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Abstract d-Multiplicative secret sharing enables n players to locally compute
additive shares of the product of d secrets from their shares. Barkol et al. (Jour-
nal of Cryptology, 2010) show that it is possible to construct a d-multiplicative
scheme for any adversary structure satisfying the Qd property, in which no d
sets cover the whole set of players. In this paper, we focus on multipartite
adversary structures and propose efficient multiplicative and verifiably mul-
tiplicative secret sharing schemes tailored to them. First, our multiplicative
scheme is applicable to any multipartite Qd-adversary structure. If the num-
ber of parts is constant, our scheme achieves a share size polynomial in the
number n of players while the general construction by Barkol et al. results in
exponentially large share size in the worst case. We also propose its variant
defined over smaller fields. As a result, for a special class of bipartite adver-
sary structures with two maximal points, it achieves a constant share size for
arbitrary n while the share size of the first scheme necessarily incurs a loga-
rithmic factor of n. Secondly, we devise a more efficient scheme for a special
class of multipartite ones such that players in each part have the same weight
and a set of players belongs to the adversary structure if and only if the sum
of their weights is at most a threshold. Thirdly, if the adversary structure
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is Qd+1, our first scheme is shown to be a verifiably multiplicative scheme
that detects incorrect outputs with probability 1. For multipartite adversary
structures with a constant number of parts, it improves the worst-case share
and proof sizes of the only known general construction by Yoshida and Obana
(IEEE Transactions on Information Theory, 2019). Finally, we propose a more
efficient verifiably multiplicative scheme by allowing small error probability δ
and focusing on a more restricted class of multipartite adversary structures.
Our scheme verifies computation of polynomials and can achieve a share size
independent of δ while the previous construction only works for monomials
and results in a share size involving a factor of log δ−1.

Keywords Secure multiparty computation · Multiplicative secret sharing ·
Verifiability · Multipartite adversary structure

1 Introduction

1.1 Background

Secret sharing is a cryptographic primitive introduced in [3,23] to protect a
secret from leakage by dividing it into shares and distributing them among a
set P of n players. The efficiency of a secret sharing scheme is measured by
the (average) information ratio, which is defined as the ratio of the average
size of shares to that of a secret. The secret sharing scheme is said to tolerate
an adversary structure ∆, a family of subsets of P , if players in any T ∈ ∆
learn no information on a secret.

d-Multiplicative secret sharing (d-MSS) [1] is a variant of secret sharing,
which allows the players to locally compute additive shares of the product
of d secrets. It is a central building block of information-theoretically secure
multiparty computation (MPC) for degree-d polynomials. Since d-MSS non-
interactively computes a multiplication of d (not just two) secrets, a protocol
based on it achieves better round and communication complexity than the
standard secret-sharing based protocol interactively evaluating an arithmetic
circuit gate by gate. Specifically, based on a d-MSS scheme tolerating an adver-
sary structure ∆, Barkol et al. [1] propose a two-round MPC protocol which is
secure against an adversary corrupting a set of players T ∈ ∆ and whose com-
munication complexity is proportional to the information ratio. It is shown in
[1] that the CNF scheme [18] is d-multiplicative if the adversary structure ∆
satisfies the Qd property, that is, no d sets in ∆ cover P . Conversely, they also
show that d-MSS for ∆ is possible only if ∆ satisfies the Qd property. There
are also d-MSS schemes applicable only to threshold adversary structures [23,
2,6,5,7].1

When obtaining a value of a function from shares, an output player would
need to detect the existence of an incorrect value. Yoshida and Obana [25]

1 The multiplicative property of Shamir’s scheme was not mentioned in the original paper
[23] but it was later implicitly used in [2,6].
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introduce verifiably d-multiplicative secret sharing (d-VMSS), which allows
the players to locally convert their shares into proofs showing that the output
is indeed the correct value of a degree-d polynomial. They propose an error-
free d-VMSS based on the CNF scheme for any Qd+1-adversary structure,
which detects cheating with probability 1. In the particular case of computing
degree-d monomials, they also devise a transformation to make any d-MSS
scheme verifiable while small error probability is required.

However, since they are based on the CNF scheme, the general construc-
tions of MSS and error-free VMSS schemes [1,25] result in exponentially large
information ratios in the worst case. Furthermore, a VMSS scheme provided by
the general transformation [25] necessarily has a share size involving a factor
of log δ−1 for the error probability δ.

1.2 Our Results

In this paper, we focus on multipartite adversary structures ∆ [14], in which P
is divided into ℓ parts Pj and players in each Pj play the same role. Formally,
whether each subset X is in ∆ is determined by (|X ∩ P1|, . . . , |X ∩ Pℓ|). We
aim at more efficient MSS and VMSS schemes tailored to given multipartite
adversary structures than those obtained by the general constructions [1,25].
We also further improve efficiency when ∆ satisfies a stronger property than
Qd since the Qd property just comes from the information-theoretic limit [1]
rather than from actual privacy requirements.

– d-MSS for Qd-adversary structures. Our first scheme can tolerate any
ℓ-partite Qd-adversary structure ∆. The information ratio is equal to the
number of all points representing maximal sets in ∆, which is at most O(nℓ)
(Theorem 1). It is polynomial in n when ℓ is constant. This scheme has to
be defined over a finite field Fq with q > n. As shown in Table 1, our scheme
improves the worst-case information ratio of the general MSS scheme [1]
for multipartite adversary structures with ℓ = O(1). Our scheme tolerates
a wider class of adversary structures than the threshold schemes [23,2,6,
5,7]. We also propose its variant in which q can be chosen independent
of n if the partition is balanced, i.e., there is a constant µ > 0 such that
minj∈[ℓ] |Pj | ≥ µn (Theorem 2). As a result, for a special class of 2-partite
adversary structures with two maximal points, it achieves a constant share
size for arbitrary n while the share size of our first scheme necessarily incurs
a logarithmic factor of n. A price to pay for the efficiency gain is that the
adversary structure must satisfy a stronger property than Qd, which we
term the Qd property with margin κ.

– d-MSS for weighted threshold adversary structures. We propose
a more efficient MSS scheme than Theorem 1 for multipartite adversary
structures ∆ such that players in each part have the same weight and a
set of players is in ∆ if and only if the sum of their weights is at most a
threshold (Theorem 3). More specifically, using the geometric representa-
tion [13], ℓ-partite adversary structures can be embedded in Rℓ via the map
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Table 1 Comparison of d-MSS schemes. Define T nk = {X : |X| ≤ k}, ∆+ as the family of

all maximal sets in ∆, and maxΦΠ(∆) as the set of all points representing maximal sets in
∆ (see Section 2 for formal definitions). Let κ denote a constant such that 0 < κ < 1. The
notations Oϵ(·) and Ωϵ(·) hide any constant depending on ϵ.

Scheme Adversary structure ∆ Information ratio Field size q

[23,2,6] T nk with dk < n 1 q > n
[5,7] T nk with dk < (1− κ)n 1 independent of n
[1] Qd |∆+| independent of n

Theorem 1 ℓ-partite and Qd |maxΦΠ(∆)| q > n

Theorem 2
ℓ-partite and

Qd with margin κ
|maxΦΠ(∆)| independent of n

Theorem 3
ℓ-partite and

dist(p,Conv(ΦΠ(∆))) ≥ ϵ Oϵ(ℓn) q > Ωϵ(ℓn2)

ΦΠ : 2P → Rℓ, ΦΠ(X) = (|X ∩ P1|, . . . , |X ∩ Pℓ|). Let C = Conv(ΦΠ(∆))
be the convex hull of ΦΠ(∆) in Rℓ and set p = (1/d)ΦΠ(P ). If dist(p, C),
the distance between p and C, is at least ϵ > 0, then the scheme achieves
an information ratio (ℓn/ϵ) + 1, which is smaller than Theorem 1 if ϵ is
constant.

– Error-free d-VMSS for Qd+1-adversary structures. We show that
the scheme in Theorem 1 detects incorrect outputs with probability 1 if
the adversary structure is Qd+1 (Theorem 4). For multipartite adversary
structures with a constant number of parts, our VMSS scheme improves
the worst-case share and proof sizes of the general construction [25] (see
Table 2).

– More efficient d-VMSS for Qd+1-adversary structures with margin
κ. We also propose a d-VMSS scheme with smaller proof size than Theo-
rem 4 while it requires small error probability and the adversary structure
to satisfy the Qd+1 property with margin κ for some κ (Theorem 5). It is
possible to combine the general transformation [25] with Theorem 1 and
to obtain a d-VMSS scheme for any multipartite Qd-adversary structure
with non-zero error probability. A significant advantage is that our scheme
in Theorem 5 can verify computation of polynomials while the resulting
scheme of [25] can only work for monomials. Even in the particular case
of computing monomials, our scheme still has an advantage that the share
size can be independent of error probability δ for a special class of 2-partite
adversary structures with two maximal points while the share size of [25]
necessarily involves a factor of log δ−1 (Corollary 1).

– Application to MPC. The MPC protocols based on MSS and VMSS
schemes [1,25] have communication complexity proportional to the share
sizes. Thus, if we focus on multipartite adversary structures with a constant
number of parts, our MSS schemes lead to MPC protocols with polynomial
communication complexity while the previous schemes require exponential
communication cost in the worst case.
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Table 2 Comparison of error-free d-VMSS schemes. Share and proof sizes are measured by
the number of field elements.

Scheme Adversary structure ∆ Share size Proof size Field size q

[25] Qd+1 |∆+| |∆+| independent of n

Theorem 4 ℓ-partite and Qd+1 |maxΦΠ(∆)| |maxΦΠ(∆)| q > n

1.3 Related Work

In the threshold setting, Shamir’s scheme [23,2,6] is d-multiplicative if its
threshold k satisfies dk < n. The arithmetic codex based on certain algebraic
geometric codes [5,7] provides a d-MSS scheme defined over smaller fields than
Shamir’s scheme while the range of its tolerable threshold must degrade. How-
ever, they are inapplicable to a multipartite adversary structure if it contains
at least one set of size exceeding their tolerable thresholds.

In [9], it is shown that a 2-MSS scheme can be generically constructed
from a linear secret sharing scheme for any Q2-adversary structure with only
constant overhead. However, it is currently unknown whether their method can
be extended to a construction of d-MSS for d > 2. In [20,21], more efficient
2-MSS schemes are proposed for specific classes of Q2-adversary structures.

It is classically known that information-theoretically secure MPC is pos-
sible if and only if the family of all possible corruption subsets satisfies the
Q2 property [16]. However, the existing protocols in that setting (e.g., [9,11,
17,20–22]) interactively evaluate an arithmetic circuit gate by gate and hence
result in communication complexity O(nd) for a degree-d polynomial. On the
other hand, MPC protocols based on d-MSS schemes require interaction only
in the sharing and reconstruction phase. Hence, they require only two rounds
of interaction and communication cost proportional to the share size, which is
smaller than O(nd) depending on adversary structures.

1.4 Publication Note

The preliminary version appeared in the proceedings of Information-Theoretic
Cryptography 2020 [12]. The current version provides a construction of mul-
tiplicative secret sharing schemes over smaller fields. In addition, this paper
proves that the scheme proposed in [12] can be extended into verifiably mul-
tiplicative schemes in two ways.

2 Preliminaries

Notations Let Z+ and R+ denote the set of all non-negative integers and all
non-negative real numbers, respectively. Define [ℓ] = {1, . . . , ℓ} for ℓ ∈ N. The
power set of a set X is denoted by 2X and Xm is the Cartesian product of m
copies of X. We write x←$X if x is chosen at random from X. Let Fq denote
the finite field of size q for a prime power q. Let h ∈ Fq[X1, . . . , Xn] be an
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n-variate polynomial over Fq. We say that h is degree-d if its total degree is at
most d. The vector 1 ∈ Rm is the one whose entries are all one and ei ∈ Rm
is the i-th unit vector, i.e., the vector such that the i-th entry is one and the
other entries are all zero. The i-th component of v is denoted by v(i). For
two real vectors v,w ∈ Rm, we write v ≤ w if v(i) ≤ w(i) for every i ∈ [m]
and v < w if v ≤ w and v ̸= w. The standard inner product of v and w is
v ·w = v(1)w(1)+ · · ·+v(m)w(m). The length of v ∈ Rm is measured by the
Euclidean norm ∥v∥ :=

√
v · v and the distance between v,w ∈ Rm is given

by dist(v,w) := ∥v−w∥. For a closed subset C in Rm, we abuse notation and
define the distance between v and C by dist(v, C) = inf{dist(v,w) : w ∈ C}.

2.1 Adversary Structures

We define an adversary structure ∆ on a set P of n players as a monotonically
decreasing family of subsets of P , by which we mean that A ∈ ∆ and A ⊇ B
imply B ∈ ∆ for any A,B ⊆ P . The set of all the maximal subsets in ∆ is
denoted by ∆+. We say that ∆ satisfies the Qd property if A1 ∪ · · · ∪Ad ̸= P
for any A1, . . . , Ad ∈ ∆.

The (k, n)-threshold adversary structure T nk is defined as T nk = {A ⊆ P :
|A| ≤ k}. It can be seen that T nk is Qd if and only if n > dk.

Let Π = (P1, . . . , Pℓ) be a partition of P , i.e., Pi ∩ Pj = ∅ for i ̸= j and
P =

⋃
j∈[ℓ] Pj . A permutation τ on P is called a Π-permutation if τ(Pj) = Pj

for every j ∈ [ℓ]. An adversary structure ∆ is called Π-partite if τ(B) ∈ ∆ for
any B ∈ ∆ and any Π-permutation τ . Let ΦΠ : 2P → Rℓ be a map defined
by ΦΠ(X) = (|X ∩ Pj |)j∈[ℓ]. A Π-partite adversary structure ∆ is uniquely
determined by ΦΠ(∆). Since a ∈ ΦΠ(∆) and a ≥ b imply b ∈ ΦΠ(∆) for any
a, b ∈ ΦΠ(2P ), a Π-partite adversary structure ∆ is uniquely determined only
by specifying the set of all maximal points maxΦΠ(∆) := {a ∈ ΦΠ(∆) : a <
b ≤ ΦΠ(P )⇒ b /∈ ΦΠ(∆)}. Note that |maxΦΠ(∆)| = O(nℓ).

The class of weighted threshold adversary structures [23] is a natural gen-
eralization of the threshold one. Let Π = (P1, . . . , Pℓ) be a partition, w ∈ Zℓ+,
and t ∈ Z+. Define WΠ

w,t as the Π-partite adversary structure such that

ΦΠ(WΠ
w,t) = {x ∈ ΦΠ(2P ) : w · x ≤ t}.

We fix the following notations throughout the paper unless otherwise indi-
cated:

– P = [n] denotes the set of n players.
– Π = (P1, . . . , Pℓ) is a partition of P .
– ∆ is a Π-partite adversary structure on P .
– N is the number |maxΦΠ(∆)| of maximal points in ∆.
– {a1, . . . ,aN} is the set maxΦΠ(∆) of all maximal points in ∆.
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2.2 Secret Sharing

We follow formalization given by [1], which is non-standard but almost equiva-
lent to the standard ones. A secret sharing scheme is a tuple Σ = (K,R,S, SHARE),
where K is a domain of secrets, R is a set of strings, S is a domain of shares,
and SHARE : K × R → Sn is a map. For A ⊆ P , SHARE(s, r)A denotes
the restriction of SHARE(s, r) to the entries indexed by A. The (average) in-
formation ratio ρ(Σ) is defined as ρ(Σ) = (1/n)

∑
i∈P log |Si|/ log |K|, where

Si = {SHARE(s, r){i} : s ∈ K, r ∈ R}. We say that Σ is ∆-private for an
adversary structure ∆ if the distributions of SHARE(s, r)A and SHARE(t, r)A
induced by r←$R are perfectly identical for any A ∈ ∆ and any s, t ∈ K.
A set A ⊆ P is called authorized if there is a reconstruction algorithm that
determines the secret s from shares SHARE(s, r)A for any r ∈ R. In contrast
to traditional secret sharing, we do not require that any set A /∈ ∆ should be
authorized. Instead, we say that Σ is correct if P is authorized.

We say that Σ is a d-multiplicative secret sharing scheme (d-MSS) if there
exists a map MULT : P × Sd → Fq such that

∏
j∈[d]

s(j) =
∑
i∈P

MULT(i, γ
(1)
i , . . . , γ

(d)
i ),

for any s(1), . . . , s(d) ∈ Fq and any r(1), . . . , r(d) ∈ R, where (γ
(j)
i )i∈P =

SHARE(s(j), r(j)) is a tuple of shares for s(j). We remark that the existence of
MULT does not imply that given shares of two secrets s1, s2 ∈ Fq, the players
can non-interactively compute valid shares of the secret s1 + s2. It only en-
ables players to generate additive shares of the product of secrets. To compute
shares of the sum, Σ needs to satisfy the following linearity requirement. We
say that Σ is Fq-linear if K, S, and R are linear spaces and SHARE is a linear
map over Fq such that SHARE(·){i} is surjective for all i ∈ [n]. We assume
that K = Fq if we refer to Fq-linear schemes except in Section 6.

Application to MPC Assume that there are n input players each holding their
private inputs x(i), an output player, and an adversary who can corrupt the
output player and a subset of input players in an adversary structure ∆.
Let Σ be a ∆-private d-MSS scheme. Let h ∈ Fq[X1, . . . , Xn] be a homo-
geneous n-variate degree-d polynomial h =

∑
u=(u1,...,ud)∈[n]d cuXu1

· · ·Xud
,

where cu ∈ Fq. Barkol et al. [1] construct a two-round MPC protocol to com-
pute h(x(1), . . . , x(n)) based on Σ such that the adversary corrupting a subset
T ∈ ∆ obtains no information on (x(i))i/∈T beyond what follows from (x(i))i∈T
and h(x(1), . . . , x(n)). The point-to-point communication complexity is linear
in the share size and hence the total one is O(n2ρ(Σ) log q). We may assume
that h is homogeneous since we can pad any monomial of degree d′ < d with
d − d′ copies of a dummy variable X0. We set the corresponding input to
x(0) = 1 and the shares of x(0) to some predetermined ones.
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Exp(x(1), . . . , x(n), h, T,Adv)

1. For each j ∈ [n], sample r(j) ←$R and set (γ
(j)
i )i∈P = SHARE(x(j), r(j)).

2. For i ∈ T , let (ζ′i, σ
′
i) be a modified share and proof outputted by Adv((γ

(j)
i )i∈T,j∈P ).

3. For i /∈ T , let

ζ′i =
∑
u

cuMULT(i, γ
(u1)
i , . . . , γ

(ud)
i ) and σ′

i = PROOF(i, h, γ
(1)
i , . . . , γ

(n)
i ).

4. Compute ζ′ =
∑
i∈P ζ

′
i and σ

′ = Dec(σ′
1, . . . , σ

′
n).

5. If ζ′ ̸= h(x(1), . . . , x(n)) and VER(ζ′, σ′) = 1, then output 1 and else 0.

Fig. 1 The verifiability experiment for VMSS.

2.3 Verifiably Multiplicative Secret Sharing

Verifiably multiplicative schemes [25] enable the output player to verify that
he indeed receives h(x(1), . . . , x(n)) even if a subset of input players in the
adversary structure ∆ submits incorrect elements.

Let Dec : (Fcq)n → Fc′q be a map called a decoder. We call Dec linear if Dec
is an Fq-linear map. We also call Dec additive if c = c′ and Dec(a1, . . . , an) =∑
i∈[n] ai for ai ∈ Fcq. Let Σ be a d-MSS scheme and δ ≥ 0. We say that

Σ is a (δ, d)-verifiably multiplicative scheme ((δ, d)-VMSS) with a decoder
Dec : (Fcq)n → Fc′q if there are two algorithms PROOF and VER, where:

– PROOF takes as input an index i ∈ P , (a description of) a degree-d poly-

nomial h, and n shares γ
(1)
i , . . . , γ

(n)
i for i ∈ P , and outputs σi ∈ Fcq;

– VER takes as input m ∈ Fq and σ ∈ Fc′q , and outputs b ∈ {0, 1};
satisfying the following property:

– Correctness: For any x(j) ∈ Fq (j ∈ P ), any degree-d polynomial h,

and any r(j) ∈ R (j ∈ P ), let (γ
(j)
i )i∈P = SHARE(x(j), r(j)) and σi =

PROOF(i, h, γ
(1)
i , . . . , γ

(n)
i ). Then, it holds that

VER
(
h(x(1), . . . , x(n)),Dec(σ1, . . . , σn)

)
= 1;

– Verifiability: For any x(j) ∈ Fq (j ∈ P ), any degree-d polynomial h =∑
u cuXu1 · · ·Xud

, any T ∈ ∆, and an adversary Adv who modifies shares
and proofs of corrupted players, consider an experiment described in Fig. 1.
Then, it holds that

Pr
[
Exp(x(1), . . . , x(n), h, T,Adv) = 1

]
≤ δ.

We call an output σi ∈ Fcq of PROOF a proof. We call Σ error-free if
it is (0, d)-verifiably multiplicative with respect to some decoder. The above
definition generalizes the original one [25], which assumes that h is a degree-d
monomial.
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Based on a (δ, d)-VMSS scheme with the additive decoder, it is possible to
construct a protocol in which the output player outputs h(x(1), . . . , x(n)) or ⊥
with probability at least 1 − δ even if some corrupted players send incorrect
messages [25]. The total communication complexity is given by O(n2(ρ(Σ) +
c) log q). If the decoder is linear, we need a more complicated re-randomizing
technique than [25] to ensure that proofs do not reveal private information.
We will provide a modified protocol for our specific linear decoder in Section 5.

2.4 Examples of MSS Schemes

The (k, n)-Shamir scheme [23] is T nk -private, Fq-linear for q > n, and d-
multiplicative if n > dk [2,6]. We briefly explain another threshold d-MSS
scheme based on algebraic function fields [7,5]. Please refer to [24] for ter-
minology and theory on algebraic geometry. Let F be an algebraic function
field with full field of constants Fq. Let g = g(F ) denote the genus of F and

P(1)
q (F ) be the set of all places of degree 1. Let Div(F ) denote the additive

group of divisors on F . For D ∈ Div(F ), its Riemann-Roch space is L(D). We

denote the support of D ∈ Div(F ) by supp(D). Assume n < |P(1)
q (F )| − 1,

let Q,R0, R1, . . . , Rn ∈ P(1)
q (F ) be n + 2 distinct places of degree 1, and set

D = (k + 2g)Q ∈ Div(F ). For a secret s ∈ Fq, choose a random f ∈ L(D)
conditioned on f(R0) = s. Then, the i-th share is f(Ri) for i ∈ P . We call
this scheme the (k, n)-Algebraic Geometric (AG) secret sharing scheme based
on F . If d(k + 2g) < n, it is d-multiplicative.

By assigning multiple shares of Shamir’s scheme, we obtain a WΠ
w,t-private

secret sharing scheme, which is d-multiplicative due to the multiplicative prop-
erty of Shamir’s scheme [2,6].

Proposition 1 ([23,2,6]) Let w ∈ Zℓ+, t ∈ Z+ and Fq be a finite field such
that q > w · ΦΠ(P ). If w · ΦΠ(P ) > dt, then there exists a WΠ

w,t-private d-
multiplicative Fq-linear secret sharing scheme Σ with information ratio ρ(Σ) =
w · ΦΠ(P )/n.

2.5 Coding Schemes

An Algebraic Manipulation Detection (AMD) code is a coding scheme with
the ability to detect a certain type of tempering.

Definition 1 ([10]) Let S be a finite set and C be a finite commutative group.
Let (E,D) be a pair formed by a probabilistic encoding map E : S → C and
a deterministic decoding map D : C → S ∪ {⊥} such that D(E(s)) = s with
probability 1 for every s ∈ S. We say that (E,D) is a δ-AMD code if

Pr[D(E(s) + c) /∈ {s,⊥} ] ≤ δ

for any s ∈ S and c ∈ C with c ̸= 0.
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We show a simple construction of an AMD code. Letm be a positive integer
and naturally embed Fq into Fqm .

Proposition 2 ([4]) Let S = Fq, R ⊆ Fqm , T = Fqm ×Fqm , and C = S ×T .
Define E : S × R → C as E(s, r) = (s, r, sr) for s ∈ Fq and r ∈ R and define
D : C → S ∪ {⊥} as

D(c) =

{
x, if xy = z,

⊥, otherwise

for c = (x, y, z) with x ∈ Fq, y ∈ Fqm , and z ∈ Fqm . Then (E,D) is a δ-AMD
code with δ = |R|−1.

We recall the classically known MDS property of Reed-Solomon codes.

Proposition 3 Let n and k be positive integers. Let q be a prime power with
q ≥ n and fix pairwise distinct n elements α1, . . . , αn ∈ Fq. Define C as the
set of all possible codewords of the (n, k)-Reed-Solomon code, that is, C =
{(f(αi))i∈[n] : f ∈ Fq[X], deg f < k}. Then, for any c, c′ ∈ C with c ̸= c′, it
holds that the number of non-zeros entries of c− c′ is more than n− k.

3 d-MSS for Multipartite Qd-Adversary Structures

In this section, we propose a d-MSS scheme which can be applied to any ℓ-
partite Qd-adversary structure. We also show that the field size can be reduced
if the adversary structure satisfies a stronger property than Qd.

First, we restate the Qd property in the multipartite setting.

Proposition 4 A Π-partite adversary structure ∆ satisfies the Qd property
if and only if x1+ · · ·+xd ≱ ΦΠ(P ) for any (not necessarily distinct) d points
x1, . . . ,xd ∈ ΦΠ(∆).

Proof Assume that P is covered by d subsets B1, . . . , Bd ∈ ∆. Since ∆ is
monotonically decreasing, we may assume that the Bi’s are pairwise disjoint.
Then it holds that ΦΠ(Bi) ∈ ΦΠ(∆) and ΦΠ(B1) + · · · + ΦΠ(Bd) = ΦΠ(P ).
Conversely, assume that there exists d points x1, . . . ,xd ∈ ΦΠ(∆) such that
x1 + · · · + xd ≥ ΦΠ(P ). We can replace the xi’s with d points b1, . . . , bd ∈
ΦΠ(∆) such that bi ≤ xi and b1 + · · · + bd = ΦΠ(P ). Then there exist
pairwise disjoint d subsets B1, . . . , Bd ∈ ∆ such that xi = ΦΠ(Bi). We have
that B1 ∪ · · · ∪Bd = P . ⊓⊔

We introduce a stronger notion of the Qd property with margin κ for a
parameter 0 ≤ κ < 1. Note that this notion depends on a choice of the partition
Π. In view of Proposition 4, the Qd property with margin 0 is equivalent to
the Qd property.

Definition 2 For κ with 0 ≤ κ < 1, we say that a Π-partite adversary
structure ∆ satisfies the Qd property with margin κ if x1 + · · · + xd ≱ (1 −
κ)ΦΠ(P ) for any (not necessarily distinct) d points x1, . . . ,xd ∈ ΦΠ(∆).
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3.1 A Scheme over Fq with q > n

3.1.1 Technical Overview

Assume that∆ satisfies theQd property. We decompose∆ intoN = |maxΦΠ(∆)|
sub-structures, i.e., ∆ = ∆1 ∪ · · · ∪∆N , where ∆m = {A ⊆ P : ΦΠ(A) ≤ am}.
We construct a secret sharing scheme Σm for ∆m as follows: Given a secret s,
Σm shares it via the (am(k), |Pk|)-Shamir scheme for each part Pk, k ∈ [ℓ]. We
combine these atomic schemes to obtain our final one Σ. That is, Σ first splits
a secret s into N random elements s1, . . . , sN such that s = s1 + · · · + sN .
It then shares each element sm via Σm. Clearly, the ∆-privacy holds since
players in T ∈ ∆ cannot learn at least one element sm such that T ∈ ∆m, due
to the ∆m-privacy of Σm.

To see the d-multiplicativity of Σ, suppose that d secrets s(1), . . . , s(d) are
shared via Σ. Our goal is to allow each player to obtain an additive share of

s(1) · · · s(d). Since each s(j) is split into N elements s
(j)
1 , . . . , s

(j)
N , the product

can be computed as

s(1) · · · s(d) =
N∑
i1=1

· · ·
N∑
id=1

s
(1)
i1
· · · s(d)id . (1)

A key observation is that for every (i1, . . . , id), there is some k ∈ [ℓ] such
that ai1(k) + · · · + aid(k) < |Pk| in view of Proposition 4. Then, we have
a partition (J1, . . . , Jk) of [N ]d such that if (i1, . . . , id) ∈ Jk, then ai1(k) +
· · ·+aid(k) < |Pk|. Following the partition, we can decompose the sum of Nd

monomials into k parts:

s(1) · · · s(d) =
∑
k∈[ℓ]

∑
(i1,...,id)∈Jk

s
(1)
i1
· · · s(d)id

It is now sufficient to have players in each Pk compute additive shares of

tk :=
∑

(i1,...,id)∈Jk s
(1)
i1
· · · s(d)id . As a share for s

(j)
m , a player in Pk receives a

point on a polynomial whose constant term is s
(j)
m and whose degree is am(k).

Note that tk can be viewed as a function of s
(1)
i1
, . . . , s

(d)
id

. By homomorphically
evaluating the function on his shares, he can locally compute a point on a
polynomial gk whose constant term is tk and whose degree is at most ai1(k)+
· · · + aid(k) < |Pk|. Therefore, players in Pk can compute additive shares of
gk(0) = tk by Lagrange interpolation.

3.1.2 Formal Description

Now, we show our d-MSS scheme for any multipartite Qd-adversary structure.

Theorem 1 Assume that ∆ satisfies the Qd property. Let Fq be a finite field
with q > n. Then, the scheme Σ described in Fig. 2 is a ∆-private d-multiplicative
Fq-linear secret sharing scheme with information ratio ρ(Σ) = N = |maxΦΠ(∆)|.
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Notations.
– Let α1, . . . , αn be n distinct non-zero elements of Fq .

SHARE. Given a secret s ∈ Fq :
1. Choose sj ∈ Fq , j ∈ [N ] at random such that s =

∑
j∈[N ] sj .

2. For each j ∈ [N ] and k ∈ [ℓ], choose fjk ∈ Fq [X] at random such that sj = fjk(0)
and deg fjk ≤ aj(k).

3. Output (fjk(αi))j∈[N ] as a share for i ∈ Pk.

Fig. 2 A secret sharing scheme for an ℓ-partite adversary structure ∆

Proof To prove ∆-privacy, let A ∈ ∆ and j ∈ [N ] be such that ΦΠ(A) ≤ aj .
For each k ∈ [ℓ], players in A ∩ Pk have at most |A ∩ Pk| ≤ aj(k) shares of
the (aj(k), |Pk|)-Shamir scheme for sj and hence obtain no information on sj .
Since Shamir’s schemes are independently invoked, players in A =

⋃
k∈[ℓ](A ∩

Pk) have no information on sj , either. Therefore, s is private to A since it is
masked by the unknown element sj .

To prove d-multiplicativity, let s(1), . . . , s(d) be any d secrets. Our goal is
to allow players i ∈ P to compute additive shares of s(1) · · · s(d). Since s(m) is

split as s(m) = s
(m)
1 + · · ·+ s

(m)
N , we have that

s(1) · · · s(d) =
∑

j=(j1,...,jd)∈[N ]d

s
(1)
j1
· · · s(d)jd .

Since ∆ is Qd, it holds that aj1+· · ·+ajd ≱ ΦΠ(P ) for every j = (j1, . . . , jd) ∈
[N ]

d
. In particular, there exists a map ψ : [N ]

d → [ℓ] such that aj1(ψ(j))+· · ·+
ajd(ψ(j)) < |Pψ(j)| for every j = (j1, . . . , jd) ∈ [N ]

d
. Let Jk = ψ−1(k) ⊆ [N ]d

for k ∈ [ℓ]. Then, (J1, . . . , Jk) is a partition of [N ]d and we have that

s(1) · · · s(d) =
∑
k∈[ℓ]

∑
j∈Jk

s
(1)
j1
· · · s(d)jd =

∑
k∈[ℓ]

tk,

where tk :=
∑

j∈Jk s
(1)
j1
· · · s(d)jd . It is then sufficient to allow each player i ∈ Pk

to compute ζi such that tk =
∑
i∈Pk

ζi, since (ζi)i∈P is now additive sharing

of s(1) · · · s(d).
From Fig. 2, any share assigned to a player i ∈ Pk for a secret s(m) has the

form of (f
(m)
1k (αi), . . . , f

(m)
Nk (αi)), where each f

(m)
jk is a polynomial of degree

at most aj(k) and s
(m)
j = f

(m)
jk (0) for j ∈ [N ]. Therefore, for any k ∈ [ℓ] and

j ∈ ψ−1(k), we have that

s
(1)
j1
· · · s(d)jd = (f

(1)
j1k
· · · f (d)jdk

)(0) and deg(f
(1)
jk · · · f

(d)
jk ) < |Pk|.

Define a polynomial gk as gk =
∑

j∈Jk f
(1)
j1k
· · · f (d)jdk

. Then,

gk(0) =
∑
j∈Jk

s
(1)
j1
· · · s(d)jd = tk and deg gk ≤ max

j∈Jk
{aj1(k) + · · ·+ ajd(k)} < |Pk|.
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Note that each player i ∈ Pk can locally compute gk(αi) from his shares as

gk(αi) =
∑

j∈Jk f
(1)
j1d

(αi) · · · f (d)jdk
(αi). Thus, each player in Pk obtains ζi by

Lagrange interpolation. Formally, there are constants λi ∈ Fq (independent
of gk) such that gk(0) =

∑
i∈Pk

λigk(αi), which means that ζi := λigk(αi)
sum up to tk. In a nutshell, the d-multiplicativity follows by defining MULT :
P × (FNq )d → Fq as

MULT(i, (x
(1)
1 , . . . , x

(1)
N ), . . . , (x

(d)
1 , . . . , x

(d)
N )) = λi

∑
j∈Jk

x
(1)
j1
· · ·x(d)jd if i ∈ Pk.

⊓⊔

3.2 A Scheme over Fq with q independent of n

The scheme in Theorem 1 requires that the field size q is greater than n since
it is based on Shamir’s scheme. We show that it can be modified into the one
in which q can be chosen independent of n.

3.2.1 Technical Overview

We replace each (am(k), |Pk|)-Shamir scheme in the construction of Theorem 1
with the (am(k) + 2g, |Pk|)-AG scheme based on an algebraic function field
F of genus g over Fq. The choice of F will be specified later. Instead of a
polynomial, the AG scheme randomly chooses a function f from a Riemann-
Roch space L(D) for a certain divisor D when sharing a secret.

We can make almost the same argument as Theorem 1 by replacing a
polynomial with a function f ∈ L(D) and the degree of a polynomial with
the degree of a divisor. In Theorem 1, players compute additive shares of all

monomials s
(1)
i1
· · · s(d)id assigned to them in Eq. (1). A key condition was that

the degree of a polynomial associated with each monomial s
(1)
i1
· · · s(d)id was

less than the number of players in some part Pk. In the variant based on AG
schemes, it means that the degree of an associated divisor D must be less than
|Pk| for some k ∈ [ℓ]. If that condition holds, players in Pk can locally compute
additive shares of a point of f ∈ L(D) from their shares analogous to Lagrange
interpolation. The multiplication property then follows as in Theorem 1.

Due to an additive factor 2g in thresholds, the above condition is translated
to that there is k ∈ [ℓ] such that ai1(k)+ · · ·+aid(k)+2gd < |Pk|. A sufficient
condition is that ∆ satisfies the Qd property with margin κ for

κ ≥ 2dg

minj∈[ℓ] |Pj |
, (2)

since ai1(k) + · · · + aid(k) < (1 − κ)|Pk| < |Pk| − 2dg from Definition 2. Our
scheme is then d-multiplicative for such ∆ (Proposition 5).

We have to choose F such that the number of places of degree 1 is more
than n+1, which is analogous to the assumption q > n of Shamir’s scheme, and
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Notations.
– Let F be an algebraic function field with n+ 2 distinct places Q,R0, R1, . . . , Rn ∈

P(1)
q (F ) and let Djk = (aj(k) + 2g)Q ∈ Div(F ) for j ∈ [N ] and k ∈ [ℓ].

SHARE. Given a secret s ∈ Fq :
1. Choose sj ∈ Fq , j ∈ [N ] at random such that s =

∑
j∈[N ] sj .

2. For each j ∈ [N ] and k ∈ [ℓ], choose fjk ∈ L(Djk) at random such that sj =
fjk(R0).

3. Output (fjk(Ri))j∈[N ] as a share for i ∈ Pk.

Fig. 3 A secret sharing scheme for an ℓ-partite adversary structure ∆ based on AG schemes

also that the genus g satisfies the condition (2). We use a family of algebraic
function fields {Fm}m∈N [15]. If q exceeds a constant depending κ, d and
µ := minj∈[ℓ] |Pj |/n only, it is possible to choose a desired function field Fm
from this family. Note that if µ is constant (i.e., Π is balanced), we obtain
a d-MSS scheme whose shares are N = |maxΦΠ(∆)| elements of a constant
field for arbitrary n (Theorem 2). While N may depend on n in general, we
present a practical example of ∆ such that N is also constant (Example 1).

3.2.2 Formal Description

We first prove the following.

Proposition 5 Assume that ∆ satisfies the Qd property with margin κ. Let
F be an algebraic function field of genus g defined over Fq such that n +

1 < |P(1)
q (F )| and g ≤ κmink∈[ℓ] |Pk|/(2d). Then, the scheme Σ described in

Fig. 3 is a ∆-private d-multiplicative Fq-linear secret sharing scheme such that
ρ(Σ) = N = |maxΦΠ(∆)|.

Proof The ∆-privacy follows from an argument similar to the proof of Theo-
rem 1 and the privacy of the underlying AG schemes.

To prove the d-multiplicativity, let s(1), . . . , s(d) be any d secrets. It follows
from κ ≥ 2gd/mink∈[ℓ] |Pk| that (1−κ)ΦΠ(P ) ≤ ΦΠ(P )−2gd1. We then have

a map ψ : [N ]
d → [ℓ] such that aj1(ψ(j))+ · · ·+ajd(ψ(j))+ 2gd < |Pψ(j)| for

every j = (j1, . . . , jd) ∈ [N ]
d
. Since s(m) is split as s(m) = s

(m)
1 + · · · + s

(m)
N ,

we have that

s(1) · · · s(d) =
∑
k∈[ℓ]

∑
j∈Jk

s
(1)
j1
· · · s(d)jd =

∑
k∈[ℓ]

tk,

where Jk = ψ−1(k) and tk :=
∑

j∈Jk s
(1)
j1
· · · s(d)jd . As in Theorem 1, it is suffi-

cient to allow each player i ∈ Pk to compute ζi such that tk =
∑
i∈Pk

ζi.

A share assigned to i ∈ Pk for a secret s(m) has the form of (f
(m)
1k (Ri), . . . , f

(m)
Nk (Ri)),

where f
(m)
jk ∈ L(Djk) and s

(m)
j = f

(m)
jk (R0) for j ∈ [N ]. Therefore, for any
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k ∈ [ℓ] and j ∈ ψ−1(k), we have that

s
(1)
j1
· · · s(d)jd = (f

(1)
j1k
· · · f (d)jdk

)(R0) and f
(1)
jk · · · f

(d)
jk ∈ L(Dj1k + · · ·+Djdk).

Define a function gk as gk =
∑

j∈Jk f
(1)
j1k
· · · f (d)jdk

. Then,

gk(R0) =
∑
j∈Jk

s
(1)
j1
· · · s(d)jd = tk

and gk ∈ L(D) for a divisor D such that

deg(D) ≤ max
j∈Jk
{deg(Dj1k + · · ·+Djdk)} < |Pk|

since degDjk = aj(k) + 2g and aj1(k) + · · ·+ ajd(k) + 2gd < |Pk|.
Note that each player i ∈ Pk can locally compute gk(Ri) from his shares as

gk(Ri) =
∑

j∈Jk f
(1)
j1d

(Ri) · · · f (d)jdk
(Ri). He can then obtain ζi from the following

lemma.

Lemma 1 ([7]) Let D ∈ Div(F ) with deg(D) = r and t be an integer larger

than r. Let R0, R1, . . . , Rt ∈ P(1)
q (F ) be such that supp(D)∩{R0, R1, . . . , Rt} =

∅. Then there exist constants λ1, . . . , λt ∈ Fq such that h(R0) =
∑
i∈[t] λih(Ri)

for any h ∈ L(D).

Thus, there are constants λi ∈ Fq for i ∈ Pk such that gk(R0) =
∑
i∈Pk

λigk(Ri),
which means that ζi := λigk(Ri) sum up to tk. ⊓⊔

As an instantiation of the underlying function field, let q be a square and
consider a family of algebraic function fields {Fm}m∈N defined over Fq such

that |P(1)
q (Fm)| ≥ (

√
q − 1)

√
qm−1 and g(Fm) ≤ √qm [15]. Then, for a “bal-

anced” partition Π, we can obtain a d-MSS scheme over a field whose size is
independent of n.

Theorem 2 Assume that ∆ satisfies the Qd property with margin κ. Let µ > 0
be such that |Pk| ≥ µn for every k ∈ [ℓ]. Let q be a square with

√
q−2 ≥ 2d/(µκ)

and m ∈ N be such that

(
√
q − 2)

√
q
m
< n < (

√
q − 1)

√
q
m − 1. (3)

Then there exists a ∆-private d-multiplicative Fq-linear secret sharing scheme
Σ such that ρ(Σ) = N = |maxΦΠ(∆)|.

Proof Let {Fm}m∈N be the above family of algebraic function fields. Letm ∈ N
be a number satisfying Eq. (3). Then it holds that n < (

√
q − 1)

√
qm − 1 ≤

|P(1)
q (Fm)| − 1 and

g(Fm) ≤ √qm ≤
√
qmκµ(

√
q − 2)

2d
≤ κµn

2d
≤
κmink∈[ℓ] |Pk|

2d
.

Apply Proposition 5. ⊓⊔
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Example 1 Let n ∈ N be an even number, Π = (P1, P2) be a 2-partition
such that |P1| = |P2| = n/2, and τ, σ ∈ R+ such that σ ≤ τ . Define a
Π-partite adversary structure DΠτ,σ = {X ⊆ P : |X| ≤ τn ∧ (|X ∩ P1| ≤
σn ∨ |X ∩ P2| ≤ σn)}. The motivation behind DΠτ,σ is modification of T nk so
that it takes into account a real-world situation. Suppose that the players are
classified to two organizations P1, P2 and an adversary A is one of the players.
If A belongs to P1, then it would be more difficult for A to corrupt players in
the other organization P2 than players in P1. We therefore add the constraint
|X ∩ P2| ≤ σn to the threshold constraint |X| ≤ τn. Similarly, we require
|X ∩ P1| ≤ σn. To tolerate DΠτ,σ, the threshold schemes [23,7,5] must tolerate

T nk for k ≥ τn and hence is inapplicable to DΠτ,σ for τ ≥ 1/d.
On the other hand, for an odd number d, our multipartite schemes can tol-

erate DΠτ,σ for a wider range of τ and σ. Consider a larger Π-partite adversary

structure UΠτ,σ defined as maxΦΠ(UΠτ,σ) = {(τn, σn), (σn, τn)}. Then, it can

be seen that UΠτ,σ is Qd with margin κ if and only if

d− 1

2d
τ +

d+ 1

2d
σ <

1

2d
(1− κ). (4)

Therefore, our multipartite schemes are applicable to DΠτ,σ for τ < 1/(d − 1)
by appropriately choosing σ and κ. Our scheme in Theorem 1 can work for
any τ and σ satisfying the condition (4) with κ = 0 while requiring the field
size q to be greater than n. To apply Theorem 2, assume q = 212 and d = 3,
for example. Since µ = min{|P1|, |P2|}/n = 1/2, we can choose κ = 1/5. Then,
our scheme in Theorem 2 can work for any τ and σ such that τ + 2σ < 2/5
and hence be applicable to DΠτ,σ such that (1/d =)1/3 ≤ τ < 2/5. Although
the range of applicable parameters is strictly smaller than that of Theorem 1,
the field size q is now independent of n. We emphasize that when applied to
MPC, point-to-point communication complexity is constant for arbitrary n.

4 d-MSS for Weighted Threshold Adversary Structures

In this section, we show another construction of a ∆-private d-MSS scheme
that is more efficient than Theorem 1 for ∆ such that players in each part
have the same weight and a set of players is in ∆ if and only if the sum of
their weights is at most a threshold. Specifically, let C = Conv(ΦΠ(∆)) be
the convex hull of ΦΠ(∆) in Rℓ. Here, the convex hull of a finite set S =

{x1, . . . ,xN} is defined by the set of all points of the form
∑N
j=1 αjxj , where

αj ≥ 0 and
∑N
j=1 αj = 1. Set p = (1/d)ΦΠ(P ). We can construct a ∆-private

d-MSS scheme if dist(p, C) > 0. It achieves a smaller information ratio than
Theorem 1 for some class of adversary structures (Example 2).

If ∆ is contained in a threshold adversary structure T nk with dk < n, it
is more efficient to use the (k, n)-Shamir scheme, which is d-multiplicative.
We note that our condition dist(p, C) > 0 is strictly weaker than ∆ ⊆ T nk .
Indeed, we also show in Example 2 that our construction works for a class of
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non-threshold adversary structures to which the previous threshold schemes
cannot be applied.

4.1 Technical Overview

We first show that if ϵ := dist(p, C) > 0, there exist a hyperplane H passing
through p such that C and hence ΦΠ(∆) is contained in one of its open half-
spaces (Lemma 2). By clearing of fractions of its normal vector h, we can
find a weight vector w ∈ Zℓ+ and a threshold t ∈ Z+ such that ∆ ⊆ WΠ

w,t and

w ·ΦΠ(P ) > dt. Then we can obtain a d-MSS scheme for ∆ from Proposition 1.

However, the choice of such a hyperplane H is not unique. The obtained
scheme has a large information ratio if one chooses a hyperplane whose nor-
mal vector has high complexity. Our key observation is that since ΦΠ(∆) has
finitely many points, if we continuously change h to h′, the hyperplane H ′

determined by h′ still satisfies the requirements, i.e., its open half-space still
contains ΦΠ(∆). We show that there is h′ ∈ Qℓ in a neighborhood of h such
that each entry of w′ = uh′ is O(ℓn/ϵ), where u is the least common multiple
of the denominators of h′ (Lemma 3). Based on the new hyperplane H ′, we
obtain a d-MSS scheme for ∆ with information ratio O(ℓn/ϵ) (Theorem 3).

4.2 Formal Description

To begin with, we show the following lemma.

Lemma 2 Set p = (1/d)ΦΠ(P ). Let C = Conv(ΦΠ(∆)) be the convex hull
of ΦΠ(∆) in Rℓ. Suppose that dist(p, C) ≥ ϵ > 0. Then there exists a vector
h ∈ Rℓ+ with ∥h∥ = 1 such that h · (p− x) ≥ ϵ for any x ∈ ΦΠ(∆).

Proof Let c∗ = argminc∈C∥p − c∥ and set h0 = p − c∗. Note that ∥h0∥ ≥ ϵ.
Then h0 · (p − c) ≥ ∥h0∥2 for any c ∈ C. Indeed, let c be any point in
C. For λ with 0 < λ < 1, we define a point cλ as cλ = λc + (1 − λ)c∗. It
follows from the definition of c∗ that ∥cλ − p∥2 ≥ ∥c∗ − p∥2. This implies that

0 ≥ −λ∥c− c∗∥2 +2(c∗−p) · (c∗− c). By making λ approach to 0, we obtain
h0 · (c∗−c) ≥ 0, which implies that h0 · (p−c) = h0 · (p−c∗)+h0 · (c∗−c) ≥
∥h0∥2. We show that h0 ∈ Rℓ+. Assume that c∗ ≰ p. Then there is an index
j ∈ [ℓ] with c∗(j) > p(j). Set c′ = c∗ − (c∗(j)− p(j))ej . Since 0 ≤ c′ ≤ c∗, c′

is in C. However, it holds that ∥c′ − p∥2 − ∥c∗ − p∥2 = −(c∗(j)− p(j))2 < 0,
which contradicts the definition of c∗. Set h = h0/∥h0∥ ∈ Rℓ+. Then ∥h∥ = 1
and h · (p− x) ≥ ∥h0∥ ≥ ϵ for any x ∈ ΦΠ(∆) ⊆ C. ⊓⊔

We approximate h by a vector of rational numbers h+δ for a small vector
δ and set w = u(h + δ) for some integer u. Since h · (p − x) ≥ ϵ for a finite
number of vectors x ∈ ΦΠ(∆), we can choose u to be u = O(ℓn/ϵ).
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Lemma 3 In the setting of Lemma 2, let h be a vector of Rℓ+ with ∥h∥ = 1
such that h·(p−x) ≥ ϵ for any x ∈ ΦΠ(∆). Then there exists a vector w ∈ Zℓ+
such that w · (x− p) < 0 for every x ∈ ΦΠ(∆) and 0 ≤ w(j) ≤ (ℓn/ϵ) + 1 for
every j ∈ [ℓ].

Proof Write ΦΠ(∆) = {x1, . . . ,xN}. Define a continuous function fj : Rℓ → R
as fj(w) = w · (xj −p) for j ∈ [N ]. Observe that fj(h) ≤ −ϵ and that for any

δ ∈ Rℓ, |fj(h + δ) − fj(h)| ≤ ∥xj − p∥ · ∥δ∥ ≤
√
ℓn∥δ∥. Thus, fj(h + δ) < 0

for any δ ∈ Rℓ with ∥δ∥ < ϵ/(
√
ℓn). Let u be the smallest positive integer

satisfying u > ℓn/ϵ. Set vj = ⌈uh(j)⌉ for each j ∈ [ℓ]. Since ∥h∥ = 1, we
have 0 ≤ uh(j) ≤ u and hence 0 ≤ vj ≤ u. Let δ ∈ Rℓ be a vector such

that 0 ≤ δ(j) = (vj/u) − h(j) ≤ 1/u. Then ∥δ∥ ≤ ∥u−11∥ < ϵ/(
√
ℓn). Set

w = u(h + δ) = (v1, . . . , vℓ) ∈ Zℓ+. It holds that fj(w) = ufj(h + δ) < 0 for
any j ∈ [N ] and 0 ≤ w(j) ≤ u ≤ (ℓn/ϵ) + 1. ⊓⊔

Now, we construct a d-MSS scheme using the weight vector w.

Theorem 3 Let C be the convex hull of ΦΠ(∆) in Rℓ. Set p = (1/d)ΦΠ(P )
and suppose that dist(p, C) ≥ ϵ > 0. If Fq is a finite field with q > (ℓn2/ϵ)+n,
then there exists a ∆-private d-multiplicative Fq-linear secret sharing scheme
whose information ratio is at most (ℓn/ϵ) + 1.

Proof From Lemma 3, we have w ∈ Zℓ+ such that w · (x− p) < 0 for any x ∈
ΦΠ(∆) and 0 ≤ w(j) ≤ (ℓn/ϵ)+1 for any j ∈ [ℓ]. Set t = maxx∈ΦΠ(∆){w ·x}.
Clearly, w · x ≤ t for any x ∈ ΦΠ(∆). Furthermore, dt < w · ΦΠ(P ) since
w · x < w · p for any x ∈ ΦΠ(∆). Since q > n((ℓn/ϵ) + 1), it holds that
q >

∑
j∈[ℓ] |Pj |maxj∈[ℓ]{w(j)} ≥ w ·ΦΠ(P ). Then, by applying Proposition 1,

we obtain a ∆-private d-MSS scheme over Fq whose information ratio is w ·
ΦΠ(P )/n ≤ (ℓn/ϵ) + 1. ⊓⊔

Example 2 Let d, k be positive integers and assume n = dk−r for 0 ≤ r < d−1.
For S ⊆ P , we consider the following (S, P \ S)-partite adversary structure
Bnk (S) = T nk−1 ∪ {A ⊆ P : |A| = k ∧ A ⊆ S}. It corresponds to a situation in
which an adversary can corrupt any k−1 players in P and any k players in S.
Since n ≤ dk, the threshold schemes [23,7,5] are not d-multiplicative. It can be
seen that Bnk (S) is Qd if |S| < (d−r)k. Consider the case of |S| = (d−r)k−1.
Theorem 1 provides a Bnk (S)-private d-MSS scheme with information ratio
k if r > 0 and 2 if r = 0. On the other hand, if r > 0, the convex hull
C = Conv(ΦΠ(Bnk (S))) is

C = {(x, y) ∈ R2
+ : (k − 1)x+ ky ≤ k(k − 1)}.

The closest point c∗ ∈ C to p is on the line (k − 1)x + ky = k(k − 1). In
particular, c∗−p is parallel to (k− 1, k). Therefore, we can set w ∈ Z2

+ in the
proof of Theorem 3 as (k − 1, k). We have Bnk (S) ⊆ WΠ

w,t for t = k(k − 1). As
a result, we obtain a Bnk (S)-private d-MSS scheme whose information ratio is
w · ΦΠ(P )/n = (dk2 − dk + 1)/n < k − (d − r − 1)/d. Similarly, if r = 0, we
obtain a d-MSS scheme with information ratio (dk + 1)/n = 1+ 1/n. In both
cases, the information ratios are smaller than the scheme from Theorem 1.
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5 (0, d)-VMSS for Multipartite Qd+1-Adversary Structures

In this section, we prove that the scheme Σ in Theorem 1 is a (0, d)-VMSS
scheme if the adversary structure ∆ is Qd+1.

5.1 Technical Overview

Let T ∈ ∆ be a set of all corrupted players. We present PROOF and VER
for Σ assuming (for now) that T is known in advance. The problem is still
non-trivial since we have to tell whether players in T actually modify their
shares or they honestly behave.

Let am ∈ maxΦΠ(∆) be such that ΦΠ(T ) ≤ am. We first deal with the
case of verifying the computation of a monomial s(1) · · · s(d). Recall that the
product can be written as the sum of Nd monomials as shown in Eq. (1).
Since ∆ is Qd+1, for every (i1, . . . , id) ∈ [N ]d, there exists k ∈ [ℓ] such that
ai1(k)+ · · ·+aid(k) < |Pk|−am(k). Then, we have a partition (J1, . . . , Jk) of
[N ]d such that if (i1, . . . , id) ∈ Jk, then ai1(k) + · · ·+ aid(k) < |Pk| − am(k).
Following the partition, we can decompose the sum of Nd monomials into k
parts:

s(1) · · · s(d) =
∑
k∈[ℓ]

∑
(i1,...,id)∈Jk

s
(1)
i1
· · · s(d)id (5)

Our high-level idea of PROOF is that we let players in each Pk submit

Shamir shares of tk :=
∑

(i1,...,id)∈Jk s
(1)
i1
· · · s(d)id . Specifically, since each s

(j)
v

is shared via the (av(k), |Pk|)-Shamir scheme, every player i ∈ Pk can locally
compute gk(αi) for a common polynomial gk such that gk(0) = tk and deg gk <
max(i1,...,id)∈Jk{ai1(k)+ · · ·+aid(k)} < |Pk| −am(k). PROOF outputs gk(αi)
as a proof for i ∈ Pk.

We then use the MDS property of a Reed-Solomon code to check the con-
sistency of the Shamir shares. Our decoder Dec first reconstructs gk(0) from
(gk(αi))i∈Pk

for each k ∈ [ℓ] and computes the sum η =
∑
k∈[ℓ] gk(0), which

can be done by Lagrange interpolation since deg gk < |Pk|. Note that η is
equal to s(1) · · · s(d) unless proofs are modified. To verify that their proofs are
Shamir shares, Dec also computes the syndrome ρk of (gk(αi))i∈Pk

viewed as a
codeword of the Reed-Solomon code of length |Pk| and dimension |Pk|−am(k).
The syndrome ρk can be computed by multiplying the parity-check matrix to
the vector of proofs. Note that ρk = 0 if and only if the vector is a codeword.

Now our verification algorithm VER checks if the following hold:

– The sum η is equal to the sum of additive shares outputted by MULT;
– All syndromes are equal to 0, i.e., ρk = 0 for all k ∈ [ℓ].

If corrupted players modify their proofs, the Hamming distance between the
vector of proofs and the original codeword (gk(αi))i∈Pk

is at most |T ∩ Pk| ≤
am(k). Since the minimum Hamming distance of the Reed-Solomon code is
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|Pk|−(|Pk|−am(k))+1 = am(k)+1, the vector of proofs cannot be a codeword
and hence it holds that ρk ̸= 0, which tells us the inconsistency.

When T is not known in advance, we perform the above procedures for all
am ∈ maxΦΠ(∆) in parallel, which increases the share and proof sizes by N
times. We can then detect inconsistency in at least one instance correspond-
ing to am such that ΦΠ(T ) ≤ am. Thanks to the linearity of Dec and the
underlying secret sharing schemes, it is straightforward to extend the above
procedures to the case of verifying the computation of a polynomial.

5.2 Formal Description

Now, we present the formal descriptions of PROOF, Dec and VER for the MSS
scheme in Theorem 1.

Theorem 4 Let Fq be a finite field with q > n. Assume that ∆ satisfies the
Qd+1 property. Then, the scheme Σ described in Fig. 2 is a ∆-private, (0, d)-
verifiably multiplicative (with respect to a linear decoder Dec), and Fq-linear
secret sharing scheme with domain of secrets Fq, domain of shares FNq , and

domain of proofs FNq , where N = |maxΦΠ(∆)|.

Proof Since ∆ is Qd+1, for each m ∈ [N ], there is a map ψm : [N ]d → [ℓ]
such that for every (j1, . . . , jd) ∈ [N ]d, it holds that aj1(k) + · · · + ajd(k) <
|Pk| − am(k), where k = ψm(j1, . . . , jd). For k ∈ [ℓ], let (λki)i∈Pk

be a tuple
of constants such that g(0) =

∑
i∈Pk

λkig(αi) for any polynomial g of degree
less than |Pk|, whose existence is guaranteed by Lagrange interpolation. To
show that Σ is (0, d)-VMSS, we define PROOF, Dec and VER for Σ as shown
in Fig. 4.

Let x(i) ∈ Fq be an input of i ∈ P and h =
∑

u∈[n]d cuXu1
· · ·Xud

be a
degree-d polynomial to compute, where cu ∈ Fq. Let T be a set of players
corrupted by an adversary Adv and m ∈ [N ] be such that ΦΠ(T ) ≤ am. We
prove that the experiment Exp(x(1), . . . , x(n), h, T,Adv) in Fig. 1 never outputs
1.

LetXu1
· · ·Xud

be any monomial appearing in h. Note that each x(i) is split

into N elements s
(i)
1 , . . . , s

(i)
N when being shared by Σ. Also, [N ]d is partitioned

as [N ]d = ψ−1
m (1) ∪ · · · ∪ ψ−1

m (ℓ). We therefore have that

x(u1) · · ·x(ud) =
∑

(i1,...,id)∈[N ]d

s
(u1)
i1
· · · s(ud)

id

=
∑
k∈[ℓ]

∑
(i1,...,id)∈ψ−1

m (k)

s
(u1)
i1
· · · s(ud)

id

=
∑
k∈[ℓ]

t
(u)
k ,
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Notations.
– Let α1, . . . , αn be n distinct non-zero elements Fq .
– For m ∈ [N ], let ψm : [N ]d → [ℓ] be a map such that for every (j1, . . . , jd) ∈ [N ]d,

it holds that aj1 (k) + · · ·+ ajd (k) < |Pk| − am(k), where k = ψm(j1, . . . , jd).
– For k ∈ [ℓ], let (λki)i∈Pk

be constants such that g(0) =
∑
i∈Pk

λkig(αi) for any

polynomial g of degree less than |Pk|.
– Let c′m =

∑
k∈[ℓ] am(k) + 1 for m ∈ [N ] and c′ =

∑
m∈[N ] c

′
m.

– For m ∈ [N ] and k ∈ [ℓ], let Hmk ∈ Fam(k)×|Pk|
q be a parity-check matrix of the

Reed-Solomon code of length |Pk| and dimension |Pk| − am(k).

PROOF. Given i ∈ P , a degree-d polynomial h, and n shares γ
(1)
i , . . . , γ

(n)
i ∈ FNq of Σ:

1. Write h as h =
∑

u∈[n]d cuXu1 · · ·Xud , where cu ∈ Fq .

2. For each j ∈ [n], parse γ
(j)
i as γ

(j)
i = (β

(j)
1 , . . . , β

(j)
N ), where β

(j)
m ∈ Fq .

3. Let k ∈ [ℓ] be such that i ∈ Pk.
4. For each m ∈ [N ], do the following:

(a) For each u ∈ [n]d, let δ
(u)
i =

∑
(i1,...,id)∈ψ

−1
m (k)

β
(u1)
i1
· · ·β(ud)

id
.

(b) Let ηim =
∑

u∈[n]d cuδ
(u)
i .

5. Output σi = (ηi1, . . . , ηiN ) ∈ FNq .

Dec. Given σi ∈ FNq for i ∈ P :
1. For each i ∈ P , parse σi as σi = (ηi1, . . . , ηiN ), where σmi ∈ Fq .
2. For each m ∈ [N ], do the following:

(a) Let

ρ0 =
∑
k∈[ℓ]

∑
i∈Pk

λkiηim ∈ Fq .

(b) For each k ∈ [ℓ], let

ρk = Hmk(ηim)i∈Pk
∈ Fam(k)

q .

(c) Let τm = (ρ0,ρ1, . . . ,ρℓ) ∈ Fc
′
m
q .

3. Output σ = (τ1, . . . , τN ) ∈ Fc′q .

VER. Given ζ ∈ Fq and σ ∈ Fc′q :

1. Parse σ as σ = (τ1, . . . , τN ), where τm ∈ Fc
′
m
q .

2. Output 1 if and only if τm = (ζ, 0, . . . , 0) for all m ∈ [N ].

Fig. 4 PROOF, Dec and VER for the MSS scheme in Theorem 1

where t
(u)
k =

∑
(i1,...,id)∈ψ−1

m (k) s
(u1)
i1
· · · s(ud)

id
. Players in Pk have Shamir shares

of each s
(j)
µ with threshold aµ(k) and hence they can locally compute Shamir

shares of s
(u1)
i1
· · · s(ud)

id
with threshold ai1(k) + · · · + aid(k). Therefore, the

player i ∈ Pk can obtain a Shamir share δ
(u)
i of t

(u)
k with threshold

max
(i1,...,id)∈ψ−1

m (k)
{ai1(k) + · · ·+ aid(k)} < |Pk| − am(k),

which is done at Step 4(a) of PROOF.
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By computing a linear combination of the above Shamir shares, every

player i ∈ Pk can obtain a Shamir share of
∑

u∈[n]d cut
(u)
k with threshold

< |Pk| − am(k), which is denoted by ηim at Step 4(b) of PROOF. In other

words, let σi = (ηi1, . . . , ηiN ) denote the output of PROOF(i, h, γ
(1)
i , . . . , γ

(n)
i ).

Then there exist polynomials g1, . . . , gℓ such that

((g1(αi))i∈P1
, . . . , (gℓ(αi))i∈Pℓ

) = (η1m, . . . , ηnm),

g1(0) + · · ·+ gℓ(0) = h(x(1), . . . , x(n))

and deg gk < |Pk| − am(k) for all k ∈ [ℓ].
If Dec takes as input a tuple (σi)i∈P of correct proofs, ρ0 computed by Dec

at Step 2(a) is equal to∑
k∈[ℓ]

∑
i∈Pk

λkigk(αi) =
∑
k∈[ℓ]

gk(0) = h(x(1), . . . , x(n)).

Since Hmk is a parity-check matrix of the Reed-Solomon code of length |Pk|
and dimension |Pk| − am(k), we have that ρk = 0 if and only if (ηim)i∈Pk

is a
tuple of consistent Shamir shares with threshold |Pk| − am(k).

Therefore, if players in T honestly behave, it holds at Step 2 of VER that
τµ = (h(x(1), . . . , x(n)), 0, . . . , 0) for all µ ∈ [N ] and then VER outputs 1,
from which we see the correctness. Suppose that players in T modify their
shares and proofs. The adversary wins only if τm = (ζ, 0, . . . , 0) for some
ζ ̸= h(x(1), . . . , x(n)). Then, players in T should have modified their proofs
(ηim)i∈T so that ρ0 = ζ at Step 2(a) of Dec. However, this would imply that
(ηim)i∈Pk

is different from a codeword (gk(αi))i∈Pk
for some k ∈ [ℓ]. Since

their Hamming distance is at most |T ∩Pk| ≤ am(k), it follows from the MDS
property of the Reed-Solomon code that the syndrome of (ηim)i∈Pk

is non-
zero, i.e., ρk ̸= 0. We thus conclude that VER never outputs 1 in this case,
which implies the error-free verifiability of Σ. ⊓⊔

5.3 Application to MPC

Based on our (0, d)-VMSS scheme, it is possible to construct an MPC protocol
in which the output player outputs h(x(1), . . . , x(n)) or ⊥ (with probability 1)
even if some corrupted players send incorrect messages.

In the protocol of [25], every player i ∈ P shares their input x(i) among the
other players. Then, every player i ∈ P locally computes an additive share ζi of
h(x(1), . . . , x(n)) using MULT, and also computes a proof σi using PROOF. The
output player collects all shares ζi and proofs σi, and computes ζ =

∑
i∈P ζi

and σ = Dec(σ1, . . . , σn). He outputs ζ if VER(ζ, σ) = 1 and otherwise, outputs
⊥. It is necessary to re-randomize the additive shares (ζi)i∈P and the proofs
(σi)i∈P since they may give the output player additional information beyond
h(x(1), . . . , x(n)). If Dec is additive, it can be done by letting all players generate
fresh additive shares of 0 and send them along with their input shares at the
first round. However, since the decoder of our scheme is not additive, we need
a more complicated re-randomizing technique than [25].
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Design. We modify the above protocol in such a way that proofs collected by
the output player are uniformly distributed over the set of all possible proofs for
h(x(1), . . . , x(n)). Observe that our decoder Dec is linear and that every vector
of correct proofs (σi)i∈P satisfies Dec((σi)i∈P ) = (h(x(1), . . . , x(n)), 0, . . . , 0) =:
σ∗. Thus, the set of all vectors of proofs is a coset u∗ + V, where V is the
kernel of a linear map Dec and u∗ is a vector such that Dec(u∗) = σ∗. We
let players choose a vector from V at random instead of fresh additive shares

of 0. Specifically, each player i ∈ P chooses (w
(i)
j )j∈P ←$V and sends w

(i)
j

to j ∈ P at the first round. At the second round, each player i ∈ P sends

vi = σi +
∑
j∈P w

(j)
i to the output player instead of σi.

We see that (vi)i∈P leaks nothing beyond h(x(1), . . . , x(n)). Let T be a set
of corrupted players. It is sufficient to show that the output player’s views
are indistinguishable between the cases where the honest players’ input are
(x(i))i/∈T or (x̃(i))i/∈T , if the value of h on them are the same. Assume that hon-
est players j /∈ T have different inputs x̃(j) such that h((x(i))i∈T , (x̃

(i))i/∈T ) =
h((x(i))i∈T , (x

(i))i/∈T ). Honest players proofs (σi)i/∈T based on the xi’s may
change to different ones (σ̃i)i/∈T based on the x̃i’s. Nevertheless, the distribu-
tion of (vi)i∈P is independent of whether honest players have inputs (xi)i/∈T
or (x̃i)i/∈T . Indeed, Dec((σi)i∈T , (σ̃i)i/∈T ) = Dec((σi)i∈T , (σi)i/∈T ) = σ∗ since
both vectors of proofs are for h((x(i))i∈T , (x̃

(i))i/∈T ) = h((x(i))i∈T , (x
(i))i/∈T ).

Then the difference between ((σi)i∈T , (σ̃i)i/∈T ) and ((σi)i∈T , (σi)i/∈T ) is in V .

Since (
∑
j∈P w

(j)
i )i∈P is uniformly distributed over V, (vi)i∈P is uniformly

distributed over u∗ + V regardless of the inputs of honest players.

Formal Description. Using the notations in the proof of Theorem 4, let V =
{(wi)i∈P ∈ (FNq )n : Dec(w1, . . . , wn) = 0} be a linear subspace of (FNq )n.
Based on our (0, d)-VMSS scheme Σ, we consider the following protocol for
computing a degree-d polynomial h =

∑
u cuXu1

· · ·Xud
.

Round 1
Each player j ∈ P generates shares (γ

(j)
i )i∈P = SHARE(x(j), r(j)) of his

input x(j) and sends γ
(j)
i to i ∈ P . In addition, he randomly chooses n

vectors (z
(j)
i , w

(j)
i ) ∈ F1+N

q for i ∈ P conditioned on
∑
i∈P z

(j)
i = 0 and

(w
(j)
i )i∈P ∈ V , and sends (z

(j)
i , w

(j)
i ) to i ∈ P .

Round 2
Each player i ∈ P computes

ζi =
∑

u∈[n]d

cuMULT(i, γ
(u1)
i , . . . , γ

(ud)
i ),

σi = PROOF(i, h, γ
(1)
i , . . . , γ

(n)
i ), and

(yi, vi) = (ζi, σi) +
∑
j∈P

(z
(j)
i , w

(j)
i ),

and sends (yi, vi) ∈ F1+N
q to an output player.
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Output
The output player computes ζ =

∑
i∈P yi and σ = Dec(v1, . . . , vn), and

outputs ζ if VER(ζ, σ) = 1 and otherwise ⊥.
It clearly follows from Theorem 4 and the definition of V that the output player
indeed receives h(x(1), . . . , x(n)) if all players submit correct messages and that
he outputs h(x(1), . . . , x(n)) or ⊥ (with probability 1) even if some subset of
players in ∆ send incorrect messages. The communication complexity is given
by (n2ρ(Σ) + n2(N + 1) + n(N + 1)) log q = O(n2N log q).

Note that the proofs σi may contain information on (x(j))j /∈T beyond

(x(j))j∈T and h(x(1), . . . , x(n)). It is not trivial that an adversary colluding
with the output player and a subset T ∈ ∆ of input players learns additional
information. Nevertheless, we can prove it thanks to masking with random

vectors (w
(j)
i )i∈P as follows.

Proposition 6 Using the above notations, for any inputs x(1), . . . , x(n) and
any degree-d polynomial h, the view of the adversary corrupting the output
player and a set of input players T ∈ ∆ reveals no information on (x(j))j /∈T
beyond h(x(1), . . . , x(n)).

Proof Here we only prove the privacy against part of the adversary’s view
regarding re-randomized proofs vi’s since the privacy against yi’s follows from
the same argument as [1]. Observe that the randomness of the protocol un-
known to the adversary is R = (R1, R2), where

R1 = (r(j))j /∈T and R2 = (w
(j)
i )i/∈T,j /∈T .

We fix the other randomness, which is known to her. We only need to take
into account pieces in the adversary’s view depending on honest players’ in-

puts, that is, shares (γ
(j)
i )i∈T sent by a player j /∈ T and re-randomized proofs

(vi)i∈P . Also, observe that (γ
(j)
i )i∈T is determined by inputs x(j) and random-

ness R1, and (vi)i∈P depends on inputs x and randomness R = (R1, R2). We
then use a notation

A(x, R1) = {(γ(j)i )i∈T : j /∈ T} and B(x, R) = (vi)i∈P .

Let (x(j))j /∈T be a tuple of different inputs for honest players such that

ζ := h(x̃) = h(x), where x̃ = ((x(i))i∈T , (x̃
(i))i/∈T ). The statements follow if

we show that the part of the adversary’s view A(x, R1), B(x, R) on input x
has the same distribution as A(x̃, R1), B(x̃, R) on input x̃. It is sufficient to
show that there exists a one-to-one transformation θ on the randomness space
of the protocol such that A(x, R1) = A(x̃, θ1(R)) and B(x, R) = B(x̃, θ(R)),
where θ(R) = (θ1(R), θ2(R)).

First, due to the ∆-privacy of Σ, shares held by T reveal no information
on the underlying secret. We thus have a one-to-one transformation φ on the
set of all R1’s such that A(x, R1) = A(x̃, φ(R1)).

Let σi be a proof for ζ constructed by the player i ∈ P in the case where
the inputs are x and the randomness is R1 = (r(j))j∈P . Here, it does not
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depend on the other randomness R2 since it is a function of shares only. Also,
let σ̃i be a proof for ζ constructed by i ∈ P in the case where the inputs are
x̃ and the randomness is φ(R1). Since A(x, R1) = A(x̃, φ(R1)), we have that
σi = σ̃i for all i ∈ T . Since h(x) = ζ = h(x̃), it also holds that

Dec(σ1, . . . , σn) = (ζ, 0, . . . , 0) = Dec(σ̃1, . . . , σ̃n)

and hence that (σi)i∈P − (σ̃i)i∈P ∈ V .
Without loss of generality, we assume that 1 /∈ T . We define θ1(R1, R2) =

φ(R1) and θ2(R) = (w̃
(j)
i )i/∈T,j /∈T as

w̃
(j)
i =

{
w

(1)
i + σi − σ̃i, if i /∈ T and j = 1,

w
(j)
i , otherwise.

The image of R via θ = (θ1, θ2) is indeed in the domain since (σi)i∈P −
(σ̃i)i∈P ∈ V implies ((w

(j)
i )i∈T , (w̃

(j)
i )i/∈T ) ∈ V . Clearly θ is one-to-one. We

have seen above that A(x, R1) = A(x̃, θ1(R)). We see that B(x, R) = B(x̃, θ(R))
in the following. Let B(x̃, θ(R)) = (ṽi)i∈P . If i /∈ T , then ṽi = vi since we have
seen above that σ̃i = σi for i /∈ T . If i ∈ T , we also have ṽi = vi since

ṽi = σ̃i +
∑
j /∈T

w̃
(j)
i +

∑
j∈T

w̃
(j)
i

= σ̃i + (w
(1)
i + σi − σ̃i) +

∑
j /∈T∪{1}

w̃
(j)
i +

∑
j∈T

w̃
(j)
i

= σi + w
(j)
i +

∑
j∈P

w
(j)
i

= vi.

⊓⊔

6 (δ, d)-VMSS for Multipartite Qd+1-Adversary Structures with
Margin κ

In this section, we show a (δ, d)-VMSS scheme whose proof size can be smaller
than that of Theorem 4 while it requires δ > 0 and the adversary structure
satisfies the Qd+1-property with margin κ > 0.

6.1 Technical Overview

Our construction is similar to the one in [25], in which players share a codeword
of a certain AMD code [4,10] so that any tampering by an adversary will be
detected. A difference is that our scheme shares the codeword, which is a
vector, simultaneously while each entry of the codeword is shared individually
in [25].
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To deal with multiple secrets, we first construct a variant of the MSS
scheme in Theorem 1 by replacing Shamir’s schemes with packed secret sharing
schemes [8]. A packed secret sharing scheme shares multiple secrets simulta-
neously without increasing the share size at the price of decreasing corruption
tolerance. As a result, if a multipartite adversary structure ∆′ satisfies the Qd′

property with some margin κ′ > 0, we obtain a d′-MSS scheme for ∆′ which
supports the element-wise product of d′ vectors. Thanks to the packed secret
sharing, the share size is the same as that of Theorem 1.

Let ∆ be a Qd+1-adversary structure with some margin κ > 0. We have
a scheme Σ0 for ∆ which supports the product of d + 1 vectors in A := F3

q,
from the above construction with d′ = d + 1. Given a secret s ∈ Fq, our
VMSS scheme Σ first chooses a random element r ∈ Fq and then shares two
secrets using Σ0: one is E(s, 1) and the other is E(1, r). Here, E(s, r) is an
AMD codeword defined as E(s, r) = (s, r, sr) ∈ A. It is easy to see that Σ is
d-multiplicative (with respect to Fq) since players can compute additive shares
of E(s(1), 1) ∗ · · · ∗ E(s(d), 1) = (s(1) · · · s(d), 1, s(1) · · · s(d)), where ∗ denotes the
element-wise product.

We now see that Σ is (δ, d)-VMSS for δ = q−1. We first deal with a simple
case of verifying the computation of a monomial s(1) · · · s(d). Then players
receive shares generated by Σ0 for secrets E(s

(j), 1) and E(1, r(j)), j ∈ [d]. Since
Σ0 is (d+1)-multiplicative with respect to A, they can compute additive shares
for E(1, r(1)) ∗ E(s(1), 1) ∗ · · · ∗ E(s(d), 1) = E(s(1) · · · s(d), r(1)). We define these
additive shares as their proofs. To verify a result, an output player reconstructs
E(s(1) · · · s(d), r(1)) and checks if an adversary has tampered with shares. Since
r(1) is uniformly distributed over Fq and unknown to the adversary due to
∆-privacy, the AMD code detects any tampering with probability 1 − q−1.

We then consider the general case where n players have inputs x(i), i ∈ P
and want to compute a polynomial h(x(1), . . . , x(n)) of degree d. Players re-
ceive shares generated by Σ0 for secrets E(x(j), 1) and E(1, r(j)), j ∈ [n]. Since
Σ0 is linear, they can compute a share of Σ0 for E(1, r(0)) by taking an av-
erage of E(1, r(j))’s, where r(0) =

∑
j∈[d] r

(j)/n.2 Then, for each monomial

x(i1) · · ·x(id) appearing in h, they compute additive shares for E(1, r(0)) ∗
E(x(i1), 1) ∗ · · · ∗ E(x(id), 1) = E(1, r(0)) ∗ E(x(i1) · · ·x(id), 1). By computing
a linear combination of them, they obtain additive shares for E(1, r(0)) ∗
E(h(x(1), . . . , x(n)), h(1, . . . , 1)), which results in E(h(x(1), . . . , x(n)), r(0)) if we
normalize h in advance so that h(1, . . . , 1) = 1 holds. Similarly to the above,
the probability that players output an incorrect value ζ /∈ {h(x(1), . . . , x(n)),⊥}
is at most q−1. Note that it is possible to make the probability of failure q−m

by choosing each r(j) from an extension field Fqm .

2 We here assume that n is coprime with q.



Multiplicative Secret Sharing for Multipartite Adversary Structures 27

6.2 Formal Description

To begin with, we define a more general notion of d-MSS, which generalizes the
previous definition in Section 2.2 in that it supports the product of d secrets
from the extension ring A instead of those from Fq. In particular, if we set
A = Fq, this notion collapses to the previous one.

Definition 3 Let A be a finite-dimensional algebra over Fq. For d ≥ 2, a
secret sharing scheme Σ = (A,R,S, SHARE) is said to be d-multiplicative
with respect to A if there exists a map MULT : P × Sd → A such that∏

j∈[d]

s(j) =
∑
i∈P

MULT(i, γ
(1)
i , . . . , γ

(d)
i ), (6)

for any s(1), . . . , s(d) ∈ A and any r(1), . . . , r(d) ∈ R, where (γ
(j)
i )i∈P =

SHARE(s(j), r(j)) is a tuple of shares for s(j). The product and summation
in Eq. (6) are performed in the ring A.

We use this generalized notion of d-MSS to share codewords of the AMD
code given by Proposition 2. We set A as the set of all AMD codewords, i.e.,
A = Fq × Fqm × Fqm . Formally, we fix the following notations throughout this
section:

– m is a prime and L = 2m+ 1.
– α1, . . . , αn, β1, β2, β3 are n + 3 elements of Fq such that there is no pair

which are Galois-conjugates over Fq, Fq(αi) = Fq for i ∈ P , Fq(β1) = Fq,
and Fq(βu) ≃ Fqm for u = 2, 3.

– A is the product ring A = Fq(β1)× Fq(β2)× Fq(β3).
We impose the condition on α1, . . . , αn, β1, β2, β3 to use the following gen-

eralized Lagrange interpolation.

Lemma 4 ([8]) Let γ1, . . . , γt ∈ Fq be such that there is no pair γi, γj, i ̸= j
which are Galois-conjugates over Fq. Let du be the degree of Fq(γu)/Fq for
u ∈ [t] and set M =

∑
u∈[t] du. Then, for each ξ1, . . . , ξt with ξu ∈ Fq(γu) (u ∈

[t]), there exists a unique polynomial f(X) ∈ Fq[X] such that deg f < M and
f(γu) = ξu for all u ∈ [t].

We note that there indeed exist such αi’s and βi’s. For a positive integer u,
define the number ν(u, q) as ν(u, q) = (1/u)

∑
x|u µ(x)q

u/x, where x ranges

over all divisors of u and µ(x) is the Möbius function, i.e., µ(x) = 1 if x is a
square-free integer with an even number of prime factors, µ(x) = −1 if x is a
square-free integer with an odd number of prime factors, and otherwise µ(x) =
0. This number ν(u, q) is known to be the number of all irreducible polynomials
of degree u over Fq [19, Section 4.13]. Therefore, a sufficient condition is that
ν(1, q) ≥ n+1 and ν(m, q) ≥ 2m since every γ ∈ Fqm has at mostm conjugates
over Fq. In particular, it is equivalent to q ≥ n + 1 and qm − q ≥ 2m if m
is a prime. Since q(qm−1 − 1) > qm−1 − 1, it is sufficient to choose q >
max{n, (2m+ 1)1/(m−1)}.

Now, we show a variant of Theorem 1 that is d-MSS over A.
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SHARE. Given a secret s ∈ A:
1. Choose sj ∈ A, j ∈ [N ] at random such that s =

∑
j∈[N ] sj .

2. For each j ∈ [N ], parse sj = (ξj1, ξj2, ξj3), where ξju ∈ Fq(βu) for u ∈ {1, 2, 3}.
3. For each j ∈ [N ] and k ∈ [ℓ], choose fjk ∈ Fq [X] at random such that sj =

(fjk(βu))u∈{1,2,3} and deg(fjk) ≤ aj(k) + L− 1.
4. Output (fjk(αi))j∈[N ] as a share for i ∈ Pk.

Fig. 5 A secret sharing scheme over A for an ℓ-partite adversary structure

Proposition 7 Assume that ∆ satisfies the Qd property with margin κ and
that q > max{n, (2m + 1)1/(m−1)}. If κ ≥ d(L − 1)/mink∈[ℓ] |Pk|, then the
scheme Σ described in Fig. 5 is a ∆-private, d-multiplicative with respect to
A, and Fq-linear secret sharing scheme with domain of secrets A and domain
of shares FNq , where N = |maxΦΠ(∆)|.

Proof Using the notations in Fig. 5, let (f1k(αi), . . . , fNk(αi)) be a share as-
signed to i ∈ Pk for a secret s. To prove ∆-privacy, let A ∈ ∆ such that
ΦΠ(A) = aj for some j ∈ [N ]. We show that for each k ∈ [ℓ], the players in
A∩Pk have no information on sj . Indeed, in view of Lemma 4, for any s′ ∈ A,
there is a unique polynomial g ∈ Fq[X] of degree at most aj(k) + L− 1 such
that (g(βu))u∈{1,2,3} = s′ and g(αi) = fjk(αi) for all i ∈ A ∩ Pk. That is,
players in A ∩ Pk cannot distinguish between the cases where the underlying
secret of their Shamir shares (fjk(αi))i∈A∩Pk

is s′ or sj . Thus, players in A
have no information on sj and hence on s.

The d-multiplicativity follows from a similar argument in the proof of The-
orem 1. Let s(1), . . . , s(d) ∈ A be any d secrets. Note that s(ι) is split as

s(ι) = s
(ι)
1 + · · ·+s(ι)N . It is sufficient to show that players can compute additive

shares of each summand s
(1)
j1
· · · s(d)jd . It follows from an argument similar to the

proof of Proposition 5 that there is k ∈ [ℓ] such that aj1(k)+· · ·+ajd(k)+d(L−
1) < |Pk|. From the construction, players in Pk have points of polynomials

f
(1)
j1k
, . . . , f

(d)
jdk

such that for all ι ∈ [d], (fjιk(βu))u∈{1,2,3} = s
(ι)
jι

and deg fjιk ≤
ajι(k) +L− 1. Therefore, they can obtain points of a polynomial f such that

(f(βu))u∈{1,2,3} = s
(1)
j1
· · · s(d)jd and deg f ≤

∑
ι∈[d] ajι(k) + d(L− 1) < |Pk|. It

follows from Lemma 4 that f is uniquely determined. In particular, players in

Pk can compute additive shares (over A) for (f(βu))u∈{1,2,3} = s
(1)
j1
· · · s(d)jd . ⊓⊔

From the above proposition, we obtain an MSS scheme which can simul-
taneously share a codeword of the AMD code in Proposition 2. The scheme
is shown to be (δ, d)-verifiably multiplicative for δ > 0. Furthermore, due to
its linearity, it works for degree-d polynomials while the previous scheme [25]
only works for monomials. Since the decoder is additive, it is straightforward
to apply it to MPC as in [25].

Theorem 5 Assume that ∆ satisfies the Qd+1 property with margin κ. Also,
assume that q is coprime with n and q > max{n, (2m + 1)1/(m−1)}. If κ ≥
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Notations.
– Let (E,D) be the δ-AMD code with R = Fqm and δ = q−m in Proposition 2.
– Let Σ0 = (A,R0,S0, SHARE0) a ∆-private secret sharing scheme that is (d + 1)-

multiplicative with respect to A, and MULT0 : P ×Sd+1
0 → A be the map associated

with the (d+ 1)-multiplicativity of Σ0.
– Fix a vector of shares (1i)i∈P of Σ0 for a secret E(1, 1), that is, (1i)i∈P is a possible

output of SHARE0(E(1, 1)).

SHARE. Given a secret s ∈ Fq(β1):
1. Choose r ∈ Fq(β2) at random.
2. Let (ηi)i∈P = SHARE(E(s, 1)) and (ξi)i∈P = SHARE(E(1, r)).
3. Output γi = (ηi, ξi) as a share for i ∈ P .

MULT. Given i ∈ P and d shares γ
(1)
i , . . . , γ

(d)
i ∈ S:

1. For each j ∈ [d], parse γ
(j)
i as γ

(j)
i = (η

(j)
i , ξ

(j)
i ), where η

(j)
i , ξ

(j)
i ∈ S0.

2. Let ζ̃i = (ζi1, ζi2, ζi3) = MULT0(i, 1i, η
(1)
i , . . . , η

(d)
i ) ∈ A.

3. Output ζi = ζi1 ∈ Fq(β1).

PROOF. Given i ∈ P , a degree-d polynomial h with h(1, . . . , 1) = 1, and n shares

γ
(1)
i , . . . , γ

(n)
i ∈ S:

1. Write h as h =
∑

u∈[n]d cuXu1 · · ·Xud , where cu ∈ Fq .

2. For each j ∈ [n], parse γ
(j)
i as γ

(j)
i = (η

(j)
i , ξ

(j)
i ), where η

(j)
i , ξ

(j)
i ∈ S0.

3. Let ξ
(0)
i = n−1

∑
j∈P ξ

(j)
i .

4. Let

σ̃i = (σi1, σi2, σi3) =
∑

u∈[n]d

cuMULT0(i, ξ
(0)
i , η

(u1)
i , . . . , η

(ud)
i ) ∈ A.

5. Output σi = (σi2, σi3) ∈ Fq(β2)× Fq(β3).

VER. Given ζ ∈ Fq and σ = (r, r′) ∈ Fq(β2)×Fq(β3), output 0 if and only if D(ζ, r, r′) = ⊥.

Fig. 6 A (δ, d)-VMSS scheme for an ℓ-partite adversary structure

2(d+1)m/mink∈[ℓ] |Pk|, then there exists a ∆-private, (q−m, d)-verifiably mul-
tiplicative (with respect to the additive decoder), and Fq-linear secret sharing
scheme Σ with domain of secrets Fq, domain of shares F2N

q and domain of
proofs F2m

q .

Proof To simplify notations, we omit random strings used by sharing al-
gorithms. From Proposition 7, we have a ∆-private secret sharing scheme
Σ0 = (A,R0,S0, SHARE0) that is (d+1)-multiplicative with respect to A. Let
MULT0 : P×Sd+1

0 → A be the map associated with the (d+1)-multiplicativity
of Σ0.

We construct a verifiably multiplicative scheme Σ based onΣ0. The domain
of secrets is Fq(β1) = Fq. Let (E,D) be the δ-AMD code with R = Fqm and
δ = q−m in Proposition 2. Define SHARE, MULT, PROOF and VER for Σ
as shown in Fig. 6. The domain of shares is S20 = F2N

q and that of proofs is
Fq(β2)× Fq(β3) ≃ F2m

q . The ∆-privacy directly follows from that of Σ0.
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For j ∈ [d], let (γ
(j)
i )i∈P be a vector of shares for a secret s(j) ∈ Fq(β1).

Then, η
(j)
i obtained at Step 1 of MULT is a consistent share for i ∈ P

with a secret E(s(j), 1) (under Σ0). The (d + 1)-multiplicativity of Σ0 im-

plies that (ζ̃i)i∈P is additive sharing of E(1, 1) ∗ E(s(1), 1) ∗ · · · ∗ E(s(d), 1) =
(s(1) · · · s(d), 1, s(1) · · · s(d)), where ∗ denotes the element-wise product. We
therefore have that (ζi)i∈P is additive sharing of s(1) · · · s(d), which shows the
d-multiplicativity of Σ.

We see that Σ is (q−m, d)-verifiably multiplicative in the following. Let
x(j) ∈ Fq be an input of a player j ∈ P and h =

∑
u∈[n]d cuXu1

· · ·Xud
be a

degree-d polynomial with h(1, . . . , 1) = 1. Let (γ
(j)
i )i∈P = (η

(j)
i , ξ

(j)
i )i∈P be a

vector of shares for x(j). Let r(j) ∈ Fq(β2) be a random element sampled at

Step 1 of SHARE(x(j)). It can be seen that (η
(j)
i )i∈P and (ξ

(j)
i )i∈P are vectors

of shares for E(x(j), 1) and E(1, r(j)) under Σ0, respectively. First, due to the

linearity of Σ0, ξ
(0)
i at Step 3 of PROOF is a consistent share for i ∈ P with a

secret n−1
∑
j∈P E(1, r(j)) = SHARE0(E(1, r

(0))), where r(0) = n−1
∑
j∈P r

(j).
The (d+ 1)-multiplicativity of Σ0 implies that∑

i∈P
σ̃i =

∑
u∈[n]d

cuE(1, r
(0)) ∗ E(x(u1), 1) ∗ · · · ∗ E(x(ud), 1)

= E(1, r(0)) ∗ E(h(x(1), . . . , x(n)), h(1, . . . , 1))
= E(h(x(1), . . . , x(n)), r(0)).

If we let σi be a proof outputted by PROOF(i, h, γ
(1)
i , . . . , γ

(n)
i ), it holds that

VER(h(x(1), . . . , x(n)),
∑
i∈P σi) = 1, from which the correctness of PROOF

and VER follows.
To see verifiability, consider the experiment Exp(x(1), . . . , x(n), h, T,Adv)

in Fig. 1 for an adversary Adv corrupting players in T ∈ ∆. We obtain (ζ ′, σ′)
at Step 4 of the experiment and let c = (ζ ′, σ′) − E(h(x(1), . . . , x(n)), r(0)).
Adv can choose c arbitrarily by modifying ζ ′i and σ

′
i for i ∈ T . However, the

probability that (ζ ′, σ′) passes verification and ζ ′ ̸= h(x(1), . . . , x(n)) is at most
|Fqm |−1 = q−m. It follows from the verifiability of the AMD code (E,D) and
the fact that r(0) is uniformly distributed over Fqm even conditioned on Adv’s
view due to contribution by honest players. ⊓⊔

The proof size of the (δ, d)-VMSS scheme in Theorem 5 is O(log δ−1), which
can be smaller than the proof size O(N log n) of Theorem 4 depending on the
number N of maximal points of ∆. A price to pay for the efficiency gain is
that δ must be non-zero and ∆ must satisfy the Qd+1 property with margin
κ > 0.

In the case of monomials, we just let SHARE(s) output SHARE0(E(s, r))
for r←$F∗

qm instead of (SHARE0(E(s, 1)), SHARE0(E(1, r))), where F∗
qm is the

multiplicative group of Fqm . Let MULT and PROOF output additive shares of
E(x(1), r(1))∗· · ·∗E(x(d), r(d)) usingMULT0. Then,MULT0 is only required to be
d-multiplicative with respect to A. Accordingly, we can weaken the condition
on adversary structures and also cut down the share size.
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Corollary 1 Assume that ∆ satisfies the Qd property with margin κ and that
q > max{n, (2m + 1)1/(m−1)}. If κ ≥ 2dm/mink∈[ℓ] |Pk|, then there exists
a ∆-private, ((qm − 1)−1, d)-verifiably multiplicative for the monomial h =
X1 · · ·Xd, and Fq-linear secret sharing scheme Σ with domain of secrets Fq,
domain of shares FNq , and domain of proofs F2m

q , where N = |maxΦΠ(∆)|.

The authors in [25] propose a method to transform any d-MSS scheme
into a (δ, d)-VMSS scheme for computing degree-d monomials for any δ > 0.
Specifically, a secret s ∈ Fq is encoded into E(s, r) ∈ C for r←$F∗

qm using
the AMD code in Proposition 2 and E(s, r) is shared among the players in
parallel. Then, the scheme is (δ, d)-verifiably multiplicative with δ = (qm −
1)−1. However, their transformation does not work for degree-d polynomials
since E(s, r)+E(s′, r′) is not a codeword of the AMD code in general. Moreover,
the information ratio of the resulting scheme is 2m + 1 = O(logq δ

−1) times
larger than the initial d-MSS scheme since C ≃ F2m+1

q as Fq-linear spaces.

Example 3 To demonstrate the importance of Theorem 5, we show a param-
eter setting for the 2-partite adversary structure UΠτ,σ in Example 1. Assume
that n = 1000, d = 2, and δ = 2−60. Let q be the smallest prime such that
q > n. We choose m = 7 to make the error probability less than δ. Then, we
can choose κ = 1/10 > 2(d+1)m/mink∈[ℓ] |Pk|. Our scheme in Theorem 5 can
tolerate τ, σ satisfying τ +2σ < (1−κ)/2 = 0.45. In particular, it can tolerate
a bounded number of subsets of at most τn < 0.45n players. Since N = 2, a
share consists of 4 field elements and a proof consists of 14 field elements. In
the particular case of computing monomials, our scheme in Corollary 1 can
compute degree-3 monomials with the same tolerable adversary structure. The
share size is now 2 log q bits while the proof size is the same as above. However,
if one applies the generic transformation [25] to the scheme in Theorem 1, the
share size of the resulting scheme is 2(2m+1) log q bits, which is 2m+1 = 15
times larger than ours.
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