
Private Collaborative Data Cleaning

via Non-Equi PSI

Erik-Oliver Blass1 and Florian Kerschbaum2

1Airbus, Germany
erik-oliver.blass@airbus.com
2University of Waterloo, Canada

florian.kerschbaum@uwaterloo.ca

Abstract

We introduce and investigate the privacy-preserving version of collaborative data cleaning. With
collaborative data cleaning, two parties want to reconcile their data sets to filter out badly classified,
misclassified data items. In the privacy-preserving (private) version of data cleaning, the additional
security goal is that parties should only learn their misclassified data items, but nothing else about
the other party’s data set. The problem of private data cleaning is essentially a variation of private
set intersection (PSI), and one could employ recent circuit-PSI techniques to compute misclassifications
with privacy. However, we design, analyze, and implement three new protocols tailored to the specifics of
private data cleaning that significantly outperform a circuit-PSI-based approach. With the first protocol,
we exploit the idea that a small additional leakage (the size of the intersection of data items) allows for
runtime and communication improvements of more than one order of magnitude over circuit-PSI. The
other two protocols convert the problem of finding a mismatch in data classifications into finding a
match, and then follow the standard technique of using oblivious pseudo-random functions (OPRF)
for computing PSI. Depending on the number of data classes, this leads to either total runtime or
communication improvements of up to two orders of magnitude over circuit-PSI.

1 Introduction

Data cleaning [17] is the most time-consuming task in data science. Current estimates range from 45% to
80% of the total time in data science is spent on data cleaning [29, 44]. Data cleaning is necessary to prepare
high-quality data sets that result in high-quality machine learning models. The more data sources can be
used to clean data, improve data quality, and reduce errors, the higher the accuracy of the final model.

A standard collaborative data cleaning scenario consists of two data sources, each comprising a set of pairs
of data elements and their corresponding classifications (labels). One wants to find those data elements that
have been misclassified, i.e., classified differently in each set. More formally, given two sets SA = {(x1, u1),
. . . , (xn, un)} and SB = {(y1, v1), . . . , (yn, vn)} where xi, yj are data elements and ui, vj their corresponding
labels, compute the set of classification errors SE = {(yj , vj) ∈ B|∃(xi, ui) ∈ A : xi = yj ∧ ui ̸= vj}.

Examples for detecting such classification errors (“misclassifications”) are plentiful: malware classifiers,
where two Security Operation Centers (SOCs) detect attacks by the same malware but have assigned it to
different classes of malware, medical image classifiers, where experts (doctors) have classified shared medical
images but have come to different conclusions, and many more. Finding misclassified data elements is crucial,
as these cannot be used in their corresponding application, but have to be cleaned (removed, re-classified)
instead.

However, often different data sets come from different, untrusted parties, so data cannot be exchanged
in clear text. Ideally, different parties would jointly compute misclassified data from their sets, while at
the same time not learning anything else about the other party’s set. Private set intersection (PSI) [10]
is a common tool to link two data sources without revealing anything but the intersection. Yet, for data
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Parameters: Input length n

1. Wait for input < (x1, u1), . . . , (xn, un) > from sender S and < (y1, v1), . . . , (yn, vn) > from receiver R.

2. Output {i|∃j : (xj = yi) ∧ (uj ̸= vi)} to R.

Figure 1: Ideal misclassification functionality FMCLASS

cleaning, the intersection may be too revealing. For example, as the intersection is a superset of the data
items to be cleaned, leaking the intersection violates privacy regulations such as the GDPR mandate on data
minimization [40]. The GDPR dictates that only data necessary to perform the required functionality can
be disclosed.

While private data cleaning is a restricted form of PSI, reducing collaborative private data cleaning to
private set intersection at scale is non-trivial. As we will see, one might use a general form of circuit-
PSI [4, 20, 31, 33, 35, 37] and construct a strawman protocol (Section 1.3) for detecting mismatching labels
ui ̸= vj . Yet, the resulting performance is disappointing (Section 5) since it resorts to generic two-party
computation. More clever reductions are not straightforward, since turning a label mismatch into a match
(as found by PSI) would require comparing a label to the entire set of possible labels.

In this paper, we present two new ideas how to improve the performance of Private Data Cleaning and
scale it to big data sizes of 220 inputs. These two ideas use different insights into the problem of data cleaning
which makes them interesting to study in parallel. The first (Section 3) results in protocol PDC1 that has
optimal round complexity (O(1), 1.5 rounds) as well as optimal communication, and optimal computation
complexity (O(n)). On the downside, PDC1 brings a small additional leakage (the size of the intersection
is revealed to one party), and it uses O(n) public key operations. Hence, the protocol’s concrete runtime is
sub-optimal.

Consequently, we present a second protocol PDC2 which does not suffer from any leakage and only uses
only a small, constant number of public key operations, and then reverts to symmetric key techniques for
the bulk of the work. PDC2 also features optimal round complexity O(1), 1 or 2 rounds depending on
the oblivious pseudo-random function (OPRF) used, but has O(n log |L|) communication and computation
complexity, where L is the set of all possible labels. Our extensive benchmarks (Section 5) show that PDC2’s
concrete runtime and communication cost is always the best choice when label length ℓ = log |L| is low to
medium (up to ℓ ≤ 10 bits). For larger label lengths ℓ ≥ 10 bits and when differentially private leakage is
admissible, PDC1 becomes the best choice still outperforming circuit-PSI by an order of magnitude.

In summary, we make four contributions:

• We formalize the problem of private collaborative data cleaning and show its relation to private set
intersection (Section 1.1)

• We present a new protocol with optimal round, communication, and computation complexity, but small
additional leakage and non-optimal use of public-key cryptography (Section 3).

• We present a new protocol with optimal round complexity, leakage, and use of public-key cryptography,
but with higher communication and computation complexity (Section 4.4). However, this protocol has
the best concrete runtime in our experiments.

• We evaluate our open-source implementation of these protocols and the baseline and report runtimes and
communication cost (Section 5). Overall, we show an improvement of up to two orders of magnitude over
circuit-PSI.

1.1 Problem Definition

We consider two parties, a sender S and a Receiver R. Sender S has a sequence of pairs SS =< (x1, u1),
. . . , (xn, un) >, and R has a sequence of pairs SR =< (y1, v1), . . . , (yn, vn) >. We call the xi, yj ∈ D data
elements, e.g., x-ray images or cryptographic hashes of malware. Here, D denotes the domain of all possible
data elements. Similar to PSI, we assume that all xi are unique in SS , and all yj are unique in SR. We call
the ui, vj ∈ L labels, e.g., classes in a classification task that come from domain L. Labels do not need to be
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unique within either SS or SR. Our goal is to allow receiver R to compute all elements (yj , vj) representing
a classification error with respect to sequence SS of sender S. That is, R should be able compute those
(yj , vi) pairs where yj matches an xi, but the corresponding labels ui and vi differ: SE = {(yj , vi) ∈ SR|∃(xi,
vi) ∈ SS : xi = yj ∧ ui ̸= vj}. We require that this computation is secure in the sense that it reveals nothing
else to either S or R. In particular, elements (xi, ui) which are also in SS (and would be revealed by running
PSI on {xi} and {yj}) are not revealed.

We formalize our intuition of an ideal misclassification functionality in Figure 1. Note that data elements
xi, yj are typically bit strings of some length L, xi, yj ∈ {0, 1}L with L = log |D|, and similarly ui, vj ∈ {0, 1}ℓ
with ℓ = log |L|. To work with smaller data types and also save communication, a standard trick is to hash
arbitrary long inputs into bit strings of length log n+ σ, where σ is a statistical security parameter. Similar
to related work [4] against which we compare, we implicitly use this technique (if not specified otherwise),
too.

1.2 Preliminaries

Throughout the paper, λ denotes a computational security parameter, and σ denotes a statistical security
parameter.

We write i ∈ [n] as a shorthand for i ∈ {1, . . . , n} and < xi >i∈[n] for sequence < x1, . . . , xn >. We
will often use sequences instead of sets to represent data in this paper, as sequences allow indexing over
individual elements.

For a length ℓ bit string B = b1 . . . bℓ, Prefixi(B) = b1 . . . bi denotes the length i prefix of B. We write
Prefixi(B) ⊕ 1 as a shorthand for the length i prefix of B where the last bit of the prefix is flipped, i.e.,
Prefixi(B)⊕ 1 = b1 . . . (bi ⊕ 1).

We write B[i] to denote the ith bit of B.
For a keyed pseudo-random function (PRF) PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ, a cryptographic hash

function H : {0, 1}∗ → {0, 1}λ (modeled as a random oracle), and s variable-length bit strings xi ∈ {0,
1}ℓi , we will write PRFK(x1|| . . . ||xs) as a shorthand for PRFK(H(x1|| . . . ||xs)). Here, “||” denotes an
unambiguous pairing of inputs, e.g., concatenation with padding.

Similarly, for Elgamal encryption Enc : K ×M→ G over key space K, plaintext spaceM, and message
space G, we write EncK(x1|| . . . ||xs) as a shorthand for EncK(HG(x1|| . . . ||xs)), where HG : {0, 1}∗ → G is
a cryptographic hash function.

If obvious from the context, we will also omit writing key K for a keyed PRF PRFK(·) on input x and
simply write PRF(x).

For two families of random variables (probability ensembles) {X}λ∈N and {Y }λ∈N we write X
c≡ Y if

they are computationally indistinguishable.

1.3 A Strawman Solution using Circuit-PSI

There already exist variations of PSI that one can use in combination with generic two-party computation
(2PC) to perform private data cleaning. On input of sequence SS =< x1, . . . , xn > by sender S and
sequence SR =< y1, . . . , yn > by receiver R, a circuit-PSI protocol [4, 20, 31, 33, 35, 37] offers the following
functionality. For each xi ∈ SS , S receives a value αi, and R receives a value βi such that αi = βi, iff
xi ∈ SS ∩SR. After executing a circuit-PSI protocol, parties can then use 2PC to compute any functionality
on top of the intersection, using the αi, βi as input to the 2PC.

Previous works use Oblivious Programmable Pseudo-Random Functions (OPPRFs) to realize circuit-
PSI which, interestingly, also allows to include associate payloads in the computation of the intersection
functionality with 2PC. Here, the associate payload of an element xi is ui as in our definition of data cleaning,
i.e., parties’ inputs are pairs (xi, ui) and (yi, vi). As we use a circuit-PSI-based strawman construction for
data cleaning as our benchmark and to compare our techniques against, we give a brief overview about
general circuit-PSI and how our circuit-PSI-based strawman construction works below. For more details on
circuit-PSI with associated payload, see Section 6 of Pinkas et al. [33] or Figure 10 of Rindal and Schoppmann
[37].

Circuit-PSI. To simply compute shares of the intersection, parties S and R run a circuit-PSI instance using
SS =< x1, . . . , xn > and SR =< y1, . . . , yn > as their input. That is, S chooses n random values ti and
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Table 1: Theoretical communication and computational complexities. n : number of data elements/labels
< xi, ui >i∈[n], < yi, vj >i∈[n], |DH|: size of element of DDH-group, ℓ = |ui| = |vj | ≤ log n+ σ for statistical
security parameter σ, λ: computational security parameter,m: size of stash-free cuckoo hash table with three
hash functions (m = 1.27n), SK: symmetric key operations, PK: public-key operations. For VOLE-PDC2,
we use the VOLE-OPRF communication complexity as specified in Section 7 of Rindal and Schoppmann
[37].

Scheme Communication Complexity Computational Complexity Leakage
Circuit-PSI + 2PC O(nℓ) O(λ)PK +O(nℓ)SK None

Ours

PDC1 13n · |DH| O(n)PK +O(n)SK |X ∩ Y |
DH-PDC2 nℓ · (2 · |DH|+ |H|) O(nℓ)PK +O(nℓ)SK None

KKRT-PDC2 (5m+ 3n)ℓλ O(λ)PK +O(nℓ)SK None

VOLE-PDC2 ((5 + 217(mℓ)−
19
20 )m+ 3n)ℓλ+ 2mℓ(σ + 2 log(n)) O(λ)PK +O(nℓ)SK None

OPPRFs fi(y) such that fi(y) = ti if ∃j : y = xj , else fi(y) is random. Sender S and receiver R obliviously
evaluate the fi such that R receives ri = f(yi) for yi. Finally, S and R run a 2PC circuit that outputs a

share of bit (ti
?
= ri) to each.

Circuit-PSI-based Strawman. For computing misclassification with circuit-PSI, we follow the associated
payloads approach from Rindal and Schoppmann [37] (see also improvements in [35]), but institute a change
to the 2PC part as described below.

First, parties use SS =< (x1, u1), . . . , (xn, un) > and SR =< (y1, v1), . . . , (yn, vn) > as their input.
Sender S chooses 2n random values ti, t

′
i and OPPRFs f ′i(y) such that f ′i(y) = ti||t′i⊕uj , if ∃j : y = xj , else

f ′i(y) is random. Parties obliviously evaluate the f ′i such that R receives ri||r′i = f ′(yi) for each yi.
After the evaluation of the OPPRFs, parties run one circuit in 2PC in our strawman. Namely, parties

execute for each (yi, vi) a circuit outputting

F (ri, r
′
i, vi, ti, t

′
i) =

{
1, if ri = ti ∧ vi ̸= r′i ⊕ t′i
0, otherwise

to R. So, R learns whether (yi, vi) is a misclassification if it has received 1 as an output.
In conclusion, one can realize the private data cleaning functionality by essentially running circuit-PSI

including the evaluation of a 2PC circuit. While conceptually simple, it turns out that this strawman
construction is expensive in practice, as the 2PC computation has high bandwidth requirements, see our
evaluation in Section 5. In this paper, we significantly improve both computation and communication
overhead for realistic values of ℓ = logL, i.e., the domain of all possible labels.

2 Technical overview of our constructions

We present, analyze, and implement two new ideas to construct more efficient protocols that do not need to
resort to generic, expensive 2PC.

2.1 PDC1

Our first insight is that it suffices if receiver R cannot distinguish between two cases in a PSI protocol: the
case yj /∈ SS , when their element is not in set SS of sender S, and the case xi = yj ∧ ui = vj , when their
element is in set SS of sender S, but has the same label ui as the corresponding element xi from S.

Hence, with our first protocol PDC1 we construct a variant of the basic Diffie-Hellman (DH) key exchange
based PSI that evaluates an OPRF [1, 15, 26].

In PDC1, S and R run OPRFs such that S receives PRF outputs for all data elements from SS and SR
using receiver R’s key. At the same time, S also receives Elgamal ciphertexts for all labels in SS and SR,
encrypted under R’s key. In case there is a PRF output from a data element SR matching a PRF output for a
data element in SS , we have xi = yj . In that case, S sends this PRF output together with the two encrypted
labels back to R. Receiver R decrypts these labels, and if they do not match, R has found a misclassification.
In case there is no matching PRF output for a data element from SR in SS , S also sends the PRF output to
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R, but now together with: 1) the corresponding Elgamal encrypted label, and 2) an Elgamal re-encryption
of this encrypted label. Again R decrypts the two encrypted labels and finds matching labels.

Note the security properties that PDC1 provides. ReceiverR obtains, for each yj , two Elgamal ciphertexts.
In case the ciphertexts encrypt different plaintexts, R has found a misclassification. In case they encrypt
the same plaintexts, either there is a matching xi, but the labels of xi and yi are the same, or there is
no matching xi for yi. Receiver R cannot distinguish the two cases and consequently does not learn any
information besides what is specified by ideal functionality FMCLASS. However, we stress that S learns the
intersection cardinality of the data elements, i.e., |{xi} ∩ {yj}| which is more than specified by FMCLASS. As
we will see, PDC1 is still interesting, as it outperforms all other protocols considered in this paper when the
length ℓ = |ui| = |vi| of classification strings increases. Moreover, its additional leakage can be protected by
differential privacy and hence be acceptable depending on the scenario.

For the sake of giving an overview, we here omit several additionally required security techniques for
PDC1 like blinding , such that, e.g., R cannot compute the actual label. We refer to Section 3 for all technical
details.

2.2 PDC2

Our second insight is that, in order to compare labels for misclassification, we only need to compare their
bit representation. In particular, for each mismatching pair of labels there exist unique prefixes of the two
label bit strings that differ only in the last bit.

In PDC2, for each of their labels ui and vj , S and R create all possible prefixes. In addition, S flips
the last bits of their prefixes. As a result, for a mismatching combination ui ̸= vj , there exist exactly one
matching combination of prefix from R and modified prefix from S. For a matching pair of labels xi = vj ,
there exists no matching combination of prefix from R and modified prefix from S.

For each (modified) prefix, PDC2 then hashes the (modified) prefix together with the corresponding data
element xi or yi. For length-ℓ classifications ui, vj , |ui| = |vj | = ℓ, S computes ℓ hash valuesH(xi||ModifiedPrefix1(ui)),
. . . , H(xi||ModifiedPrefixℓ(ui)), and R computes ℓ hash values H(yj ||Prefix1(vj)), . . . ,H(yj ||Prefixℓ(vj)).

The idea is now to compute private set intersection cardinality (PSI-CA) over two sets of hash values.
The resulting cardinality (either 0 or 1) indicates a misclassification.

Again, we omit additional techniques, e.g., how to avoid computing PSI-CA for O(n2) pairs of sets of
size ℓ, but instead compute essentially n PSI-CAs for sets of size ℓ. We refer to Section 4 for all details.

DH-PDC2. One way to implement a PSI-CA protocol is to permute the OPRF output of a batch of elements.
R submits its elements to S in an OPRF protocol. S randomly shuffles the PRFs before returning them to
R. Finally, S also sends PRF outputs of their elements, and R computes PSI-CA simply by counting the
number of matching PRF outputs while not learning which of their elements match.

In our first protocol, dubbed DH-PDC2 (Section 4.2), we use the DH-based OPRF as it allows S to shuffle
outputs before sending them to R. While computing PSI-CA with a DH-based OPRF approach results in
low concrete communication complexity, its concrete computational complexity is high, requiring 3ℓ ·n public
key operations.

Vector-PDC2. Thus, our main construction, dubbed Vector-PDC2 (Section 4.4), computes PSI-CA with
highly efficient OPRFs, such as the KKRT-OPRF [21] and the VOLE-OPRF [37]. These OPRFs require
only a number of public key operations that is linear in the security parameter. While they compute over
batches of elements, they do not allow to implement shuffling of the output. The inability to shuffle the
output turns out to be a major technical problem for implementing PSI-CA.

To remedy, our idea in Vector-PDC2 is that both S and R use stash-less Cuckoo hashing with three hash
functions to hash their data elements into separate Cuckoo hash tables. With Cuckoo hashing and three
hash functions, data elements xi = yj might end up in three different buckets in their hash tables. For
example, let b1, b2, b3 be the three possible bucket indexes that xi or yj = xi can be hashed to. Sender S
maps xi to, e.g., b2, but R maps yj to b3. Our idea is now that R place three “replicas” of H(yj ||Prefixk(vj))
into bucket b3, each blinded with the PRF output of yi using a PRF key specific to bucket b1, b2, and b3. R
sends the resulting blinded table to S.

At the same time, S places H(xi||Prefixk(uj)) into b2. Then S runs an OPRF with R for each of S’
Cuckoo table buckets, using the bucket contents as input and receiving the PRF output with R’s bucket
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Input of S: n pairs < (x1, u1), . . . , (xn, un) >, xi ∈ {0, 1}∗, ui ∈ {0, 1}ℓ, keys α1, α2 ∈ Zp, public keys gβ1 , gβ2

Input of R: n pairs < (y1, v1), . . . , (yn, vn) >, yi ∈ {0, 1}∗, vi ∈ {0, 1}ℓ, keys β1, β2 ∈ Zp, public keys gα1 , gα2

Parameters: Security parameter λ, DDH group G of prime order p, |p| = λ, generator g, Elgamal encryption
Enc,Dec,UnMask,UnPeel,AddEnc,ReEnc, DH-based pseudorandom function family PRF, hash function
H : {0, 1}∗ → G

Protocol:

1. For all i ∈ [n], S hashes inputs (xi, ui) to Xi = H(xi) and Υi = H(xi||ui). R hashes inputs (yi, vi) to
Yi = H(yi) and Φi = H(yi||vi).

2. S computes the sequence of tuples < (PRFα1(Xi),Encα2(Υi)) >i∈[n] and sends it to R.

3. R computes the two sequences

R1 =< (PRFβ1α1(Xi) = PRFβ1(PRFα1(Xi)),Encα2β2(Υi) = AddEncβ2(Encα2(Υi))) >i∈[n]

R2 =< (PRFβ1(Yi),Encβ2(Φi)) >i∈[n] .

R shuffles R1 and shuffles R2 and sends both to S.

4. S computes

S =< (PRFβ1(Xi) = UnMaskα1(PRFβ1α1(Xi)),Encβ2(Υi) = UnPeelα2(Encα2β2(Υi))) >i∈[n] .

S creates an empty sequence Σ. For each pair (PRFβ1(Yi),Encβ2(Φi)) ∈ R2,

• If ∃(PRFβ1(Xj),Encβ2(Υj)) ∈ S : PRFβ1(Xj) = PRFβ1(Yi), then S computes tuple (ai = PRFβ1(Yi),
bi = PRFα1(Encβ2(Φi)), ci = PRFα1(Encβ2(Υj)) and appends it to Σ.

• If ∄(PRFβ1(Xj),Encβ2(Υj)) ∈ S : PRFβ1(Xj) = PRFβ1(Yi), then S computes tuple (ai = PRFβ1(Yi),
bi = PRFα1(Encβ2(Φi)), ci = ReEncgβ2 (bi) and appends it to Σ.

S sends Σ to R.

5. R computes < (ai, b
′
i = Decβ2(bi), c

′
i = Decβ2(ci)) >i∈[n]. For each Yi from R’s input, where PRFβ1(Yi) = ai,

but b′i ̸= c′i, R outputs i.

Figure 2: Linear misclassification protocol PDC1

specific key. For each data element xi, S takes the three buckets b1, b2, b3 from R’s blinded table, and
“unblinds” the replica that corresponds to the bucket R has the PRF output from. To avoid that parties
learn at which bit position ui and vj differ, there is an additional blinding step (from S) and unblinding
(from R) required. For more details, we refer to Section 4.4.

We summarize theoretical communication and computational complexities in Table 1.

3 PDC1

With protocol PDC1, we improve over the strawman solution by avoiding secure 2PC and only rely on a
(modified) PSI protocol. Our key insight is that the protocol view of receiver R is secure if they cannot
distinguish between the two cases when 1) their element yj is not in the input set of sender S and 2) when
yj is in input set of S (∃xi : xi = yj), but the two corresponding labels are equal, i.e., ui = vj . The idea
behind PDC1 is based on the standard DH-based PSI protocol for computing the size of the intersection (PSI
capacity, PSI-CA [7]) and computes a permuted and blinded set intersection of the data elements. We then
augment this set intersection protocol with (Elgamal) encrypted labels, such that S can select R’s label if
data element xi is not in the intersection, and the label from S if it is.

3.1 Tools: DH-based PRF and Elgamal Encryption

Let G be a DDH group of prime order p, |p| = λ, and let key k
$← Zp be chosen randomly such that

k−1 mod (p− 1) exists (k co-prime to p− 1). For inputs χ ∈ G, the output of function

PRFk(χ) = χk
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is indistinguishable from randomly chosen elements of G. This is a simple DH-based PRF , essentially masking
χ by k [1, 15, 26]. As a side note, one can convert such a DH-based PRF into a regular PRF by a standard
application of the leftover hash lemma [13].

There exists an interesting commutativity feature for DH-based PRFs which we will exploit later. For
keys α1, β1 ∈ Zp, we have

(PRFα1(x))
β1 = (PRFβ1(x))

α1 = PRFα1β1(x).

The masking by raising to a key can also be undone: given PRFα1β1
(x) and α1,

UnMaskα1
(PRFα1β1

(x)) = Y α−1
1 = PRFβ1

(x)

and similarly for β1.

Let α2, β2
$← Zp again be chosen randomly. They serve as secret keys for Elgamal encryptions Encα2

and Encβ2
. The corresponding public keys gα2 and gβ2 are distributed in advance to S and R. For key

k ∈ {α2, β2} and any input χ ∈ G, we define Elgamal encryption as

Enck(χ) =< gr, χgrk >,

where r
$← Zp. Note that Enck(χ) is a probability ensemble indexed by the length p, |p| = poly(λ). Con-

sequently, there are many ciphertexts Enck(χ) for a plaintext χ which we regard as an ensemble. We only
need to store one representative of the ensemble, since all other elements in the ensemble can be generated
from it.

For this Elgamal encryption, we can add another layer of encryption as follows. With < A,B >←
Encα2(χ), we define a double-layer Elgamal ciphertext Encβ2α2(χ) as

Encβ2α2
(χ) = AddEncβ2

(< A,B >)

=< Agr
′
, BAβ2 · (gα2)r

′
· (gβ2)r

′
>,

with r′ ∈ Zp chosen randomly. Note that knowledge of β2 is required. Adding another layer of encryption is
commutative. Let < A,B >← Encα2

(χ) and < A′, B′ >← Encβ2
(χ). We have

AddEncβ2
(< A,B >)

c≡ AddEncα2
(< A′, B′ >).

To re-encrypt (re-randomize) a given ciphertext < A,B >← Encα2
(χ) using public key gβ2 , we use

ReEncgβ2 (< A,B >) =< Agr, B · (gβ2)r >,

with r ∈ Zp chosen randomly.
Furthermore, we combine our DH-based PRF with Elgamal encryption. For key k ∈ {α2, β2} and a

ciphertext < A,B >, we define our DH-based PRF variant for Elgamal ciphertexts as

PRFk(< A,B >) =< Ak, Bk > .

Again, Elgamal encryption and our DH-based PRF offer commutativity. Let < A,B >← Encα2(χ) and
χ′ = PRFβ2

(χ). Then,

PRFβ2
(< A,B >)

c≡ Encα2
(χ′).

For some double-layer ciphertext < A,B >← Encα2β2
, we can peel-of one layer of encryption from key

k ∈ {α2, β2} by
UnPeelk(< A,B >) =< A,BA−k > .

Finally, we also decrypt any Elgamal ciphertext < A,B > using key k ∈ {α2, β2} as

Deck(< A,B >) = BA−k.

Observe that PRFβ2(χ) = Decα2(PRFβ2(Encα2(χ))).
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3.2 Main Protocol

Our protocol proceeds in the following five main steps.
In Step 1, both parties hash their data elements and labels into elements from an appropriate DDH group.

This enables the parties to use the DH-based PRF and Elgamal constructions from the previous section.
In Step 2, sender S sends their input data elements, masked by their PRF, and an Elgamal encryption

of the corresponding label to R.
In Step 3, R applies their PRF to the masked data elements and adds an encryption to the labels from

S. S’s data elements and labels are now protected by two keys, one from S and one from R. R shuffles
the result and sends it back to S. Also, R sends PRF outputs of their data elements together with Elgamal
encryptions of corresponding labels to S. These are only protected by one key from R.

In Step 4, S unmasks the doubly protected data elements and unpeels one layer of encryption from the
labels of S. These are now protected by the same keys as the data elements and labels from R. Then, S
matches the data elements in the two sets. S learns which PRF outputs are in both sets. However, S cannot
determine which of their inputs correspond to which PRF output. For each PRF output that is in both sets,
S sends to R: the PRF output, a masked version of the corresponding Elgamal encryption of the label as
received from R, and a masked version of the Elgamal encryption of the corresponding label from S. For
each PRF output in R’s set but not in both sets, S sends to R: the PRF output, a masked version of the
corresponding Elgamal encryption of the label as received from R, and a masked version of the re-encryption
of the corresponding Elgamal encryption of the label a received from R. S can apply the masking to the
labels, since encryption and PRF are commutative. Each PRF output has now two masked, encrypted labels
where in case both parties have the data element their plaintexts are the labels of the respective party and
in case only R has the data element, they are copies of each other.

In Step 5, R decrypts the Elgamal ciphertexts and verifies, for each PRF output, whether the two
corresponding Elgamal ciphertexts match (no misclassification) or not (misclassification found).

We formalize our protocol in Figure 2.

3.3 Security Analysis

Semi-Honest Security Model. We operate in the semi-honest, i.e., passive, security model. Security
against malicious adversaries is an open problem for circuit-PSI protocols. All current circuit-PSI protocols
follow the same construction [4, 20, 33] of a reactive 2PC after computing secret shares of the intersection.
Since this construction is composed of reactive functionalities, it is also only secure in the semi-honest model
by default. Efficient constructions secure against malicious adversaries that do not resort to 2PC for the
entire protocol are still an open problem. Hence, we believe it is justified to also consider the semi-honest
model for our protocols.

Let SI be the intersection of elements in < xi >i∈[n] and < yi >i∈[n]. For protocol PDC1, we assume
the leakage of the size of this intersection SI given to the sender S. We prove security against semi-honest
adversaries by constructing two simulators SimR(SR,SE) and SimS(SS , |SI |) or SimS(SS), depending on
the leakage, for the receiver and sender, respectively. The output of each simulator is computationally
indistinguishable from the respective party’s view VIEWR or VIEWS , i.e., its messages received, during the
execution of the real protocol:

SimR(SR,SE)
c≡ VIEWPDC1

R

SimS(SS , |SI |)
c≡ VIEWPDC1

S

Security Proof.

Theorem 1. Protocol PDC1 securely implements1 functionality FMCLASS in the semi-honest security model.

Proof. We prove the existence of the two simulators by construction.
SimR(SR,SE): R receives n PRF outputs and Elgamal ciphertexts under S’s keys α1 and α2. By the

definition of the primitives (pseudo-random functions and semantically secure encryption) these can be

1With leakage of the set intersection cardinality |SI | to S
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Parameters: Security parameter λ, batch size b, pseudo-random function family PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ

1. Wait for input x1, . . . , xb : xi ∈ {0, 1}λ from receiver R.

2. Choose K
$← {0, 1}λ and random permutation π : [b] → [b]. Output < PRFK(xπ(i)) >i∈[b] to R and (K,π) to

S.

Figure 3: Ideal oblivious pseudo-random function (OPRF) functionality with set semantics FSet-OPRF

Parameters: Security parameter λ, batch size b, pseudo-random function family PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ

1. Wait for input x1, . . . , xb : xi ∈ {0, 1}λ from receiver R.

2. Choose K1, . . . ,Kb,Ki
$← {0, 1}λ. Output < PRFKi(xi) >i∈[b] to R, and output < Ki >i∈[b] to S.

Figure 4: Ideal oblivious pseudo-random function (OPRF) functionality with vector semantics FVector-OPRF

simulated using 3n uniformly random numbers from the DDH group G. In the second round, R receives
again n PRF outputs and 2n Elgamal ciphertexts under R’s key’s β1 and β2. The simulator computes the
n PRF outputs from SR and R’s key β1. The 2n Elgamal ciphertexts decrypt to (and their plaintext can be
simulated by) PRF outputs of the element concatenated with the label under S’ key α1. For each element
yi ∈ SE , the simulator outputs the same uniformly chosen group element (in G) twice. For each element
yi ∈ SR \ SE , the simulator outputs two independently, uniformly chosen group elements. The message
received by R are Elgamal ciphertexts under R’s key β2 of these group elements.

SimS(SS , |SI |): S receives 2n pseudo-random functions and Elgamal ciphertexts under R’s keys β1 and β2.
The Elgamal ciphertexts can be simulated using 4n group elements from G. However, the joint distribution
of the PRF outputs reveals the set intersection cardinality, while each PRF output remains indistinguishable
from a random group element. The simulator uniformly chooses |SI | group elements from G and puts them
into set S1. It then chooses 2(n − |SI |) group elements and puts them into set S2. The simulator divides
set S2 into two equal-sized sets S3 and S4. Then it forms two new sets S5 = S1 ∪ S3 and S6 = S1 ∪ S4. It
randomly shuffles S5 and S6. These sequences follows the same joint distribution as the sequences received
during the real protocol execution.

Security in IND-CDP-2PC. He et al. [14] define a security model IND-CDP-2PC for two-party computa-
tions in the computational differential privacy setting [27]. In this model the leakage of the set intersection
cardinality to the sender S can be avoided. This security model allows the view of a party to be differentially
private between two neighboring inputs of the other party instead of indistinguishable.

To achieve security in IND-CDP-2PC, we modify the protocol as follows. In addition to < xi, ui > S
inputs d = 2⌈− log δ/ϵ⌉ elements < χ1, υ1, . . . , χd, υd >. Correspondingly, R chooses a random number d′

from a shifted and bounded Laplace distribution min(d,max(0, Lap(− log δ/ϵ, 1/ϵ))). R’s additional input
is < χ1, υ1, . . . , χd′ , υd′ > and < ψ1, υd′+1, . . . , ψd−d′ , υd > where ψi ̸= χj . They run the protocol as
in Figure 2. R’s output is unmodified, since none of the additional inputs has a matching element with
mismatching labels. Let |SI | be the set intersection cardinality of < xi >i∈[n] and < yi >i∈[n]. S learns,
i.e., its view includes, |SI | + d′. This satisfies IND-CDP-2PC, since the set intersection cardinality of two
neighbouring input databases SR and S ′R (R’s input) and the database SS may differ by at most 1. The
shifted and bounded Laplace mechanism is (ϵ, δ)-differentially private with respect to a change (sensitivity)
of 1 (see [41]) and hence the view of S in the protocol is differentially private with respect to neighboring
inputs SR and S ′R by R.

4 PDC2

The high efficiency of OPRF-based PSI [4, 21, 35, 37] stems from the fact that the actual intersection is
computed “in the clear”. Receiver R receives (O)PRF outputs for their input, and sender S sends PRF
values for their input to R. The actual intersection of elements is then computed by R “in the clear” on the
two sets of PRF outputs. This avoids reverting to expensive cryptographic techniques such as 2PC or FHE
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during computation of the intersection and yields high efficiency. The only expensive operation is computing
the OPRFs for the parties’ inputs. We will stick to this “OPRF-and-comparing-in-the-clear” principle also
for PDC2.

4.1 Overview

Our main idea is based on the following observation. If two bit strings u from S and v from R, |u| = |v| = ℓ,
differ in the bit at position i, then u[i]⊕ 1 = v[i]. Using an OPRF, R could receive set

R = {PRFK(v[1]||1), . . . ,PRFK(v[ℓ]||ℓ)}

as output, and S could send set

S = {PRFK(u[1]⊕ 1||1), . . . ,PRFK(u[ℓ]⊕ 1||ℓ)}

in shuffled order to R. Receiver R would now check in the clear whether there is an element in R that is
also in S. If there is such a match, then u ̸= v. However, with this approach, R would learn additional
information, namely how many bits are different between u and v.

To remedy, consider the following two sets

R = {(Prefix1(v)), . . . , (Prefixℓ(v))} and
S = {(Prefix1(u)⊕ 1), . . . , (Prefixℓ(u)⊕ 1)}.

These are the sets of all prefixes of u and v, where each time the last bit of the prefixes of u is flipped. It
is crucial to observe that, for these two sets, we have set intersection cardinality |S ∩ R| = 1 if and only if
u ̸= v, otherwise |S ∩ R| = 0. That is, either there exists a single match between an element in R which is
also in S (u ̸= v), or there is no such match (u = v).

Consequently, for a single pair of length ℓ bit strings u from S and v from R, parties run ℓ instances of
the OPRF. Here, R’s inputs are Prefix1(v) to Prefixℓ(v) such that R receives set

R = {PRFK(Prefix1(v)), . . . ,PRFK(Prefixℓ(v))}

as output. After the OPRF evaluations, S sends

S = {PRFK(Prefix1(u)⊕ 1), . . . ,PRFK(Prefixℓ(u)⊕ 1)}

to R. Then, R computes |S ∩R| in the clear to determine whether u = v and without learning anything else
about u. Essentially, S and R compute a private set intersection cardinality (PSI-CA).

Integrating data elements. Our approach above essentially converts the problem of finding a mismatch
between labels u and v into that of finding a match. We expand this technique to also determine equality
of the corresponding x and y data elements at the same time. In our situation, a match is a pair of tuples
(x, u) and (y, v) with x = y and simultaneously u ̸= v, so we change the above computation of OPRFs as
follows. For R’s input (y, v), S and R run ℓ instances of an OPRF where R’s input is {(y||Prefix1(v)), . . . ,
(y||Prefixℓ(v))}, and R receives

R = {PRFK(y||Prefix1(v)), . . . ,PRFK(y||Prefixℓ(v))}

as output. Sender S then sends

S = {PRFK(x||Prefix1(u)⊕ 1), . . . ,PRFK(x||Prefixℓ(u)⊕ 1)}.

Finally, R again computes |S ∩ R| in the clear, which is either 0 or 1. Observe that now |S ∩ R| = 1 iff
x = y ∧ u ̸= v.

To support n inputs {(x1, u1), . . . , (xn, un)} from S and {(y1, v1), . . . , (yn, vn)} from R, parties run nℓ
instances of the OPRF, ℓ for each of R’s inputs (yi, vi). Similarly, S sends ℓ PRF outputs for each input
(xi, ui).
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Input of S: n pairs < (x1, u1), . . . , (xn, un) >, xi ∈ {0, 1}∗, ui ∈ {0, 1}ℓ
Input of R: n pairs < (y1, v1), . . . , (yn, vn) >, yi ∈ {0, 1}∗, vi ∈ {0, 1}ℓ
Parameters: Security parameter λ, group G of prime order p where the DDH assumption is believed to be hard,

|p| = λ, g is a generator of G, hash function H : {0, 1}∗ → G
Protocol:

1. S selects K
$← Zp. R selects r

$← Zp.

2. For each (yi, vi)i∈[n], R computes < hi,j = H(yi||Prefixj(vi))r >j∈[ℓ]. R sends all ℓn values hi,j to S.

3. For i ∈ [n]:

(a) S selects random permutation πi : [ℓ]→ [ℓ].

(b) For j ∈ [ℓ]:

i. S sends h′
i,j = (hi,πi(j))

K to R, and R computes γi,j = (h′
i,j)

r−1

.

ii. S computes γ′
i,j = (H(xi||Prefixj(ui)⊕ 1)K .

4. S sends all ℓn values γ′
i,j in randomly shuffled order to R.

5. R outputs {i|∃(a, b, c) : γi,a = γ′
b,c}.

Figure 5: DH-OPRF-based misclassification protocol DH-PDC2

Reducing complexity. Conceptually, a PRF and an OPRF for this PRF support arbitrary long inputs
using the standard trick of applying a cryptographic hash function to the input before using it as input to
the PRF or OPRF. Hashing reduces arbitrary length inputs down to λ bits. As a result, for standard OPRF-
based PSI protocols, the length of inputs does not matter for the complexity of the protocol. However for our
OPRF-based PSI misclassification protocols, the situation is different. For an input (x, u) (and also (y, v)),
the lengths of data elements x and y do not matter, but label length ℓ = |u| = |v| does. Now, communication
and communication complexity increase by a factor of ℓ. While this is acceptable for smaller values of ℓ,
performance will suffer for larger values of ℓ ≤ λ. To reduce both asymptotic and concrete complexity, we use
a probabilistic variation of the above idea which does not require ℓ = λ OPRFs for arbitrary long labels, but
only min(ℓ, log n+ σ), where σ is a statistical security parameter. As the technical features of this variation
are not crucial for understanding our OPRF-based constructions in detail, assume for now that for any label
length of u or v, we will perform ℓ OPRFs.

Implementing PSI-CA with OPRFs. In our PDC2 protocols, we will compute and output set intersection
cardinality over the set of prefixes for one pair of elements. We hence implement PSI-CA protocols using
OPRFs but distinguish two types of OPRFs: Set-OPRF and Vector-OPRF. Both OPRF operate over batches
of elements. Set-OPRFs return a permutation of the PRF values in a batch whereas Vector-OPRFs only
allow to return the PRFs in the same order as the input elements. Furthermore, Vector-OPRF may choose
a different key for each input. The ideal functionalities of both OPRFs are shown in figures 3 and 4. The
standard DH-based OPRF is a Set-OPRF, while the more recent and efficient KKRT-OPRF [21] and VOLE-
OPRF [35, 37] are Vector-OPRFs. Note that VOLE-OPRF is a special case of a Vector-OPRF: while it
does not support random shuffling of outputs, it uses the same key Ki = Kj for all elements. Thus, it is
also covered by our definition of FVector-OPRF, and we will use it as a building block in the construction of
Vector-PDC2 below.

We describe the use of the DH-based OPRF as a Set-OPRF for our protocol DH-PDC2 in Section 4.2
and the use of a Vector-OPRF for our protocol Vector-PDC2 in Section 4.4.

4.2 DH-PDC2 Details

Recall from Section 3.1 that the DH-based OPRF is conceptually very simple. For PRF key K from sender
S and blinding key r and input y from receiver R, R starts by sending a blinded y′ = yr to S. Sender S
replies with y′′ = (y′)K , and R unblinds with (y′′)r

−1

. Informally, this realizes PRFK(y) = yK . Applying
this protocol to a batch of elements with S shuffling values y′′ before returning them to R realizes FSet-OPRF.

Figure 5 presents technical details of the DH-based OPRF applied to our PDC2 idea for PSI misclassifica-
tion. We dub this protocol DH-PDC2. The use of the DH-based OPRF in our idea is mostly straightforward,
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but there are two important peculiarities. First, for each i ∈ [n], S collects all ℓ blinded inputs yi||Prefixj(vi)
and shuffles them using a random permutation πi before sending PRF outputs back, see Step (3(b)i) in
Figure 5.

It is crucial that S shuffles the ℓ inputs of R for each i. Otherwise, if R later finds a match for one of
the ℓ inputs, they would learn the bit position where u and v differ which is more leakage than in the ideal
functionality. For the same reason, S also has to shuffle all of their PRF outputs γ′i,j before sending them
to R, see Step 4. Note that S can shuffle all γ′i,j at once while the hi,j have to be shuffled per i such that R
can later still determine the index of the element with a misclassification.

There is an optimization possible which we have omitted from Figure 5. As elements from G are typically
larger than λ, we can employ another hash functions H ′ : G → {0, 1}λ and hash the γ′i,j to smaller values.
Our implementation in Section 5 uses this technique for increased efficiency.

4.3 Security Analysis of DH-PDC2

Theorem 2. Protocol DH-PDC2 securely implements2 functionality FMCLASS in the semi-honest security
model.

Proof. Since protocol DH-PDC2 does not leak we prove the existence of the following two simulators:

SimR(SR,SE)
c≡ VIEWDH−PDC2

R

SimS(SS)
c≡ VIEWDHPDC2

S

SimR(SR,SE): R receives 2nℓ PRF outputs under S’s key K. The simulator creates an empty sequence of
size 2nℓ. For each yi ∈ SE , the simulator uniformly chooses a group element in G and places it at two random
positions in the sequence: between 2(i− 1)ℓ and (2i− 1)ℓ− 1 and between (2i− 1)ℓ and 2iℓ− 1. All other
elements in the sequence are filled with uniformly chosen group elements. This sequence is computationally
indistinguishable from R’s view in DH-PDC2.

SimS(SS): S receives nℓ PRF outputs under R’s random number r. All of these are independently
simulatable by uniformly chosen group elements.

4.4 Vector-PDC2 Details

While DH-PDC2 features low communication complexity, its main drawback is the need for O(nℓ) public-key
operations during OPRF evaluation. Thus in Vector-PDC2, we replace the DH-based OPRF by more recent
OPRF constructions from the literature which use only O(λ) or even no public key operations. The O(nℓ)
evaluations of the main OPRF functionality are then performed using only fast symmetric cryptography.
In our implementation, we use the KKRT-OPRF from Kolesnikov et al. [21] and the very recent VOLE-
OPRF from Rindal and Schoppmann [37] with improvements by Raghuraman and Rindal [35]. Both OPRFs
implement the Vector-OPRF functionality FVector-OPRF from Figure 4.

4.4.1 Technical Challenges

Ideally, we would like to simply exchange the DH-based OPRF building block in DH-OPRF-based protocol
DH-PDC2 by a Vector-OPRF to benefit from its significantly higher efficiency. However, this is obviously not
feasible, since a Vector-OPRF does not allow to shuffle the outputs. We hence need a different construction.
Furthermore, in contrast to the DH-based Set-OPRF before, a Vector-OPRF’s key may depend on the order
of inputs. Even if both parties hold the same inputs xi = yj , PRF outputs of xi and yi will match only if
they have been computed using the same key. More specifically, if R uses yj as their jth input, they will
obtain PRFKj (yj). Now, S has to somehow send PRFKj (xi), even if xi is not the j

th input of S.
For standard PSI, a well-known trick to enforce that parties use the same order for their inputs is for

R to hash their inputs into a (stash-less) Cuckoo hashtable [4, 11, 21, 22, 30, 32–34]. R iterates over all
buckets in their Cuckoo table and, for the bth bucket containing element yj , runs an OPRF with S to receive
PRFKb

(yj), i.e., the PRF output using the bth key. When using Cuckoo hashing with η hash functions, S

2Without leakage of the set intersection cardinality |SI |.
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Input of S: n pairs < (x1, u1), . . . , (xn, un) >, xi ∈ {0, 1}∗, ui ∈ {0, 1}ℓ
Input of R: n pairs < (y1, v1), . . . , (yn, vn) >, yi ∈ {0, 1}∗, vi ∈ {0, 1}ℓ, key KR,∗
Parameters: Security parameter λ, Cuckoo table size m = 1.27n, hash functions H : {0, 1}∗ → {0, 1}λ, H1, H2,

H3 : {0, 1}∗ → [m], Vector-OPRF functionality FVector-OPRF

Protocol:

1. S creates an m-bucket Cuckoo hash table TS using the xi as keys and hash functions H1, H2, and H3. R creates
an m-bucket Cuckoo hash table TR using the yi as keys and hash functions H1, H2, and H3.

2. S and R iterate over the m buckets of their Cuckoo hash tables.
For j ∈ [m],

(a) Let xi be mapped into bucket TS [j]. S and R run functionality FVector-OPRF with S being the receiver and
R the sender. The inputs of S are hj,k = H(xi||Prefixk(ui)). The outputs of R are keys KR,j,k, and the
outputs of S are zj,k = PRFKR,j,k (hj,k).

If no element is mapped into TS [j], S inputs ℓ random bit strings as input.

(b) Let yi be mapped into TR[j]. S and R run functionality FVector-OPRF with R being the receiver and S the
sender. The inputs of R are h′

j,k = H(yi||Prefixk(vi) ⊕ 1). The outputs of S are keys KS,j,k, and the
outputs of R are z′j,k = PRFKS,j,k (h

′
j,k).

If no element is mapped into TR[j], R inputs ℓ random bit strings as input.

3. R creates an m-bucket table T ∗. Each bucket T ∗[j] comprises ℓ slots < T ∗[j][k] >k∈[ℓ], |T ∗[j][k]| = 3λ Bit. R
fills T ∗ as follows.
For j ∈ [m],

• If TR[j] is empty, then R sets T ∗[j][k]
$← {0, 1}3λ for all k ∈ [ℓ].

• If TR[j] is not empty, then let TR[j] = yi. Let H1(yi), H2(yi), H3(yi) be the three possible positions where
yi can be mapped to in TS .
For k ∈ [ℓ], R computes

cj,k,1 = z′j,k ⊕ PRFKR,H1(yi),k
(h′

j,k)⊕ PRFKR,∗(yi)

cj,k,2 = z′j,k ⊕ PRFKR,H2(yi),k
(h′

j,k)⊕ PRFKR,∗(yi)

cj,k,3 = z′j,k ⊕ PRFKR,H3(yi),k
(h′

j,k)⊕ PRFKR,∗(yi).

R sets T ∗[j][k] = cj,k,1||cj,k,2||cj,k,3.

4. R sends T ∗ to S.

5. S creates an empty set S and fills it as follows.
For i ∈ [n],

• Let H1(xi), H2(xi), H3(xi) be the three possible positions where xi can be mapped to in TR. Let IDX(xi) ∈
{1, 2, 3} be the index of the hash function that was used to eventually map xi into TS during Step (1).
Let cut : {0, 1}λ × {1, 2, 3} → λ be a function with two inputs. The first input to cut is a bit string L of
length 3λ, and the second input is either 1, 2 or 3. Function cut outputs either the first, second or third
λ bits of L.

• For k ∈ [ℓ], S computes

di,k,1 = zHIDX(xi),k ⊕ PRFKS,H1(xi),k
(hHIDX(xi),k)⊕ cut(T ∗[H1(xi)], IDX(xi))

di,k,2 = zHIDX(xi),k ⊕ PRFKS,H2(xi),k
(hHIDX(xi),k)⊕ cut(T ∗[H2(xi)], IDX(xi))

di,k,3 = zHIDX(xi),k ⊕ PRFKS,H3(xi),k
(hHIDX(xi),k)⊕ cut(T ∗[H3(xi)], IDX(xi))

and appends di,k,1, di,k,2, di,k,3 to S.

6. S shuffles S and sends it to R.

7. For i ∈ [n], if PRFKR,∗(yi) ∈ S, then R outputs yi.

Figure 6: Vector-OPRF-based misclassification protocol Vector-PDC2
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knows all η possible buckets b1, . . . , bη where each of their inputs xi could have been be placed by R. So, S
knows all η possible keys and sends PRFKb1

(xi), . . . ,PRFKbη
(xi) to R which can then compare PRF outputs

and compute the intersection.
While this is a valid technique to employ a Vector-OPRF in a standard PSI protocol, it does not suffice

for our misclassification scenario. R still knows the PRF for each of its elements and can hence determine
the matching prefix index of a misclassified element. As already mentioned, a Vector-OPRF does not allow
to shuffle the outputs of the PRFs before returning them and hence there is no trivial fix to this problem.
We describe our approach of dual use of Vector-OPRFs in the following section.

4.4.2 Main Protocol

Figure 6 formalizes protocol Vector-PDC2, an application of a Vector-OPRF to the PDC2 idea. This protocol
comprises the following main steps which we explain in detail.

Step 1. First, both S and R hash their input data elements xi and yj into stash-less, m-bucket, 3-hash-
function Cuckoo tables TS and TR.
Step 2. For each bucket in TS , S and R run ℓ OPRFs with S being the receiver. The inputs are the
xi||Prefixk(ui) for the data element xi mapped to that bucket. As a result, S obtains PRF outputs zj,k.
Then, parties run another ℓ OPRFs for each bucket of TR such that R obtains PRF outputs z′j,k for their
inputs yj ||Prefixk(vj). Additionally, R obtains PRF keys KR,b,k used for all buckets b in TS , and S obtains
PRF keys KS,b,k used for all buckets b in TR.
Steps 3 to 6. Let there be two elements xi = yj from S and R, and let R have mapped yj into bucket
b1 in TR. Due to Cuckoo hashing, R does not know where S has mapped xi in TS , but they now the three
potential buckets b1, b2, b3 where S could have mapped xi to.

In Step 3, R creates another m-bucket table T ∗. As R has mapped yj into b1 of TR, they put into bucket
b1 of T ∗ the corresponding z′b1,k PRF output they have received for bucket b1 during Step 2.

Assume R would send such a table T ∗ to S. As S also knows possible bucket indexes b1, b2, b3 where R
could have mapped xi in TR, S would check whether one of the buckets b1, b2, b3 contains PRFKS,b,k

(xi||Prefixk(ui)⊕
1). This is bad, because S would learn the index of the bucket which leaks information about R’s Cuckoo
table. Moreover, R would also learn which of the prefixes is different between ui and vj .

To avoid that, R does not put z′b1,k into bucket b1 of T ∗, but three copies of z′b1,k, each one 1) additionally
masked with the PRF output of yi||Prefixk(vi)⊕1 using the three possible keys KR,b1,k,KR,b2,k,KR,b3,k, and
2) masked by a random ID representing yi. Now, S can “peel off” the first mask from one of these copies
only if it has received the correct zb1,k for input xi||Prefixk(ui) in bucket b1 in Step 2.

Thus, for each bucket b1, b2, b3 from T ∗, S has computed a candidate bit string di,j . At most one of these
bit strings will be equal to R’s random ID. Finally, S sends back all candidate bit strings in shuffled order.
Again, shuffling is crucial to avoid that R learns at which index the prefixes of ui and vj differ.

Step 7. In the shuffled set of candidate strings, R searches for their random IDs. For each random ID
found, R knows that the corresponding tuple (yj , vj) represents a misclassification.

4.4.3 Discussion

To ease our exposition above, we have omitted several important technicalities.
When parties are performing Cuckoo hashing using the three hash functions H1, H2, H3, we must make

sure that no hash collisions for parties’ data elements occur. Otherwise, this leads to a security issue in Step
3. There, two (or even all three) values cj,k,1 would be the same, telling S something about the input of R.
There exist several techniques to avoid collisions among three hash functions for Cuckoo hashing, but we
choose the following straightforward one.

Let all hash functions Hi come from a set of possible hash functions H that all share the property of
mapping into bit strings of length λ. Let S and R share a seed s for a PRG. S and R pseudo-randomly

choose H1, H2, H3
$← H using the PRG. Whenever party S (or R) observes a collision for one of their input

data elements xi (or yj), S (or R) hashes this data element xi (or yj) with the next three hash functions

H4, H5, H6
$← H into their Cuckoo table. Again H4, H5, H6 are chosen pseudo-randomly using the PRG.

If there is still a collision for xi (or yj), H7, H8, H9 are chosen and so on. The next data element xi+1 (or

14



yj+1) will be hashed into the Cuckoo table starting again with hash functions H1, H2, H3. Using this trick,
we make sure that the same inputs xi = yj will always be hashed with the same three hash functions. Note
that the Cuckoo hash table maintains its capacity properties, since the set of hash bins for each element
remains independently, identically distributed.

The formal description of protocol Vector-PDC2 in Figure 6 is in the FVector-OPRF-hybrid model. Both
parties can make ideal calls to a trusted party implementing the Vector-OPRF functionality FVector-OPRF as
defined in Figure 4.

We choose our parameters for stash-less Cuckoo hashing (m = 1.27n buckets, 3 hash functions) following
Pinkas et al. [32] who also provide a failure probability analysis.

4.5 Security Analysis

Theorem 3. Protocol Vector-PDC2 securely implements functionality FMCLASS in the semi-honest security
model.

Proof. SimR(SR,SE): In the first round, R receives m PRF outputs under S’s keys. These can be simulated
by uniformly chosen numbers in {0, 1}λ according to functionality FVector-OPRF (see also Kolesnikov et al.
[21] for details).

In the second round, R receives 3n numbers. For each element yi ∈ SE , the simulator outputs the PRF
of yi under R’s key KR,∗. For the other 3n−|SE | elements, the simulator outputs uniformly chosen numbers
in {0, 1}λ. The simulator outputs these 3n numbers in random order. The uniformly chosen numbers in
{0, 1}λ are indistinguishable from the view, because either the corresponding prefix is not in S’s set and
hence the PRF output under S’s key is indistinguishable to R or the prefix is in the set, but R only has
access to one PRF output for the corresponding bucket in TR.

SimS(SS): In the first round, S also receives m PRF outputs but under R’s keys. These can be simulated
by uniformly chosen numbers in {0, 1}λ.

In the second round, S receives 3m numbers. All of these can be simulated by independently, uniformly
chosen numbers in {0, 1}λ. The uniformly chosen numbers are indistinguishable from the view, because
either the corresponding prefix is not in S’s set and hence the PRF output under R’s key is indistinguishable
to R or the prefix is in the set, but S does not have access to the PRF output for the corresponding bucket
in TS or it is the PRF output of yi under R’s key Kr,∗.

5 Evaluation

We have implemented our protocol variations PDC1, DH-PDC2, KKRT-PDC2, and VOLE-PDC2 and eval-
uated them in different settings, varying input size n, label length ℓ, and network bandwidth. We run
Vector-PDC2 benchmarks with two different Vector-OPRFs, as the KKRT-OPRF promises better computa-
tional efficiency and the VOLE-OPRF lower communication efficiency.

The goal of our evaluation is to demonstrate the real-world practicality of our constructions and to point
out their individual advantages depending on the setting. We have also compared our construction to an
implementation of the strawman circuit-PSI approach from Section 1.3. This strawman protocol serves as a
baseline, and we will see that our constructions deliver better overall performance in many realistic settings.

Our implementation is done in C++, and we will publish the source code upon publication of the paper.
Both DH-based PRF and Elgamal encryption in PDC1 as well as the DH-based OPRF in DH-PDC2 use point
operations on curve ristretto255 [8, 38], implemented in libSodium [25]. Our code for protocol KKRT-PDC2

integrates the KKRT-OPRF implementation by Rindal [36]. VOLE-PDC2 uses the code by Visa-Research
[42] for the underlying VOLE-OPRF.

To benchmark the circuit-PSI strawman approach, we use the VOLE-based implementation of circuit-PSI
by Visa-Research [42]. This implements the circuit-PSI by Rindal and Schoppmann [37] (see Figure 10 in
[37]) and improvements from follow-up work [35]. To compute the actual misclassification, we change Step 5
from Fig. 10 in [37]. Instead of using 2PC to compute shares of u and v and a bit indicating whether x = y,
we implement a more complex circuit that computes whether x = y ∧u ̸= v. This is more efficient than first
computing shares in 2PC and then running an extra 2PC to perform misclassification test on the shares.
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Table 2: Total runtime. Times in s, communication in MByte, ∗: arbitrary length labels (ℓ = log n+σ). For

each setting, blue marks lowest total runtime, purple marks lowest communication, gray marks lowest
total runtime and communication if weaker security guarantees of PDC1 are acceptable.

Circuit-PSI PDC1 DH-PDC2 KKRT-PDC2 VOLE-PDC2

n ℓ Bandwidth Time Comm Time Comm Time Comm Time Comm Time Comm

216

1
1 GBit/s 1.7

146
6.8

28
1.7 0.2

13
0.2

7100 MBit/s 12.9 8.6 2.2 5 1.2 0.8
10 MBit/s 126.8 30.1 5.2 11.4 6.3

4
1 GBit/s 1.8

154
6.8

28
6.9 0.7

53
0.5

26100 MBit/s 13.7 8.6 7.3 18 4.8 2.6
10 MBit/s 133.4 30.1 20.2 45.5 23.2

10
1 GBit/s 1.9

169
6.8 18.0 1.6

131
1.2

65100 MBit/s 15.0 8.6 28 19.1 45 11.8 6.1
10 MBit/s 146.5 30.1 50.5 113.8 56.7

20
1 GBit/s 2.2

195
6.8 35.9 3.2

263
2.1

129100 MBit/s 17.2 8.6 28 39.5 90 23.7 12.1
10 MBit/s 168.4 30.1 102.4 227.7 112.6

*
1 GBit/s 2.9

286
6.8 99.7 8.8

736
5.8

361100 MBit/s 25.2 8.6 28 113.5 252 66.1 33.8
10 MBit/s 247.4 30.1 299.3 637.6 314.8

218

1
1 GBit/s 6.0

605
29.3

112
7.2 0.7

54
0.6

28100 MBit/s 53.4 35.9 7.8 18 5.0 2.7
10 MBit/s 523.0 121.0 20.2 47.0 24.6

4
1 GBit/s 6.5

636
29.3

112
28.8 2.8

217
1.9

111100 MBit/s 56.0 35.9 32.2 72 19.7 10.3
10 MBit/s 549.3 121.0 81.2 188.2 96.3

10
1 GBit/s 7.4

697
29.3 71.3 6.6

543
4.4

275100 MBit/s 61.4 35.9 112 81.5 180 48.8 25.7
10 MBit/s 601.9 121.0 210.9 470.3 239.8

20
1 GBit/s 8.6

798
29.3 142.8 13.1

1085
8.9

550100 MBit/s 70.1 35.9 112 165.8 320 97.5 51.4
10 MBit/s 689.7 121.0 432.6 940.5 479.2

*
1 GBit/s 12.6

1184
29.3 416.6 37.3

3147
30.7

1594100 MBit/s 103.7 35.9 112 491.9 1044 282.3 151.3
10 MBit/s 1022.9 121.0 1290.1 2727.0 1390.2

220

1
1 GBit/s 28.0

2500
119.3

448
28.8 3.1

217
2.4

111100 MBit/s 220.5 149.0 32.3 72 20.0 11.2
10 MBit/s 2161.4 489.7 81.1 188.6 97.2

4
1 GBit/s 29.0

2622
119.3

448
114.7 11.5

868
8.0

440100 MBit/s 231.1 149.0 132.4 288 79.0 42.0
10 MBit/s 2266.6 489.7 343.1 753.3 384.2

10
1 GBit/s 31.5

2866
119.3 286.4 26.8

2170
20.5

1100100 MBit/s 252.4 149.0 448 336.5 720 195.8 104.6
10 MBit/s 2477.1 489.7 884.6 1881.8 959.4

20
1 GBit/s 35.6

3273
119.3 573.5 52.3

4341
49.6

2199100 MBit/s 287.6 149.0 448 678.9 1440 390.4 211.6
10 MBit/s 2827.9 489.7 1786.8 3762.5 1920.5

*
1 GBit/s 51.8

4898
119.3 1733.4

Out of RAM
282.0

6599100 MBit/s 429.2 149.0 448 2065.2 4320 703.1
10 MBit/s 4231.1 489.7 5412.2 5832.5

We evaluate this circuit with 2PC using the EMP-Toolkit [43]. The input bit length of the data elements
is set to the optimal log n+ σ for 2PC, and we only vary label lengths ℓ.

We have conducted our evaluation on a machine with 3.2 GHz Intel Xeon(R) W-1290 CPU and 64 GByte
RAM. To emulate different network scenarios and precisely control network bandwidth, we use WonderShaper [16].
The evaluation results are shown in Table 2.
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Table 3: Cloud computing costs for 100 runs in US$ on Amazon t3.medium instances in US East data center,
assuming communication at 100 MBit/s over the Internet. blue marks lowest total cost, gray marks lowest
total cost if weaker security guarantees of PDC1 are acceptable.

n ℓ Circuit-PSI PDC1 DH-PDC2 VOLE-PDC2

216

1 1.31 0.05 0.06
4 1.35 0.18 0.23
10 1.52 0.26 0.44 0.59
20 1.75 0.88 1.16
* 2.57 2.22 3.25

218

1 5.44 0.18 0.25
4 5.72 0.71 1.00
10 6.27 1.07 1.77 2.48
20 7.17 3.20 4.95
* 10.64 10.31 14.36

220

1 22.48 0.71 1.00
4 23.57 2.84 3.96
10 25.77 4.28 7.10 9.91
20 29.43 14.22 19.81
* 44.03 42.74 59.61

We vary input sizes n from 216 to 220. For label length ℓ, we focus on practical values 1) ℓ = 1, e.g.,
for binary classification, linear regression, medical diagnosis (cancer, no cancer), 2) ℓ = 4, e.g., for MNIST
CIFAR-10 image classification [24], 3) ℓ = 10, e.g., for ImageNet classification [9] or types of malware, 4)
ℓ = 20, e.g., for supporting a huge number of classes such as with GPT-3 tokens [3]. Yet, we also evaluate
arbitrarily long labels, marked ∗ in Table 2, by setting ℓ = log n+ σ.

We vary network bandwidth to emulate the effect of fast LAN networks with 1 GBit/s, inter-continental
WANs (100 MBit/s), and even slower cell phone networks (10 MBit/s).

We measure total runtime for all schemes, i.e., from the time receiver R starts until they output misclas-
sifications. The communication complexity comprises all data sent or received by R. For all benchmarks,
we set λ = 128 and σ = 40. To achieve a failure probability of less than 2−40 for Cuckoo hashing, we use
m = 1.27n and three hash functions [32].

Finally, we also present estimates for monetary costs incurred by these schemes. One could imagine that
sender and receiver are running in cloud environments where CPU time and network communication have
to be paid for. To estimate monetary costs, we assume pricing from an Amazon US East t3.medium AWS
instance [2]. Given current throughputs over the Internet, we chose the evaluation setup that is closest to a
cloud setup over different data centers. i.e., 100 MBit/s throughput.

Table 3 presents total costs (CPU and communication) in US$ for 100 executions of each scheme.

Discussion. Our constructions and circuit-PSI outperform each other depending on the choice of ℓ and the
available network bandwidth.

For a number of labels of up to thousand (210) as in current deep neural network classifiers and medium
to very fast networks, VOLE-PDC2 offers the lowest total runtime. It is between 50% and 2000% faster than
circuit-PSI, depending on the concrete choice of ℓ and bandwidth. In slow networks (10 MBit/s) and ℓ ≤ 20,
DH-PDC2 is fastest due to it having lower communication requirements. As label lengths grow to arbitrary,
circuit-PSI becomes faster than both PDC2 schemes, due to its lower communication requirements. However,
if differentially private leakage is admissible, PDC1 is the fastest approach with label lengths ℓ ≥ 10. It is
between 387% and 764% faster than circuit-PSI, depending on the concrete choice of n, ℓ, and bandwidth.

Surprisingly, despite the computational simplicity of the KKRT-OPRF, the runtime of KKRT-PDC2 is
always worse than the one of VOLE-PDC2. The savings in communication of the VOLE-OPRF outweigh
any computational advantages of the KKRT-OPRF in our specific setting.

There exist many scenarios where the amount of communication, e.g., over the Internet, mobile networks
or in a cloud setting, matters most and dominates total cost [18, 19, 39]. In such a setting, DH-PDC2 is
always the cheapest option with no leakage, see Table 3. Depending on the concrete choice of ℓ, circuit-PSI
costs between 1% and 3200% more than DH-PDC2. Again, if differentially private leakage is admissible, and
label lengths become long ℓ ≥ 10, PDC1 is the cheapest approach. It costs between 485% and 929% less
than circuit-PSI, depending on the choice of n, ℓ, and bandwidth.
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Note that we have omitted KKRT-PDC2 from Table 3, since it is always outperformed in both computa-
tion and communication by VOLE-PDC2.

6 Related Work

Private data cleaning (PDC) can be implemented using extended PSI, such as circuit-PSI, but we have shown
that it also can be reduced to regular PSI. While the literature on PSI is too extensive to summarize it in
this paper, we are not aware of related work investigating the connection between data cleaning and PSI or
related work that considers mismatch (of labels) in PSI.

Labels associated with their data elements have been considered in the literature as labeled PSI [5, 6]. In
labeled PSI, instead of a bit indicating inclusion in the intersection, the output is the label for each element
in the intersection.

Circuit-PSI [4, 20, 33] which allows computing arbitrary circuits over the function also operates on
“payloads”, which are similar to labels and that we use to build our strawman.

Privacy in data cleaning has so far been considered in the single database setting. It has previously been
investigated how privacy impacts the querying party and how it can be improved by tailoring data cleaning
methods [23]. It has also been previously investigated how privacy can be tailored for the data scientist
performing the data cleaning [12].

Collaborative data cleaning without consideration of privacy has also been investigated [28]. However,
the obvious privacy implications hinder deployment, and our paper addresses the problem in a systematic
and formal manner.

7 Conclusion

In this paper, we have formalized the problem of private collaborative data cleaning (PDC) and investigated
its connection to PSI. Private collaborative data cleaning is an important primitive in data science that leads
to better data and hence better models with more accurate predictions. Just as PSI, it arises in many data
science applications.

While PDC can be solved using circuit-PSI, we show that its efficiency does not scale to large data set sizes.
We present a construction that has complexity independent of the number of possible labels, but has a small
leakage, and we present a construction that reduces PDC to PSI at the expense of increasing the complexity
by the size of the possible labels. However, when the PSI-based construction is implemented using (mostly)
symmetric cryptography, its efficiency for current big data sizes is very practical. We combine the currently
most efficient oblivious pseudo-random functions by Kolesnikov et al. [21] and Rindal and Schoppmann [37]
with a new technique for shuffling its outputs in this second, most efficient protocol. As a result, we achieve
total runtime or communication improvements of up to one order of magnitude over circuit-PSI.
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