
Cryptographic Administration for

Secure Group Messaging

David Balbás∗1,2, Daniel Collins3, and Serge Vaudenay3

1IMDEA Software Institute, Madrid, Spain
2Universidad Politécnica de Madrid, Spain

3EPFL, Switzerland

August 7, 2023

Full Version†

Abstract

Many real-world group messaging systems delegate group administration to the appli-
cation level, failing to provide formal guarantees related to group membership. Taking
a cryptographic approach to group administration can prevent both implementation and
protocol design pitfalls that result in a loss of confidentiality and consistency for group
members.

In this work, we introduce a cryptographic framework for the design of group messaging
protocols that offer strong security guarantees for group membership. To this end, we
extend the continuous group key agreement (CGKA) paradigm used in the ongoing IETF
MLS group messaging standardisation process and introduce the administrated CGKA
(A-CGKA) primitive. Our primitive natively enables a subset of group members, the group
admins, to control the addition and removal of parties and to update their own keying
material in a secure manner. We embed A-CGKA with a novel correctness notion which
provides guarantees for group evolution and consistency, and a security model that prevents
even corrupted (non-admin) members from forging messages that add new users to a group.
Moreover, we present two efficient and modular constructions of group administrators that
are correct and secure with respect to our definitions. Finally, we propose, implement, and
benchmark an efficient extension of MLS that integrates cryptographic administrators. Our
constructions admit little overhead over running a CGKA and can be extended to support
advanced admin functionalities.

∗Part of this work was done while at LASEC, EPFL, Switzerland.
Contact: david.balbas@imdea.org, daniel.collins@epfl.ch
†This is the full version of an article accepted at USENIX Security 2023 [BCV23].

1

Contents

1 Introduction 3
1.1 Group Administration . 3
1.2 Contributions . 5
1.3 Overview . 6
1.4 Additional Related Work . 7

2 Notation 8

3 (Administrated) Continuous Group Key Agreement 8
3.1 Continuous Group Key Agreement . 8
3.2 Administrated CGKA . 12
3.3 Correctness . 13
3.4 Security . 15

4 Constructions 21
4.1 Individual Admin Signatures . 21
4.2 Dynamic Group Signature . 27
4.3 Integrating A-CGKA into MLS . 32

5 Results 35
5.1 Correctness . 35
5.2 Security . 35
5.3 Benchmarking . 36

6 Discussion 37
6.1 Efficiency . 37
6.2 On Modelling in Related Work . 39
6.3 Additional admin mechanisms . 40

Acknowledgements 42

References 42

A Primitives 46

B Security Proofs 47
B.1 Proof of Theorem 1 (IAS security, Section 5.2) 47
B.2 Proof of Theorem 2 (DGS security, Section 5.2) 51

C Correctness Proofs 54
C.1 Proof of Proposition 1 (IAS correctness) . 54
C.2 Proof of Proposition 2 (DGS correctness) . 56

2

1 Introduction

In our current era of unprecedented digital communication, billions of people use instant
messaging services daily. Building messaging protocols that provide security guarantees to
users is a challenging task for many reasons. One of them is that protocol participants must
be able to exchange messages asynchronously and should not be required to be online and
available at all times. Besides this, they must always be ready to send or receive messages
spontaneously (i.e. without additional interaction). Moreover sessions are long-lived, in contrast
to protocols such as TLS, and the secrets are stored in potentially vulnerable mobile devices,
and so providing security guarantees under state exposure has become standard.

Messaging protocols are designed either for two-party conversations, such as the Signal
[PM16] and OTR [BGB04] protocols, or for group conversations. In the group case ([BBR18,
ACDT20, KPPW+21, ACJM20, ACDT21a]), modern protocols are often designed to achieve
forward security (FS) and post-compromise security (PCS) [CGCG16] to protect past and
future communications, respectively, upon state compromise. The most common approach
for designing a scheme with these features consists of group members running a protocol
to derive a single, common group key that they can update on-demand. To capture the
fundamental requirements of a group key agreement primitive for messaging, Alwen et al.
[ACDT20] introduce the continuous group key agreement (CGKA) primitive, which includes
support for asynchrony, dynamic groups and key ratcheting. This approach (and, at its core,
the TreeKEM protocol [BBR18]) has been adopted by the Messaging Layer Security (MLS)
[BBM+] work-group of the Internet Engineering Task Force (IETF). MLS and other CGKA
protocols rely on a centralized delivery service (DS) that orders and distributes control messages
to group members for group membership and key updates.

One of the major challenges in the design of group messaging protocols is the need to
account for group evolution or dynamics : the list of group members may change at any point in
time, requiring complex key agreement protocols. As a baseline for ensuring practical security
guarantees, formal security proofs in a realistic adversarial model are essential, especially in a
complex setting like group messaging.

1.1 Group Administration

Group messaging protocols require careful handling of group membership, particularly to
prevent membership changes from diminishing the confidentiality of sent messages. Overall,
securing group membership involves three main aspects: (1) key updates, ensuring that new
members cannot read past messages and removed members cannot read future messages; (2)
membership consistency, ensuring that all members faithfully know the list of members at any
time; and (3) securing control messages (i.e., notifications for member addition and removal
operations) from active adversaries and from the delivery service itself.

Many state-of-the-art protocols, including passively-secure CGKAs [ACDT20, KPPW+21],
Sender Keys (WhatsApp, Signal Messenger) [Wha20] and Matrix [Fou22], include cryptographic
mechanisms for securing key updates, but provide weaker and sometimes even no guarantees for
securing membership consistency and control messages. We identify membership consistency as
both a correctness and a security property that is critical for confidentiality (otherwise, the
sender of a message may not know the receivers) but is often ignored in the literature. Failing
to secure control messages can also result in catastrophic attacks. Practical examples include
the burgle into a group attack [RMS18], which exploits the lack of authentication of control

3

messages to allow an adversary with partial control over the central server to enter arbitrary
group chats in Signal and WhatsApp. Recent attacks on the Matrix protocol [ACDJ22] make
use of similar vulnerabilities, enabling the server to take over the control of a group.

In order to secure group membership, we observe that there is a strong trend in practice
to distinguish between at least two types of users in a group: group administrators (admins)
and standard users. In groups with administrators, all group changes are either performed or
approved by the admins. Therefore, we address the problem of secure group management by
developing a cryptographic framework for group administration.

1.1.1 Administration in messaging apps

Generally, an admin has all the capabilities of a standard user plus a set of administrative
rights. In practice, admins are implemented at the application level via policies enforced either
by the central server or users. Examples are the popular messaging apps Signal, Telegram and
WhatsApp (as of 2022).

• In WhatsApp, only admins can add and remove users, create a group invite link, and
govern the admin subgroup. All groups must have at least one admin; when the last
admin leaves, a user is selected randomly as the new admin.

• In Telegram, the group creator can designate other admins with diverse sets of capabilities.
Besides adding and removing users, admins can impose partial bans on any user’s
capabilities, such as sending or receiving messages, and can even restrict the content that
users can send [Tel].

• In Signal Messenger, admins can specify whether all members or only admins can add
and remove users from a group (in the latter case non-admins can request to add users)
and create a group invite link.

Despite administration mechanisms being widely deployed, there is little mention of admins in
the literature. Existing CGKA and group messaging approaches make no formal distinction
between admin and non-admin users, which results in giving admin capabilities to all users.

1.1.2 Security goals

There are four main security goals that our cryptographic administrators aim to achieve. In
groups where no distinction is made between admins and standard members, our solutions can
be extended to the whole group by treating all members as admins; these goals nonetheless still
apply:

• Reduce trust on the delivery service, such that it has no control over group administration
and membership.

• Mitigate the impact of insider attacks [KS05, AJM20] on protocol execution. Insider
adversaries, or compromised group members, will not be able to gain control of a group
unless they are administrators1.

1Note that denial-of-service attacks from malicious non-admin insiders as in [ACJM20] are not necessarily
prevented; we also remark that this family of attacks does not affect confidentiality. This issue is discussed in
later sections.

4

• Increase the resilience of implementations of messaging protocols, preventing pitfalls such
as the burgle into a group attack [RMS18] or the recent attacks on Matrix [ACDJ22].

• Reduce concurrency issues, especially when the delivery service is not a central server
[WKHB21], since only a reduced set of members are able to commit group changes.

1.1.3 Admin capabilities

Let G = {ID1, . . . , IDn} be a group of users participating in messaging or continuous key
exchange and G∗ ⊆ G be a non-empty subset of group administrators. Unlike regular group
members, the administrators ID ∈ G∗ that we consider can: (1) add and remove members from
the group, (2) approve/reject join and removal requests, (3) designate other administrators, (4)
give up their admin status, (5) remove the admin status of other users. For performance and
security, regular group members should be able to remove themselves and make key updates
without admin approval.

These correspond to the common administration features among the solutions presented
above. In the case of Telegram, their “fine-grained administration” is practical due to the lack
of end-to-end encryption. By default, Telegram relies on a central server that decrypts all
messages, which is incompatible with our schemes.

1.2 Contributions

In this work, we cast group administration as a formal cryptographic problem. The complexity
of secure messaging requires modular constructions and proofs of security; our main goal in
this paper is to provide these. Our core contributions are as follows.

1. We introduce the administrated CGKA (A-CGKA) primitive in Section 3 by extending
the continuous group key agreement (CGKA) primitive.

2. We introduce a novel game-based correctness notion for both CGKA and A-CGKA in
Section 3.3 which emphasises the role of group dynamics which we argue is centrally
linked to group administration.

3. Extending existing CGKA key indistinguishability security notions, we introduce a game-
based security notion (Section 3.4) which further aims to prevent even fully corrupted
non-admin users from modifying group membership.

4. We present two A-CGKA constructions, IAS and DGS, each built on top of a CGKA
protocol. Each approach provides different security and efficiency properties. We formalise
both protocols in detail in Section 4, analyze their performance in Section 6.1, and prove
correctness and security (Section 5.2).

5. We propose an extension to MLS in Section 4.3 that provides efficient secure administration
that we also implement and benchmark locally (Section 5.3).

6. We consider additional administration mechanisms in Section 6.3 and discuss their possible
implementation.

5

1.3 Overview

From CGKA to A-CGKA. Inspired by newer versions of the MLS draft standard, CGKA
has been increasingly formalised in the so-called propose and commit paradigm [ACJM20,
AJM20, ACDT21a]. In CGKA, each user maintains a state which is input to and updated by
local CGKA algorithms. Users in a given group can create proposal messages to propose to
add or remove users, or to update their keying material for PCS reasons. Proposals are then
combined by a member to form a commit message. This is then processed by users which make
the committed changes effective.

We extend CGKA to A-CGKA to support administration on the primitive level. We support
additional proposal types, namely for adding and removing admins, as well as for admin key
updates. In A-CGKA, only admins can make admin proposals, and moreover only admins can
authorise all types of commit messages. That is, users only process group changes that have
been attested by an admin (except for users leaving the group by themselves, which can always
be processed).

Correctness. Our notion of A-CGKA correctness enforces that users that process the same
sequence of commit messages for a given group derive consistent views of both the evolution
of group members and admins, and also of the shared key. Our game explicitly checks that
only through processing commit messages that group membership can change. We also enforce
that honest proposals have their intended effect when embedded in commit messages upon
processing.

Early CGKA game-based correctness notions were limited to key consistency [ACDT20] or
were not formally specified [KPPW+21]. It is only recently that group evolution guarantees
have been considered, notably in the latest version of [ACJM20] which works in the UC and the
monolithic security definition of [ACDT21b]. We emphasise this because, given the length of our
IAS construction and corresponding correctness proof, it is possible that subtle bugs concerning
group evolution are hidden in existing group messaging constructions and implementations.2

In particular, we spotted (resolved) inconsistencies while trying to prove our protocols correct.

Security. Our security notion captures two core guarantees. Firstly, like previous
work [ACDT20, KPPW+21], we consider a key indistinguishability game where the adver-
sary drives CGKA execution via oracles and may compromise parties. We prevent the adversary
from winning the game trivially in so-called cleanness predicates, which are protocol-dependent,
similar to previous work [DV19, ACDT20].

Secondly, differing from standalone CGKA, we require that the adversary is unable to forge
an (admin) commit message that results in a change in group structure for the processing
party, even if the adversary knows the group key. We model this by allowing the (semi-active)
adversary to inject commit messages to particular parties which process the messages (albeit
without updating their state). The adversary can adaptively corrupt participants and make
challenge queries. Security is ensured insofar as the adversary does not trivially compromise
an administrator, i.e., they are permitted to compromise many non-admins. As in the case of
key indistinguishability, we also specify a separate admin cleanness predicate to capture trivial

2For example, in Figure 8 (SGM) and Figure 17 (RTreeKEM) in [ACDT21b], commit processing is not
well-defined for a user who is processing their own removal from the group.

6

attacks for this attack vector. Our security notion allows for FS and PCS guarantees with
respect to the admin keying material.

Constructions. In this work, we provide two separate, modular constructions of A-CGKA
from a CGKA that we describe in Section 4. We also introduce an extension of MLS that
supports administration. The security of the authentication mechanisms in all our protocols
matches the FS and PCS demands of group messaging.

In our first construction, individual admin signatures (IAS), admins keep track of their own
signature key pair. Admin proposals and commits which change the group structure or admin
structure or keys are signed using the committing admin’s signature key. Admins update their
signature keys via admin update proposals or by crafting commit messages.

Our second construction, dynamic group signature (DGS), relies on a secondary CGKA and
authenticates a group of admins as a whole (possibly all group members). This highlights the
fact that administration can be done without authenticating single users. Instead of maintaining
individual signatures, admins instead execute within this CGKA and use the common secret to
derive a signature key pair for each epoch. Non-admins keep track of the signature public key
over time and verify that commits are signed using it.

In Section 4.3, we embed the MLS protocol with A-CGKA functionality more organically by
making use of MLS’s credential infrastructure. We describe the main modifications needed and
propose an extension of MLS that admits secure administration. Moreover, we implement and
benchmark the efficiency of our MLS extension (and include a reference to the source code); we
present our results in Section 5.

Proofs. In the appendices, we formally prove that our protocols IAS and DGS are correct
and secure with respect to our A-CGKA definitions. The main theorems are as follows:

Theorem 1 (Simplified). Let CGKA be a correct and (tcgka, q, ϵcgka)-secure CGKA. Let S =
(SigGen, Sig,Ver) be a (tS , q, ϵS) SUF-CMA secure signature scheme. Let H4 be a (tF , 1, ϵF)-
secure PRF. Then, the IAS protocol (Figures 6, 7 and 8) is correct and (t, q, q ·ϵF +ϵcgka+q2 ·ϵS)-
secure (Definition 4) where tcgka ≈ tS ≈ tF ≈ t.

We prove IAS secure with respect to a sub-optimal admin cleanness predicate (somewhat weak
forward secrecy). We argue that the protocol and proof can be very easily modified to satisfy
optimal security using forward-secure signatures [BM99] with no asymptotic overhead; this is
discussed in Section 4.1.4.

Theorem 2 (Simplified). Let CGKA (resp. CGKA∗) be a correct and (tcgka, q, ϵcgka)-secure
(resp. (tcgka∗, q, ϵcgka∗))-secure CGKA. Let S = (SigGen,Sig,Ver) be a (tS , q, ϵS) SUF-CMA
secure signature scheme. Let H4 be a (tF , 1, ϵF)-secure PRF and Hro a random oracle queried
at most qro times. Then, the DGS protocol (Figures 6 and 7) is correct and (t, q, ϵcgka + q · (ϵF +
ϵS + qroϵcgka∗+2−λ))-secure (Definition 4) for security parameter λ in the random oracle model
where tcgka ≈ tS ≈ tF ≈ t.

1.4 Additional Related Work

Messaging. Many works in the two-party messaging literature laid the foundations for
modern group messaging protocols, especially regarding FS and PCS. Initial work includes
OTR [BGB04] and Signal [PM16] (the latter being formalized in [ACD19, CGCD+20]).

7

The TreeKEM protocol in MLS, initially proposed in [BBR18], was inspired by Asyn-
chronous Ratchet Trees [CGCG+18]. Later, variants of TreeKEM arose like Tainted TreeKEM
[KPPW+21], Insider-Secure TreeKEM [AJM20], Re-randomized TreeKEM [ACDT20], and
Causal TreeKEM [Wei19]. MLS as a whole is studied in [BCK22, ACDT21a].

CGKAs have been recently used to formally build full group messaging protocols [ACDT21a].
Besides TreeKEM, CGKA variants include [ACJM20, AHKM21, WKHB21, AAN+22]. Side
works deal with multi-group security [CHK21], efficient key schedules for multiple groups
[AAB+21], and concurrency [BDR20]. Separately, [PRSS21] surveys group key exchange
protocols. Group admins were considered in [RMS18], although without a formal cryptographic
approach, instead opting for security notions described more informally akin to a symbolic
model of security using predicates.

An alternative approach towards securing group membership was taken in the Signal Private
Group System [CPZ20] which we discuss in Section 6.2.

An earlier version containing some preliminary results appears in Balbas’ MSc thesis [Bal21].

2 Notation

A user, participant, or party is an entity that takes part in a protocol. Users are identified by
a unique identity string ID, which is a public parameter. Groups are also uniquely identified
by a public group identifier gid. Users keep an internal state γ with all information used for
protocol execution. This includes keys, message records, dictionaries and parameters. If γ is
leaked, we say ID suffers a state compromise or a corruption.

To assign the output of an algorithm Alg on input x to variable a, we write a ← Alg(x),
and a←$Alg(x) for randomized algorithms (to make the randomness r explicit, we write
a← Alg(x; r)). Blank values are denoted by ⊥.

Our security games are played between a challenger and an adversary A, who can interact
with the protocol via oracles. We let λ ∈ N be the security parameter. In our games,
the predicate ‘require P ’ enforces that a logical condition P is satisfied; otherwise the
oracle/algorithm aborts and returns ⊥. The game predicate ‘reward P ’ is such that if
P holds, the adversary wins the game. The keyword ‘public var’ indicates that the adversary
has read access to variable var.

To store and retrieve values, we often use dictionaries: A[k]← a adds the value a to the
dictionary A under key k, overwriting if necessary. b ← A[k] retrieves A[k] and assigns it to
variable b. A dictionary A is initialized as A[·]← a; where all values are set to a. The use of
the prefix operator Alg(++x), is equivalent to writing first x← x+ 1 and then Alg(x).

3 (Administrated) Continuous Group Key Agreement

In this section, we introduce Continuous Group Key Agreement (CGKA) and then extend it to
formalize our Administrated CGKA (A-CGKA) primitive. We also introduce our correctness
and security definitions for both CGKA and A-CGKA.

3.1 Continuous Group Key Agreement

The aim of the Continuous Group Key Agreement (CGKA) primitive [ACDT20] is to provide
shared secrets (denoted by k) to dynamic groups of users over time. In CGKA, each group,

8

labelled with a group identifier gid, is subject to additions (add), removals (rem), and user state
refreshes/key updates (upd).

The definition of CGKA is introduced below, in the so-called propose and commit
paradigm [AJM20, ACJM20], in which different operation proposals in a given group (e.g.,
adding/removing members) are collated into a commit message by a group member which is
processed by users. The evolution of a CGKA in time is captured by epochs; a group member
advances to a new epoch every time they successfully process a commit message, at which point
there may be a change in the shared secret and/or group structure from their perspective.

Note that the primitive is stateful : each user keeps their own state γ and calls each of the
following algorithms locally which may update the state.

Definition 1. A continuous group key agreement (CGKA) scheme is a tuple of algorithms
CGKA = (init, create, prop, commit, proc, prop-info, props) such that:

• γ←$ init(1λ, ID) takes a security parameter 1λ and an identity ID and outputs an initial
state γ.

• (γ′, T)←$ create(γ, gid, G) takes a state γ, a group identifier gid, and a list of group
members G = {ID1, . . . , IDn} and outputs a new state γ′ and a control (welcome) message
T , where T = ⊥ indicates failure.

• (γ′, P)←$ prop(γ, gid, ID, type) takes a state, a group identifier, an ID, and a proposal
type type ∈ types = {add, rem, upd}, and outputs a new state γ′ and a proposal message
P , where P = ⊥ indicates failure.

• (γ′, T, k)←$ commit(γ, gid, P⃗) takes a state, a group identifier, and a vector of proposals
P⃗ , and outputs a new state γ′, a control message T where T = ⊥ indicates failure, and
the (possibly new) group secret k.

• (γ′, acc)← proc(γ, T) takes a state and a control message T , and outputs a new state γ′

and an acceptance bit acc, where acc = false indicates failure.

• (gid, type, ID, ID′)← prop-info(γ, P) takes a state and a proposal P , and outputs the group
identifier of the proposal gid, its type type, the ID of the user affected by the proposal and
the proposal creator ID′.

• P⃗ ← props(γ, T) takes a state and control message T and outputs the vector of proposals
P⃗ associated with T , where P⃗ = ⊥ indicates failure.

Finally, given ID’s state γ and gid, the (possibly empty) set of group members in gid from ID’s
perspective is stored as γ[gid].G, and the group secret k for gid is γ[gid].k.

3.1.1 Protocol execution

For simplicity, we assume that all users and groups are associated with a unique identifier ID and
gid, respectively. Once every user has initialized their state using init, a group is created when
some party calls create on a list of IDs. The init algorithm can also serve to authenticate and
register keys on a PKI when appropriate, as in [ACDT20, KPPW+21, ACJM20]. In Section 4.1,
we expand on the use of PKI and authentication issues: for each protocol, we describe our

9

assumptions on the PKI. The create algorithm outputs a control message T that must be
processed by prospective group members, including the group creator, to join the group gid.

In our formalism, any user can propose a member addition (add), member removal (rem)
or key update (upd, only available for the caller) at any time. This is done via the prop
method, which outputs a proposal message P . Proposals encode the information needed to
make a change in the group structure or keying material, but the encoded changes are not
immediately applied to the group. We emphasise that only the caller of prop can use argument
type = upd to propose to update (i.e., refresh) their keying material, in which case the input
ID is ignored. Following [ACDT21a], we define prop-info which outputs proposal attributes,
rather than allowing for their direct access, to support possibly encrypted proposals (e.g., as in
MLSCiphertext [BBM+]).

Proposed changes become effective once a user commits a (possibly empty) vector of
proposals P⃗ = (P1, . . . , Pm) using commit. The commit algorithm outputs the new group key
k and a control message T that contains the information needed by all current and incoming
group members to process the changes. Typically, the commit algorithm also updates the keying
material of the caller. Control messages are processed via proc, which updates the caller’s state
and outputs a bit acc indicating success or failure. We note that proc and props do not require
a group identifier as input; this models the standard behaviour of a messaging protocol where,
upon reception of a message, the user needs to determine which group the message corresponds
to. In the event that a group member needs to parse the proposals in a commit message T
without processing, it can do so via the props algorithm.

3.1.2 Example

Consider 5 parties {ID1, . . . , ID5} executing a CGKA protocol. After they each initialize their
states as γi←$ init(1λ, IDi), the following actions take place:

1. ID1 calls create(γ1, gid, {ID1, ID2, ID3, ID4}), which updates γ1 and outputs a control mes-
sage T0. At this stage, the group is still empty, G = ∅.

2. Each IDi (including ID1) processes the group creation as proc(γi, T0), which updates each
state γi and outputs acc = true to each user. At this stage, G = {ID1, ID2, ID3, ID4}, and
the group members share a common secret k1.

3. Several users propose changes in the group:

• ID2 proposes to add ID5 to the group by calling (γ′2, P1)←$ prop(γ2, gid, ID5, add).

• ID3 wants to update its key material and thus calls (γ′3, P2)←$ prop(γ3, gid, ID3, upd).

• ID1 proposes to remove ID4 from the group and calls
(γ′1, P3)←$ prop(γ1, gid, ID4, rem).

This is shown in Figure 1. The group remains the same.

4. ID2 collates all proposals in a commit message by calling
(γ′2, T1, k2)←$ commit(γ2, gid, (P1, P2, P3)). The group remains the same, since
parties have not yet processed T1.

5. All parties process T1 by calling proc(γi, T1) and updating their states. Now, G =
{ID1, ID2, ID3, ID5} and these members share a new common secret k2, which is not known

10

to ID4. In addition, ID3 (due to the update) and ID2 (due to the commit) have refreshed
their entire keying material.

Figure 1: Diagram of a sample CGKA execution with 5 parties. Parties in green (ID2, ID3, ID5) will
update their key material after ID2 commits, while ID4 will leave the group.

3.1.3 Commit semantics

We assume that proposals input to commit are processed in some deterministic, publicly-known,
a priori determined order, that we call the policy. It is possible to extend the syntax of A-CGKA
with a dedicated policy algorithm that defines this order as in [Bal21].

3.1.4 Alternative definitions

Particularly in older CGKA definitions [ACDT20, KPPW+21] and MLS drafts, group changes
are made effective immediately by processing proposals. To this end, the commit and prop
algorithms are replaced by specific ‘action’ algorithms such as add, remove, update. The propose
and commit paradigm used in this work was introduced in version 8 of MLS to allow for multiple
group changes and key updates to be applied at the same time to reduce latency [BBM+].
As mentioned in [KPPW+21], the older protocols can be written in the propose and commit
paradigm, which is more flexible (and also better suited for group administrators as we will
see).

A relevant difference between the definition in [ACDT20] (and other game-based formulations
such as in [KPPW+21]) and ours is that we work in the multi-group setting, and so we consider
group identifiers of the form gid. Multi-group CGKAs have not been formalized in the literature,
although multi-group security has been studied [CHK21], as well as efficient key schedules
for multiple groups [AAB+21]. According to our definition, a user can be in many groups,
identified by different values gid and interleave operations from each group arbitrarily. There
are formulations of CGKA in the universal composability (UC) model [ACJM20, AJM20] which
use group identifiers. In fact, composability guarantees in the UC model rely on the existence
of unique, a priori established ‘session identifiers’ [Can01, KT11]; these can be established
in practice via a central server or a distributed protocol [BLR04]. Note [CHK21] considers
cross-group security for messaging but does not treat CGKA as a primitive formally.

Finally, we note that there are other small differences in the literature. The semantics of
Tainted TreeKEM [KPPW+21] enable users to speculatively execute operations; our syntax

11

could be modified to support this. In CGKA work such as [ACDT20], it is typical to make
a distinction between standard commit and welcome messages. We implicitly incorporate
this distinction in our constructions, but avoid it in the primitive syntax for simplicity. In
[AJM20, ACJM20], additional algorithms such as getKey are provided; we treat k as a state
variable instead, which is output by commit. As mentioned, it is also possible to conceive a
policy algorithm as in [Bal21]. Groups in [ACDT21a, AJM20] are initially of size 1. Different
works formalise the role of the PKI to different degrees: [ACDT21a, AJM20] consider an
explicitly modelled PKI where users can choose their own possibly malicious keying material.
Nevertheless, all works on CGKI hitherto formally assume that the PKI acts consistently for
all users.

3.2 Administrated CGKA

An administrated continuous group key agreement (A-CGKA) is a CGKA where only a group
G∗ of ID’s, the so-called group administrators, can commit (and therefore make effective)
changes to the group structure, such as adding and removing users. As with the group of users
G in both CGKA and A-CGKA, the group of administrators G∗ is dynamic.

Definition 2. An administrated continuous group key agreement (A-CGKA) scheme is a tuple
of algorithms A-CGKA = (init, create, prop, commit, proc, prop-info, props) such that:

• Algorithms init, proc, prop-info, props are defined as for a CGKA (Definition 1).

• In prop and prop-info, types is redefined as types = {add, rem, upd, add-adm, rem-adm,
upd-adm}.

• (γ′, T)←$ create(γ, gid, G,G∗) additionally takes a group of admins G∗.

• (γ′, T, k)←$ commit(γ, gid, P⃗ , com-type) additionally takes a commit type com-type ∈
com-types = {std, adm, both}.

Given ID’s state γ and gid, γ[gid].G and γ[gid].k are defined as in Definition 1, and γ[gid].G∗

stores the set of admins in gid from ID’s perspective.

The execution of an A-CGKA is analogous to CGKA. Besides the introduction of the group
of admins, we introduce three additional proposal types add-adm, rem-adm, and upd-adm
which concern administrative changes. Namely, an admin can propose to add another admin
to the group of administrators, revoke the admin capabilities from a party, or update their
administrative key material, respectively. The commit type com-type specifies the scope of a
commit operation, that is, whether it affects the general group (std), the administration of the
group (adm), or both at the same time (both). For the latter, a simple example is when an
admin is both adding a member (group modification) and refreshing its admin keys (admin
modification).

We note that the create algorithm enforces the condition ∅ ⊂ G∗ ⊆ G; our correctness and
security notions will ensure this holds throughout execution. Thus, the group administrators
are always a subset of the group members. We take this approach following previous CGKAs
[ACDT20, KPPW+21, ACJM20] and group messaging protocols [BBM+, ACDT21a] where
only group members can perform commits or make changes in the group. In these works, it
is impossible for an external user to administrate a group, since external commits are not
permitted. We elaborate on this in Section 6.

12

Real-world administrators. A-CGKA captures the main admin features in commercial
applications such as WhatsApp and Signal as mentioned in the introduction. We remark that
the fact that non-admins are not allowed to make changes (except for leaving a group) is
a desired consequence of our formulation of A-CGKA. A more fine-grained solution, at the
expense of additional A-CGKA formalism, is to allow admins to send a policy change proposal,
to e.g. modify the ability of all members to call commit to add new users. We briefly discuss
formalising administration outside of the CGKA framework in Section 6.3.

3.3 Correctness

Due to their similarity, we define the correctness of CGKA and A-CGKA together. Correct-
ness of an (A)-CGKA scheme (A)-CGKA under the notion CORR(A)-CGKA is defined by game

CORRA(A)-CGKA,Ccorr
played by adversary A in Figure 2. The main properties captured by the

game are the following:

• View consistency: All users who transition to the same epoch (i.e. which process the
same sequence of commit messages) have the same group view (i.e., G, G∗ and key k).

• Message processing: The group structure (G/G∗) and k can only be modified due to calls
to proc.

• Forking states: If the group is partitioned into subgroups that process different sequences
of commit messages (thus leading to different group views), the game ensures that members
in each partition have consistent views.

• Multiple groups: The adversary may create groups via OCreate on behalf of different users,
and interact with different IDs in multiple groups.

Separately, we ensure that a user’s state is not modified whenever a particular algorithm
call fails. As observed for two-party messaging [BSJ+17], we require incorrect inputs to not
affect the functionality of the protocol, and in particular to not cause a denial of service.

Overview. The game starts by setting up several public dictionaries. The main two are ST[·],
which is a dictionary indexed by ID which keeps the states of each of the users ID throughout
the game; and T[·], which keeps all control messages and proposals generated by the A-CGKA
algorithms. A message T stored in T is indexed by the corresponding gid, epoch, message type
(’prop’, ’com’ or ’vec’, standing for proposal, commit, or proposal vector respectively), and
a message counter prop-ctr or com-ctr. After initialization, we let the adversary A interact with
the oracles with respect to multiple groups. The variable win is set to 1 if one of the reward
clauses is true, which leads to A winning given the (optional) predicate Ccorr is also true when
A finishes executing.

Epochs. Control messages output by successful create and commit calls are labelled uniquely
by the challenger. For correctness, an epoch is a pair (t, c), where t is an integer relative to a
particular group and party which increments upon each successful proc call while in the group,
and c is the value of the global variable com-ctr when the corresponding control message was
output. For a given group, each party’s epoch value is stored in ep[·] and initialised to (−1,−1),
and is set to ⊥ when they leave a group. To this end, we model correctness in the presence of

13

CORRA
(A)-CGKA,Ccorr

(1λ)

1 : public ep-view[·], ST[·],T[·]← ⊥
2 : public first-crt[·]← ⊥
3 : public prop-ctr, com-ctr← 0 // msg counters

4 : public ep[·]← (−1,−1) // user epoch tracker

5 : win← 0

6 : ST[ID]←$ init(1λ, ID) ∀ ID

7 : AO(1λ)

8 : require Ccorr // optional predicate

9 : return win // 1 if A is rewarded

OCreate(ID, gid, G,G∗)

1 : (γ, T)←$ create(ST[ID], gid, G,G∗)

2 : if T = ⊥ return

3 : reward ¬(∅ ̸= G∗ ⊆ G)

4 : CheckSameGroupState(ST[ID], γ, gid)

5 : T[gid, (−1,−1), ’com’, ++com-ctr]← T

6 : ST[ID]← γ

ODeliver(ID, gid, (t, c), c′)

1 : require ep[gid, ID] ∈ {(t, c), (−1,−1),⊥}
2 : T ← T[gid, (t, c), ’com’, c′] // honest delivery

3 : (γ, acc)← proc(ST[ID], T)

4 : if ¬acc return // failure

5 : reward props(ST[ID], T) ̸= T[gid, (t, c), ’vec’, c′]

6 : reward ¬(∅ ̸= γ[gid].G∗ ⊆ γ[gid].G)

7 : if (t, c) = (−1,−1) // create msg

8 : UniqueCreatePerGID(γ, gid, c′)

9 : if ID ̸∈ γ[gid].G // ID removed

10 : ep[gid, ID]← ⊥
11 : reward γ[gid].k ̸= ⊥ // key deleted

12 : else // ID in group

13 : UpdateView(γ, gid, t, c′)

14 : reward γ[gid].k ̸= T[gid, (t, c), ’key’, c′]

15 : ep[gid, ID]← (t+ 1, c′)

16 : ST[ID]← γ

OProp(ID′, gid, ID, type)

1 : require type ∈ types

2 : (γ, P)←$ prop(ST[ID′], gid, ID, type)

3 : if P = ⊥ return // failure

4 : (gid∗, type∗, ID∗, ID′∗)← prop-info(γ, P)

5 : reward (gid∗, type∗, ID∗, ID′∗)

̸= (gid, type, ID, ID′)

6 : CheckSameGroupState(ST[ID′], γ, gid)

7 : T[gid, ep[gid, ID′], ’prop’, ++prop-ctr]← P

8 : ST[ID′]← γ // upd. ST of proposer ID′

OCommit(ID, gid, I = (i1, . . . , ik), com-type)

1 : require com-type ∈ com-types

2 : require ep[gid, ID] ̸∈ {(−1,−1),⊥}

3 : P⃗ ← (T [gid, ep[gid, ID], ’prop’, i])i∈I

4 : (γ, T, k)←$ commit(ST[ID], gid, P⃗ , com-type)

5 : if T = ⊥ return // failure

6 : reward ID /∈ ST[ID][gid].G // no external comm.

7 : CheckSameGroupState(ST[ID], γ, gid)

8 : T[gid, ep[gid, ID], ’com’, ++com-ctr]← T

9 : T[gid, ep[gid, ID], ’vec’, com-ctr]← props(γ, T)

10 : T[gid, ep[gid, ID], ’key’, com-ctr]← k

11 : ST[ID]← γ

UpdateView(γ, gid, t, c′)

1 : v ← ep-view[gid, t+ 1, c′]

2 : if v = ⊥
3 : ep-view[gid, t+ 1, c′]← γ

4 : else CheckSameGroupState(v, γ, gid)

CheckSameGroupState(γ1, γ2, gid)

1 : reward γ1[gid].k ̸= γ2[gid].k

2 : reward γ1[gid].G ̸= γ2[gid].G

3 : reward γ1[gid].G∗ ̸= γ2[gid].G∗

UniqueCreatePerGID(γ, gid, c′)

1 : if first-crt[gid] ̸= ⊥
2 : require c′ = first-crt[gid]

3 : else first-crt[gid]← c′

Figure 2: Correctness game for (A)-CGKA with respect to predicate Ccorr. Highlighted code is executed
only when considering an A-CGKA. Note that when reward P is true for predicate P , the variable win
is set to 1.

14

an adversary who maintains arbitrary network partitioning, so long as they provide a consistent
view of messages to parties in each ‘partition’.

Group consistency. We enforce that, for each group member, that each group is only
(possibly) updated upon a successful call to proc (via CheckSameGroupState). For A-CGKA, we
ensure that, for a group gid, ∅ ≠ G∗ ⊆ G must hold at all times. In proc, we enforce that all
users who transition to the same epoch have the same view of the group and set of admins
when relevant (via UpdateView). The dictionary ep-view stores the state of the first party who
transitions to a given epoch (t, c) for a gid. We also require that, even if there are multiple calls
to create, only one of them is processed by group members (i.e. states do not fork from the initial
epoch). To achieve this, the variable first-crt tracks the commit number of the first successfully
processed create message for a given gid. This check is made in UniqueCreatePerGID.

Key partnering. Note that new epoch keys are derived upon successful proc calls, and that
a new key k (for group members) is always derived in this case. Correctness ensures that all
users who transition to the same epoch derive the same key k. The consistency between the
key output by commit and the actual epoch keys is also verified. Moreover, whenever a user
derives a key k ̸= ⊥, they must be a group member (line 11 of ODeliver).

Liveness. We enforce that some algorithms, such as prop, always succeed on ‘valid’ input,
since without such a check, a (A)-CGKA with algorithms that always fail is considered correct.
One example of a liveness check is an equality check between proposals output by props and the
input proposals in OCommit. Since the precise semantics of (A)-CGKA vary between applications,
additional checks are delegated to a correctness predicate Ccorr which, in part, parameterises
the correctness game. In the previous example, Ccorr may depend on the protocol policy for the
application of proposals. Without extra checks, the predicate should be set to Ccorr = true.

Definition 3 (CORR(A)-CGKA). A CGKA CGKA (resp. A-CGKA A-CGKA) is correct w.r.t. a

predicate Ccorr if, for all 1λ and all computationally unbounded adversaries A, it holds that:

Pr[CORRA(A)-CGKA,Ccorr
(1λ) = 1] = 0

where the probability is taken over the choice of the random coins of the challenger and adversary.

Note that this notion can easily be relaxed to consider correctness that holds with high
probability w.r.t a computationally-bounded adversary (e.g. to capture decryption failures
from lattice-based cryptography). We compare our correctness notion to related work in the
introduction.

3.4 Security

A-CGKA is a primitive that extends the functionality of a CGKA to provide secure adminis-
tration, but whose end purpose is that the members of a given group derive a common group
key. Therefore, any A-CGKA construction must satisfy at least ‘standard’ CGKA security (key
indistinguishability).

The main additional goal of A-CGKA over standard CGKA is to prevent unauthorized
(standard) users from deciding on changes to a group, capturing the security of the group

15

evolution. Note that an A-CGKA in which the adversary fully controls a standard group
member is not secure with respect to key indistinguishability, but it should still be secure with
respect to group evolution. We define (A)-CGKA security in Definition 4.

Definition 4 (Security of (A)-CGKA). A CGKA CGKA (resp. A-CGKA A-CGKA) is (t, q, ϵ)-
secure w.r.t. the predicates Ccgka, (Cadm,Cforgery) if, for any adversary A limited to q oracle
queries and running time t, the advantage of A in the KIND(A)-CGKA game (Figure 3) given by∣∣∣∣Pr[KINDA(A)-CGKA,Ccgka,(Cadm,Cforgery)

(1λ) = 1]− 1

2

∣∣∣∣
is bounded by ϵ, where the probability is taken over the choice of the challenger and adversary’s
random coins.

3.4.1 Overview

At its core, the security game in Figure 3 is a key indistinguishability game that captures
the security of the common group secret for a single group (we implicitly assume a fixed gid),
extending the game in [ACDT20]. The game considers a partially active adversary who can
make forgery attempts and schedule messages but cannot totally control message delivery.
Namely, the adversary can inject a control message to a specific party ID, but this message
is not stored in the array T that keeps track of all honestly generated messages after proc is
called. The main consequence of this is that injected proposals cannot be included in commits;
nevertheless, the adversary can make commits on arbitrary vectors of proposals created via
OProp.

Informally, the adversary can win the game if it plays a clean game where it either 1)
correctly guesses the challenge bit by distinguishing between correct and uniformly sampled
keys or (for A-CGKA) 2) manages to forge a message which, after being processed by a user,
changes its view of (G,G∗). We assume that the dependency on the PKI is implicit in the
game; we describe the PKI functionality we assume for each protocol as they are introduced. A
detailed description follows.

3.4.2 Epochs

Messages output by successful create, commit, and prop calls are uniquely labelled by the
challenger via counters prop-ctr, com-ctr. Whenever such a call is made, the corresponding
messages are stored in variable T with (incremented) last argument ++com-ctr. The evolution
of the group after parties process such control messages is modelled using epochs (differing
from the epochs considered for correctness), which are each represented as an integer ts (for
CGKA) or a pair of integers (ts, ta) (for A-CGKA). The standard epoch ts represents the time
between two successive key evolutions, where a different key should be derived in each ts. The
administrative epoch ta represents the time between two changes in the group administration
(i.e. between two sequences of simultaneous admin updates, adds and/or removals).

For CGKA, epochs (ts) advance every time a commit is processed. For A-CGKA, ts
advances if the commit type com-type ∈ {std, both} and ta advances if com-type ∈ {adm, both}.
Group members can be in different epochs, captured by the variable ep[ID] which stores the
current epoch pair for a given group member ID. If a participant ID is not in the group, then
ep[ID] = −1 (CGKA) or ep[ID] = (−1,−1) (A-CGKA) holds.

16

KINDA
(A)-CGKA,Ccgka,Cadm,Cforgery

(1λ)

1 : b←$ {0, 1}
2 : K[·],ST[·]← ⊥
3 : public T[·],G[·],ADM[·]← ⊥
4 : prop-ctr, com-ctr, exp-ctr← 0

5 : ep[·], exp[·]← (−1,−1); C[·]← −1
6 : chall[·], forged← false

7 : ST[ID]←$ init(1λ, ID) ∀ ID

8 : b′ ←$AO(1λ)

9 : require Ccgka ∨ forged

10 : return 1b=b′

OCreate(ID, G,G∗)

1 : (γ, T)←$ create(ST[ID], G,G∗)

2 : if T = ⊥ return // failure

3 : T[(−1,−1), ’com’, ++com-ctr]← (T, both)

4 : ST[ID]← γ

OProp(ID, ID′, type)

1 : (γ, P)←$ prop(ST[ID], ID′, type)

2 : T[ep[ID], ’prop’, ++prop-ctr]← P

3 : ST[ID]← γ

OCommit(ID, (i1, . . . , ik),com-type)

1 : P⃗ ← (T[ep[ID], ’prop’, i])i=(i1,...,ik)

2 : (γ, T, k)←$ commit(ST[ID], P⃗ , com-type)

3 : if T = ⊥ return // failure

4 : T[ep[ID], ’com’, ++com-ctr]← (T, com-type)

5 : T[ep[ID], ’vec’, com-ctr]← props(ST[ID], T)

6 : (ts, ta)← ep[ID]

7 : if com-type = adm ts ← ts − 1

8 : K[ts + 1]← k; ST[ID]← γ

OChallenge(ts)

1 : require (K[ts] ̸= ⊥) ∧ ¬chall[ts]
2 : chall[ts]← true

3 : if b = 0 return K[ts]

4 : if b = 1 return r←$ {0, 1}λ

ODeliver(ID, (ts,ta), c)

1 : require ep[ID] ∈ {(ts, ta), (−1,−1)}
2 : (T, com-type)← T[(ts, ta), ’com’, c] // honest deliv.

3 : if C[(ts, ta)] ∈ {c,−1}, C[(ts, ta)]← c

4 : else return // bad commit for epoch

5 : (γ, acc)← proc(ST[ID], T)

6 : if ¬acc return // failure

7 : if ID ̸∈ γ.G // ID removed

8 : ep[ID]← (−1,−1)
9 : else // ID in group, update dictionaries

10 : ep[ID]← (ts, ta)

11 : if com-type ∈ {std, both}
12 : K[ts + 1]← γ.k

13 : G[ts + 1]← γ.G

14 : ep[ID]← ep[ID] + (1, 0)

15 : if com-type ∈ {adm, both}
16 : ADM[ta + 1]← γ.G∗

17 : ep[ID]← ep[ID] + (0, 1)

18 : ST[ID]← γ

OReveal(ts)

1 : require (K[ts] ̸= ⊥) ∧ ¬chall[ts]
2 : chall[ts]← true

3 : return K[ts]

OExpose(ID)

1 : exp[ID, ++exp-ctr]← ep[ID]

2 : return ST[ID]

OInject(ID,m, ta)

1 : require Cadm ∧ (ep[ID] = (·, ta)) ∧ (ta ̸= −1)
2 : require (m, ·) ̸∈ T // external forgery

3 : (γ,⊥)← proc(ST[ID],m)

4 : if Cforgery

5 : forged← true // successful forgery

6 : return b // adversary wins

7 : else return ⊥

Figure 3: Key indistinguishability (KIND) security game for (single-group) (A)-CGKA, parametrized
by the Ccgka and Cadm predicates. Highlighted code is executed only when considering an A-CGKA.

17

Challenges. At any point in the game, the adversary can challenge with respect to a standard
epoch ts by calling OChallenge. In a challenge, the adversary is given the group key K[ts] if the
challenger’s bit is b = 0, and a random string r←$ {0, 1}λ if b = 1. The adversary must try to
determine the value of b by outputting a guess b′ of b. A given execution is considered valid
when either the standard cleanness predicate Ccgka is true or, for A-CGKA, the adversary makes
a forgery and the admin cleanness predicate is true. Cleanness ensures that no trivial attacks
on the game are possible; we elaborate on this below.

Exposure mechanisms. In order to capture group key ratcheting (for FS and PCS), the
adversary has two mechanisms to obtain secret group material: it can expose a user ID and
reveal the group secret k. An exposure leaks the entire current state of ID stored in ST[ID]. We
keep track of the specific epochs in which each ID was exposed using the exp[·] variable. On the
other hand, a reveal leaks the group key to the adversary on a specified epoch ts – in this case,
chall[ts] is set to true to prevent the adversary from challenging on ts (conversely, the reveal
fails when chall[ts] = true).

Injections. For A-CGKA, the adversary can also win the game by successfully injecting a
forged commit. An injection can be attempted by calling OInject(ID,m, ta), given that ID is
in admin epoch ta, where ID is the target group member and m is the forged message. Note
we require ta ̸= −1 since the adversary could otherwise trivially invite a new user into a new
group that it controls. Forgeries can only be attempted if the administrative predicate Cadm is
not violated. The adversary wins the game if the forgery is accepted by any group member
ID ∈ G and if the forgery predicate Cforgery that we define below is true. As discussed below,
Cadm captures administration security by excluding trivial attacks. An trivial scenario excluded
by any predicate is when the adversary has exposed an administrator immediately before a
forgery attempt.

3.4.3 CGKA forgery predicate

For A-CGKA, we define security under active attacks performed using the OInject oracle with
respect to a predicate Cforgery. The predicate we describe captures the fact that if admins have
not been corrupted, then non-admins can only make group changes for self-removes, i.e. when
non-admins want to remove themselves. Moreover, we require that self-removes cannot be
forged themselves (i.e. the only acceptable self-remove operations are those that were generated
honestly). If there are no self-remove operations, then the predicate reduces to the fact that
non-admins cannot affect changes in the group.

The predicate Cforgery is defined as follows with respect to variables in OInject and in the

game in general. Suppose m is input to OInject. Let P⃗ = props(ST[ID],m). Consider P⃗ ′ = {P ∈
P⃗ : P ′ ∈ T[ep[ID], ’prop’, ·] ∧ prop-info(ST[ID], P) = prop-info(ST[ID], P ′)}.3 Let H = {ID :
(gid, rem, ID, ID) = prop-info(ST[ID], P) ∧ (P ∈ P⃗ ′)} and H∗ = {ID : (gid, rem-adm, ID, ID) =
prop-info(ST[ID], P) ∧ (P ∈ P⃗ ′)}. Then Cforgery is true if and only if (ST[ID].G \H,ST[ID].G∗ \
H∗) ̸= (γ.G, γ.G∗). If there are no self-removes, i.e. H = H∗ = ∅, this simplifies to the predicate
(ST[ID].G,ST[ID].G∗) ̸= (γ.G, γ.G∗); let Cforgery

∗ be this simplified predicate.

3The effect of the equality check with respect to prop-info is that a dishonest proposal P ′ that has the same
semantics as an honest proposal P will not be considered a ‘forgery’ by Cforgery.

18

Ccgka-opt : ∀ (i, ID, ctr ∈ (0, exp-ctr]) : qi = OChallenge(t∗i),(
ID ̸∈ G[t∗i]

)
∨(

∃(ti, c) : (tExp(ID, ctr).ts < ti ≤ t∗i)∧
hasUpdstd (ID,T[(ti, ·), ’com’, c],T[(ti, ·), ’vec’, c])∧
(C[(ti, ·)] = c)

)
∨
(
t∗i < tExp(ID, ctr).ts

)
.

Figure 4: Optimal CGKA predicate where the adversary makes oracle queries q1, . . . , qn.

3.4.4 CGKA cleanness predicate

The security game in Figure 3 is parametrized by two cleanness predicates, Ccgka and Cadm.
The first predicate Ccgka follows approaches like [BRV20, ACDT20] to parametrise the security
of the common (A)-CGKA key. Namely, this predicate excludes trivial attacks on the protocol,
i.e., those that break security unavoidably such as exposing a user and issuing a challenge
before its key material has been updated. Further, it captures the exact security of the protocol
(with respect to key indistinguishability), which in our case comprises forward security and
post-compromise security after updates. If an independent CGKA is used to construct an
A-CGKA, the predicate Ccgka may mostly depend on the security of the CGKA. An example,
as we show in later sections, is our second construction DGS.

A more fine-grained characterization of this predicate is to write it as Ccgka = Ccgka-opt ∧
Ccgka-add, where Ccgka-opt is an optimal, generic cleanness predicate that excludes only unavoidable
trivial attacks, and Ccgka-add is an additional cleanness predicate that depends on the scheme and
excludes other attacks. We define Ccgka-opt in a similar way to the safe predicate in [ACDT20].
Namely, we exclude the following cases: (i) the group secret in challenge epoch t∗s was already
challenged or revealed, and (ii) a group member ID whose state was exposed in epoch texp ≤ t∗s
did not update their keys (i.e., processed their own commit, or processed a commit in which
they were involved in an add, remove, or update proposal) or was not removed before the
challenge epoch t∗s. The optimal cleanness predicate is given in Figure 4 for an adversary that
makes oracle queries q1, . . . , qn in the game.

The predicate is the logical disjunction of three clauses: for every exposure, adversarial
challenge, and party ID, we require that either 1) ID was not a group member at the challenge
time, 2) the challenged epoch precedes the exposure (forward security), or 3) ID updated
between the exposure and the (subsequent) challenge (post-compromise security). To avoid
cluttering the predicate, our game already enforces that only one challenge or reveal can be
performed per epoch (which is optimal for our game).

We have used the following auxiliary functions. The function tExp is such that tExp(ID, ctr) =
exp[ID, ctr] if ∃k : qk = OExpose(ID), and −1 (for CGKA) or (−1,−1) (for A-CGKA) otherwise.
Given P⃗ , the function hasUpdstd(ID, (T, com-type), P⃗) (sans com-type for CGKA) outputs true
if either: (i) ID has processed a commit of his own, where com-type ∈ {std, both}, or (ii) ID is a
user affected by an add, update, or removal proposal in P⃗ .

3.4.5 Admin cleanness predicate

The second predicate Cadm models administration security. This predicate should be more
permissive in some aspects than Ccgka, since a forgery attempt should be permitted even if the
adversary knows the state of a (standard) group member. Following the approach above, we

19

Cadm-opt : ∀ (i, ID, ID′, ctr ∈ (0, exp-ctr]) : qi = OInject(ID′, ·, t∗i),(
ID ̸∈ ADM[t∗i]

)
∨(

∃(ti, c) : (tExp(ID, ctr).ta < ti ≤ t∗i)∧
hasUpdadm (ID,T[(·, ti), ’com’, c],T[(·, ti), ’vec’, c])∧
(C[(·, ti)] = c)

)
∨
(
t∗i < tExp(ID, ctr).ta

)
.

Figure 5: Optimal administrative predicate where the adversary makes oracle queries q1, . . . , qn.

can decompose Cadm = Cadm-opt ∧ Cadm-add.
Cadm-opt is symmetric to Ccgka-opt and excludes the following family of attacks: the adversary

attempts a forgery on a member ID′ at an administrative epoch t∗a while having exposed the
state of an administrator ID ∈ G∗ at an administrative epoch texp ≤ t∗a, such that ID has not
updated at some point between them. The predicate is optimal, as any attack that it excludes
must occur while an administrator is directly under state exposure. In the game itself, we also
require that ID′ is in the challenge epoch specified by the adversary, i.e., ep[ID′] = (·, t∗a). Notice
that this predicate is unrelated to the common group secret and standard epochs ts, and only
relates to administration dynamics.

The optimal administrative predicate Cadm-opt is captured in Figure 5. In the expression, the
function hasUpdadm is defined as in hasUpdstd, except it is defined with respect to com-type ∈
{adm, both} (rather than com-type ∈ {std, both}).

3.4.6 Limitations

Our security definition does not allow arbitrary message injections to participants. Thus, attacks
on robustness are not captured by our security model. In particular, so long as non-admins
are allowed to make commits, our A-CGKA schemes will only provide as much security as the
underlying core CGKA: using MLS’s TreeKEM, for example, a malicious non-admin can deny
service by sending a malformed commit message that can be processed only by some of the
users. This can be fixed at the expense of using NIZKs within TreeKEM [ACJM20, DDF21]. In
any case, we note that confidentiality is not compromised under this family of attacks attacks,
as their main consequence is to “disconnect” users from the protocol (in particular, new users
cannot be added).

If only admins are allowed to commit, then our schemes (to be introduced) are safe against
this attack vector for some non-strongly robust variants of TreeKEM, such as the one used in
MLS [BBM+] (which is now an RFC at the time of writing). Standard users can still attain FS
and PCS guarantees, and in particular PCS when their update proposals are committed.

Among the broader family of group key agreement protocols, where long-lived sessions and
PCS are not always considered, modelling fully active adversaries is common [PRSS21]. We
also do not model authentication (we implicitly assume an incorruptible PKI) and randomness
manipulation, and we do not explicitly model (via a no-deletion oracle or similar [ACDT21a])
parties who do not delete their state as instructed by the algorithm and are then exposed. We
leave these for future work.

Multi-group security can be captured rather easily. The main difference (besides increased
notation complexity introduced by the gids as in Figure 2) appears in the state exposure oracle:
exposing the state of a party implies a security loss in all groups that the party is a member
of simultaneously. The feature is not included as our security proofs are in the single-group

20

setting.
Our OInject oracle does not allow the adversary to inject welcome messages. Of course,

the adversary can always make a new group with whatever users it chooses. It is nonetheless
possible to extend our security notion to allow for injections, such that the adversary can only
create a group for ‘valid’ users, i.e. those who have registered their keys with the PKI (which
would be checked when a user processes a welcome message).

4 Constructions

A first attempt of A-CGKA is to simply require group members to keep a list of administrators
over time. Whenever an admin wants to make a commit, it can simply check whether the
admin-changing proposals have been made by administrators, then commit them, and the other
users will verify the admin condition upon processing. This approach is functional, but not
secure in our model due to a lack of admin authentication. An adversary can easily forge a
commit message and impersonate an admin unless this message is authenticated (for example
signed). Many notions of CGKA security [ACDT20, KPPW+21] do not necessarily imply such
a level of authentication.

One partial fix is to require admins to sign using a key derived from a long-term identity
key. Then, security cannot be recovered if the admin is compromised once, resulting in the
adversary winning the A-CGKA game too. Our constructions provide FS and PCS to admin
authentication mechanisms in order to circumvent this problem.

4.1 Individual Admin Signatures

In our first construction, individual admin signatures (IAS), we build a generic and modular
administration mechanism on top of an arbitrary CGKA protocol (denoted by CGKA). Each
group administrator ID ∈ G∗ maintains their own signature key pair (ssk, spk). Each key pair is
independent from the keys used in CGKA, which is mostly used as a black-box. Group members
keep track of the list of admins G∗ which is (possibly) updated upon processing each control
message. Proposed changes to the group and to the administration are signed using an admin’s
keying material.

4.1.1 Protocol

The IAS construction is presented in Figures 6, 7 and 8. The first figure describes the A-CGKA
algorithms, and the second and third describe helper functions and auxiliary methods. We note
that the algorithms defined in Figure 6 are incomplete without the helper functions; therefore,
the construction spans the three figures.

States. We represent the state of a participant by the symbol γ, which is in part a dictionary
of states, indexed by group identifiers i.e. γ[gid]. Users further maintain a common state via γ.s0
encoding the underlying CGKA state, security parameter 1λ in γ.1λ and the user’s ID in γ.ME.
For each group gid, users keep a separate state that encodes the list of group administrators
γ[gid].adminList and two administration-related signature key pairs. The state also keeps the
group members as γ[gid].G = γ[gid].s0.G, the admins as γ[gid].G∗ = γ[gid].adminList[·].ID, and
the CGKA key as γ[gid].k = γ[gid].s0.k.

21

All implemented A-CGKA algorithms, including init, are stateful as if executed by the same
party and, as written, do not explicitly return the updated local state. Instead, they modify the
state during runtime. In the event of algorithm failure, the state is not modified and appropriate
failure values are output.

In our functions in Figures 6 and 7, 8, we often omit the group identifier of the state
to simplify presentation. We assume that γ refers to γ[gid] whenever gid is a subject of the
algorithm, such as when it is a parameter of the function, and sometimes omit gid when it is
clear from context. We note that our scheme nevertheless supports multiple groups.

Randomness. In our construction, we make randomness used by protocol algorithms explicit,
including sampled randomness r0 ∈ {0, 1}λ as input. Namely, for the input randomness r0
used in any randomised method, we apply a PRF (r1, . . . , rk)← Hk(r0, γ) that combines the
entropy of r0 and the state γ. We do this to reduce the impact of randomness leakage and
manipulation attacks [BRV20]: without prior knowledge of γ (and assuming it has a sufficient
entropy), an adversary that reads or manipulates r0 will not be able to derive a corresponding
ri value. This is an additional feature that aims to maintain certain security properties in
stronger adversarial models than considered in this work presently, and does not interfere with
the rest of the protocol.

PKI. IAS assumes a basic, incorruptible PKI functionality where all parties are authenticated
with the PKI. The PKI provides a fresh signature public key spk for which only the party ID
can retrieve the corresponding secret key ssk. This functionality is used in two different places:

1. When the group of administrators expands; namely, when a party ID′ crafts a group gid
or makes an admin add proposal; and

2. When a non-admin user wishes to remove themselves from gid (a ‘self-remove’).

For these purposes, we define a getSpk algorithm, which on input (ID, ID′, gid) for subject ID
and caller ID′ outputs spk relevant to the context the call is made in. We also assume a method
of the form getSsk(spk, ID, gid) that returns the ssk associated to spk when called by ID given
they uploaded it. During protocol execution, parties upload signature key pairs (ssk, spk) to
the PKI via an abstract registerKeys(ID) method both in initialisation and during the two
aforementioned scenarios.4 Formally, the adversary is only exposed to getSpk; we assume the
other functions are called as needed in the security game though.

4.1.2 Description

Initialization. Before the creation of a group, a participant starts by calling the init method,
which initializes the state γ. In turn, init calls CGKA.init from the underlying CGKA to initialize
its state γ.s0. (ssk, spk) and (ssk′, spk′) are two signature key pairs for group administration.
The first pair is the valid admin signature key pair using during protocol execution, while
the second pair stores updated keys after a commit or a key update operation is done by the
participant but before it is processed (i.e. acts as a temporary variable). After successfully
processing a commit message, the second key pair replaces the first.

4This abstraction is made to reduce notational complexity.

22

init(1λ, ID; r0)

1 : γ.s0← CGKA.init(1λ, ID; r0)

2 : γ.ME← ID; γ.1λ ← 1λ

3 : γ[·].adminList[·]← ⊥ // stores (ID, spk) pairs

4 : γ[·].ssk, γ[·].spk← ⊥ // active admin key pair

5 : γ[·].ssk′, γ[·].spk′ ← ⊥ // temporary key pair

6 : registerKeys(ID) // Upload keys to PKI

prop(gid, ID, type; r0)

1 : P ← ⊥; (r1, r2, r3, r4)← H4(r0, γ)

2 : if type = ∗-adm
// Note if type = upd-adm, keys are updated

3 : require γ.ME ∈ γ.adminList

4 : P ← makeAdminProp(gid, type, ID; r1, r2)

5 : else (γ.s0, P)← CGKA.prop(γ.s0, gid, ID, type; r1)

6 : if (type = rem) ∧ (ID = ME) ∧ (ID ̸∈ γ.s0.G∗)

7 : (ssk, spk)← SigGen(γ.1λ; r3)

8 : P ← (P,Sig(ssk′, P ; r4))

9 : return P

commit(gid, P⃗ , com-type; r0)

1 : require γ.ME ∈ γ.s0.G

2 : require com-type ∈ {adm, std, both}
3 : (r1, . . . , r4)← H4(r0, γ)

4 : (P⃗0, P⃗A,Σ, admReq)← propCleaner(gid, P⃗)

5 : require verifyPropSigs(P⃗0,Σ, P⃗A)

6 : if admReq ∨ (com-type ∈ {adm, both})
7 : require γ.ME ∈ γ.adminList

8 : if com-type ∈ {adm, both}

9 : CA ← P⃗A

10 : if com-type ∈ {std, both}

11 : (C0,W0, adminList, k)← c-Std(gid, P⃗0, P⃗A; r1)

12 : require C0 ̸= ⊥
13 : // generate new key pair and sign new spk

14 : (γ.ssk′, γ.spk′)← SigGen(γ.1λ; r2)

15 : TC ← (‘comm’, γ.ME, C0, CA,⊥, γ.spk′)
16 : if W0 ̸= ⊥ // share updated admin list

17 : TW ← (‘wel’, γ.ME,W0, adminList)

18 : else TW ← ⊥
19 : σT ← Sig(γ.ssk, (gid, TC , TW); r4)

20 : else // only self-removes - no admin sig

21 : (C0,⊥,⊥, k)← c-Std(gid, P⃗0,⊥; r3)
22 : TC ← (‘comm’, γ.ME, C0,⊥,Σ,⊥)
23 : TW ← ⊥; σT ← ⊥
24 : return ((gid, TC , TW , σT), k)

create(gid, G,G∗; r0)

1 : require (γ.ME ∈ G∗) ∧ (G∗ ⊆ G)

2 : (r1, r2)← H2(r0, γ)

3 : (γ.s0,W0)← CGKA.create(γ.s0, gid, G; r1)

4 : if W0 = ⊥ return ⊥
5 : adminList[·]← ⊥ // this is not γ.adminList

6 : for ID ∈ G∗ :

7 : adminList[ID]← (ID, getSpk(ID, γ.ME))

8 : γ.spk′ ← adminList[ME]

9 : γ.ssk′ ← getSsk(γ.spk′,ME)

10 : TW ← (‘wel’, γ.ME,W0, adminList)

11 : return (gid,⊥, TW ,Sig(γ.ssk′, (gid,⊥, TW); r2))

proc(T)

1 : (gid, TC , TW , σT)← T ; acc← false

2 : if (γ.ME ̸∈ γ[gid].s0.G) ∧ (TW ̸= ⊥)
3 : (msg-type, · · ·)← TW

4 : require msg-type = ‘wel’

5 : acc← p-Wel(gid, TW , σT) // Welcome helper

6 : else if (γ.ME ∈ γ[gid].s0.G) ∧ (TC ̸= ⊥)
7 : (msg-type, ·, C0, ·,Σ, ·)← TC

8 : require msg-type = ‘comm’

9 : for σ : (P, ID, σ) ∈ Σ :

10 : if ¬Ver(getSpk(ID,ME), σ, P)

11 : ∨ (ID ∈ γ[gid].adminList) return false

12 : if σC = ⊥ // no sign - check only self-removes

13 : (γ′, acc)← CGKA.proc(γ[gid].s0, C0)

14 : SR← {ID : (·, ID) ∈ Σ}
15 : if ¬acc ∨ γ′[gid].s0.G ∪ SR ̸= γ[gid].s0.G

16 : return false

17 : γ[gid].s0← γ′; return true

18 : if ¬[(ID ∈ γ[gid].adminList) ∧
(Ver(γ[gid].adminList[ID].spk, (gid, TC , TW), σT))]

19 : return false // verification failed

20 : acc← p-Comm(gid, TC) // Admin commit helper

21 : return acc

prop-info(P)

1 : if P is of the form (P, σ) // self-removes

2 : (P, σ)← P

3 : if P is a CGKA proposal

4 : (P.gid, P.type, P.ID, P.ID′)←
CGKA.prop-info(γ.s0, P)

5 : else if P is an admin proposal

6 : (P.gid, P.type, P.ID, P.ID′,⊥,⊥)← P

7 : return (P.gid, P.type, P.ID, P.ID′)

Figure 6: Individual admin signatures (IAS) construction of an A-CGKA, built from a CGKA, a
signature scheme S = (SigGen,Sig,Ver), and n-PRFs Hn : R× ST→ Rn for n ≤ 4, randomness space R
and state space ST. The state values representing the group, the admins, and the group key are assigned
as: γ[gid].G = γ[gid].s0.G, γ[gid].G∗ = ∪ID{γ[gid].adminList[ID].ID}, and γ[gid].k = γ[gid].s0.k.

23

VALIDP

// Predicate checks validity of admin proposal

1 : (P.gid, P.type, P.ID, P.ID′)← prop-info(P)

2 : S1 := (P.gid = gid) // correct group

3 : S2 := (P.ID ∈ γ[gid].G) // ID member

4 : S3 := (P.ID′ ∈ γ[gid].G∗) // ID′ admin

5 : C1 := (P.type = rem-adm)

6 : S4 := (P.ID ∈ γ[gid].G∗) // ID admin

7 : C2 := (P.type = add-adm)

8 : return S1 ∧ S2 ∧ S3 ∧
(¬C1 ∨ S4) ∧ ¬(C2 ∧ S4)

makeAdminProp(gid, type, ID; r1, r2)

1 : P0 ← ⊥
2 : if type = add-adm

3 : spkpki ← getSpk(ID, γ.ME)

4 : P0 ← (gid, type, ID, γ.ME, spkpki)

5 : else if type = rem-adm

6 : P0 ← (gid, type, ID, γ.ME,⊥)
7 : else if type = upd-adm

8 : if (γ.ssk′, γ.spk′) ̸= (⊥,⊥)
9 : return ⊥ // only one update per epoch

10 : (γ.ssk′, γ.spk′)← SigGen(γ.1λ; r1)

11 : P0 ← (gid, type, γ.ME, γ.ME, γ.spk′)

12 : else return ⊥
13 : return (P0,Sig(γ.ssk, P0; r2))

c-Std(gid, P⃗0, P⃗A; r1)

1 : (γ.s0, C0,W0, k)←

CGKA.commit(γ.s0, gid, P⃗0; r1)

2 : if W0 ̸= ⊥ // list for new users only

3 : adminList′ ← updAL(γ.adminList, P⃗A)

4 : return (C0,W0, adminList′, k)

5 : else return (C0,⊥,⊥, k)

verifyPropSigs(P⃗0,Σ, P⃗A)

1 : for (P, ID, σ) ∈ Σ

2 : spk← getSpk(ID, γ.ME)

3 : if ¬Ver(spk, P, σ) ∨ P ̸∈ P⃗0 ∨ adminList[ID] ̸= ⊥
4 : return false

5 : for (P, σP) ∈ P⃗A :

6 : (⊥,⊥,⊥, ID′)← prop-info(P)

7 : spkP ← adminList[ID′].spk

8 : if ¬(Ver(spkP , P, σP) ∧ VALIDP)

9 : return false

10 : return true

propCleaner(gid, P⃗)

1 : admReq← false; P⃗0, P⃗A,Σ← []

2 : for P ∈ P⃗ :

3 : (gid, P.type, P.ID, P.ID′)← prop-info(P)

4 : if (P.type = ∗-adm) ∧ VALIDP

5 : P⃗A ← [P⃗A, P]

6 : admReq← true

7 : else // P⃗0 is handled by CGKA

8 : if P.type ∈ {add, rem}
9 : admReq← true

10 : if P.type = rem ∧
(P.ID = P.ID′) ∧ (P.ID ̸∈ γ[gid].G∗)

11 : admReq← false

12 : (P ′, σ)← P ;

13 : P⃗0 ← [P⃗0, P
′]; Σ← [Σ, (P, P.ID, σ)]

14 : else

15 : P⃗0 ← [P⃗0, P]

16 : // admin rem from G =⇒ rem from G∗

17 : if (P.type = rem) ∧ (P.ID ∈ γ[gid].G∗)

18 : P ′ ← makeAdminProp(gid, rem, ID;⊥)

19 : P⃗A ← [P⃗A, P ′]

20 : (P⃗0, P⃗A)← enforcePolicy(P⃗0, P⃗A)

21 : return (P⃗0, P⃗A,Σ, admReq)

p-Wel(gid, TW , σ)

1 : (⊥, ID,W0, adminList)← TW

2 : (γ[gid].s0, acc)← CGKA.proc(γ.s0,W0)

3 : acc← acc ∧ Ver(getSpk(γ.ME, ID), (gid,⊥, TW), σ)

4 : if acc γ[gid].adminList← adminList

5 : if acc ∧ (adminList[ME] ̸= ⊥)
6 : γ.spk← adminList[ME].spk

7 : γ.ssk← getSsk(spk,ME)

8 : return acc

updAL(adminList, P⃗A)

1 : for P ∈ P⃗A

2 : (gid, type, ID,⊥, spk,⊥)← P

3 : if type ∈ {add-adm, upd-adm}
4 : if (type = add-adm) ∧ (ID = γ.ME)

5 : γ.spk← spk

6 : γ.ssk← getSsk(spk, ID)

7 : adminList[ID]← (ID, spk)

8 : if type = rem-adm

9 : adminList[ID]← ⊥
10 : if (ID = γ.ME)

11 : (γ.ssk, γ.spk)← (⊥,⊥)
12 : return adminList

Figure 7: Helper functions for the IAS construction in Figure 6 (part I).

24

p-Comm(gid, TC)

1 : (⊥, ID, C0, CA,Σ, spk)← TC

// check signatures in proposals

2 : if CA ̸= ⊥

3 : if ¬verifyPropSigs(CA) return false // CA = P⃗A

// apply commit

4 : if C0 ̸= ⊥
5 : (γ′, acc)← CGKA.proc(γ.s0, C0)

6 : if acc = false return false

7 : if γ.ME ̸∈ γ′.G // user removed

8 : γ[gid]← ⊥ // reinitialize state (only for gid)

9 : else γ[gid].s0← γ′

// set temporary updated keys

10 : if (ID = γ.ME) ∨ (∃P ∈ CA : P.ID = γ.ME)

11 : (γ.ssk, γ.spk)← (γ.ssk′, γ.spk′)

12 : γ.ssk′, γ.spk′ ← ⊥
13 : γ.adminList← updAL(γ.adminList, CA)

14 : γ.adminList[ID].spk← spk // committer’s key

15 : return true

enforcePolicy(P⃗0, P⃗A)

// This method can be extended to other policies

1 : numAdmins← |G∗|

2 : for P ∈ [P⃗0, P⃗A]

3 : (gid, P.type, P.ID, P.ID′)← prop-info(P)

4 : if P.type = rem // If duplicates, removal prevails

5 : delete any other P ′ s.t. P.ID = P ′.ID

6 : except for rem-adm proposals

7 : else if P.type = rem-adm

8 : delete any other admin P ′ s.t. P.ID = P ′.ID

9 : else if P.type = rem-adm, numAdmins--

10 : else if P.type = add-adm, numAdmins++

11 : require numAdmins ≥ 1 // Ensures ∅ ̸= G∗ ⊆ G

12 : return (P⃗0, P⃗A)

props(T)

// Supports non-welcome control messages

1 : (TC , TW , σT)← T

2 : P⃗0 ← props(TC .C0); P⃗A ← TC .CA

3 : return P⃗0||P⃗A

Figure 8: Helper functions for the IAS construction in Figure 6 (part II).

Group creation. The create algorithm creates the group gid from the list of members G,
the admin list from G∗, and outputs a (signed) control message T for the new members in G.
The adminList variable includes pairs of the form (ID, spkID) for parties ID ∈ G∗. The public
signature keys are obtained via getSpk and each admin’s private key can be retrieved from the
PKI via getSsk while they are processing T , the control message that adds them to the group.
The group creator directly stores such key pair as (γ.ssk′, γ.spk′).

Proposals. Any group member can use prop to create a proposal of a non-admin type; the
algorithm calls CGKA.prop in this case. Administrative proposals are restricted to admins and
crafted by makeAdminProp, which includes an administrative signature in the proposal. The
signature is included to prevent an (insider) adversary from forging the sender of the proposal
in an attempt to impersonate an admin. Proposal creation does not have any effect on the
state other than the storage of temporary keys for proposals with type type = upd-adm. In
the case of an add-adm proposal to promote ID to admin status, the proposer γ.ME retrieves
a public signature key spk of ID from the PKI using getSpk. In the case of an rem proposal
where ID = ME (i.e. a self-remove), the caller samples a new signature key pair, registers the
public key spk with the PKI and signs their proposal.

The prop-info method simply retrieves the main information of a proposal. As mentioned in
the previous section, it could be adapted to support CGKAs and A-CGKAs where proposals
are encrypted5 (under some key derived from the group key, for instance).

5Special precaution must be taken with respect to security when proposals are encrypted under the CGKA
key, as the adversary gains access to multiple additional ciphertexts which can result in a security loss.

25

Commits. The commit algorithm can only be called by group administrators (except for the
special case in which only key updates and self-removes are proposed, when standard users can
commit), and performs the following actions:

1. Clean the input vector of proposals P⃗ , ensuring that they are well-formed. This is
done via the propCleaner algorithm, which in turn calls the enforcePolicy method. For
security reasons, we adopt the main features of the MLS policy (removing duplicates and
prioritizing removals) in our construction [BBM+], but extensions to this policy can be
implemented. In addition, we verify the legitimacy of the admin proposals and the fact
that self-remove proposals are correctly signed via verifyPropSigs. Then, the predicate
VALIDP verifies that the gid matches, that added users (respectively admins) do not
belong to G (resp. G∗), that removed users do belong to G (resp. G∗), and that the
proposer is an admin. Finally, we ensure that all users removed from G are also removed
from the adminList.

2. Carry out the administrative and the standard commits and produce an administrative
commit message CA (which is the clean admin proposal vector), a standard CGKA commit
C0, and an updated adminList. We split the CGKA commit in two components C0 and
W0 as is usual in the literature [ACDT20, AJM20, KPPW+21, ACJM20]. If the CGKA
does not allow for this, it is easy to modify the protocol without compromising security6.

3. Generate a new (temporary) administrative signature key pair (γ.ssk′, γ.spk′).

4. Produce the final control message T which includes the new spk′. The message T is again
split into two components: A first component TW (for welcome) includes all the required
information for incoming A-CGKA members, including the new list of admins. A second
component TC (for commit) contains the updating information for group members. Both
components are signed together using the committer’s current γ.ssk.

The props method, given a commit, retrieves the list of proposals that it implements; this
simply calls the underlying CGKA.props algorithm and combines the output with the list of
admin updates directly contained in a well-formed commit message.

Processing control messages. The proc method takes a control message T as input and
updates the state accordingly. The algorithm returns an acceptance bit acc which is true if
the processing succeeds, in which case the state is updated. Otherwise, the state remains
the same. During an execution of proc, some checks must pass before the state is updated.
For newly added users, p-Wel verifies the message signature on the adminList, attempts to
process the message via the underlying CGKA, and updates the state given this succeeds. For
group members, p-Com verifies the administrator signature and the signatures in the admin
proposals. The state is updated if all verification succeeds; a removed user blanks their state,
and temporary keys are updated if necessary. The case in which the T is not signed is handled
by proc directly by verifying that no changes to the group structure are made except possibly
for signed (and verified) self-removals (only key updates).

6This division is made for clarity, but it may be used to improve efficiency too. Namely, the welcome part W0

of a commit message does not need to be processed by existing group members, so in principle C0 can be sent
only to these. In A-CGKAs such as IAS, this can also be applied if signatures are handled carefully.

26

4.1.3 Features

We first note that the IAS protocol can be built over any CGKA. Since signatures are often
already present in CGKAs such as [AJM20], the extension from CGKA to A-CGKA can be
more direct (and thus incur less overhead) than presented here. This also holds true for any
group messaging scheme, such as the administrated MLS extension we describe in Section 4.3.

Commit and propose policies. Our construction allows standard users to perform a commit
if there are no changes in the group structure or in the administration. This is an optional
design choice that does not affect security in our model (and could be reflected in a correctness
predicate), although, as previously discussed, adversarial group members may deny service
if the underlying CGKA is not robust. We also enforce that standard users cannot propose
administrative changes (even if these could be later ignored by admins), and similarly can be
allowed as required by an application.

Security mechanisms. The security of the group administration is provided by the admin
signatures; an adversary should not be able to commit changes to the group unless it compromises
the state of one of the group administrators. The update mechanism provides optimal post-
compromise security.

On the other hand, administrative actions are undeniable and traceable both by group
members and by the message delivery service. Separately, additional protections (i.e. checking
members are registered on the PKI) are needed to ensure that parties are not invited to fake
groups where the list of group administrators is forged.

4.1.4 On optimal forward security

Note that, as defined, our construction does not satisfy forward security with respect to injection
queries even if the underlying CGKA provides optimal forward security. Concretely, suppose
that ID makes their last update in epoch 3, and then their state is exposed in epoch 5. Then
ID can trivially forge commit messages for parties that are in epochs 3 and 4 since their keying
material has not been updated. A similar forward security issue is present in the MLS standard
affecting confidentiality [ACDT20].

Optimal security can be easily achieved by replacing regular signatures with forward-secure
signatures [BM99]. Forward-secure signatures allow signers to non-interactively update their
secret keys and provide forward security given state exposure. In IAS, it suffices to use
forward-secure signatures such that whenever an epoch passes and an admin has not sampled
a new signature key, they invoke the signature scheme’s secret key update function, where
new signature keys are otherwise derived as in the construction. We note that forward-secure
signatures involve an overhead that may be undesirable in some cases, and also they are not used
in current protocols (signatures are already used in MLS’ CGKA, for instance). In Theorem
1, we characterize the exact security of IAS using standard primitives via our sub-optimal
predicate. In this way, the security of both alternatives is fully characterised.

4.2 Dynamic Group Signature

In our second construction, dynamic group signature (DGS), the group administrators agree on
a common signature key pair that they use for signing administrative messages on an underlying

27

CGKA. To agree on a secret and generate a common key pair, they run a separate CGKA. As
opposed to IAS, group administrators may now be opaque to group members if the concrete
CGKA which is used allows it. The reason is that they authenticate admin messages using an
admin signature key that is shared among all admins. Notably, group members do not need to
keep track of an administrator list; admins implicitly track this via their CGKA.

4.2.1 Protocol

The DGS protocol is introduced in Figures 9 and 10. In the algorithm, we refer to the primary
(or standard) CGKA as CGKA, and to the administrative CGKA as CGKA∗. The first CGKA
allows group members to agree on a common secret and group composition as in IAS, whereas
the second exists only for administrative purposes (i.e., admins deriving a common signature
key). Note that CGKA∗ is not necessarily implemented in the same way as the primary CGKA.
This feature can be exploited by a protocol designer either for performance reasons or if, for
instance, stronger FS and PCS guarantees are required for the administrative CGKA. For
simplicity of exposition, DGS as written does not support self-signed removal operations that
non-admins can commit directly, but we note that the technique to implement them is identical
to IAS.

States. Each party stores γ.s0, corresponding to the primary CGKA, as well as γ.sA, corre-
sponding to CGKA∗, which are used for each group they consider. For a group gid, we assume
that gid is used by the main CGKA and gid∗ by the admin CGKA, and we assume that gid1
and gid∗2 are distinct for all gid1, gid2. Besides these fields, the state includes the administrative
public key γ[gid].spk known by all group members (and can be a public group parameter,
known for instance by a central server) to enable verification. The state variables are now
γ[gid].G = γ.s0[gid].G, γ[gid].G∗ = γ.sA[gid∗].G, and γ[gid].k = γ.s0[gid].k.

Authentication. As in IAS, we assume a similarly incorruptible PKI functionality. Here, we
assume that admins register their (admin) signature public keys whenever they are sampled (only
upon group creation) or updated which can be obtained by users using the call getSpk(gid) (which
is only required by DGS for incoming group members). Authentication could be implemented
while ensuring k-anonymity such that a member authenticates his group membership but not
his identity; such a feature cannot be provided by IAS without modification.

4.2.2 Description

Initialization. The init procedure calls the CGKA.init and CGKA∗.init algorithms to initialize
γ.s0 and γ.sA, respectively, and sets γ[·].spk, γ[·].ssk← ⊥.

Group creation. The create algorithm creates a group for the two separate CGKAs by
calling the corresponding two create methods. These calls output new states s0 and sA, which
overwrite the stored states, as well as control messages W0 and WA, which are collated into
a create control message T = TCR. We assume that an initial group signature public key is
sampled and uploaded to the PKI.

28

init(1λ, ID)

1 : γ.s0←$CGKA.init(1λ, ID)

2 : γ.sA←$CGKA∗.init(1λ, ID)

3 : γ.ME← ID; γ.1λ ← 1λ

4 : γ[·].spk, γ[·].ssk← ⊥

create(gid, G,G∗; r0)

1 : require (γ.ME ∈ G∗) ∧ (G∗ ⊆ G)

2 : (r1, r2, r3, r4)← H4(r0, γ)

3 : (W0, γ.s0)← CGKA.create(γ.s0, gid, G; r1)

4 : (WA, γ.sA)← CGKA∗.create(γ.sA, gid∗, G∗; r2)

5 : TCR ← (‘create’,W0,WA)

6 : (γ[gid].spk, γ[gid].ssk)← SigGen(γ.1λ; r3)

7 : σT ← Sig(γ.ssk, (gid, TCR); r4)

8 : return (gid, TCR,⊥,⊥, σT)

prop(gid, ID, type; r0)

1 : (r1, r2)← H2(r0, γ)

2 : if type = ∗-adm
3 : require γ.ME ∈ γ.sA.G

4 : (γ.sA, P0)← CGKA∗.prop(γ.sA, gid∗, ID, type; r1)

5 : P ← (P0,Sig(γ.ssk, P0; r2))

6 : else

7 : (γ.s0, P)← CGKA.prop(γ.s0, gid, ID, type; r1)

8 : return P

prop-info(P)

1 : if P is a CGKA proposal

2 : (P.gid, P.type, P.ID, P.ID′)←
CGKA.prop-info(γ.s0, P)

3 : else if P is an admin proposal

4 : (P.gid, P.type, P.ID, P.ID′)←
CGKA∗.prop-info(γ.sA, P)

5 : P.type← P.type||-adm
6 : return (P.gid, P.type, P.ID, P.ID′)

commit(gid, P⃗ , com-type; r0)

1 : require γ.ME ∈ γ.G

2 : require com-type ∈ {adm, std, both}
3 : (r1, r2, r3)← H3(r0, γ)

4 : C0, CA,W0,WA, k ← ⊥

5 : (P⃗0, P⃗A, admReq)← propCleaner(gid, P⃗)

6 : if admReq ∨ (com-type ∈ {adm, both})
7 : require γ.ME ∈ γ.G∗

8 : (ssk, spk)← getSigKey(γ.sA.k) // old keys

9 : if com-type ∈ {adm, both} // update spk

10 : (spk, CA,WA)← c-Adm(gid, P⃗A; r1)

11 : if com-type ∈ {std, both}

12 : (C0,W0)← c-Std(gid, P⃗0, k; r2)

13 : TC ← (‘comm’, C0, CA,WA, spk)

14 : TW ← (‘wel’,W0, spk)

15 : σT ← Sig(ssk, (gid, TC , TW); r3)

16 : else // can be done by non-admins

17 : (C0,⊥, k)← c-Std(P⃗0; r1)

18 : TC ← (gid, ‘comm’, C0,⊥,⊥)
19 : TW , σT ← ⊥
20 : if k = ⊥ k ← γ.s0.k

21 : return ((⊥, TC , TW , σT), k)

proc(T)

1 : (gid, TCR, TW , TC , σT)← T ; acc← false

2 : if TCR ̸= ⊥
3 : if γ.ME ∈ γ[gid].s0.G return false

4 : acc← p-Create(gid, TCR, σT)

5 : else if (γ.ME ̸∈ γ[gid].G) ∧ (TW ̸= ⊥)
6 : acc← p-Wel(gid, TC , TW , σT)

7 : else if (γ.ME ∈ γ[gid].G) ∧ (TC ̸= ⊥)
8 : acc← p-Comm(gid, TC , TW , σT)

9 : return acc

Figure 9: Dynamic group signature (DGS) construction of an A-CGKA, built from two (possibly
different) CGKAs, a signature scheme S = (SigGen,Sig,Ver), and n-PRFs Hn : R× ST→ Rn for n ≤ 4,
randomness space R and state space ST. The state values representing the group, the admins, and the
group key are assigned as: γ[gid].G = γ[gid].s0.G, γ[gid].G∗ = γ[gid].sA.G, and γ[gid].k = γ[gid].s0.k.

29

c-Adm(gid, P⃗A; r1)

1 : for P ∈ P⃗A

2 : if P.type = add-adm

3 : require P.ID ∈ γ.G

4 : (CA,WA, k, γ.sA)←

CGKA∗.commit(γ.sA, gid∗, P⃗A; r1)

5 : if CA = ⊥ return ⊥
6 : (ssk, spk)← getSigKey(k)

7 : return (spk, CA,WA)

c-Std(gid, P⃗0; r2)

1 : (γ.s0, C0,W0, k)←

CGKA.commit(gid, γ.s0, P⃗0; r2)

2 : return (C0,W0, k)

propCleaner(gid, P⃗)

1 : admReq← false; P⃗0, P⃗A ← []

2 : for P ∈ P⃗

3 : (gid′, P.type, P.ID, P.ID′)← prop-info(P)

4 : if gid′ = gid∗ ∧ P.type = ∗-adm ∧ IAS.VALIDP

5 : P⃗A ← [P⃗A, P]

6 : admReq← true

7 : else if gid′ = gid

8 : P⃗0 ← [P⃗0, P]

9 : if P.type ∈ {add, rem}
10 : admReq← true

// admin rem from G =⇒ rem also from G∗

11 : if (P.type = rem) ∧ (P.ID ∈ γ.G∗)

12 : P ′ ← CGKA∗.prop(γ.sA, gid∗, P.ID, rem)

13 : P⃗A ← [P⃗A, P ′]

14 : (P⃗0, P⃗A)← enforcePolicy(P⃗0, P⃗A)

15 : return (P⃗0, P⃗A, admReq)

getSigKey(r)

1 : (ssk, spk)← SigGen(1λ;Hro(r))

// Deterministic key generation from r

// Random oracle Hro

2 : return (ssk, spk)

enforcePolicy(P⃗0, P⃗A)

1 : // As in IAS

2 : return (P⃗0, P⃗A)← IAS.enforcePolicy(P⃗0, P⃗A)

p-Wel(gid, TC , TW , σT)

1 : (msg-type,W0, spk)← TW

2 : require msg-type = ‘wel’ ∧ getSpk(gid) = spk

3 : if ¬Ver(spk, (gid, TC , TW), σT) return false

4 : (γ′, acc)← CGKA.proc(γ.s0,W0)

5 : if ¬acc return false

6 : γ[gid].s0← γ′

7 : γ[gid].spk← spk

8 : return true

p-Comm(gid, TC , TW , σT)

1 : (msg-type, C0, CA,WA, spk)← TC

2 : require msg-type = ‘comm’

3 : γ′ ← γ.sA

4 : if σT = ⊥ // no sig ⇒ check no changes to G

5 : (γ′, acc)← CGKA.proc(γ.s0, C0)

6 : if ¬acc ∨ (γ′[gid].G ̸= γ[gid].G)

7 : return false

8 : γ[gid].s0← γ′

9 : return true

10 : else if ¬Ver(γ[gid].spk, (gid, TC , TW), σT)

11 : return false

12 : if γ.ME ∈ γ.G∗

13 : (γ′, acc)← CGKA∗.proc(γ.sA, CA)

14 : if ¬acc return false

15 : else if WA ̸= ⊥
16 : (γ′,⊥)← CGKA∗.proc(γ.sA,WA)

17 : if C0 ̸= ⊥

18 : (γ†, acc†)← CGKA.proc(γ.s0, C0)

19 : if ¬acc† return false

20 : γ[gid].s0← γ†

21 : if γ.ME ̸∈ γ†.G // removed user

22 : γ[gid]← ⊥
23 : return true

24 : γ[gid].sA← γ′; γ[gid].spk← spk

25 : return true

p-Create(gid, TCR, σT)

1 : (msg-type,W0,WA)← TCR

2 : require msg-type = ‘create’

3 : (γ0, acc)← CGKA.proc(γ.s0,W0)

4 : (γA,⊥)← CGKA∗.proc(γ.sA,WA)

5 : if ∅ ̸= γA[gid].G ⊆ γ0[gid].G

6 : (γ.s0, γ.sA)← (γ0, γA)

7 : else return false

8 : return acc ∧ Ver(getSpk(gid), (gid, TCR), σT)

Figure 10: Helper functions for the DGS construction in Figure 9 with respect to random oracle Hro.

30

Proposals. The prop algorithm generates a proposal message P by using CGKA.prop the
input type is standard and CGKA∗.prop when it is administrative (i.e. of the form ∗-adm). As
in IAS, a validity check on the caller ID′ and the target ID of the proposal is made using the
VALIDP predicate. Administrative proposals are signed with γ.spk; this is done to protect
against insider adversaries that may re-send previously crafted administrative proposals (i.e.,
those that are legitimate but correspond to a previous epoch), or even create new ones if these
are sent in plaintext. The prop-info algorithm is fully based on the respective CGKA’s prop-info
algorithms (which may not necessarily output ID′ if anonymous proposals are allowed); we
assume props is likewise inherited from the underlying CGKAs.

Commits. For a given gid, administrative changes are committed via CGKA∗.commit (which
outputs a CA) and standard group changes via CGKA.commit (outputting C0 as usual). Note
that in CA, we update the CGKA∗ secret kadm, that is used to update the admin key pair
(ssk′, spk′).

The new admin key spk′ is included in the final A-CGKA commit message, so that group
members can process it. In order to prove the authenticity of the commit (and of spk′), the
committer signs the whole commit message including CA, C0 and spk′ with the old admin key
γ.ssk. In addition, the committer must verify all proposal signatures in advance.

As before, a commit can be split into a welcome message TW for newly added users, and a
commit message TC for group members. These are signed jointly in our construction to simplify
the security proof, but may also be signed separately. In TC , we also include the welcome
messages to CGKA∗, since they must always be addressed to current group members (i.e. of G).
Commits in both CGKAs are independent: CGKA can be updated while CGKA∗ is not, and
vice-versa.

Processing control messages. The proc method takes a control message T , determines
the type of message (create, welcome, or commit) and the gid, and updates the state only if
processing succeeds (acc = true). Newly added users verify the admin signature, process the
welcome message using CGKA.proc and store the new public admin key (spk′, provided in T) in
γ.spk.

Group members verify the administrator signature (if the commit requires administrative
rights) using γ.spk. Then, depending on the commit type at least one of CGKA and CGKA∗

are updated via the corresponding CGKA proc algorithm. Given CGKA∗ or both CGKAs are
updated, the updated admin key is set as γ.spk← spk′. In case T contains a create message
TCR, both CGKAs process the respective welcome messages contained in TCR separately.

4.2.3 Features

DGS allows the use of two distinct and independent CGKA protocols that authenticate admins
as a group, providing some notable features that differ from IAS. One can also imagine a
‘hybrid’ approach where users run IAS except that some IAS keys are maintained and updated
via their own CGKA.

Minimal information reveal. As opposed to IAS, the set of group administrators can be
opaque to the central server and to the rest of the group (whenever the underlying CGKAs
preserve the anonymity of group members with respect to external parties). We discuss this
further in Section 6.3.2.

31

Incoming users. The administrative spk can be a public value that a server can store. Hence,
an incoming member can verify the authenticity of an administrative signature by verifying spk
with the server, or using a different channel other than the welcome message itself. Another
possibility is out-of-band authentication, such as via safety numbers, a feature provided by
some messaging services.

Limitations. A drawback of DGS is that enforcing different “levels of administration”, for
which IAS can be easily extended, is not straightforward. Nevertheless, one can still implement
minor policies such as muting users at an application level (as done in practice). We also note
that admins may not have a reliable view of the set of admins if CGKA∗ is susceptible to insider
attacks that violate robustness7. If these attacks are relevant, one can deploy heavier protocols
such as the P-Act-Rob in [ACJM20]. A third limitation is that admins cannot give up their
admin status immediately; they must send a self rem-adm proposal, erase their admin state,
and wait for another admin to commit. This occurs generally in CGKA when a member leaves
a group; in MLS the policy enforces removals to be committed before any application message
is sent. This problem can nevertheless be solved using the same approach as for self-removes in
IAS.

Security mechanisms. We note the conceptual simplicity of achieving PCS and FS in
the group administration keys (in the adversarial model for CGKA∗) given the existence of
secure CGKA schemes in the literature, since both properties are ensured by CGKA∗ itself.
Update mechanisms are largely simplified due to a single admin key being used. Delegation
and revocation of admin keys are also straightforward.

4.3 Integrating A-CGKA into MLS

Some group messaging protocols already authenticate group members via signatures and public-
key infrastructure. The MLS specification [BBR+23] relies on credentials, which are essentially
public signature keys for each protocol user that are certified by a PKI; these keys authenticate
messages originating from that user8. Therefore, it is possible to extend the CGKA used in
MLS to an A-CGKA in a more efficient way than using a compiled A-CGKA construction
resembling IAS. We note that, in practice, it is feasible to support secure administration in
MLS via an MLS extension, a feature that enables additional proposal types and actions in the
protocol [BBM+]. Constructing such an extension is almost straightforward and we identify
three main necessary changes:

• Credentials are not necessarily refreshed in MLS, meaning that admins (and users in
general) whose state is compromised at some point lack forward security and post-
compromise security on their authentication keys (unless they proactively update them).
Our solution is to introduce an IAS-like credential update mechanism for admin signature
keys (providing post-compromise security) which may be invoked without updating the
core CGKA secret.

7This scenario is out of the scope of our security model where admins are fully trusted.
8Signatures play an important role in MLS: “...group members can verify a message originated from a

particular member of the group. This is guaranteed by a digital signature on each message from the sender’s
signature key. The signature keys held by group members are critical to the security of MLS against active
attacks...” [BBM+].

32

• Group members need to keep track of the administrators (for an IAS-like extension). To
this end, we propose to introduce new admin proposal types and enforce that admin
proposals are signed, alongside corresponding update policies and modifications to commit
and proc.

• As in IAS, admins register their keys with the PKI as they are updated over time.

4.3.1 Modifications

We propose an extension of the main algorithms of the MLS protocol (in particular, of the
CGKA-related prop, commit and proc) in Figure 11, that we also benchmark in Section 5.3.
Our goal is to show how IAS can be easily integrated with relatively low overhead. We
follow [ACDT21a] (in particular, Figure 8 in the full version [ACDT21b]), as this is the most
comprehensive formalization of MLS in the literature at the time of writing; therefore, we also
work in the single-group setting and omit gids. We omit the send and rcv algorithms as these
are used to send application messages only. We note also that their create method supports
only one initial participant; hence its integration with IAS is trivial.

Protocol details. The main modifications are to (1) the admins’ credentials, which are
regularly updated via upd-adm proposals and admin commits; and (2) in the introduction of
the three additional proposal types from A-CGKA. For brevity, we omit several parts of the
protocol, such as sanity checks (like require predicates), functionality that we do not need to
modify and details on a higher level than CGKA (like the use of a MAC). Also for simplicity,
we extend the CGKA state γ to include the state variables used in IAS. Following [ACDT21a],
we split the processing algorithms in two – one for commit messages, and one for welcome
messages – that a committer produces for each incoming user separately.

Overall, the overhead with respect to (bare-bones) MLS is minimal; we essentially only
need to support the new types of proposals and to refresh admin credentials for admin updates.
Most of the protocol logic relates to updating signatures and the adminList. Note that proposals
are always signed in MLS so signing within makeAdminProp can be foregone. We also support
self-removal proposals that can be committed by standard users.

Correctness and security. We leave it open to formally propose and prove correctness and
security for an appropriate MLS extension; we sketch here how it could be done. The modelling
of messaging and MLS in particular in [ACDT21a] is more complex than ours. In particular,
they consider CGKA as a sub-primitive that is used to build secure group messaging (SGM)
alongside several other primitives. Thus, one could re-define SGM to account for new proposal
types and administration as we have done for A-CGKA, including admin correctness guarantees
and security upon injections from non-admins. Since admin proposals are tightly-coupled with
protocol flow, proposing a model ‘on top’ of theirs to provide admin security seems infeasible,
although modular guarantees would be ideal. Proving correctness and security then boils down
to similar case analysis and reductions to ours.

33

prop(ID, type; r0)

1 : if type = ∗-adm
2 : require γ.ME ∈ γ.adminList

3 : (P,⊥)← IAS.makeAdminProp(type, ID; r0)

// getSpk is replaced in makeAdminProp

4 : if type ∈ {add, rem, upd}
5 : (γ, P)← CGKA.prop(γ, ID, type; r0)

// Added users’ keys retrieved from contact list/PKI

// Proposals in MLS are each signed

6 : σ ← Sig(γ.ssk, P)

7 : return (P, σ)

commit((P⃗0, P⃗A), com-type; r0)

1 : (r1, r2, r3)← H3(r0, γ)

2 : if com-type ∈ {adm, both}
3 : require γ.ME ∈ γ.adminList

4 : require IAS.verifyPropSigs(P⃗A)

5 : CA ← P⃗A

6 : adminList′ ← IAS.updAL(adminList, P⃗A)

7 : (γ.ssk′, γ.spk′)← SigGen(γ.1λ; r1)

8 : γ ← updSpk(γ, ID, spk′)

9 : if com-type ∈ {std, both}

10 : (γ, C0,W0,⊥)← CGKA.commit(P⃗0; r2)

11 : if W0 ̸= ⊥ // share updated adminList

12 : Prepare wel. msgs as in [ACDT21a] for W⃗

13 : for W ∈ W⃗ :

14 : W ←W ||adminList′

15 : σ ←$Sig(γ.ssk,W) // rand.

16 : T ← (‘com’, γ.ME, C0, CA, γ.spk′)

17 : σ ← Sig(γ.ssk, T ; r3)

18 : return ((T, σ), W⃗)

proc-WM(W)

// ID is the committer of W

1 : require ID ∈W.adminList

2 : Run Proc-WM(W) in [ACDT21a]

3 : γ.adminList←W.adminList

4 : Check adminList[ID].spk with PKI

proc-CM(T, σ)

1 : (‘com’, ID, C0, CA, spk′)← T

2 : if ID ̸∈ adminList

3 : require Ver(getSpk(ID), T, σ)

4 : Run Proc-CM(T) in [ACDT21a]

5 : require no membership changes to γ.G

except self-removals

if ID ∈ adminList

6 : require Ver(adminList[ID].spk, T, σ)

7 : if spk′ ̸= ⊥
// spk was registered

8 : require spk′ = getSpk(ID)

9 : Update keys and adminList as in IAS

10 : IAS.p-Comm(T)

11 : Check new adminList keys with PKI

getSpk(ID)

// Get spk from ID’s credential

1 : return Cred[ID].spk

updSpk(γ, ID, spk′)

// Register spk′ with the PKI

1 : γ ← registerPKI(γ, ID, spk′)

// Update ID’s credential

2 : γ.Cred[ID].spk← spk′

Figure 11: Construction of an MLS extension that supports group administrators, effectively turning
the CGKA in MLS into an A-CGKA. Highlighted lines correspond to our main modifications in the
original SGM construction in [ACDT21a]. Cred[·] denotes an array that stores the credentials of all ID’s.
We also use the abstract function registerPKI for standard PKI functionality of registering signature
keys. Some technical details are omitted.

34

5 Results

5.1 Correctness

Proposition 1. Let CGKA be a correct CGKA (Definition 3) and S = (SigGen,Sig,Ver) be a
correct signature scheme. Then, the IAS protocol (Figures 6 and 7) is correct with respect to
Definition 3.

Proposition 2. Let CGKA and CGKA∗ be correct CGKAs, and S = (SigGen, Sig,Ver) be a
correct signature scheme. Then, the DGS protocol is correct with respect to Definition 3.

The correctness proofs for both protocols can be found in Appendix C.

5.2 Security

Observe that IAS, which uses a (regular) digital signature scheme, does not provide optimal
forward security. Therefore, we prove security with respect to a sub-optimal admin cleanness
predicate Cadm where Cadm = Cadm-opt ∧ Cadm-add and Cadm-opt is defined in Section 3.4. We
define Cadm-add in Appendix B, together with the full security proof.

Theorem 1. Let CGKA be a correct and (tcgka, q, ϵcgka)-secure CGKA with respect to cleanness
predicate Ccgka, according to Definitions 3 and 4. Let S = (SigGen, Sig,Ver) be a deterministic
(tS , q, ϵS) SUF-CMA secure signature scheme, as in Definition 7. Let H4 be a (tF , 1, ϵF)-secure
4-PRF, as in Definition 5. Then, the IAS protocol (Figures 6 and 7) is (t, q, q ·ϵF +ϵcgka+q2 ·ϵS)-
secure (Definition 4) with respect to predicates Ccgka,Cadm,Cforgery, where tcgka ≈ tS ≈ tF ≈ t,
Cadm is defined in Figure 14 and Cforgery is defined in Section 3.4.3.

Proof idea. We first bound an adversaryA’s advantage in distinguishing between the KINDA-CGKA

game and a game G1 which replaces calls to hash functions Hi by uniformly sampling the
output (modelling each Hi in IAS as a PRF). Then, we divide A’s behaviour in G1 into two
events based on whether they successfully query the OInject oracle (event E1) or not (event E2).
Given E1, we reduce security via a number of SUF-CMA adversaries. Otherwise, we reduce
directly with KINDCGKA adversary, at which point the claim follows.

Theorem 2. Let CGKA be a correct and (tcgka, q, ϵcgka)-secure CGKA with respect to Ccgka,
according to Definitions 3 and 4. Let CGKA∗ be a correct and (tcgka∗, q, ϵcgka∗) secure CGKA with
respect to Ccgka∗. Let S be a (tS , q, ϵS) SUF-CMA secure signature scheme, as in Definition 7. Let
H4 be a (tF , 1, ϵF)-secure 4-PRF, as in Definition 5. Let Hro be a random oracle queried at most
qro times. Then, the DGS protocol (Figures 9 and 10) is (t, q, ϵcgka+q ·(ϵF+ϵS+qro ·ϵcgka∗+2−λ))-
secure (Definition 4) in the random oracle model with respect to predicates Ccgka,Cadm,Cforgery,
where tcgka ≈ tcgka∗ ≈ tS ≈ tF ≈ t, Cadm is a function of Ccgka∗ and Cforgery

∗ is defined in
Section 3.4.3.

Proof idea. We first describe Cadm. Intuitively, Cadm ensures that the set of safe oracle queries
for DGS adversary A given inject queries of the form qi = OInject(ID,m, ta) are those that
are safe for CGKA∗ adversary A′ under essentially the same queries, replacing OInject(·, ·, ta)
queries with queries of the form OChallenge(ta). To prove security, we use a similar game-hopping
argument as in IAS. We first replace Hi calls using the PRF assumption. We then consider
E1 (a successful injection is made) and E2 (otherwise) as in IAS. Given E2, we can simulate
directly via the CGKA adversary. Given E1, we simulate differently depending on whether A

35

makes a query to random oracle Hro with a correct CGKA∗ key before the successful injection
or not. Here, if A is successful, we reduce security to the CGKA∗ adversary by intercepting the
relevant random oracle query and guessing the correct bit using information from OChallenge.
Otherwise, we can simulate via an EUF-CMA adversary as in IAS since the signature key is
now uniform from the adversary’s perspective.

5.3 Benchmarking

We implemented the protocol in Section 4.3 to obtain a realistic estimate of the overhead
of securely administrating a real-world messaging protocol. We modified an open-source
implementation of MLS in Go9 and compare the running times of MLS (which also performs
e.g. parent hashing and non-admin proposal signing), with the running times of administrated
MLS in different scenarios. In particular, we analyze the commit and proc algorithms in
Figure 11, where the latter includes proc-CM and also processing proposals when relevant
(done separately in the implementation). We ran our benchmarks on a laptop with a 4-core
11th Gen Intel i5-1135G7 processor and 16 GB of RAM using Go’s testing package10. Core
cryptographic operations were implemented as HPKE [BBLW22] with ciphersuite DHKEM(P-256,
HKDF-SHA256), HKDF-SHA256, AES-128-GCM from Go standard libraries. We measured the time
taken for a single group member to perform the relevant operation. For each data point, we took
the average over 100 iterations that randomized the group members and admins performing
group operations, as performance can be affected by their position in MLS’s TreeKEM.

Our results are displayed in Figures 12 and 13, where we show the running time of the commit
(Figure 12) and proc (Figure 13) algorithms in different realistic scenarios. We run experiments
where relevant, i.e., when there are no admin operations, using the original implementation as
a baseline, as well as using our modified implementation, to demonstrate that the additional
admin logic we introduce does not noticeably affect performance.

On the one hand, we present the running time of both algorithms for varying group size
|G| with a fixed member/admin ratio |G|/|G∗| = 4. In the event of updating users, there are
t = |G∗| users updating and/or t/2 admins doing an admin-update. On the other hand, we
benchmark our algorithms for fixed group size |G| = 64, |G∗| = 16, while varying the number
of updates t (and/or t/2 updating admins) in a commit.

For both cases, we compare the committing and processing times of (1) standard commits
(com-type = std, omitted in fixed group size benchmarks), (2) standard commits with t update
proposals, (3) standard and admin commits (com-type = both) with t/2 admin-update proposals
but no standard-update proposals, and (4) standard and admin commits with t update and t/2
admin-update proposals.

Communication overhead. In both the baseline and our implementations, proposals used
364 to 366 bytes, and admin proposals used 364 to 368 bytes (all proposals being signed).
Commit message sizes in both implementations vary proportionally with the size of the group
and the number of proposals. In the baseline MLS implementation, a typical commit for |G| = 8
and |G| = 128 with t = 2 and t = 32 update proposals uses 1.49 KB and 17.11 KB respectively.
In our implementation, corresponding commits use 1.56 KB and 17.17 KB respectively. If t/2
admin updates are added (1 and 16, respectively), commits require 1.60 KB and 17.65 KB.

9The original source code is available at https://github.com/cisco/go-mls.
10https://pkg.go.dev/testing

36

https://github.com/cisco/go-mls
https://pkg.go.dev/testing

In general, commits in our implementation, even with admin proposals, incur only a small
amount of overhead (tens of bytes) over the baseline implementation when fixing the number
of proposals.

8 16 32 64 128
Group size

0

5

10

15

20

25

30

35

Ti
m

e
(m

s)

commit only
commit only (baseline)
com + upd
com + upd (baseline)
com + adm-upd
com + both upds

0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Number of updates (admin updates)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ti
m

e
(m

s)

com + upd
com + upd (baseline)
com + adm-upd
com + both upds

Figure 12: Benchmark of the commit algorithm in the following scenarios: (1) standard commits
(com-type = std, omitted right), (2) standard commits with t update proposals, (3) standard and admin
commits (com-type = both) with t/2 admin-update proposals but no standard-update proposals, and (4)
standard and admin commits with t update and t/2 admin-update proposals. Original MLS is displayed
as baseline. Left: running time with respect to group size |G| on constant member/admin |G|/|G∗| = 4
ratio and constant number of updates t = |G∗| (t/2 admin updates). Right: running time with respect
to the number of updating users t (and t/2 admin updates), for fixed |G| = 64.

8 16 32 64 128
Group size

0

5

10

15

20

Ti
m

e
(m

s)

commit only
commit only (baseline)
com + upd
com + upd (baseline)
com + adm-upd
com + both upds

0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Number of updates (admin updates)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(m

s)

com + upd
com + upd (baseline)
com + adm-upd
com + both upds

Figure 13: Benchmark of the proc algorithm when processing a commit message. The different scenarios
are those of Figure 12.

6 Discussion

6.1 Efficiency

6.1.1 Protocols

The results in Section 5.3 show that the additional cost (for users) of running a securely-
administrated MLS is minimal. Figure 12 shows that the commit algorithm involves less than a

37

20% overhead when up to |G|/8 members carry out admin updates simultaneously (note that
admin updates also involve standard updates). Figure 13 shows that the processing time of
admin and standard updates is very similar, and increases linearly in the number of updates.

Separately, we analyze the overhead of IAS and DGS for group members, both for number of
operations and for message size. We note that this assumes that IAS and DGS are implemented
modularly and not integrated with an existing CGKA as before. In IAS, admins generate a
signature key pair and sign every time they carry out a commit or a proposal, and verify a small
amount t of signatures (typically t ≤ |G∗|) in admin proposals before a commit. If we denote
the cost (time/length) of a message signature or verification by s, and the cost (time/length) of
a signature key pair generation by k, we obtain the values11 in Table 1. Note that s = O(λ)
and k = O(λ) (i.e. are constant) for security parameter λ.

The overhead of DGS depends heavily on the cost of CGKA∗ (an optimistic estimation can
be O(logm) [ACDT20, KPPW+21, ACJM20] but can be O(m) in the worst case). CGKA
operations only affect administrators. Note that a DGS admin-only commit is not sent to
standard members (only the signed new admin key has to). Hence, DGS is very efficient for
standard users.

Length (Adm) Length (All) Time (Adm) Time (All)

IAS ts+ tk ts+ tk O(ts+ k) O(ts)
DGS C + s+ k s+ k O(C + s+ k) O(s+ k)

Table 1: Additional cost of IAS and DGS with respect to a plain CGKA (per group) where t is the
number of admin proposals and C (for DGS only) refers to the cost of running CGKA∗.

The ratio of additional messages sent, which is application-specific, is hard to estimate.
Admin-only commits and admin modifications are expected to be less frequent than standard
operations. The number of update proposals (although very cheap) is expected to be at most
linear in |G|.

Forward-secure signatures (for optimally-secure IAS) can be instantiated with essentially
constant amortized overhead in space and time relative to a regular signature scheme, while
supporting unbounded secret key updates [MMM02].

We conclude that IAS presents a generally affordable overhead for all users, while DGS
introduces basically no cost for standard users and is more costly for administrators if |G∗| is
relatively large.

6.1.2 Admins in TreeKEM variants

The Tainted TreeKEM protocol provides efficiency advantages if only a subset of users carry out
tree-changing operations (adds and removals) [KPPW+21]. Tainted TreeKEM, however, is not
formalised in the propose-and-commit-paradigm, which complicates the efficiency comparison;
such an analysis thus remains open. When standard users are allowed to commit updates, the
tree blanking issue with MLS TreeKEM is not worsened by administrators, hence efficiency
should not decrease either.

11We neglect the size of user identifiers IDs as we assume it small and constant with respect to the security
parameter. Besides, identifiers may already be present in protocols that construct admins at the application
level.

38

6.2 On Modelling in Related Work

6.2.1 CGKAs and MLS

The CGKA abstraction has deviated from MLS and has become an object of study of its own
[AHKM21, BDG+21, AAN+22], but in general still inherits important limitations from MLS.
Among them, CGKAs rely on the availability of a well-behaved PKI, require total control
message ordering, and fail to capture messaging solutions that deviate from group key agreement
such as Signal or WhatsApp.

In MLS, there exists a strong architectural separation between the Delivery Service (DS,
usually a central server) and a so-called Authentication Service (AS) whose design is left to
the infrastructure designers [BBM+]. Following this separation, the Delivery Service is often
modelled adversarially in CGKAs whereas the AS is abstracted as a PKI [ACDT20, KPPW+21,
ACJM20] as in this work. A compromised AS allows for the corruption of user credentials,
resulting in user impersonation.

6.2.2 PKI

Both IAS and DGS rely on a PKI that we assume incorruptible. In IAS, parties use the PKI
to verify the identity of administrators and self-removing users. In DGS, incoming users use
it to retrieve the current group-wide admin signature public key. As the PKI is only used to
establish an initial root of trust among parties, i.e., forward and post-compromise security are
ensured without additional PKI calls, our modelling is consistent with the separation between
delivery and authentication discussed above. Note that group administration aims to remove
the trust in the DS (the server) but is still vulnerable to a corrupt AS. Previous CGKA work
follows similar PKI abstractions [ACDT20, KPPW+21], or ignores the AS [CHK21]. That
is, in all group messaging works we are aware of, the PKI always behaves consistently and
correctly for all users. One partial exception is [AJM20], where malicious keys can be registered,
although security degrades strongly for such users. By abstracting away the AS, our schemes
are compatible with diverse authentication solutions such as out-of-band verification.

6.2.3 Signal Private Groups

In [CPZ20] and as deployed in Signal, a central server manages the membership of a group
whilst hiding the set of group members from non-members (modulo metadata leaked to a
network adversary). The main goals of this solution are to achieve user privacy and act as a
single source of truth for the membership of a group. We believe that this approach could be
extended to support secure administration; an advantage is that users no longer have to track
group membership individually as in (A)-CGKA, which prevents consistency issues when users
do not apply the same sequence of group updates locally. We note that Signal Private Groups
however does not fully protect from server and network attacks as our A-CGKA constructions
do: for example, it is possible for the server to re-add removed users. In addition, the system
has not been analysed in composition with an underlying group messaging protocol (pairwise
Signal) where concurrency issues can arise.

39

6.3 Additional admin mechanisms

We consider possible extensions of A-CGKA as a primitive and corresponding construction
ideas. We note that these extensions may provide stronger security guarantees, or additional
functionality, at reduced cost if the number of admins is small.

6.3.1 Admins beyond CGKA

CGKA is not a suitable formalism for some group messaging protocols used in practice like
pairwise Signal and Sender Keys (used in WhatsApp [Wha20]). In these protocols, each
user is associated with their own key or keying material rather than a common group secret.
Nevertheless, an IAS-like protocol can be easily adapted to this setting. For Sender Keys,
admins could replace their keying material at a low cost (a signature on their new signing
key) for PCS authentication guarantees. We leave it as useful future work to formalise group
administration beyond CGKA.

Telegram, although not end-to-end encrypted, offers fine-grained administration features like
message filtering and delays. Some of these could be conceivably implemented cryptographically,
e.g. by entrusting admins to process messages or through NIZKs.

6.3.2 Private administrators

In some applications, it may be desirable to hide the set of admins from (non-admin) users
within a group (or between themselves). DGS could achieve some notion of administrative
privacy if the underlying admin CGKA provides privacy guarantees. IAS could be modified to
achieve anonymity guarantees using ring signatures [RST01]. However, there is overhead with
ring signatures over regular signatures, at a minimum to parse the anonymity set, and privacy
is compromised e.g. if a single admin performs an admin update then signs after, so admins
would need to batch updates for privacy.

In MLS’ TreeKEM protocol, proposals are constant-sized, but commits are variable, which
leaks information about the contents of the commit even if it is encrypted. Thus, padding is
required at a minimum for privacy. In the MLS standard, ciphertexts, i.e. MLSCiphertexts,
leak the group ID, epoch and message content type (proposal or commit) in plaintext, which
would need to be hidden for additional privacy. In practice, additional attack vectors like
timing and traffic analysis preclude privacy also, which are considered by some messaging
systems [TGL+17, CSM+20] that do not, however, provide FS and PCS; it remains open to
e.g. adapt CGKA to defend against these attack vectors. As discussed in the introduction,
the Signal Private Group System [CPZ20] hides the group membership from non-members
(although not all metadata); the mechanism could be extended for admins but adapting the
technique to (A)-CGKA is also open. A step towards anonymity in messaging has been recently
made in [DHRR22], including the study of anonymity under state exposure.

6.3.3 External admins

Our A-CGKA constructions assume the admins comprise a subset of all group members, i.e.
G∗ ⊆ G. Some applications may be better suited for external administration. For example,
an online platform may wish to control the set of conversation participants to ensure they are
subscribers but nevertheless ensure they are provided confidentiality. External admins who

40

then attempt to add users that group members do not trust can be detected on the protocol
level, rather than the less well-defined application level as previously done.

Given that the underlying CGKA allows for external commits, it is straightforward to
administrate IAS and DGS-based groups oup externally. Namely, the admin who is approving
the change can inspect proposals and make commit messages for the corresponding parties.
However, TreeKEM and its variants are not ideal for this since the committer is the party who
derives new group secrets and can thus violate confidentiality. One way around this issue is to
essentially write an wrapper around each CGKA algorithm which declares that some CGKA
group members are not actually in the group. Here, the wrapper would also force admins to
delete group secrets as soon as they derive them, and would not consider admins as part of the
group; the solution is however clearly vulnerable to corrupted admins.

One conceptually simple solution is to allow commit messages from regular users which
play the role of proposals which have to be “committed” (e.g. signed) by admins. Additional
machinery like NIZKs is however required in the malicious setting to enable admins to verify
that such commits are well-formed.

6.3.4 Hierarchical admins

In messaging apps like Telegram and WhatsApp, the group creator has stronger capabilities
than other admins. For instance, the group creator can never be removed by another admin.
Extending this concept, one can conceive a hierarchy of administrators of several levels, e.g.,
of the form G∗∗ ⊆ G∗ ⊆ G, where G∗∗ are super-administrators. Extending IAS, one can
imagine using signatures that attest to other signatures in a chain-of-trust fashion. DGS can
be extended by considering many CGKAs where CGKA i+ 1 must sign commit messages for
CGKA i for each i ≥ 1. Attribute-based admins would enable greater flexibility.

6.3.5 Muting admins

It is possible to provide some cryptographic guarantees to the process of muting conversation
participants. Although we do not explicitly consider group messaging, we sketch how such a
solution would look. One solution entails a DGS-like construction in which members must sign
messages using a common signature key spk derived from a secondary CGKA; honest group
members would then process application messages if and only if they are signed using the
common signature key (i.e. only from the set of unmuted users). Then, muted members will be
able to filter messages from other muted users (since they could still be informed of the state of
spk over time), but they will not able to sign their own messages. Mechanisms that enable a
central server to filter messages while maintaining privacy like [HS20] can be also be integrated
into the encryption layer over A-CGKA. Nevertheless, we note that in messaging services where
the identity of the group members is known, muted members can generally bypass a ban by
sending individual messages to all group members using two-party messages. At an application
level, muting group members is a functionality supported by both Signal and Telegram.

6.3.6 Threshold admins

One issue with our A-CGKA constructions is that security breaks down if a single admin is
compromised. To improve the robustness of the protocol, a protocol can enforce that some
k > 1 admins must attest to a particular commit before it may be processed, which can be
achieved simply using threshold cryptography [Sho00].

41

6.3.7 Decentralized admins

To allow for network decentralization, it is straightforward in theory for a given messaging group
G to simply execute a state machine replication protocol [CL+99] to order commit messages and
require that users reliably broadcast [BT85] all proposal messages. Given that group members
who are expected to execute the protocol on e.g. cellphones may not be available often, thus
leading to liveness (and possibly unintended safety) violations in protocol execution, a natural
solution is to entrust administrators to provide messages to users. These admins could indeed
execute consensus.

Acknowledgements

This work has received funding in part from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program under project PICOCRYPT
(grant agreement No. 101001283), by the Spanish Government under projects SCUM (ref.
RTI2018-102043-B-I00), and RED2018-102321-T, by the Madrid Regional Government under
project BLOQUES (ref. S2018/TCS-4339), by a research grant from Nomadic Labs and the
Tezos Foundation, and by Ministerio de Universidades (FPU21/00600). We are grateful to the
anonymous reviewers of this work for their valuable suggestions and comments.

References

[AAB+21] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Karen
Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting
key trees: Efficient key management for overlapping groups. In Kobbi Nissim
and Brent Waters, editors, Theory of Cryptography, pages 222–253, Cham, 2021.
Springer International Publishing.

[AAN+22] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo
Pascual-Perez, Krzyzstof Pietrzak, and Michael Walter. Cocoa: Concurrent
continuous group key agreement. In Orr Dunkelman and Stefan Dziembowski,
editors, Advances in Cryptology – EUROCRYPT 2022, pages 815–844, Cham,
2022. Springer International Publishing.

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security
notions, proofs, and modularization for the signal protocol. volume 11476 LNCS,
pages 129–158. Springer Verlag, 5 2019.

[ACDJ22] Martin R Albrecht, Sof́ıa Celi, Benjamin Dowling, and Daniel Jones.
Practically-exploitable cryptographic vulnerabilities in matrix. 2022. https:

//nebuchadnezzar-megolm.github.io/static/paper.pdf.

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security
analysis and improvements for the ietf mls standard for group messaging. volume
12170 LNCS, pages 248–277. Springer, 8 2020.

[ACDT21a] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular
design of secure group messaging protocols and the security of mls. In Proceedings

42

https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://nebuchadnezzar-megolm.github.io/static/paper.pdf

of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’21, page 1463–1483, New York, NY, USA, 2021. Association for Computing
Machinery.

[ACDT21b] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular
Design of Secure Group Messaging Protocols and the Security of MLS. Cryptology
ePrint Archive, Report 2021/1083, 2021. https://ia.cr/2021/1083.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group
key agreement with active security. volume 12551 LNCS, pages 261–290. Springer
Science and Business Media Deutschland GmbH, 11 2020.

[AHKM21] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided
continuous group key agreement. Cryptology ePrint Archive, Report 2021/1456,
2021. https://ia.cr/2021/1456.

[AJM20] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security of mls.
Cryptology ePrint Archive, Report 2020/1327, 2020. https://ia.cr/2020/1327.

[Bal21] David Balbás. On Secure Administrators for Group Messaging Protocols, 2021.
MSc Thesis.

[BBLW22] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.
Wood. Hybrid Public Key Encryption. Technical Report 9180, February 2022.

[BBM+] R Barnes, B Beurdouche, J Millican, E Omara, K Gohn-Gordon, and
R Robert. The Messaging Layer Security (MLS) Protocol. https://

messaginglayersecurity.rocks/mls-protocol/.

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asyn-
chronous Decentralized Key Management for Large Dynamic Groups A protocol
proposal for Messaging Layer Security (MLS). 5 2018. https://hal.inria.fr/
hal-02425247.

[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad
Omara, and Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Protocol.
RFC 9420, July 2023.

[BCK22] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Security analysis of the
mls key derivation. In 43nd IEEE Symposium on Security and Privacy, SP, 2022.

[BCV23] David Balbás, Daniel Collins, and Serge Vaudenay. Cryptographic administration
for secure group messaging. In 32nd USENIX Security Symposium (USENIX
Security 23), Anaheim, CA, August 2023. USENIX Association.

[BDG+21] Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Moham-
mad Hajiabadi, and Paul Rösler. On the worst-case inefficiency of cgka. Un-
published, 2021. https://cs.nyu.edu/~afb383/publication/cgka_dynamic_

lb/cgka_dynamic_lb.pdf.

43

https://ia.cr/2021/1083
https://ia.cr/2021/1456
https://ia.cr/2020/1327
https://messaginglayersecurity.rocks/mls-protocol/
https://messaginglayersecurity.rocks/mls-protocol/
https://hal.inria.fr/hal-02425247
https://hal.inria.fr/hal-02425247
https://cs.nyu.edu/~afb383/publication/cgka_dynamic_lb/cgka_dynamic_lb.pdf
https://cs.nyu.edu/~afb383/publication/cgka_dynamic_lb/cgka_dynamic_lb.pdf

[BDR20] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of concurrency
in group ratcheting protocols. volume 12551 LNCS, pages 198–228. Springer
Science and Business Media Deutschland GmbH, 11 2020.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication,
or, why not to use pgp. ACM Press, 2004.

[BLR04] Boaz Barak, Yehuda Lindell, and Tal Rabin. Protocol initialization for the
framework of universal composability. IACR Cryptol. ePrint Arch., 2004:6, 2004.

[BM99] Mihir Bellare and Sara K Miner. A forward-secure digital signature scheme. In
Annual international cryptology conference, pages 431–448. Springer, 1999.

[BRV20] Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining the core primitive
for optimally secure ratcheting. volume 12493 LNCS, pages 621–650. Springer
Science and Business Media Deutschland GmbH, 12 2020.

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors
Stepanovs. Ratcheted encryption and key exchange: The security of messaging.
volume 10403 LNCS, pages 619–650. Springer Verlag, 2017.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM (JACM), 32(4):824–840, 1985.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

[CGCD+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-
glas Stebila. A formal security analysis of the signal messaging protocol. Journal
of Cryptology, 33, 2020.

[CGCG16] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-compromise
security. volume 2016-August, pages 164–178. IEEE Computer Society, 8 2016.

[CGCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.
On ends-to-ends encryption: Asynchronous group messaging with strong security
guarantees. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1802–1819, 2018.

[CHK21] Cas Cremers, Britta Hale, and Konrad Kohbrok. The Complexities of Healing in
Secure Group Messaging: Why {Cross-Group} Effects Matter. In 30th USENIX
Security Symposium (USENIX Security 21), pages 1847–1864, 2021.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In
OSDI, volume 99, pages 173–186, 1999.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private group
system and anonymous credentials supporting efficient verifiable encryption. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1445–1459, 2020.

44

[CSM+20] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal,
Thomas Anderson, Arvind Krishnamurthy, and Bryan Parno. Talek: Private
group messaging with hidden access patterns. In Annual Computer Security
Applications Conference, pages 84–99, 2020.

[DDF21] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. Mls: how zero-knowledge
can secure updates. In ESORICS 2021, 2021.

[DHRR22] Benjamin Dowling, Eduard Hauck, Doreen Riepel, and Paul Rösler. Strongly
anonymous ratcheted key exchange. Cryptology ePrint Archive, Paper 2022/1187,
2022. https://eprint.iacr.org/2022/1187.

[DV19] F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key
agreement with linear complexity. In Nuttapong Attrapadung and Takeshi Yagi,
editors, Advances in Information and Computer Security, pages 343–362, Cham,
2019. Springer International Publishing.

[Fou22] The Matrix.org Foundation. Matrix specification v1.4, 2022. https://spec.

matrix.org/latest/.

[HS20] Martha Norberg Hovd and Martijn Stam. Vetted encryption. volume 12578 LNCS,
pages 488–507. Springer Science and Business Media Deutschland GmbH, 2020.

[KPPW+21] Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Mar-
garita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen, and
Krzysztof Pietrzak. Keep the dirt: Tainted treekem, adaptively and actively
secure continuous group key agreement. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 268–284. IEEE, 2021.

[KS05] Jonathan Katz and Ji Sun Shin. Modeling insider attacks on group key-exchange
protocols. In Proceedings of the 12th ACM conference on Computer and commu-
nications security, pages 180–189, 2005.

[KT11] Ralf Küsters and Max Tuengerthal. Composition theorems without pre-established
session identifiers. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 41–50, 2011.

[MMM02] Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient generic forward-
secure signatures with an unbounded number of time periods. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages
400–417. Springer, 2002.

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm, 2016.
https://signal.org/docs/specifications/doubleratchet/.

[PRSS21] Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas Stebila. Sok: Game-
based security models for group key exchange. In Cryptographers’ Track at the
RSA Conference, pages 148–176. Springer, 2021.

[RMS18] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is Less: On the End-to-
End Security of Group Chats in Signal, WhatsApp, and Threema. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 415–429, 2018.

45

https://eprint.iacr.org/2022/1187
https://spec.matrix.org/latest/
https://spec.matrix.org/latest/
https://signal.org/docs/specifications/doubleratchet/

[RST01] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Inter-
national conference on the theory and application of cryptology and information
security, pages 552–565. Springer, 2001.

[Sho00] Victor Shoup. Practical threshold signatures. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 207–220. Springer,
2000.

[Tel] Telegram. Group Chats on Telegram. https://telegram.org/tour/groups.

[TGL+17] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.
Stadium: A distributed metadata-private messaging system. In Proceedings of
the 26th Symposium on Operating Systems Principles, pages 423–440, 2017.

[Wei19] Matthew A Weidner. Group messaging for secure asynchronous collaboration,
2019.

[Wha20] WhatsApp. WhatsApp Encryption Overview Technical white pa-
per, v.3, October 2020. https://www.whatsapp.com/security/

WhatsApp-Security-Whitepaper.pdf.

[WKHB21] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beres-
ford. Key agreement for decentralized secure group messaging with strong security
guarantees. CCS ’21, page 2024–2045, New York, NY, USA, 2021. Association for
Computing Machinery.

A Primitives

Definition 5 (PRF). We say that a function fn : K × X → Y n is a (t, q, ϵ)-secure n-
pseudorandom function (n-PRF) if, for any polynomial-time adversary A limited to q oracle
queries, the advantage of A in the PRFAfn,1 game below given by∣∣∣Pr[PRFAfn,1(1λ) = 1]− Pr[PRFAfn,0(1

λ) = 1]
∣∣∣

is bounded by ϵ, where the probability is taken over the choice of the challenger and adversary’s
random coins.

PRFAfn,b(1
λ)

1 : k←$K
2 : sample function F : X → Y n

3 : b′ ← AO(λ)

4 : return b′

OEval(m)

1 : if b = 0

2 : return F (m)

3 : return fn(k,m)

Definition 6 (Digital signature). A digital signature scheme is a triple of algorithms
(SigGen, Sig,Ver) such that:

• (sk, pk)←$SigGen(1λ) creates a public-private key pair.

• σ←$Sig(sk,m) generates a signature σ from a message m and the secret key sk.

46

https://telegram.org/tour/groups
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Cadm : ∀ (i, ID, ID′, ctr ∈ (0, exp-ctr]) : qi = OInject(ID′, ·, t∗i),(
ID ̸∈ ADM[t∗i]

)
∨(

∃(ti, c) : (tExp(ID, ctr).ta < ti ≤ t∗i)∧
hasUpdadm (ID,T[(·, ti), ’com’, c],T[(·, ti), ’vec’, c])∧
(C[(·, ti)] = c)

)
.

Figure 14: Sub-optimal administrative predicate where the adversary makes oracle queries q1, . . . , qn.

• b← Ver(pk, σ,m) outputs b ∈ {0, 1}, indicating acceptance or rejection, given a signature
σ, a message m and a public key pk.

We say that the signature scheme is correct if for any λ, m ∈ P, and all choices of randomness,
if (sk, pk)←$ SigGen(1λ) and σ←$ Sig(sk,m), then Ver(pk, σ,m) = 1.

Definition 7 (Digital signature security: SUF-CMA). A digital signature scheme Π is (t, q, ϵ)-
secure against strong existential forgery under chosen message attacks (SUF-CMA) if, for any
polynomial-time adversary A limited to q oracle queries, the advantage of A in the SUF-CMAAΠ
game below given by Pr[SUF-CMAAΠ(1

λ) = 1] is bounded by ϵ, where the probability is taken over
the choice of the challenger and adversary’s random coins.

SUF-CMAAΠ(1
λ)

1 : (sk, pk)←$Π.SigGen(1λ)

2 : Q← ∅
3 : (m,σ)← AO(pk)

4 : require (m,σ) ̸∈ Q

5 : return 1Π.Ver(pk,m,σ)

OSign(m)

1 : σ←$Π.Sig(sk,m)

2 : Q← Q ∪ {(m,σ)}
3 : return σ

B Security Proofs

B.1 Proof of Theorem 1 (IAS security, Section 5.2)

Note that IAS uses a (regular) signature scheme, which results in sub-optimal security since an
admin may not update their signature key at the beginning of every (admin) epoch. We start
with the definition of the predicate Cadm predicate that we prove IAS secure with respect to.
After proving security, we discuss how one can (easily) extend the proofs and ensure optimal
security using forward-secure signatures. Cadm is presented in Figure 14. Note that it differs
from the optimal predicate (Figure 5) only by the lack of (t∗i < tExp(ID, ctr).ta) condition, so it
holds that Cadm ∧ Cadm-opt = Cadm. That is, the forward security guarantees are weaker, since
e.g. if a party updates their admin key in admin epoch 3 then if they are exposed in epoch 5
then the adversary can make a trivial forgery in the construction (and thus it is considered a
trivial attack by Cadm. Towards proving security, we prove the following lemma.

Lemma 1. Let A be a KINDAA-CGKA,Ccgka,Cadm
adversary playing with respect to IAS. Consider

any query A makes of the form OInject(ID,m, ta) which results in a response v ̸= ⊥. Then A can
parse m = (gid, TC , TW , σT) and efficiently derive pk such that Ver(pk, σT , (gid, TC , TW))) = 1.

47

Proof. Consider A’s query OInject(ID,m, ta) that outputs v ̸= ⊥. Given v ̸= ⊥ and by definition
of OInject, a call (γ, ·) ← proc(ST[ID],m) was previously made by the challenger such that
Cforgery = true. Note A cannot register signature keys with the PKI, and keys are assumed
to be bound to the context that they are used in, e.g. for self-removals. In addition, any
non-admin commit comprising of group changes that only consists of self-removes will not
result in the adversary winning by construction of IAS, and if a self-remove is created then
even if another ‘dishonest’ self-remove can be created for that party, Cforgery will consider
it equivalent to the ‘original’ self-remove. Thus, self-removes do not affect security. Now,
OInject disallows ta ≠ −1, which is the case if and only if ID /∈ G, and that unsigned control
messages cannot change the group structure. Thus, we only need to consider control messages
that are input to p-Comm in proc and result in output acc = true when σT ̸= ⊥. To reach
p-Comm, the proc call must be such that Ver(γ[gid].adminList[ID].spk, (gid, TC , TW), σT) = 1.
Since γ[gid].adminList[ID].spk must have been previously sent in a message by construction of
IAS, it follows that pk = γ[gid].adminList[ID].spk is efficiently computable.

Now we are ready to prove the theorem which we restate below:

Theorem 1 (IAS security). Let CGKA be a correct and (tcgka, q, ϵcgka)-secure CGKA with
respect to cleanness predicate Ccgka, according to Definitions 3 and 4. Let S = (SigGen, Sig,Ver)
be a deterministic (tS , q, ϵS) SUF-CMA secure signature scheme, as in Definition 7. Let H4 be
a (tF , 1, ϵF)-secure 4-PRF, as in Definition 5. Then, the IAS protocol (Figures 6, 7 and 8) is
(t, q, q · ϵF + ϵcgka + q2 · ϵS)-secure (Definition 4) with respect to predicates Ccgka,Cadm,Cforgery,
where tcgka ≈ tS ≈ tF ≈ t, Cadm is defined in Figure 14 and Cforgery is defined in Section 3.4.3.

Proof. Let G0 be the KINDAIAS,Ccgka,Cadm
game. Let G1 be as in G0, except that all calls of the

form (r1, . . . , ri)← Hi(r0, γ) are replaced with calls of the form (r1, . . . , ri)←$Ri where R is
the space of random coins used by each (A)-CGKA algorithm. Note that in IAS we always
have i ≤ 4; we assume for simplicity that each Hi for i ≤ 4 is implemented by calling H4 and
then truncating the output as needed.

Let G0,0 = G0. Let G0,j be G0 except that the first j calls of the form Hi(r0, γ) that
adversary A makes are replaced as above, and the rest remain unchanged. Note that since
every oracle query that A makes results in at most one call to a function of the form Hi(·, ·),
G0,k = G1 for some k ≤ q.

Consider G0,j−1 and G0,j where j ≥ 1; suppose these games are played by adversary A.
Let A′ be a 4-PRF adversary as in Definition 5. A′ simulates directly except when A makes
their oracle query which leads to the j-th call to a function of the form Hi. Upon this call, A
simulates this call by calling OEval(γ) for the input γ, and truncates the response (r1, . . . , r4) to
(r1, . . . , ri) when necessary before continuing execution (i.e. its simulation). Clearly A′ perfectly
simulates G0,j−1 when A′’s challenger’s bit is 1. When A′’s challenger’s bit is 0, note that
the output of A′’s OEval call, namely (r1, . . . , r4), is of the form F (γ) for a uniformly random
function F : ST→ R4, where ST is the A-CGKA state space. Since F is randomly chosen, this
output is distributed identically to (r1, . . . , r4) where each ri is uniformly sampled from R. It
follows that A′ perfectly simulates G0,j when its challenge bit is 0. By combining the sequence
of game hops, it follows that∣∣∣∣Pr[GA0 (1λ) = 1]− 1

2

∣∣∣∣ ≤ ∣∣∣∣Pr[GA1 (1λ) = 1]− 1

2

∣∣∣∣+ q · ϵF ,

where ϵF is the advantage of PRF adversary A′.

48

In the following, we will simulate for a G1 adversary via either a SUF-CMA or CGKA
adversary. Without hopping from G0 to G1, the simulation would not have been identical
when e.g. using the SUF-CMA OSign oracle. Since we have transitioned to G1, which uses
randomness normally, there are no issues regarding simulation and randomness.

Let A be a G1 adversary. Let E1 be the event that A makes a query to OInject such
that OInject outputs value v ̸= ⊥ (i.e. the challenge bit). Let E2 be the event that this does
not occur; clearly Pr[E1] + Pr[E2] = 1. We consider each event separately. Without loss of
generality, we restrict our simulations given E1 to the case where Cadm is true as otherwise the
adversary cannot win, and similarly given E2 to the case where Ccgka is true. It suffices to
observe that these two predicates are efficiently computable such that the adversary can abort
during unclean executions.

E1: By construction of IAS and Lemma 1, note, given that OInject outputs v ̸= ⊥, that a
signature forgery has occurred where the signature keying material is sampled due to an oracle
call. Given E1, we need to determine which input values ID and ta are used by A on the first
OInject call which outputs v ̸= ⊥. By construction of IAS, this can happen as a result of a query
to OCreate, OProp or OCommit. However, A may make at most q injection attempts with respect
to this key pair, each of which may be a winning one. Thus, the reduction has to guess both 1)
the OInject query which first outputs v ̸= ⊥ and 2) the query qi which generates the signature
key pair corresponding to this injection.

Let E1,i,j be the event that A makes query qi which leads to the generation of signature key
pair (ssk, spk) such that query qj is the first query to OInject resulting in output v ̸= ⊥. Note
that IAS is such that each oracle query qi results in at most one new signature key pair being
sampled by the challenger. By the union bound, we have:

Pr[GA1 (1
λ) = 1 ∧ E1] ≤

∑
i,j∈{1,...,q}

Pr[GA1 (1
λ) = 1 ∧ E1,i,j].

Suppose E1,i,j holds. Let A′ be an SUF-CMA adversary that simulates for G1 adversary A.
We aim to show that Pr[GA1 (1

λ) = 1 ∧ E1,i,j] ≤ ϵS .
A′ simulates as follows. A′ simulates variable initialisation as in G1 except that it lazily

samples init calls as needed (ensuring it remains polynomially-bounded). A′ simulates the first
i−1 of A’s oracle queries locally, i.e. simulates all relevant behaviour resulting in corresponding
state and game variables being set and updated. This includes queries of the form getSsk and
getSpk which A′ simulates via signature scheme S.

Consider A′’s i-th oracle query qi. Let (ssk
∗, spk∗) denote the signature key pair sampled

by the SUF-CMA challenger; recall that SUF-CMA adversary A′ has access to oracle OSign. A′
simulates as follows:

• If qi is to OCreate, then (ssk∗, spk∗) plays the role of (γ.ssk′, γ.spk′). Namely, A′ sets the
output of getSpk(ID, γ.ME) to spk∗ and that of getSsk(γ.spk′,ME) to ssk∗ after embedding
spk∗ in adminList[ME] at line 7 of create. A′ also calls OSign((gid,⊥, TW)) which outputs
σ. A′ otherwise simulates and returns the result to A (which includes σ in part).

• If qi is toOProp with input type = upd-adm, then (ssk∗, spk∗) plays the role of (γ.ssk′, γ.spk′)
(line 10 of makeAdminProp). Similarly to above, A′ embeds spk∗ in P0 (line 11 of
makeAdminProp), and then simulates the rest of the oracle call.

49

• Otherwise, qi is to OCommit. Note we assume E1,i,j holds. Thus, the branch at line 6
in commit must be executed. As before, (ssk∗, spk∗) plays the role of (γ.ssk′, γ.spk′); A′
simulates the remainder of the call.

All other oracle queries, except to OInject, are simulated locally by A′ except when signatures
with respect to spk∗ are required, in which case SUF-CMA oracle OSign is used, or when spk∗ is
to be embedded in a message. Note that at most q OSign queries are made by A′ since each
oracle query A makes produces at most one signature (which may or may not require OSign to
simulate).

Note by construction of IAS that each signature key pair is sampled by a single party
and is never revealed/embedded in another message, and that each key pair is uniformly
and independently sampled. Thus, the simulation is valid, ignoring OExpose queries, since
the challenge key pair is independent of all other keying material and challenge secret key
ssk∗ is never revealed. Similarly, since Cadm is true (since we assume E1), A will never query
OExpose with respect to the challenge key pair, a query which would otherwise not be able to
be simulated.

For A’s query qj′ = OInject(ID) such that j′ ≠ j, A′ simulates by returning ⊥ to A. When
A makes query qj = OInject(ID,m, ta), A′ inspects m = (gid, TC , TW , σT) and returns the
message/signature pair ((gid, TC , TW), σT) to A which, by Lemma 1, exists. These two steps
are valid by definition of E1,i,j and that j′ < j in the first step since we only simulate up to
query j.

It thus follows that the simulation is perfect. Noting that A wins at most as often as A′
(since e.g., A may come up with a forgery (m,σ) nevertheless rejected by proc), we have:

Pr[GA1 (1
λ) = 1 ∧ E1,i,j] ≤ ϵsig.

E2: Note first that given E2, we can deduce that every query to OInject will have output ⊥. Let
A′ be a KINDA

′
CGKA,Ccgka

adversary. A′ simulates for KINDAA-CGKA,Ccgka,Cadm
adversary A as follows.

When A makes an oracle query, A′ executes all code in IAS except for that which makes use
of CGKA algorithms, which are processed via A′’s oracles; A′ then returns each response to
A. One case we must deal with is when proc is called at line 13; the call may succeed but the
caller may ignore the state update, undoing the changes made; this happens given the group
state changes as a result of the call. Note that A′ can determine whether this case occurs or
not using the fact that commit messages are honestly delivered by construction of the KIND
game and by correctness which ensures that honestly-generated and delivered commit messages
are accepted. In particular, A′ can use the policy to determine whether or not the call would
update the group state, and only call its ODeliver when the group state is not changed. Finally,
A′ outputs the same bit as A.

To see that the simulation is perfect, first note that CGKA algorithms are used as a black
box in IAS. Moreover, except in the case dealt with above, CGKA state variables s0 for each ID
are not used except as input to CGKA algorithms, after which they are immediately overwritten,
exactly as done by the CGKA KIND challenger given correctness and in particular the fact that
failing algorithm calls do not update the state. Thus, it suffices to simulate CGKA code using
A′’s oracles. Thus:

Pr[GA1 (1
λ) = 1 ∧ E2] = Pr[KINDA

′
CGKA,Ccgka

(1λ) = 1] = ϵcgka

50

We then have: ∣∣∣∣Pr[GA1 (1λ) = 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[GA1 (1λ) = 1 ∧ (∨i,jE1,i,j ∨ E2)]−
1

2

∣∣∣∣
≤

∣∣∣∣∣∣
∑
i,j

Pr[GA1 (1
λ) = 1 ∧ E1,i,j] + Pr[GA1 (1

λ) ∧ E2]−
1

2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i,j

Pr[GA1 (1
λ) = 1 ∧ E1,i,j]

∣∣∣∣∣∣
+

∣∣∣∣Pr[GA1 (1λ) = 1 ∧ E2]−
1

2

∣∣∣∣
≤ q2 · ϵS + ϵcgka

where the second and third lines follow from the union bound and triangle inequality, respectively.
The result follows by combining this with the game hop earlier.

Optimal forward security. We can achieve optimal forward security, and thus optimal
admin security (i.e. security with respect to Cadm-opt) by replacing signatures with forward-
secure signatures [BM99, MMM02]. Forward-secure signatures divide signature key pairs into
epochs based on how many secret key update calls are made by the secret key holder. Relative
to regular signatures, the security game for forward-secure signatures provides two additional
oracles to 1) expose a secret key at a given epoch and 2) transition the secret key to a new epoch.
Recall that the construction change we suggested to IAS comprised of parties calling the key
update function whenever they transition to a new epoch such that do not ‘update’ their keys
in the CGKA sense. The logic of the security reduction is very similar to that presented with
regular signatures above. The main difference is that forward-secure signature calls are replaced
by oracle calls, including possibly key exposure calls, which, conditioned on the optimal admin
predicate being true, will not result in a trivial attack in the forward-secure signature game.

B.2 Proof of Theorem 2 (DGS security, Section 5.2)

Predicate Cadm. Cadm is tailored to DGS and is a function of the underlying CGKA∗ predicate
Ccgka∗. Intuitively, Cadm ensures that the set of safe oracle queries for DGS adversary A given
inject queries of the form qi = OInject(ID,m, ta) are those that are safe for CGKA∗ adversary A′
(i.e., the predicate Ccgka∗) under roughly the same queries, replacing at most one OInject(·, ·, ta)
queries with a OChallenge(ta) query. For example, noting the symmetry between predicates
Cadm-opt and Ccgka-opt, if CGKA

∗ is secure with respect to CGKA predicate Ccgka-opt, then DGS
is secure with respect to admin predicate Cadm-opt.

We define Cadm more formally. Let Q = (qi)I be the ordered sequence of oracle queries
made by the DGS adversary A. To define Cadm, we construct an ordered sequence of queries Q∗

that are made by the CGKA∗ adversary A′ in the security proof below by replacing, inserting
and/or deleting queries in-order. Let ℓ ∈ [1, qinj] ∪ {⊥} where qinj is the number of OInject

queries made by A. To this end, consider each qi ∈ Q and, for each ℓ, define q∗i to be either a
single query or a sequence of queries in Q∗ as follows:

51

• qi = OCreate(ID, G,G∗): Set q∗i = OCreate(ID, G∗).

• qi = OProp(ID, ID′, type): Set q∗i = ⊥ if type ̸= ∗-adm and q∗i = OProp(ID, ID′, type∗)
otherwise where type = type∗-adm.

• qi = OCommit(ID, (i1, . . . , ik), com-type): If the condition (admReq∨ ...) at line 6 of commit
is false, com-type = std or ID is not currently an admin, set q∗i = ⊥. Otherwise, let
{ID1, . . . , IDj} be the (possibly empty) set of parties for which CGKA∗ rem proposals

are introduced by propCleaner (line 12). Let P⃗A be the value input to CGKA∗.commit at
line 4 of c-Adm (or P⃗A = ⊥ if the line is not reached), and (i1, . . . , ik) the corresponding
proposal indices in the CGKA∗ KIND game. Let q′ be the key reveal query that reveals
the key k output by commit in the OCommit call if the corresponding signature key pair
is not used for the first successful OInject query, and ⊥ otherwise. Then, set q∗i to the
sequence (OProp(ID, ID1, rem), . . . ,OProp(ID, IDj , rem),OCommit(ID, (i1, . . . , ik)), q

′).

• qi = OChallenge(ts): Set q
∗
i = ⊥.

• qi = ODeliver(ID, (ts, ta), c): Let (T, com-type) = T[(ts, ta), ’com’, c] for DGS KIND game
variable T. If proc is called by the game, ID ∈ G holds, Tc ̸= ⊥ holds and either ID ∈ G∗

holds or WA (contained in T) is ̸= ⊥, set q∗i = ODeliver(ID, ta, c
∗), where c∗ ≤ c is the

number of times CGKA∗.commit was called after c queries to OCommit. Otherwise, set
q∗i = ⊥.

• qi = OReveal(ts): Set q
∗
i = ⊥.

• qi = OExpose(ID): Set q∗i = qi.

• qi = OInject(ID,m, ta): Set q
∗
i = ⊥ if q∗i is the j-th query to OInject where j ≠ ℓ (possibly

⊥) and OChallenge(ta) otherwise (ℓ ̸= ⊥).

Then, Cadm is defined to be true if Ccgka∗ is true for runs where the first successful OInject query
is the ℓ-th query to OInject (where the ⊥-th query denotes no successful injection). We restate
the theorem to be proved:

Theorem 2 (DGS security). Let CGKA be a correct and (tcgka, q, ϵcgka)-secure CGKA with
respect to Ccgka, according to Definitions 3 and 4. Let CGKA∗ be a correct and (tcgka∗, q, ϵcgka∗)
secure CGKA with respect to Ccgka∗. Let S be a (tS , q, ϵS) SUF-CMA secure signature scheme,
as in Definition 7. Let H4 be a (tF , 1, ϵF)-secure 4-PRF, as in Definition 5. Let Hro be
a random oracle queried at most qro times. Then, the DGS protocol (Figures 9 and 10) is
(t, q, ϵcgka+q · (ϵF + ϵS +qro · ϵcgka∗+2−λ))-secure (Definition 4) in the random oracle model with
respect to predicates Ccgka,Cadm,Cforgery, where tcgka ≈ tcgka∗ ≈ tS ≈ tF ≈ t, Cadm is a function
of Ccgka∗ and Cforgery

∗ is defined in Section 3.4.3.

Proof. Following the proof of Theorem 1 we let G0 be the KINDAA-CGKA,Ccgka,Cadm
game, and G1

be as in G0 except that all calls of the form (r1, . . . , ri)← Hi(r0, γ) are replaced with calls of
the form (r1, . . . , ri)←$Ri. We transition between G0 and G1 exactly as in Theorem 1. That
is, we define hybrids G0,j where G0,0 = G0, G0,j = G1 when j ≥ q and G0,j differs from G0 for
appropriate 0 < j < q by replacing the first j calls to functions of the form Hi with uniformly

52

sampled values by the challenger. As before, we have
∣∣∣Pr[GA0,j−1(1λ) = 1]− Pr[GA0,j(1

λ) = 1]
∣∣∣ ≤

ϵF for each j ≥ 1, where ϵF is the advantage of PRF adversary A′, which implies also that∣∣∣∣Pr[GA0 (1λ) = 1]− 1

2

∣∣∣∣ ≤ ∣∣∣∣Pr[GA1 (1λ) = 1]− 1

2

∣∣∣∣+ q · ϵF .

Let E1 be the event that A queries OInject such that the oracle does not output ⊥ (i.e. it outputs
the challenge bit). Let E2 be the event that this does not occur; clearly Pr[E1] + Pr[E2] = 1.
To prove security, we will reduce to the security of the primary CGKA, i.e. CGKA, given E2,
and to CGKA∗ and signature security given E1.

We first consider the simpler E2 case where no successful injection is made (and thus OInject

calls can be easily simulated); let A′ be a KIND adversary w.r.t. CGKA simulating for G1

adversary A given E2. A′ simulates as follows. For each oracle query, A′ simulates relevant
CGKA∗ calls locally unless stated otherwise. In particular, A′ calls init(1λ, ID) for ID only as
needed (i.e. lazily). Then:

• OCreate(ID, G,G∗): A′ calls OCreate(ID, G) if needed and otherwise locally simulates.

• OProp(ID, ID′, type): A′ simulates locally if type is of the form ∗-adm and simulates via
OProp(ID, ID′, type) otherwise.

• OCommit(ID, (i1, . . . , ik), com-type): Since CGKA.commit is called after CGKA∗.commit,
A′ can simulate CGKA∗ calls locally and call OCommit(ID, J = (j1, ..., jk′)), where J
corresponds to the set of relevant CGKA proposal indices derived from (i1, . . . , ik), to
simulate CGKA.commit calls.

• ODeliver(ID, (ts, ta), c): A′ simulates the relevant CGKA.proc call (there is at most one such
call made by construction of DGS proc) via ODeliver(ID, ts, c

′) where c′ is the index of the
relevant CGKA control message. A′ simulates locally otherwise.

• OReveal(ts) and OChallenge(ts): A′ simulates directly via their respective oracles.

• OExpose(ID): A′ calls OExpose(ID) and simulates the rest of the call locally.

• OInject: By definition of E2, OInject always returns ⊥, and since OInject does not modify
the state, A′ simply outputs ⊥ upon each OInject call.

By construction, DGS inherits the (normal) CGKA cleanness predicate Ccgka from CGKA, and
so the simulation is perfect and it follows thus that:

Pr[GA1 (1
λ) = 1 ∧ E2] ≤ ϵcgka.

Now, consider adversary A playing G1 given E1 occurs, i.e. A makes a successful OInject call.
Note that there are at most q different CGKA∗ epochs during a given execution and consequently
at most q different CGKA∗ signature key pairs computed by correct parties (since each signature
key pair is derived from a given CGKA∗ epoch secret).

Given E1, let F1 be the event that G1 adversary A calls random oracle Hro with input r that
corresponds to the signature key pair used in the successful OInject query (guaranteed to exist by
Lemma 1) before the injection is made. That is, r is such that (ssk, spk)← SigGen(1λ, Hro(r))
is called by the challenger at some point. Let F2 be the complementary event (i.e., either such

53

a Hro query is made after the successful injection or not at all). We consider the case with F1

(by simulating via the CGKA∗ KIND game) and F2 (via the SUF-CMA game) separately.
Consider F1. Let Fi,j be the event that the aforementioned Hro(r) query is the i-th query

to Hro and is with respect to the j-th CGKA∗ key pair sampled by oracle queries during the
game’s execution; clearly at most q · qro such events occur. Let A′ be a CGKA∗ adversary who
simulates for G1 adversary A as follows given Fi,j ∧ E1. We assume KIND is such that A′
can reveal secrets k output by commit from oracle OCommit. Note that our predicate Cadm is
designed for this simulation.
A′ simulates by calling relevant CGKA∗ oracles and simulating locally otherwise. When Ai

calls getSigKey while simulating commit calls, Hro is queried with input r; Ai lazily samples in
this case. When A queries OInject, A′ simply returns ⊥. Note that OCommit invokes commit but
does not output the key k that commit outputs. When A′ first derives key k from OCommit for
the x-th CGKA∗ key pair, for x ̸= j, A reveals secret k output by commit; A can thus simulate
DGS algorithm commit perfectly. When A′ makes their i-th query to Hro with input r, A′
makes a OChallenge query for the corresponding epoch, which outputs k′; Ai finishes simulating
and returns bit 0 if and only if k′ = r. The simulation is perfect, and when b = 0 Ai wins iff
A wins, since Ai outputs 0 only if they derive the correct key or signature public key in the
simulation, and when b = 0 the challenge oracle outputs the correct key. The b = 1 case is
similar except in the case that b = 1 and the r sampled by the game is the same as the real key
(which happens with probability 1

2λ
); it follows that

Pr[GA1 (1
λ) = 1 ∧ E1 ∧ F1] ≤ q · qro · ϵcgka∗ +

q

2λ
.

We consider F2. Let F
′
i be the event, for 1 ≤ i ≤ q, that a successful injection is made which

uses the i-th CGKA∗ key pair sampled by oracle queries during the game’s execution. Note that
such a key pair must exist and that a signature forgery, by algorithm construction, is a necessary
but not sufficient condition to make a OInject query with a non-bottom response. Consider Ai

who simulates as follows. Ai simulates all queries locally except that Ai embeds his challenge
key in the i-th such CGKA∗ key pair in relevant control messages and uses the OSign oracle to
produce signatures as necessary. Note that the safety predicate is such that, conditioned on F ′i ,
that an OExpose query that leaks the corresponding signature key is disallowed. In addition, A
does not make any Hro query that would lead to a trivial exposure by definition of F2, and thus
the distribution of the challenge key pair is uniform (i.e. correct). It follows that the simulation
is perfect and that:

Pr[GA1 (1
λ) = 1 ∧ E1 ∧ F2] ≤ q · ϵS

The proof is completed by combining the sequence of game hops considered hitherto.

C Correctness Proofs

C.1 Proof of Proposition 1 (IAS correctness)

We want to prove that no adversary A can win CORRA-CGKA,Ccorr (where we set Ccorr = true)
played with respect to IAS (Figures 6 and 7) given that CGKA is correct. We analyze the
different game oracles separately and sketch parts derived by direct inspection or based on
CGKA correctness.

For OProp, A can win the game in OProp if either prop-info incorrectly interprets the proposal
or if the prop call changes the view of the group. In the first case, correctness follows from the

54

correctness of CGKA.prop-info if the proposal is standard, and by inspection of IAS otherwise.
In the second case, the group view is never changed by prop (as makeAdminProp only updates
γ.ssk′, γ.spk′ in case of an admin proposal, and CGKA.prop is correct in the case of a standard
proposal).
OCreate and OCommit can be proven correct by inspection in a similar way.

ODeliver: We examine each reward clause. Note that in line 2 of ODeliver, T is either a commit
message created by create or by commit.

We start with the clause (∅ ≠ γ[gid].G∗ ⊆ γ[gid].G). If T is a create message, then line 1 of
create and the fact that variable adminList is populated ensures that this condition is fulfilled
for T . Upon processing, and after a correct PKI retrieval, p-Wel overwrites γ.adminList and γ.s0
(via CGKA.proc), so the condition holds. If T is a (standard) commit made by a non-admin user
– that is, one without a signature – then there are no changes to the group as checked explicitly
by the proc algorithm from line 12. Otherwise, if T an admin commit, then it is processed by
p-Comm. We can distinguish some further cases depending on the proposals contained in T :

• If T contains proposals of types upd, upd-adm, add only, then the condition is trivially
met.

• If T additionally contains rem proposals, for every removed ID a corresponding rem-adm
proposal is generated by an honest admin in propCleaner, hence G∗ ⊆ G.

• If T additionally contains add-adm proposals, the VALIDP predicate checks that the added
admins are already group members (via S2), hence G∗ ⊆ G.

• If T additionally contains rem-adm proposals, the final check in enforcePolicy ensures that
G ̸= ∅.

• Any other combination of several contradicting proposals affecting the same ID is handled
by enforcePolicy, which prioritizes removals (while preserving admin removals for the same
user) which performs a final check on the size of G∗.

We conclude that, for any possible combination of proposals, the condition is always met
provided that acc = true with respect to T .

The next cases are the reward props(ST[ID], T) ̸= T[gid, (t, c), ’vec’, c′] and the reward
γ[gid].k ≠ ⊥ condition given proc outputs γ such that ID ̸∈ γ[gid].G. It is straightforward to
see that both conditions are met by correctness of CGKA.props.

The check by UpdateView rewards the adversary if two users processing the same commit
message (on epoch (t, c)) differ in their group view. We show correctness by induction. Suppose
ID1 and ID2 process the same commit message T . If they are in epoch (−1,−1) and process a
create message, correctness is easily seen. For the inductive step, we assume that their group
views were equal in (t, c), and we want to show that they remain equal after moving to epoch
(t+ 1, c′). The commit is handled by p-Comm, and the only parts that can change for different
users are the if condition in line and updAL. The behaviour of both sections of code varies only
on the modification of γ’s signature keys, but not on the group structure. Hence, and assuming
CGKA correctness, we conclude that ID1 and ID2 end up having consistent views.

The edge case in which a user is just added to the group is handled by p-Wel, and follows
from CGKA correctness and the fact that γ.adminList← adminList is executed where adminList
is directly provided in T .

55

Finally, the check reward γ[gid].k ̸= T[gid, (t, c), ’key’, c′] follows from the correctness of
the CGKA.commit algorithm which outputs the new group key k.

C.2 Proof of Proposition 2 (DGS correctness)

We prove that no adversary A can win CORRA-CGKA,Ccorr (where we set Ccorr = true) played
with respect to DGS (Figures 9 and 10) given that CGKA,CGKA∗ are correct. We omit some
details which are analogous to IAS’ correctness proof (note that IAS and DGS are designed
such that they share sections of their code).

For OProp, the correctness of prop-info follows from the correctness of
CGKA.prop-info,CGKA∗.prop-info by assumption. Also, the adversary cannot win after
the group membership check as prop only modifies the state by calling CGKA.prop and
CGKA∗.prop; which are correct by assumption.

The group membership check must always pass in OCreate and OCommit for identical reasons.

ODeliver: We examine each reward clause as done previously with IAS. As before, note that in
line 2 of ODeliver, T is a commit message created either by create or by commit. Also, it is easy
to see that the CGKA.props check in OProp holds.

The clause (∅ ̸= γ[gid].G∗ ⊆ γ[gid].G) is met upon generation of any create message T
(produced by OCreate) by construction (line 1 of create). When any message is processed by
p-Create, the condition is enforced again.

If T is a (standard) commit made by a non-admin user – that is, one without a signature –
then there are no changes to the group in the commit as checked explicitly by the auxiliary
c-Std upon commit. The message must only contain a TC which is processed by p-Comm,
which again enforces this condition.

If T an admin commit, then it is processed by p-Comm or by p-Wel. In both cases, commit
messages are processed by the underlying CGKA,CGKA∗ methods. Therefore, correctness
depends on the commit algorithm. The case distinction follows the exact same logic as in IAS,
since the algorithms propCleaner and enforcePolicy, and the predicate VALIDP enforce the same
conditions.

The next case is the reward γ[gid].k ̸= ⊥ for a removed (or non-member) ID, which is
enforced in DGS by p-Comm and by the correctness of the CGKAs.

For the last check by UpdateView, one can proceed by induction as in IAS. The main
difference is that the admin update is not done manually as in IAS (i.e. modifying adminList),
but rather by the underlying proc algorithms of CGKA∗, which yields the result easily. The last
check for the consistency of the derived group key also follows as in IAS. We omit the details.

56

	Introduction
	Group Administration
	Contributions
	Overview
	Additional Related Work

	Notation
	(Administrated) Continuous Group Key Agreement
	Continuous Group Key Agreement
	Administrated CGKA
	Correctness
	Security

	Constructions
	Individual Admin Signatures
	Dynamic Group Signature
	Integrating A-CGKA into MLS

	Results
	Correctness
	Security
	Benchmarking

	Discussion
	Efficiency
	On Modelling in Related Work
	Additional admin mechanisms

	Acknowledgements
	References
	Primitives
	Security Proofs
	Proof of Theorem 1 (IAS security, Section 5.2)
	Proof of Theorem 2 (DGS security, Section 5.2)

	Correctness Proofs
	Proof of Proposition 1 (IAS correctness)
	Proof of Proposition 2 (DGS correctness)

