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Abstract. A ring signature scheme allows a group member to generate
a signature on behalf of the whole group, while the verifier can not tell
who computed this signature. However, most predecessors do not guar-
antee security from the secret key leakage of signers. In 2002, Anderson
proposed the forward security mechanism to reduce the effect of such
leakage. In this paper, we construct the first lattice-based ring signature
scheme with forward security. Our scheme combines the binary tree and
lattice basis delegation technique to realize a key evolution mechanism,
where secret keys are ephemeral and updated with generating nodes in
the binary tree. Thus, the adversary cannot forge the past signature even
if the users’ present secret keys are revealed. Moreover, our scheme can
offer unforgeability under standard models. Furthermore, our proposed
scheme is expected to realize post-quantum security due to the underly-
ing Short Integer Solution (SIS) problem in lattice-based cryptography.

Keywords: Ring signature · Lattice · Forward security · Key exposure
· Post-quantum secure.

1 Introduction

Ring signature [31] allows one group member to generate signatures on behalf of
this group, where the verifier can confirm that the signer belongs to this group
but can not identify the signer. Thus, ring signatures can provide anonymity
on the signer’s identity and have broad applications, such as Blockchain, ad-hoc
networks, anonymous transactions, anonymous whistle-blowing, and so on.

In practical applications, secret keys of singers are revealed easily because
of the careless store or internet attacks, etc. Moreover, once a secret key of a
member of the group is exposed, an adversary can forge a valid signature on
behalf of this group. Thus, the damage from the key exposure is particularly
critical in ring signatures. In 2002, Anderson [6] proposed the forward security
mechanism for signature schemes to reduce the impact caused by secret key ex-
posure. Specifically, forward security of signatures guarantees that the exposure
of a present secret key cannot affect the preceding generated signatures. Its core
idea is a key evolution mechanism, where the lifetime of signature schemes is
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divided into τ discrete time periods. When a time period is updated to the next
one, a new secret key is also computed from the current one by this one-way
key evolution, while the current secret key is deleted. Since the key evolution is
one-way, the previously generated signature is still secure even if an adversary
obtains a current secret key. Therefore, how to design a proper key evolution
mechanism is the point of a forward secure ring signature.

On the other hand, current ring signatures are constructed based on the hard-
ness of some number-theoretical problems, such as prime factorization problems,
discrete logarithm problems, bilinear maps problems, etc. However, Shor’s quan-
tum algorithm [33] shows that all these classical problems can be solved in poly-
nomial time in a practical quantum computer. So Post-Quantum Cryptography
(PQC) is widely studied to withstand the attack from quantum computers. In
fact, some international standards organizations such as NIST, ISO, and IETF
have been conducting PQC standardization projects for a long time. Generally,
three primitives are focused on: Public-Key Encryption algorithms (PKE), Key
Encapsulation Mechanisms (KEM), and digital signature (DS) schemes. Among
the several categories, lattice-based cryptography is considered the most promis-
ing candidate for its robust security strength, comparative light communication
cost, desirable efficiency, and excellent adaptation capabilities [1]. Indeed, NIST
announced three lattice-based PKE/KEM/signature algorithms over four can-
didate finalists in 2022 [1].

1.1 Contributions and approaches

In this paper, we proposed the first lattice-based ring signature scheme with
forward security, which is expected to resist the attack from quantum computers.
Under the inspiration of [35,26], the proposed scheme is proved secure under
standard models. In this scheme, we combine the binary tree structure and lattice
basis delegation technique to realize a key evolution mechanism. Based on this
mechanism, secret keys are updated as the change of time periods, which is able
to satisfy forward security.

Inspired by the works [22,3,13], we use the leaf nodes in a binary tree struc-
ture of the depth l to discretize the lifetime into 2l intervals. The lattice trapdoor
generation algorithm is used to obtain a matrix Ak along with a basis TAk

of
lattice Λ⊥q (Ak) as the public key and the initial secret key of group member
k, respectively. Without losing generality, assume that the user with index i is
the real signer, then Ai is the corresponding matrix of the root node of the

binary tree. Then we choose 2l randomly uniform matrices A
(bj)
j of the size as

Ai for j ∈ {1, 2, . . . , l} and bj ∈ {0, 1}. For each node Θ(j) = (θ1, . . . , θk, . . . , θj)
with θk ∈ {0, 1} and k ∈ {1, 2, . . . , j}, we set the corresponding matrix FΘ(j) =

[Ai||A(θ1)
1 || . . . ||A(θj)

j ]. We employ the lattice basis extension algorithm to com-
pute the trapdoor of any node, inputting the corresponding matrix and the
trapdoor of the root node (or the trapdoor of its ancestor node). According to
the property of the basis extension algorithm, the computation of lattice trap-
doors can not be operated inversely, which realizes the one-way key evolution.
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After arranging the trapdoor of each node, we apply the minimal cover set to
guarantee the signer’s secret key ski,t in time period t includes the ancestor
trapdoor for time periods t′ (t′ ≥ t) and does not include any trapdoor for time
periods t′′ (t′′ < t).

1.2 Related works

Forward security: Anderson[6] first introduced forward security in signatures,
which protects the use of past secret keys even if the current key is revealed.
Bellare et al. [7] further formalized the definition of forward secure signatures
and provided a construction based on the hardness assumption of the integer
factorization problem. Then, Abdalla et al. [2] and Itkis et al. [20] did respec-
tively some work to improve the efficiency of [7]. Besides, many forward secure
cryptosystems were given, such as forward secure public key encryption sys-
tems [9,12,14], forward secure group signatures [24,23,30], forward secure blind
signatures [22,15,21], forward secure ring signatures [25,26], forward secure link-
able ring signature [11], etc.

Lattice-based Signature: In 2008, Gentry et al. [17] proposed a lattice-based
signature scheme using a preimage sampling algorithm. On the one hand, this
work showed a ”hash-and-sign” paradigm that can achieve high computing speed
with a compact design and owns a shorter output size. On the other hand, this
paradigm has some shortcomings, i.e., limitations to parameter sets, difficulty in
conducting high-speed implementation, and inability to withstand side-channel
attacks [28]. In 2010, Cash et al. [13] designed a lattice basis delegation technique
that allows obtaining a short basis of a designated lattice from a short basis of
a related lattice. They also showed a lattice-based signature scheme with this
technique. Many current lattice-based signature schemes adopt this delegation
technique to expand the lattice bases. In 2011, Wang et al. [35] constructed
a lattice-based ring signature using the delegation algorithm. In 2011, Yu et
al.[36] constructed an identity-based signature scheme with forward security.
Further, Ling et al. [24] proposed the first forward secure group signature from
lattices in 2019. Then, Le et al. [22] gave the first forward secure blind signature
from lattices. Simultaneously, Feng et al.[16] gave a traceable ring signature from
lattices. In 2022, Hu et al. [19] gave a lattice-based linkable ring signature scheme
with standard models.

Ring Signature: Rivest et al. [31] first proposed a ring signature in 2001.
Then many ring signature schemes [8,18,34,32] were constructed, whose secu-
rity models do not rely on random oracles. However, the above schemes do not
consider forward security and post-quantum security either. In 2012, Tian et al.
[27] gave an efficient lattice-based ring signature scheme that can achieve strong
unforgeability under the standard model. In 2008, Liu et al. [25] first proposed a
forward secure ring signature to reduce the damage from the key exposure, and
they also gave a construction under the random oracle model. Further, Liu et al.
[26] showed a forward secure ring signature based on the bilinear maps without
random oracles in 2011.
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To sum up, due to the apparent resistance to quantum computing attacks,
lattice-based cryptography has attracted more and more attention. In particular,
the forward security of signatures is considered one of the most promising ways
to minimize the damage caused by secret key exposure. However, to the authors’
knowledge, there is no lattice-based ring signature scheme with forward security.
The work in this paper aims to fill this gap.

1.3 Organization

The rest of the paper is organized as follows. Section 2 shows preliminaries
on lattice, hardness assumptions, and related algorithms. Then, we introduce
the syntax of ring signature with forward security in Section 3. In Section 4,
the specific construction in lattices is given. Finally, we conclude our work in
Section 5.

2 Preliminaries

2.1 Notations

For a positive integer n, [n] denotes a set of {1, 2, . . . , n}. Without special de-
scription, bold lower-case letters, for example, v, denote column vectors. ‖A‖ and

‖v‖ denote the Euclidean norm of a matrix A and a vector v, respectively. ‖Ã‖
denotes the Gram-Schmidt norm of the matrix A, where Ã is the Gram-Schmidt

orthogonalization of A. [A1||A2] ∈ Zn×(m1+m2)
q means the concatenation of a

matrix A1 ∈ Zn×m1
q and a matrix A2 ∈ Zn×m2

q . f(x) = O(g(x)) means there
exist positives c and m such that for any x > m, f(x) 6 c · g(x). f(x) = ω(g(x))

means lim
x→∞

f(x)

g(x)
=∞. {0, 1}l denotes a binary string with the length of l.

2.2 Lattice

Definition 1 (Lattice). Given positive integers n,m and some linearly inde-
pendent vectors bi ∈ Rm for i ∈ [n], the set generated by the above vectors
Λ(b1, . . . ,bn) = {Σn

i=1xibi|xi ∈ Z} is a lattice.

From the above definition, the set {b1, . . . ,bn} is a lattice basis. m is the di-
mension and n is the rank. One lattice is full-rank if its dimension equals to the
rank, namely, m = n.

Definition 2. For positive integers n,m and a prime q, a matrix A ∈ Zn×mq

and a vector u ∈ Znq , define two sets:

Λ⊥q (A) := {e∈ Zm|Ae = 0 mod q}
Λu
q (A) := {e∈ Zm|Ae= u mod q}.

Assuming that T ∈ Zm×m is a basis of Λ⊥q (A), T is a basis of Λ⊥q (BA) for a
full-rank B ∈ Zn×nq .
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2.3 Hardness assumptions

Definition 3 (Small integer solution, SIS problem). Given an integer q,
a matrix A ∈ Zn×mq and a real β > 0, find a nonzero integer vector e ∈ Zm such
that Ae = 0 mod q and ‖e‖ ≤ β.

The SIS problem [17,29] has been proved as hard as approximating the worst-
case Gap-SVP (smallest vector problem) and SIVP with certain factors.

2.4 Lattice algorithms

Definition 4 (Gaussian distribution). Given parameter σ ∈ R+, a vector
c ∈ Rm and a lattice Λ, DΛ,σ,c is a discrete gaussian distribution over Λ with

a center c and a parameter σ, denoted by DΛ,σ,c =
ρσ,c(x)

ρσ,c(Λ)
for ∀x ∈ Λ, where

ρσ,c(Λ) =
∑
x∈Λ ρσ,c(x) and ρσ,c(x) = exp(−π ‖x− c‖2

σ2
). When c = 0, DΛ,σ,0 can

be abbreviated as DΛ,σ.

Lemma 1 (TrapGen algorithm). [4,17,5] Given integers n,m, q with q > 2
and m > 6n log q as the input, there is a probabilistic polynomial-time (PPT)
algorithm TrapGen, outputs a matrix A ∈ Zn×mq along with a basis TA of the

lattice Λ⊥q (A), namely, A · TA = 0 mod q, where the distribution of A is statis-

tically close to uniform on Zn×mq , and ‖T̃A‖ 6 O(
√
n log q)

Lemma 2 (Preimage sample algorithm). Given a matrix A ∈ Zn×mq with

a basis TA ∈ Zm×mq , a vector u ∈ Znq , and a parameter σ > ‖T̃A‖ ·ω(
√

logm) as
the input, where m > 2ndlog qe, there is a PPT algorithm SamplePre, outputs
a sample e ∈ Zmq distributed in DΛu

q(A),σ, such that Ae = u mod q.

Lemma 3 (ExtBasis algorithm). Given an arbitrary matrix A ∈ Zn×mq whose

columns generate the group Znq , an arbitrary basis S ∈ Zm×m of Λ⊥q (A) and an

arbitrary matrix A′ ∈ Zn×m′q , there is a deterministic ploynomial-time algo-

rithm ExtBasis which can output a basis S′′ of Λ⊥q (A′′) ⊆ Zm×m′′ such that

‖S̃‖ = ‖S̃′′‖, where A′′ = A||A′, m′′ = m + m′. Moreover, the above results
apply to the situation that the columns of A′ are prepended to A. This algorithm
can be denoted by S′′ ← ExtBasis(A′′, S).

Lemma 4 (GenSamplePre algorithm). Given a matrix AR = [A1||A3] and

a short basis BR of the lattice Λ⊥q (AR), a vector y ∈ Znq , a parameter δ ≥ ‖B̃R‖ ·
ω(
√

log n), there is an algorithm GenSamplePre(AS , AR, BR,y, δ) to sample a
preimage e which is within negligible statical distance of DΛy

q(AS),δ, where A1 ∈
Zn×k1mq , A2 ∈ Zn×k2mq , A3 ∈ Zn×k3mq , A4 ∈ Zn×k4mq , AS = [A1||A2||A3||A4], and
k1, k2, k3, k4 are positive integers.
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The TrapGen algorithm will be used to generate the public-secret key pairs
in the following scheme. And the GenSamplePre algorithm can be achieved by
invoking preimage sample algorithm which was introduced in [35]. Actually, the
perimage e satisfies ASe = y mod q. The ExtBasis algorithm will be used to
update keys as the change of time periods.

3 Syntax of forward secure ring signature

In this section, we show the model of forward secure ring signature and its se-
curity model which was first proposed in [26]. The security of ring signatures is
required with two points, anonymity and unforgeability. Especially, for the defi-
nition of forward secure ring signatures in Liu et al [26], the model on anonymity
is similar to anonymity against full key exposure and its forward security is sim-
ilar to unforgeability w.r.t. insider corruption.

3.1 System model

One forward secure ring signature scheme consists of five algorithms,Π =(Setup,
KeyGen, KeyUpdate, Sign, Verify), which was first introduced by Liu et
al.[26].

– pp ← Setup(λ): Given the security parameter λ as the input, the setup
algorithm outputs the system public parameter pp.

– (pki, ski,0)← KeyGen(pp): Given the public parameter pp, the key genera-
tion algorithm outputs the public-secret key pair (pki, ski,0) of user i at the
original time, namely, the time period t = 0.

– ski,t+1 ← KeyUpdate(ski,t, t): Given the secret key ski,t of user i with the
time period t as the input, this key update algorithm generates a new secret
key ski,t+1 at the time period t+ 1, and deletes the previous secret key skt.

– σt ← Sign(ski,t,m, R, t): Given a time period t, the secret key ski,t, a set R
of public keys (represents the ring of users) and the message m as the input,
this algorithm returns a signature σt.

– Verify(R,m, σt, t): Given the public keys set R, the signature σt, the mes-
sage m, as well as the time period t as the input, the algorithm outputs 1
for accept, namely, the signature is valid for this message. Otherwise returns
0 for reject.

3.2 Anonymity

The anonymity of ring signature implies an adversary cannot tell which member
of a ring generates signatures. Here we show a game to describe the anonymity
against full key exposure [8] on forward secure ring signature, which was first
introduced in [26]. Compared with the definition of anonymity in the standard
ring signature, the adversary in this model is given the secret keys with the
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original time period instead of having the right to access a corruption oracle,
which means the adversary can obtain the secret keys of all users for any time
period. The definition of anonymity for forward secure ring signature is shown
in the following game between a challenge C and an adversary A :

– Setup: The challenger C runs KeyGen algorithm for n′ times to get public-
secret key pairs (pk1, sk1,0), . . . , (pkn′ , skn′,0), then C sends the public key
set R = {pk1, . . . , pkn′} and the secret key set {sk1,0, . . . , skn′,0} at original
time period to the adversary A .

– Query 1: A can query the signing oracle adaptively. A submits a message
m, a time period t, a ring set R with group members’ public keys, a public
key pki ∈ R, then the challenger C runs the Sign algorithm to respond the
signing oracle queries.

– Challenge: A chooses a time t∗, a group size n∗, a message m∗, a set R∗

of n∗ public keys which satisfies two public keys pki0 , pki1 ∈ R are included
in R∗, and sends them to C . C selects randomly a bit b ∈ {0, 1} and runs
σ∗t∗ ← Sign(t∗, n∗, R∗, skib,t∗ ,m

∗). The challenger sends the signature σ∗t∗
to A .

– Query 2: A is allowed to query the signing oracle adaptively.

– Guess: A returns a guess b′.

A wins this game if b′ = b holds. The advantage that A wins this game for
the security parameter λ is

AdvAnonA (λ) = |Pr[b = b′]− 1

2
|.

Definition 5. A forward secure ring signature scheme is anonymous, if for any
PPT adversary A , the defined advantage AdvAnonA (λ) is negligible.

3.3 Forward security

The forward security of ring signature schemes is described by the following
game which was first introduced in [26]. Here an adversary cannot output a
valid signature σ∗t∗ for a message m∗, a ring R∗, and a time period t∗, such that
V erify(m∗, σ∗t∗ , t

∗) = 1 unless either one of public keys in R∗ is generated by
the adversary or a user whose public key contains in R∗ signs m∗. The details
of this game are as follows:

– Setup: The challenger runs KeyGen algorithm for n′ times and obtains
some public key and original secret key pairs (pk1, sk1,0), . . . , (pkn′ , skn′,0),
then he sends the set of public keys S = (pk1, . . . , pkn′) to the adversary.

– Query phase: A queries the following oracles adaptively.

• Corruption oracle query (ski,t ← CO(pki, t)): Inputting a public key
pki ∈ S and a time t, the oracle outputs the corresponding secret key
ski,t.
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• Signing oracle query SO(t, n,R, pki,m): Inputting a time t, a group size
n, a set of n public keys R, a public key pki ∈ R and a message m, this
oracle outputs a signature σt with the time t.

– Output: A outputs a signature σ∗t∗ , a ring R∗ with the number n∗ of users,
a time t∗ and a message m∗.

A wins the game if the following conditions holds:

1. V erify(m∗, σ∗t∗ , t
∗) = 1,

2. R∗ ⊆ S,
3. for all pk∗i ∈ R∗, there is no CO(pk∗i , t

′) query with time t′ 6 t∗,
4. there is no SO(t∗, n∗, R∗,m∗) query.

Definition 6. A ring signature scheme is unforgeable with forward security, if
for all PPT adversary A , the advantage AdvfsA (λ) that A wins the above game
is negligible on the security parameter λ.

4 A lattice-based ring signature scheme with forward
security

In this section, we first show a framework how to generally assign time periods,
and generate the corresponding lattice trapdoor for each node in a binary tree.
Then, we propose a lattice-based forward secure ring signature scheme.

4.1 Time periods enroll and update in Binary tree

Our construction employs binary tree structure and lattice basis delegation tech-
nique, ExtBasis algorithm, to realize the update of secret keys with the change
of time periods. The details are described as follows.

– Time arrangement in Binary Tree:

• We assign the time periods t ∈ {0, 1, . . . , 2l − 1} to the leaf nodes of a
binary tree with depth l from leaf to right. Here we show an example
as Fig.1, where the depth of the tree is l = 3 and the number of time
intervals is 8.

• On each time period t, there is an unique path t = (t1, . . . , tl) from the
root node to leaf node. And for the ith level, ti = 0 if the node in
this path is left node, otherwise if the node in this path is right node,
ti = 1. Similarly, for the ith level node (i 6= l, namely, the non-leaf
node), its path from the root node to this node is denoted uniquely by
Θ(i) = (θ1, . . . , θi), where θi ∈ {0, 1} is defined as same as ti.

– Update of lattice trapdoor of nodes:
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• TrapGen algorithm is run to obtain a random matrix A0 ∈ Zn×mq

and the lattice basis TA0 of lattice Λ⊥(A0). Then we define the corre-

sponding matrix FΘ(i) = [A0||A(θ1)
1 || . . . ||A(θi)

i ] for Θ(i), and the matrix

Ft = [A0||A(t1)
1 || . . . ||A(tl)

l ] for a time period t, where A
(b)
i are random

matrices for i ∈ {1, 2, . . . , l} and b ∈ {0, 1}. Thus, A0 can be regarded as
the corresponding matrix of root node and TA0

is a lattice trapdoor for
root node.

• Considering the computation of a corresponding lattice trapdoor TΘ(i)

for the node Θ(i) of the binary tree, we employs lattice basis extension
algorithm ExtBasis. There are two following situations.

∗ Given the original lattice trapdoor TA0
, the trapdoor TΘ(i) can be

computed as follows.

TΘ(i) ← ExtBasis(FΘ(i) , TA0),

where FΘ(i) = [A0||A(θ1)
1 || . . . ||A(θi)

i ].

∗ The trapdoor TΘ(i) can also be computed from its any ancestor’s
trapdoor. For example, given TΘ(k) ,

TΘ(i) ← ExtBasis(FΘ(i) , TΘ(k)),

where FΘ(i) = [A0||A(θ1)
1 || . . . ||A(θi)

i ] andΘ(i) = (θ1, . . . , θk, θk+1, . . . , θi)
for k < i.
That is to say, the trapdoor TΘ(i) is a basis of the lattice Λ⊥(FΘ(i)).

• The above methods are also suitable for computing the lattice trapdoor
for time periods (i.e., leaf nodes), if its ancestor’s lattice trapdoor is
known.

4.2 Our lattice-based proposal

Here, we show the lattice-based construction which uses the key evolution (KV)
mechanism on the binary tree to achieve the key update and forward secure.

– Setup(λ): Given security parameter λ as input, set the number of time
period τ = 2l where l is the depth of the binary tree, set system parameters
n,m, q, d, δ, where n,m are integer, q is prime, d represents the length of the
signed messages, δ is the parameter of sampling algorithm, the maximum
number of users max, the setup algorithm performs as follows:

• Choose 2l random matrices A
(0)
1 , A

(1)
1 , . . . , A

(0)
l , A

(1)
l ∈ Zn×mq ,

• Choose random and independent vectors C0, C1, . . . , Cd ∈ Zn×mq ,

• Outputs the public parameter pp = (q, n,m, d, δ, τ,max,A
(0)
1 , A

(1)
1 , . . . ,

A
(0)
l , A

(1)
l , C0, C1, . . . , Cd).



10 Xiaoling Yu et al.

0 1

010

11

110 111

root

000

00 01

001

10

101100011

Level 0

Level 1

Level 2

Level 3

= 0 =1 =2 = 3 =4 =5 =6 =7

Fig. 1. Binary tree of depth l = 3: without losing generality, assume that the singer is
the user with the index i in the group, then the corresponding matrix for root node is
Ai and its trapdoor is TAi .

– KeyGen(pp): Given the public parameter pp, the key generation algorithm
performs as follows.

• For the user with index i (1 ≤ i ≤ max), run TrapGen(n,m, q) algorithm
to obtain a random matrix Ai and a basis TAi of lattice Λ⊥(Ai),

• Returns the public-secret key (pki, ski,0) = (Ai, TAi) for user i.

– KeyUpdate(pp, ski,t, pki): Given the public parameter pp, a secret key ski,t
with the time period t and public key pki = Ai of a user with the index i
as input, the key update algorithm invokes ExtBasis algorithm combining
with the binary tree, and returns the updated secret key ski,t+1 in the time
period t + 1. The key evolution mechanism is needed to achieve the secret
key update as follows.

• For any leaf node t in the binary tree, a minimal cover Node(t) represents
the smallest set that contains an ancestor of all leaves in {t, t+1, . . . , τ−
1} but does not contains any ancestors of any leaf in {0, 1, . . . , t−1}. For
example, as shown in Fig.1, Node(0) = {root}, Node(1) = {001, 01, 1},
Node(2) = {01, 1}, Node(3) = {011, 1}, Node(4) = {1}, Node(5) =
{101, 11}, Node(6) = {11}, Node(7) = {111}.

• Based on the rules in the Section 4.1, each node in the binary tree owns
the corresponding trapdoor, for example, for the node “01” in Level 1,
its lattice trapdoor is denoted by T01 which is a basis of lattice Λ⊥q (F01)

and F01 = [Ai||A(0)
1 ||A

(1)
2 ]. Then the secret key skt at the time period

t consists of trapdoors of all nodes in the set Node(t). In Fig.1, we
have ski,0 = {TAi

}, ski,1 = {T001, T01, T1}, where T001, T01, T1 are the

corresponding trapdoor (basis) for F001 = [Ai||A(0)
1 ||A

(0)
2 ||A

(1)
3 ], F01 =

[Ai||A(0)
1 ||A

(1)
2 ], F1 = [Ai||A(1)

1 ], respectively.
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• To realize the update from ski,t to ski,t+1, the singer determines firstly
the minimal cover Node(t+ 1) , then grabs all trapdoors of nodes which
are in Node(t+ 1)\Node(t) by using the methods introduced in Section
4.1, and deletes the trapdoors of nodes in Node(t)\Node(t + 1). Fi-
nally, the singer can determine the secret key ski,t+1. For example, given
ski,1 = {T001, T01, T1}, then ski,2 = {T01, T1}, whereNode(2)\Node(1) =
{01, 1} and Node(1)\Node(2) = {001}.

• Based on the above steps, this algorithm outputs the secret key ski,t+1

of the singer with index i in the time period t+ 1, and deletes the secret
key ski,t.

– Sign(m, ski,t, R, t): Given a ring ofN users with public keysR = {A1, A2, . . . ,
AN}, the message m ∈ {0}×{0, 1}d with the length of d+11, the user i with
the secret key ski,t at the time period t generates a signature as follows:

• The user i checks firstly if ski,t contains the trapdoor TΘ(t) . Otherwise, he
runs ExtBasis(FΘ(t) , TΘ(k)) to compute TΘ(t) , where TΘ(k) is an ancestor
basis of TΘ(t) in the secret key ski,t

2,

• Set Cm =
∑d
j=0(−1)m[j]Cj ∈ Zn×mq , where m[j] is the jth bit of the

message m,

• Runs GenSamplePre(AR,t, Fi,t, TΘ(t) ,0, δ) to obtain e ∈ Z[N(l+1)+1]m
q

which satisfies AR,t · e = 0 mod q, where Fi,t = [Ai||A(t1)
1 || . . . ||A(tl)

l ],
AR,t = [F1,t||F2,t|| . . . ||FN,t||Cm],

• Returns σt = e as the ring signature of m during the time period t.

– Verify(R,m, σt, t): The verify algorithm performs as follows:

• Compute Cm =
∑d
j=0(−1)m[j]Cj ,

• Verify if AR,t ·e = 0 mod q holds and ‖e‖ 6 δ
√

[N(l + 1) + 1]m, receive
this signature. Otherwise, reject it.

4.3 Correctness

According to the GenSamplePre algorithm, the vector e satisfies AR,t · e = 0

mod q and ‖e‖ 6 δ
√

[N(l + 1) + 1]m with overwhelming probability. e is within
negligible statical distance of DΛ⊥q (AR,t),δ.

1 We can note that any messages can be transformed the fixed length string by a
proper collision resistant hash function H : {0, 1}∗ → {0} × {0, 1}d, thus we set the
signed messages with fixed length here, which can guarantee various summations
can include easily a constant term of index 0 [10].

2 There are two situations on TΘ(t) . If TΘ(t) contains in ski,t, for example, T001 ∈ ski,1
as Fig.1, then T001 can be used directly to generate signature; On the other hand,
if TΘ(t) does not contain in ski,t, for example, when the time period t = 2, T010 /∈
ski,2 = {T01, T1}, the ExtBasis(Ai||A(0)

1 ||A
(1)
2 ||A

(0)
3 , T01) algorithm will be invoked

to return T010 .
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4.4 Security analysis

Theorem 1. The proposed ring signature scheme is fully-anonymous, if SISq,N(l+1)m,δ

problem is intractable, where N is the size of ring.

Proof. Assume that there is an adaptive adversary A attacking the ring signa-
ture of anonymity. And a challenger C can simulate some operations to respond
to A ’s queries.

– Setup: The challenger C chooses 2l random matricesA
(0)
1 , A

(1)
1 , . . . , A

(0)
l , A

(1)
l

∈ Zn×mq , d+1 random and independent matrices C0, C1, . . . , Cd ∈ Zn×mq , and
runs TrapGen(n,m, q) for n′ times to get public-secret key pairs (pk1, sk1,0),
. . . , (pkn′ , skn′,0). Then C sends the public key set S = {pk1, . . . , pkn′},
the original secret key set {sk1,0, . . . , skn′,0} and the public parameters

(A
(0)
1 , A

(1)
1 ,. . . , A

(0)
l , A

(1)
l , C0, C1, . . . , Cd) to the adversary A .

– Query 1: A submits a ring R, a time period t, a public key pki and a
message m, the challenger C runs the sign algorithm and returns a valid
signature σt to A .

– Challenge: A chooses a time t∗ = (t∗1, t
∗
2, . . . , t

∗
l ), a group size n∗, a message

m∗ ∈ {0}×{0, 1}d, a set R∗ ⊂ S of n∗ public keys which satisfies two public
keys pki0 , pki1 ∈ R∗, and sends (pki0 , pki1 , R

∗,m∗, t∗) to C . Then C selects

randomly a bit b ∈ {0, 1}, and computes Cm∗ =
∑d
j=0(−1)m

∗[j]Cj ∈ Zn×mq ,
and runs e∗ ← GenSamplePre(AR∗,t∗ , Fib,t∗ , TΘ(t∗) ,0, δ). The challenger
sends the signature e∗to A .

– Query 2: A is allowed to query the signing oracle adaptively.

– Guess: A returns a guess b′ ∈ {0, 1} about b.

In the view of A , the operations of the challenger C are statistical close to the
real anonymity experiments. According to the Sign algorithm, for the ring R∗,
any valid signature e and e′, the verification matrix is AR∗,t∗ = [F1,t∗ ||F2,t∗ || . . .
||Fn∗,t∗ ], where Fi,t∗ = [Ai||A

(t∗1)
1 || . . . ||A(t∗l )

l ] for i ∈ {1, 2, . . . , n∗}. Actually,
this is an one-way function fAR∗,t∗ (e) = AR∗,t∗e mod q. The signatures e and

e′ are vectors in Zn
∗(l+1)m
q and have the same distribution within negligible

statistical distance of DΛ⊥(AR∗,t∗ ),δ, which means e and e′ are computationally
indistinguishable. Thus the advantage that A distinguishes signer is negligible,
the proposed scheme satisfies the anonymity.

Theorem 2. The proposed ring signature is unforgeable with forward security,
if SISq,N(1+2l)m,δ problem is hard, where N is the size of the challenge ring.

Proof. Assuming that A is an adversary attacking the unforgeability of the
proposed ring signature scheme, then a challenger C can solve the SIS problem.
The process is as follows.

– Setup: C constructs the system parameters as follows:
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• Let the maximum number of users be max, the depth of binary tree l,
choose N ≤ max as the size of the challenge ring.

• Instance: Assume A intends to solve the SISq,N(1+2l)m,δ problem

F · v = 0 mod q, ‖v‖ ≤ β, F ∈ Zn×N(1+2l)m
q (1)

Here F satisfies it can be parsed as F = [F1||F2|| . . . ||FN ], where Fi∗ =

[Ai∗ ||U (0)
1 ||U

(1)
1 || . . . ||U

(0)
l ||U

(1)
l ] for i∗ ∈ {1, 2, . . . , N}, and Ai∗ , U

(bj)
j ∈

Zn×mq for i∗ ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , l} and bj ∈ {0, 1}.
• Pick a vector u = (u1, u2, . . . , uN ) ∈ {1, 2, . . . ,max} and set a ring
Ru = {u1, u2, . . . , uN}.

• Construct a list L that is empty initially. For the index i, if 1 ≤ i ≤ max
and i /∈ Ru, run the TrapGen algorithm to generate Ai ∈ Zn×mq with

the corresponding short basis Bi ∈ Zm×m for Λ⊥(Ai) and store the
tuple < i,Ai, Bi > in list L . For 1 ≤ i ≤ max and i = ui∗ ∈ Ru, set
Ai = Ai∗ ∈ Zn×mq .

• Set A
(bi)
i = U

(bi)
i , where i ∈ {1, 2, . . . , l} and bi ∈ {0, 1}.

• Select randomly d+ 1 short matrices Di ∈ ZN(l+1)m×m, fix h0 = 1 ∈ Zq
and pick d uniform and random scalars hi ∈ Zq.

• Invoke the TrapGen algorithm to obtain E ∈ Zn×mq with a short basis

BE ∈ Zm×m for Λ⊥q (E).

• C guesses the target time period t∗ ∈ {0, 1, 2, . . . , τ − 1} that A intends
to attack and denotes it as t∗ = (t∗1, t

∗
2, . . . , t

∗
l ), where t∗i is the value of

the ith node of the path in the binary tree. For i ∈ [l], set A
(t∗i )
i = U

(t∗i )
i ,

and let ARu,t∗ = [F ∗1 ||F ∗2 || . . . ||F ∗N ], where F ∗i = [Ai||A
(t∗1)
1 || . . . ||A(t∗l )

l ]
for i ∈ {1, 2, . . . , N}.

• Set the set of public keys {A1, A2, . . . , Amax} and system parameters <

A
(0)
1 , A

(1)
1 , . . . , A

(0)
l , A

(1)
l , C0 = AR,t∗D0 + h0E mod q, C1 = AR,t∗D1 +

h1E mod q, . . . , Cd = AR,t∗Dd + hdE mod q >, and send them to A .

– Query: A proceeds the following queries adaptively.

• Corruption query: For a time period t = (t1, t2, . . . , tl) and a sign user
pki = Ai, if pki /∈ Ru or this user pki is the challenged signer, C aborts.
If t ≤ t∗, C aborts. Otherwise, assume k ≤ l is the minimum index such
that tk 6= t∗k, the challenger C computes the key Ttk for the node tk using
the trapdoor T

A
(tk)

k

as follows:

Ttk ← ExtBasis(G||A(tk)
k , T

A
(tk)

k

), where G = [Ai||A(t1)
1 || . . . ||A(tk−1)

k−1 ].

Then C computes all keys in ski,t as the real KeyUpdate algorithm.

• Signing query: For the time period t = (t1, t2, . . . , tl), the ring R, the
message m ∈ {0, 1} × {0, 1}d, the signer pki with the index i,
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∗ If R = Ru, C constructs the matrix AR,t = [F1||F2|| . . . ||FN ], where

Fi = [Ai||A(t1)
1 || . . . ||A(tl)

l ] for i ∈ {1, 2, . . . , N}. C computes Dm =∑d
i=0(−1)m[i]Di and hm =

∑d
i=0(−1)m[i]hi. If

∑d
i=0(−1)m[i]hi = 0,

C aborts. Otherwise, C constructs the matrix F ′ = [AR,t||AR,tDm+
hmE], and finds a short vector e ∈ Λ⊥q (F ′) using BE .

∗ Otherwise, if the tuple < i,Ai, Bi > belongs to the list L , C con-
structs a matrix Fj = [ARj ,t||

∑d
i=0(−1)m[i]Ci] for a ring Rj and

returns ej → GenSamplePre(Fj , Ai, Bi,0, δ) to A .

∗ Otherwise, the challenger a user with index k ∈ Rj such that the
tuple < k,Ak, Bk > belongs to the list L . And C returns e′j →
GenSamplePre(Fj , Ak, Bk,0, δ) to A .

– Challenge: The adversary A outputs a forgery < σ∗,m∗, R∗, A∗i , t
∗ >. If

R∗ 6= Ru, C aborts. Otherwise, C processes the following steps:

• Compute Dm∗ =
∑d
i=0(−1)m

∗
[i]Di and hm∗ =

∑d
i=0(−1)m

∗
[i]hi;

• If hm∗ 6= 0 mod q, C aborts.

• Separate σ∗ ∈ Z(N(l+1)+1)m into σ∗1 ∈ ZN(l+1)m and σ∗2 ∈ Zm, such that

σ∗ =

(
σ∗1
σ∗2 .

)
• Return e∗ = σ∗1 +Dm∗σ

∗
2 ∈ ZN(l+1)m.

Analysis: Cm∗ =
∑d
i=0(−1)m

∗
[i]Ci =

∑d
i=0(−1)m

∗
[i](AR∗,t∗Di + hiE). If hm∗ =

0 mod q, we have that Cm∗ = AR∗,t∗Dm∗ and then AR∗,t∗e
∗ = AR∗,t∗(σ

∗
1 +

Dm∗σ
∗
2) = [AR∗,t∗ |AR∗,t∗Dm∗ ]

(
σ∗1
σ∗2

)
= [AR∗,t∗ |Cm∗ ]e

∗ = [ARu,t∗ |Cm∗ ]e
∗ = 0

mod q. We can obtain the matrix F from ARu,t∗ by inserting the remain matrices

{U (1−bi)
i }li=1 for bi ∈ {0, 1}. Then we insert vectors 0 into the corresponding

positions of e∗ to obtain the solution v of the equation (1). And we can get the
fact that F · v = 0 mod q and ‖v‖ = ‖e∗‖. Thus, C solves the SISq,N(1+2l)m,δ

problem.

5 Conclusion

This paper shows the first lattice-based ring signature scheme with forward se-
curity under the standard model. Our proposal combines lattice delegation tech-
niques with a binary tree structure to realize a key evolution mechanism. Based
on this one-way evolution mechanism, secret keys can be updated timely with
generating nodes in the binary tree, which guarantees that the exposure of a
current secret key can not threaten the past signatures. Moreover, our scheme is
expected to be post-quantum secure due to its underlying security assumption
on the hardness of the SIS problem in lattice theory.
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