party’s contribution
is punished with a lower grade. To ensure that honest parties do not punish each other for GCs
received initially with low grades, our grading scheme takes into account both the grades of the
original senders P and the efforts of M in relaying those GCs. The outcome is a scenario in which,
for all parties M , the honest parties attain graded agreement on a string id that they attribute to
M along with a grade g, regardless of the honesty of P . Unpredictability follows because a dishonest
party M can only obtain an id that holds a positive grade in the view of any honest party if id was
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computed using the contributions of all honest parties. In addition, all honest parties will have the
highest possible grade in the view of all other honest parties. We call this protocol, along with the
use of the verifiable delay function, a verifiable graded consensus on random strings.

Wrapping up. Now that all parties have unpredictable ids and associated grades in the view of
honest parties, we can use them in Chan et al.’s protocol. We set the maximum grade equal to the
number of stages in [10]. There, if a party receives r signatures on a message b ∈ {0, 1} in stage r
(consisting of two rounds), it accepts it as a possible output. If that party is on the committee, it
signs this message and forwards it to all parties so they can accept it in the next round. In our
protocol, we additionally require that for a party P to accept a bit b in stage r, all the accompanying
signatures must come from committee members who have an id with grade at least a value depending
on r. Then, these signatures will have a sufficiently large grade in the next round as well, and can
safely be forwarded by P before accepting b. The result is a sublinear-round broadcast protocol.

Communication Complexity Reduction. At this point, we have reached our primary goal of
achieving a round complexity that is sublinear in the number of parties. In the last part of this
paper, we turn our attention toward reducing the communication complexity. Concretely, we show
that it is possible to amortize the expensive setup when multiple instances of our protocol need to
be run. Note that many applications of broadcast such as MPC and SMR naturally require repeated
invocations of broadcast. To this end, we first show how to amortize the communication complexity
to Õ(n2) bits per instance when O(n) instances at Õ(λ) rounds are run. We stress that it is not
necessary to run the instances in parallel.

To obtain these improvements, we adapt the gossip-based techniques introduced by Tsimos et
al. [43] to reduce the communication complexity when running many moderated gradecasts in
parallel. However, adapting the results of Tsimos et al. to non-binary messages is highly non-trivial.
In our case, parties have to drop conflicting non-binary messages in order to reduce communication,
while ensuring the conflicts reach all honest parties in due time to guarantee a difference of at most
one in their grades. Using these techniques reduces the communication complexity for the verifiable
graded consensus (and thus, for broadcast as well) to cubic in the number of parties n, with a round
complexity polylogarithmic in n.

The online setup can be used to obtain random ids for multiple broadcast instances via a random
oracle. Therefore, the amortized communication cost for a broadcast instance is quadratic, over n
instances. Extending the techniques of Tsimos et al. even further, amortized complexity per sender
instance can be improved all the way down to Õ(n), given that we run O(n) instances of parallel
broadcast, i.e., where all senders send n values in parallel. This problem, also known as interactive
consistency, is of central importance in several of the aforementioned applications, in particular VSS
and MPC. In the latter type of protocol, it is frequently the case that up to O(n) parties distribute
some value or accuse each other of incorrect behaviour within the same round.

Open questions. While we weaken the setup assumptions compared to a trusted dealer, our solu-
tions require random oracles. We leave open to design a sublinear round broadcast in the standard
model without trusted setup. In particular, this requires to reach graded agreement on the random
strings to be fed in the VRFs without relying on random oracles, which rules out our current ap-
proach. One of the main bottlenecks is that in order to prevent biasing from an adversary controlling
t = O(n) parties, honest parties might need to evaluate O(n) VDFs, which is not sublinear-round
anymore. Using polylogarithmic samplers has the potential to reduce the number of VDF evalua-
tions to sublinear in n, but comes at an enormous increase in the required values of n. Finally, we
would also need VDF and VRF constructions in the standard model that do not rely on a trusted
setup or their trusted setup can be emulated online.
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1.2 Related Work

We start with the related literature for broadcast protocols in the setup-free case apart from a
bulletin-board public key infrastructure (bulletin-PKI). Dolev and Strong [18] give a protocol against
an adaptive dishonest majority t < n with O(n3) total communication complexity. A line of work
initiated by King et al. [32,31] and Boyle et al. [8] proposed protocols with reduced communication
complexity of Õ(n3/2) but only for honest super-majority t < n/3. Momose and Ren [36] also
proposed a protocol with reduced communication complexity Õ(n2) but for honest majority t < n/2.
All these works require a linear number of rounds. Abraham et al. [1] achieve constant rounds for
broadcast but in the honest majority with trusted setup.

We now survey the literature on synchronous broadcast protocols for a dishonest majority that
achieve sublinear round complexity. The first works obtained a sublinear number of rounds only
in a narrow case t/n − 1/2 ≤ o(n): Garay et al. [24] achieved O((2t − n)2) rounds, and Fitzi and
Nielsen [21] achieved O(2t− n) rounds, against a strongly adaptive adversary.

Chan et al. [10] was the first result achieving broadcast with sublinear rounds O( n
n−t) and Õ(n2)

communication in a dishonest majority t/n−1/2 ≥ ω(1). It requires a trusted setup for the common
random strings and keys. The adversary is weakly adaptive, meaning it cannot perform after-the-
fact removals. Wan et al. [45] further improved this result by presenting a protocol for synchronous
broadcast that achieves expected constant rounds O(( n

n−t)
2) and Õ(n4) communication complexity,

but still with trusted setup. The solution requires building a trust graph which allows honest parties
to identify the corrupted parties.

Wan et al. [44] tolerates stronger adversaries that can also erase messages. In [44], parties dis-
tribute during each round their real or dummy votes through time-lock puzzles as a means of encryp-
tion against the adaptive adversary. In order to not have each honest party solve a linear number
of puzzles, parties probabilistically sample which puzzle to solve based on the puzzles’ age and then
multicast the solution and the validity proof. This guarantees that after a logarithmic number of
rounds, all honest puzzles are solved and their solutions are received by all honest nodes. However,
this solution does not guarantee that corrupt puzzles are also solved or that honest parties have a
consistent view of puzzles originating from the adversary. This is the main reason this solution cannot
be used in our case of emulating random beacons, where an adversary can bias the result by observ-
ing the intermediate opened puzzles and deciding to not allow some corrupt puzzles to be opened.

Hou et al. [29] describe a blockchain that tolerates dishonest majority, loosely based on the Chan
et al. broadcast protocol [10], proof of stake, proof of work in the random oracle model (ROM).

Other works in the adaptive dishonest majority case [43,37] studied the amortized communi-
cation complexity of protocols over a number of broadcast instances, but achieve a linear number
of rounds. Tsimos et al. [43] study the parallel version of broadcast for t ≤ (1 − ϵ)n, where every
party has some input and, after the protocol, the properties of broadcast need to hold per each
separate sender. By combining gossiping and a variation of the protocol from Chan et al. [10], they
achieve parallel broadcast with amortized communication Õ(n2) assuming bulletin-board PKI, or
Õ(n) assuming trusted PKI. More recently, Momose et al. [37] study a version of multi-shot broad-
cast, where there are multiple sequential broadcast calls. They achieve a synchronous protocol with
amortized O(n2) communication over a number of consecutive executions for any t < n, assuming
only signatures, and against strongly adaptive adversaries.

Graded broadcast, graded consensus, graded verifiable secret sharing, have been proposed in
various settings as a stepping stone to stronger primitives of Byzantine broadcast or Byzantine
agreement, see [19,14,30,24] for instance. Recently, in the honest majority case, [22] generalized
graded consensus to the multi-dimensional case which deals with a vector of inputs.
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Time-lock puzzles (TLP) [40], timed commitments [7] and verifiable delay functions [5] are
cryptographic tools relying on time assumptions, which involve “slow functions” that can be opened
or evaluated only after an a priori chosen amount of time passes. Several constructions of VDFs
have been proposed in [5,38,46,16]. VDFs are currently used or intended to be used in blockchain
applications such as Ethereum and Chia [9,12].

In the context of timing assumptions and broadcast, Das et al. [15] describe a Byzantine agree-
ment protocol with VDF in ROM, which achieves an expected constant round complexity without
trusted setup, tolerating t < n/2 adaptive corruptions. Although also based on graded agreement
and VDFs, their construction differs conceptually from ours. Das et al. [15] generate a graded PKI
with only two grades, then use VDFs both in this construction and to elect a leader on which honest
parties agree with high probability, in order to augment a graded byzantine agreement into a full
byzantine agreement. Moreover, their constructions heavily rely on t < n/2.

The use of VDFs for multi-party unbiased randomness generation was first exemplified in [34].
Constructing randomness from VDF/TLP with transparent setup in ROM, but assuming broadcast,
is also addressed by Bhat et al. [4], who tolerate t < n only if the adversary is covert, and by
Thyagarajan et al. [42] who tolerate t < n. Freitag et al. [23] propose a fair coin flipping protocol
that assumes a public bulletin-board and a partially trusted setup called all-but-one model (non-
interactive but where parties need to solve all TLPs) or with trusted setup and ROM (interactive
but publicly verifiable).

Our work, like most of the ones described above, considers an atomic send model and uses
property-based definitions. In the case of a stronger adversarial model of non-atomic sends, where
an adaptive adversary can corrupt a party and revert or modify its send action before it reaches all
the other parties, Cohen et al. [13] investigate the feasibility of property-based and simulation-based
adaptive broadcast (also assuming TLPs).

We provide a comparison of the related work that is most closely related to our results in Table 1.

Table 1. Comparison of the previous works for synchronous broadcast in the dishonest majority case and our results.
Here, n is the number of parties, ϵ is the honest fraction, κ is a computational security parameter and λ is a statistical
security parameter (not necessarily the same across all entries). If unspecified, the calls in the last column can be
either parallel or sequential.

Protocol Corruptions t Assumptions Rounds Communication BC instances
Dolev and Strong [18] < n bulletin-PKI O(n) O(n3 · κ) 1 call

Chan et al [10] < (1− ϵ)n trusted-PKI O(λ) O(n2 · λκ) 1 call

Tsimos et al. [43] < (1− ϵ)n bulletin-PKI O(n logn)
Õ(n2 · λκ)
amortized

n parallel calls

Tsimos et al. [43] < (1− ϵ)n trusted-PKI O(λ logn)
Õ(n · λ3κ)
amortized

n parallel calls

Momose et al. [37] < n bulletin-PKI O(n)
O(n2 · κ)
amortized n2 sequential calls

ΠBC (Thm. 3) < (1− ϵ)n
bulletin-PKI, ROM,

delay functions O(λ) O(n4 · λκ) 1 call

Π ′
BC (Thm. 4) < (1− ϵ)n

bulletin-PKI, ROM,
delay functions O(λ logn) Õ(n3 · λ2κ) 1 call

Π ′
BC (Thm. 5.1) < (1− ϵ)n

bulletin-PKI, ROM,
delay functions O(λ logn)

Õ(n2 · λ2κ)
amortized

n calls

ΠBC (Thm. 5.2) < (1− ϵ)n
bulletin-PKI, ROM,

delay functions O(λ)
O(n2 · λκ)
amortized n2 calls

Π ′
BC with gossiping (Thm. 5.3) < (1− ϵ)n

bulletin-PKI, ROM,
delay functions O(λ logn)

Õ(n · λ3κ)
amortized

n calls of n
parallel calls each
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2 Model and Preliminaries

Network. We consider n parties P1, . . . , Pn that have access to a bulletin-board public key infras-
tructure (bulletin-PKI). Every party generates a pair of keys (for e.g., signing, verifiable random
function, verifiable delay function) and posts the public key to the public bulletin-board before the
protocol starts. The posted keys are not guaranteed to have been generated correctly.

We consider a synchronous network, i.e., messages between parties are delivered with a finite,
known delay ∆r, and the local clocks of the parties are synchronized. Our protocols execute in
rounds: every round r of the protocol has length ∆r and parties start executing round r at time
(r− 1) ·∆r. We assume atomic send operations, i.e., parties can send a message to multiple parties
simultaneously such that the adversary cannot corrupt them in between individual sends.

Security parameters. We assume all cryptographic hash functions are modeled as random oracles
(ROs). This means that for any input x in the domain, a hash function H returns H(x) if it was
queried on x before and otherwise returns a random value from the codomain. For a computa-
tional security parameter κ, we assume that the hash function outputs, signatures, verifiable delay
function outputs and verifiable random function outputs are of size O(κ). For a statistical security
parameter λ, we use a failure probability δ ∈ (0, 1) that is negligible in λ but independent of n, e.g.,
log(1/δ) = polylog(λ). In general, the computational security parameter is larger than the statistical
security parameter. A more involved discussion on the security parameters is given in Section 6.

Threat model. We consider a Byzantine fault model, in which some fraction of the parties may
be corrupted by an adversary t ≤ (1 − ϵ)n, for a constant ϵ ∈ (0, 1). The adversary controls the
messages and current state of any corrupted party, and can coordinate the actions of all corrupted
parties. The adversary is adaptive and rushing, i.e., it can adaptively corrupt parties over the course
of a protocol execution and wait until all honest parties have sent their messages before making
a decision. Uncorrupted parties are called honest. The adversary cannot perform after the fact
removals, i.e., it cannot indefinitely prevent a message from being delivered once it is sent by an
honest party, even if the adversary corrupts it at some point after the send action.

We assume the adversary has access to a probabilistic polynomial-time (ppt) machine. Looking
ahead, the adversary is ∆-limited, i.e., evaluating a VDF with difficulty parameter ∆ on the adver-
sary’s machine takes sequential time at least ∆ even with poly(∆,κ) processors. Honest users might
have slightly weaker machines.

Signatures. We use the notation sigi(m) to denote a signature of party Pi using ski on mes-
sage m and veri(s,m) to denote the verification of signature s on message m using public key pki.
We assume idealized signatures that achieve perfect correctness: for any message m, it holds that
veri(sigi(m),m) = 1, and unforgeability under chosen-message attack : for a pair of honestly gener-
ated keys (ski, pki), a party that does not have access to ski, cannot generate a signature s such
that veri(s,m) = 1.

In the following, we implicitly assume the definitions are for protocols tolerating t malicious
parties, i.e., the conditions hold whenever there are at most t corrupted parties.

Broadcast. Introduced in the seminal work by Lamport et al. [33], broadcast ensures agreement
of honest parties on a sender’s message. In this work, we focus on binary broadcast, where values
input and output are bits.

Definition 1. A protocol executed by parties P1, P2, . . . , Pn, where a sender P ∗ ∈ {P1, . . . , Pn}
begins holding input v∗, is a broadcast protocol if the following notions hold:

(Validity) If P ∗ is honest, then every honest party outputs v∗.
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(Consistency) Every honest party outputs the same value v.
(Termination) Each honest party Pi outputs (vi) and terminates.

Gradecast and Moderated Gradecast. Gradecast, introduced by Feldman and Micali in [20]
and generalized for an arbitrary grade by Garay et al. [24], is a relaxation of broadcast, where honest
parties are allowed to disagree by a “small amount”.

Definition 2. A protocol executed by parties P1, P2, . . . , Pn, where a sender P ∗ ∈ {P1, . . . , Pn}
begins holding input v∗, is a g∗-gradecast protocol if the following notions hold:

(Validity) If P ∗ is honest, then every honest party outputs (v∗, g∗).
(Soundness) Let Pi, Pj be two honest parties outputting (vi, gi) and (vj , gj), respectively. If gi ≥ 2,
then vi = vj and |gi − gj | ≤ 1. If gi = 1, then either vi = vj or gj = 0.
(Termination) Each honest party Pi outputs (vi, gi) where g ∈ {0, . . . , g∗} and terminates.

We also define moderated gradecast where a moderator M re-gradecasts the value it received from
P ∗, the sender in gradecast. The goal is for the honest parties to use the two pieces of information
coming from the two gradecasts with different senders, to obtain “similar” outputs and to grade the
moderator.

Definition 3. A protocol executed by parties P1, P2, . . . , Pn, where a sender P ∗ ∈ {P1, . . . , Pn}
begins holding input v∗, and a moderator M ∈ {P1, . . . , Pn} moderates for the sender P ∗, is a
g∗-moderated gradecast protocol if the following notions hold:

(Validity) If P ∗ is honest and moderator M is also honest, every honest party Pi outputs (v∗, g∗).
(M-Validity) If moderator M is honest, then every honest party Pi outputs (v, gi) for some v
and for gi ∈ {g∗ − 1, g∗}.
(Soundness) Let Pi, Pj be two honest parties outputting (vi, gi) and (vj , gj), respectively. If gi ≥ 2,
then vi = vj and |gi − gj | ≤ 1. If gi = 1, then either vi = vj or gj = 0.
(Termination) Each honest party Pi outputs (vi, gi) where gi ∈ {0, . . . , g∗} and terminates.

In this work, we are also interested in the parallel version of moderated gradecast, where each
party acts as an initial sender and as a moderator for all other senders. Each party will output a
vector of values and grades, with each tuple corresponding to a different party.

Verifiable Random Functions. Verifiable Random Functions (VRFs), introduced by Micali et
al. [35] are functions whose output is unique and pseudorandom and, moreover, the validity of the
function evaluation relative to a binding commitment can be efficiently proved and verified.

A VRF consists of algorithms VRF.Gen,VRF.Prove,VRF.Verify, and should satisfy Uniqueness,
Provability and Pseudorandomness (Definition 8 in Appendix A). Usually, the literature using VRFs
considers that the key generation is run at a trusted setup. We are interested in a variation where
the key pair is generated by a potentially malicious party, yet we still want to satisfy uniqueness,
provability and pseudorandomness in a modified setting. Chen and Micali [11] and Gilad et al. [27]
also require that the VRF security holds for adaptive adversaries and adversarially generated key
pairs, as long as the public keys have been chosen in advance of the seeds, but do not provide a
formal definition. Their VRF construction uses random oracles and unique signatures. Goldberg
et al. [28] discuss this issue and propose VRF constructions based on RSA or elliptic curves in
the random oracle model, which have a validation predicate for the public key in order to detect
maliciously generated key pairs.

In this work, we follow the approach suggested in Goldberg et al. First, we require a VRF to have
an additional efficient predicate VRF.Validate to check that the public key corresponds to an admis-
sible secret key. Second, we formalize the property of input indistinguishability of partially random
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inputs in the context of a maliciously generated key pair, which we call extended pseudorandomness
(Appendix A), and we require that the VRF stisfies it.

In our constructions, we can either instantiate the VRF via ROs and unique signatures, e.g.,
BLS [6] with the validity predicate VRF.ValidatePK(1

κ) = 1 if PK ̸= 1 and 0 otherwise, or we can
use the elliptic curve-based VRF via ROs from [28] with the validity predicate described there.

Verifiable Delay Functions. Verifiable Delay Functions (VDFs), defined by [5], are functions with
a unique unpredictable output that can only be evaluated after a sequential number of steps, and
moreover, the validity of the function evaluation can be efficiently proved and verified.

A VDF consists of the algorithms VDF.Setup,VDF.Eval,VDF.Verify, and should satisfy Correct-
ness, Soundness and Sequentiality (Definition 9 in Appendix A). We adapted the σ-sequentiality
definition from Boneh et al. [5] and Wesolowski [46] to the following case: no adversary is able to
compute an output for VDF.Eval on the honest random challenge concatenated with an adversarial
input in parallel time σ(∆) < ∆, even with up to a polynomially large number of parallel proces-
sors and after a potentially large amount of precomputation. The sequentiality property implies the
unpredictability of the VDF output, and in the RO model, any unpredictable string can be used to
extract an unpredictable κ-bit uniform random string.

Wesolowsky [46] gives a construction for a public coin VDF, which we adopt in our constructions.

Verifiable Graded Randomness. One of our goals in this paper is to generate strings that act as
random beacons [39] that could also be validated by the network. First, these strings should satisfy
unpredictability and bias resistance (which can be extended to indistinguishability from random in
RO model) and termination, as random beacons do. Second, we want honest parties to agree between
themselves on the beacons associated to every other party, but since broadcast is not available, we
relax this requirement to graded agreement. Third, we want these beacons to be verifiable in the
sense that once a party outputs such a string, the honest participants in the network should be
able to validate that string as belonging to that party based on their previous information. We
call a string generation protocol satisfying the requirements above a verifiable graded consensus on
random strings protocol.

Definition 4. A protocol executed by parties P1, . . . , Pn is a verifiable graded consensus on random
strings (VGC) with maximum grade g∗ composed of algorithms Gen, Process, Verify and protocol Toss:
- Gen(1κ) outputs public parameters pp;
- Toss(pp) outputs n pairs (x

(j)
i , g

(j)
i ) to party Pi;

- Process(pp, x) outputs (w, ρ);
- Verify(pp, x, w, ρ) outputs 0 or 1.

Gen is a ppt algorithm, Verify is a deterministic algorithm, while Process can be ppt algorithm but w
is a deterministic evaluation of x. A verifiable graded consensus protocol on random strings should
satisfy the following notions:

(Graded consensus properties)
(Graded Validity) If party Pj is honest, then every honest party Pi outputs (x(j), g

(j)
i ) for some

x(j) and for g
(j)
i ∈ {g∗ − 1, g∗}.

(Graded Agreement) Let Pi, Pk be two honest parties outputting (x(j)i , g
(j)
i ), (x(j)k , g

(j)
k ), for some j.

If g(j)i ≥ 2, then x
(j)
i = x

(j)
k and |g(j)i − g

(j)
k | ≤ 1. If g(j)i = 1, then either x

(j)
i = x

(j)
k or g

(j)
k = 0.

(Termination) An honest party Pi terminates with output (x
(j)
i , g

(j)
i ) for every j ∈ [n], after

executing Toss, and terminates with (wi, ρi) after executing Process.

(Verifiable randomness properties)
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(Indistinguishable Randomness) If all honest grades associated to the output wi of Pi are strictly
positive, then wi is indistinguishable from random, i.e., no ppt adversary A can win the Indis-
tinguishable Randomness game with probability more than negl(κ).
(Correctness) For all κ, pp ← Gen(1κ), if (x(j)i , ·) ← Toss(pp) and (wj , ρj) ← Process(pp, x(j)i ),
then Verify(pp, x(j)i , wj , ρj) = 1.
(Soundness) For a ppt adversary A, it holds that for all pp← Gen(1κ):

Pr

[
Verify(pp, x(j)i , wj , ρj) = 1

(wj , ·) ̸= Process(pp, x(j)i )
:

(x
(j)
i , ·)← Toss(pp)

(wj , ρj)← AToss,Process(κ, pp)

]
≤ negl(κ).

Note that Process is deterministic with respect to the output w, so it follows that the outputs
of Process on the output strings of Toss also satisfy graded agreement and graded validity.

Since the verifiable graded consensus on random strings protocol can be of independent interest,
above we gave a more general definition where the adversary is not limited in sequential process-
ing time. Nevertheless, in this paper, we are working under the assumption of existence of delay
functions, hence we particularize Definition 4 to this setting. The only changes in the definition
are that (i) a time parameter ∆ will be part of the public parameters, (ii) the adversary is limited
to run in time O(poly(∆,κ)) instead of only being limited to ppt, and (iii) we particularize the
indistinguishable randomness property to:

(σ-Indistinguishable Randomness) For σ(∆) ≤ σ′(∆), where Process is σ′-sequential, no pair
of randomized algorithms A0, running in time O(poly(∆,κ)), and A1, running in parallel time
σ(∆) can win the ∆-Indistinguishable Randomness game with probability more than negl(κ).

The ∆-indistinguishable randomness game captures both the unpredictability and unbiasedness
notions, as in [3,42], and is based on the σ-sequentiality definition, which says that the adversary
cannot run in more time than σ(∆).

Definition 5. [∆-Indistinguishable Randomness Game] An adversary A := (A0,A1) and a chal-
lenger C play the following game with security parameter κ and time ∆:

1. C sends to the adversary ∆.
2. A selects the parties it wants to corrupt and sends their identities to C.
3. C computes pp← Gen(1κ, ∆) and sets the key pairs for the honest parties and sends them to A.
4. A chooses the public keys for the corrupted parties and sends them to C.
5. C discards the parties whose public keys are not consistent with ∆.
6. C and A execute the protocol AToss(pp)

0 ; A can corrupt additional parties.
7. The protocol ends when all remaining honest parties Pi ∈ Honest have generated output ({x(j)i , g

(j)
i },

wi). Denote by st the state of A obtained so far.
8. For each j, A computes w

(j)
A ← A

Process(pp,·)
1 (pp, st).

The adversary A wins the game if for at least one index j, w(j)
A = w(j) for (w(j), ·)← Process(pp, x(j)i )

and for g
(j)
i ≥ 1 for any honest party Pi ∈ Honest.

In other words, the adversary should not be able to guess the honest party Pi’s output from
Process(pp, x(i)), and even for corrupted parties Pj for which it manipulated x(j), it should not
be able to guess the output Process(pp, x(j)) as long as all honest parties Pi have strictly positive
grades for Pj . The indistinguishable randomness game can be easily obtained from Definition 5 by
removing the dependence on ∆.
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3 Emulating a Common Random String

Consider that each party Pi, i ∈ [n], samples a seed (honest parties sample random seeds). Each
honest party needs to create and “almost” agree on aggregate strings based on these seeds, via a
protocol we call moderated gradecast. The output string is then input to a VDF, and the VDF
evaluation produces an unpredictable and unbiased random string that serves as a common random
string. However, parties might not all hold the same common value, because the adversary can send
different seeds to the honest parties. The grades that honest parties hold for the final strings will
quantify how much confidence they have that their output strings coincide. In particular, grades
greater than 2 certify that honest parties have the same VDF input and hence, VDF evaluation.

We start by describing the Toss protocol, which can be seen as a parallel moderated gradecast,
which ensures the pairwise graded agreement of honest parties on their output strings. In designing
Toss, we mind the randomness and verifiability requirements on the output of Process. Then, we show
how to employ the VDFs to obtain the full verifiable graded consensus on random strings protocol.

3.1 Moderated Gradecast and Graded Consensus on Seeds

We note that a single run of a parallel gradecast protocol is sufficient to achieve graded agreement
as defined in Definition 4. Concretely, each party Pj would output for each sender Pi a message
and a grade (mi,j , gi,j). However, this would not be sufficient to achieve both graded validity with a
high grade for honest parties and unpredictability (after running Process). For instance, if Pj would
set its final string in Toss for Pi to be mi,j , then this would not be random if Pi is malicious. To
achieve unpredictability later on, we need intuitively the condition that every output string of Toss
needs to contain the input of at least one honest party. Even so, as another failed attempt with Toss
implemented with only one parallel gradecast, if Pj would set as its random string ∥i∈[n],gi,j≥1mi,j ,
the associated grade of the aggregation could always be determined by malicious parties, potentially
yielding low grades for honest parties or high grades for dishonest parties.

Therefore, we propose a second step where parties moderate the values they received in the
first step. The message of a moderator Ps is thus made up of messages that it gradecasts itself, but
since it gradecasts values from other parties as well, the aggregation is random (if it has high grade).
Moreover, moderators have their grade penalized by the difference in the outputs of their moderated
gradecast and the initial gradecast. This ensures that a moderator who honestly gradecasts a value
sent by a malicious initial sender will not be penalized by more than 1 in its final grade. Thus,
malicious parties cannot arbitrarily modify the final grades of honest parties.

In our constructions, we use the GC protocol described in [24] (see Appendix A.3), with maximum
grade g∗. We construct a moderated gradecast protocol based on several instances of GC as described
above, which we call Mod-GC. In Figure 1, we introduce directly the Toss protocol, which is comprised
of a parallel moderated gradecast.

To analyze the properties of Toss, consider first the subprotocol in Figure 1 starting from step 1,
for one moderator Ps and one sender Pi. We show that this is an instance of a moderated gradecast
protocol, Mod-GC(mi), which satisfies validity, M-validity, soundness and termination against an
adaptive adversary controlling t ≤ (1 − ϵ)n parties. Then, based on the properties of Mod-GC, we
show that Toss satisfies the graded consensus set of properties specified in Definition 4. The proofs
of these results are given in Appendix C.1.

Lemma 1. Mod-GC is a moderated gradecast protocol as in Definition 3.

Theorem 1. Protocol 1 is a Toss protocol with maximum grade g∗ satisfying Graded Validity and
Graded Agreement and Termination as in Definition 4.
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Toss(pp)

Step 0: Each party Pi randomly samples a seed mi.
Step 1: Each party gradecasts their seed.

1. Each party Pi calls GC(mi, g
∗).

2. Denote the output at Pj of the gradecast with sender Pi as (mi,j , gi,j), where mi,j is the message from
party Pi and gi,j is the associated grade.

Step 2: Each party acts as moderator.

1. For each party Ps, let m
(s)
i := [mi,s, sigi(mi,s)].

2. Each party Ps calls GC(m(s)
i , g∗), for all i ̸= s.

3. For moderator Ps, party Pj holds (ms,j , gs,j), {(m(s)
i,j , g

(s)
i,j ) : i ∈ [n] \ {s}}.

Step 3: Each party decides its output value and grade for each moderator.

1. For each party Pj , for each moderator Ps and each i ∈ [n], Pj sets Ps’s value m
(s)
i,j , with grade:

G
(s)
i,j =

{
g
(s)
i,j , if m(s)

i,j = mi,j ,
min{g(s)i,j , g

∗ − gi,j} , otherwise.

2. Pj sets its general grade for the moderator Ps as G
(s)
j = mini∈[n]{G(s)

i,j } and the message M
(s)
j =

∥
i∈[n],G

(s)
i,j≥1

m
(s)
i,j .

Fig. 1. Toss protocol (or Parallel Moderated Gradecast on random inputs).

Communication and Round Complexity. The GC protocol takes 2g∗ + 1 rounds and has
O(g∗(κ + ℓ)n2) communication complexity. Toss takes 4g∗ + 2 rounds, determined by running n-
parallel instances of GC followed by n2-parallel instances of GC. The total communication com-
plexity for n parties with inputs of length ℓ and signature size κ is n2 · CCGC(ℓ, κ, g

∗), so the total
communication complexity is O(g∗ · (ℓ+ κ) · n4).

3.2 Verifiable Graded Consensus for Random Strings

Recall the main challenges: (i) lack of trusted setup, (ii) lack of broadcast channels, (iii) dishon-
est majority, and (iv) requirement of sublinear number of rounds. To address point (i), we use
Wesolowski’s VDF construction [46] based on class group of imaginary quadratic fields, which has
transparent setup and does not contain trapdoors. Point (iii) is addressed by the Toss construction
above which is secure against a dishonest majority.

Points (ii) and (iv) limit the use of the homomorphic properties of the VDF evaluation. Par-
ties cannot gradecast (mi,VDF.Eval(mi)) because the rushing adversary can wait to see all such
messages, then bias the result by checking the parity of the aggregation of the results. Using timed
commitments can help solve this issue. However, in the worst case, the lack of broadcast causes each
honest party to open the timed commitment of every malicious party, which is not sublinear time.

We aim for each party to only have to evaluate one VDF, namely, its own. To this end, we
need the graded agreement to happen on the aggregation of the VDF inputs, which in our case,
is the concatenation of the parties’ seeds, as in the random beacon construction described in [34].
Strings that have grade greater than 1 have the guarantee that they contain seeds of honest parties,
therefore the value of this concatenated string will be unpredictable. The hash of these concatenated
seeds will be fed into the VDF evaluation, so a rushing adversary that has parallel time smaller than
the VDF difficulty parameter cannot bias the input to the VDF. Finally, looking ahead, the VDF
evaluation output (wi, ρi) will be used in a setting where it is multicast by the computing party Pi.
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An honest party Pj will have the graded input (M (i)
j , G

(i)
j ) and will confidently be able to check the

validity of the VDF output VDF.Verify(M
(i)
j , wi, ρj , ·) if G(i)

j ≥ 1.
To summarize, we use Wesolowski’s VDF construction for the algorithms Process and Verify,

and the Toss protocol as a parallel Mod-GC protocol with the sampling of local seeds, to construct
a verifiable graded consensus (VGC) on random strings. To achieve security against the adaptive
rushing adversary, the delay required to evaluate the VDF should be at least twice the time required
to run GC (in terms of the length of synchronous rounds). Below, we give more technical details.

Each party Pi generates a random value mi ∈ {0, 1}q(κ), for a polynomial q, such that an
adversary can guess mi only with negligible probability negl(κ). Then, each party shares mi via
the Mod-GC protocol. After the end of step 1 of Protocol 1, all honest parties Pj are guaranteed
to have obtained their own M

(j)
j = m

(j)
j := ∥i∈[n],gi,j≥1mi,j . Note that the adversary can decide

on its final local strings M
(j)
j for all malicious parties Pj from the first round of the gradecast

in step 1, since honest parties will rely their messages from the beginning. At the end of step 1,
each party computes VDF.EvalEK(H(m

(j)
j )). Importantly, security holds only when we do not use

trapdoor-VDFs, otherwise malicious parties would have an advantage in biasing the output.
We now compute the required difficulty parameter ∆VGC. Let ∆G := (2g∗ + 1) · ∆r denote

the duration of the gradecast protocol, where ∆r is the duration of a round. The Toss Protocol 1
takes double this amount, 2 · ∆G. We want to choose the time difficulty parameter such that the
adversary cannot finish evaluating the VDF before the end of the Toss protocol. The adversary can
do damage even in the last round of Toss, i.e., change the values of the honest parties’ strings for a
malicious moderator. While a delay of exactly 2 ·∆G is sufficient to ensure Protocol 1 ends before
the adversary can complete a VDF evaluation on values obtained in round 1, we prefer to set the
delay to take potential slight speed-ups the adversary’s machine could have in consideration.

Therefore, we set the puzzle difficulty parameter ∆VGC of the VDF employed in Process to be
∆VGC = 2 ·∆G. Then, the VDF (and Process) will be σ-sequential, for σ(∆VGC) = (1− ξ) · 2 ·∆G,
and the adversary takes at least 2 · ∆G/(1 − ξ) total time to evaluate the VDF. (We account
for the adversary’s potential speed-up by a very small ξ > 0, see Appendix A.1). Let the total
time it takes the slowest honest party to evaluate the VDF with difficulty ∆VGC = 2 · ∆G be
2 ·∆G + qh ·∆r ≥ 2 ·∆G/(1− ξ), where qh > 0 is the largest slow-down of an honest party.

We now instantiate the algorithms and protocols of the VGC. Gen will be the transparent setup
required for the VDF, Toss will be the protocol in Figure 1, Process will be the inherited VDF.Eval
on the hash of the output and Verify will be the inherited VDF.Verify. Then, we prove that ΠVGC
satisfies the desired properties (Appendix C.1).

ΠVGC(∆VGC, g
∗)

1. Gen(1κ,∆VGC): Each party Pi calls (EKi,VKi) ← VDF.Setup(1κ,∆VGC), posts the keys on the bulletin-
PKI and sets pp = (∆VGC,EKi,VKi,PKI).

2. Toss(pp): Parties execute the protocol in Figure 1 and each party Pi sets as output (M (j)
i , G

(j)
i ) for each

other party Pj and M
(i)
i for itself.

3. Process(pp,M (i)
i ): Each party Pi evaluates its own random string as (wi, ρi) = VDF.EvalEKi(H(M

(i)
i ))

(they can start computing this value before the Toss terminated).
4. Verify(pp, x, y, π): On receiving (wj , ρj) from Pj , party Pi outputs VDF.VerifyVKj

(H(M
(j)
i ), wj , ρj ,∆VGC).

Fig. 2. Verifiable graded consensus protocol for generating random strings.
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Theorem 2. Protocol ΠVGC is a verifiable graded consensus protocol on random strings, cf. Defi-
nition 4, against an adaptive ∆VGC-limited adversary who runs in at most (1− ξ) ·∆VGC = 2 ·∆G

parallel time, and can adaptively corrupt up to (1− ϵ)n parties.

Communication and Round Complexity. Protocol ΠVGC takes 4g∗ + 2 rounds to complete
Toss, but after 2g∗ + 1 rounds, (after parties obtain their local values M

(i)
i ), they start Process

which takes at most 4g∗ + 2 + qh rounds. This means that the total round complexity for ΠVGC is
slightly over 6g∗ + 3, i.e., 6g∗ + 3+ qh. The total communication complexity is O(g∗ · (ℓ+ κ) · n4).

4 Sublinear-Round Broadcast

We now construct our sublinear broadcast protocol. The concrete tools we use are:
1. A Verifiable Graded Consensus on random strings (VGC) protocol satisfying Definition 4—in

our case, instantiated via Gradecast and Verifiable Delay Functions (VDFs);
2. An adaptively secure Verifiable Random Function (VRF) that achieves the properties in Defi-

nition 8 (even with maliciously generated keys).
The VGC can be seen as an online setup phase that generates graded random identifier strings and
proofs of the validity of these identifiers. The VRF will be applied on these identifiers and used to
verifiably and correctly elect bit-specific committees. The reason we need bit-specific committees
instead of a single committee is to prevent the adaptive adversary from corrupting a party who
voted for one bit and make it also vote for the other bit. The VGC outputs also help validate the
committee membership against a dishonest majority. To that end, we also need:

3. A bound for the output of the VRFs such that the committees have at least one honest party
and fewer malicious parties than half of the number of rounds, with overwhelming probability.

However, we do not exactly obtain the equivalent of a trusted setup via VGC, and the only
guarantees that parties have are related to the grades of these distributed random strings, where
the maximum grade is denoted as g∗ and the minimum grade can be 0. This can be seen as a graded
mining functionality, with the terminology of mining as in Chan et al. [10], taken to mean consistent
committee election and membership verification. Below, we will describe how to use the grades to
our advantage over a number of rounds, in order to obtain true agreement between parties.

Let us first review in more detail the broadcast protocol of Chan et al. A party checks if it is
in the committee for the bit b via an (ungraded) ideal mining functionality, which also allows other
parties to validate this statement. This mining functionality is instantiated via an adaptively secure
VRF (in [10] implemented with non-interactive zero-knowledge proofs and commitment schemes).
This enables parties to secretly but verifiably self-elect in a committee for a specific bit and only
reveal their membership after they have performed their committee task, thus achieving security
against an adaptive adversary. The protocol is composed of stages, each stage r having two rounds:
distribution and voting. For a fixed number of rounds, each party observing a batch of r valid
signatures from the committee members of b echoes this batch to all parties (distribution round). A
party that is in the committee adds its vote if it observes a batch of r votes on the bit b for the first
time, and multicasts the updated batch of r + 1 signatures (voting round). Chan et al. show that
it is possible to achieve consistency with overwhelming probability even if the number of rounds is
constant and the committee size is also constant, against a constant corrupted fraction.

In our case, there is a key difference with respect to the mining functionality from Chan et al.,
which is that the verification performed by other parties on the membership of one party will return
a binary answer and a grade in {0, . . . , g∗}. This mining functionality does not necessarily return the
same grade to all parties, but the returned grades to two honest parties can differ by at most one.
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Dishonest parties might try to convince honest parties to accept their membership despite having
lower grades. To address this, we will interconnect the validity of the membership at a given round
with the grade associated to the party that wants to prove is a committee member.

Specifically, we set the maximum grade g∗ that can be returned by the VGC to be equal to the
number of rounds the Chan et al. protocol requires. We also say that a batch of r signatures will
be valid only if there are r signatures from parties on which the verification predicate returns 1 and
which have a sufficiently large grade, greater than g∗ − 2r + 1 (we will define this more formally
below). A symmetric way to view this is that at each round ρ, the value of the grades have to be at
least g∗− ρ, and the number of signatures has to be at least half of the round number. This ensures
that parties that have a grade of 1 can only submit their signatures in the last possible round and
parties that have grade of 0 cannot submit their signatures at all.

Since the grades obtained by the honest parties might differ by one, an honest party Pi might
accept a batch with r signatures, i.e., all grades for the signers that Pi has are at least g∗ − 2r+ 1,
but another honest party Pj might not accept it if it has a lower grade g∗ − 2r for one of the same
signers. To avoid this, in stage r, in the distribution round 2r − 1, where parties just echo what
they received, honest parties accept r-batches with grade at least g∗ − 2r + 1. At the end of voting
round 2r however, where committee parties multicast their votes after seeing a valid batch for that
round (with grades at least g∗− 2r), committee parties are allowed to have a lower grade of at least
g∗ − 2r, in order to be picked up in the distribution round of stage r + 1.

Recall that we only assume a bulletin-PKI. Every party Pi has generated a signing key pair
(ski, pki), a VRF key pair (SKi,PKi) and the public parameters pp output by Gen from the VGC
(which in the instantiation from Section 3, contains a VDF key pair (EKi,VKi)). Every party Pi

posts on the public bulletin-board the public keys, so all parties have access to the bulletin-PKI,
before commencing the rest of the broadcast protocol (i.e., before starting Toss). Honest parties
check the predicate VRF.ValidatePKj

(1κ) and discard the parties Pj for which it does not return 1.
After running Toss from VGC, each party has access to the strings for the rest of the network,

with their accompanying grades, and the accompanying proofs for their own output string after
running Process. The local string w obtained by a party for itself in VGC should be hashed first to
achieve randomness from unpredictability and unbiasedness. As long as the output of Process (in
our case, the output of a VDF) has length polynomial in the security parameter κ, the output of a
hash function H modeled as a random oracle H(b||w) is random. The outputs of Toss and Process
are then enough for the parties to run g∗/2 stages (with g∗ rounds) as described above, where in
each stage parties vote and echo the votes of the valid members of the committee, via the VRF.

We now give the rest of the technical details for achieving a trustless sublinear round protocol.

Electing a committee member. Each party Pi maintains two variables, named call0i and call1i ,
both initialized by −1. The role of the variable callbi is to store the local view of whether Pi is in
the committee for bit b ∈ {0, 1}.

Given a bit b, SKi the VRF secret key of Pi, wi the Process output of Pi, and boundϵ,δ the
appropriate bound for the VRF, the party Pi checks (once) whether it is in the committee for b:

(i) Retrieve from memory (yi, πi)← VRF.ProveSKi
(H(b||wi)).

(ii) If callbi = −1 and yi < boundϵ,δ, set callbi = 1, else set callbi =⊥.

Following the notation in Chan et al., we use pmine to refer to the probability of a party self-
electing in a committee. We set this mining probability to take the value pmine = min{1, 1

ϵn log
(
2
δ

)
},

where ϵ is a constant in (0, 1) denoting the fraction of honest parties and δ is a failure probability,
which is constant and negligible in the statistical security parameter λ: δ = exp(−ω(lnλ)). The
bound for the VRF output check for committee election is boundϵ,δ = pmine · 2

m(κ)

n , where the VRF
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output length is m(κ). Finally, we set the maximum grade and the number of rounds g∗ to be
g∗ = 2 · ⌈2ϵ ln

(
2
δ

)
⌉ = O(λ/ϵ). For this choice of parameters, the generated bit-specific committees

contain at least one honest party, and at most g∗/2 dishonest parties with overwhelming probability
(Lemmata 13 and 14 given in Appendix C.2).

Verifying membership, valid batches and certificates. The protocol consists of stages, where
each stage is composed of two rounds. We denote the stage number by r for r ∈ {1, . . . , g∗/2}. Then
round 1 of stage r will be the 2r − 1’th round, and round 2 of stage r will be the 2r’th round. We
prefer this notation because we want to have sets of r signatures in every stage r.

Each party collects batches of signatures. Parties (with the exception of the sender) will send
the previously collected signatures in a batch batch, as well as proofs of the committee elections for
the bit b in a certificate called cert. To address the difference in grades in the two rounds, we will
define (r, 1)-batches and (r, 2)-batches.

Moreover, each party Pi will maintain a set Extractedi, initialized to the empty set. A party Pi

will add a bit b to their Extractedi set in a round if it receives a valid batch and a valid certificate
on b for that round, as described below.

A batch consists of a number of signatures associated to distinct parties. A certificate consists
of a number of tuples (w, ρ, y, π). We define a valid certificate only with respect to a certain batch.
Namely, for a batchb consisting of a number of signatures (sigj(b)), we say certificate certb is asso-
ciated to batchb if it consists of tuples (wj , ρj , yj , πj) for every j-signature in batchb. A certificate
certb is a valid certificate for a batch batchb from the perspective of a verifying party Pi, if for all
j-signatures in batchb not coming from the sender, it holds that:

(i) VRF.VerifyPKj
(H(b||wj), yj , πj) = 1,

(ii) VGC.Verify(pp,M (j)
i , wj , ρj) = 1, where (M

(j)
i , ·)← Toss(pp), and

(iii) yj ≤ boundϵ,δ.

We say that a batch batchb, consisting of tuples (sigj(b)) in stage r for a bit b, is a valid (r, 1)-batch
from the perspective of a verifying party Pi if:

(i) It contains at least r valid distinct signatures and one of the signatures is from the sender Ps,
(ii) For every signature sigj(b), the grade G

(j)
i ≥ g∗ − 2r + 1, where (·, G(j)

i )← Toss(pp) for Pi, and
(iii) It has associated a valid certificate certb (the party Pi receives both batchb and certb).

Similarly, a batch is a valid (r, 2)-batch if it contains at least r distinct signatures coming from
parties in the b-committee, each with grade G

(j)
i ≥ g∗ − 2r, and with a valid certificate.

If at any point, a valid batch has accumulated more than g∗/2 signatures, parties only need to
send g∗ of them. We assume implicitly that parties send at most g∗ signatures in a batch batchb,
and always include the sender’s signature.

We will call a pair of a batch and a certificate a ballot, and say that the ballot is valid if the
batch is valid and the certificate is the associated valid certificate to that batch. For clarity, we
preferred to define separately the validity of the certificates and batches, rather than lumped in a
single definition of a valid ballot.

We describe the full protocol in Figure 3. We first run ΠVGC. Parties need the random strings
from ΠVGC starting from round 1, since they are only used in proofs, not in the sender’s initial
transmission. Recall that ΠVGC takes 6g∗+3+qh rounds, where qh captures the delay of the slowest
honest parties. The proof of Theorem 3 is given in Appendix C.2.

Theorem 3. Consider a ∆VGC-limited adversary who can adaptively corrupt (1− ϵ)n parties, for a
constant ϵ ∈ (0, 1). Fix a small constant failure probability δ ∈ (0, 1). Then, Protocol ΠBC (Figure 3)
is a broadcast protocol with probability 1− δ − negl(κ).
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ΠBC: Sublinear-round, trustless Broadcast

Rounds −6g∗ − 3− qh to 0:

1. Parties run ΠVGC. Each party Pi obtains the following quantities ({M (j)
i , G

(j)
i }j∈[n], wi, ρi).

Stage 0:

1. (Round 0) Each party Pi initializes Extractedi = ∅ and call0i = call1i = −1.
The designated sender Ps sends [bs, sigs(bs),⊥] to all parties.

Stage r = 1 to g∗/2− 1:

1. (Round 2r − 1) Each party Pi accepts a message b /∈ Extractedi, i.e., sets Extractedi ← Extractedi ∪ {b},
only if it is accompanied by some valid ballot (batchb, certb), where batchb is a valid (r, 1)-batch and certb
is a valid certificate for batchb.
Pi then propagates (b, batchb, certb) to all parties.

2. (Round 2r) Each party Pi ̸= Ps checks all bits b that it received on whether they are accompanied by a
valid ballot (batchb, certb), where batchb is a valid (r, 2)-batch and certb is a valid certificate for batchb.
For each such b, Pi checks whether callbi = −1 and if yes, it computes (yi, πi)← VRF.ProveSKi(H(b||wi)).
If yi ≤ boundϵ,δ, Pi does:

- sets callbi = 1;
- sets Extractedi ← Extractedi ∪ {b};
- constructs a (r + 1, 1)-batch batch′

b := batchb∥sigi(b), cert′b := certb∥(wi, ρi, yi, πi).
Else, Pi sets callbi =⊥.
Pi sends (b, batch′

b, cert′b) to all n parties.

Stage r = g∗/2:

1. (Round g∗−1) Each party Pi accepts each message b /∈ Extractedi, i.e., sets Extractedi ← Extractedi∪{b},
that is accompanied by a valid (g∗/2, 1)-batch and a valid certificate for that batch.
Pi then outputs either the message b′ ∈ Extractedi, if |Extractedi| = 1, or a canonical message otherwise.

Fig. 3. Updated Broadcast protocol for designated sender Ps and parties P1, . . . , Pn.

Communication and Round Complexity. The broadcast protocol has round complexity O(g∗+
RVGC) = O

(
1
ϵ log

(
1
δ

))
and communication complexity O(g∗ · κ ·n2 +CCVGC) = O(1ϵ log

(
1
δ

)
· κ ·n4).

For δ = exp(−ω(log λ)) negligible in the security parameter, we obtain a round complexity of O(λ/ϵ)
and a total communication complexity of O(κ · λ · n4/ϵ).

5 Communication Reduction for Parallel Gradecast

The communication complexity of sharing and agreeing on random strings is the dominating term
in our ΠBC communication. To improve upon that, in this section we leverage parallelization and
randomization. We take inspiration from the recent work [43] and use gossiping to lower the com-
munication cost of performing parallel gradecast by a factor of O(n/polylog(n)), improving the
communication of the verifiable graded consensus protocol (and thus of broadcast) to Õ(n3).

Tsimos et al. [43] formulates the notion of honest parties disseminating messages via gossiping
in a communication-efficient way that is adaptively secure. In their model, input values are single
bits and are defined per pairs of sender and signer, meaning that the total number of valid messages
is less than 2n2. This formulation does not apply well to our moderated gradecast step, which works
on messages of size q(κ). In our case, in the moderated gradecast, the adversary can provide as
many valid different messages as it wants (up to q(κ)) for pairs of dishonest sender and dishonest
moderator, so dishonest moderators can send a large number of messages from the same dishonest
sender to the honest parties at the beginning of the protocol. Calling the main dissemination protocol
from Tsimos et al. on that many messages could lead to Õ(n3·2q(κ)) communication. For our protocol,
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in order to keep the communication low, we require honest parties to propagate a constant number of
messages per pair of sender and moderator, while maintaining the required properties of gradecast.

To this end, we modify a different formulation from [43] to meet our needs, which uses a function
that takes a set and outputs only one message per each k-bit prefix. We define a set of valid input
values to be the set of all possible messages mj,s for each pair of sender Pj and moderator Ps.
However, in this set, we consider any two pairs of two messages for the same (j, s) as the same.
We want honest parties to propagate at most two valid messages per each prefix that defines a
pair of sender and moderator, as well as for each prefix that defines a separate sender during the
initial gradecast, while maintaining the required properties of gradecast. We note that if a dishonest
sender attempts to send multiple valid values, propagating at least two of those values is sufficient
to guarantee that honest parties will output grades in {0, 1} for that sender. We call this variation
of their protocolM-Converge∗ and formalize it below.

Protocol for M-Converge∗. We first describe a function that given a set S of bit-strings and an
integer value k, outputs a subset of S. This subset contains for each k-bit prefix, either exactly all
strings of S with that prefix if they are at most 2, or any of the strings in S else. Looking ahead,
this function is combined with gossiping during the communication rounds of Parallel Moderated
Gradecast. It ensures that for each k prefix (defining a specific sender) honest parties propagate
at most two values. This accounts for dishonest senders attempting to flood the communication of
gradecast with any number of values.

Definition 6 (couplesk function). For any set M , couplesk(M) is a subset of M that contains
for each distinct k-bit prefix at most two messages with that prefix, i.e., if there are fewer than two
message with k-bit prefix PR, then couplesk(M) contains exactly those messages, and if there are
more than two messages with prefix PR, then couplesk(M) contains only two of them.

For example, for M = {00101, 01000, 01100, 11001, 11010, 11111} we have that couples2(M) =
{00101, 01000, 01100, 11001, 11111}, but since couplesk is an one-to-many function, thus couples2(M)
might also output {00101, 01000, 01100, 11010, 11111}.

We now present M-Converge∗, which captures how parties can propagate their values, so that
they are all guaranteed to receive at least all the intended values from honest senders. We show an
instantiation with more efficient communication than parties multicasting their values.

Definition 7 (M-Converge∗ protocol). Let M⊆ {0, 1}∗ be an efficiently recognizable set (i.e. a
set with efficient membership decidability). A protocol Π executed by n parties, where every honest
party Pi initially holds input set Mi ⊆ M and a set Ci ⊆ M, is a secure M-Converge∗ protocol if
all remaining honest parties upon termination, output a set Si ⊇ couplesk

(⋃
j∈HMj −

⋃
j∈H Cj

)
,

when at most t parties are corrupted and where H is the set of honest parties in the beginning of Π.

Let pprop = (10/ϵ + λ)/n. We consider the ideal functionality Fprop from [43], which allows for
each party Pi to send a set of messages to an average number of n ·pprop randomly chosen parties out
of a set of n parties, while achieving the property that the adversary does not gain information on
which honest parties received the message. This functionality is the building block behind gossiping
against an adaptive adversary; it is called by our ΠCV protocol in every of its rounds by all honest
parties with input (SendRandom,Mi). The adversary can also call it with input (SendDirect,x, J),
to send messages in x to parties Pj , for j ∈ J . A formal description and a secure instantiation of
Fprop is provided for completeness in Appendix A.4.

We present protocol ΠCV in the Fprop-hybrid world in Figure 4 and we state its properties in
Lemma 2. The proof is given in Appendix C.3.
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Lemma 2. Let κ > 0. Protocol ΠCV is an adaptively secure M-Converge∗ protocol for all t ≤
(1−ϵ) ·n and fixed ϵ ∈ (0, 1), with probability 1−negl(λ). The total number of bits sent by all parties
is O(n log(ϵn) ·max{n, |couplesk(M)|} ·m · s).

ΠCV(Mi, Ci, k)

For round 1 to ⌈log(ϵ · n)⌉:
- ReceiveFprop ← Fprop(SendRandom, couplesk(Mi − Ci));
- Locali ← Locali ∪ReceiveFprop ;
- Ci = Ci ∪Mi;
- Mi = Locali ∩M;

return Mi;

Fig. 4. Protocol ΠCV is a secureM-Converge∗ protocol. It uses a logarithmic number of rounds, each of which utilizes
gossiping (via the call to Fprop) to securely and efficiently disseminate a list of messages between parties.

Gradecast viaM-Converge∗. We propose a new protocol for parallel gradecast with one instance
per pair of (j ∈ senders, k ∈ casts). Each party Pj , j ∈ senders, is expected to gradecast |casts| many
messages. The trivial (and less efficient) way to do so would be for each sender Pj to call GC(mj

k),
for k ∈ casts. Instead, by calling ΠCV, all senders can gradecast simultaneously all their |casts| many
messages, with less communication, at the small additional cost of multiplicative O(log ϵn) rounds.

Parallel Vector GC(senders,casts)
i (Mi, g

∗)

Round 1:

1. Each party Pi initializes Si
(j,k) := ∅, mi

(j,k) =⊥, ḡi(j,k) = 0, for all j ∈ senders, k ∈ casts.
2. If i ∈ senders, then Pi computes a signature σk = sigi(mk ∈ Mi), for each k ∈ casts and multicasts

(mk, σk) to all parties.

Round 2 to 2g∗ + 1 from the perspective of party Pi:

1. Let M contain m′
(j,k) from each pair (m′

(j,k), σ
′
(j,k)) received by the end of the previous round, where

vers(σ
′
(j,k),m

′
(j,k)) = 1 and m′

(j,k) /∈ Si
(j,k). Then for m′

(j,k) ∈M set Si
(j,k) := Si ∪ {m′

(j,k)}. If |Si
(j,k)| = 1,

set mi
(j,k) = m′

(j,k).
2. Call and receive messages from ΠCV(M, ∅, ksc), where ksc is the bit-length needed to express the prefix

for every pair of (j ∈ senders, k ∈ casts).
3. If mi

(j,k) ̸=⊥ and |Si
(j,k)| = 1, then set ḡi(j,k) := ḡi(j,k) + 1.

Output determination: Each party Pi sets gi(j,k) := ⌊ḡi(j,k)/2⌋ and outputs (mi
(j,k), g

i
(j,k)).

Fig. 5. Gradecast protocol with maximum grade g∗ using gossiping.

Parallel Vector GC in Figure 5 is a secure gradecast protocol, for each separate value each sender
sends. We prove the next Lemma in Appendix C.3.

Lemma 3. Protocol Parallel Vector GC(·,·)
i (·, g∗) is a g∗-gradecast protocol with probability 1−negl(λ),

with round complexity 2g∗ · ⌈log(ϵn)⌉ + 1. The total communication complexity for all parties is
O(n log ϵn · g∗ ·max{n, |senders| · |casts|} ·m · s).
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6 Communication-Efficient Broadcast

Finally, we discuss how to reduce the communication complexity of our trustless sublinear-round
broadcast protocol.

In a formal analysis, the requirements inherited by the previous works of [10] and [43] respec-
tively, mean that we may need two distinct statistical security parameters. Therefore, in this section,
we consider two statistical security parameters λδ and λg. Concretely, λδ is the statistical security
parameter used for the committee-election (in Section 4), and λg is the statistical security param-
eter used for the gossiping analysis (in Section 5). Chan et al. [10] requires the statistical security
parameter λδ to be independent of n, so that the failure probability of secure election δ—which
relates to λδ as log(1/δ) = polylog(λδ)—is independent of n as well. Tsimos et al. [43] requires
the statistical security parameter λg to be polylog(n), so that the failure probability of gossiping is
negligible in λg. (However, λg does not affect round complexity of our broadcast protocol, only its
communication complexity.) Below, we specify each separate protocol with their respective statisti-
cal security parameters. Nevertheless, we note that for simplicity, we could also set and use a single
statistical security parameter as λ = max{λδ, λg}.

Consider our Protocol 1 for Toss. During its step 2.2, instead of GC, let each party Pi call
Parallel Vector GC([n],n−1)

i ({m(s)
i }s∈[n]−{i}, g

∗), given in Figure 5, to moderate the values it received
previously. Let ℓ be the individual message length (ℓ = |m(s)

i |). This allows parties to moderate the
n random strings they each received during step 1 with Õ(g∗ · (ℓ+ κ)λg · n3) total communication,
while adding a multiplicative factor of ⌈log ϵn⌉ to the round complexity of the moderated step.
Similarly, the updated Π ′

VGC protocol that now calls the updated Toss has the same communication
and round complexity as the updated Toss.

The updated moderated gradecast step has duration ∆′
G := (2g∗ · ⌈log(ϵn)⌉+1) ·∆r. We update

the difficulty parameter to account for the increased number of rounds: ∆′
VGC = (∆G+∆′

G)/(1−ξ).
Putting it all together, the broadcast protocol with the updated VGC protocol using gossiping

described in Section 5, Π ′
VGC, achieves the following result. The proof is given in Appendix C.3.

Theorem 4. Consider a ∆′
VGC-limited adversary who can adaptively corrupt (1− ϵ)n parties, for a

constant ϵ ∈ (0, 1). Fix a small constant failure probability δ ∈ (0, 1). Then, Protocol 3 using Π ′
VGC

is a broadcast protocol, called Π ′
BC, with probability 1− δ − negl(κ)− negl(λg).

Communication and Round Complexity. The broadcast protocol Π ′
BC that calls Π ′

VGC, has
round complexity O(g∗+RVGC′) = O

(
1
ϵ log

(
1
δ

)
⌈log(ϵn)⌉

)
and communication complexity O(g∗ ·κ ·

n2 + CCVGC′) = O(1ϵ log
(
1
δ

)
· λδ · κ · n3). For δ = exp(−ω(log λδ)), we obtain a round complexity of

Õ(λδ/ϵ) and a total communication complexity of Õ(λδ · κ · n3/ϵ).

Moreover, notice that in Protocol 3 we use the online setup of VGC, for a single run of broad-
cast. However, we can bootstrap the randomness created by ΠVGC to obtain VRF seeds that are
still unpredictable and verifiable for multiple broadcast instances. This allows us to amortize the
communication cost over multiple instances (these can be either sequential or parallel). The proof
of the following result is given in Appendix C.4.

Theorem 5. We obtain broadcast protocols secure against adaptive dishonest majority of t ≤ (1−
ϵ)n with overwhelming probability in the security parameters κ, λg, λδ with the amortized cost of:

1. Õ(λδ) rounds and Õ(n2) communication over n instances, with prob. 1− δ− negl(λg)− negl(κ);
2. O(λδ) rounds and Õ(n2) communication over n2 instances, with prob. 1− δ − negl(κ);
3. Õ(λδ) rounds and Õ(n) communication over n2 instances, with prob. 1− δ− negl(λg)− negl(κ).
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A More Preliminaries and Primitives

A.1 Verifiable Random Functions

Definition 8. A verifiable random function (VRF) F = (VRF.Gen,VRF.Prove,VRF.Verify,
VRF.Validate) is a tuple of algorithms, where VRF.Gen is a ppt algorithm, and VRF.Prove, VRF.Verify
and VRF.Validate are deterministic algorithms:
- VRF.Gen(1κ) outputs a pair of keys (PK,SK);
- VRF.ProveSK(x) outputs a pair (y, πSK(x)), where y ∈ {0, 1}m(κ) is the evaluation on input x

using secret key SK and πSK(x) is the proof of correctness of this evaluation;
- VRF.VerifyPK(x, y, π) outputs 1 if y is the correct output of input x associated to key SK using

proof π and 0 otherwise;
- VRF.ValidatePK(1

κ) outputs 1 if PK corresponds to an admissible SK with respect to VRF.Gen
and 0 otherwise.

A VRF should satisfy the following properties:
(Uniqueness) No values (PK, x, y1, y2, π1, π2) can satisfy both predicates
VRF.VerifyPK(x, y1, π1) = 1 and VRF.VerifyPK(x, y2, π2) = 1 if y1 ̸= y2 with more than negli-
gible probability.
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(Provability) If (y, π)← VRF.ProveSK(x) and VRF.ValidatePK(1
κ) = 1, then VRF.VerifyPK(x, y, π)

= 1.
(Pseudorandomness) For any probabilistic polynomial time algorithms A = (A1,A2) who has
not yet called the oracle on x, it holds that:

Pr

AVRF.Prove(·)
2 (yb, st) = b :

(PK, SK)← VRF.Gen(1κ)

(x, st)← AVRF.Prove(·)
1 (PK, l(κ))

y0 ← VRF.ProveSK(x), y1 ← {0, 1}m(κ)

b← {0, 1}

 ≤ negl(κ) +
1

2
.

(Extended pseudorandomness) For any probabilistic polynomial time algorithms A = (A0,A1,
A2) and B who has not yet called the oracle on x||u, it holds that:

Pr


BSK,x(yb, st0, st1) = b :

(PK,SK, st0)← A0(1
κ)

(x, st1)← AVRF.Prove(·)
1 (PK, l(κ)− n(κ), st0)

If

{
VRF.ValidatePK(1

κ) = 1

x ∈ {0, 1}l(κ)−n(κ)
, then u

$← {0, 1}n(κ)

z
$← {0, 1}l(κ)

(y0, π0, y1, π1)← ASK
2 (x||u, z, st1)

If

{
VRF.VerifyPK(x||u, y0, π0) = 1

VRF.VerifyPK(z, y1, π1) = 1
, then b

$← {0, 1}


≤ negl(κ) +

1

2
.

The input x to be fed to VRF.Prove has length l(κ) and the output length of y is m(κ); in the
case of extended pseudorandomness, the adversarial input has length l(κ)−n(κ) and the challenger
generated input has length n(κ), where l,m, n are polynomials in κ.

This extended pseudorandomness property is different from the pseudorandomness property
where the adversary only chooses the input but not the key pair and thus can’t evaluate the VRF.
The extended pseudorandomness game given above works as follows. The adversary generates the
key pair and an input, and a challenger samples a random string that should be concatenated with
the input and a random input. The adversary has to generate VRF outputs and proofs for the
concatenated input and random string and for the random input. A distinguisher is given the secret
key, the input chosen by the adversary (but not the random strings of the challenger) and the two
outputs, and should not be able to distinguish between the last two.

Note that we formulated the definition of extended pseudorandomness to be more general and
to account for a partial input x chosen by the adversary. However, in our protocols, x will be the
empty string.

A.2 Verifiable Delay Functions

Definition 9. A Verifiable Delay Function (VDF) V = (VDF.Setup,VDF.Eval, VDF.Verify) is a
triplet of algorithms:
- VDF.Setup(1κ, ∆)→ pp = (EK,VK) takes the security parameter κ and target puzzle difficulty ∆

that outputs public parameters pp that consist of an evaluation key EK and verification key VK;
- VDF.EvalEK(x) → (w, ρ) outputs w ∈ Y, the evaluation on input x ∈ {0, 1}l(κ) with evaluation

key EK and ρ, the proof of correctness of this evaluation;
- VDF.VerifyVK(x,w, ρ,∆) outputs 1 if w is the correct output of input x associated to verification

key VK and difficulty ∆, possibly using proof ρ, and 0 otherwise.
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For all pp generated by VDF.Setup(1κ, ∆) and all x ∈ {0, 1}l(κ), algorithm VDF.EvalEK(x) must
run in parallel time ∆ with poly(log∆,κ) processors and evaluates a deterministic function of x.
Algorithm VDF.Verify is deterministic and must run in total time polynomial in log∆ and κ.

A VDF should satisfy the following properties:
(Correctness) A VDF V is correct if for all κ, ∆, pp← VDF.Setup(1κ, ∆) and all x ∈ {0, 1}l(κ),
if (w, ρ)← VDF.EvalEK(x) then VDF.VerifyVK(x,w, ρ,∆) = 1.
(Soundness) A VDF V is sound if for all algorithms A that run in time O(poly(∆,κ)), it holds:

Pr

[
VDF.VerifyVK(x,w, ρ,∆) = 1

w ̸= VDF.EvalEK(x)
:

pp = (EK,VK)← VDF.Setup(1κ, ∆)
(x,w, ρ)← A(κ, pp, ∆)

]
≤ negl(κ).

((p, σ)-Sequentiality) For functions σ(∆) and p(∆), a VDF V is (p, σ)-sequential if no pair
of randomized algorithms A0, which runs in total time O(poly(∆,κ)), and A1, which runs in
parallel time σ(∆) on at most p(∆) processors, can win the sequentiality game (Definition 10)
with probability greater than negl(κ).

Definition 10. [Sequentiality Game] An adversary A := (A0,A1) and a challenger C play a se-
quentiality game with security parameter κ and time ∆:

1. C runs setup and obtains pp← VDF.Setup(κ,∆).
2. A processes the public parameters and obtains L← A0(κ, pp, ∆).
3. C samples a uniform random string x1

$← {0, 1}l(κ)−n(κ).
4. A chooses a string x2 ∈ {0, 1}n(κ), processes x1 and computes an output wA ← A1(L, pp, x1||x2).
The adversary A wins the game if wA = w for (w, ρ)← VDF.EvalEK(x1||x2).

The underlying group of the VDF in [46] is a class group G of an imaginary quadratic field. For
a specific parametrization, there is no efficient algorithm to compute the order of the group, so this
VDF construction does not have trapdoors. The construction uses a hash function HG : {0, 1}∗ → G
modeled as a random oracle. The setup is transparent, and honest parties can check whether VK,EK
are not valid. Furthermore, the VDF in [46] is (·, σ)-sequential for any number p of processors and
σ = (1−ξ)·∆, for very small ξ > 0. Therefore, we drop the p parameter and say that the Wesolowski
VDF with difficulty parameter ∆ is ((1− ξ) ·∆)-sequential against a ∆-limited adversary that runs
in parallel time σ(∆).

Lemma 4. The VDF proposed in [46] achieves σ-Sequentiality in the random oracle model (ROM)
for any p and for any σ(∆) = (1− ξ) ·∆.

Proof. The proof follows from the properties of the evaluation function of Wesolowski’s VDF and
their proof of Proposition 1 from [46].

Since HG is a random oracle, HG(x1||x2) is random, and for large enough polynomial n(κ),
it is also unpredictable by the adversary, despite its choice of x1. The challenger C instructions
in the construction from Proposition 1 only differ in the check where it performs to abort. In
particular, instead of aborting if x $← {0, 1}l(κ) is already queried by the oracle HG, C now aborts
if x1∥x2 : x1

$← {0, 1}l(κ) is already queried by the oracle. This still occurs with probability at most
q/2−κ, where q = O(poly(∆,κ)), so the rest follows. ⊓⊔

A.3 Gradecast

Lemma 5. Protocol 6 is a g∗-gradecast protocol with round complexity 2g∗ +1 and communication
complexity O(g∗ · (κ+ ℓ) · n2) for messages of length ℓ.
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GC(m, g∗)

Round 1:

1. Each party Pi initializes Si := ∅, mi =⊥, ḡi = 0.
2. The sender Ps computes a signature σ = sigs(m) and multicasts (m,σ) to all parties.

Round 2 to 2g∗ + 1 from the perspective of party Pi:

1. For each pair (m′, σ′) received by the end of the previous round, if vers(σ′,m′) = 1 and m′ /∈ Si, then:
- Set Si := Si ∪ {m′}. If |Si| = 1, set mi = m′.
- Multicast (m′, σ′).
- If multicasted two pairs, stop multicasting this round.

2. If mi ̸=⊥ and |Si| = 1, then set ḡi := ḡi + 1.

Output determination: Each party Pi sets gi := ⌊ḡi/2⌋ and outputs (mi, gi).

Fig. 6. Gradecast protocol with maximum grade g∗.

Proof. The round complexity is by construction. The termination, validity and soundness are proved
in [24]. Note that the third condition in round r ≥ 1 step 1, which limits honest parties to only
multicast two valid tuples per round does not change the proof, since any conflicting set of tuples
stops the grade increase, and honest parties can receive conflicting values at most one round apart.
This extra condition ensures that the total communication per round can be at most O((ℓ+κ) ·n2)
per round. Hence, the total communication complexity of gradecast is O(g∗ · (κ+ ℓ) · n2).

A.4 Parallel Vector Gradecast

Fprop is an ideal functionality required for randomly propagating an average number of n · pprop
values in a private fashion, for a probability pprop. We instantiate Fprop (Figure 7) via the protocol
Propagate (Figure 8) as it appears in [43], assuming a CPA-secure public key encryption scheme
and erasures, cf. Lemma 8 in [43].

This secure instantiation requires a one-time use of a CPA-secure public key encryption scheme:

Definition 11 (PKE). A public key encryption (PKE) scheme is a tuple of ppt algorithms (KeyGen,
Enc,Dec) such that:
- KeyGen takes as input the security parameter κ and outputs a pair of keys (pk, sk), where pk is

referred to as the public key and sk as the private key.
- Enc takes as input a public key pk and a message m and outputs a ciphertext c, denoted as
c← Enc(pk,m).

- Dec takes as input a private key sk and a ciphertext c and outputs a message m or a special
symbol ⊥ denoting failure to decrypt. We denote m := Dec(sk, c). The decryption algorithm is
deterministic.

B Inequalities

Lemma 6 (Chernoff’s inequality). Let X1, X2, . . . , Xn be independent random binary variables
such that, for 1 ≤ i ≤ n, P[Xi = 1] =: pi. Then, for X :=

∑n
i=1Xi and µ := E[X] =

∑n
i=1 pi:

P[X ≥ (1 + ζ)µ] ≤ e
− ζ2µ

ζ+2 , 0 ≤ ζ. (1)

Lemma 7 (Bernoulli’s inequality). For every x ∈ R and any positive exponent r > 0, it holds:

(1 + x)r ≤ exp(xr). (2)
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Functionality: Fprop

Let pprop = (10/ϵ + λ)/n. For every party i ∈ [n], Fprop keeps a set Oi which is initialized to ∅. Let Mi be
party i’s input messages’ set.

On input (SendRandom,Mi) by honest party i:
– For all x ∈Mi and for all j ∈ [n] add (i, x) to Oj with probability pprop;
– return Mi to adversary A;
– return Oi to party i.

On input (SendDirect,x, J) by adversary A (for a corrupted party i):
– Add (i, x[j]) to Oj for all j ∈ J ;
– return Oi to adversary A.

Fig. 7. Functionality Fprop for parties P1, . . . , Pn.

Propagate(SendRandom,Mi)

Let m = 10/ϵ+ λ, Λi = 2m
⌈

|Mi|
n

⌉
, Oi = ∅ and for all j ∈ [n] let Lj = ∅.

1. Pi samples a new pair of keys: (pkprop
i , skprop

i )← KeyGen(1κ).
2. Pi posts pkprop

i on the bulletin-PKI and reads the public keys of the other n parties.
3. For all x ∈Mi and for all j ∈ [n] add x to list Lj with probability m/n.
4. For all j ∈ [n]:

- Pad list Lj to maximum size Λi;
- ctj ← Enc(pkprop

j ,Lj);
- Erase Lj from memory;

5. For all j ∈ [n] send (ctj , j) to Pj .
6. Receive messages, say set C.
7. For all ct ∈ C decrypt ct using skprop

i and output a list L and add L to Oi.
8. Erase skprop

i from memory.
9. return Oi.

Fig. 8. A secure instantiation of Fprop.

C Deferred Proofs

C.1 Verifiable Graded Consensus

Proof of Lemma 1. Let Mod-GC be the subprotocol in Figure 1 for a single pair of sender Pi

and moderator Ps, between step 1 and step 3.1. We show that Mod-GC satisfies validity, M-validity,
soundness, and termination.

Validity and M-validity : Let Ps be the honest moderator and let Pj be an honest party. Ps will
gradecast the value obtained from sender Pi correctly, thus g(s)i,j = g∗. If Pi is also honest, then mi =

mi,j = m
(s)
i,j , which implies G(s)

i,j = g∗. Thus, all honest parties Pj output the same tuple (mi, g
∗), and

validity holds. However, if Pi is dishonest, then it could be that mi,j ̸= m
(s)
i,j . If that is the case then

Pi gradecasts different values to Ps and Pj in step 1, so from the consistency of GC we have gi,j ≤ 1.
Therefore, honest party Pj has G

(s)
i,j = min{g(s)i,j , g

∗ − gi,j} ≥ g∗ − 1. Finally, since Ps is honest, all

honest parties receive (and output) the same message from Ps, m
(s)
i,j = mi,s, and M-validity holds.

Before proving the soundness of Mod-GC, we make the following observation.

Proposition 1. Let a1, b1, a2, b2, g such that |a1−a2| ≤ 1, |b1−b2| ≤ 1 and g ≥ max{a1, a2, b1, b2}.
Let Gi = min{ai, g − bi}, for i = 1, 2. Then, |G1 −G2| ≤ 1.
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Proof. We have the following cases:
Case 1. a1 ≤ g − b1 and a2 ≤ g − b2. Then |G1 −G2| = |a1 − a2| ≤ 1.
Case 2. g − b1 ≤ a1 and g − b2 ≤ a2. Then |G1 −G2| = |g − b1 − (g − b2)| = |b2 − b1| ≤ 1.
Case 3. g − b1 ≤ a1 and a2 ≤ g − b2. Then |G1 − G2| = |g − b1 − a2|. Notice that a2 + b2 ≤

g ≤ a1 + b1, so b2 − b1 ≤ g − b1 − a2 ≤ a1 − a2. Both the lower and upper bound can take values in
[−1, 1], which constrains |G1 −G2| = |g − b1 − a2| ≤ 1.

Case 4. a1 ≤ g − b1 and g − b2 ≤ a2. This mirrors case 3. ⊓⊔

Soundness: For any moderator Ps and a sender Pi, let Pj , Pk be two honest parties obtaining
(m

(s)
i,j , G

(s)
i,j ) and (m

(s)
i,k , G

(s)
i,k ) respectively. We have the following cases:

Case 1. m(s)
i,j = mi,j and m

(s)
i,k = mi,k. Then, G(s)

i,j = g
(s)
i,j and G

(s)
i,k = g

(s)
i,k , which originate both

from the same gradecast and thus, by the soundness of GC, |G(s)
i,j −G

(s)
i,k | ≤ 1. If both G

(s)
i,j , G

(s)
i,k are

greater or equal to 1, then by GC soundness m
(s)
i,j = m

(s)
i,k .

Case 2. m(s)
i,j = mi,j and m

(s)
i,k ̸= mi,k. Then, G(s)

i,j = g
(s)
i,j and G

(s)
i,k = min{g(s)i,k , g

∗ − gi,k}. Also,

either g(s)i,k ≤ 1 or gi,k ≤ 1, since one of the two gradecasts has two honest parties outputting different
messages. Therefore,

- if g(s)i,k ≤ 1, then G
(s)
i,k ≤ 1 and by GC soundness, |g(s)i,j −g

(s)
i,k | ≤ 1. There are two subcases. Subcase 1):

g
(s)
i,k = G

(s)
i,k , which immediately implies |G(s)

i,j − G
(s)
i,k | ≤ 1. If both G

(s)
i,j , G

(s)
i,k are greater or equal to

1, then by the moderator’s GC soundness m
(s)
i,j = m

(s)
i,k . Subcase 2): g(s)i,k = 1 and G

(s)
i,k = 0, meaning

that gi,k = g∗. By the initial GC soundness, we also have gi,j ∈ {g∗ − 1, g∗} and mi,j = mi,k. To
obtain |G(s)

i,j −G
(s)
i,k | ≤ 1, we need to show it cannot hold that g(s)i,j = 2. If g(s)i,j = 2, then m

(s)
i,k = m

(s)
i,j ,

which is also equal to mi,j , contradicting the assumption that m
(s)
i,k ̸= mi,k.

- if gi,k ≤ 1, then there are again two subcases. Subcase 1): g(s)i,k = g∗, in which case G(s)
i,k ∈ {g

∗−1, g∗}
and G

(s)
i,j ∈ {g∗−1, g∗} and by the moderator’s GC soundness, m(s)

i,j = m
(s)
i,k . Subcase 2): g(s)i,k ≤ g∗−1,

in which case G
(s)
i,k = g

(s)
i,k , and by GC soundness, it holds that |G(s)

i,j − G
(s)
i,k | ≤ 1, as well as that if

both G
(s)
i,j , G

(s)
i,k are greater or equal to 1, then m

(s)
i,j = m

(s)
i,k .

Case 3. m(s)
i,j ̸= mi,j and m

(s)
i,k ̸= mi,k. Then G

(s)
i,j = min{g(s)i,j , g

∗−gi,j} and G
(s)
i,k = min{g(s)i,k , g

∗−
gi,k}, and we can use Proposition 1 to get that |G(s)

i,j −G
(s)
i,k | ≤ 1. If both G

(s)
i,j , G

(s)
i,k are greater or equal

to 1, then following the soundness of the appropriate GC instance in the four cases in Proposition 1,
i.e., the sender’s or the moderator’s, we obtain m

(s)
i,j = m

(s)
i,k .

To finish the proof of soundness for Mod-GC, we need to consider the case where where G
(s)
i,j = 1

and m
(s)
i,j ̸= m

(s)
i,k . Then, by the soundness property of GC for sender Ps gradecasting its value m

(s)
i ,

we know that m
(s)
i,j ̸= m

(s)
i,k implies g

(s)
i,j = 0 or g

(s)
i,k = 0. Assume g

(s)
i,k ̸= 0, then g

(s)
i,j = 0 which would

lead to G
(s)
i,j = 0, contradiction. Thus, G(s)

i,k = 0 and the proof is complete.

Termination: Each honest party will generate a value and an accompanying grade for every
moderator, by construction, regardless of the adversary’s behaviour.

This completes the proof of Lemma 1. ⊓⊔

Proof of Theorem 1. We argue the graded validity, graded agreement and termination of Toss.

Graded validity : Since each Mod-GC instance called by a honest moderator Ps achieves M-validity,
then it holds that any honest party Pj has (m

(s)
i,j , G

(s)
i,j ) for any sender Pi, with G

(s)
i,j ∈ {g∗, g∗ − 1}.
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This implies that all honest parties will also have G
(s)
j ∈ {g∗, g∗ − 1}. Finally, all honest parties

form their output strings M
(s)
j in step 2.2 with all m(s)

i,j for i ∈ [n] since all associated grades are
strictly positive when the moderator is honest. Again by M-validity of Mod-GC, another honest
party Pk will have m

(s)
i,k = m

(s)
i,j for all i ∈ [n], immediately implying that M

(s)
j = M

(s)
k for any

honest moderator Ps.

Graded agreement : We reformulate the statement as follows. Let Pj , Pk be two honest parties
outputting (M

(s)
j , G

(s)
j ) and (M

(s)
k , G

(s)
k ), respectively. For any moderator Ps, after the execution of

the protocol, it holds that |G(s)
j − G

(s)
k | ≤ 1. Moreover, if G(s)

j > 1 then M
(s)
j = M

(s)
k , otherwise if

G
(s)
j = 1, then either M

(s)
j = M

(s)
k or G

(s)
k = 0. We prove this below.

Let α such that mini∈[n]{G
(s)
i,j } = G

(s)
α,j and similarly let β such that mini∈[n]{G

(s)
i,k} = G

(s)
β,k.

Suppose without loss of generality that G
(s)
β,k ≥ G

(s)
α,j . This implies also that G

(s)
α,k ≥ G

(s)
α,j , since

otherwise, G(s)
α,k < G

(s)
β,k, contradiction. Then, |G(s)

k − G
(s)
j | = |mini∈[n]{G

(s)
i,k} − mini∈[n]{G

(s)
i,j }| =

|G(s)
β,k−G

(s)
α,j | = G

(s)
β,k−G

(s)
α,j ≤ G

(s)
α,k−G

(s)
α,j = |G

(s)
α,k−G

(s)
α,j | ≤ 1, from the soundness part of Lemma 1.

If both G
(s)
j , G

(s)
k are greater or equal to 1, then all G

(s)
i,j ≥ 1 and G

(s)
i,k ≥ 1 and then by

the soundness of Mod-GC, it holds that for all parties Pi, m
(s)
i,j = m

(s)
i,k . This also implies that

M
(s)
j = M

(s)
k . To finish the proof, consider a case where G

(s)
j = 1 and M

(s)
j ̸= M

(s)
k . Then, by

definition, there exists some i ∈ [n] for which m
(s)
i,j ̸= m

(s)
i,k . Thus, from the soundness of Mod-GC,

G
(s)
i,j = 0 or G

(s)
i,k = 0. Assume G

(s)
i,k ̸= 0, then G

(s)
i,j = 0 which would lead to G

(s)
j = 0, contradiction.

Thus, G(s)
i,k = 0, meaning that G

(s)
k = 0 and the proof is complete.

Termination: Follows immediately from the termination of all Mod-GC instances and the fact that
the sampling in step 0 is guaranteed to return a result.

This completes the proof of Theorem 1. ⊓⊔

Proof of Theorem 2. We need to show that ΠVGC satisfies termination, graded agreement, graded
validity, indistinguishable randomness, correctness and soundness. Theorem 1 covers the first three
properties, while the results in the Lemmata below prove the rest of the properties. We first prove
an intermediate result about strictly positive grades.

Lemma 8. If a party Pj is graded as G
(j)
i ≥ 1 by an honest party Pi in Toss, then M

(j)
i contains

at least one entry mk from an honest party Pk.

Proof. Recall that the final grade for a party Pj is set by honest party Pi as G
(j)
i = mink∈[n]{G

(j)
k,i}

and the final output string is set as M
(s)
j = ∥

i∈[n],G(s)
i,j ≥1

m
(s)
i,j . The fact that G(j)

i ≥ 1 means that for

all k ∈ [n], G(j)
k,i ≥ 1. For an index k corresponding to an honest party Pk, it means that honest party

Pi has observed m
(j)
k,i = mk,i, which implies that an honest value mk,i = mk was included in G

(j)
i .

To see why party Pi could not have observed m
(j)
k,i ̸= mk,i and set G

(j)
k,i = min{g(j)k,i , g

∗ − gk,i} > 0,

note that since gk,i = g∗, the rule from step 3 in Protocol 1 specifies that G
(j)
k,i = 0.

Lemma 9. ΠVGC achieves σ-indistinguishable randomness, for σ(∆VGC) = (1 − ξ) · ∆VGC and
∆VGC = 2 ·∆G.

Proof. Recall the ∆-indistinguishable randomness game in Definition 5. The adversary A receives
∆VGC and the public keys of the honest users from the challenger C, and sets the public keys of the
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currently corrupted parties M (representing the malicious set). Every time the adversary corrupts
a new party, it will add its identity to M, but cannot change the public keys. For each j ∈ M,
EKj and VKj are checked by the challenger to be valid (which is possible because the VDF has a
transparent setup). The adversary can start evaluating the VDF on any string it wishes after it has
the evaluation keys.

The challenger and adversary start executing Toss. The challenger selects the input seeds mi ∈
{0, 1}q(κ) for every Pi ∈ [n] \ M and sends them to the adversary in the first round of GC. The
event that the adversary guesses the input seed mi of an honest party before seeing it in round
1 has probability negl(κ). A union bound over all such events still yields a negligible probability
p0 = negl(κ). Therefore, any VDF evaluation the adversary has computed so far is independent of
the strings mi.

From round 1, the adversary can start evaluating VDF.Eval on any combination of strings mi

of the honest parties and any other strings. Because the VDF is σ-sequential, the adversary will
obtain the evaluations only after Toss has completed, since the duration of Toss is less than ∆VGC.
The VDF does not have trapdoors, therefore the adversary cannot obtain the output faster.

The adversary participates in the GC instances in step 1 and step 2 of Protocol 1 with whatever
behavior A0 it chooses. In step 3 of Protocol 1, the remaining honest parties Pi (at least ϵn), set
for every j ∈ [n] the output (M

(j)
i , G

(j)
i ). At any point, the adversary also chooses output values

(M
(j)
j ) for Pj ∈M, based on all values it has seen so far and all computations done so far. It starts

Process using behavior A1 to obtain w
(k)
A , for any party Pk, either honest or corrupted.

By the fact that A is σ(∆VGC)-parallel time limited and the VDF is σ-sequential, it holds by
Lemma 4 that for any value M (i) obtained after the start of Toss as a function of the honest parties,
the advantage of the adversary guessing w(i) = VDF.EvalEKi

(H(M
(i)
i )) for honest Pi is p1 = negl(κ).

We now turn to corrupted parties Pj , j ∈ M. To obtain a biased output w(j), by the σ-
sequentiality of the VDF, the adversary must have computed it on values not depending on the
honest parties’ random seeds, with overwhelming probability. Lemma 8 shows that the only way a
corrupted party can obtain a strictly positive grade from another honest party is if it relays correctly
at least one honest string corresponding to an honest party. This implies that each value M

(j)
j for

which A could have guessed w(j) has to have grade G
(j)
i = 0 by all other honest parties.

Therefore, the advantage of the adversary A in winning the ∆VGC-indistinguishability game is
at most p0 + p1 = negl(κ), so ΠVGC is σ(∆VGC)-indistinguishable. ⊓⊔

Lemma 10. ΠVGC achieves soundness.

Proof. In the definition of the soundness of VGC, the inputs x(j) are fixed to be obtained through
Toss for an honest party, and can be any string chosen by the adversary for a corrupted party (if it
does not care to have a positive grade). We want to show that an honest party Pi will never validate
a string wj and a proof ρj , for which (wj , ρj) ̸= Process(pp, x(j)i ). Note that even if the locally held
string x

(j)
i at Pi differs from the string x(j) obtained by a different party from Toss, Pi would not

accept a pair (wj , ρj) ̸= Process(pp, x(j)).
The result follows from the soundness of the VDF construction (Definition 9) with difficulty

parameter ∆VGC, which holds for any VDF inputs, outputs and proofs that a σ(∆VGC)-limited
adversary chooses, as long as the adversary does not set the output and proof to what was obtained
from VDF.Eval. Therefore, as long as the adversary does not honestly follow Toss to obtain a string
x(j) = x

(j)
i and does not compute (wj , ρj)← Process(pp, x(j)i ) = VDF.EvalEKj

(x
(j)
i ), an honest party

Pi will return 0 as the output VGC.Verify(pp, x(j)i , wj , ρj) with overwhelming probability. ⊓⊔
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Lemma 11. ΠVGC achieves termination and correctness.

Proof. The termination of Toss was proved above, and the termination of Process is guaranteed by
the property of VDF.Eval that an output is generated after time ∆VGC. Correctness is inherited from
the correctness of the VDF construction (Definition 9). ⊓⊔

This concludes the proof of Theorem 2. ⊓⊔

C.2 Broadcast

We first give the intuition of the proof of Theorem 3. The ΠVGC protocol achieves indistinguishable
randomness for a difficulty parameter of ∆VGC, graded validity, graded agreement, termination,
correctness and soundness. Therefore, we are guaranteed that by the start of Stage 1, each party Pi

has a random string wi that they feed to the VRF, and a corresponding proof πi. Moreover, by the
start of Stage 1, each party Pi also holds graded strings (M (j)

i , G
(j)
i ) for each other party Pj . Honest

parties are certain that the grades for the local strings they hold for the other parties differ by at
most 1, and moreover, local strings with grades greater than 2 are the same among honest parties.

The indistinguishable randomness of the ΠVGC guarantees that malicious parties cannot bias
the output of Process while having grade greater than 0 in the views of honest parties. Each party
evaluates only one VDF, the one corresponding to its own election process, and it only reveals it
when it wants to prove it is elected in a bit-committee—the election depends both on its local secret
key and the beacon. Furthermore, the VRF satisfies uniqueness, provability, pseudorandomness and
extended pseudorandomness. Therefore, if malicious parties do not compute their VRF on the bit
value concatenated with the random string, they cannot produce a valid proof for membership in
the bit-committee that will be accepted by the honest parties.

We note that to streamline this proof, we prove this result as a composition of the properties of
the protocols and algorithms for the online setup, election and voting, that comprise the protocol;
nevertheless, it could be proved as a monolithical protocol that does not assume composition results.

We first prove some intermediate results on valid batches and certificates, and on the number of
honest and dishonest parties elected in the committees. Notice that parties with associated grades
equal to zero from the perspective of an honest party Pi do not affect the outcome of the election,
since the conditions of validity for the allowed (r, ·)-batches always require a strictly positive grade.
Therefore, we focus on strictly positive grades.

Lemma 12. If a party Pj is graded with G
(j)
i ≥ 1 by Pi as a result of Toss, then Pj can add a valid

contribution to a batch batch′b with an associated valid certificate cert′b, only if Pj correctly executes
Toss,Process and VRF.Prove to obtain yj, unless with negligible probability negl(κ).

Proof. Let the adversary submit a maliciously generated tuple (wj , ρj , yj , πj) to a certificate cert′b =
certb||(wj , ρj , yj , πj) associated to a (r + 1, 1)-batch batch′b = batchb||sigj(b), where batchb and certb
were valid. Towards a contradiction, assume that the resulting batch and certificate are valid with
more than negligible probability. Party Pj needs to be corrupted, otherwise, the unforgeability of
the signatures would immediately prevent the adversary from impersonating an honest party Pj

and batch′b would not be validated.
Recall that an honest party Pi validates a certificate tuple (wj , ρj , yj , πj) associated to a signa-

ture sigj(b) if the following hold: (i) VRF.VerifyPKj
(H(b||wj), yj , πj) = 1, (ii) VGC.Verify(pp,M (j)

i ,

wj , ρj) = 1, where (M
(j)
i , ·) ← Toss(pp), and (iii) yj ≤ boundϵ,δ. Maliciously generated strings yj

that do not satisfy condition (iii) are trivially discarded, so we assume (iii) holds for yj .
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Let us look at condition (ii). The soundness of ΠVGC (Lemma 10) states that a malicious party
Pj can compute (w(j), ρ(j)) in another way than as the output of Process on a string equal to M

(j)
i ,

such that Pi accepts VGC.Verify(pp,M (j)
i , wj , ρj) = 1, with only negligible probability. Furthermore,

since the evaluation in Process is deterministic, and Toss satisfies graded agreement and graded
validity by Theorem 1, the outputs w(j)

i ← Process(pp,M (j)
i ), where wj := w

(j)
j , with the grades G(j)

i

obtained from Toss, also satisfy graded agreement and graded validity over all parties Pi, which holds
unconditionally (since we assume idealized signatures). Note that no party has to compute Process
for all n strings it outputs from Toss and this is just a global view. Therefore, if condition (ii) of the
certificate check holds with more than negligible probability for a maliciously generated certificate
tuple, since the graded validity and agreement properties hold unconditionally, then the adversary
can break the soundness of ΠVGC (which can happen with probability negl(κ)). We remark that this
implies that if an honest party Pi receives a value wj for which VGC.Verify(pp,M (j)

i , wj , ρj) = 0,
then either Pi has grade 0 associated to Pj , which contradicts the assumption from the statement
that G

(j)
i ≥ 1, or (wj , ρj) ̸= Process(pp,M (j)

i ) by the soundness property.
Assume now that the given tuple passes conditions (ii) and (iii), and let us look at condition (i).

Passing condition (ii) means that the string wj has grade ≥ 1 and is unbiased, with overwhelming
probability, against a σ(∆VGC)-limited adversary, according to the indistinguishable randomness
of ΠVGC (Lemma 9). Note that in the ROM, applying a hash function implies that H(b||wi) are
random, not just unpredictable, as required in the VRF definition.

Assume first the adversary corrupted Pj after it posted its keys on the public bulletin-board,
so the key pair (SKj ,PKj) was honestly generated. An adversary for which an honest Pi would
return VRF.VerifyPKj

(H(b||wj), yj , πj) = 1, for maliciously generated yj and πj , breaks the unique-
ness and provability of the VRF (Definition 8), which can happen with only negligible proba-
bility. Second, assume Pj was corrupted from the beginning, and the key pair was not honestly
generated, but satisfies VRF.ValidatePKj

(1κ) = 1. Still, if yi was not computed as the output of
VRF.Prove on the bit value concatenated with the random string wj , and if an honest Pi returns
VRF.VerifyPKj

(H(b||wj), yj , πj) = 1, the adversary would break the extended pseudorandomness
property of VRF since wi is random, and this happens with only negligible probability.

Therefore, condition (i) on the certificate check holds only with negligible probability for a
maliciously generated tuple, contradicting the assumption made in the beginning of the proof. ⊓⊔

Corollary 1. The adversary cannot bias yj for a corrupted party Pj such that it is less than the
bound boundϵ,δ.

Proof. The pseudorandomness and extended pseudorandomness properties of the VRF (Defini-
tion 8) when applied on the random input H(b||wj) means that (yj , πj)← VRF.ProvePKj

(H(b||wj))
is pseudorandom. Therefore, Pj cannot bias yj such that it is less than the bound boundϵ,δ. ⊓⊔

This corollary enables the proofs of Lemma 14, since it ensures that unless with negligible
probability negl(λ), the election succeeds as dictated by pmine.

Lemma 13 (Honest Lower Bound). For pmine = min
{
1, 1

ϵn log
(
2
δ

)}
, at least one honest party

self-elects in a committee for a bit b with probability 1− δ/2.

Proof. There are at least ϵn parties that are forever honest by assumption. Let X denote the number
of honest parties that elect themselves in a committee for a given bit b. The expected value of X is:

E[X] = ϵn · pmine = ϵn ·min

{
1,

1

ϵn
log

(
2

δ

)}
=

{
ϵn if log

(
2
δ

)
≥ ϵn

log
(
2
δ

)
if log

(
2
δ

)
< ϵn

.
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The first case corresponds to all honest parties always getting elected with pmine = 1. In the second
case, the probability that no honest party can ever self-elect is given by:

P[X = 0] ≤ (1− pmine)
ϵn ≤ exp(−ϵnpmine) = exp(log(2/δ)) = δ/2.

The second inequality holds by Bernoulli’s inequality (equation (2) in Appendix B).
The VRF constructions we consider use random oracles, so we can assume the output is dis-

tributed uniformly at random. Then, the statement in the Lemma holds, P[X ≥ 1] ≥ 1− δ/2. Since
δ is negligible in the security parameter λ, the result holds with overwhelming probability in λ. ⊓⊔

Lemma 14 (Dishonest Upper Bound). For pmine = min
{
1, 1

ϵn log
(
2
δ

)}
, at most g∗/2 = ⌈2ϵ ·

log
(
2
δ

)
⌉ dishonest parties can self-elect in a committee for a bit b with probability 1− δ/2− negl(κ),

for any ϵ ∈ (0, 1).

Proof. There are at most (1 − ϵ)n parties that can be corrupted at any time by assumption. Let
X denote the number of dishonest parties managing to elect themselves in a committee for a given
bit b. Even if nodes are corrupted adaptively, the election probability does not change. The expected
value of X is:

E[X] = (1− ϵ)n · pmine = ϵn ·min

{
1,

1

ϵn
log

(
2

δ

)}
=

{
ϵn if log

(
2
δ

)
> ϵn

1−ϵ
ϵ log

(
2
δ

)
if log

(
2
δ

)
≤ ϵn

.

The first case corresponds to all parties always getting elected with pmine = 1, but which also means
g∗/2 > 2n, which is a case we are not interested in, since we want g∗ to be sublinear.

Therefore we focus on the second case. For simplicity, set R := g∗/2. We want to use Chernoff’s
inequality (equation (1) in Appendix B). Therefore, setting R = (1+ζ)·E[X] yields ζ = R/E[X]−1.

The probability that more than R dishonest parties can ever self-elect is given by:

P[(1 + ζ) · E[X]] ≤ exp

(
−ζ2 · E[X]

2 + ζ

)
= exp

(
− ζ2

2 + ζ
· 1− ϵ

ϵ
· log

(
2

δ

))
∗
≤ exp

(
− log

(
2

δ

))
= δ/2,

where ∗ holds if
ζ2

2 + ζ
· 1− ϵ

ϵ
≥ 1. (3)

We want to find ζ that satisfies (3) for any value of ϵ ∈ (0, 1) and from it find the minimum R for
which P[X ≥ R] ≤ δ/2.

The roots of (3) are ϵ−
√
8ϵ−7ϵ2

2(1−ϵ) and ϵ+
√
8ϵ−7ϵ2

2(1−ϵ) and inequality holds outside of the roots. To
account for any value of ϵ ∈ (0, 1), we choose to set

R ≥

(
1 +

ϵ+
√
8ϵ− 7ϵ2

2(1− ϵ)

)
· E[X] =

2− ϵ+
√
8ϵ− 7ϵ2

2(1− ϵ)
· 1− ϵ

ϵ
· log

(
2

δ

)
=

2− ϵ+
√
8ϵ− 7ϵ2

2ϵ
· log

(
2

δ

)
≥ 3.1

2ϵ
· log

(
2

δ

)
.

For a slightly simpler expression, we set R := ⌈2ϵ ·log
(
2
δ

)
⌉, obtaining the g∗/2 value in the statement.

The value we obtain for g∗/2 is slightly tighter than the one in Chan et al. because we use
a tighter version of the Chernoff inequality. Since the VRF verification can fail with probability
negligible in the computational parameter κ, the result holds with probability 1− δ/2−negl(κ). ⊓⊔
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Proof of Theorem 3. We now prove the main result of the paper. First, termination holds by the
termination of the ΠVGC, where Toss and Process act like an online setup, and by construction of
the subsequent g∗/2 stages. Then, we prove validity and consistency.

Lemma 15. Protocol ΠBC achieves validity with probability 1− negl(κ).

Proof. In stage 0, the sender Ps sends [bs, sigs(bs),⊥] to all parties. By round 1, all honest parties
have a valid (1, 1)-batch for bs and add bs to their extracted sets. Since Ps is honest, the security of
the signature scheme ensures no malicious party can inject another validly signed message, so parties
only elect themselves in a single committee for bs and will not accept as valid any batch batchb̄s .

Then, by the correctness of ΠVGC (Definition 4, proved in Theorem 2) and the correctness of
the VRF (Definition 8), honest parties will correctly form valid batches on b, such that the after g∗

rounds, all honest parties Pi will have Extractedi = {bs} unless with negligible probability. ⊓⊔

Lemma 16. Protocol ΠBC achieves consistency with probability 1− δ − negl(κ).

Proof. Suppose that an honest party Pi adds message b to Extractedi at stage r. We prove that by the
end of the protocol, all honest parties add b to their Extracted sets with overwhelming probability.
Assume first that until the last round, there are no more than g∗/2 signatures in a valid batch.

Case 1. Pi adds message b to Extractedi during the first round of stage r < g∗/2: Then, b is
accompanied by a valid (r, 1)-batch, say batchb. Also, b is accompanied by a valid certificate for
batchb, say certb. Note that by Lemma 12, Pi accepts a certb as valid for batchb if it was honestly
formed, unless with probability negl(κ). So, for all signatures sigk(b) ∈ batchb it holds that G

(k)
i ≥

g∗−2r+1. Thus, during the second round of stage r, all honest parties receive [b, batchb, certb]. Note
that with probability 1−δ/2−negl(κ) by Lemma 13, at least one honest party is in the b-committee.

Such a party, say Pj , checks that batchb is a valid (r, 2)-batch for b and that certb is a valid
associated certificate. For all signatures sigk(b) ∈ batchb, from the graded agreement property of
ΠVGC, it holds that |G(k)

i −G
(k)
j | ≤ 1. Since G

(k)
i ≥ g∗−2r+1, it holds that G(k)

j ≥ g∗−2r. From the

graded agreement property of ΠVGC, it also holds that M (k)
i = M

(k)
j for all k ∈ [n] : sigk(b) ∈ batchb,

since G
(k)
i , G

(k)
j > 1. So, VGC.Verify(pp,M (k)

j , wk, ρk) = VGC.Verify(pp,M (k)
i , wk, ρk) = 1. Moreover,

VRF.VerifyPKk
(H(b||wk), yk, πk) = 1 and yk ≤ boundϵ,δ, by uniqueness of the VRF. Therefore, certb

is considered a valid certificate for batchb from Pj . So, Pj adds b to its Extractedj set and adds
its own signature to the batch, producing a (r + 1, 1)-batch batch′b, and adds its proof to the
updated certificate cert′b. This batch′b is valid for all honest parties Pl, because for all signatures
sigk(b) ∈ batch′b either 1) k ̸= j and from graded agreement of ΠVGC, |G(k)

l − G
(k)
j | ≤ 1, meaning

that G
(k)
l ≥ g∗ − 2r − 1, or 2) k = j and from the graded validity property of ΠVGC, G(j)

l ≥ g∗ − 1.
For similar reasons as above, the updated certificate is also valid. Thus, during the first round of
stage r+1, all honest parties observe a valid (r+1, 1)-batch for message b, accompanied by a valid
certificate and thus add b to their Extracted sets.

Case 2. Pi adds message b to Extractedi during the second step of stage r < g∗/2: Then, Pi

holds a valid (r, 2)-batch batchb and a valid certificate for it, say certb. Pi is in the committee for b,
thus Pi adds their own signature to batchb, creating a valid (r + 1, 1)-batch batch′b, and also adds
(wi, ρi, yi, πi) to an updated certificate cert′b. So, Pi sends (b, batch′b, cert

′
b) to all parties. Thus, during

the first round of stage r + 1, all honest parties observe a valid (r + 1, 1)-batch for b, and a valid
certificate (validity holds from the same arguments as in Case 1.) and add b to their Extracted sets.

Case 3. Pi adds message b to Extractedi during stage r = g∗/2: Then, Pi holds a valid (g∗/2, 1)-
batch, i.e. a batchb of more than g∗/2 signatures from parties Pj , where one of the signatures is from
Ps and the rest of them have grade G

(j)
i ≥ 1, and an associated certificate certb. By Lemma 14, at
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least one of the signatures is from another honest party, so every honest party received this valid
(g∗/2, 1)-batch batchb and the associated valid certb, and added b to their Extracted set by this stage.

Now, assume that at any point in the protocol, the batch batchb received already contained g∗/2

valid signatures with grades G(j)
k ≥ g∗− 1. Since it is a valid (r, 1)-batch, then it will also be a valid

(r + 1, 1)-batch, and more specifically, a valid (g∗/2, 1)-batch (the rules for the valid certificates
also hold). With overwhelming probability, there cannot be g∗/2 malicious parties in the committee
(Lemma 14) and there is at least one honest party in the b-committee (Lemma 13), so limiting the
size of the transmitted batches to g∗/2 does not impact consistency. ⊓⊔

This concludes the proof of Theorem 3. ⊓⊔

C.3 Parallel Vector Gradecast

Proof of Lemma 2. The proof can be adapted from the proof of Theorem 2 in [43]. Each honest
party always calls couplesk before sending. The use of couplesk for the input sets means that each
party at any point can input at most the set couplesk(M). Thus, the number of bits sent by a single
party is, with probability 1− negl(λ):

⌈log ϵn⌉∑
i=1

O
(
m · (n+ |couplesk(M)|) · s

)
= O(m · log(ϵ · n) ·max{n, |couplesk(M)|} · s). ⊓⊔

Proof of Lemma 3. We prove validity and consistency separately.

Validity : Let Ps be an honest sender with some value m∗
(s,k) for k ∈ casts, and let Pi be any honest

party still honest by the end of the protocol. In the first round, all parties receive (m∗
(s,k), σ

∗
(s,k)).

The adversary is unable to forge signatures of honest parties, thus honest party Pi holds |Si
(s,k)| = 1

and mi
(s,k) = m∗

(s,k) at all times throughout the protocol. Therefore, at the end of the protocol it
holds that gi(s,k) = 2g∗ and Pi outputs (m∗

(s,k), g
∗).

Consistency : Assume an honest party Pi for some (s ∈ senders, k ∈ casts) with output grade
gi(s,k) ≥ 1. So, ḡi(s,k) ≥ 2gi(s,k) at the end of the protocol. Assume that some round r is the round dur-

ing which Pi adds message mi
(s,k) in Si

(s,k). We claim that if some honest party Pj gets (mj
(s,k), σ

j
(s,k)),

mj
(s,k) ̸= mi

(s,k) in round r′ with valid signature σj
(s,k), then r′ > r + 2gi(s,k) − 3. Assume that

r′ ≤ r + 2gi(s,k) − 3. Pj is honest, thus it calls ΠCV(Mj , ∅, ·) during round r′ + 1, with mj
(s,k) ∈Mj .

From Lemma 2, by the end of round r′+1 all honest parties received two distinct messages for (s, k);
either exactly mi

(s,k),m
j
(s,k), if no other valid messages are propagated from adversarial sender s for

its k-th cast, or any two valid messages else. Thus, by the end of step 1 of round r′+2, it holds that
|Si

(s,k)| ≥ 2 and thus ḡi(s,k) ≤ r′+2− r ≤ 2gi(s,k)−1, which is a contradiction. So, r′ > r+2gi(s,k)−3.
Party Pi, therefore calls ΠCV(Mi, ∅, ·) during round r, with mi

(s,k) ∈Mi. Thus, by the end of round
r all honest parties receive at least one message. If some honest party does not receive mi

(s,k) by the
end of round r, then by the construction of ΠCV each honest party received at least two distinct
messages for (s, k), with probability 1− negl(λ). From the previous claim it then holds, 2gi(s,k) < 3,
i.e. gi(s,k) ≤ 1 and thus from the assumption: gi(s,k) = 1. At the same time, from the previous claim,

no honest party Pj receives mj
(s,k) ̸= mi

(s,k) before round r′ > r − 1. Since by the end of round r it

is |Sj
(s,k)| ≥ 2, then ḡj(s,k) ≤ 1 if Pj outputs mj

(s,k) , i.e. gj(s,k) = 0, if mi
(s,k) ̸= mj

(s,k).
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Else, if all honest parties receive mi
(s,k) by the end of round r, then let us consider the value of

ḡj(s,k) at the end of the protocol:

- If gi(s,k) ≥ 2, then ḡj(s,k) > (r + 2gi(s,k) − 3)− r ≥ (r + 2gi(s,k) − 3)− r + 1 = 2gi(s,k) − 2. Thus, Pj

outputs mi with grade gj(s,k) > gi(s,k) − 1.

- If gi(s,k) = 1, then from the previous claim, no honest party Pj receives mj
(s,k) ̸= mi

(s,k) before

round r−1. Since by the end of round r Pj receives mi
(s,k) (it is mi

(s,k) ∈ |S
j
(s,k)| by round r+1),

then either gj(s,k) = 0 or mj
(s,k) = mi

(s,k).

The total number of rounds for our protocol is 1 (for Round 1) +2g∗ (Rounds 2 to 2g∗ + 1),
where for each of the latter 2g∗ rounds, a call to ΠCV is made, adding ⌈log ϵn⌉ additional rounds in
each, leading to the stated total number of rounds.

The total communication complexity is O(g∗ · n log ϵn ·max{n, |couplesksc(M)|} ·m · s), where
M is the set containing all valid messages from pairs of (senders, casts). Since, ksc is the prefix size
defined exactly to differentiate between messages of different (j ∈ senders, k ∈ casts), it holds that
|couplesksc(M)| = 2|senders| · |casts| and the proof follows. ⊓⊔

C.4 Communication Reduction

We denote by Π ′
Toss the protocol obtained by replacing in the Toss protocol from Figure 1 the call

to GC in step 1.1. with a call to Parallel Vector GC. We have the following lemma.

Lemma 17. Protocol Π ′
Toss is a Toss protocol with maximum grade g∗ satisfying Graded Validity

and Graded Agreement and Termination as in Definition 4, with probability 1− negl(λg).

Proof. The proof follows similarly to the proof of Theorem 1, with the use of Lemma 3 instead
of Lemma 1 in the respective arguments. Since the result of Lemma 3 holds with probability 1 −
negl(λg), the current result inherits this same probability of success. ⊓⊔

As described in Section 6, the use of Π ′
Toss leads to a new VGC protocol, called Π ′

VGC, that is
used during Π ′

BC. Mirroring the previous analysis, we can prove the following lemma for Π ′
VGC.

Lemma 18. Protocol Π ′
VGC is, with probability 1− negl(λg), a verifiable graded consensus protocol

on random strings, cf. Definition 4, against an adaptive ∆′
VGC-limited adversary who runs in at most

(1− ξ) ·∆′
VGC = ∆G +∆′

G parallel time, and can adaptively corrupt up to (1− ϵ)n parties.

Proof. All properties follow from arguments similar to the ones in the proof of Theorem 2. Lemma 17
covers the properties of termination, graded agreement and graded validity, while we can argue about
the rest of the properties of indistinguishable randomness, correctness and soundness following the
proofs of Lemmata 9, 10 and 11 respectively (with the respective changes of ∆′

VGC and the additional
failure probability term of negl(λg) incurred from calling ΠCV instead of multicasting). ⊓⊔

Proof of Theorem 4. The modularity of the changes to the updated broadcast protocol allow us
to argue about the proof of Theorem 4 without repeating the same arguments made for the proof
of Theorem 3. Note that the gossiping part in Toss′ does not affect the stages 0 through g∗/2 from
the broadcast protocol. We briefly sketch all the distinctions between the two proofs.

Termination follows from the termination of the protocols and algorithms of Π ′
VGC, and the

following g∗/2 stages. Validity is argued as in Lemma 15; since it requires the correctness of the
underlying Π ′

VGC protocol, it inherits the additional probability of Lemma 18, and thus validity holds
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with probability 1− negl(λg)− negl(κ). Consistency is argued as in Lemma 16, again inheriting the
additional probability and thus holding with probability 1− negl(λg)− δ − negl(κ). ⊓⊔

Proof of Theorem 5. First, we describe how to amortize the communication cost of broadcast
over multiple instances. Concretely, instead of feeding (b||wi) in broadcast instance brid to the
VRF, Pi can feed (b||H(wi||brid)), which is also random, as long as wi has length polynomial in the
security parameter κ. Thus, the adversary can not predict the committee membership for a broadcast
instance brid

′ even after seeing the committee membership for all broadcast instances brid < brid
′.

Since the broadcast executions are independent with the exception of wi, their composition is secure.
Therefore, in order to self-elect as a member in a committee, a party Pi now computes (yi, πi) =

VRF.ProveSK(H(b||wi||brid)). As part of the verification of the membership of a different party Pj , Pi

now computes VRF.VerifyPKj
(H(b||wj ||brid), yj , πj) in Verify. Define Π̄BC to be the subprotocol run

between stages 0 and g∗/2 in the broadcast protocol ΠBC from Figure 3, with the committee-related
computations described above. Then, multiple secure broadcast instances are obtained by running
the ΠVGC protocol (with any given instantiation) and then run Π̄BC(brid), for brid = 1, . . . , brmax.

For item 1 in Theorem 5, we use one instance of Π ′
VGC to generate random strings for brid ∈

{1, . . . , n}. Using Π ′
VGC where we instantiate the parallel GC via Protocol 5, and brid ∈ {1, . . . , n},

yields an amortized communication complexity of broadcast of Õ(n2), and Õ(λδ) round complexity.
For item 2, using the online setup Toss from ΠVGC without gossiping (using the GC from Ap-

pendix A.3) and brid ∈ {1, . . . , n2} yields an amortized communication complexity of broadcast of
Õ(n2), and O(λδ) round complexity.

For item 3, we amortize the communication cost of parallel broadcast with techniques from
Tsimos et al. [43]. Specifically, we use the Π ′

VGC protocol with communication cost Õ(n3) to bootstrap
randomness for n2 broadcast instances. We then run n separate parallel broadcast instances where
we apply the gossiping techniques of [43] on Protocol 3. The sole difference from Π̄BC is in the
distribution round of stages 1 to g∗/2−1. Now parties, instead of multicasting their tuples of values,
batches and certificates to all, propagate them via the gossiping dissemination protocol presented
for the trusted setup broadcast in [43]. However, our Π ′

VGC replaces the trusted setup. Thus, we
obtain an amortized cost of Õ(n) per broadcast instance, Õ(λδ) rounds, and without trusted setup.

Related to the composition of multiple broadcast instances, we make the following observations.
The verifiable graded consensus protocol is run only once, before the “online” part of the broadcast
instances start, and is independent of those. The sequentiality of ΠVGC (Π ′

VGC) thus guarantees the
unpredictability of the graded beacons that are used in any of the broadcast instances. The parties
obtain the graded beacons for all other parties from Toss in ΠVGC (Toss’ in Π ′

VGC). Then in Process,
using the ROM, they evaluate only the VDF on the hash of their own beacon for each instance
of broadcast, and store the other inputs for later verification. Even if the adversary obtains any
of its inputs faster than the rest of the honest parties (as long as it still takes ∆VGC (∆′

VGC) with
overwhelming probability), it cannot bias the beacons. The VRF properties will guarantee that the
elections are verifiable and cannot be falsified. Moreover, we can add a time buffer between VGC and
the stages of broadcast to ensure all honest parties finish evaluating their VDF with overwhelming
probability before stage 0 of the first broadcast instance (in the parallel case, stage 0 of all instances
starts at the same time). Security of the multiple broadcast instances is ensured as long as one
honest committee member participates in stage 1 of that instance even if the adversary slows down
some honest parties. Finally, note that there is no “gossiping composition” since gossiping is only
used in ΠVGC and not in the rest of the broadcast protocols. ⊓⊔
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