
Threshold Linear Secret Sharing
to the Rescue of MPC-in-the-Head

Thibauld Feneuil1,2 and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 Sorbonne Université, CNRS, INRIA, Institut de Mathématiques

de Jussieu-Paris Rive Gauche, Ouragan, Paris, France
{thibauld.feneuil,matthieu.rivain}@cryptoexperts.com

Abstract. The MPC-in-the-Head paradigm is a popular framework to build zero-knowledge proof
systems using techniques from secure multi-party computation (MPC). While this paradigm is not
restricted to a particular secret sharing scheme, all the efficient instantiations for small circuits proposed
so far rely on additive secret sharing.

In this work, we show how applying a threshold linear secret sharing scheme (threshold LSSS) can
be beneficial to the MPC-in-the-Head paradigm. For a general passively-secure MPC protocol model
capturing most of the existing MPCitH schemes, we show that our approach improves the soundness
of the underlying proof system from 1/N down to 1/

(
N
ℓ

)
, where N is the number of parties and ℓ is

the privacy threshold of the sharing scheme. While very general, our technique is limited to a number
of parties N ≤ |F|, where F is the field underlying the statement, because of the MDS conjecture.

Applying our approach with a low-threshold LSSS also boosts the performance of the proof system by
making the MPC emulation cost independent of N for both the prover and the verifier. The gain is
particularly significant for the verification time which becomes logarithmic in N (while the prover still
has to generate and commit the N input shares). We further generalize and improve our framework:
we show how linearly-homomorphic commitments can get rid of the linear complexity of the prover,
we generalize our result to any quasi-threshold LSSS, and we describe an efficient batching technique
relying on Shamir’s secret sharing.

We finally apply our techniques to specific use-cases. We first propose a variant of the recent SDitH
signature scheme achieving new interesting trade-offs. In particular, for a signature size of 10 KB, we
obtain a verification time lower than 0.5 ms, which is competitive with SPHINCS+, while achieving
much faster signing. We further apply our batching technique to two different contexts: batched SDitH
proofs and batched proofs for general arithmetic circuits based on the Limbo proof system. In both
cases, we obtain an amortized proof size lower than 1/10 of the baseline scheme when batching a few
dozen statements, while the amortized performances are also significantly improved.

1 Introduction

Zero-knowledge proofs are an important tool for many cryptographic protocols and applications. Such proofs
enable a prover to prove a statement by interacting with a verifier without revealing anything more than
the statement itself. Zero-knowledge proofs find applications in many contexts: secure identification and
signature, (anonymous) credentials, electronic voting, blockchain protocols, and more generally, privacy-
preserving cryptography.

Among all the possible techniques to build zero-knowledge proofs, the MPC-in-the-Head framework
introduced by Ishai, Kushilevitz, Ostrovsky and Sahai in [IKOS07] has recently gained popularity. This
framework relies on secure multi-party computation (MPC) techniques: the prover emulates “in her head”
an ℓ-private MPC protocol with N parties and commits each party’s view independently. The verifier then
challenges the prover to reveal the views of a random subset of ℓ parties. By the privacy of the MPC protocol,
nothing is revealed about the plain input, which implies the zero-knowledge property. On the other hand,
a malicious prover needs to cheat for at least one party, which shall be discovered by the verifier with high
probability, hence ensuring the soundness property.

The MPC-in-the-Head (MPCitH) paradigm provides a versatile way to build (candidate) quantum-
resilient proof systems and signature schemes. This approach has the advantage to rely on security assump-
tions that are believed to be robust in the quantum setting, namely the security of commitment schemes
and/or hash functions. Many recent works have proposed new MPCitH techniques which can be applied to
general circuits and/or specific problems, some of them leading to efficient candidate post-quantum signature
schemes, see for instance [GMO16, CDG+17, AHIV17, KKW18, DDOS19, KZ20b, BFH+20, BN20, BD20,
BDK+21, DOT21, DKR+21, KZ22, FJR22, FMRV22]. Proof systems built from the MPCitH paradigm can
be divided in two categories:

– Schemes targeting small circuits (e.g. to construct efficient signature schemes), such as [KKW18, BN20,
KZ22]. In these schemes, the considered MPC protocol only needs to be secure in the semi-honest model,
enabling efficient constructions, but the resulting proof is linear in the circuit size. Previous schemes in
this category are all based on additive secret sharing.

– Schemes such as [AHIV17, GSV21] in which the considered MPC protocol is secure in the malicious
model and the proof is sublinear in the circuit size (in O(

√
|C|) with |C| being the circuit size). Due

to their sublinearity, these schemes are more efficient for middle-size circuits (while the former remain
more efficient for smaller circuits arising e.g. in signature schemes).

We note that other quantum-resilient proof systems exist (a.k.a. SNARK, STARK) which do not rely on the
MPCitH paradigm and which achieve polylogarithmic proof size (w.r.t. the circuit size), see e.g. [BCR+19,
BBHR19]. These schemes are hence better suited for large circuits.

Our work belongs to the first category of MPCitH-based schemes (i.e. targeting small circuits). Currently,
the best MPCitH-based schemes in this scope rely on (N − 1)-private passively-secure MPC protocols with
N parties [KKW18, BN20, DOT21, KZ22], where the parameter N provides different trade-offs between
communication (or signature size) and execution time. In these schemes, the proof is composed of elements
of size solely depending on the target security level λ (the “incompressible” part) and other elements of size
O(λ2/ logN) bits (the “variable” part). To obtain short proofs or signatures, one shall hence take a large
number of parties N . On the other hand, the prover and verifier running times scale linearly with N (because
of the MPC emulation) and hence quickly explode while trying to minimize the proof size.

In this paper, we improve this state of affairs. While previous efficient instantiations of the MPCitH
paradigm for small circuits all rely on additive secret sharing, we show how to take advantage of using
threshold linear secret sharing. Using our approach, we can decrease the soundness error from 1/N to 1/

(
N
ℓ

)
(still using passively-secure protocols), for a small constant ℓ, while making the cost of the MPC emulation
independent of N , for both the prover and the verifier. The prover running time remains globally linear
in N (because of the initial sharing and commitment phase) but is still significantly improved in practice.
On the other hand, the verification time becomes logarithmic in N and is hence drastically reduced (both
asymptotically and in practice).

Our contribution. We first describe a general model of multiparty computation protocol (with additive secret
sharing) which captures a wide majority of the protocols used in the MPCitH context. (To the best of our
knowledge, our model applies to all the MPCitH schemes except those derived from ZKBoo or Ligero.) Given
a statement x and a relation R, these MPC protocols aim to evaluate a randomized function f on a secret
witness w such that f outputs Accept when (x,w) ∈ R and Reject with high probability otherwise.
The false-positive rate of the MPC protocol corresponds to the probability that f outputs Accept even
if (x,w) ̸∈ R. We further recall the general transformation of such a protocol into a zero-knowledge proof
which achieves a soundness error of

1

N
+ p ·

(
1− 1

N

)
where N is the number of parties and p is the false-positive rate of the MPC protocol. We then show how
to apply an arbitrary threshold linear secret sharing scheme (LSSS) to our general MPC model and how to
transform the obtained MPC protocol into a zero-knowledge proof achieving the following soundness error:

1(
N
ℓ

) + p · ℓ · (N − ℓ)
ℓ+ 1

,

2

where ℓ is the threshold of the LSSS (any ℓ shares leak no information while the secret can be reconstructed
from any ℓ + 1 shares). Our theorems cover all the MPC protocols complying with our general model, and
for any threshold LSSS (covering additive sharing as a particular case).

Besides improving soundness, using an LSSS with a small threshold implies significant gains in terms of
timings. Indeed, the prover and the verifier do not need to emulate all the N parties anymore, but only a
small number of them (ℓ+1 for the prover and ℓ for the verifier). For instance, when working with Shamir’s
secret sharing [Sha79] with polynomials of degree ℓ = 1, the prover only needs to emulate 2 parties (instead
of N) and the verifier only needs to emulate 1 party (instead of N − 1) while keeping a soundness error
about 1

N (assuming a small false positive rate p). On the other hand, the proof size is slightly larger than
in the standard case (with additive sharing) since one needs to use a Merkle tree for the commitments (and
include authentication paths for the opened commitments in the proof). Overall, our approach provides
better trade-offs between proof size and performances for MPCitH schemes while drastically reducing the
verification time in particular.

We further improve and generalize our approach in different ways. We first show how using linearly-
homomorphic commitments can make both the prover and verifier times independent of N (which opens the
doors to efficient schemes with large N). The main issue with this approach given the context of application
of MPCitH is the current absence of post-quantum candidates for homomorphic commitment schemes. We
also generalize our approach to quasi-threshold LSSS, for which a gap ∆ exists between the number of parties
ℓ which leak no information and the number of parties ℓ + 1 + ∆ necessary to reconstruct the secret. We
particularly analyze algebraic geometric quasi-threshold schemes [CC06] but our result is mostly negative:
we show that using such schemes does not bring a direct advantage to our framework. We then show that our
result on quasi-threshold schemes is still useful in the context of batched proofs (i.e. proving simultaneously
several statements with a single verification process). We propose a batching technique based on Shamir’s
secret sharing which enables to efficiently batch proofs in our framework (for a subset of the existing MPCitH
schemes).

Finally, we describe some applications of our techniques. We first adapt the SDitH signature scheme [FJR22]
to our framework with Shamir’s secret sharing. We obtain a variant of this scheme that achieves new in-
teresting size-performance trade-offs. For instance, for a signature size of 10 KB, we obtain a signing time
of around 3 ms and a verification time lower than 0.5 ms, which is competitive with SPHINCS+ [ABB+22]
in terms of size and verification time while achieving much faster signing. We further apply our batching
technique to two different contexts: batched proofs for the SDitH scheme and batched proofs for general
arithmetic circuits based on the Limbo proof system [DOT21]. In both cases and for the considered param-
eters, we obtain an amortized proof size lower than 1/10 of the baseline scheme when batching a few dozen
statements, while the amortized performances are also significantly improved (in particular for the verifier).

Related works. The MPC-in-the-Head paradigm was introduced in the seminal work [IKOS07]. The authors
propose general MPCitH constructions relying on MPC protocols in the semi-honest model and in the
malicious model. In the former case (semi-honest model), they only consider 2-private MPC protocols using
an additive sharing as input (they also propose an alternative construction with 1-private protocols). In the
latter case (malicious model), they are not restricted to any type of sharing. The exact security of [IKOS07]
is analyzed in [GMO16]. As other previous works about the MPCitH paradigm, our work can be seen as a
specialization of the IKOS framework. In particular, we restrict the considered MPC model, optimize the
communication in this model and provide a refined analysis for the soundness (in the exact security setting)
to achieve good practical performances.

To the best of our knowledge, besides [IKOS07], the only previous work which considers MPCitH without
relying on an additive secret sharing scheme is Ligero [AHIV17]. Ligero is a practical MPCitH-based zero-
knowledge proof system for generic circuits which uses Shamir’s secret sharing (or Reed-Solomon codes). The
authors consider a particular type of MPC protocol in the malicious model and analyze the soundness of the
resulting proof system. Ligero achieves sublinear communication cost by packing several witness coordinates
in one sharing which is made possible by the use of Shamir’s secret sharing.

In comparison, our work formalizes the MPC model on which many recent MPCitH-based schemes (with
additive sharing) rely and shows how using LSSS in this model can be beneficial. We consider a slightly more

3

restricted MPC model than the one of Ligero: we impose that the parties only perform linear operations on
the sharings. On the other hand, we only need the MPC protocol to be secure in the semi-honest model and
not in the malicious model as Ligero. In fact, this difference of settings (semi-honest versus malicious) makes
our techniques and Ligero’s different in nature. While Ligero makes use of proximity tests to get a robust
MPC protocol, we can use lighter protocols in our case (since we do not need robustness). Moreover, for a
given number of parties and a given privacy threshold, the soundness error of our work is smaller than the
one of [AHIV17]. On the other hand, we consider MPC protocols which only performs linear operations on
shares which, in the current state of the art, cannot achieve sublinearity. For this reason, our work targets
proofs of knowledge for small circuits (for example, to build efficient post-quantum signature schemes) while
Ligero remains better for middle-size circuits (thanks to the sublinearity).

Finally, let us cite [DOT21] which is another article providing a refined analysis for the transformation
of a general MPC model. The scope of the transformation differs from ours, since it covers (N − 1)-private
MPC protocols using broadcast.

In Table 1, we sum up all the MPC models considered in the state of the art of the MPC-in-the-Head
paradigm with the soundness errors and limitations of the general schemes.

Construction
Sharing
Scheme

Priv. Rob. Soundness Restriction

[IKOS07, Sec. 3] Additive 2 0 1− 1

(N2)
-

[IKOS07, Sec. 4] Any t t
When N = Ω(t),

2−Ω(t) -

[GMO16] Any t r
max

{
(rt)
(Nt)

,
k∑
j=0

2j
(kj)(

N−2k
t−j)

(Nt)

}
with k = ⌊r/2⌋+ 1

-

[AHIV17] Any t r
(
1− r

N

)t
+ δ Broadcast

[DOT21] Additive N − 1 0 1
N

+ p
(
1− 1

N

)
Broadcast

Our work, Sec. 4 LSSS ℓ 0 1

(Nℓ)
+ p ℓ(N−ℓ)

ℓ+1

Broadcast
Linear operations

Our work, Sec. 5.2
LSSS with
threshold
gap ∆+ 1

ℓ 0
(ℓ+∆

ℓ)
(Nℓ)

+ p · ℓ
ℓ+∆+1

·
(
N−ℓ
∆+1

) Broadcast
Linear operations

Table 1: Existing general transformations of an MPC protocol into a zero-knowledge proof, with associated
MPC model and resulting soundness error. The column “Priv.” indicates the privacy threshold of the MPC
protocol, while the column “Rob.” indicates its robutness threshold. N denotes the number of parties in the
MPC protocol, δ denotes the robustness error, and p denotes the false positive rate as defined in this work.

Paper organization. The paper is organized as follows: In Section 2, we introduce the necessary background on
zero-knowledge proofs and secure multi-party computation. We present in Section 3 our general MPC model
and recall the MPC-in-the-Head paradigm in this context. In Section 4, we show how to apply threshold
LSSS to this framework, and analyze the obtained soundness and the performances. Section 5 describes the
generalizations and improvements of our approach. Finally, in Section 6, we present the application of our
techniques to the considered use cases.

2 Preliminaries

Throughout the paper, F shall denote a finite field. For any m ∈ N∗, the integer set {1, . . . ,m} is denoted
[m]. For a probability distribution D, the notation s← D means that s is sampled from D. For a finite set S,
the notation s← S means that s is uniformly sampled at random from S. For an algorithm A, out← A(in)

4

further means that out is obtained by a call to A on input in (using uniform random coins whenever A is
probabilistic). Along the paper, probabilistic polynomial time is abbreviated PPT.

A function µ : N → R is said negligible if, for every positive polynomial p(·), there exists an integer
Np > 0 such that for every λ > Np, we have |µ(λ)| < 1/p(λ). When not made explicit, a negligible function
in λ is denoted negl(λ) while a polynomial function in λ is denoted poly(λ). We further use the notation
poly(λ1, λ2, ...) for a polynomial function in several variables.

Two distributions {Dλ}λ and {Eλ}λ indexed by a security parameter λ are (t, ε)-indistinguishable (where
t and ε are N→ R functions) if, for any algorithm A running in time at most t(λ) we have∣∣Pr[ADλ() = 1]− Pr[AEλ() = 1]

∣∣ ≤ ε(λ) ,
with ADist meaning that A has access to a sampling oracle of distribution Dist. The two distributions are
said

– computationally indistinguishable if ε ∈ negl(λ) for every t ∈ poly(λ);
– statistically indistinguishable if ε ∈ negl(λ) for every (unbounded) t;
– perfectly indistinguishable if ε = 0 for every (unbounded) t.

2.1 Standard Cryptographic Primitives

Definition 1 (Pseudorandom Generator (PRG)). Let G : {0, 1}∗ → {0, 1}∗ and let ℓ(·) be a polynomial
such that for any input s ∈ {0, 1}λ we have G(s) ∈ {0, 1}ℓ(λ). Then, G is a (t, ϵ)-secure pseudorandom
generator if the following two conditions hold:

– Expansion: ℓ(λ) > λ;
– Pseudorandomness: the distributions

{G(s) | s← {0, 1}λ} and {r | r ← {0, 1}ℓ(λ)}

are (t, ε)-indistinguishable.

In this paper we shall make use of a tree PRG which is a pseudorandom generator that expands a root
seed mseed into N subseeds in a structured way. The principle is to label the root of a binary tree of depth
⌈log2N⌉ with mseed. Then, one inductively labels the children of each node with the output of a standard
PRG applied to the node’s label. The subseeds (seedi)i∈[N] are defined as the labels of the N leaves of the
tree. A tree PRG makes it possible to reveal all the subseeds but a small subset E ⊂ [N] by only revealing
|E| · log(N/|E|) labels of the tree (which is presumable much smaller than N−|E|). The principle is to reveal
the labels on the siblings of the paths from the root of the tree to leaves i ̸∈ E (excluding the labels of those
paths themselves). Those labels allow the verifier to reconstruct (seedi)i∈E while still hiding (seedi)i̸∈E .

Definition 2 (Collision-Resistant Hash Functions). A family of functions {Hashk : {0, 1}∗ → {0, 1}ℓ(λ) ;
k ∈ {0, 1}κ(λ)}λ indexed by a security parameter λ is collision-resistant if there exists a negligible function ν
such that, for any PPT algorithm A, we have

Pr

[
x ̸= x′

∩ Hashk(x) = Hashk(x
′)

k ← {0, 1}κ(λ);
(x, x′)← A(k)

]
≤ ν(λ) .

A collision resistant hash function can be used to build aMerkle tree (a.k.a. hash tree). This is a binary tree
in which every leaf node is labelled with the cryptographic hash of a data block vi, and every non-leaf node is
labelled with the cryptographic hash of the labels of its child nodes. Given a collision-resistant hash function
Hash(·), the Merkle hash root for N = 2n input data blocks v1, . . . , vN , denoted MerkleTree(v1, . . . , vN), is
hence defined as

MerkleTree(v1, . . . , vN) =

{
Hash

(
MerkleTree(v1, . . . , vN/2) ∥ MerkleTree(vN/2+1, . . . , vN)

)
if N > 1

Hash(v1) if N = 1

5

A Merkle tree makes it possible to show the consistence of a small subset E ⊂ [N] of revealed inputs (vi)i∈E
with the hash root h = MerkleTree(v1, . . . , vN) without having to communicate all the other inputs (vi)i/∈E
(or their corresponding hash). The principle is to reveal the sibling paths of (vi)i∈E in the Merkle tree, that
we shall denote auth((v1, . . . , vN), E), and which contains at most |E| · log(N/|E|) hash values.

We now formally introduce the notion of commitment scheme which is instrumental in many zero-
knowledge protocols.

Definition 3 (Commitment Scheme). A commitment scheme is a triplet of algorithms (KeyGen,Com,Verif)
such that

– KeyGen is a PPT algorithm that, on input 1λ, outputs some public parameters PP ∈ {0, 1}poly(λ) con-
taining a definition of the message space, the randomness space and the commitment space.

– Com is a deterministic polynomial-time algorithm that, on input the public parameters PP, a message x
and the randomness ρ, outputs a commitment c.

– Verif is a deterministic polynomial-time algorithm that, on input the public parameters PP, a message
x, a commitment c and the randomness ρ, outputs a bit b ∈ {0, 1}.

In this article, the public parameter input PP will be made implicit in the calls to Com and Verif.

Definition 4 (Correctness Property). A commitment scheme achieves correctness, if for any message
x and any randomness ρ:

Pr[Verif(x, c, ρ) = 1 | c← Com(x; ρ)] = 1 .

Definition 5 (Hiding Property). A commitment scheme is said computationally (resp. statistically, resp.
perfectly) hiding if, for any two messages x0 and x1, the following distributions

{c | c← Com(x0; ρ), ρ← $} and {c | c← Com(x1; ρ), ρ← $}

are computationally (resp. statistically, resp. perfectly) indistinguishable.

Definition 6 (Binding Property). A commitment scheme is binding if there exists a negligible function
ν such that, for every (PPT) algorithm A, we have

Pr

 x ̸= x′

∩Verif(PP, x, c, ρ) = 1
∩Verif(PP, x′, c, ρ′) = 1

PP← KeyGen();
(x, x′, ρ, ρ′, c)← A(PP)

 ≤ ν(λ) ,
where the probability is taken over the randomness of A and KeyGen. If we restrict A to being PPT, then the
scheme is computationally binding. If the computation time of A is unbounded, then the scheme is statistically
binding.

2.2 Interactive Protocols

A two-party protocol is a triplet Π = (Init,A,B) where Init is an initialization algorithm that, on input 1λ,
produces a pair (inA, inB), and where A and B are two stateful algorithms, called the parties. The parties
originally receive their inputs inA and inB then interacts by exchanging messages, and finally one of the
parties, say B, produces the output of the protocol. More formally, an execution of the protocol consists in
a sequence:

stateA ← A(inA)
stateB ← B(inB)
(MsgA[0], stateA)← A(stateA)
...

(MsgB[i], stateB)← B(stateB,MsgA[i− 1])

6

(MsgA[i], stateA)← A(stateA,MsgB[i])
...

out← B(stateB,MsgA[n])

The sequence of exchanged messages is called the transcript of the execution, which is denoted

View(⟨A(inA),B(inB)⟩) := (MsgA[0],MsgB[1], . . . ,MsgA[n]) .

An execution producing an output out is further denoted

⟨A(inA),B(inB)⟩ → out .

In our exposition, the state of the parties shall be made implicit. We shall then say that an algorithm has
rewindable black-box access to a party A if this algorithm can copy the state of A at any moment, relaunch
A from a previously copied state, and query A (with its current state) on input messages. A variable x is
said to be extractable from A if there exists a PPT algorithm E which, given a rewindable black-box access
to A, returns x after a polynomial number of queries to A.

2.3 Zero-Knowledge Proofs of Knowledge

We will focus on a special kind of two-party protocol called an interactive proof which involves a prover P
and a verifier V. In such a protocol, P tries to prove a statement to V. The first message sent by P is called
a commitment, denoted Com. From this commitment V produces a first challenge Ch1 to which P answers
with a response Rsp1, followed by a next challenge Ch2 from V, and so on. After receiving the last response
Rspn, V produces a binary output: either Accept, meaning that she was convinced by P, or Reject
otherwise. Such an m-round interactive proof with m = 2n+1 (1 commitment + n challenge-response pairs)
is illustrated on Protocol 1.

P V
inP inV

[...]
Com−−−−−−−−−−−−→
Ch1←−−−−−−−−−−−−
Rsp1−−−−−−−−−−−−→
...

Chn←−−−−−−−−−−−−
Rspn−−−−−−−−−−−−→

Return out ∈ {Accept,Reject}

Protocol 1: Structure of a m-round interactive proof with m = 2n+ 1.

The sequence of exchanged messages is called the transcript of the execution, which is denoted

View(⟨P(inP),V(inV)⟩) := (Com,Ch1,Rsp1, . . . ,Chn,Rspn)

where inP and inV respectively denote the prover and verifier inputs. An execution producing an output
out ∈ {Accept,Reject} is further denoted

⟨P(inP),V(inV)⟩ → out .

7

Definition 7 (Proof of Knowledge). Let x be a statement of language L in NP, and W (x) the set of
witnesses for x such that the following relation holds:

R = {(x,w) : x ∈ L,w ∈W (x)} .

A proof of knowledge for relation R with soundness error ϵ is a two-party protocol between a prover P and
a verifier V with the following two properties:

– Perfect completeness: If (x,w) ∈ R, then a prover P who knows a witness w for x succeeds in convincing
the verifier V of his knowledge. More formally:

Pr[⟨P(x,w),V(x)⟩ → Accept] = 1,

i.e. given the interaction between the prover P and the verifier V, the probability that the verifier is
convinced is 1.

– Soundness: If there exists a PPT prover P̃ such that

ϵ̃ := Pr[⟨P̃(x),V(x)⟩ → Accept] > ϵ,

then there exists an algorithm E (called an extractor) which, given rewindable black-box access to P̃,
outputs a witness w′ for x in time poly(λ, (ϵ̃− ϵ)−1) with probability at least 1/2.

Informally, a proof of knowledge has soundness error ϵ if a prover P̃ without knowledge of the witness
cannot convince the verifier with probability greater than ϵ assuming that the underlying problem (recovering
a witness for the input statement) is hard. Indeed, if a prover P̃ can succeed with a probability greater than ϵ,
then the existence of the extractor (algorithm E) implies that P̃ can be used to compute a witness w′ ∈W (x).

We now recall the notion of honest-verifier zero-knowledge proof:

Definition 8 (Honest-Verifier Zero-Knowledge Proof). A proof of knowledge is {computationally,
statistically, perfectly} honest-verifier zero-knowledge (HVZK) if there exists a PPT algorithm S (called
simulator) whose output distribution is {computationally, statistically, perfectly} indistinguishable from the
distribution View(⟨P(x,w),V(x)⟩) obtained with an honest V.

Informally, the previous definition says a genuine execution of the protocol can be simulated without any
knowledge of the witness. In other words, the transcript of an execution between the prover and an honest
verifier does not reveal any information about the witness.

2.4 Secret Sharing and Multi-Party Computation

Along the paper, the sharing of a value s is denoted JsK := (JsK1, . . . , JsKN) with JsKi denoting the share of
index i for every i ∈ [N]. For any subset of indices J ⊆ [N], we shall further denote JsKJ :=

(
JsKi

)
i∈J .

Definition 9 (Threshold LSSS). Let F be a finite field and let V1 and V2 be two vector spaces over F.
Let t and N be integers such that 1 < t ≤ N . A (t,N)-threshold linear secret sharing scheme is a method to
share a secret s ∈ V1 into N shares JsK := (JsK1, . . . , JsKN) ∈ VN2 such that the secret can be reconstructed
from any t shares while no information is revealed on the secret from the knowledge of t− 1 shares.

Formally, an (t,N)-threshold LSSS consists of a pair of algorithms:{
Share : V1 ×R 7→ VN2
ReconstructJ : Vt2 7→ V1

where R ⊆ {0, 1}∗ denotes some randomness space and where ReconstructJ is indexed by a set (and defined
for every) J ⊂ [N] such that |J | = t. This pair of algorithms satisfies the three following properties:

8

1. Correctness: for every s ∈ V1, r ∈ R, and J ⊂ [N] s.t. |J | = t, and for JsK← Share(s; r), we have:

ReconstructJ(JsKJ) = s.

2. Perfect (t− 1)-privacy: for every s0, s1 ∈ V1 and I ⊂ [N] s.t. |I| = t− 1, the two distributions{
Js0KI |

r ← R
Js0K← Share(s0; r)

}
and

{
Js1KI |

r ← R
Js1K← Share(s1; r)

}
are perfectly indistinguishable.

3. Linearity: for every v0, v1 ∈ Vt2, α ∈ F, and J ⊂ [N] s.t. |J | = t,

ReconstructJ(α · v0 + v1) = α · ReconstructJ(v0) + ReconstructJ(v1).

Definition 10 (Quasi-Threshold LSSS). Let F be a finite field and let V1 and V2 be two vector spaces
over F. Let t1, t2 and N be integers such that 1 ≤ t1 < t2 ≤ N . A (t1, t2, N)-quasi-threshold linear secret
sharing scheme is a method to share a secret s ∈ V1 into N shares JsK := (JsK1, . . . , JsKN) ∈ VN2 such that
the secret can be reconstructed from any t2 shares while no information is revealed on the secret from the
knowledge of t1 shares.

The formal definition of (t1, t2, N)-quasi-threshold LSSS is similar to Definition 9 with the ReconstructJ
function defined over Vt22 (instead of Vt2) with cardinalities |I| = t1 and |J | = t2 (instead of |I| = t− 1 and
|J | = t). In particular an (t− 1, t, N)-quasi-threshold LSSS is an (t,N)-threshold LSSS.

Definition 11 (Additive Secret Sharing). An additive secret sharing scheme over F is an (N,N)-
threshold LSSS for which the Share algorithm is defined as

Share :
(
s ; (r1, . . . , rN−1)

)
7→ JsK :=

(
r1, . . . rN−1, s−

N−1∑
i=1

ri

)
,

with randomness space R = FN−1, and the Reconstruct[N] algorithm simply outputs the sum of all the input
shares.

Definition 12 (Shamir’s Secret Sharing). The Shamir’s Secret Sharing over F is an (ℓ+1, N)-threshold
LSSS for which the Share algorithm builds a sharing JsK of s ∈ F as follows:

– sample r1, . . . , rℓ uniformly in F,
– build the polynomial P as P (X) := s+

∑ℓ
i=1 riX

i,
– build the shares JsKi as evaluations P (ei) of P for each i ∈ {1, . . . , N}, where e1, . . . , eN are public

non-zero distinct points of F.

For any subset J ⊆ [N], s.t. |J | = ℓ+ 1, the ReconstructJ algorithm interpolates the polynomial P from the
input ℓ+ 1 evaluation points JsKJ = (P (ei))i∈J and outputs the constant term s.

A multiparty computation (MPC) protocol is an interactive protocol (as formally introduced in Sec-
tion 2.2) involving multiple –possibly more than two– parties P1, . . . , PN . Each of these parties receives
as input one share of a sharing JxK. All together, the parties run the MPC protocol to compute f(x) for
some function f . At the end of the protocol, each party Pi outputs its own computed value of f(x), denoted
fi(x). In this paper, we only consider complete protocols for which an execution with honest parties results
in all the parties outputting the right value f(x). The view of a party Pi is composed of its input share
JxKi, its random tape and all its received messages from the other parties (the sent messages can further be
deterministically deduced from the other elements of the view).

We simply recall hereafter the notion of t-privacy for an MPC protocol in the semi-honest model. The
interested reader is referred to [CDN15, EKR18] for more background and formalism about multiparty
computation.

9

Definition 13 (Privacy in the Semi-Honest Model). Let t and N be integers such that 1 ≤ t < N . Let
Πf be an MPC protocol with N parties P1, . . . , PN , computing a function f . The protocol Πf is t-private
in the semi-honest model if for all I ⊂ [N] such that |I| ≤ t, there exists a PPT algorithm S such that
S(I, JxKI , fI(x)) is perfectly indistinguishable from the joint distributions of the views of the parties in I,
where fI(x) := {fi(x) | i ∈ I}.

3 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm is a framework introduced by Ishai, Kushilevitz, Ostrovsky and
Sahai in [IKOS07] to build zero-knowledge proofs using techniques from secure multi-party computation
(MPC). We first recall the general principle of this paradigm before introducing a formal model for the
underlying MPC protocols and their transformation into zero-knowledge proofs.

Assume we want to build a zero-knowledge proof of knowledge of a witness w for a statement x such that
(x,w) ∈ R for some relation R. To proceed, we shall use an MPC protocol in which N parties P1, . . . ,PN
securely and correctly evaluate a function f on a secret witness w with the following properties:

– each party Pi takes a share JwKi as input, where JwK is a sharing of w;
– the function f outputs Accept when (x,w) ∈ R and Reject otherwise;
– the protocol is ℓ-private in the semi-honest model, meaning that the views of any ℓ parties leak no

information about the secret witness (see Definition 13 for a formal definition).

We can use this MPC protocol to build a zero-knowledge proof of knowledge of a witness w satisfying
(x,w) ∈ R. The prover proceeds as follows:

– she builds a random sharing JwK of w;
– she simulates locally (“in her head”) all the parties of the MPC protocol;
– she sends a commitment of each party’s view to the verifier, where such a view includes the party’s input

share, its random tape, and its received messages (the sent messages can further be deterministically
derived from those elements);

– she sends the output shares Jf(w)K of the parties, which should correspond to a sharing of Accept.

Then the verifier randomly chooses ℓ parties and asks the prover to reveal their views. After receiving them,
the verifier checks that they are consistent with an honest execution of the MPC protocol and with the
commitments. Since only ℓ parties are opened, the revealed views leak no information about the secret
witness w, which ensures the zero-knowledge property. On the other hand, the random choice of the opened
parties makes the cheating probability upper bound by 1−

(
N−2
ℓ−2

)
/
(
N
ℓ

)
, which ensures the soundness of the

proof.
The MPCitH paradigm simply requires the underlying MPC protocol to be secure in the semi-honest

model (and not in the malicious model), meaning that the parties are assumed to be honest but curious:
they follow honestly the MPC protocol while trying to learn secret information from the received messages.

Several simple MPC protocols have been proposed that yield fairly efficient zero-knowledge proofs and sig-
nature schemes in the MPCitH paradigm, see for instance [KZ20b, BD20, BDK+21, FJR22]. These protocols
lie in a specific subclass of MPC protocols in the semi-honest model which we formalize hereafter.

3.1 General Model of MPC Protocol

We consider a passively-secure MPC protocol that performs its computation on a base finite field F so that
all the manipulated variables (including the witness w) are tuples of elements from F. In what follows, the
sizes of the different tuples involved in the protocol are kept implicit for the sake of simplicity. The parties
take as input an additive sharing JwK of the witness w (one share per party). Then the parties compute one
or several rounds in which they perform three types of actions:

10

Receiving randomness: the parties receive a random value (or random tuple) ε from a randomness oracle
OR. When calling this oracle, all the parties get the same random value ε. This might not be convenient
in a standard multi-party computation setting (since such an oracle would require a trusted third party or
a possibly complex coin-tossing protocol), but in the MPCitH context, these random values are provided
by the verifier as challenges.

Receiving hint: the parties can receive a sharing JβK (one share per party) from a hint oracle OH . The
hint β can depend on the witness w and the previous random values sampled from OR. Formally, for
some function ψ, the hint is sampled as β ← ψ(w, ε1, ε2, . . . ; r) where ε1, ε2, . . . are the previous outputs
of OR and where r is a fresh random tape.

Hints enable to build more efficient MPC protocols. For example, instead of computing a product of two
shared values, the parties can get this product using OH and simply check that the product is correct,
which is cheaper in communication [BN20].

Computing & broadcasting: the parties can locally compute JαK := Jφ(v)K from a sharing JvK where φ
is an F-linear function, then broadcast all the shares JαK1, . . . , JαKN to publicly reconstruct α := φ(v).
If φ is in the form v 7→ Av + b, then the parties can compute Jφ(v)K from JvK by letting

Jφ(v)Ki := AJvKi + JbKi for each party i

where JbK is a publicly-known sharing of b.3 This process is usually denoted Jφ(v)K = φ(JvK). The function
φ can depend on the previous random values {εi}i from OR and on the previous broadcasted values.

After t rounds of the above actions, the parties finally output Accept if and only if the publicly recon-
structed values α1, . . . , αt satisfy the relation

g(α1, . . . , αt) = 0

for a given function g.

Protocol 2 gives a general description of an MPC protocol in this paradigm, which we shall use as a model
in the rest of the paper. In general, the computing & broadcasting step can be composed of several iterations,
which is further depicted in Protocol 3. For the sake of simplicity, we shall consider a single iteration in our
presentation (as in Protocol 2) but we stress that the considered techniques and proofs equally apply to the
multi-iteration setting (i.e. while replacing step (c) of Protocol 2 by Protocol 3).

Output distribution. In the following, we shall denote ε⃗ := (ε1, . . . , εt), β⃗ := (β1, . . . , βt), α⃗ := (α1, . . . , αt)
and r⃗ := (r1, . . . , rt). From the above description, we have that the output of the protocol deterministically
depends on the broadcasted values α⃗ (through the function g), which in turn deterministically depend on

the input witness w, the sampled random values ε⃗, and the hints β⃗ (through the functions φ’s). It results
that the functionality computed by the protocol can be expressed as:

f(w, ε⃗, β⃗) =

{
Accept if g(α⃗) = 0,

Reject otherwise,
with α⃗ = Φ(w, ε⃗, β⃗) , (1)

where Φ is the deterministic function mapping (w, ε⃗, β⃗) to α⃗ (defined by the coordinate functions φ1, . . . ,
φt). We shall restrict our model to MPC protocols for which the function f satisfies the following properties:

– If w is a good witness, namely w is such that (x,w) ∈ R, and if the hints β⃗ are genuinely sampled as
βj ← ψj(w, (εi)i<j ; r

j) for every j, then the protocol always accepts. More formally:

Prε⃗,r⃗

[
f(w, ε⃗, β⃗) = Accept

∣∣∣ (x,w) ∈ R
∀j, βj ← ψj(w, (εi)i<j ; r

j)

]
= 1.

3 Usually, JbK is chosen as (b, 0, . . . , 0) in the case of the additive sharing.

11

1. The parties take as input a sharing JwK.

2. For j = 1 to t, the parties:

(a) get a sharing JβjK from the hint oracle OH , such that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj ;

(b) get a common random εj from the oracle OR;
(c) for some F-linear function φj

(εi)i≤j ,(α
i)i<j

, compute

JαjK := φj
(εi)i≤j ,(α

i)i<j

(
JwK, (JβiK)i≤j

)
,

broadcast JαjK, and then publicly reconstruct αj .
Note: This step can be composed of several iterations
as described in Protocol 3.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject
otherwise.

Note: In the above description w, βj, εj, αj are elements from
the field F or tuples with coordinates in F (whose size is not
made explicit to keep the presentation simple).

Protocol 2: General MPC protocol.

(c) for k = 1 to ηj :

– compute a sharing

Jαj,kK := φj,k
(εi)i≤j ,(α

i)i<j ,(αj,i)i<k

(
JwK, (JβiK)i≤j

)
,

for some F-linear function φj,k
(εi)i≤j ,(α

i)i<j ,(αj,i)i<k
;

– broadcast their shares Jαj,kK;
– publicly reconstruct αj,k;

We denote αj := (αj,1, . . . , αj,ηj).

Protocol 3: General MPC protocol – Iterative computing & broadcasting step for iteration j (with ηj denoting
the number of inner iterations).

– If w is a bad witness, namely w is such that (x,w) /∈ R, then the protocol rejects with probability at least

1− p, for some constant probability p. The latter holds even if the hints β⃗ are not genuinely computed.
More formally, for any (adversarially chosen) deterministic functions χ1, . . . , χt, we have:

Prε⃗,r⃗

[
f(w, ε⃗, β⃗) = Accept

∣∣∣ (x,w) ̸∈ R
∀j, βj ← χj(w, (εi)i<j ; r

j)

]
≤ p.

We say that a false positive occurs whenever the MPC protocol outputs Accept on input a bad witness w,
and we call p the false positive rate.

To summarize, we consider a setting in which the output of the protocol has a probability distribution
of the form described in Table 2.

The general MPC model introduced above captures a wide majority of the protocols used in the MPCitH
context. To the best of our knowledge, all the practical instantiations of the MPCitH paradigm comply

12

Output of f
Accept Reject

w : (x,w) ∈ R 1 0

w : (x,w) ̸∈ R ≤ p ≥ 1− p

Table 2: Probability distribution of the output of the MPC protocol.

with this model except the ZKBoo [GMO16] and Ligero [AHIV17] proof systems. In particular, our model
captures:

– the KKW18 protocol [KKW18] which computes arbitrary arithmetic circuits (used in Picnic2 and Pic-
nic3),

– the product checking protocols in [BN20] and BN++ [KZ22],

– the product checking protocols in Limbo [DOT21] and Helium [KZ22],

– the MPC protocols in BBQ [DDOS19] and Banquet [BDK+21],

– the MPC protocols in LegRoast [BD20] and PorcRoast [BD20],

– the MPC protocol in SDitH [FJR22],

– the MPC protocols in [FMRV22].

Example. As an illustration, we recall BN20 protocol to show how it fits our model. This MPC protocol
takes as inputs three sharings JxK, JyK and JzK where x, y, z ∈ F and aims to check that z = x · y. It proceeds
as follows:

– The parties get from OH three hint sharings JaK, JbK and JcK such that a, b← F and c = a · b.
– The parties get from OR a common random point ε← F.
– The parties locally compute and broadcast

JαK = ε · JxK + JaK and JβK = JyK + JbK .

– The parties publicly reconstruct α and β from JαK and JβK.
– The parties locally compute and broadcast

JvK = ε · JzK− JcK + α · JbK + β · JaK− α · β.

– The parties publicly reconstruct v from JvK.
– The parties output Accept if v = 0 and Reject otherwise.

The idea of this protocol is to take (as hint) a multiplicative triple (a, b, c) satisfying c = a·b and to “sacrifice”
it using the randomness ε to check that z = x · y. If z ̸= x · y (or if the hint is not well-constructed), the
protocol will output Reject with probability 1− 1

|F| , thus its false positive rate is p = 1
|F| . The protocol fits

our model. Indeed, the number of round is t := 1 and we have

– ψ1 is a randomized function that returns a triple (a, b, c) such that (a, b) is random and c = a · b;
– ϵ1 is a random field element;

– φ1 is split in two subfunctions φ1,1 and φ1,2, as described in Protocol 3 when η1 = 2:

φ1,1(x, y, z, a, b, c, ϵ) := (x+ ϵ · a, y + b)

φ1,2(x, y, z, a, b, c, ϵ, α, β) := ϵ · z − c+ α · b+ β · a+ α · β

where (α, β) := φ1,1(x, y, z, a, b, c, ϵ).

13

3.2 Application of the MPCitH Principle

Any MPC protocol complying with the above description gives rise to a practical short-communication
zero-knowledge protocol in the MPCitH paradigm. The resulting zero-knowledge protocol is described in
Protocol 4: after sharing the witness w, the prover emulates the MPC protocol “in her head”, commits the
parties’ inputs, and sends a hash digest of the broadcast communications; finally, the prover reveals the
requested parties’ inputs as well as the broadcast messages of the unopened party, thus enabling the verifier
to emulate the computation of the opened parties and to check the overall consistency.

1. The prover shares the witness w into a sharing JwK.

2. The prover emulates “in her head” the N parties of the MPC protocol.

For j = 1 to t:

(a) the prover computes
βj = ψj(w, (εi)i<j),

shares it into a sharing JβjK;
(b) the prover computes the commitments

comj
i :=

{
Com(JwKi, Jβ1Ki; ρ1i) if j = 1

Com(JβjKi; ρji) if j > 1

for all i ∈ {1, . . . , N}, for some commitment randomness ρji ;

(c) the prover sends

hj :=

{
Hash(com1

1, . . . , com
1
N) if j = 1

Hash(comj
1, . . . , com

j
N , Jα

j−1K) if j > 1

to the verifier;

(d) the verifier picks at random a challenge εj and sends it to the prover;

(e) the prover computes
JαjK := φj

(εi)i≤j ,(α
i)i<j

(
JwK, (JβiK)i≤j

)
and recomposes αj .
Note: This step is computed according to Protocol 3 in case of an iterative computing & broadcasting step.

The prover further computes ht+1 := Hash(JαtK) and sends it to the verifier.

3. The verifier picks at random a party index i∗ ∈ [N] and sends it to the prover.

4. The prover opens the commitments of all the parties except party i∗ and further reveals the commitments and broadcast
messages of the unopened party i∗. Namely, the prover sends (JwKi, (JβjKi, ρji)j∈[t])i̸=i∗ , com

1
i∗ , . . . , com

t
i∗ , Jα1Ki∗ , . . . , JαtKi∗

to the verifier.

5. The verifier recomputes the commitments comj
i and the broadcast values JαjKi for i ∈ [N] \ {i∗} and j ∈ [t] from

(JwKi, (JβjKi, ρji)j∈[t])i̸=i∗ in the same way as the prover.

6. The verifier accepts if and only if:
(a) the views of the opened parties are consistent with each other, with the committed input shares and with the hash digest

of the broadcast messages, i.e. for j = 1 to t+ 1,

hj
?
=

Hash(com1

1, . . . , com
1
N) if j = 1

Hash(comj
1, . . . , com

j
N , Jα

j−1K) if j > 1
Hash(JαtK) if j = t+ 1

(b) the output of the MPC protocol is Accept, i.e.

g(α1, . . . , αt)
?
= 0.

Protocol 4: Zero-knowledge protocol - Application of the MPCitH principle to Protocol 2.

14

Protocols with preprocessing phase. An additional technique can be used in this framework: one can assume
that the parties take an auxiliary input which is a sharing JyK of a value y satisfying some public equation
E(y) = 0 (where E might depend on the public statement x). For example, the MPC protocol can take as
input three sharings JaK, JbK and JcK for random a, b and c satisfying c = a · b. In practice, this assumption
is verified thanks to a cut-and-choose strategy run before the emulation of the MPC protocol. Introduced
by [KKW18] using a preprocessing phase, this technique has been formalized in [Beu20] as protocols with
helper. Although we omit such a preprocessing phase from our formalism for the sake of simplicity, we stress
that the theory developed in the present article is compatible with this technique and adding a preprocessing
phase to the protocol would not change our results.

Soundness. Assuming that the underlying MPC protocol follows the model of Section 3.1 with a false positive
rate p, the soundness error of Protocol 4 is

1

N
+
(
1− 1

N

)
· p.

The above formula results from the fact that a malicious prover might successfully cheat with probability
1/N by corrupting the computation of one party or with probability p by making the MPC protocol produce
a false positive. This soundness has been formally proven in some previous works, see e.g. [DOT21, BN20,
FJR22]. In the present article, we provide a general proof for any protocol complying with the format of
Protocol 2 in the more general context of any (threshold) linear secret sharing (see Theorem 2).

Performances. The communication of Protocol 4 includes:

– the input shares (JwKi, Jβ1Ki, . . . , JβtKi) of the opened parties. In practice, a seed seedi ∈ {0, 1}λ is
associated to each party so that for each committed variable v (among the witness w and the hints β1,
. . . , βt) the additive sharing JvK is built as{

JvKi ← PRG(seedi) for i ̸= N

JvKN = v −
∑N−1
i=1 JvKi.

Thus, instead of committing (JwKi, Jβ1Ki), the initial commitments simply include the seeds for i ̸= N ,
and comj

i becomes useless for j ≥ 2 and i ̸= N . Formally, we have:

comj
i =

Com(seedi; ρ

1
i) for j = 1 and i ̸= N

Com(JwKN , Jβ1KN ; ρ1N) for j = 1 and i = N

∅ for j > 1 and i ̸= N

Com(JβjKN ; ρjN) for j > 1 and i = N

Some coordinates of the βj might be uniformly distributed over F (remember that the βj are tuples of
F elements). We denote βunif the sub-tuple composed of those uniform coordinates. In this context, the
last share JβunifKN can be built as JβunifKN ← PRG(seedN) so that a seed seedN can be committed in
com1

N (instead of committing JβunifKN). This way the prover can save communication by revealing seedN
instead of JβunifKN whenever the latter is larger;

– the messages Jα1Ki∗ , . . . , JαtKi∗ broadcasted by the unopened party. Let us stress that one can some-
times save communication by sending only some elements of Jα1Ki∗ , . . . , JαtKi∗ and use the relation
g(α1, . . . , αt) = 0 to recover the missing ones;

– the hash digests h1, . . . , ht+1 and the unopened commitments com1
i∗ , . . . , com

t
i∗ (as explained above, we

have comj
i∗ = ∅ for j > 1 if i∗ ̸= N).

Moreover, instead of revealing the (N − 1) seeds of the opened parties, one can generate them from a
generation tree as suggested in [KKW18]. One then only needs to reveal log2N λ-bit seeds. We finally obtain
a total communication cost for Protocol 4 of

15

– when i∗ ̸= N ,

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+(inputs︸ ︷︷ ︸
JwKN ,Jβ1KN ,...,

+ comm︸ ︷︷ ︸
Jα1Ki∗ ,...,JαtKi∗

+ λ · log2N︸ ︷︷ ︸
seedi for i̸=i∗

+ 2λ︸︷︷︸
com1

i∗

).

– when i∗ = N ,
Cost = (t+ 1) · 2λ︸ ︷︷ ︸

h1,h2,...,ht+1

+(comm︸ ︷︷ ︸
Jα1Ki∗ ,...,JαtKi∗

+ λ · log2N︸ ︷︷ ︸
seedi for i̸=i∗

+ t · 2λ︸ ︷︷ ︸
com1

i∗ ,...,com
t
i∗

).

where inputs denote the bitsize of (w, β1, . . . , βt) excluding the uniformly distributed elements βunif, and
where comm denotes the bitsize of (α1, . . . , αt) excluding the elements which can be recovered from g(α1, . . . , αt) =
0.

To achieve a soundness error of 2−λ, one must repeat the protocol τ = λ
log2N

times. The resulting

averaged cost is the following:

Cost = (t+ 1) · 2λ+ τ ·
(
N − 1

N
· inputs+ comm+ λ · log2N +

N − 1 + t

N
· 2λ

)
.

Several recent works based on the MPCitH paradigm [BD20, KZ21, FJR22] provides zero-knowledge
identification protocols with communication cost below 10 KB for a 128-bit security level. Unfortunately, to
obtain a small communication cost, one must take a large number of parties N , which induces an important
computational overhead compared to other approaches to build zero-knowledge proofs. Indeed, the prover
must emulate N parties in her head for each of the τ repetitions of the protocol, which makes a total of
λN

log2N
party emulations to achieve a soundness error of 2−λ. Thus, increasing N has a direct impact on the

performances. For instance, scaling from N = 16 to N = 256 roughly halves the communication but increases
the computation by a factor of eight. Given this state of affairs, a natural question is the following:

Can we build zero-knowledge proofs in the MPC-in-the-head paradigm
while avoiding this computational overhead?

In what follows, we show how applying (low-threshold) linear secret sharing to the MPCitH paradigm
provides a positive answer to this question.

4 MPC-in-the-Head with Threshold LSS

4.1 General Principle

Let ℓ and N be integers such that 1 ≤ ℓ < N . We consider an (ℓ + 1, N)-threshold linear secret sharing
scheme (LSSS), as formally introduced in Definition 9, which shares a secret s ∈ F into N shares JsK ∈ FN .
In particular, the vector spaces of Definition 9 are simply defined as V1 = V2 = F hereafter (other definitions
of these sets will be considered in Section 5). We recall that such a scheme implies that the secret can be
reconstructed from any ℓ+ 1 shares while no information is revealed on the secret from the knowledge of ℓ
shares. The following lemmas shall be useful to our purpose (see proofs in Appendix B). The first lemma holds
assuming the MDS conjecture [MS10] while the second one comes from the equivalence between threshold
LSSS and interpolation codes [CDN15, Theorem 11.103].

Lemma 1. Let F be a finite field and let ℓ,N be integers such that 1 ≤ ℓ < N − 1. If an (ℓ+1, N)-threshold
LSSS exists for F, and assuming the MDS conjecture, then N ≤ |F| with the following exception: if F is a
power of 2 and ℓ ∈ {2, |F| − 2} then N ≤ |F|+ 1.

Lemma 2. Let (Share, Reconstruct) be an (ℓ + 1, N)-threshold LSSS. For every tuple v0 ∈ Vℓ+1
2 and every

subset J0 ⊆ [N] with |J0| = ℓ+ 1, there exists a unique sharing JsK ∈ VN2 such that JsKJ0 = v0 and such that

∀J s.t. |J | = ℓ+ 1,ReconstructJ(JsKJ) = s ,

where s := ReconstructJ0(v0). Moreover, there exists an efficient algorithm ExpandJ0 which returns this
unique sharing from JsKJ0 .

16

Remark 1. In the case of the additive sharing scheme, we have ℓ + 1 = N so that the algorithm Expand
is trivial (it simply consists of the identity function). In the case of Shamir’s secret sharing scheme (see
Definition 12), the algorithm Expand builds the underlying polynomial and evaluates it into each party’
point.

In the rest of the paper we shall frequently use the following notions:

– Sharing of a tuple. If v is a tuple, a secret sharing JvK is defined coordinate-wise. The algorithms Share,
Reconstruct and Expand (from Lemma 2) further apply coordinate-wise.

– Valid sharing. We say that a sharing JvK is valid when there exists v such that

∀J s.t. |J | = ℓ+ 1,ReconstructJ(JvKJ) = v,

or equivalently4, when there exists J such that JvK = ExpandJ(JvKJ).

– Consistent shares. We say that shares JvKi1 , . . . , JvKiz are consistent when there exist other shares
JvK[N]\{i1,...,iz} such that JvK is a valid sharing.

Application to the MPCitH paradigm. We suggest applying a threshold LSSS to the MPCitH paradigm
instead of a simple additive sharing scheme. Let us consider a protocol Πadd complying with the MPC model
introduced in the previous section (Protocol 2). We can define a protocol ΠLSSS similar to Πadd with the
following differences:

– the parties initially receive an (ℓ+ 1, N)-threshold linear secret sharing of the witness w,
– when invoked for a hint βj , the oracle OH returns an (ℓ+ 1, N)-threshold linear secret sharing of βj ,
– when the shares of αj are broadcasted, the value αj is reconstructed using the algorithm Reconstruct.

Namely, the parties arbitrarily choose ℓ + 1 shares (JαjKi)i∈J0 , run the algorithm ReconstructJ0 to get
αj , and check that all the broadcast shares are consistent with the output of ExpandJ0 . If the check fails,
the protocol returns Reject.

The resulting MPC protocol, formally described in Protocol 5, is well-defined and ℓ-private in the semi-
honest model (meaning that the views of any ℓ parties leak no information about the secret, see Definition 13).
This is formalized in the following theorem (see proof in Appendix C).

Theorem 1. Let us consider an MPC protocol Πadd complying with the protocol format described in Pro-
tocol 2. If Πadd is well-defined and (N − 1)-private, then the protocol ΠLSSS corresponding to Πadd with an
(ℓ+ 1, N)-threshold linear secret sharing scheme (see Protocol 5) is well-defined and ℓ-private.

4.2 Conversion to Zero-Knowledge Proofs

We can convert the MPC protocol using threshold linear secret sharings into a zero-knowledge protocol using
the MPC-in-the-Head paradigm. Instead of requesting the views of N − 1 parties, the verifier only asks for
the views of ℓ parties. Since the MPC protocol is ℓ-private, we directly get the zero-knowledge property. One
key advantage of using a threshold LSSS is that only ℓ + 1 parties out of N need to be computed by the
prover, which we explain further hereafter.

Besides the commitments on the input sharing JwK, and the hints’ sharings Jβ1K, . . . , JβtK, the prover
must send to the verifier the communication between the parties, which for the considered MPC model (see
Protocol 5) consists of the broadcast sharings Jα1K, . . . , JαtK. Observe that such a sharing JαjK is also an
LSSS sharing of the underlying value αj since it is computed as

JαjK := φj(εi,αi)i≤j

(
JwK, (JβiK)i≤j

)
4 This second formulation is true only for threshold schemes (and not for quasi-threshold schemes that we will
introduce latter).

17

1. The parties take as input an (ℓ+1, N)-threshold linear sharing
JwK.

2. For j = 1 to t, the parties:

(a) get an (ℓ + 1, N)-threshold linear sharing JβjK from the
hint oracle OH , such that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj ;

(b) get a common random εj from the oracle OR;
(c) for some F-linear function φj

(εi)i≤j ,(α
i)i<j

,

– compute

JαjK := φj
(εi)i≤j ,(α

i)i<j

(
JwK, (JβiK)i≤j

)
,

– broadcast JαjK,
– compute

αj := ReconstructJ0(Jα
jKJ0)

for some J0 of size ℓ+ 1,
– verify that ExpandJ0(JαKJ0) is consistent with JαjK

(i.e. that JαjK forms a valid sharing) and reject other-
wise.

Note: This step can be composed of several iterations as
described in Protocol 3.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject oth-
erwise.

Note: In the above description w, βj, εj, αj are elements from
the field F or tuples with coordinates in F (whose size is not made
explicit to keep the presentation simple).

Protocol 5: General MPC protocol ΠLSSS with LSSS.

where JwK, Jβ1K, . . . , JβtK are LSSS sharings and φj is an affine function. This notably implies that, for all
i, the broadcast sharing JαjK = (JαjK1, . . . , JαjKN) contains redundancy. According to Lemma 2, in order to
uniquely define such a sharing, one only needs to commit ℓ+1 shares of JαjK. In other words, we can choose
a fixed subset S of ℓ + 1 parties and only commit the broadcast shares from these parties, which then acts
as a commitment of the full sharing JαjK. For all j ∈ [t], the prover needs to send the broadcast share JαjKi∗
of an arbitrary unopened party i∗. To verify the computation of the ℓ opened parties I = {i1, . . . , iℓ} ⊆ [N],
the verifier can recompute the shares JαjKi1 , . . . , JαjKiℓ . Then, from these ℓ shares together with JαjKi∗ , the
verifier can reconstruct the shares JαjKS using Expand{i∗,i1,...,iℓ} and check their commitments.

By committing the broadcast messages of only a subset S of parties, the proof becomes independent
of the computation of the other parties. It means that the prover must commit the input shares of all the
parties but only need to emulate ℓ+1 parties to commit their broadcast shares. When ℓ is small with respect
to N , this has a great impact on the computational performance of the prover. The resulting zero-knowledge
protocol is described in Protocol 6.

18

1. The prover shares the witness w into an (ℓ+ 1, N)-threshold linear secret sharing JwK.

2. The prover emulates “in her head” a (public) subset S of ℓ+ 1 parties of the MPC protocol.

For j = 1 to t:

(a) the prover computes
βj = ψj(w, (εi)i<j),

shares it into an (ℓ+ 1, N)-threshold linear secret sharing JβjK;
(b) the prover computes the commitments

comj
i :=

{
Com(JwKi, JβjKi; ρji) if j = 1

Com(JβjKi; ρji) if j > 1

for all i ∈ [N], for some commitment randomness ρji , and computes the Merkle root

h̃j := MerkleTree(comj
1, . . . , com

j
N).

(c) the prover sends

hj :=

{
h̃j if j = 1

Hash(h̃j , Jαj−1KS) if j > 1

to the verifier;

(d) the verifier picks at random a challenge εj and sends it to the prover;

(e) the prover computes, for i ∈ S,
JαjKi := φj

(εk)k≤j ,(α
k)k<j

(
JwKi, (JβkKi)k≤j

)
and recomposes αj . This step is repeated as many times as in the MPC protocol (cf Protocol 3).

The prover further computes ht+1 := Hash(JαtKS) and sends it to the verifier.

3. The verifier picks at random a subset I ⊂ [N] of ℓ parties (i.e. |I| = ℓ) and sends it to the prover.

4. The prover opens the commitments of all the parties in I, namely she sends (JwKi, (JβjKi, ρji)j∈[t])i∈I to the verifier. The
prover further sends the authentication paths auth1, . . . , autht to these commitments, i.e. authj is the authentication path
for {comj

i}i∈I w.r.t. Merkle root h̃j for every j ∈ [t]. Additionally, the prover sends broadcast shares Jα1Ki∗ , . . . , JαtKi∗ of an
unopened party i∗ ∈ S \ I.

5. The verifier recomputes the commitments comj
i and the broadcast values JαjKi for i ∈ I and j ∈ [t] from

(JwKi, (JβjKi, ρji)j∈[t])i∈I . Then she recovers α1, . . . , αt, by

αj = ReconstructI∪{i∗}(Jα
jKI∪{i∗})

for every j ∈ [t].

6. The verifier accepts if and only if:

(a) the views of the opened parties are consistent with each other, with the committed input shares and with the hash digest
of the broadcast messages, i.e. for j = 1 to t+ 1,

hj
?
=

h̃j if j = 1

Hash(h̃j , Jαj−1KS) if 2 ≤ j ≤ t
Hash(Jαj−1KS) if j = t+ 1

where h̃j is the Merkle root deduced from
(
{comj

i}i∈I , authj
)
and Jαj−1KS are the shares in subset S deduced from

Jαj−1K = ExpandI∪{i∗}
(
Jαj−1KI∪{i∗}

)
;

(b) the output of the opened parties are Accept, i.e.

g(α1, . . . , αt)
?
= 0 .

Protocol 6: Zero-knowledge protocol: application of the MPCitH principle to Protocol 5 with an (ℓ+ 1, N)-
threshold linear secret sharing scheme.

19

4.3 Soundness

Consider a malicious prover P̃ who does not know a correct witness w for the statement x but still tries to
convince the verifier that she does. We shall say that such a malicious prover cheats for some party i ∈ [N]
if the broadcast shares Jα1Ki, . . . , JαtKi recomputed from the committed input/hint shares JwKi, Jβ1Ki, . . . ,
JβtKi are not consistent with the committed broadcast shares (Jα1KS , . . . , JαtKS).

Let us first consider the simple case of false positive rate p = 0. If a malicious prover cheats on less than
N−ℓ parties, then at least ℓ+1 parties have broadcast shares which are consistent with (Jα1Ki, . . . , JαtKi)i∈S
and give rise to broadcast values α1, . . . , αt for which the protocol accepts, i.e. g(α1, . . . , αt) = 0. Since p = 0,
the input shares of those ℓ+1 parties necessarily define a good witness w (i.e. satisfying (x,w) ∈ R), which
is in contradiction with the definition of a malicious prover. We deduce that in such a zero-false-positive
scenario, a malicious prover (who does not know a good witness) has to cheat for at least N − ℓ parties.
Then, if the malicious prover cheats on more than N − ℓ parties, the verifier shall always discover the cheat
since she shall necessarily ask for the opening of a cheating party. We deduce that a malicious prover must
necessarily cheat on exactly N − ℓ parties, and the only way for the verifier to be convinced is to ask for the
opening of the exact ℓ parties which have been honestly emulated. The probability of this event to happen
is

1(
N
N−ℓ

) =
1(
N
ℓ

) ,
which corresponds to the soundness error of the protocol, assuming p = 0.

Let us now consider a false positive rate p which is not zero. A malicious prover can then rely on a false
positive to get a higher probability to convince the verifier. In case the committed input shares JwK1, . . . , JwKN
were consistent (i.e. they formed a valid secret sharing), the soundness error would be

1(
N
ℓ

) +(1− 1(
N
ℓ

)) · p.
However, we cannot enforce a malicious prover to commit a valid secret sharing JwK since the verifier never
sees more than the shares of ℓ parties. More precisely, let us denote

J := {J ⊂ [N] : |J | = ℓ+ 1}

and let w(J) be the witness corresponding to the shares JwKJ for some subset J ∈ J , formally w(J) :=
ReconstructJ(JwKJ). Then we could have

w(J1) ̸= w(J2)

for distinct subsets J1, J2 ∈ J . A malicious prover can exploit this degree of freedom to increase the soundness
error.

Soundness attack. Let us take the example of the [BN20] protocol on a field F. In this protocol, the MPC
functionality f outputs Accept for a bad witness w (i.e. such that (x,w) ̸∈ R) with probability p = 1

|F| ,

i.e. if and only if the oracle OR samples a specific element εw of F. In this context, a possible strategy for
the malicious prover is the following:

1. Build the shares JwK1, . . . , JwKN such that

∀J1, J2 ∈ J , εw(J1) ̸= εw(J2) .

We implicitly assume here that
(
N
ℓ+1

)
≤ |F| and that constructing such collision-free input sharing is

possible. We assume that (x,w(J)) ̸∈ R for every J (otherwise the malicious prover can recover a good
witness by enumerating the w(J)’s).

2. After receiving the initial commitments, the verifier sends the challenge ε.

20

3. If there exists J0 ∈ J such that ε = w(J0), which occurs with probability
(
N
ℓ+1

)
· p since all the ε(J) are

distinct, then the malicious prover defines the broadcast values α1, . . . , αt (and the broadcast shares in
the set S) according to the broadcast shares of the parties in J0. It results that the computation of the
parties in J0 is correct and the prover will be able to convince the verifier if the set I of opened parties
is a subset of J0 (I ⊂ J0).

4. Otherwise, if no subset J0 ∈ J is such that ε = w(J0), the malicious prover is left with the option of
guessing the set I. Namely, she (randomly) chooses a set I0 of ℓ parties as well as broadcast values
α1, . . . , αt such that g(α1, . . . , αt) = 0, and then she deduces and commits the broadcast shares JαjKS
from the JαjKI0 (computed from the committed input shares) and the chosen αj ’s. The malicious prover
will be able to convince the verifier if and only if the challenge set I matches the guess I0.

The probability pattack that the malicious prover convinces the verifier using the above strategy satisfies

pattack :=

Pr[∃J0:ε=w(J0)]︷ ︸︸ ︷(
N

ℓ+ 1

)
p ·

Pr[I⊂J0]︷ ︸︸ ︷(
ℓ+1
ℓ

)(
N
ℓ

) +

Pr[∀J,ε ̸=w(J)]︷ ︸︸ ︷(
1−

(
N

ℓ+ 1

)
p

)
·

Pr[I=I0]︷︸︸︷
1(
N
ℓ

)
=

1(
N
ℓ

) + p · ℓ · (N − ℓ)
ℓ+ 1

≥ 1(
N
ℓ

) +(1− 1(
N
ℓ

)) · p.︸ ︷︷ ︸
Soundness error if the

committed sharing is well-formed.

Soundness proof. We can prove that the above strategy to forge successful transcripts for the [BN20] protocol
is actually optimal and that it further applies to other protocols complying with our model. This is formalized
in the following theorem (together with the completeness and HVZK property of the protocol).

Theorem 2. Let us consider an MPC protocol ΠLSSS complying with the protocol format described in Pro-
tocol 5 using an (ℓ + 1, N)-threshold LSSS, such that ΠLSSS is ℓ-private in the semi-honest model and of
false positive rate p. Then, Protocol 6 built from ΠLSSS satisfies the three following properties:

– Completeness. A prover P who knows a witness w such that (x,w) ∈ R and who follows the steps of
the protocol always succeeds in convincing the verifier V.

– Soundness. Suppose that there is an efficient prover P̃ that, on input x, convinces the honest verifier
V to accept with probability

ϵ̃ := Pr[⟨P̃,V⟩(x)→ 1] > ϵ

where the soundness error ϵ is defined as

ϵ :=
1(
N
ℓ

) + p · ℓ · (N − ℓ)
ℓ+ 1

.

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable black-box access
to P̃, outputs either a witness w satisfying (x,w) ∈ R, or a commitment collision, by making an average
number of calls to P̃ which is upper bounded by

4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 8 · (N − ℓ)

ϵ̃− ϵ

)
.

– Honest-Verifier Zero-Knowledge. There exists an efficient simulator S which, given the random
challenge I outputs a transcript which is indistinguishable from a real transcript of Protocol 6.

Proof. The completeness holds from the completeness property of the underlying MPC protocol. The zero-
knowledge property directly comes from the ℓ-privacy property of the MPC protocol with an (ℓ + 1, N)-
threshold linear secret sharing scheme. See Appendix D for the soundness proof.

21

Remark 2. Let us remark that the above theorem includes the MPCitH setting with additive sharing as a
particular case. Indeed, when ℓ = N − 1, we obtain the usual formula for the soundness error, that is:

ℓ = N − 1 =⇒ ϵ =
1

N
+ p ·

(
1− 1

N

)
.

Remark 3. When ℓ = 1, we have ϵ ≈ 1
N (assuming p is small). It can look as surprising that we can have

such soundness error by revealing a single party’s view. Since the communication is only broadcast, a verifier
does not need to check for inconsistency between several parties, she just needs to check that the revealed
views are consistent with the committed broadcast messages. Moreover, the verifier has the guarantee that
the shares broadcast by all the parties form a valid sharing of the open value. It means that even if the
prover reveals only one party’s view, the latter can be inconsistent with the committed broadcast. Assuming
we use Shamir’s secret sharing, committing to a valid broadcast sharing consists in committing a degree-ℓ
polynomial such that evaluations are the broadcast shares. By interpolating the broadcast shares of ℓ honest
parties (and given the plain value of the broadcast message), one shall entirely fix the corresponding Shamir’s
polynomial, and the other parties can not be consistent with this polynomial without being consistent with
the honest parties (and the latter can only occur if there is a false positive).

4.4 Performances

The advantage of using a threshold LSSS over a standard additive sharing mainly resides in a much faster
computation time, for both the prover and the verifier. Indeed, according to the above description, the prover
only emulates ℓ+1 parties while the verifier only emulates ℓ parties, which is particularly efficient for a small
ℓ. For example, assuming that p is negligible and taking ℓ = 1, the soundness error is 1/N (which is similar
to standard MPCitH with additive sharing) and the prover only needs to emulate ℓ+ 1 = 2 parties (instead
of N) while the verifier only needs to emulate ℓ = 1 party (instead of N − 1).

When targeting a soundness error of λ bits, one needs to repeat the protocol τ := −λ
log2 ϵ

times and thus

the number of times that a prover emulates a party is multiplied by τ . Table 3 summarizes the number of
party emulations for the prover and the verifier for the standard case (additive sharing) and for the case of
an (ℓ + 1, N)-threshold LSSS. Interestingly, we observe that the emulation phase is more expensive when
increasing N for the additive sharing case while it becomes cheaper for the threshold LSSS case (with some
constant ℓ).

The computational bottleneck for the prover when using an LSSS with low threshold ℓ and possibly
high N becomes the generation and commitment of all the parties’ input shares, which is still linear in N .
Moreover the sharing generation for a threshold LSSS might be more expensive than for a simple additive
sharing. On the other hand, the verifier does not suffer from this bottleneck since she only has to verify
ℓ opened commitments (per repetition). One trade-off to reduce the prover commitment bottleneck is to
increase ℓ, which implies a smaller τ (for the same N) and hence decreases the number of commitments.

With additive sharing
With threshold LSSS

ℓ = 1 Any ℓ

Prover ≈ λ N
log2 N

≈ λ 2
log2 N

≈ λ ℓ+1

log2 (
N
ℓ)

Verifier ≈ λ N−1
log2 N

≈ λ 1
log2 N

≈ λ ℓ

log2 (
N
ℓ)

Table 3: Number of party emulations to achieve a soundness error of 2−λ (assuming a negligible false positive
rate p).

In terms of communication, using a threshold LSSS implies a slight overhead. In particular, since only ℓ
parties out of N are opened, we use Merkle tree for the commitments and include the authentication paths
in the communication.

22

Let us recall the notations defined in Section 3.2:

– inputs: the bitsize of (w, β1, . . . , βt) excluding the uniformly-distributed elements βunif, and
– comm: the bitsize of (Jα1Ki∗ , . . . , JαtKi∗) excluding the elements which can be recovered from g(α1, . . . , αt) =

0.

We denote unif the bitsize of the uniformly-distributed elements βunif. Then, the proof size (in bits) when
repeating the protocol τ times is

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+τ · (ℓ · (inputs+ unif)︸ ︷︷ ︸
{JwKi,Jβ1Ki,...,JβtKi}i∈I

+ comm︸ ︷︷ ︸
Jα1Ki∗ ,...,JαtKi∗

+2λ · t · ℓ · log2
N

ℓ︸ ︷︷ ︸
auth1,...,autht

).

Let us remark that the bitsize unif appears here while it was not the case for additive sharings. This comes
from the fact that, even if βunif is uniformly sampled, JβunifK has some structure (i.e. some redundancy)
when using an arbitrary linear secret sharing scheme.

Remark 4. As in the additive case, the prover can generate the input shares from seeds for ℓ parties, and
those seeds can be built using a seed tree. However, this tweak will improve (significantly) the communication
cost only when the underlying LSSS has a high threshold (as e.g. in the case of additive sharing).

Let us illustrate the overhead in communication cost when ℓ = 1 and t = 1 and negligible unif (which is
often small in practice). In this setting, we obtain an average overhead of ∆Cost ≈ τ · λ · (log2N − 2). When
targeting a λ-bit security, we have τ ≈ λ

log2N
, which gives

∆Cost ≈ λ2 ·
(
1− 2

log2N

)
.

We can observe that the communication overhead due to the use of a LSSS is fixed for a given security
parameter, and roughly independent on the underlying MPC protocol. When targeting a 128-bit security,
this base cost is around 2 KB (for the case ℓ = 1 and t = 1).

5 Further Improvements

In this section, we suggest potential ways to further improve and generalize our approach.

5.1 Using Linearly Homomorphic Commitments

As explained previously, one of the bottlenecks of this construction is that the prover must realize N com-
mitments. Although we decrease the cost of emulating the MPC protocol (from N parties to a constant
number), we still need to commit the inputs of all the parties which is still linear in N . For this reason, we
cannot arbitrarily increase the number of parties N even while working on large fields (e.g. F232 or larger).
One natural strategy to improve this state of affairs and get rid of those N commitments is to use a linearly
homomorphic commitment scheme. Informally, a linearly homomorphic commitment scheme is such that

∀α, β, x, y,ρx, ρy,
α · Com(x; ρx) + β · Com(y; ρy) = Com(α · x+ β · y;α · ρx + β · ρy).

Instead of committing all the parties’ input shares, the prover can just commit the input shares for the
ℓ+ 1 parties in S := {s0, . . . , sℓ}:

com0 = Com(JwKs0 ; ρ0)
com1 = Com(JwKs1 ; ρ1)

...

comℓ = Com(JwKsℓ ; ρℓ).

23

By linearity of ExpandS , there exists a matrix M ∈ FN×(ℓ+1) such that

ExpandS(JwKS) =M · JwKS .

To open a party i, the prover then only needs to open the commitment com′
i defined as

com′
i :=

ℓ∑
j=0

Mi,j · comj = Com
(ℓ∑
j=0

Mi,jJwKj ;
ℓ∑
j=0

Mi,jρi

)

= Com
(
JwKi ;

ℓ∑
j=0

Mi,jρi

)
Instead of committing N shares, the prover just needs to commit ℓ+1 of them which makes the commit-

ment phase much more efficient. Another benefit of this approach is to enforce that the committed sharing
corresponds to a valid sharing, which improves the soundness error to the standard formula:

ϵ =
1(
N
ℓ

) + p ·

(
1− 1(

N
ℓ

))
which is substantially better than the soundness error from Theorem 2 whenever p is not negligible.

The resulting proof size highly depends on the underlying homomorphic commitment scheme. This tech-
nique allows to produce zero-knowledge protocols with soundness as good as with algebraic techniques (when
there exist). For example, to prove a statement about lattices on field Fq with q ≈ 232, it would be possible
to use the MPCitH paradigm with threshold LSSS to get a single-iteration protocol with soundness error of
232 when taking ℓ = 1, scaling to 2123 when taking ℓ = 4.

For applications to the post-quantum setting (which is a context of choice for MPCitH schemes), one
could rely on lattice-based homomorphic commitment schemes. To the best of our knowledge, most of these
schemes are only additively homomorphic (not linearly) and they support a bounded number of additions
which makes their application to our context not straightforward. This is yet an interesting question for
future research.

5.2 Using Quasi-Threshold Linear Secret Sharing

Theorem 2 only considers linear secret sharing schemes, but we can generalize the result to any quasi-
threshold linear secret sharing scheme. In such schemes, ℓ shares leak no information about the secret and
ℓ+1+∆ shares are necessary to reconstruct the secret, with ∆ > 0, namely we have a gap between the two
thresholds. In our context, this gap shall impact the soundness of the protocol. Indeed, the prover just needs
to cheat for N − ℓ − ∆ parties (such that there is less than ℓ + ∆ honest parties), but the verifier asks to
open only ℓ parties. Considering quasi-threshold schemes bring more versatility to our approach and opens
the door to techniques that are not possible with tight threshold schemes (e.g. batching such as proposed
below).

Let us remark that the set S of emulated parties in Protocol 6 must be chosen such that JvKS enables to
deduce all the shares JvK[N]. In the tight threshold case, such a set S is always of size ℓ+ 1 (see Lemma 2),
but in the case of quasi-threshold LSSS, this set S might be larger than ℓ+∆+1. Moreover, sending shares
Jα1Ki∗ , . . . , JαtKi∗ for one non-opened party i∗ ∈ S might not be enough to enable the verifier to recompute
JαjKS for all j. Therefore the size of S and the number of additional shares JαjKi to be revealed depend on
the underlying quasi-threshold linear secret sharing, which impacts the communication cost. On the other
hand, the soundness error of the obtained proof of knowledge is not impacted.

Theorem 3. Let us consider an MPC protocol ΠQT-LSSS complying with the protocol format described in
Protocol 5, but using an (ℓ, ℓ+∆+1, N)-quasi-threshold LSSS in place of an (ℓ+1, N)-threshold LSSS, and
such that ΠQT-LSSS is ℓ-private in the semi-honest model and of false positive rate p. Then, Protocol 6 built
from ΠQT-LSSS satisfies the three following properties:

24

– Completeness. A prover P who knows a witness w such that (x,w) ∈ R and who follows the steps of
the protocol always succeeds in convincing the verifier V.

– Soundness. Suppose that there is an efficient prover P̃ that, on input x, convinces the honest verifier
V to accept with probability

ϵ̃ := Pr[⟨P̃,V⟩(x)→ 1] > ϵ

where the soundness error ϵ is equal to(
ℓ+∆
ℓ

)(
N
ℓ

) + p · ℓ

ℓ+∆+ 1
·
(
N − ℓ
∆+ 1

)
.

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable black-box access
to P̃, produces with either a witness w satisfying (x,w) ∈ R, or a commitment collision, by making an
average number of calls to P̃ which is upper bounded by

4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 8 · (N − ℓ)

ϵ̃− ϵ

)
.

– Honest-Verifier Zero-Knowledge. There exists an efficient simulator S which, given random chal-
lenge I outputs a transcript which is indistinguishable from a real transcript of Protocol 6.

Proof. The completeness holds from the completeness property of the underlying MPC protocol. The zero-
knowledge property directly comes from the ℓ-privacy property of the MPC protocol with an (ℓ, ℓ+∆+1, N)-
threshold linear secret sharing scheme. See Appendix E for the proof of the soundness.

Using algebraic geometric secret sharing? One drawback while using a tight threshold LSSS is that
the number N of parties is limited by the size of the underlying field F, specifically we have N ≤ |F| (see
Lemma 1). Some sharing schemes on algebraic curves, which are not (tight) threshold but quasi-threshold,
have been proposed in [CC06] to handle this issue.

Assuming a negligible false positive rate p, the soundness error is
(
ℓ+∆
ℓ

)
/
(
N
ℓ

)
for a quasi-threshold scheme

instead of 1/
(
N
ℓ

)
for a tight threshold scheme. Let us focus on the case ℓ = 1. The soundness error for a

quasi-threshold scheme then satisfies (
ℓ+∆
ℓ

)(
N
ℓ

) =
∆+ 1

N
.

In order to gain in soundness (and hence in performances), the above formula should be lower than 1/|F|
which is the minimal achievable soundness error for a (tight) threshold scheme (since N ≤ F).

In [CC06], the gap ∆ is 2g where g is the genus of the underlying curve. We must then search for
quasi-threshold sharing schemes such that

2g + 1

N
≤ 1

|F|
⇔ N ≥ |F| · (2g + 1) ,

while for such sharing, we have N ≤ |C(F)| where |C(F)| is the order of the underlying curve over the field
F. However, according to the Hasse-Weil inequality [Was08], we have

|C(F)| ≤ |F|+ 1 + 2g
√
|F|

which shows the impossibility of finding an algebraic geometric secret sharing scheme satisfying the above
constraint. We deduce that a direct application of algebraic geometric secret sharing schemes [CC06] does
not achieve better soundness (and hence better performances) than standard threshold sharing schemes in
our context.

We stress that the above argument focuses on the case ℓ = 1 for simplicity (and since it is relevant to
optimize the performances with our approach), but the above argument also holds for any ℓ ≥ 1.

25

While the above analysis discards the interest in using quasi-threshold LSSS based on algebraic geometry
to improve the soundness-performances trade-off of our scheme, we let this question open for other quasi-
threshold schemes. However, [CDN15, Theorem 11.121] gives that an (ℓ, ℓ+∆+1, N)-quasi-threshold F-linear
secret-sharing scheme satisfies

∆+ 1 ≥ N + 2

2|F| − 1
.

Thus, we get a lower bound on the soundness error (on the case ℓ = 1):

ϵ :=
∆+ 1

N
≥ 1

N
· N + 2

2|F| − 1
≥ 1

2|F| − 1
,

implying that such sharing schemes could only have a limited interest to optimize the soundness error.
We show hereafter that the above generalization to quasi-threshold LSSS is useful for another purpose,

namely an efficient batching technique in our framework.

5.3 Batching Proofs with Shamir’s Secret Sharing

Principle. Shamir’s secret sharing is traditionally used to share a single element of the underlying field, but
it can be extended to share several elements simultaneously. To share v1, v2, . . . , vu ∈ F, we can sample ℓ
random elements r1, . . . , rℓ of F and build the polynomial P of degree ℓ + u − 1 such that, given distinct
fixed field elements e1, . . . , eu+ℓ,

P (e1) = v1
P (e2) = v2

...
P (eu) = vu

and

P (eu+1) = r1

...
P (eu+ℓ) = rℓ

The shares are then defined as evaluations of P on fixed points of F\{e1, . . . , eu}. Revealing at most ℓ shares
does not leak any information about the shared values v1, . . . , vu, while one needs at least ℓ + u shares to
reconstruct all of them. In other words, this is an (ℓ, ℓ + u,N)-quasi-threshold linear secret sharing scheme
for the tuple (v1, . . . , vu). Thus, while applying such a sharing to our context, the soundness error is given
by (see Theorem 3) (

ℓ+u−1
ℓ

)(
N
ℓ

) + p · ℓ

ℓ+ u
·
(
N − ℓ
u

)
.

When running an MPC protocol on such batch sharing, the operations are simultaneously performed on all
the shared secrets v1, . . . , vu. It means that we can batch the proof of knowledge of several witnesses which
have the same verification circuit (i.e. the same functions φj in our MPC model – see Protocol 2). Using this
strategy, the soundness error is slightly larger, but we can save a lot of communication by using the same
sharing for several witnesses.

Specifically, the proof size while batching u witnesses is impacted as follows. The parties’ input shares
are not more expensive, but to open the communication, the prover now needs to send u field elements by
broadcasting (instead of a single one). Thus the communication cost for τ executions is given by

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+τ · (ℓ · (inputs+ rtapes)︸ ︷︷ ︸
{JwKi,Jβ1Ki,...,JβtKi}i∈I

+u · comm︸ ︷︷ ︸
α1,...,αt

+2λ · t · ℓ · log2
N

ℓ︸ ︷︷ ︸
auth1,...,autht

).

Unfortunately, the scope of application of this batching technique is limited. In particular, while we can
multiply the batched shared secrets by the same scalar, with

J

 γ · v1
...

γ · vu

K := γ · J

 v1
...
vu

K

26

for some γ ∈ F, we cannot compute

J

 γ1 · v1
...

γu · vu

K from J

 v1
...
vu

K

for distinct scalars γ1, . . . , γu (whenever at least two scalars are distinct). This restriction implies that the
scalar factors used in the verification circuit must be independent of the different witnesses which are batched
together. More precisely, it implies that the functions φj in our MPC model (see Protocol 2) must be of the
form

φj(εi)i≤j ,(αi)i<j

(
·
)

= φ̄j(εi)i≤j

(
·
)︸ ︷︷ ︸

Linear function with

εi-dependent coefficients

+ bj(εi)i≤j ,(αi)i<j︸ ︷︷ ︸
Constant offset which

depends on the εi’s and αi’s

This restriction prevents the use of this batching strategy for several MPCitH protocols. For example, all the
protocols using the multiplication checking protocol from [BN20] as a subroutine cannot use this batching
strategy. To the best of our knowledge, the only protocols in the current state of the art which support this
batching strategy are Banquet [BDK+21] and Limbo [DOT21].

Batching strategies. In what follows, we propose three strategies to batch MPCitH proofs relying on the
same verification circuit:

Naive strategy: The naive way to batch u MPCitH proofs is to emulate u independent instances of MPC
protocol, one for each input witness. Compared to sending u independent proofs, one can save com-
munication by using the same seed trees and the same commitments for the u instances. This strategy
can be applied for standard MPCitH schemes based on additive sharing as well as for our framework of
threshold LSSS-based MPCitH. When using additive sharings, the main drawback of this strategy is that
the prover and the verifier need to emulate the party computation a large number of times, i.e. N times
(or N − 1 times for the verifier) per iteration and per statement. When batching u ≥ 25 statements with
N = 256, the prover and the verifier must emulate more than 100 000 parties to achieve a security of 128
bits. When using a low-threshold LSSS, the emulation cost is much cheaper, but the proof transcript
is larger. While batching u statements, the emulation cost and the soundness error are given by the
following table:

Emulations Soundness Error
Prover τ · (ℓ+ 1) · u 1

(Nℓ)
+ p · (N−ℓ)·ℓ

ℓ+1Verifier τ · ℓ · u

SSS-based strategy: We can use the batching strategy based on Shamir’s secret sharing (SSS) described
above. Instead of having u independent input sharings (one per witness), we have a single input sharing
batching the u witnesses. The number of MPC emulations is lower than for the naive strategy. The
proof size is also smaller and (mostly) below that of the standard setting for small u, but it grows
exponentially when considering a small field F. Each batched statement consumes one evaluation point
(in F), the numberN of parties is hence limited byN ≤ |F|+1−u. Because of this limitation together with
the security loss due to the use of a quasi-threshold sharing scheme, the soundness error of this batched
protocol degrades rapidly as u grows. While batching u statements using Shamir’s secret sharings, the
emulation cost and the soundness error are given by the following table:

Emulations Soundness Error
Prover τ · (ℓ+ u) (ℓ+u−1

ℓ)
(Nℓ)

+ p · ℓ
ℓ+u ·

(
N−ℓ
u

)
Verifier τ · ℓ

27

Hybrid strategy: In the previous strategy, the proof size is convex w.r.t. the number u of batched proofs
and, for small some u, the curve slope is flatter than the slope in the additive case (see Figure 1 from
Section 6 for illustration). It means that using a hybrid approach can achieve smaller proof sizes (as
well as better performances) than with the two above strategies. Specifically, instead of having one
input sharing encoding the u witnesses (one per batched statement) and a single emulation of the MPC
protocol, we can use ν input sharings each of them encoding u

ν witnesses and have then ν emulations of
the MPC protocol. Using this hybrid strategy, the emulation cost and the soundness error are given by
the following table:

Emulations Soundness Error
Prover τ · (ℓ+ u

ν) · ν (ℓ+u/ν−1
ℓ)

(Nℓ)
+ p · ℓ

ℓ+u/ν ·
(
N−ℓ
u/ν

)
Verifier τ · ℓ · ν

Section 6.2 presents some application results for these batching strategies. In particular Figure 1 compares
the three strategies for batched proofs of the SDitH scheme [FJR22].

Remark 5. In our analysis, we use the number of emulated parties as an indicator of the computational
performance. As explained in Section 4, we would also need to take into account the computation cost for
computing and committing the input sharings (and hints’ sharings) which is not negligible, but this cost is
hard to estimate without a concrete implementation. We yet remind that the latter cost only impacts the
prover and not the verifier. The verification time is soundly predicted by the number of party emulations.

6 Applications

In the past few years, many proof systems relying on the MPC-in-the-Head paradigm have been published.
Table 4 provides a tentatively exhaustive list of these schemes while indicating for each scheme:

– the base field (or ring) of the function computed by the underlying MPC protocol,
– whether the underlying MPC protocol fits our general model (see Section 3.1),
– the hard problem (or one-way function) for which the witness knowledge is proved.

In column Base Ring, the notation “F (K)” means that the function computed by the underlying MPC
protocol is composed of F-linear functions and multiplications over K. For example, the schemes for AES
use F2-linear functions and F256-multiplications.

Applying our framework with an arbitrary (low-)threshold linear secret sharing scheme instead of an
additive sharing scheme is possible whenever

– the underlying MPC protocol fits the model introduced in Section 3.1,
– the underlying MPC protocol is defined over a field (and not only a ring),
– this base field is large enough (since the number of parties N is limited by the size of the field).

Because of this last condition, all the proof systems for Boolean circuits and/or one-way functions with F2 op-
erations (e.g. AES, Rain, SDitH over F2) do not support our framework of MPCitH based on (low-)threshold
LSSS. Same for the scheme recently proposed in [FMRV22] and which achieves short communication using
secret sharing over the integers: this idea is not compatible with our approach.

In the following, we present two applications of our strategy with Shamir’s secret sharing as threshold
LSSS:

– we first apply our general strategy to the SDitH signature scheme [FJR22] to obtain a new variant with
faster signing and verification times;

– we then apply our batching technique (see Section 5.3) to the SDitH scheme (batch proofs for syndrome
decoding) and to the Limbo proof system [DOT21] (batched proofs for general arithmetic circuits).

28

S
ch

e
m
e
N
a
m
e

Y
e
a
r

B
a
se

R
in
g

M
o
d
e
l
#
R
o
u
n
d
s

H
e
lp

e
r

H
a
rd

P
ro

b
le
m

S
ig
n
a
tu

re
S
iz
e

O
r
ig

in
a
l

N
o
r
m

a
li
z
e
d

Z
K
B
o
o
[G

M
O
1
6
]

2
0
1
6

A
n
y
ri
n
g

✗
3

✗
A
n
y
(2
,3
)-
d
ec
o
m
p
o
si
ti
o
n
ci
rc
u
it

-
-

Z
K
B
+
+

[C
D
G

+
1
7
]

2
0
1
7

A
n
y
ri
n
g

✗
3

✗
-

-

L
ig
er
o
[A

H
IV

1
7
]

2
0
1
7

A
n
y
fi
el
d

✗
5

✗

A
n
y
a
ri
th
m
et
ic

ci
rc
u
it
C

(a
d
d
it
io
n
s
a
n
d
m
u
lt
ip
li
ca
ti
o
n
s)

-
-

L
ig
er
o
+
+

[B
F
H

+
2
0
]

2
0
2
0

A
n
y
fi
el
d

✗
5

✗
-

-
K
K
W

[K
K
W

1
8
]

2
0
1
8

A
n
y
ri
n
g

✓
3
o
r
5

✓
-

-
B
N

[B
N
2
0
]

2
0
2
0

A
n
y
fi
el
d

✓
5

✗
-

-
L
im

b
o
[D

O
T
2
1
]

2
0
2
1

A
n
y
fi
el
d

✓
lo
g
|C
|

✗
-

-
B
N
+
+

[K
Z
2
2
]

2
0
2
1

A
n
y
fi
el
d

✓
5

✗
-

-
H
el
iu
m

[K
Z
2
2
]

2
0
2
1

A
n
y
fi
el
d

✓
7

✗
-

-

P
ic
n
ic
1
[C

D
G

+
1
7
]

2
0
1
6

F 2
✗

3
✗

L
ow

M
C

(p
a
rt
ia
l)

3
2
.1

-
P
ic
n
ic
2
[K

K
W

1
8
]

2
0
1
8

F 2
✓

3
✓

1
2
.1

1
2
.1
−

1
5
.4

P
ic
n
ic
3
[K

Z
2
0
b
]

2
0
1
9

F 2
✓

3
✓

L
ow

M
C

(f
u
ll
)

1
2
.3

1
1
.1
−

1
3
.7

H
el
iu
m
+
L
ow

M
C

[K
Z
2
2
]

2
0
2
2

F 2
(F

8
)

✓
7

✗
5
.4
−

1
2
.1

6
.4
−

9
.2

B
B
Q

[D
D
O
S
1
9
]

2
0
2
0

F 2
(F

2
5
6
)

✓
3

✓

A
E
S

3
0
.9

3
1
.8
−

4
8
.6

B
a
n
q
u
et

[B
D
K

+
2
1
]

2
0
2
1

F 2
(F

2
5
6
)

✓
7

✗
1
3
.0
−

1
9
.3

1
3
.0
−

1
7
.1

L
im

b
o
-S
ig
n
[D

O
T
2
1
]

2
0
2
1

F 2
(F

2
5
6
)

✓
1
3

✗
1
4
.2
−

1
7
.9

1
4
.2
−

1
7
.9

H
el
iu
m
+
A
E
S
[K

Z
2
2
]

2
0
2
2

F 2
(F

2
5
6
)

✓
7

✗
9
.7
−

1
7
.2

9
.7
−

1
4
.4

L
eg
R
o
a
st

[B
D
2
0
]

2
0
2
0

F 2
1
2
7
−
1

✓
7

✗
L
eg
en

d
re

P
R
F

1
2
.2
−

1
6
.0

1
2
.2
−

1
4
.8

P
o
rc
R
o
a
st

[B
D
2
0
]

2
0
2
0

F 2
1
2
7
−
1

✓
7

✗
H
ig
h
er
-P

ow
er

R
es
id
u
e
C
h
a
ra
ct
er
s

6
.3
−

8
.6

6
.3
−

7
.8

R
a
in
ie
r-
1
2
8
[D

K
R

+
2
1
]

2
0
2
1

F 2
(F

1
2
8
)

✓
5

✗
R
a
in

[D
K
R

+
2
1
]

5
.1
−

9
.4

5
.9
−

8
.1

B
N
+
+
R
a
in

[K
Z
2
2
]

2
0
2
2

F 2
(F

1
2
8
)

✓
5

✗
4
.4
−

5
.8

4
.9
−

6
.4

S
D
it
H

[F
J
R
2
2
]

2
0
2
2

F 2
✓

5
✗

S
y
n
d
ro
m
e
D
ec
o
d
in
g
ov
er

F 2
1
1
.8
−

1
7
.0

1
0
.9
−

1
5
.6

2
0
2
2

F 2
5
6

✓
5

✗
S
y
n
d
ro
m
e
D
ec
o
d
in
g
ov
er

F 2
5
6

8
.3
−

1
1
.5

8
.3
−

1
1
.5

[F
M
R
V
2
2
]

2
0
2
2

Z
✓

5
✓
/
✗

S
u
b
se
t-
S
u
m

P
ro
b
le
m

2
1
.1
−

3
3
.2

2
4
.3
−

3
4
.8

2
0
2
2

Z
✓

5
✗

B
H
H

P
R
F

[B
H
H
0
1
]

4
.8

4
.8
−

6
.5

T
ab

le
4:

G
en
er
ic

M
P
C
-i
n
-t
h
e-
H
ea
d

T
ec
h
n
iq
u
es

a
n
d

S
ig
n
a
tu
re

S
ch
em

es
fr
o
m

M
P
C
-i
n
-t
h
e-
H
ea
d

T
ec
h
n
iq
u
es
.
A
ll

th
e
si
g
n
a
tu
re

si
ze
s
a
re

in
k
il
ob

y
te
s
an

d
ta
rg
et

a
se
cu
ri
ty

of
12
8
b
it
s.

T
h
e
o
ri
gi
n
a
l
si
g
n
a
tu
re

si
ze
s
co
rr
es
p
o
n
d
to

va
lu
es

g
iv
en

b
y
th
e
u
n
d
er
ly
in
g
a
rt
ic
le
s.

T
h
e
n
o
rm

a
li
ze
d

si
gn

at
u
re

si
ze
s
ar
e
gi
ve
n
fo
r
a
ra
n
ge

of
8
−
3
2
p
a
rt
ie
s
(i
n
th
e
u
n
d
er
ly
in
g
M
P
C

p
ro
to
co
l)
w
h
en

th
er
e
is
a
p
re
p
ro
ce
ss
in
g
p
h
a
se

a
n
d
fo
r
a
ra
n
g
e
o
f

32
−
25
6
p
ar
ti
es

ot
h
er
w
is
e.

T
h
e
co
lu
m
n
“M

o
d
el
”
in
d
ic
a
te
s
w
h
et
h
er

th
e
u
n
d
er
ly
in
g
M
P
C

p
ro
to
co
l
fi
ts

o
u
r
g
en
er
a
l
m
o
d
el
.

29

6.1 Application to the SDitH Signature Scheme

We can transform the zero-knowledge proofs of knowledge described in Section 4 into signature schemes
using the Fiat-Shamir’s heuristic [FS87]. We describe the signature scheme obtained when following this
approach for the 5-round case (i.e. for t = 1 iteration in the MPC protocol) in Appendix F and further prove
that this scheme achieves EUF-CMA security in the random oracle model.

In the following, we focus on the signature scheme obtained when applying this approach to the SDitH
protocol (SDitH for “Syndrome Decoding in the Head”) [FJR22].

The security of the SDitH signature scheme relies on the hardness of solving a syndrome decoding
(SD) problem. This problem is one of the oldest problems in code-based cryptography: given a matrix

H ∈ F(m−k)×m
SD and a vector y ∈ Fm−k

SD , it consists to find a vector x ∈ FmSD such that y = Hx and such
that x has a given Hamming weight w (or a Hamming weight lower than w), i.e. has (at most) w non-zero
coordinates. The authors of the SDitH scheme describe an MPC protocol that checks whether a vector x is
a correct witness of a public SD instance (H, y), and convert it into a (non-interactive) zero-knowledge proof
using the MPC-in-the-Head paradigm. Using the same notations as in [FJR22], the MPC protocol involves
three fields FSD ⊆ Fpoly ⊆ Fpoints which are extensions of each other and such that FSD is the base field
of the SD instance. This MPC protocol fits the model introduced in Section 3.1 (see Protocol 2), with the
number t of loop iterations equal to 1. Using the same notations as in Section 4, the proof size involves the
following quantities:

– inputs = k · log2 |FSD|+ 2w · log2 |Fpoly|+ t′ · log2 |Fpoints|,
– unif = 2 · d · t′ · log2 |Fpoints|,
– comm = 2 · d · t′ · log2 |Fpoints|,

where (d, t′) are additional parameters (see [FJR22] for more details). The signature size (in bits), including
a 2λ-bit salt, is then given by

Size = 6λ+ τ ·
(
inputs+ comm+ λ · log2(N) + 2λ

)
where N is the number of MPC parties, τ the number of executions and λ is the security level. Its security
is given by the attack of [KZ20a] and is equal to

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+Nτ2

}
where p is the false positive rate of the used MPC protocol satisfying

p ≤
t′∑
i=0

maxℓ≤(m+w)/d−1

{(
ℓ
i

)(|Fpoints|−ℓ
t′−i

)}
(|Fpoints|

t′

) (
1

|Fpoints|

)t′−i
.

The authors of the SDitH scheme propose several instantiations of their scheme: some of them with FSD := F2

and the others with FSD := F256, some of them aiming for short signatures and the others aiming for fast
signature/verification time. We apply the ideas of Section 4 to this scheme using Shamir’s secret sharing.
Since the number N of parties is limited by the field size, N ≤ |FSD|,5 we consider the instance with
FSD := F256 as base field. As explained previously, our MPCitH strategy with (ℓ+1, N)-threshold LSSS does
not make the signature smaller but substantially improves the signing and verification times. According to
Section 4.4, we obtain signatures of size (in bits):

Size = 6λ+ τ ·
(
ℓ · (inputs+ unif) + comm+ 2λ · ℓ · log2

N

ℓ

)
5 The Shamir’s secret sharing over a field F can have at most |F|−1 shares (one share by non-zero evaluation point),
but we can have an additional share by defining it as the leading coefficient of the underlying polynomial (i.e.
using the point at infinity as evaluation point).

30

In [FJR22], the authors choose p a bit lower than 2−64 which implies that the number of executions τ just
needs to be increased by one while turning to the non-interactive case. Here, by taking ℓ > 1, we decrease
τ and each execution has more impact on the communication cost. Therefore we take p negligible in order
to avoid to increase τ while turning to the non-interactive setting. At the same time, it means that we can
apply an idea from Limbo [DOT21] which consists in using the same first challenge for all parallel executions
of the underlying MPC protocol.

As explained in Section 4.3 and formally analyzed in our proof of soundness (see Appendix D), in case
of a non-negligible false positive rate, an adversary can try to forge a proof of knowledge by committing
an invalid sharing of the witness (which is not possible in the case of additive sharing). This ability is also
exploitable in the non-interactive setting while considering the attack of [KZ20a]. In order to thwart this
type of attack on our variant of the SDitH scheme, we make the conservative choice of taking a false positive
rate p satisfying

τ ·
(

N

ℓ+ 1

)
· p ≤ 2−128 .

This way, the probability that a single witness encoded by a subset of ℓ+1 shares among N leads to a false
positive (in at least one of the τ iterations) is upper bounded by 2−128 so that any attack strategy which
consists to guess (even partially) the first challenge shall cost at least 2128 operations. Then, we simply need

to take τ such that
(
N
ℓ

)τ ≥ 2128 in order to achieve a 128-bit security in the non-interactive setting. We
propose four possible instances of our scheme for ℓ ∈ {1, 3, 7, 12} and N = 256 (the maximal number of
parties).

We have implemented our variant of the SDitH signature scheme in C. In our implementation, the pseudo-
randomness is generated using AES in counter mode and the hash function is instantiated with SHAKE.
We have benchmarked our implementation on a 3.8 GHz Intel Core i7 CPU with support of AVX2 and AES
instructions. All the reported timings were measured on this CPU while disabling Intel Turbo Boost. Instead
of emulating ℓ+1 parties as described in Protocol 6, the implementation runs the MPC protocol directly on
the coefficients of the degree-ℓ polynomials of the Shamir’s secret sharing, thus avoiding costly polynomial
evaluations and interpolations.

Table 5 summarizes the obtained performances for the different sets of parameters. We observe that the
verification time is significantly smaller –between one and two orders of magnitude– than for the original
scheme. This was expected since the verifier only emulates the views of ℓ parties instead of N − 1. The gain
in signing time is more mitigated: even if the signer emulates only few parties, she must still commit the
input shares of N parties. Nevertheless, the number of executions τ decreases while increasing the threshold
ℓ, which further improves the signing time. The resulting signatures are slightly larger than for the original
scheme with the same number of parties (the short version), but our scheme gains a factor 10 in signing and
verification time. Compared to the fast version of the original signature scheme (which uses a lower number
of parties N = 32) and for similar signature size, our scheme gains a factor 3 in signing time and a factor 10
in verification time.

Table 5 further compares our scheme with recent MPCitH schemes based on AES (both AES and SD
for random linear codes being deemed as a conservative assumption) as well as with SPHINCS+ [ABB+22]
as a baseline conservative scheme. We can observe that our scheme outperforms AES-based candidates for
comparable signature sizes (around 10 KB). In particular, compared to Helium+AES [KZ22], signing is
5 times faster with our scheme while verification is 40 times faster. Fast versions of those schemes have
signatures about twice larger, while being still slower than ours in signing and verification. Compared to
SPHINCS+, our scheme achieves slightly better verification time and much better trade-offs for signature
size vs. signing time. Some other MPCitH signature schemes reported in Table 4 achieve smaller signature
sizes (down to 5KB) but they are based on less conservative assumptions (LowMC, Rain, BHH PRF). Yet
none of these schemes achieve fast verification as SPHINCS+ or our scheme.

Let us remark that, as in [FJR22], we did not investigate software optimizations (like vectorization or
bitslicing), so there is room for improvement in the reported performances.

31

Scheme N τ ℓ t′ |Fpoints| log2 p |sgn| tsgn tverif

Our scheme

256 16 1 3 264 −167 10.47 KB 7.1 ms 0.46 ms
256 6 3 3 264 −167 9.97 KB 3.2 ms 0.38 ms
256 3 7 4 264 −222 11.10 KB 2.5 ms 0.47 ms
256 2 12 4 264 −222 11.99 KB 2.2 ms 0.51 ms

[FJR22] - Var3f 32 27 - 5 224 −78 11.5 KB 6.4 ms 5.9 ms
[FJR22] - Var3s 256 17 - 5 224 −78 8.26 KB 30 ms 27 ms

Banquet (AES)
16 41 - 1 232 (−32,−27) 19.3 KB 6.4 ms 4.9 ms
255 21 - 1 248 (−48,−43) 13.0 KB 44 ms 40 ms

Limbo-Sign (AES)
16 40 - - 248 −40 21.0 KB 2.7 ms 2.0 ms
255 24 - - 248 −40 14.2 KB 29 ms 27 ms

Helium+AES
17 31 - 1 2144 (−136,−144) 17.2 KB 6.4 ms 5.8 ms
256 16 - 1 2144 (−136,−144) 9.7 KB 16 ms 16 ms

SPHINCS+-128f - - - - - - 16.7 KB 14 ms 1.7 ms
SPHINCS+-128s - - - - - - 7.7 KB 239 ms 0.7 ms

Table 5: Parameters, performances and comparison. The parameters for [FJR22] and our scheme are
(m, k,w) = (256, 128, 80) and FSD = Fpoly = F256. Timings for [FJR22] and our scheme have been bench-
marked on a 3.8 Ghz Intel Core i7. Timings for Banquet, Helium and SPHINCS+ have been benchmarked
on a 3.6 GHz Intel Xeon W-2133 CPU ([BDK+21],[KZ22]). Timings for Limbo have been benchmarked on
a 3.1 GHz Intel i9-9900 CPU ([DOT21]).

6.2 Application of the Batching Strategy

Application to SDitH. As the first application of the batching strategy described in Section 5.3, we show
how to batch proofs of knowledge for the syndrome decoding problem. Specifically, we consider a context

where, from a public parity-check matrix H ∈ F(m−k)×m
SD and vectors y1, . . . , yu ∈ Fm−k

SD , one wants to batch
proofs of knowledge for u syndromes x1, . . . , xu ∈ FmSD such that

∀i ∈ [u], yi = H · xi .

For this purpose, we apply our batching strategy to the SDitH scheme [FJR22]. However, in its original
version, this scheme is not compatible with the application of batched Shamir’s secret sharing (on which rely
our batching strategy) since it involves multiplications by witness-dependent scalars. Those appear in the
final product verification based on the [BN20] protocol. To overcome this issue, we propose a tweak of the
SDitH scheme to verify the final multiplication triple without relying on [BN20]. Specifically, to prove that
three sharings JaK, JbK and JcK verify c = a · b (a, b, c ∈ Fpoints), the parties proceed as follows:

– they get as hints
Jr1K where r1 ← Fpoints

Jr2K where r2 ← Fpoints

Jh1K where h1 = r1 · b+ r2 · a
Jh2K where h2 = r1 · r2,

– they get a random point ξ ← Fpoints\{0},
– they locally compute and broadcast Jv1K = ξ · Jr1K + JaK

Jv2K = ξ · Jr2K + JbK
Jv3K = ξ2 · Jh2K + ξ · Jh1K + JcK,

– they output Accept if v1 · v2 = v3, Reject otherwise.

If c = a · b and the hints are correctly computed, then the polynomial

P (X) := (r1X + a) · (r2X + b)− (h2X
2 + h1X + c)

32

equals 0 so that v1 · v2 − v3 = P (ξ) = 0 and the parties accept. If c ̸= a · b, then P (X) is different from zero.
Thus according to the Schwartz-Zippel Lemma, the probability that the parties accept is at most 2

|Fpoints|−1

(for any adversarial choice of the hints).
Replacing BN20 with the above protocol in the SDitH scheme increases the number of rounds in the

underlying zero-knowledge protocol from 5 to 7. Indeed the challenge ξ cannot be sent at the same time as
the evaluation point anymore, since Jh1K and Jh2K must be committed before receiving ξ. We then restrict
our variant of the SDitH protocol to a single evaluation point (t′ = 1) to ease the analysis of the [KZ20a]
attack while turning to the non-interactive setting. Using the same notations as Section 4, the new proof
size involves the following quantities:

– inputs = k · log2 |FSD|+ 2w · log2 |Fpoly|+ 2 · log2 |Fpoints|︸ ︷︷ ︸
Jh1K,Jh2K

,

– unif = 2 · log2 |Fpoints|︸ ︷︷ ︸
Jr1K,Jr2K

,

– comm = 2 · log2 |Fpoints|︸ ︷︷ ︸
Jv1K,Jv2K

,

We apply the three batching strategies described in Section 5.3 for the syndrome decoding parameters
(m, k,w) = (256, 128, 80) and using the field extension Fpoints := F2192 . Figure 1 illustrates the resulting
performance in terms of proof size and number of party emulations. Batching with additive sharings (using
the naive strategy) with N = 256 is represented by the dashed line for which the achieved amortized cost
per statement is around 6 KB.

Naive strategy: When using the naive strategy with low-threshold Shamir’s secret sharing (for N = 256),
the proof size is a bit larger than for the additive case, but the number of emulations is divided by more
than 100.

SSS-based strategy: When the number u of batched proofs is small enough (u ≤ 80), this strategy out-
performs the additive case in terms of proof size. But it grows exponentially as u increases (slower when
ℓ is larger). As explained in Section 5.3, this behavior is amplified when the underlying field is small.
Here the number N of parties is limited by N ≤ |F256| + 1 − u = 257 − u. For instance, when u = 110
and ℓ = 2, the soundness error ϵ is approximately 0.57 with N maximal (N = 147), requiring a high
number of executions τ ≥ 150.

Hybrid strategy: As expected, for such a context with limited N , the hybrid approach gives the best
results. We get an amortized proof size of around 2.3 KB when ℓ = 1 and around 0.83 KB when ℓ = 8.

Application to Limbo. We now apply our batching strategy to Limbo [DOT21], a proof system for general
arithmetic circuits. In Limbo, sharings are multiplied by scalars in three different contexts:

– After sampling a random challenge {ri}mi=1, a set of multiplicative triples (JxiK, JyiK, JziK)mi=1 is verified
as an inner product ⟨a, b⟩ = c where

JaK =

 r1 · Jx1K
...

rm · JxmK

 , JbK =

 Jy1K
...

JymK

 , JcK =
m∑
i=1

ri · JziK.

If ⟨a, b⟩ = c for a random choice of {ri}mi=1, then we can deduce that xi · yi = zi for every i ∈ [m] with
high probability.6

6 In Limbo, the challenge is of the form {ri}mi=1 := {ri}mi=1 for a random r ∈ F.

33

(a) Naive strategy: proof size (b) Naive strategy: # party emul.

(c) SSS-based strategy: proof size (d) SSS-based strategy: # party emul.

(e) Hybrid strategy: proof size (f) Hybrid strategy: # party emul.

Fig. 1: Performances of the three batching strategies applied to our tweaked SDitH scheme.

34

– To interpolate a polynomial f of degree d such that

JfK(ei) = JxiK for i ∈ {0, . . . , d}

where e0, . . . , ed are fixed distinct public points. With the Lagrange interpolation formula, we get that

JfK(X) =

d∑
i=0

JxiK ·
m∏

j=0,j ̸=i

X − ej
ei − ej︸ ︷︷ ︸

ℓi(X)

where {ℓi(X)}i are public constant polynomials.

– To evaluate a polynomial JfK(X) :=
∑d
i=0JaiKX

i in a challenge point s:

Jf(s)K =
d∑
i=0

JaiK · si.

In all those three contexts, the scalars which multiply the shares are constant or derived from random
challenges. In particular, they are witness-independent which makes our batching strategy applicable (see
Section 5.3 for details).

Let us briefly explain the high-level idea of the MPC protocol underlying Limbo. This protocol aims to
check a list of m multiplicative triples. To proceed, it first converts the list into an inner product of dimension
m (as recalled above), and then repeats a compression step that reduces the inner product dimension until
reaching a small enough instance. Given a compression parameter k, the compression step works as follows
(the process is illustrated in Figure 2):

1. it splits the current inner product into k smaller inner products,
2. it compresses the k inner products into a single inner product. Let us consider the k values v(1), ..., v(k)

of these inner products in the same position. To compress these k values into a single one v, it builds
the polynomial P of degree k − 1 such that

∀i ∈ {1, . . . , k}, P (i) = v(i)

and it computes v as P (ξ) where ξ is a random verifier challenge.

Let us consider the case where Limbo will always finish on a final inner product of dimension 1, after
ρ := ⌈logk(m)⌉ compression steps. Using the same notations as in Section 4, the proof size involves the
following quantities:

– inputs = (|w|+ |C|) · log2 F︸ ︷︷ ︸
Protocol inputs

+ ρ · (k − 1) · log2 G︸ ︷︷ ︸
Splitting cost

+(ρ · (k − 1) + 2) · log2 G︸ ︷︷ ︸
Compression cost

,

– unif = 2 · log2 G,
– comm = 2 · log2 G,

where |w| is the size of the witness (i.e. the circuit input), |C| is the number of multiplications in the circuit,
F is the base field of the circuit, G is a field extension of F and k is the compression factor (see [DOT21] for
more details). Limbo’s proof size (in bits) is then given by:

Size = (ρ+ 2) · 2λ+ τ ·
(
inputs+ comm+ λ · log2(N) + 2λ

)
where N is the number of MPC parties, τ is the number of executions and λ is the security level. Limbo’s
soundness error is given by: (

1

N
+ pk · (1−

1

N
)

)τ
35

〈

x
(1)
1

...

x
(1)
ℓ

...

x
(k)
1

...

x
(k)
ℓ

,

y
(1)
1

...

y
(1)
ℓ

...

y
(k)
1

...

y
(k)
ℓ

〉
= z(1) + . . .+ z(k)

Step 1

wwww� Splitting

〈
x
(1)
1

...

x
(1)
ℓ

 ,

y
(1)
1

...

y
(1)
ℓ

〉

= z(1), . . . ,

〈
x
(k)
1

...

x
(k)
ℓ

 ,

y
(k)
1

...

y
(k)
ℓ

〉

= z(k)

Step 2

wwww� Compression

〈x1
...
xℓ

 ,

 y1
...
yℓ

〉
= z

where v =
∑k
i=1 v

(i) ·
∏k
j=1,j ̸=i

ξ−j
i−j

with xu, yu or z for v
and with ξ a verifier challenge.

Fig. 2: Limbo’s compression step - from dimension kℓ to dimension ℓ

where pk is the false positive rate of the underlying MPC protocol (which depends on k) – see [DOT21,
Proposition 5].

Let us assume that we want to batch u proofs for an arbitrary arithmetic circuit C defined over a base
field F. We use the Limbo proof system in interactive mode targeting a security of 40 bits, which is one of the
considered use-cases of the original paper [DOT21]. If F is large enough, we can apply our batching strategy
described in Section 5.3. Tables 6 and 7 summarize the achieved performances for the base fields F28 and
F232 and for circuit sizes (|w|+ |C| where |C| is the number of multiplications in C) 28 and 216. While for F28

we are limited in the number of parties since N ≤ |F|+1−u, this is not an issue for F232 . From these tables,
we can observe that our batching strategy drastically reduces the amortized cost in terms of proof size and
number of emulated parties (particularly for the verifier). Considering a batching of u = 100 statements, the
amortized proof size is more than 10 times smaller than the standard version in all the considered settings
and this ratio is closer to 1/20 for the larger circuit or field.

Acknowledgments. The authors would like to thank Antoine Joux for fruitful discussions related to this
work.

36

u ℓ
|w|+ |C| = 28 |w|+ |C| = 216

N u/ν τ size size/u #P #V N u/ν τ size size/u #P #V

1
ADD 256 - 6 5.5 5.55 1536 1530 256 - 6 389.4 389.42 1536 1530
1 256 1 6 9 9.22 12 6 256 1 6 398 397.59 12 6

100
1 223 34 16 61 0.61 1680 48 207 50 21 2762 27.62 2142 42
4 223 34 4 58 0.58 456 48 223 34 4 3151 31.51 456 48

10000
1 225 32 15 5865 0.59 154935 4695 203 54 22 269290 26.93 225060 4092
4 210 47 5 5434 0.54 54315 4260 200 57 6 277894 27.79 64416 4224

Table 6: Performances of batched Limbo proofs for arithmetic circuits on F28 in the interactive setting (40-
bit of security). The compression factor k of Limbo is 16 and the extension field G is F264 when ℓ = 1 and
F296 when ℓ = 4. All the sizes are given in kilobytes. #P and #V correspond respectively to the number of
emulated parties for the prover and the verifier. The first row (ℓ = add) is the baseline Limbo scheme with
additive sharing.

u ℓ
|w|+ |C| = 28 |w|+ |C| = 216

N u/ν τ size size/u #P #V N u/ν τ size size/u #P #V

1
ADD 256 - 6 10.0 10.03 1536 1530 256 - 6 1536.9 1536.92 1536 1530
1 256 1 6 14 13.72 12 6 256 1 6 1550 1549.59 12 6

100
1 256 50 18 96 0.96 1836 36 256 100 31 8053 80.53 3131 31
4 256 100 8 91 0.91 832 32 256 100 8 8284 82.84 832 32

10000
1 256 55 19 8170 0.82 193648 3458 256 100 31 801486 80.15 313100 3100
4 256 74 6 7130 0.71 63648 3264 256 88 7 823455 82.35 73416 3192

Table 7: Performances of batched Limbo proofs for arithmetic circuits on F232 in the interactive setting
(40-bit of security). The compression factor k of Limbo is 16 and the extension field G is F264 when ℓ = 1
and F296 when ℓ = 4. All the sizes are given in kilobytes. #P and #V correspond respectively to the number
of emulated parties for the prover and the verifier. The first row (ℓ = add) is the baseline Limbo scheme
with additive sharing.

References

ABB+22. Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange,
Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter
Schwabe, and Bas Westerbaan. SPHINCS+ – Submission to the 3rd round of the NIST post-quantum
project. v3.1, 2022.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In ACM CCS 2017, pages 2087–2104. ACM
Press, October / November 2017.

BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no trusted
setup. In CRYPTO 2019, Part III, volume 11694 of LNCS, pages 701–732. Springer, Heidelberg, August
2019.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT 2019, Part I, volume 11476
of LNCS, pages 103–128. Springer, Heidelberg, May 2019.

BD20. Ward Beullens and Cyprien Delpech de Saint Guilhem. LegRoast: Efficient post-quantum signatures from
the Legendre PRF. In Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020,
pages 130–150. Springer, Heidelberg, 2020.

BDK+21. Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and
Greg Zaverucha. Banquet: Short and fast signatures from AES. In PKC 2021, Part I, volume 12710 of
LNCS, pages 266–297. Springer, Heidelberg, May 2021.

Beu20. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes. In EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 183–211. Springer, Heidelberg, May 2020.

37

BFH+20. Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, Tiancheng
Xie, and Yupeng Zhang. Ligero++: A new optimized sublinear IOP. In ACM CCS 2020, pages 2025–2038.
ACM Press, November 2020.

BHH01. Dan Boneh, Shai Halevi, and Nick Howgrave-Graham. The modular inversion hidden number problem.
In ASIACRYPT 2001, volume 2248 of LNCS, pages 36–51. Springer, Heidelberg, December 2001.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and
their application to lattice-based cryptography. In PKC 2020, Part I, volume 12110 of LNCS, pages
495–526. Springer, Heidelberg, May 2020.

Bus52. K. A. Bush. Orthogonal Arrays of Index Unity. The Annals of Mathematical Statistics, 23(3):426 – 434,
1952.

CC06. Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-party compu-
tations over small fields. In CRYPTO 2006, volume 4117 of LNCS, pages 521–536. Springer, Heidelberg,
August 2006.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rech-
berger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In ACM CCS 2017, pages 1825–1842. ACM Press, October / November 2017.

CDN15. Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 2015.

DDOS19. Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart. BBQ:
Using AES in picnic signatures. In SAC 2019, volume 11959 of LNCS, pages 669–692. Springer, Heidelberg,
August 2019.

DKR+21. Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg Zaverucha.
Shorter signatures based on tailor-made minimalist symmetric-key crypto. Cryptology ePrint Archive,
Report 2021/692, 2021.

DOT21. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-
knowledge MPCitH-based arguments. In ACM CCS 2021, pages 3022–3036. ACM Press, November 2021.

EKR18. David Evans, Vladimir Kolesnikov, and Mike Rosulek. A Pragmatic Introduction to Secure Multi-Party
Computation. NOW Publishers, 2018.

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter signatures
from zero-knowledge proofs. In CRYPTO 2022, Part II, volume 13508 of LNCS, pages 541–572. Springer,
Heidelberg, August 2022.

FMRV22. Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien Vergnaud. Zero-knowledge protocols for the
subset sum problem from MPC-in-the-head with rejection. In ASIACRYPT 2022, Part II, volume 13792
of LNCS, pages 371–402. Springer, Heidelberg, December 2022.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for Boolean circuits.
In USENIX Security 2016, pages 1069–1083. USENIX Association, August 2016.

GSV21. Yaron Gvili, Sarah Scheffler, and Mayank Varia. Booligero: Improved sublinear zero knowledge proofs for
boolean circuits. FC, pages 476 – 496, 2021.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In 39th ACM STOC, pages 21–30. ACM Press, June 2007.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. In ACM CCS 2018, pages 525–537. ACM Press, October 2018.

KZ20a. Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass
identification schemes. In CANS 20, volume 12579 of LNCS, pages 3–22. Springer, Heidelberg, December
2020.

KZ20b. Daniel Kales and Greg Zaverucha. Improving the performance of the Picnic signature scheme. IACR
TCHES, 2020(4):154–188, 2020.

KZ21. Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum
Signatures. Preliminary Draft, October 29, 2021, 2021.

KZ22. Daniel Kales and Greg Zaverucha. Efficient lifting for shorter zero-knowledge proofs and post-quantum
signatures. Cryptology ePrint Archive, Report 2022/588, 2022.

MS10. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. 9th Edition. Discrete
Mathematics and its Applications. Elsevier Science, 1978, 2010.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, June 2000.

38

Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

Was08. Lawrence C. Washington. Elliptic Curves. Number Theory and Cryptography. 2nd Edition. Discrete
Mathematics and its Applications. Chapman & Hall/CRC Press, 2008.

39

– Supplementary Material –

A Technical Lemmas

In our proofs, we shall make use of the following lemmas:

Lemma 3 (Splitting Lemma [PS00]). Let X and Y be two finite sets, and let A ⊆ X × Y such that

Pr
[
(x, y) ∈ A | (x, y)← X × Y

]
≥ ε .

For any α ∈ [0, 1), let

B =
{
(x, y) ∈ X × Y

∣∣∣ Pr
[
(x, y′) ∈ A | y′ ← Y

]
≥ (1− α) · ε

}
.

We have:

1. Pr
[
(x, y) ∈ B | (x, y)← X × Y

]
≥ α · ε

2. Pr
[
(x, y) ∈ B | (x, y)← A

]
≥ α .

Proof. See [PS00] for the proof.

Lemma 4. Let E1, . . . , EM be arbitrary events. For i ∈ {1, . . . ,M} and a bit b ∈ {0, 1}, let us define

Abi :=

{
Ei if b = 1,
Ēi if b = 0.

We have those following relations, where wtH(x) denotes the Hamming weight of x (i.e. the number of
non-zero coordinates of x):

∑
x∈{0,1}M

Pr[Ax1
1 , A

x2
2 , . . . , A

xM

M] = 1

∑
x∈{0,1}M

wtH(x) · Pr[Ax1
1 , A

x2
2 , . . . , A

xM

M] = Pr[E1] + . . .+ Pr[EM]

Proof. The first equality comes from the fact the underlying events form a partition. The second equality
can be proved by induction on the integer M . The case M = 1 is trivial:

∑
x∈{0,1}

wtH(x) · Pr[Ax1
1] = 0 · Pr[Ē1] + 1 · Pr[E1] = Pr[E1]

40

Let assume the relation for a positive integer M . By noting for some x ∈ {0, 1}M Ax := {Ax1
1 , . . . , A

xM

M }, we
have ∑

x∈{0,1}M+1

wtH(x) · Pr[Ax1
1 , A

x2
2 , . . . , A

xM+1

M+1]

=
∑

x∈{0,1}M

wtH(x) · Pr[Ax, ĒM+1]

+
∑

x∈{0,1}M

(wtH(x) + 1) · Pr[Ax, EM+1]

=
∑

x∈{0,1}M

wtH(x) · (Pr[Ax, ĒM+1] + Pr[Ax, EM+1])

+
∑

x∈{0,1}M

Pr[Ax, EM+1]

=
∑

x∈{0,1}M

wtH(x) · Pr[Ax] + Pr[EM+1]

= (Pr[E1] + . . .+ Pr[EM]) + Pr[EM+1].

□

Lemma 5. Let us have c ≥ 0, e ≥ 1, d ≥ 0 such that c · (e− 1) ≥ d. Then, for all a ≥ 0,

c+ d

e
a ≤ ca+ d.

Proof.

ca+ d−
(
c+ d

e
a

)
= a

(
c− c+ d

e

)
+ d

=
a

e︸︷︷︸
≥0

(c(e− 1)− d)︸ ︷︷ ︸
≥0

≥ 0

B Lemmas for Threshold LSSS

Lemma 1. Let F be a finite field and let ℓ,N be integers such that 1 ≤ ℓ < N − 1. If an (ℓ+1, N)-threshold
LSSS exists for F then N ≤ |F| with the following exception: if F is a power of 2 and ℓ ∈ {2, |F| − 2} then
N ≤ |F|+ 1.

Proof. For s ∈ F and JsK an (N, ℓ+1)-threshold sharing of s, the concatenation of s and JsK forms an [n, k, d]
linear code of length n = N +1, dimension k = ℓ+1 and distance d = N − ℓ+1, which is maximum distance
separable (a.k.a. MDS code). We consider two cases:

1. if k ≥ |F| + 1 (meaning ℓ ≥ |F|), then by [Bus52], we either have n = k (meaning N = ℓ which is
impossible) or n = k + 1 (meaning N = ℓ+ 1 which is not considered in the lemma statement);

2. if k ≤ |F| (meaning ℓ ≤ |F| − 1), then the MDS conjecture [MS10] gives an upper bound to the code
length, which is n ≤ |F|+1 giving N ≤ |F|, except for |F| a power of 2 and k = 3 or k = |F|−1, in which
case n ≤ |F|+ 2, giving N ≤ |F|+ 1 whenever ℓ = 2 or ℓ = |F| − 2.

□

41

Lemma 2. Let (Share, Reconstruct) be an (ℓ + 1, N)-threshold LSSS. For every tuple v0 ∈ Vℓ+1
2 and every

subset J0 ⊆ [N] with |J0| = ℓ+ 1, there exists a unique sharing JsK ∈ VN2 such that JsKJ0 = v0 and such that

∀J s.t. |J | = ℓ+ 1,ReconstructJ(JsKJ) = s ,

where s := ReconstructJ0(v0). Moreover, there exists an efficient algorithm ExpandJ0 which returns this
unique sharing from JsKJ0 .

This lemma can be obtained from the equivalence between threshold linear secret sharing schemes and
interpolation codes [CDN15, Theorem 11.103]. For the sake of completeness, we propose below an alternative
simple proof.

Proof. Let s ∈ F and J0 ⊆ [N] with |J0| = ℓ+ 1. Consider two sharings Js1K, Js2K ∈ FN such that

Js1KJ0 = Js2KJ0

and such that

∀J s.t. |J | = ℓ+ 1,

{
ReconstructJ(Js1KJ) = s

ReconstructJ(Js2KJ) = s

Let us define ∆ = Js2K− Js1K. We have ∆J0 = 0 and by linearity

∀J s.t. |J | = ℓ+ 1,ReconstructJ(∆J) = 0.

Let us assume that there exists i∗ such that ∆i∗ ̸= 0. We will show that this leads to a contradiction.

Let us consider I ⊂ J0 such that |I| = ℓ. Let us further consider v1, v2 ∈ F such that v1 ̸= v2. By
the ℓ-privacy of the sharing, there exist random tapes r1, r2 ∈ R such that Jv1K := Share(v1; r1) satisfies
Jv1KI = Js1KI and Jv2K := Share(v2; r2) satisfies Jv2KI = Js2KI . Denoting ∆′ = Jv1K − Jv2K, we obtain
∆′
I = ∆I = 0. Then, by linearity of the sharing, we have

v1 − v2 = ReconstructI∪{i∗}
(
∆′
I∪{i∗}

)
= ReconstructI∪{i∗}

(
(∆′

i∗ ·∆−1
i∗) ·∆I∪{i∗}

)
= (∆′

i∗ ·∆−1
i∗) · Reconstruct

(
∆I∪{i∗}

)
= 0

Since, by definition v1−v2 ̸= 0, we get a contradiction. We deduce that ∆ = 0, which means that Js1K = Js2K.
Now that we have shown the unicity, let us (constructively) show the existence of the algorithm ExpandJ0 .

The function ReconstructJ is a linear application from F|J| to F, thus there exists a vector vJ ∈ (F∗)|J| such
that

ReconstructJ(·) = ⟨vJ , ·⟩.

(All the coefficients of vJ are non-zero since otherwise the privacy property would be broken.) On input
JsKJ0 , the algorithm ExpandJ0 then builds each share JsKi∗ as follows:

– it chooses a J ⊂ J0 ∪ {i∗} such that |J | = ℓ+ 1;

– it solves the linear equation ⟨vJ , JsKJ0∪{i∗}⟩ = s where JsKi∗ is the only unknown.

□

42

C Proof of Privacy

Proof. In the MPC protocol ΠLSSS using an (ℓ+1, N)-threshold LSSS, all the values computed by the parties
are shares from the underlying LSSS. The parties take such sharings as input and the latters are stable by
the operations performed in ΠLSSS (since the computation over the shares is linear). Therefore, the MPC
protocol ΠLSSS is well-defined.

By assumption, we have that the MPC protocol Πadd is (N − 1)-private when using an additive sharing.
This implies that there exists a simulator Simadd which takes as inputs a set I ′ ⊂ [N] of size N − 1, Jw′KI′ ,
Jβ⃗′KI′ and the outcome (Accept or Reject) of the real-world execution and which outputs views for
parties in I ′ whose joint distribution is perfectly indistinguishable from the joint views of the same parties
in a real-world execution of the MPC protocol (with the same outcome).

We first describe the simulator SimLSSS(I, JwKI , Jβ⃗KI , ε⃗, y):

1. Sample w′ and β⃗′ randomly.
2. Compute Jw′K← Shareadd(w

′; rw′) for some fresh randomness rw′ .

3. Compute Jβ⃗′K← Shareadd(β⃗
′; rβ⃗′) for some fresh randomness rβ⃗′ .

4. Choose a set I ′ ⊂ [N] such that |I ′| = N − 1.

5. Call the simulator viewadd ← Simadd(I
′, Jw′KI′ , Jβ⃗′KI′ , ε⃗, y).

6. Extract α⃗′ from viewadd and let α⃗ := α⃗′.
7. For j = 1 to t:

– Compute JαjKI = φj(εi)i≤j ,(αi)i<j

(
JwKI , (JβiKI)i≤j

)
,

– Deduce JαjK from JαjKI and αj .

8. Output Jα⃗K, JwKI , Jβ⃗KI .

In what follows, we show that the above simulator outputs a distribution which is perfectly indistinguish-
able from the views of the same parties in a real execution setting, which proves the ℓ-privacy of the protocol
ΠLSSS.

Let us fix a set I ⊂ [N] such that |I| = ℓ. Let us also take w and β⃗ and share them as

JwK = ShareLSSS(w; r1)

Jβ⃗K = ShareLSSS(β⃗; r2)

using some random tapes r1, r2. Finally, let us sample a random ε⃗.

We propose below three experiments. We denote Exp1, Exp2 and Exp3 the distribution of their respective
outputs. The first experiment corresponds to the simulation of the joint view of the parties in I.

Experiment 1. We compute the output y ∈ {Accept,Reject} of the protocol using JwK, Jβ⃗K and ε⃗:

y =

{
Accept if g(α⃗) = 0,

Reject otherwise,
with α⃗ = Φ(w, ε⃗, β⃗) .

Then, we output the views returned by SimLSSS(I, JwKI , Jβ⃗KI , ε⃗, y) together with y.

Experiment 2. The difference with the previous experiment is that w′ and β⃗′ are respectively defined as w
and β⃗ (instead of being random). Thanks to the privacy of the additive sharing we get that Jw′KI and Jβ⃗′KI
are perfectly indistinguishable from JwKI and Jβ⃗KI which implies

Exp1 ≡ Exp2 .

(Here Exp1 ≡ Exp2 means that the two distributions are perfectly indistinguishable).

43

Experiment 3. The difference with the previous experiment is that α⃗ is defined as α⃗ = Φ(w, ε⃗, β⃗) (where Φ is
defined as in (1)) instead of α⃗ = α⃗′. Thanks to the (N−1)-privacy of the protocol Πadd, we get that the joint
views viewadd returned by the simulator are perfectly indistinguishable from the same views in real-world
protocol execution. In particular, Jα⃗′K is identically distributed in the two experiments, which implies

Exp2 ≡ Exp3 .

Finally, it is not hard to check that the output of Experiment 3 corresponds to the real-world joint views
of the parties in I, which concludes the proof.

□

D Proof of Soundness

This appendix provides a proof for the soundness property in the following theorem:

Theorem 2. Let us consider an MPC protocol ΠLSSS complying with the protocol format described in
Protocol 5 using an (ℓ+1, N)-threshold LSSS, such that ΠLSSS is ℓ-private in the semi-honest model and of
false positive rate p. Then, Protocol 6 built from ΠLSSS satisfies the three following properties:

– Completeness. A prover P who knows a witness w such that (x,w) ∈ R and who follows the steps of
the protocol always succeeds in convincing the verifier V.

– Soundness. Suppose that there is an efficient prover P̃ that, on input x, convinces the honest verifier
V to accept with probability

ϵ̃ := Pr[⟨P̃,V⟩(x)→ 1] > ϵ

where the soundness error ϵ is defined as

ϵ :=
1(
N
ℓ

) + p · ℓ · (N − ℓ)
ℓ+ 1

.

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable black-box access
to P̃, outputs either a witness w satisfying (x,w) ∈ R, or a commitment collision, by making an average
number of calls to P̃ which is upper bounded by

4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 8 · (N − ℓ)

ϵ̃− ϵ

)
.

– Honest-Verifier Zero-Knowledge. There exists an efficient simulator S which, given the random
challenge I outputs a transcript which is indistinguishable from a real transcript of Protocol 6.

For any set T of successful transcripts corresponding to the same commitment,

– either the revealed shares of JwK are not unique, and then we find a commitment collision or a hash
collision,

– or the openings are unique.

Along this proof, we consider that the extractor only gets transcripts with unique revealed shares since
otherwise the extractor would find a commitment collision or a hash collision.

We shall denote by Rh the randomness of P̃ which is used to generate the initial commitment h1 (which
determines the witness sharing JwK), and we denote rh a possible realization of Rh. Throughout the proof,
we denote succP̃ the event that P̃ succeeds in convincing V. By hypothesis, we have Pr[succP̃] = ϵ̃.

44

D.1 When restraining to only bad witnesses

Let rh be a possible realization of Rh. Given Rh = rh, we have a unique hash commitment h1 in the transcript.
This hash commitment uniquely defines the shares of the witness JwK1, . . . , JwKN (by assumption on the
absence of hash/commitment collisions). In the following, we shall denote w(J) the witness corresponding to
the shares {JwKi}i∈J , for |J | = ℓ+ 1. We have a total of

(
N
ℓ+1

)
possibly-distinct witnesses w(J). We shall say

that w(J) is a good witness whenever (x,w(J)) ∈ R, otherwise we call w(J) a bad witness.
For any transcript produced by P̃ (with h1 as first hash commitment), the hash commitments h2,

. . . , ht uniquely define the shares {JαjKi}i∈S , for j ∈ [t]. In the following, we shall denote by JαjK =
(JαjK1, . . . , JαjKN) the full (ℓ+ 1, N)-sharing consistent with the shares {JαjKi}i∈S . The hash commitments
h2, . . . , ht also uniquely define the shares {JβjKi}i∈[N], for j ∈ [t]. We shall denote H the set of honest
parties, i.e. the set of the parties for which the committed shares Jα1Ki, . . . , JαtKi, are consistent with the
committed input shares JwKi and Jβ1Ki, . . . , JβtKi. More formally,

H =
{
i : ∀j, JαjKi = φj(εi)i≤j ,(αi)i<j

(JwKi, (JβkKi)k≤j)
}
.

We further denote Y the random variable which corresponds to the number of honest parties, i.e. Y = |H|.
We stress that Jα1K, . . . , JαtK, H and Y depend on the randomness of the (malicious) prover and the
randomness of the verifier used before Step 3 of Protocol 6.

For every i ∈ [N] and j ∈ [t], we shall further denote JᾱjKi the share obtained through an honest
computation from the committed input shares, that is:

JᾱjKi = φj(εi)i≤j ,(αi)i<j
(JwKi, (JβkKi)k≤j) .

We stress that JᾱjKi might not be equal to JαjKi. We actually have i ∈ H if and only if JᾱjKi = JαjKi for
every j ∈ [t]. In the following, we shall say that witness w(J) gives rise to a false positive in the MPC protocol
Π, and denote this probability event EJ , whenever

g(ᾱ1
J , . . . , ᾱ

t
J) = 0

where ᾱ1
J , . . . , ᾱ

t
J are the plain values corresponding to the sharings {Jᾱ1Ki}i∈J , . . . , {JᾱtKi}i∈J . By definition

of the MPC protocol Π, we have:

∀J s.t. |J | = ℓ+ 1, Pr′[EJ] ≤ p.

For the first step of the proof, we shall consider a subset D of parties, i.e. D ⊂ {1, . . . , N}, and we denote

N ′ := |D| and J = {J ⊂ D : |J | = ℓ+ 1}.

We shall further denote
Pr′[·] := Pr[· | Rh = rh, I ⊂ D].

We will show that, if {w(J)}J∈J are all bad witnesses, then the probability Pr′[succP̃] is upper bounded by

Pr′[succP̃] ≤
(
N
ℓ

)(
N ′

ℓ

) · ϵ (2)

where ϵ is the soundness error defined in the theorem statement, which is

ϵ :=
1(
N
ℓ

) + p · ℓ · (N − ℓ)
ℓ+ 1

.

The rest of this subsection is devoted to the demonstration of (2).

45

For J ∈ J and b ∈ {0, 1}, let us introduce the notation

AbJ =

{
EJ if b = 1,
ĒJ if b = 0.

Let x = (xJ)J∈J ∈ {0, 1}|J | and let y ∈ {0, . . . , N}. Let us assume that succP̃ , Y = y and {AxJ

J }J∈J
jointly occur. Because succP̃ occurs, we have that

g(α1, . . . , αt) = 0

where α1, . . . , αt are the values corresponding to the sharings Jα1K, . . . , JαtK. Then for each set J ∈ J (w(J)

is a bad witness) such that J ⊂ H (the parties in J are honest), we have that JᾱjKi = JαjKi for every i ∈ J
and every j ∈ [t], which implies

g(ᾱ1
J , . . . , ᾱ

t
J) = g(α1, . . . , αt) = 0 .

Namely, a false positive necessarily occurs for w(J), i.e. xJ = 1, whenever J ∈ J with J ⊂ H. Thus

wtH(x) ≥
∑

J∈J :J⊂H
xJ =

(
y

ℓ+ 1

)
.

By defining

ymax := max{y : wtH(x) ≥
(

y

ℓ+ 1

)
} ,

we get that

Pr′[succP̃ , Y = y | {AxJ

J }J∈J] = 0 if y > ymax

and so

Pr′[succP̃ | {A
xJ

J }J∈J] =

ymax∑
y=0

Pr′[succP̃ , Y = y | {AxJ

J }J∈J] .

The only way for the transcript to be successful is that the set I of challenged opened parties only contains
honest parties, i.e. I ⊂ H. Thus,

Pr′[succP̃ | {A
xJ

J }J∈J , Y = y] ≤ Pr[I ⊂ H | I ⊂ D,Y = y] =

(
y
ℓ

)(
N ′

ℓ

) .
We deduce

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
ymax∑
y=0

(
y
ℓ

)(
N ′

ℓ

) · Pr′[Y = y | {AxJ

J }J∈J] ≤
(
ymax

ℓ

)(
N ′

ℓ

) .

Since wt(x) is a non-negative integer, we have ymax ≥ ℓ. Let us consider three cases:

Case 1: ymax = ℓ, it means that wt(x) = 0, then

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
(
ymax

ℓ

)(
N ′

ℓ

) =
1(
N ′

ℓ

) =
wtH(x) · ℓ+ 1(

N ′

ℓ

)
Case 2: ymax = ℓ+ 1, it means that wt(x) ≥ 1, then

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
(
ymax

ℓ

)(
N ′

ℓ

) =
ℓ+ 1(
N ′

ℓ

) ≤ wtH(x) · ℓ+ 1(
N ′

ℓ

)
46

Case 3: ymax ≥ ℓ+ 2, then

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
(
ymax

ℓ

)(
N ′

ℓ

) =

ℓ+1
ymax−ℓ

(
ymax

ℓ+1

)(
N ′

ℓ

)
≤ ℓ+ 1

2
· wtH(x)(

N ′

ℓ

) ≤ wtH(x) · ℓ+ 1(
N ′

ℓ

)
In any case, we have the relation

Pr′[succP̃ | {A
xJ

J }J∈J] ≤ wtH(x) · ℓ+ 1(
N ′

ℓ

) . (3)

for any x ∈ {0, 1}|J |. And so, we have

Pr′[succP̃] =
∑

x∈{0,1}J

Pr′[succP̃ | {A
xJ

J }J∈J] · Pr′[{AxJ

J }J∈J]

≤
∑

x∈{0,1}J

wtH(x) · ℓ+ 1(
N ′

ℓ

) · Pr′[{AxJ

J }J∈J] using (3)

=
1(
N ′

ℓ

) + ℓ(
N ′

ℓ

) · ∑
x∈{0,1}J

wtH(x) · Pr′[{AxJ

J }J∈J] using Lemma 4

≤ 1(
N ′

ℓ

) + ℓ(
N ′

ℓ

) ·∑
J∈J

Pr′[EJ] using Lemma 4

≤ 1(
N ′

ℓ

) + ℓ(
N ′

ℓ

) · |J | · p

=

(
N
ℓ

)(
N ′

ℓ

) ·
 1(

N
ℓ

) + ℓ(
N
ℓ

) · (N ′

ℓ+ 1

)
︸ ︷︷ ︸
≤(N

ℓ+1)

p

 ≤
(
N
ℓ

)(
N ′

ℓ

) · ϵ .
Thus we obtain the desired inequality (2).

D.2 Building of the extractor

In the previous subsection, we proved that the probability that a malicious prover P̃ produces a valid
transcript when the opened parties are restricted to a set of N ′ parties for which the shares only encode bad
witnesses is upper-bound by (

N
ℓ

)(
N ′

ℓ

) · ϵ .
We now show how to build an extractor which outputs a witness w satisfying (x,w) ∈ R (if not a hash
or commitment collision) when giving rewindable black-box access to a malicious prover P̃ which produces
successful transcripts with a probability ϵ̃ > ϵ.

Let us fix an arbitrary value δ ∈ (0, 1) such that (1 − δ)ϵ̃ > ϵ (such δ exists since ϵ̃ > ϵ). Let rh be a
possible realization of Rh. We will say that rh is good if it is such that

Pr[succP̃ | Rh = rh] ≥ (1− δ) · ϵ̃ . (4)

By the Splitting Lemma 3 (see Appendix A) we have

Pr[Rh good | succP̃] ≥ δ . (5)

47

Our extractor first runs the P̃ with honest verifier requests until obtaining a successful transcript T0 by
running. If this T0 corresponds to a good rh, then we can obtain further successful transcripts with “high”
probability (i.e. probability greater than (1−δ)·ϵ̃) by rewinding the protocol just after the initial commitment
h1. Based on the assumption that rh is good, a sub-extractor E0 will build a list of successful transcripts T ,
all with same initial commitment. We denote P (T) the set of the parties which have been open in at least
one transcript of T , i.e. P (T) :=

⋃
T∈T IT where IT is the set of opened parties of the transcript T .

For a certain number N1 of iterations, the sub-extractor E0 tries to feed the list T until there exist a
good witness among the open input shares. We formally describe the sub-extractor routine in the following
pseudocode:

Sub-extractor E0 (on input a successful transcript T0):

1. T = {T0}
2. Do N1 times:

3. Run P̃ with honest V and same rh as T0 to get transcript T
4. If T is a successful transcript,
5. T ← T ∪ {T}.
6. If T contains a good witness w, return w.
7. Return ∅.

Let us evaluate the probability that the stop condition is reached in a given number of iteration N1.
Consider a loop iteration in E0 at the beginning of which we have a list T of successful transcripts (which
does not contain a good witness since the stop condition has not been reached) and a transcript T sampled
at Step 3. We denote Z the event that a new party is open (a party which is not in P (T)) in the transcript
T . This event is defined with respect to the randomness of the verifier challenges in T .

Let us lower bound the probability to have a successful transcript T and the event Z occurring in the
presence of a good Rh:

pg := Pr[succP̃ ∩ Z | Rh good] .

We have:

pg = Pr[succP̃ | Rh good]− Pr[succP̃ ∩ Z̄ | Rh good]

= Pr[succP̃ | Rh good]− Pr[succP̃ | Rh good, Z̄] · Pr[Z̄ | Rh good]

≥ (1− δ) · ϵ̃− Pr[succP̃ | Rh good, Z̄] · Pr[Z̄ | Rh good]

where the last inequality holds by (4).
The probability that a new party is not opened corresponds to the probability that the set I of opened

parties is a subset of P (T), i.e.

Pr[Z̄ | Rh good] = Pr[Z̄] =

(|P (T)|
ℓ

)(
N
ℓ

) .

The success probability knowing that that no new party is open corresponds to the success probability when
restricting to the |P (T)| parties which have been already open. By assumption (T does not contain a good
witness), the shares of those parties only correspond to bad witnesses. Thus, this probability can be upper
bounded using the inequality (2) of Section D.1 with N ′ = |P (T)|:

Pr[succP̃ | Rh good, Z̄] ≤
(
N
ℓ

)(|P (T)|
ℓ

) · ϵ .
Thus, we get

pg ≥ (1− δ) · ϵ̃− ϵ .

48

To summarize, in the presence of a good Rh, the probability of the event succP̃ ∩ Z (i.e. getting a
successful transcript T which opens a new party) is lower bounded by (1− δ) · ϵ̃− ϵ > 0. Moreover, the event
succP̃ ∩ Z can occur at most N − ℓ times, because T0 already opens ℓ parties and there are N parties in
total. We deduce that after N − ℓ occurrences of succP̃ ∩ Z, the list T contains a good witness.

Let us now define

N1 =
4(N − ℓ)

p0
with p0 := (1− δ) · ϵ̃− ϵ . (6)

And let X ∼ B(N1, p0) a binomial distributed random variable with parameters (N1, p0). The probability
that E0 reaches the stop condition and returns a (good) witness for a successful transcript T0 with good Rh
satisfies:

Pr[E0(T0) ̸= ∅ | succT0

P̃ ∩Rh good] ≥ Pr[X > N − ℓ]

= Pr

[
X

N1
− p0 >

N − ℓ
N1

− p0
]

= 1− Pr

[
X

N1
− p0 ≤

N − ℓ
N1

− p0
]

= 1− Pr

[
X

N1
− p0 ≤ −

3

4
p0

]
≥ 1− Pr

[
| X
N1
− p0| ≥

3

4
p0

]
≥ 1− p0 · (1− p0)

N1 · p20 ·
(
3
4

)2 (7)

= 1− 16

9
· 1− p0
4 · (N − ℓ)

= 1− 4

9
· 1− p0
N − ℓ

≥ 1− 4

9
≥ 1

2

The inequality (7) holds from the Bienaymé-Techbychev inequality. Thus, using N1 = 4(N−ℓ)
p0

, the probability

to reach the stop condition assuming a good Rh is at least 1/2. Without assumption on Rh, the probability
to reach the stop condition satisfies:

Pr[E0(T0) ̸= ∅ | succT0

P̃] ≥ Pr[Rh good | succT0

P̃] · Pr[E0(T0) ̸= ∅ | succT0

P̃ ∩Rh good] ≥ δ

2
.

Let us now describe the complete extractor procedure:

Extractor E :

1. Repeat +∞ times:

2. Run P̃ with honest V to get transcript T0
3. If T0 is not a successful transcript, go to the next iteration
4. Call E0 on T0 to get list of transcripts T
5. If T ≠ ∅, return T

Let C denotes the number of calls to P̃ made by the extractor before ending. While entering a new
iteration:

– the extractor makes one call to P̃ to obtain T0,

– if T0 is not successful, which occurs with probability (1− Pr[succT0

P̃]),

49

◦ the extractor continues to the next iteration and makes an average of E[C] calls to P̃,
– if T0 is successful, which occurs with probability Pr[succT0

P̃],

◦ the extractor makes at most N1 calls to P̃ in the loop of E0,
◦ then E0 returns an empty list (the stop condition is not reached), which occurs with probability
Pr[E0(T0) = ∅ | succT0

P̃], the extractor continues to the next iteration and makes an average of E[C]
calls to P̃,

◦ otherwise, if E0(T0) returns a non-empty list, the extractor stops and no more calls to P̃ are necessary.

The mean number of calls to P̃ hence satisfies the following equality:

E[C] = 1 + (1− Pr[succT0

P̃]) · E[C]︸ ︷︷ ︸
T0 unsuccessful

+Pr[succT0

P̃] ·
(
N1 + Pr[E0(T0) = ∅ | succT0

P̃] · E[C]︸ ︷︷ ︸
T0 successful

)
which gives

E[C] ≤ 1 + (1− ϵ̃) · E[C] + ϵ̃ ·
(
N1 +

(
1− δ

2

)
· E[C]

)
≤ 1 + ϵ̃ ·N1 + E[C]

(
1− ϵ̃ · δ

2

)
≤ 2

δ · ϵ̃
· (1 + ϵ̃ ·N1)

=
2

δ · ϵ̃
·
(
1 + ϵ̃ · 4 · (N − ℓ)

(1− δ) · ϵ̃− ϵ

)
To obtain an δ-free formula, let us take δ such that (1− δ) · ϵ̃ = 1

2 (ϵ̃+ ϵ). We have δ = 1
2

(
1− ϵ

ϵ̃

)
and the

average number of calls to P̃ is upper bounded as

E[C] ≤ 4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 8 · (N − ℓ)

ϵ̃− ϵ

)
which concludes the proof.

E Proof of Soundness for Quasi-Threshold LSSS

This appendix provides a proof for the soundness property in the following theorem:

Theorem 3. Let us consider an MPC protocol ΠQT-LSSS complying with the protocol format described in
Protocol 5, but using an (ℓ, ℓ+∆+1, N)-quasi-threshold LSSS in place of an (ℓ+1, N)-threshold LSSS, and
such that ΠQT-LSSS is ℓ-private in the semi-honest model and of false positive rate p. Then, Protocol 6 built
from ΠQT-LSSS satisfies the three following properties:

– Completeness. A prover P who knows a witness w such that (x,w) ∈ R and who follows the steps of
the protocol always succeeds in convincing the verifier V.

– Soundness. Suppose that there is an efficient prover P̃ that, on input x, convinces the honest verifier
V to accept with probability

ϵ̃ := Pr[⟨P̃,V⟩(x)→ 1] > ϵ

where the soundness error ϵ is equal to(
ℓ+∆
ℓ

)(
N
ℓ

) + p · ℓ

ℓ+∆+ 1
·
(
N − ℓ
∆+ 1

)
.

50

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable black-box access
to P̃, produces with either a witness w satisfying (x,w) ∈ R, or a commitment collision, by making an
average number of calls to P̃ which is upper bounded by

4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 8 · (N − ℓ)

ϵ̃− ϵ

)
.

– Honest-Verifier Zero-Knowledge. There exists an efficient simulator S which, given random chal-
lenge I outputs a transcript which is indistinguishable from a real transcript of Protocol 6.

Remark 6. The proof for soundness with a quasi-threshold linear secret sharing scheme is very close to
the proof in the threshold case. In fact, we can use exactly the same extractor (the extractor defined in
Appendix D.2). We just need to prove Inequality (2) in the quasi-threshold case. In what follows, we use the
same notations as in Appendix D.

For any set T of successful transcripts corresponding to the same commitment,

– either the revealed shares of JwK are not unique, and then we find a commitment collision or a hash
collision,

– or the openings are unique.

Along this proof, we consider that the extractor only gets transcripts with unique revealed shares since
otherwise the extractor would find a commitment collision or a hash collision.

We shall denote by Rh the randomness of P̃ which is used to generate the initial commitment h1 (which
determines the witness sharing JwK), and we denote rh a possible realization of Rh. Throughout the proof,
we denote succP̃ the event that P̃ succeeds in convincing V. By hypothesis, we have Pr[succP̃] = ϵ̃.

E.1 When restraining to only bad witnesses

Let rh be a possible realization of Rh. Given Rh = rh, we have a unique hash commitment h1 in the transcript.
This hash commitment uniquely defines the shares of the witness JwK1, . . . , JwKN (by assumption on the
absence of hash/commitment collisions). In the following, we shall denote w(J) the witness corresponding to
the shares {JwKi}i∈J , for |J | = ℓ +∆ + 1. We have a total of

(
N

ℓ+∆+1

)
possibly-distinct witnesses w(J). We

shall say that w(J) is a good witness whenever (x,w(J)) ∈ R, otherwise we call w(J) a bad witness.

For any transcript produced by P̃ (with h1 as first hash commitment), the hash commitments h2,
. . . , ht uniquely define the shares {JαjKi}i∈S , for j ∈ [t]. In the following, we shall denote by JαjK =
(JαjK1, . . . , JαjKN) the full (ℓ, ℓ+∆+1, N)-sharing consistent with the shares {JαjKi}i∈S . The hash commit-
ments h2, . . . , ht also uniquely define the shares {JβjKi}i∈[N], for j ∈ [t]. We shall denote H the set of honest
parties, i.e. the set of the parties for which the committed shares Jα1Ki, . . . , JαtKi, are consistent with the
committed input shares JwKi and Jβ1Ki, . . . , JβtKi. More formally,

H =
{
i : ∀j, JαjKi = φj(εi)i≤j ,(αi)i<j

(JwKi, (JβkKi)k≤j)
}
.

We further denote Y the random variable which corresponds to the number of honest parties, i.e. Y = |H|.
We stress that Jα1K, . . . , JαtK, H and Y depend on the randomness of the (malicious) prover and the
randomness of the verifier used before Step 3 of Protocol 6.

For every i ∈ [N] and j ∈ [t], we shall further denote JᾱjKi the share obtained through an honest
computation from the committed input shares, that is:

JᾱjKi = φj(εi)i≤j ,(αi)i<j
(JwKi, (JβkKi)k≤j) .

51

We stress that JᾱjKi might not be equal to JαjKi. We actually have i ∈ H if and only if JᾱjKi = JαjKi for
every j ∈ [t]. In the following, we shall say that witness w(J) gives rise to a false positive in the MPC protocol
Π, and denote this probability event EJ , whenever

g(ᾱ1
J , . . . , ᾱ

t
J) = 0

where ᾱ1
J , . . . , ᾱ

t
J are the plain values corresponding to the sharings {Jᾱ1Ki}i∈J , . . . , {JᾱtKi}i∈J . By definition

of the MPC protocol Π, we have:

∀J s.t. |J | = ℓ+∆+ 1, Pr′[EJ] ≤ p.

For the first step of the proof, we shall consider a subset D of parties, i.e. D ⊂ {1, . . . , N}, and we denote

N ′ := |D| and J = {J ⊂ D : |J | = ℓ+∆+ 1}.

We shall further denote
Pr′[·] := Pr[· | Rh = rh, I ⊂ D].

We will show that, if {w(J)}J∈J are all bad witnesses, then the probability Pr′[succP̃] is upper bounded by

Pr′[succP̃] ≤
(
N
ℓ

)(
N ′

ℓ

) · ϵ (8)

where ϵ is the soundness error defined in the theorem statement, which is

ϵ :=

(
ℓ+∆
ℓ

)(
N
ℓ

) + p · ℓ

ℓ+∆+ 1
·
(
N − ℓ
∆+ 1

)
.

The rest of this subsection is devoted to the demonstration of (8).

For J ∈ J and b ∈ {0, 1}, let us introduce the notation

AbJ =

{
EJ if b = 1,
ĒJ if b = 0.

Let x = (xJ)J∈J ∈ {0, 1}|J | and let y ∈ {0, . . . , N}. Let us assume that succP̃ , Y = y and {AxJ

J }J∈J
jointly occur. Because succP̃ occurs, we have that

g(α1, . . . , αt) = 0

where α1, . . . , αt are the values corresponding to the sharings Jα1K, . . . , JαtK. Then for each set J ∈ J (w(J)

is a bad witness) such that J ⊂ H (the parties in J are honest), we have that JᾱjKi = JαjKi for every i ∈ J
and every j ∈ [t], which implies

g(ᾱ1
J , . . . , ᾱ

t
J) = g(α1, . . . , αt) = 0 .

Namely, a false positive necessarily occurs for w(J), i.e. xJ = 1, whenever J ∈ J with J ⊂ H.
Thus

wtH(x) ≥
∑

J∈J :J⊂H
xJ =

(
y

ℓ+∆+ 1

)
.

By defining

ymax := max{y : wtH(x) ≥
(

y

ℓ+∆+ 1

)
} ,

we get that
Pr′[succP̃ , Y = y | {AxJ

J }J∈J] = 0 if y > ymax

52

and so

Pr′[succP̃ | {A
xJ

J }J∈J] =

ymax∑
y=0

Pr′[succP̃ , Y = y | {AxJ

J }J∈J] .

The only way for the transcript to be successful is that the set I of challenged opened parties only contains
honest parties, i.e. I ⊂ H. Thus,

Pr′[succP̃ | {A
xJ

J }J∈J , Y = y] ≤ Pr[I ⊂ H | I ⊂ D,Y = y] =

(
y
ℓ

)(
N ′

ℓ

) .
We deduce

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
ymax∑
y=0

(
y
ℓ

)(
N ′

ℓ

) · Pr′[Y = y | {AxJ

J }J∈J] ≤
(
ymax

ℓ

)(
N ′

ℓ

) .

Since wt(x) is a non-negative integer, we have ymax ≥ ℓ. Let us consider three cases:

Case 1: ymax = ℓ+∆, it means that wt(x) = 0, then

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
(
ymax

ℓ

)(
N ′

ℓ

) =

(
ℓ+∆
ℓ

)(
N ′

ℓ

) =
wtH(x) ·

(
ℓ+∆
ℓ−1

)
+
(
ℓ+∆
ℓ

)(
N ′

ℓ

)
Case 2: ymax = ℓ+∆+ 1, it means that wt(x) ≥ 1, then

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
(
ymax

ℓ

)(
N ′

ℓ

) =

(
ℓ+∆+1

ℓ

)(
N ′

ℓ

) ≤
wtH(x) ·

(
ℓ+∆
ℓ−1

)
+
(
ℓ+∆
ℓ

)(
N ′

ℓ

)
since

(
ℓ+∆+1

ℓ

)
=
(
ℓ+∆
ℓ−1

)
+
(
ℓ+∆
ℓ

)
.

Case 3: ymax ≥ ℓ+∆+ 2, then

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
(
ymax

ℓ

)(
N ′

ℓ

) =

(
ℓ+∆+1

ℓ

)(
ymax−ℓ
∆+1

) · (ymax

ℓ+∆+1

)(
N ′

ℓ

)
≤
(
ℓ+∆+1

ℓ

)(
ymax−ℓ
∆+1

) · wtH(x)(
N ′

ℓ

) ≤
(
ℓ+∆+1

ℓ

)
∆+ 2

· wtH(x)(
N ′

ℓ

)
≤

wtH(x) ·
(
ℓ+∆
ℓ−1

)
+
(
ℓ+∆
ℓ

)(
N ′

ℓ

) .

The last inequality can be prove using Lemma 5 since(
ℓ+∆+ 1

ℓ

)
=

(
ℓ+∆

ℓ− 1

)
+

(
ℓ+∆

ℓ

)
.

In any case, we have the relation

Pr′[succP̃ | {A
xJ

J }J∈J] ≤
wtH(x) ·

(
ℓ+∆
ℓ−1

)
+
(
ℓ+∆
ℓ

)(
N ′

ℓ

) . (9)

53

for any x ∈ {0, 1}|J |. And so, we have

Pr′[succP̃] =
∑

x∈{0,1}J

Pr′[succP̃ | {A
xJ

J }J∈J] · Pr′[{AxJ

J }J∈J]

≤
∑

x∈{0,1}J

wtH(x) ·
(
ℓ+∆
ℓ−1

)
+
(
ℓ+∆
ℓ

)(
N ′

ℓ

) · Pr′[{AxJ

J }J∈J] using 9

=

(
ℓ+∆
ℓ

)(
N ′

ℓ

) +

(
ℓ+∆
ℓ−1

)(
N ′

ℓ

) · ∑
x∈{0,1}J

wtH(x) · Pr′[{AxJ

J }J∈J] using Lemma 4

≤
(
ℓ+∆
ℓ

)(
N ′

ℓ

) +

(
ℓ+∆
ℓ−1

)(
N ′

ℓ

) ·∑
J∈J

Pr′[EJ] using Lemma 4

≤
(
ℓ+∆
ℓ

)(
N ′

ℓ

) +

(
ℓ+∆
ℓ−1

)(
N ′

ℓ

) · |J | · p

=

(
N
ℓ

)(
N ′

ℓ

) ·

(
ℓ+∆
ℓ

)(
N
ℓ

) +

(
ℓ+∆
ℓ−1

)(
N
ℓ

) · (N ′

ℓ+∆+ 1

)
︸ ︷︷ ︸

≤(N
ℓ+∆+1)

p

 ≤
(
N
ℓ

)(
N ′

ℓ

) · ϵ
since (

ℓ+∆
ℓ−1

)(
N

ℓ+∆+1

)(
N
ℓ

) =
N ! · (ℓ+∆)! · ℓ! · (N − ℓ)!

N ! · (ℓ+∆+ 1)! · (ℓ− 1)!(N − ℓ−∆− 1)!(∆+ 1)!

=
ℓ

ℓ+∆+ 1

(
N − ℓ
∆+ 1

)
.

Thus we obtain the desired inequality (2).

E.2 Building of the extractor

Since Equation 8 proved in the previous subsection and Equation 2 proved in the case of threshold scheme
(Section D.1) are the same, we can use the extractor E described in Appendix D.2.

F Signature Scheme and Proof of Unforgeability

We can transform the zero-knowledge proofs of knowledge described in Section 4 into signature schemes
using the Fiat-Shamir’s heuristic [FS87]. Protocols 7 and 8 describe the signing and verification algorithms
obtained when following this approach for the 5-round case (i.e. for t = 1 iteration in the MPC protocol).

When applying the Fiat-Shamir transform, we compute the verifier challenges (ε[e])e∈[τ] and (I [e])e∈[τ]

as:
h1 = Hash1(m, salt, h̃

[1], . . . , h̃[τ])
(ε[e])e∈[τ] ← Expand(h1)

and
h2 = Hash2(m, salt, h1, Jα[1]KS , . . . , Jα[N]KS)
(I [e])e∈[τ] ← Expand(h2)

where m is the input message, Hash1 and Hash2 are cryptographic hash functions, Expand is an extendable
output hash function, and (h̃[e], Jα[e]KS)e∈[τ] are the commitments and the broadcast shares merged for the

54

τ repetitions. We introduce a value salt called salt which is sampled from {0, 1}2λ at the beginning of the
signing process. This value is then used for each commitment to the parties’ states. Since the signature
security relies on the random oracle model, we can safely replace the commitment scheme Com of Protocol 6
by a single hash function Hash0. Moreover, we derive all the randomness used in the scheme from a root
seed for performance reason and to make the scheme easily turnable into a deterministic signature scheme.
In particular, the randomness used for the sharings is derived from this root seed using a pseudo-random
generator PRG which is made explicit in the description (while it was implicit in the description of the zero
knowledge protocol). Finally, we denote Hashm the hash function involved for the Merkle trees.

In this signature scheme, a secret key is a witness w and a public key is a statement x, with (x,w) ∈ R
for the considered relation R. We assume the existence of a function F which maps every witness to the
corresponding statement:

F : w 7→ x s.t. (x,w) ∈ R.

We further assume that F is an (towf, ϵowf)-hard one-way function, namely an adversary A receiving a
random statement x has a probability at most ϵowf to output the corresponding witness w in time at most
towf.

The zero-knowledge protocol for relationR which we transform into the present signature scheme depends
on two functions: ψ which computes the hints and φ which corresponds to the party computation. In practice,
those two functions depend on the statement x (i.e., on the public key in the case of a signature scheme),
so for the sake of completeness, we will index them with x in this section: ψx and φx.

We first consider the notion of unforgeability against key-only attacks (EUF-KO). In this setting, the
adversary is only given a public key x and she attempts to generate a pair (m,σ) such that σ is a valid
signature of m with respect to x. The following lemma shows the EUF-KO of the signature scheme in the
random oracle model and with respect to the OWF security of the function F .

Lemma 6. Let Hash0, Hash1, Hash2, Hashm and Expand be modeled as random oracles, and let (N, τ, λ, p)
be parameters of the signature scheme. Let A be an adversary against the EUF-KO security of the scheme
running in time tA and making a total of Q random oracle queries. Assuming that F is an (tA, ϵowf)-hard
one-way function, then A’s advantage in the EUF-KO game is

ϵEUF-KO ≤ ϵOWF +
(τN + 1)Q2

22λ
+ Pr[X + Y = τ],

with

– X = maxq1∈Q1
{Xq1} with Xq1 ∼ B

(
τ,
(
N
ℓ+1

)
p
)
and

– Y = maxq2∈Q2
{Yq2} with Yq2 ∼ B

(
τ −X, 1/

(
N
ℓ

))
,

where B (n0, p0) denotes the binomial distribution with n0 the number of trials and p0 the success probability
of each trial.

The following proof is highly inspired (and carbon copied where relevant) from the proofs of [BDK+21,
Lemma 2] and [KZ22, Lemma 5].

Proof. We give an algorithm B (the reduction) which uses the EUF-KO adversary A to compute a pre-image
for the key generation function F .

Algorithm B simulates the EUF-KO game using the random oracles Hash0, Hash1, Hash2 and Hashm
and query lists Qc, Q1, Q2 and Qm. In addition, B maintains two tables Tsh and Twit which respectively store
the shares of the parties and the corresponding witnesses (for a given set of ℓ+ 1 shares J) that B recovers
from A’s RO queries. B also maintains a set Bad to keep track of the outputs of all four random oracles. We
also ignore calls to Expand in our analysis, since they are used to expand outputs from Hash1 and Hash2:
when Expand is a random function this is equivalent to increasing the output lengths of Hash1 and Hash2.

55

Inputs: A secret key w, a public key x := F (w) and a message m ∈ {0, 1}∗.

Phase 0: Initialization.

1. Sample a random salt salt← {0, 1}2λ.
2. Sample a root seed ρ← {0, 1}2λ.

Phase 1: Preparation of the MPC-in-the-Head inputs. For each iteration e ∈ [τ],

1. Derive randomness r
[e]
w , r

[e]
β and r

[e]
ψ from the root seed ρ:

r[e]w , r
[e]
β , r

[e]
ψ ← PRG(salt, e, ρ).

2. Share the witness w into an (ℓ+ 1, N)-threshold linear secret sharing Jw[e]K:

Jw[e]K← Share(w; r[e]w).

3. Compute
β[e] ← ψx(w; r

[e]
ψ)

and share it:
Jβ[e]K← Share(β[e]; r

[e]
β).

4. Compute the commitments
com

[e]
i := Hash0(salt, e, i, Jw[e]Ki, Jβ[e]Ki)

for all i ∈ [N], and compute the Merkle root

h̃[e] := MerkleTree(com
[e]
1 , . . . , com

[e]
N).

Phase 2: First challenge (randomness for the MPC protocol).

1. Compute h1 = Hash1(m, salt, h̃
[1], . . . , h̃[τ]).

2. Expand h1 as (ε[e])e∈[τ] ← Expand(h1).

Phase 3: Simulation of the MPC protocol. For each iteration e ∈ [τ],

1. Computes, for i ∈ S,
Jα[e]Ki := φx,ε[e]

(
Jw[e]Ki, Jβ[e]Ki

)
and recomposes α[e].

This step is repeated as many times as in the MPC protocol (cf Protocol 3).

Phase 4: Second challenge (parties to be opened).

1. Compute h2 = Hash2(salt, h1, Jα[1]KS , . . . , Jα[N]KS).
2. Expand h2 as (I [e])e∈[τ] ← Expand(h2) where, for every e, I

[e] ⊂ [N] is a subset of ℓ parties (i.e. |I [e]| = ℓ).

Phase 5: Building of the signature. Output the signature σ built as

salt | h1 | h2 |
(
(Jw[e]Ki, Jβ[e]Ki)i∈I , auth[e], Jα[e]Ki∗[e]

)
e∈[τ]

where auth[e] is the authentication path for {com[e]
i }i∈I w.r.t. Merkle root h̃[e] and i∗[e] ∈ S \ I [e].

Protocol 7: Signature Scheme – Signing algorithm

56

Inputs: A public key x, a signature σ and a message m ∈ {0, 1}∗.

1. Parse the signature σ as

salt | h1 | h2 |
(
(Jw[e]Ki, Jβ[e]Ki)i∈I , auth[e], Jα[e]Ki∗[e]

)
e∈[τ]

← σ

2. Expand h1 as (ε[e])e∈[τ] ← Expand(h1).

3. Expand h2 as (I [e])e∈[τ] ← Expand(h2) where, for every e, I
[e] ⊂ [N] is a subset of ℓ parties (i.e. |I [e]| = ℓ).

4. For each iteration e ∈ [τ],

– Computes the commitments com
[e]
i and the broadcast values Jα[e]Ki for i ∈ I [e] from (Jw[e]Ki, Jβ[e]Ki)i∈I : for all i ∈ I [e],

com
[e]
i = Hash0(salt, e, i, Jw[e]Ki, Jβ[e]Ki)

Jα[e]Ki = φx,ε[e]
(
Jw[e]Ki, Jβ[e]Ki

)
– Recover α[e], by

α[e] = ReconstructI[e]∪{i∗[e]}(Jα
[e]KI∪{i∗[e]}).

– Compute the Merkle root h̃[e] using
(
{com[e]

i }i∈I , auth
[e]
)
.

– Compute the shares Jα[e]KS using Jα[e]K = ExpandI∪{i∗}
(
Jα[e]KI∪{i∗}

)
;

5. Compute h′
1 = Hash1(m, salt, h̃

[1], . . . , h̃[τ]).
6. Compute h′

2 = Hash2(salt, h1, Jα[1]KS , . . . , Jα[N]KS).
7. Output Accept iff h′

1
?
= h1, h

′
2

?
= h2 and ∀e ∈ [τ], g(α[e])

?
= 0.

Protocol 8: Signature Scheme – Verification algorithm

Behavior of B. On input x, a OWF challenge, algorithm B forwards it to A as a signature public key for the
EUF-KO game. It lets A run and answer its random oracle queries in the following way. We assume (wlog.)
that Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4 only consider queries that are correctly formed,
and ignore duplicate queries. In these algorithms, the notation v → Q is used to mean Q ← Q∪ {v}.

– Hash0: When A queries the commitment random oracle, B records the query to learn which commitment
corresponds to which input share. See Algorithm 1.

– Hashm: As Hash0, it records the query to link the commitment with the Merkle roots. See Algorithm 2.
– Hash1: When A sends the Merkle roots for the share commitments, B checks whether these roots were

output by a right use of a Merkle tree simulated by Hashm and for which the leaves were output by its
simulation of Hash0. If any were for some e and i, then B is able to reconstruct the shares for party
i in repetition e. If B is able to reconstruct the shares for a subset J of ℓ + 1 parties for an execution
e, then it can extract the corresponding witness value w[e](J) used by A (for this execution e and this
subset of parties J). See Algorithm 3. Note: The algorithm description also include the computation of
further values that are part of the protocol which are useless to Algorithm 3 and only included for notation
purpose in order to make the analysis of the case Pr[A wins | B outputs ⊥] easier to follow.

– Hash2: No extraction takes place during this random oracle simulation. See Algorithm 4.

Hash0(q0 = (salt, e, i, JwKi, JβKi)):

com
$←− {0, 1}2λ.

If com ∈ Bad, then abort.
com→ Bad.
(q0, com)→ Q0.
Return com.

Algorithm 1: Hash function Hash0

57

Hashm(qm = (h1, h2)):

h1 → Bad
h2 → Bad

hm
$←− {0, 1}2λ.

If hm ∈ Bad, then abort.
hm → Bad.
(qm, hm)→ Qm.
Return hm.

Algorithm 2: Hash function Hashm

In the rest of the proof, we assume that A returns a pair (m,σ) if and only if it is valid (with probability
1). This is wlog. since A can check that (m,σ) passes the verification before returning it without any
degradation of her success probability. As a consequence, the hash h1 in the returned (valid) signature has
necessarily been obtained through a query q1 to Hash1 of the form q1 = (m, salt, h̃[1], . . . , h̃[τ]). Moreover, all

the hash computations from the commitments com
[e]
i , with i ∈ I [e], to the Merkle root h̃[e] must have been

obtained through valid requests to Hashm (otherwise the verification of auth[e] would fail with overwhelming

probability). Similarly, all the commitments com
[e]
i , with i ∈ I [e], must have been obtained through valid

calls to Hash0. This notably implies that the table Tsh filled by Algorithm 3 satisfies Tsh[q1, e, i] ̸= ∅ for every
(e, i) such that i ∈ I [e].

When A terminates, B checks the Twit table for any entry where the extracted w[e](J) is consistent with
x. If a match is found, B outputs w[e](J) as a pre-image for the OWF, otherwise B outputs ⊥.

Advantage of the reduction. Given the behavior presented above, we have the following by the law of total
probability:

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ B ouputs ⊥]
+ Pr[A wins ∧ B ouputs w]

≤ Pr[B aborts] + Pr[A wins | B ouputs ⊥]
+ Pr[B ouputs w]. (10)

Let Qcom, Qm, Q1 and Q2 denote the number of queries made by A to each respective random oracle.
Given the way in which values are added to Bad, we have:

Pr[B aborts] = (#times a digest is sampled) · Pr[B aborts at that digest]

≤ (Qcom +Qm +Q1 +Q2) ·
max |Bad|

22λ

= (Qcom +Qm +Q1 +Q2) ·
Qcom + 3Qm + (τN + 1)Q1 + 2Q2

22λ

≤ (τN + 1)(Qcom +Qm +Q1 +Q2)
2

22λ
(11)

By definition, we also have

Pr[B ouputs w] ≤ ϵOWF .

It remains to deal with the term Pr[A wins | B ouputs ⊥]. Namely, we now analyze the probability of A
winning the EUF-KO experiment conditioned on the event that B outputs ⊥, i.e., no pre-image to x was
found on the query lists. For the rest of the proof, we assume that B outputs ⊥.

58

Hash1(q1):

Parse q1 as (m, salt, h̃[1], . . . , h̃[τ])

For e ∈ [τ], i ∈ [N], do h̃[e] → Bad.

For (e, i) ∈ [τ]× [N] such that ∃com[e]
i : com

[e]
i is the ith leaf

of the Merkle tree with root h̃[e] where nodes are in Qm, do

If ∃(JwKi, JβKi) s.t. ((salt, e, i, JwKi, JβKi), com[e]
i) ∈ Q0, then

(JwKi, JβKi)→ Tsh[q1, e, i].

For each e ∈ [τ] and J ⊂ [N], do
If Tsh[q1, e, i] ̸= ∅, ∀i ∈ J , then

w[e](J) ← ReconstructJ(JwKJ).
β[e](J) ← ReconstructJ(JβKJ).
w[e](J) → Twit[q1, e, J].

h1
$←− {0, 1}2λ.

If h1 ∈ Bad, then abort.
h1 → Bad.
(q1, h1)→ Q1.

▷ This gray block is for notation purpose only

(ε[e])e∈[τ] ← Expand(h1)
For each e ∈ [τ] and J ⊂ [N]:Twit[q1, e, J] ̸= ∅, do

α[e](J) = φε[e]
(
w[e](J), β[e](J)

)
For each (e, i) ∈ [τ]× [N]:Tsh[q1, e, i] ̸= ∅, do

Jᾱ[e]Ki = φε[e]
(
Jw[e]Ki, Jβ[e]K

)
Return h1.

Algorithm 3: Hash function Hash1

Hash2(q2):

Parse q2 as (salt, h1, (Jα[e]KS)e∈[τ]).
h1 → Bad.

h2
$←− {0, 1}2λ.

If h2 ∈ Bad, then abort.
h2 → Bad.
(q2, h2)→ Q2.
Return h2.

Algorithm 4: Hash function Hash2

59

Cheating in the first round. For any query (q1, h1) ∈ Q1, and its corresponding expanded answer (ε[e])e∈[τ], let
G1(q1, h1) be the set of indices e ∈ [τ] of “good executions” where there exists J such that both Twit[q1, e, J]
is non-empty and g(α[e](J)) = 0, namely a false positive occurs for at least one set J for execution e (since
w[e](J) cannot satisfy (x,w[e](J)) ∈ R since B outputs ⊥). We then have, for every e ∈ [τ],

Pr[e ∈ G1(q1, h1) | B outputs ⊥] ≤
(

N

ℓ+ 1

)
p

where p is the false-positive rate of the underlying MPC protocol, given that h1 is distributed uniformly at
random (which holds since Hash1 and Expand are random functions).

As the response h1 is uniform, each e ∈ [τ] has the same independent probability of being in G1(q1, h1).

We therefore have that #G1(q1, h1) ∼ Xq1 where Xq1 = B
(
τ,
(
N
ℓ+1

)
p
)
, the binomial distribution with

τ trials, each with success probability
(
N
ℓ+1

)
p. Letting (q1best, h1best) denote the query-response pair which

maximizes #G1(q1, h1), we then have that

#G1(q1best, h1best) ∼ X = max
q1∈Q1

{Xq1}.

Cheating in the second round. Let (q2, h2) ∈ Q2 be the query such that h2 is used in the valid signature
returned by the adversary. Since the returned signature is valid (with probability 1), there must also exist
(q1, h1) ∈ Q1 such that h1 is used in the signature and q2 is of the form q2 = (h1, . . .). Then for each “bad”
first-round execution e ∈ [τ]\G1(q1, h1), either the verification failed, in which case A couldn’t have won,
or the verification passed, despite ∀J, g(α[e](J)) ̸= 0. We shall denote H[e](q2) the set of honest parties, i.e.
the set of the parties for which the committed shares Jα[e]Ki, are consistent with the committed input shares
Jw[e]Ki and Jβ[e]Ki. More formally,

H[e](q2) =
{
i : Jα[e]Ki = φε[e](Jw

[e]Ki, Jβ[e]Ki)
}
.

Let us consider three cases:

– there is strictly less than ℓ honest parties, i.e. |H[e](q2)| < ℓ, but as ℓ parties are opened, verification
would fail;

– there is strictly more than ℓ honest parties, i.e. |H[e](q2)| > ℓ, but it would imply that there exists a
set J of ℓ + 1 honest parties (J ⊂ H[e](q2), |J | = ℓ + 1). In that case, we get that α[e](J) = α[e] where
α[e] is the value encoded by Jα[e]KS in q2. However, since e ∈ [τ]\G1(q1, h1), g(α

[e](J)) ̸= 0 implies that
g(α[e]) ̸= 0, and so verification would fail;

– there is exactly ℓ honest parties, i.e. |H[e](q2)| = ℓ, which is the only possible case given that A wins
with q2.

Since the expanded h2 = (I [e])e∈[τ] ∈ {I ⊂ [N] : |I| = ℓ}τ is distributed uniformly at random, the
probability that the verification passes while cheating for all such “bad” first-round executions e is(

1(
N
ℓ

))τ−#G1(q1,h1)

≤

(
1(
N
ℓ

))τ−#G1(q1best,h1best)

.

The probability that this happens for at least one of the Q2 queries made to Hash2 is

Pr

[
A wins | B outputs ⊥

#G1(q1best, h1best) = τ1

]
≤ 1−

1−

(
1(
N
ℓ

))τ−τ1
Q2

.

Finally conditioning on B outputting ⊥ and summing over all values of τ1, we have that

Pr[A wins | B outputs ⊥] ≤ Pr[X + Y = τ] (12)

where X is as before, and Y = maxq2∈Q2
{Yq2} where the Yq2 variables are independently and identically

distributed as B(τ −X, 1/
(
N
ℓ

)
).

60

Conclusion. Bringing Equation (10), Equation (11) and Equation (12) together, we obtain the following:

Pr[A wins] ≤ (τN + 1)(Qcom +Qm +Q1 +Q2)
2

22λ
+ Pr[X + Y = τ] + Pr[B outputs w].

Assuming KeyGen is an ϵowf-secure OWF and setting Q = Qcom +Qm +Q1 +Q2 gives the required bound
and concludes the proof.

□

We now consider the notion of unforgeability against chosen message attacks (EUF-CMA). In this setting,
the adversary is given a public key x and she can ask an oracle (called the signature oracle) to sign messages
(m1, . . . ,mr) that she can select at will. The goal of the adversary is to generate a pair (m,σ) such that m
is not one of requests to the signature oracle and such that σ is a valid signature of m with respect to x.
The following theorem shows the EUF-CMA of the signature scheme in the random oracle model.

Theorem 4. Let Hash0, Hash1, Hash2, Hashm and Expand be modeled as random oracles, and let (N, τ, λ, p)
be parameters of the signature scheme. Let A be an adversary against the EUF-CMA security of the scheme
running in time tA and making a total of QRO random oracle queries and Qsign signing queries. Assuming
that F is an (tA, ϵowf)-hard one-way function and that PRG is a (tA, ϵprg)-secure pseudorandom generator
then A’s advantage in the EUF-CMA game is

ϵEUF-CMA ≤ ϵOWF + ϵprg +
(τN + 2)Q2

22λ
+ Pr[X + Y = τ],

where Q = QRO +NHash ·QSig with NHash = 2+ τ(2N − 1) the number of hash computations in a signature
generation, and where X,Y are defined as in Lemma 6.

Proof. We consider the reduction algorithm B described in the proof of Lemma 6 which we extend to answer
to the signing queries of the adversary A. We consider three different games:

– Game 0: B uses a signature oracle OSig(w, x, ·) which perfectly answers signing queries from A;
– Game 1: the signature oracle is replaced by O′

Sig(w, x, ·) which perfectly answers signing queries from A
except that the calls to the PRG are replaced with true randomness;

– Game 2: the signature oracle is replaced by a simulator SSig(x, ·) answering signing queries from A
without being given the secret witness as input.

In Game 0, B behaves exactly as in the proof of Lemma 6 while additionally answering the signing queries
from A using OSig(w, x, ·). The signing oracle OSig(w, x, ·) makes queries to the random oracles Hash0, Hash1,
Hash2 and Hashm which are answered by B as in the proof of Lemma 6, and it computes the signature from
the input message and the key pair (w, x) as described in Protocol 7. The total number of random oracle
queries is hence of Q = QRO+NHash ·QSig. The signing queries being perfectly answered, A produces a valid
signature with probability ϵEUF-CMA. Then, by the proof of Lemma 6, B interacting with A and OSig(w, x, ·)
recovers w with probability ϵGame0 such that

ϵEUF-CMA ≤ ϵGame0 +
(τN + 1)Q2

22λ
+ Pr[X + Y = τ] .

We note that this is insufficient to prove our security statement since the reduction B should not have access
to the oracle OSig(w, x, ·), which is why we need to transit to Game 2.

Game 1 is similar to Game 0 but the signing oracle OSig(w, x, ·) is replaced by an oracle O′
Sig(w, x, ·).

The latter works in the exact same way as the original signing oracle except that the the pseudo-randomness

(r
[e]
w , r

[e]
β , r

[e]
ψ) of Phase 1, i.e. the outputs of PRG(salt, e, ρ), is replaced by true randomness (independent of

the root seed ρ). This is indistinguishable from the previous reduction given that PRG is a secure pseudo-
random generator. We deduce that the success probability ϵGame1 of B to recover w while interacting with
A and O′

Sig(w, x, ·) satisfies
|ϵGame0 − ϵGame1| ≤ ϵprg .

61

Finally, Game 2 is similar to the previous games but the signing oracle is replaced by a simulator SSig(x, ·)
which does not take the secret key w as input. Additionally, B keeps a list Sl of all the salts appearing in
random oracle queries. Namely, Algorithm 1 (Hash0), Algorithm 3 (Hash1) and Algorithm 4 (Hash2) further
perform salt→ Sl on any query with salt as salt. This simulator is depicted in Algorithm 5. Whenever SSig
aborts, B also aborts.

SSig(x,m):

Sample a random salt salt← {0, 1}2λ
If salt ∈ Sl, then abort

Sample random hashes h1 ← {0, 1}2λ and h2 ← {0, 1}2λ
If h1 ∈ Bad or h2 ∈ Bad then abort

Expand h1 as (ε[e])e∈[τ] ← Expand(h1)

Expand h2 as (I [e])e∈[τ] ← Expand(h2)

Randomly generate α[e] for every e ∈ [τ] s.t. g(α[e]) = 0

Randomly generate the shares Jw[e]Ki, Jβ[e]Ki for every e ∈ [τ] and i ∈ I [e]

Compute Jα[e]Ki := φx,ε[e]
(
Jw[e]Ki, Jβ[e]Ki

)
for every e ∈ [τ] and i ∈ I [e]

From Jα[e]KI[e] and α
[e], reconstruct the shares Jα[e]KS for every e ∈ [τ]

Compute com
[e]
i := Hash0(salt, e, i, Jw[e]Ki, Jβ[e]Ki) for every e ∈ [τ] and i ∈ I [e]

Sample random commitments com
[e]
i ← {0, 1}

2λ for every e ∈ [τ] and i /∈ I [e]

If com
[e]
i ∈ Bad for some e ∈ [τ] and i /∈ I [e], then abort

Compute h̃[e] := MerkleTree(com
[e]
1 , . . . , com

[e]
N) for every e ∈ [τ]

For q1 = (m, salt, h̃[1], . . . , h̃[τ]), let (q1, h1)→ Q1

For q2 = (salt, h1, (Jα[e]KS)e∈[τ]), let (q2, h2)→ Q2

Let auth[e] the authentication path for {com[e]
i }i∈I w.r.t. Merkle root h̃[e]

Let i∗[e] ∈ S \ I [e]

Return σ :=
[
salt | h1 | h2 |

(
(Jw[e]Ki, Jβ[e]Ki)i∈I , auth[e], Jα[e]Ki∗[e]

)
e∈[τ]

]

Algorithm 5: Signing simulator.

Let us stress that the random generation of α[e] such that g(α[e]) = 0 is done according to the real
distribution of α[e] in a valid signature. This distribution depends on the MPC protocol and is independent
of w (by the zero-knowledge property).

The signing simulator follows the same principle as the zero-knowledge simulator of the proof-of-knowledge
protocol. By knowing the challenges beforehand, it can generate a signature with perfect distribution without
knowing the secret witness. In the random oracle model, this simply means randomly generating the answers
h1 and h2 of the oracles Hash1 and Hash2 before they are actually queried. In the absence of abortion, we
thus get that an answer of SSig on input (x,m) is identically distributed to an answer of O′

Sig on input
(w, x, ·).

We have to deal with an additional subtlety. By randomly generating the commitments com
[e]
i for every

e ∈ [τ] and i /∈ I [e], the simulator implicitly define some outputs of the Hash0 oracle for which she does not
know the input. Since the sharing Jw[e]K is fully defined by the shares Jw[e]KI[e] and the witness w, and the

sharing Jβ[e]K is fully defined by the shares Jβ[e]KI[e] and the plain value β[e] = ψx(w; r
[e]
ψ), Hash0 should be

constrained to answer a future request q0 = (salt, e, i, Jw[e]Ki, Jβ[e]Ki) by the com
[e]
i randomly sampled by the

simulator whenever a match occurs, i.e., whenever

1. (salt, e, i) are such that salt corresponds to a previous signing request for which i ̸= I [e],
2. the shares Jw[e]Ki, Jβ[e]Ki in the request q0 are consistent with the full sharings Jw[e]K and Jβ[e]K defined

by the shares Jw[e]KI[e] and Jβ[e]KI[e] of this previous signing request together with the witness w.

62

To deal with this, we simply modify Algorithm 1 (Hash0) in the following way. If a new request q0 =
(salt, e, i, Jw[e]Ki, Jβ[e]Ki) is made for which condition 1 above is satisfied, the algorithm reconstructs a can-
didate witness w∗ from the shares Jw[e]KI[e] from the previous signing query and the share Jw[e]Ki from the
current q0 query. In case w∗ is a valid witness, i.e. F (w∗) = x, B returns w∗. We thus have that such event
can only occur if B outputs w and does not affect the event (A wins | B ouputs ⊥) that we are considering
here.

The probability of abortion due to collisions in Bad is the same for O′
Sig and SSig. Indeed, they both

do the same amounts of queries to the random oracles, the simulator just do them in a different order and
handle the queries for h1 and h2 directly. SSig may further aborts in case of salt collision, which happens
with probability at most (QRO +QSig)/2

2λ. We deduce that the success probability ϵGame2 = ϵeuf-cma of B
to recover w while interacting with A and simulating signing queries with SSig(x, ·) satisfies

|ϵGame1 − ϵGame2| ≤
QSig(QRO +QSig)

22λ
≤ Q2

22λ

which concludes the proof.

63

	Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head

