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Abstract. Permissionless blockchains are too slow for applications like
point-of-sale payments. While several techniques have been proposed to
speed up blockchain payments, none of them are satisfactory for appli-
cation scenarios like retail shopping. In particular, existing solutions like
payment channels require users to lock up significant funds and schemes
based on pre-defined validators enable easy transaction censoring. In this
paper, we develop Quicksilver, the first blockchain payment scheme that
works with practical collaterals and is fast, censorship-resilient, and confi-
dential at the same time. We implement Quicksilver for EVM-compatible
chains and show that censoring-resilient payments are fast and affordable
on currently popular blockchains platforms like Ethereum and Polygon.

1 Introduction

Although blockchain technology has gained wide attention, its adoption as a pay-
ment mechanism is still limited. For instance, in point-of-sale payments, permis-
sionless blockchains are simply too slow, as safe blockchain payment acceptance
takes several minutes and transactions should be completed in few seconds. Per-
missionless blockchains are also too transparent for retail payments. This has
led to the surge of dedicated platforms like Zcash [18] and Monero [20] and
2nd-Layer systems like Zether [7] to provide improved privacy. However, none of
these solutions are fast enough for retail payments.

To speed up permissionless blockchain payments, a number of techniques
have been developed. Payment channels [14] and payment channel networks [14]
emerge as one of the most popular solutions. Once a payment channel is es-
tablished, or once a suitable route in a payment channel network is found, fast
off-chain payments are possible. However, if a retail customer needs to establish
separate channels with all possible merchants, he needs to lock up significant
collateral. Payment networks can reduce the amount of locked collateral, but
cannot guarantee that a suitable route is found and that the payment can be
completed.

Side chains [19] and new collateralized payment processing techniques like
Snappy [15] provide an alternative approach to speed up payments. In such
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solutions, pre-defined validators approve payments off-chain. Such schemes im-
prove latency, but suffer from a significant limitation as a by-product: Since
every payment now needs to be approved by a set of validators, payment cen-
soring becomes possible. Strong resilience to censorship is one of the primary
advantages of permissionless blockchains, and known practical schemes for fast
payments unfortunately eliminate that advantage.

Research question and solution. In this paper, we address the following
research question: Can one design a permissionless blockchain payment scheme
that is practical, fast, censorship-resilient, and confidential at the same time?
To the best of our knowledge, no such solution exists at the moment.

We present a novel solution, dubbed Quicksilver, that answers this question
positively. Quicksilver leverages two building blocks from the existing research
literature. First, Quicksilver adapts the notion of fast and collateralized payment
processing from Snappy [15]. Second, we use a confidential payment technique
from Zether [7]. However, as we show in this paper, a simple composition of these
two techniques is insufficient to solve our problem and therefore we realize Quick-
silver with new ideas: First, we enable censorship-resilient payment approval
by modifying payment processing such that payment details are made oblivi-
ous to the validators using cryptographic commitments and Verifiable Random
Functions (VRFs). Second, we enable fast processing of confidential payment by
leveraging the homomorphic property of encrypted payment values and new au-
thorization model for confidential payments. By combining such new techniques,
we build Quicksilver, the first 2nd-Layer blockchain payment scheme that is fast,
censorship-resilient and confidential.

We implemented Quicksilver for EVM-compatible chains and evaluated it on
Ethereum and Polygon. Our experiments show that Quicksilver payments can
be approved in 2.5 seconds which is comparable to Visa [11]. One payment costs
$0.3 on Polygon. Quicksilver payments that are fast and censoring-resilient (but
not confidential) cost $1.9 on Ethereum. While such prices are volatile, they
demonstrate practicality of our (non-optimized) solution. We also show that
Quicksilver can process thousands of transactions per second and thus match
the throughput of current (and near future) permissionless blockchains.

Contributions. To summarize, in this paper we make the following contribu-
tions:

– Quicksilver system: We design and implement the first blockchain payment
scheme that is fast, censorship-resilient, and confidential (cf. Sections 4 and
5).

– Performance evaluation: We show experimentally that Quicksilver payments
can be both fast and affordable. (cf. Section 6).

– Security analysis: We prove that Quicksilver payments are safe and prevent
targeted censoring (cf. Appendix A).
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Key requirements Additional requirements

System
Payment
Latency

Censoring
Resilience

Confiden-
tiality

Practical
Collaterals

No Extra
Assumpt.

No Fund
Migration

Transaction
Fees

Anony-
mity

System
Throughput

Permissionless chain high ✓ ✗ n/a ✓ ✓ low ✗ limited

Sidechains [19] low ✗ ✗ n/a ✗ ✓ low ✗ increased
Payment channels [14] low ✓ ✓ ✗ ✓ ✓ low ✗ increased
Payment hubs low ✓ ✗ ✗ ✓ ✓ low ✗ increased
Snappy [15] low ✗ ✗ ✓ ✓ ✓ normal ✗ limited
Zether [7] high ✓ ✓ n/a ✓ ✓ moderate ✓ limited
LDSP [16] low partial ✗ ✗ ✓ ✓ low partial limited

Monero [20] high ✓ ✓ n/a ✓ ✗ normal ✓ limited
Zcash [18] high ✓ ✓ n/a ✓ ✗ normal ✓ limited

Quicksilver low ✓ ✓ ✓ ✓ ✓ moderate ✗ limited

Table 1. Comparison of Quicksilver to related solutions.

2 Known Solutions and Their Limitations

Blockchains are too slow and transparent for point-of-sale payments. Below we
analyse known solutions that speed up blockchain payments and improve their
privacy.

Side chains. One common approach is side chains [19], where a pre-defined
set of validators approve each payment, e.g., by running a consensus protocol.
However, the main drawback of this approach is that it requires additional trust
assumptions. In the case of BFT consensus, two-thirds of the validator nodes
must be trusted. Additionally, such systems are not resilient to censoring. If the
validator nodes so decide, they can easily prevent transaction processing from
targeted victim users.

Payment channels and networks. Another popular set of solutions are pay-
ment channels [14]. In a typical payment channel scheme, two parties lock col-
lateral into a smart contract and then perform fast off-chain transactions that
are secured, as long as there is sufficient collateral left in the channel. Payment
channels improve latency. However, when considering retail payments, the main
problem of payment channels is that the user needs to setup a separate channel
with each merchant which requires significant locked-in funds. Payment channels
can be organized into networks, but since the flow of funds is predominantly one
way (from customers to merchants), the deposited collaterals will quickly run
out making it difficult to find available channels to merchants in practice [10].

Payment hubs. Another approach is that all users establish a payment channel
with a centralized service, called payment hub, that in turn has channels with
recipients. In this approach, the users need to deposit only a single collateral.
However, the main drawback of such systems is that the payment hub operator
would need to deposit a huge collateral that covers all payments of all users in
the system. In addition, the collaterals will quickly run out. Moreover, the hub
operator is in a perfect position to censor selected users.

Collateralized schemes. Recently, researchers have proposed alternative col-
lateralized schemes such as Snappy [15] that combines ideas from payment chan-
nels and side chains. A major benefit of this approach is that users need to de-
posit only a single collateral and the same collateral can be re-used unlimited
number of times which improves collateral practicality. Also validator collaterals
remain moderate and validators do not need to be trusted. The main remaining
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limitation of Snappy is that the pre-defined validators (called statekeepers) can
censor users and merchants.

Private payments. Dedicated privacy-preserving blockchains like Monero [20]
and Zcash [18] hide user identities and payment amounts. However, such schemes
do not improve latency. In addition, since payment privacy requires the use of
a separate chain, users need to migrate funds between multiple systems. 2nd-
Layer solutions like Zether [7] enable confidential payment amounts on popular
blockchains without migration. Such schemes are censoring resilient but do not
improve payment latency.

3 Problem Statement and Security Goals

Based on the above discusssion, which is summarized in Table 1, we make two
observations. Our first observation is that many 2nd-Layer schemes that provide
improved payment latency make a significant trade-off. These systems introduce
validators (or statekeepers) whose job is to approve payments fast. The negative
side effect of this approach is that these privileged entities can easily censor
customers or merchants. Thus, such solutions gain payment speed by sacrificing
strong censorship-resilience of blockchains. Our second observation is that while
several private blockchain payment techniques have been proposed, it is unknown
whether such payments can be made fast and scalable for applications like retail
payments. Motivated by these observations, our research question becomes:

Research question: Is it possible to design a payment scheme that retains the
strong censorship resilience of permissionless blockchains and provides fast
and confidential payments with practical collaterals for application scenarios
like retail shopping?

To the best of our knowledge, no such solution exists at the moment. The
work that probably comes closest to meet these requirements is a recent proposal
called LDSP [16] that runs a Chaum-style e-cash scheme [9] as 2nd-Layer on top
of Ethereum. However, LDSP provides only partial censoring resilience because
payment recipient (merchant) identity and payment amount are not hidden. Also
its collaterals are not practical since they need to be replenished after they have
been used.3

Main security definitions. Before introducing our solution, we define the main
security notions that we seek to achieve. We assume that customers and mer-
chants initiating a payment do not disclose any information about each other
or their payment to the public. We argue that little can be done if a customer

3 In LDSP [16], payment validators do not learn the identity of the customer at the
time of payment, and therefore cannot censor customers. However, they do learn
the identity of the merchant who deposits the coins back to a validator that can
censor merchants. Payment validators also learn the total value of deposited coins,
and thus price-based censoring is possible. Collaterals are not reusable, because once
the withdrawn coins have been used, no further payments are possible.
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or merchant leaks the payment. When a customer initiates a payment, it sends
a payment intent to the merchant. Payment intents are then processed by val-
idators (statekeepers) before the merchant accepts the payment. Our goal is to
prevent payment censoring by validators based on the payment intent.

Let P denote the set of all payment intents in the system. By t ∈ P , we mean
that a payment intent t is characterized by a sender address in {0, 1}n drawn from
probability distribution S, a recipient address in {0, 1}m drawn from probability
distribution R, a payment value in {0, 1}l drawn from probability distribution
V , and a payment index (introduced in the next section) in {0, 1}o drawn from
probability distribution I. Similarly, let U denote the set of all payment intents
drawn at random.

Definition 1 (Censorship resilience). We say that a payment system is censorship-
resilient if P is poly-time indistinguishable from a randomly formed payment
intent in U , if ∀ p.p.t. distinguisher A, there exists a negligible function ϵ, s.t.
|Pr
t∈P

(A(t) = 1)− Pr
t∈U

(A(t) = 1)| < ϵ(n) where n is the security parameter.

Definition 2 (Merchant safety). If a merchant follows the protocol and ac-
cepts a payment, he is guaranteed to receive funds matching the full amount of
the accepted payment.

Functional & non-goals. In this work, we focus on improving payment latency.
Increased throughput is another common goal for 2nd-Layer solutions, but for
us out of scope. However, in Section 6, we show that our solution can match the
throughput of permissionless blockchains.

We explain how confidential payments can be made fast and censoring-
resilient. While payment anonymity is not necessarily the focus of our work,
in Appendix B, we discuss how our solution could be extended for anonymous
payments in future work.

4 Quicksilver Overview

In this section, we describe two techniques that we adopt as building blocks for
our solution. Then, we explain how a simple combination of these techniques
fails to solve our research problem and outline our main ideas for overcoming
the involved challenges.

4.1 Building Blocks

Fast payment approval. The first building block of our solution is fast pay-
ment approval using collateralized majority signing, a technique recently in-
troduced by Snappy [15]. This technique requires a pre-defined set of validators,
called statekeepers, that approve payments fast. During system registration, each
user and statekeeper deposits a collateral into a smart contract. In a practical
deployment, merchants can play the role of statekeepers.
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Figure 1 illustrates the payment processing. When the user initiates a pay-
ment (step 1), it sends a data structure called payment intent and a list of previ-
ously approved pending transactions to the merchant. Payment intents contain
the addresses of the payment sender (customer) and recipient (merchant), the
amount of the payment, and a monotonically increasing payment index that
the user increments for each payment. Using the payment index, the merchant
verifies that all the previous payments by the same user either appear finalized
on the chain or are approved by statekeepers, and that the user has enough
collateral to cover the current and pending payments (step 2).

User Merchant S1

PINT

1

2

3

6

7

8,9

4

5

User Eval

Sk Eval

Sig Aggr

Payment approval

>k/2

S2 Sk...

Verify Details 
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Fig. 1. Payment process in Quicksilver.

The merchant forwards the payment
intent to all statekeepers who check that
they have not approved a payment by
the same user with the same index be-
fore. Then they sign the intent and send
it back to the merchant (step 3). Once
the merchant has collected signed in-
tents from the majority of the statekeep-
ers (step 4), it can aggregate the signa-
tures, and forward the aggregated signa-
ture back to the user (step 5). The user
will finalize the transaction by including
the majority-signed intent to it (step 6).
The user sends the final transaction to the merchant who can at this point con-
sider the payment safely completed, hand over goods to the user (step 7), and
broadcast the transaction to the blockchain network (step 8).

The main intuition why such payment approval process is safe is based on two
arguments [15]. First, if the user double spends, the merchant can claim back the
lost funds from the user’s collateral by presenting the signed intent as evidence
to the smart contract that controls all collaterals. This process is called set-
tlement. Second, if the user colludes with a malicious statekeeper who approves
multiple transactions for the same user with the same index value (double spend-
ing with another merchant), the victim merchant can claim the lost funds from
the cheating statekeeper’s collateral. Identification of the cheating statekeeper
is always possible, because if two separate majority sets sign conflicting trans-
actions, there will always be at least one statekeeper whose equivocation leaves
undeniable evidence.

Confidential payments. The second building block of our solution is a con-
fidential payment mechanism that leverages encrypted account balances, as re-
cently introduced by Zether [7]. In this technique, a smart contract maintains
an encrypted account balance for each user. Each account balance is encrypted
with a public key that is associated with the account, and the encryption scheme
is homomorphic (ElGamal encryption with the message in the exponent) such
that it allows addition and subtraction of encrypted values.

To create a confidential balance, a user performs a funding operation that
transfers coins to a smart contract which will create an encrypted account bal-
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ance associated with that user’s public key. To transfer funds, the sender first
encrypts the payment amount using the public key of its own account. The re-
sulting ciphertext can be subtracted by the smart contract from the sender’s
previous encrypted account balance. Then, the sender encrypts the payment
amount using the public key of the recipient’s account. This ciphertext can be
added to the recipient’s previous encrypted balance by the smart contract. The
sender also produces a zero-knowledge proof that shows that the two account
balances were adjusted by the same amount, the sender’s updated balance is
positive, and proves the knowledge of the sender’s private key. The smart con-
tract verifies the proof and updates the encrypted account balances accordingly.

4.2 Challenges and Main Ideas

While the above two techniques provide a starting point for our solution, a
strawman combination of these two techniques fails to solve our research ques-
tion. Below, we explained involved challenges and outline our new ideas and
techniques for solving them.

Challenge 1: Merchant censoring. Recall that the majority-signed payment
intent must contain the the merchant’s address, so that only the correct merchant
can claim settlement in case of double-spending. Because merchant’s address is
included to the intent, statekeepers can censor payments of chosen merchant.
To prevent such censoring, the merchant’s identity needs to be hidden from the
statekeepers at the time of payment approval and the hiding mechanism must
be such that the legitimate merchant can later prove its identity to the smart
contract, if settlement is needed.

We prevent merchant censoring using cryptographic commitments. The mer-
chant modifies the intent that it receives from the user by replacing its address
with a commitment to the address (and saving the commitment opening). In
case the transaction turns out to be malicious, the merchant can open the com-
mitment, and thus prove its identity to the smart contract for correct settlement.
We focus on hiding identities at the protocol level and assume that network-level
anonymity can be achieved through other means.4

Challenge 2: Customer censoring. Fast payment approval requires that the
identity of the customer and the monotonically increasing payment index are
included in each payment intent. The statekeepers ensure that they sign only
one intent with the same index per customer. Such a design allows statekeepers
to censor payments from the chosen customer. Replacing the user’s identity with
a cryptographic commitment is insufficient, since this would prevent statekeepers
from controlling that they sign only one intent for each payment index for each
user. Instead, what is needed is a mechanism to hide the identity of the user

4 One option is to rely on Tor between the merchant and the statekeepers. Another
option is to modify the payment processing flow such that the customer, whose IP
address is expected to change, can send the intent to the statekeepers on behalf of
the merchant.
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from the statekeepers such that they can still enforce the policy of one signature
per index and user.

We solve this problem using verifiable random functions (VRFs) [13]. When
a customer wishes to initiate a payment, he uses his VRF private key and the
current payment index value as input for the VRF that will output a pseudo-
random value and a proof that can be verified using the associated VRF public
key. The customer creates a modified payment intent that contains the pseudo-
random value as Randomized Payment Identifier (RPID) instead of its identity.
The customer passes the payment index and VRF proof for the current and all
pending transactions to the merchant who can verify that the proofs are correct
using the public key that is registered to the smart contract, before passing the
intent to the statekeepers. The statekeepers enforce a new policy where they sign
only one intent with the same RPID value. Such payments are safe for merchants
due to the uniqueness property of VRFs. For the same VRF input (payment in-
dex) only one correct VRF output (RPID) can be generated. Since malicious
customers cannot create multiple RPIDs for the same index and statekeepers
track double-spending per payment index, a malicious customer cannot double
spend. Customer censoring is no longer possible due to the pseudorandomness
of VRFs which ensures that RPID (and thus the payment intent) reveals no
information about the customer.

Challenge 3: Price-based censoring. Prior research has shown that payment
amounts can identify the merchant [12]. Thus, to effectively prevent censoring,
we also need to hide the amount of the payment from the statekeepers. We hide
payment amounts from the statekeepers using encrypted payment amounts in
the payment intent.

Challenge 4: Confidential collaterals. Next, we consider deployments where
also the user’s collateral is confidential for increased privacy. Recall that, to safely
accept a payment, the merchant needs to verify that the customer’s collateral is
sufficient to cover both the current payment and all the pending transactions.
When the collateral is confidential and all payments amounts are encrypted, the
merchant cannot perform such a check. Additionally, if the customer cheats and
the merchant needs to initiate a settlement, it cannot authorize a transfer from
the user’s confidential collateral, because it does not know the user’s private key
needed to create a proof that authorizes the confidential transfer.

We solve these two problems using a new payment authorization mechanism
that is tailored to our use case. When the customer initiates a payment, it cre-
ates two proofs: one that authorizes the transfer of funds from his account to the
merchant’s account and another that authorizes transfer of funds from his collat-
eral to the merchant. When computing the second proof, the customer leverages
the homomorphic property of confidential payments. The customer subtracts the
(encrypted) values of all pending payments from the (encrypted) value of the
collateral, and then creates the proof that shows that shows that the updated
collateral value is still positive. This is possible using existing proof techniques
from [7]. By verifying the proof, the merchant ensures that the customer’s col-
lateral is sufficient to cover the all the pending and current payments.
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Challenge 5: Confidential statekeeper collateral. To enable confidential
statekeeper collaterals, statekeepers establish separate confidential collaterals for
each merchant and privately shares their value and the private key that controls
them with the respective merchant. Merchants track payments approved by each
statekeeper and control that no statekeeper is approving more transactions than
their collateral allows. If settlement from a statekeeper is needed, merchant can
authorize the transfer from the statekeepers collateral using the private key.
Sharing the private key is safe, because the Quicksilver smart contract enforces
that the statekeeper’s collateral is used only when the statekeeper equivocated.

5 Quicksilver Specification

In this section, we describe Quicksilver in detail. We start by listing crypto-
graphic primitives. After that, we explain the system initialization, payment,
and settlement operations.

5.1 Cryptographic Primitives

Aggregate signatures. To enable signature aggregation for reduced transac-
tion size and efficient verification, we rely on the Boneh-Lynn-Shacham (BLS)
signature scheme [6]. We assume that the user is given functions
σ = AggrSig({σ1, . . . , σn}) and y = AggrPk({y1, . . . , yn}) which implement sig-
nature and public key aggregation, respectively, and a verification function AggrVerify(σ, y)
that outputs valid for correct signature [5].

Verifiable Random Functions. A verifiable random function (VRF) is a
public-key version of a keyed cryptographic hash [13]. Given an input value m,
the owner of private key x can compute hash h = VRFhash(x,m) and matching
proof πvrf = VRFprove(x,m). An important property of VRFs is that the hashing
algorithm is deterministic for the same inputs (x,m). Given y,m, and π, the hash
is valid if VRFverify(y,m, π) outputs valid. Anyone can deterministically obtain
the VRF output h from the proof π by computing h = VRFproof2hash(π).

VRFs have the following security properties [13]. Uniqueness means that, for
any fixed public VRF key y and for any input m, there is a unique VRF output
h that can be proved to be valid. Collision resistance is the same as for cryp-
tographic hash functions. Pseudorandomness ensures that when an adversary
sees a VRF hash output h without its corresponding VRF proof π, then h is
indistinguishable from a random value.

Commitments. Cryptographic commitments allow a user to commit to a value
that remains hidden and reveal it later. Commitment c to message m can be
created using function c = Commit(m, r) where r is a randomly chosen blind-
ing factor. Commitment c can later be opened to m using the blinding factor
r as input: m = Open(c, r). Pedersen commitments are perfectly hiding and
computationally binding [17].

ElGamal encryption. We leverage an ElGamal encryption scheme variant
where the message is in the exponent, as defined in [7]. Given a key-pair (x, y),
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where y = gx, we encrypt a message b by choosing a random secret r ∈ Zp and
by computing the ciphertext C = (gbyr, gr). To decrypt C, one divides gbyr by
(gr)x which yields gb. The extraction of b out of gb is performed by brute force.
Such encryption scheme is additively homomorphic under the same public key.
We use notation where Ca ← Ca ◦ Cb adds the value of Cb to Ca. Conversely,
Ca ← Ca ◦ C−1b deducts the value of Cb from Ca.

Σ-Bullets. Σ-Bullets is a proof system that combines efficient range proofs
from Bulletproofs [8] with Sigma protocols for algebraically encoded statements.
Σ-Bullets is used for confidential payments in Zether [7] as follows. Assume
that the user wants to transfer an amount b∗ from his account y to another
account y. Let Cb be the current encrypted balance associated with y. To
complete such a confidential transfer, the smart contract needs to deduct b∗

from y’s balance and add the same amount to y’s balance. To achieve this,
the user will encrypt b∗ under both y and y to get ciphertexts C and C. Af-
ter that, the user computes a zero-knowledge proof using function πtransfer =
ProveTransfer(Cb, C, C, y, y;x, b∗, b′, r∗) that takes as inputs both public keys
(y, y), all three ciphertexts (Cb, C, C), the sender’s private key x, the payment
amount b∗, the sender’s remaining balance b′ after the account update, and ran-
domness used for encryption r∗. The function outputs a proof πtransfer, which
shows that (1) ciphertexts C and C are well formed and encrypt the same
amount, (2) the payment amount b∗ is a positive value, (3) the sender’s remaining
balance b′ is positive, and (4) the proof creator knows the private key x. Finally,
we assume a verification function true/false = VerifyTransfer(y, y, Cb, C, C, πtrans)
that takes as input the public keys, the above ciphertexts, and the proof.

5.2 System Initialization

We assume that Quicksilver smart contract is deployed on blockchain like Ethereum.
All system participants (customers, merchants, statekeepers) have an existing
encrypted account balance, maintained by the Quicksilver contract, that has al-
ready been funded. We call such confidential accounts Quicksilver accounts to
differentiate them from plaintext Ethereum accounts. We assume a system de-
ployment with C registered customers, M merchants, and S statekeepers. The
state of the Quicksilver smart contract is shown in Tables 2, 3, and 4. We denote
the privacy-preserving payment intent as PINT and the complete transaction as
τ . The structure of τ is defined in Table 5.

Customer registration. To register, customer c creates a VRF key pair (yvrf, xvrf)
and registers the public key yvrf with their existing Quicksilver account yc in the
smart contract. The customer also performs a confidential transfer [7] that trans-
fers collateral amount pcol from yc to the Quicksilver smart contract. The contract
creates a new user entry C[yc] in its state and updates the user’s confidential
account balance Acc[yc].bal and the user’s confidential collateral C[yc].pcol based
on the confidential payment. The user initializes locally its payment index as
i = 0.
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Field Symbol Description

Accounts Acc
↪→ entry Acc[y]
↪→ Counter Acc[y].ctr Transaction counter
↪→ Balance Acc[y].bal Encrypted balance
↪→ Pending Acc[y].P Accumulated transfers

Table 2. Accounts state in smart contract.

Field Symbol Description

Merchants M
↪→ entry M [ym]

Statekeepers S
↪→ entry S[ys]
↪→ Allocation S[ys].y[ym] Per merchant collateral

Table 3. Merchants state in smart con-
tract.

Field Symbol Description

Customers C
↪→ entry C[yc]
↪→ Collateral C[yc].pcol Private collateral
↪→ VRF C[yc].yvrf VRF public key
↪→ Finalized C[yc].D Finalized transactions
↪→ entry C[yc].D[i] Entry for index i
↪→ Hash C[yc].D[i].h Processed tx hash
↪→ Signatures C[yc].D[i].τA Aggregate signature
↪→ Quorum C[yc].D[i].τq Approving parties
↪→ Bit C[yc].D[i].b Sig. verified flag

↪→ Observed C[yc].O Observed approval quora
↪→ entry C[yc].O[i] Entry for index i
↪→ Hash C[yc].O[i].h Observed tx hash

↪→ Trace C[yc].T Past settlements
↪→ entry C[yc].T [i] Entry for index i
↪→ Nonce C[yc].T [i].idx Settled tx index
↪→ Remaining C[yc].T [i].bal Remaining collateral

Table 4. Customers state in smart con-
tract.

Field Symbol Description

To τto Quicksilver contract
From τf Any address
Value τv Transaction fee
ECDSA Sig. v, r, s Tx signature triplet

Data
¡ ↪→ Payment Index τi Monotonic counter
↪→ Random Payment ID τRPID VRF hash
↪→ Commitment τc Merchant’s address
↪→ Signatures τA Aggregate signature
↪→ Quorum τq Approving parties
↪→ Proof πtrans Customer’s Σ-Bullet
↪→ Accounts (yc, ym) Sender/receiver address
↪→ Values (c∗c , c

∗
m) Encrypted values

Table 5. Quicksilver transaction τ for-
mat.

Statekeeper registration. To register, statekeeper s must create a separate
confidential collaterals accounts for each M merchants in the Quicksilver con-
tract. To achieve this, the statekeeper picks M key pairs ((x1, y1), ..., (xM , yM ))
and sends the public keys (y1, ..., yM ) to the Quicksilver smart contract. Then,
the statekeeper performs M confidential payments [7] from its account ys to
confidential accounts defined by (y1, ..., yM ). The contract saves the transferred
funds in its state as new encrypted account balances S[ys].y[yi] and updates the
confidential account balance Acc[ys].bal of the statekeeper based on the pay-
ments accordingly. Finally, the statekeeper sends the private keys (x1, ..., xM ) to
the respective merchants.

Merchant registration. To register, merchant m sends its user account public
key ym to the smart contract that creates a new entry M [ym] in its state. The
merchant also stores all the private collateral keys (xi, ..., xS) that it receives
from each S statekeepers.

5.3 Payment Protocol

The payment process transfers funds from a customer’s Quicksilver account yc
to a merchant’s Quicksilver account ym as shown in Figure 1.

Step 1. The customer creates a private payment intent PINTc which includes
(1) a random payment identifier RPID = VRFhash(xvrf, i), computed using the
VRF private key xvrf and payment index i, (2) the address of the merchant’s ac-
count ym, and (3) the encrypted payment value c∗c under the customer’s public
key yc. The customer also creates two zero-knowledge proofs for payment and
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settlement πtrans and πclaim using the ProveTransfer function. The first proof πtrans

proves the usual transfer details, i.e., it is created on the user’s main account
balance Acc[c].bal and shows that remaining balance after subtracting the en-
crypted payment amount remains positive. The second proof, πclaim is created on
customer’s the collateral balance C[yc].pcol, and it shows that the current collat-
eral is sufficient to cover the current payment and all the pending payments. To
achieve this, the input b′ for the πclaim proof computation is obtained by homo-
morphically deducting the encrypted values of all pending payments from the
current collateral balance. The user sends to the merchant the current payment
index i, PINTc, yvrf, (c

∗
c , c
∗
m) πtrans, πclaim, the VRF proofs πvrf for all pending

transactions, and the list Sc of pending transactions.

Step 2. The merchant performs the following checks to ensure that they can
claim settlement in case the payment should fail. They verify the VRF proof πvrf

for every pending transaction index. Furthermore, for each index j ∈ {1, . . . ,PINTc[i]},
there must appear an approved transaction with index j such that is either final-
ized on the blockchain or contained in Sc. The received yvrf must be registered
on the Quicksilver contract. All details of the confidential payment, in particu-
lar πtrans, must be correct. The additional πclaim must be verified to ensure that
the user’s private collateral is sufficient to cover all pending transactions and
the current transaction. To verify πclaim, the merchant homomorphically deducts
all the encrypted amounts b∗i of all pending payments from the customer’s cur-
rent encrypted collateral value C[yc].pcol to obtain input b′ for the VerifyTransfer
function.

Step 3. To prevent censoring, the merchant hides their address in the payment
intent PINTc by replacing their address with a commitment c = Commit(ym, r),
where r is a randomly chosen blinding factor and saves r. The merchant broad-
casts the modified PINTc to all the statekeepers.

Step 4. Each statekeeper evaluates the received PINTc. They check within their
local list that they have not already approved a payment with the same RPID.
If a matching RPID is found, they notify the merchant. Otherwise, they approve
the payment by computing a BLS signature σi = Sign(PINTc, xs) and send it
back to the merchant. The statekeeper appends the approved RPID value to their
local list.

Step 5. If a majority of statekeepers approves the payment intent, the merchant
checks that all signatures are correct and upon success, aggregates them into
A = AggrSig({σ1, . . . , σn}). Otherwise, the merchant aborts and informs the
user. The merchant additionally checks that each statekeeper who has approved
the intent allocated enough collateral to the merchant. This can be done because
the merchant knows their corresponding allocated collateral balances and the
corresponding secret keys xi. The merchant stores the payment intent PINTc

together with the blinding factor r, all VRF proofs πvrf , πclaim and πclaim for
possible later settlement. Finally, the merchant sends the aggregated signature
A, the blinding factor r, and the majority-signed PINTc to the customer.
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Step 6. The customer verifies the aggregate signature A and checks that the
merchant’s commitment c in the signed intent opens to ym = Open(c, r).

Step 7. The customer creates the final transaction τ containing the details
exchanged in the payment process, as described in Table 5. The final transaction
τ can be signed by an arbitrary Ethereum account that has sufficient funds to
cover the transaction fees.

Step 8. The merchant verifies that the customer correctly constructed and
signed τ (i.e., the customer has not replaced, omitted, or modified any of the
values). The payment can now be considered safely accepted and the merchant
broadcasts τ in the blockchain network.

Step 9. Once τ is included to a block by miners, the Quicksilver smart contract
executes Record-and-Transfer process (Algorithm 1 in Appendix D) that records
the payment in its state and completes the confidential payment to merchant
m. This operation verifies that the customer c is registered and that there is no
transaction with the same index i already recorded. It then stores the hash of
the transaction together with the approval signature and quorum. Finally, the
contract verifies the zero-knowledge proof πtrans and completes the confidential
transfer.

5.4 Settlement

Transaction may not be received and processed by the miners even after a rea-
sonable amount of time due to the following reasons:

1. Benign congestion: The transaction may be of lower priority to the miners,
e.g. due to having a lower gas price.

2. Conflicting transaction: Another transaction by the same user prevents the
current transaction to be accepted by the Quicksilver smart contract (e.g.,
double-spending).

3. User’s blockchain account depletion: The user’s Ethereum account was de-
pleted due to a previous transaction and has insufficient funds to cover the
gas fees of the user’s pending Quicksilver transactions.

4. User’s Quicksilver account depletion: The user’s Quicksilver account was de-
pleted due to a previous transaction which invalidates the zero-knowledge
proof πtrans.

In case (1), the transaction is valid but fails to be processed by the block-
chain’s miners. Hence, the merchant can either wait longer or resubmit the
transaction to the blockchain network with a higher gas price (recall that a
Quicksilver transaction can be submitted by any Ethereum account). In cases
(2-4), the transaction is invalid and the merchant can recover the lost funds
by claiming settlement. If there are conflicting transactions in the system (case
2), the merchant must initiate the Claim-Statekeeper process (Algorithm 2 in
Appendix D) to be refunded from the equivocating statekeeper’s collateral. Oth-
erwise, the merchant can initiate the Claim-Customer process (Algorithm 3 in
Appendix D).
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Claim statekeeper. In the following, we denote by τp the transaction that is
being claimed, and by τ ′, τ ′′ majority-approved transactions that conflict either
with τp or with each other. To create the settlement transaction, the merchant
creates a confidential payment proof π′trans using ProveTransfer function with the
inputs being the statekeeper’s public key ym, the merchant’s public key ym, the
statekeeper’s collateral secret key xs, the statekeeper’s collateral balance b, the
payment amount b∗, and ciphertexts (c∗s, c

∗
m) that encrypt the payment amount

over the public keys of the statekeeper’s collateral account and the merchant’s
account. Note that this proof is different than the customer’s πtrans, because it
proves the transfer from the statekeeper’s collateral to the merchant’s account.

The victim merchant sends to the smart contract the pending transaction
τp, the conflicting transactions τ ′, τ ′′, the equivocating statekeeper’s public key
ys, the VRF proof πvrf for each above transactions, r matching the pending
transaction, the payment amount encrypted under the equivocating statekeepers
public key c∗s, and π′trans. The smart contract executes Algorithm 2 that first
verifies that τp, τ ′, τ ′′ are valid and the merchant provided correct conflicting
transactions. In particular, apart from the BLS signature, it verifies the VRF
proof and the commitment of the pending transaction. Next, it obtains the set
of statekeepers who signed both conflicting transactions and ensures that the
statekeeper being claimed is included in that set. Finally, the contract verifies
the details of the zero-knowledge proof π′trans and transfers the disputed funds
upon success to the merchant.

Claim customer. If there is no conflicting transaction and the merchant fol-
lowed the Quicksilver payment protocol, then the payment failed due to a ma-
licious user. In this case, the merchant is guaranteed to be refunded by the
Quicksilver smart contract from the user’s collateral by triggering Algorithm 3.
The merchant includes the ciphertexts that encrypt the payment value with
the customer collateral’s public key, and the zero-knowledge proofs πclaim, πtrans

that the customer created during the payment process. Furthermore, the mer-
chant includes the pending disputed transaction τp and all transactions that
were pending at the time of payment approval Tp. The smart contract verifies
that all attached transactions submitted by the merchant are valid and signed
by a majority of statekeepers; the state is compatible for the settlement request,
in particular that there exists no conflicting transaction in the system; the past
collateral balance was sufficient to cover all pending payments; and ciphertexts
for the claim encrypt opposite amounts. In this case, the smart contract trans-
fers the disputed funds and update the current collateral balance, and stores the
observed pending transaction in the contract state.

5.5 Brief Security Analysis

Next, we provide a brief security analysis by stating how Quicksilver safisfies
our main security guarantees (censorship resilience and merchant safety). Due
to limited space, we defer the full reasoning and proof sketches to Appendix A. In
the same appendix, we also show that Quicksilver provides safety for customers
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and statekeepers, ensures payment confidentiality, and enables a strong liveness
guarantee.

Theorem 1 (Censorship resilience). Given the pseudorandomness property
of VRFs, assuming that the DDH assumption holds, and that the used commit-
ment scheme is perfectly hiding, Quicksilver is censoring-resilient (cf. Defini-
tion 1).

Theorem 2 (Merchant safety). Given collision-resistance of VRFs, compu-
tationally binding commitments, and sound zero-knowledge proof system, Quick-
silver provides merchant safety (cf. Definition 2).

The main intuition why Thereom 2 above holds is that Quicksilver satisfies
the below listed necessary conditions for merchant safety. We explain this in
detail in Appendix A.

– Condition 1: The majority of the statekeepers have signed a payment intent
that binds the pair (customer address, payment index) to the pair (merchant
address, payment amount).

– Condition 2: At the time of payment acceptance, the customer has suf-
ficient collateral to cover both the current payment and the list of already
approved but pending payment provided by the user.

– Condition 3: The merchant can authorize the settlement of correct payment
amount from the customer’s collateral if needed.

– Condition 4: Each statekeeper that has signed the intent has enough collat-
eral to cover the amounts of the current and all pending payments approved
by the same statekeeper.

– Condition 5: The merchant can authorize the settlement of correct payment
amount from the statekeeper’s collateral if needed.

6 Performance Evaluation

6.1 Methodology and Experimental Setup

We implemented the Quicksilver system as a combination of an off-chain proto-
col in Rust/JavaScript and an on-chain smart contract in Solidity. Throughout
our implementation, we used the alt bn128 elliptic curve since it is natively
supported in the EVM. For the off-chain payment protocol, we relied Anony-
mous Zether [1], vrf-rs [4] and bn [2] libraries to construct the zero-knowledge
and VRF proofs, and to perform the elliptic curve operations. In the Quicksilver
smart contract, we additionally used the solidity-BN256G2 primitives [3].

We ran the customers, merchants and statekeepers on low-end machines with
2 vCPUs and 2 GB of RAM. Statekeepers were implemented as simple web-
servers. We deployed these merchants and statekeepers to cloud instances in
10 different locations (Mumbai, Toronto, Singapore, Dallas, Fremont, Atlanta,
Newark, London, Sydney, Frankfurt).
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Table 6. Payment latency in Quicksilver.

Function Gas Ethereum Polygon

Open Account 131,000 $1.4 $0.01
Fund Account 213,000 $2.3 $0.01
Conf. Transfer 4,798,000 $52 $0.3
Customer Registration 4,997,000 $54 $0.3
Merchant Registration 72,000 $0.8 $0.1
Statekeeper Registration
50 merchants 5,489,000 $60 $0.3
100 merchants 8,307,000 $90 $0.5

Payment Process 5,028,000 $56 $0.3
Claim Statekeeper
50 merchants 6,310,000 $68 $0.4
100 merchants 7,555,000 $82 $0.5

Table 7. Cost of Quicksilver operations.

For latency evaluation, we assume a scenario where the communication be-
tween the user and merchant is negligible (e.g., NFC at point-of-sale). To mea-
sure throughput, we deployed 200 merchants that collectively generate approval
requests to a majority of statekeepers. Each merchant performed a series of
back-to-back operations (requests) and we measured the end-to-end time taken
by each operation. We then computed the total number of approval requests
processed per second as an indicator for the system’s throughput. To evaluate
gas costs, we relied on the Solidity compiler (v0.7.0) and the Ganache client
(v6.12.2) to create and deploy smart contracts. When measuring gas costs, we
relied on operations and precompiled contracts available in the Ganache client.

6.2 Evaluation Results

Latency. The total time it takes to create and accept a Quicksilver payment is
approximately 2.5 seconds, as shown in Figure 6. This is equal to the Visa con-
tactless payment approvals [11] and significantly faster than standard blockchain
payments.

Our measurements consist of intent creation time (steps 1-3) and the state-
keeper latency (steps 4-5). We observe that the proof computation (πtrans and
πclaim) needed for confidential payment and settlement dominates this latency
taking more than 90% of the total latency. The required computational overhead
of our censorship preventions (πvrf and commitments) constitute only a minor
component of the total delay. The intent signing round-trip protocol between
the merchants and statekeepers takes approximately 700 ms. The statekeeper
approval latency increases slightly as the number of statekeepers increases (from
40 to 200 in our experiments). Our latency measurements were obtained on a
throughput of 5, 000 approval requests per second. We note that our current
prototype uses an unoptimized JavaScript implementation from [1] for πtrans and
πclaim computation. We expect a significant performance boost with an optimized
implementation.

Throughput. We tested our prototype on throughput of 1, 000 and 2, 500 re-
quests per second with only a negligible difference in latency. Only the overall
variance was observed to increase with the throughput. Given that currently
chains like Ethereum support orders of magnitude lower throughputs, we con-
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Number of
Merchants

Pending Transactions per User
0 1 2 3

50 9.9M 10,7M 11.4M 15.4M
100 10.5M 11.7M 13.0M 19.8M

Table 8. Confidential settlement gas cost.

Number of
Merchants

Pending Transactions per User
0 1 2 3

100 1.9M 3.2M 4.7M 5.9M

Table 9. Non-confidential settlement
gas cost.

clude that Quicksilver provides more than sufficient throughput for the under-
lying blockchain.

Gas usage. In Table 7, we measure the gas cost of each Quicksilver operation.
We translate these costs to USD for two currently popular blockchain platforms.
First, we use Ethereum as an example of a currently expensive platform (8.5
GWEI gas price, 1,277 USD/ETH), and second, we use Polygon as an example
of a cheaper alternative (77 GWEI gas price, 0.78 USD/MATIC) based on gas
prices and exchange rates from October 2, 2022.

We observe that one Quicksilver payment costs 5.03M gas that corresponds to
$0.3 on Polygon and $56 on Ethereum. We note that recent Ethereum improve-
ment proposals may reduce the payment costs significantly in near future.5 Most
of the gas costs for payment comes from the processing of confidential transac-
tions. Our solution can be also deployed to support fast and censorship-resilient
transactions that are not confidential. In this case, a Quicksilver payment takes
176K gas ($1.9 on Ethereum and $0.01 on Polygon).

The settlement processes are evaluated in Tables 8 (confidential payments)
and 9 (non-confidential payments). The cost for claiming a statekeeper scales
with the total number of registered merchants who act as statekeepers. The
cost for claiming a user scales with the number of pending transactions. An
example settlement for a confidential payment with no pending transactions and
50 merchants costs 9.9M gas ($0.6 on Polygon). To summarize, all Quicksilver
operations are feasible on affordable blockchain platforms like Polygon today. On
more expensive platforms like Ethereum, payments that are fast and censoring-
resilient (but not confidential) are also feasible.

7 Concluding Remarks

In this paper, we presented Quicksilver, the first 2nd-Layer blockchain payment
scheme that is fast, censorship-resilient and confidential. We designed and imple-
mented Quicksilver for EVM compatible blockchain platforms and tested it on
Ethereum and Polygon. Our prototype evaluation shows that payment approvals
can be conducted approximately in 2.5 seconds which matches the requirements
of most point-of-sale use cases.

Roadmap for the rest of the paper. In Appendix A, we provide sketches
of security proofs for Quicksilver. We discuss collateral scalability and payment
anonymity in Appendix B. In Appendix C, we explain gas fees could be reduced

5 Additions and multiplications in the G2 group are not natively supported in
Ethereum and cost 20, 000 and 2.5M gas, respectively. EIP-2537 [21] proposes pre-
compiled contracts for additions/multiplications which would reduce these gas costs
by orders of magnitude.
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using customized zero-knowledge proofs. And finally, in Appendix D, we include
the pseudocode listings for the Quicksilver smart contract algorithms.
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A Security Proofs

In this appendix, we provide sketches of security proofs for our solution Quick-
silver.

A.1 Censorship Resilience

We now show that Quicksilver is censorship-resilient (Theorem 1). We assume
that users and merchants initiating a payment do not disclose any information
about each other or the payment intent to the public. We argue that little can
be done if users/merchants leak the payment intent.

We prove censorship-resilience by showing that various constituents (price,
customer address, merchant address, index number) of any legitimate payment
intent in Quicksilver cannot be distinguished from the constituents of any ran-
dom payment intent.

(a) Price-based censorship: Since users and merchants cannot leak the price,
the only constituents of a payment intent that are dependent on the price
comprise the ElGamal-encrypted value.

(b) User-based censorship: The only constituents of the payment intent that
are derived from the user is the VRF hash.

(c) Merchant-based censorship: The only constituents of the payment intent
that are derived from the merchant address are the Pedersen commitment
of the merchant’s Quicksilver account.

We therefore conclude that any p.p.t. distinguisher A can only distinguish
a legitimate payment intent in Quicksilver from a random one with negligible
probability. Otherwise, A can break the DDH assumption (to distinguish the
value encrypted from ElGamal), or the pseudorandomness property of VRFs
or the perfect hiding property of Pedersen commitments (to distinguish the
merchant address).
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A.2 Merchant Safety

Next, we show that Quicksilver provides safety for merchants (Theorem 2). For
this proof sketch, we leverage the fact that the Snappy [15] paper already proves
that if a merchant checks the following five conditions (also listed in Section 5.5)
prior to payment acceptance, it is guaranteed to receive funds that are equal to
the full amount of the accepted payment (Definition 2).

– Condition 1: The majority of the statekeepers have signed a payment intent
that binds the pair (customer address, payment index) to the pair (merchant
address, payment amount).

– Condition 2: At the time of payment acceptance, the customer has suf-
ficient collateral to cover both the current payment and the list of already
approved but pending payment provided by the user.

– Condition 3: The merchant can authorize the settlement of correct payment
amount from the customer’s collateral if needed.

– Condition 4: Each statekeeper that has signed the intent has enough collat-
eral to cover the amounts of the current and all pending payments approved
by the same statekeeper.

– Condition 5: The merchant can authorize the settlement of correct payment
amount from the statekeeper’s collateral if needed.

In Quicksilver, these five conditions are satisfied as follows:

– Condition 1: Recall that the PINT structure signed by the statekeepers
contains commitment to the merchant address, encrypted payment amount,
and a VRF hash computed using the customer’s private key and the payment
index as input. This condition holds, since otherwise the customer would be
able to violate the binding property of commitments or violate the collision-
resistance of VRFs.

– Condition 2: Prior to accepting a payment, the merchant verifies the proof
πclaim which shows that the customer’s collateral is sufficient to cover the
current and approved pending payment. To ensure that the correct set of
pending payments is considered in the above proof computation, the mer-
chant also verifies the VRF proofs πvrf for each pending payment. These
proofs show that the signed RPID matches the payment index i in each
pending payment. Therefore, to violate this condition, the merchant would
need to forge πclaim which is proven secure in [7] or forge πvrf by violating
the collision-resistance property of VRFs.

– Condition 3: This condition holds since the merchant only accepts a pay-
ment if it receives a valid πclaim from the user. If a settlement from the user’s
collateral is needed, the merchant can present πclaim to the Quicksilver con-
tract which can then execute the transfer from the user’s collateral to the
merchant. The Quicksilver contract enforces that the ciphertext used in the
settlement proof is the same as the one used in the failed payment, and
therefore the merchant is guaranteed to receive the correct payment amount
(see Line 23 in Algorithm 3).
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– Condition 4: This condition holds since in Quicksilver the merchant knows
the private key for the statekeeper’s encrypted collateral account, and thus
it can easily verify that the statekeeper has sufficient collateral to cover the
current and all pending payments approved for the merchant.

– Condition 5: The last condition holds, since the merchant knows the pri-
vate key so that it can create the proof π′trans that can be presented to the
Quicksilver contract that will then execute the transfer of funds. The Quick-
silver contract enforces that the ciphertext used as input in π′trans is the same
as the one in the failed payment, and therefore the merchant is guaranteed
to receive the correct payment amount (see Line 6 in Algorithm 2).

We conclude that Quicksilver provides merchant safety, when VRFs are colli-
sion resistant, the used commitments are computationally binding, and the used
zero-knowledge proof system is sound.

A.3 User Safety

Next, we define what it means that a payment system is safe for users.

Definition 3 (User safety). If a user signs a complete transaction τ with
payment amount b∗, the user is guaranteed to lose at most b∗ of its funds.

To satisfy Definition 3, we need to show that the following two conditions
hold. First, if τ is included on the chain, no settlement will be performed from
the user’s collateral. Conversely, if τ is not included in the chain, at most b∗ will
be settled from the user’s collateral.

The first condition holds since the Quicksilver smart contract verifies that
the claimed transaction is not already accepted and recorded on the state of
the Quicksilver contract (Line 2 in Algorithm 3). On the other hand, the second
condition holds since the user creates the settlement proof πtrans and the Quick-
silver contract enforces that the settled amount is the same ciphertext used in
the failed payment τ . Recall that only the user knows the private key of his
collateral account, and thus only him can create proofs to authorize transfers
from this account.

A.4 Statekeeper Safety

Since, in Quicksilver, statekeepers also have a collateral account, we also need
to show that Quicksilver provides safety guarantees for statekeepers.

Definition 4 (Statekeeper safety). If a statekeeper follows the protocol, no
funds will be transferred from any of his M collateral accounts (y1, ..., yM ).

Recall that the statekeeper shares the private keys (x1, ..., xM ) of these col-
lateral accounts with the merchants. This means that each merchant is able to
create arbitrary proofs π′trans that would—without other enforcements—transfer



22 Kari Kostiainen, Sven Gnap, and Ghassan Karame

funds from the statekeeper’s collateral account. However, the Quicksilver con-
tract ensures (Line 3 in Algorithm 2) that transfers from the statekeeper’s collat-
eral are only possible, if the statekeeper has equivocated (signed more than one
PINT with the same RPID value). Thus, no funds will be transferred from any
of the statekeepers collaterals, unless the statekeeper deviates from the protocol.

A.5 Payment Confidentiality and Liveness

In Quicksilver, the payment amount appears only in encrypted format on the fi-
nalized transaction τ—using similar techniques to Zether. Therefore, Quicksilver
inherits the payment confidentiality guarantees of Zether that are shown in [7].
In Quicksilver, the only information that depends on the payment amount and
is shared beyond the user and the merchant, is the commitment of the payment
amount included in PINT. Thus, the payment confidentiality of Quicksilver also
relies on the hiding property of the used commitment scheme.

Finally, Quicksilver inherits the liveness guarantee of Snappy [15]. If a major-
ity of the statekeepers are reachable and sign the payment intent, the merchant
can safely accept the payment.

B Discussion

Collateral scalability. Customer collaterals in Quicksilver are small, since they
only need to account for payments the customer does within the latency period
of the underlying blockchain platform (e.g., 3 minutes in Ethereum). During the
latency period, all Quicksilver payments are assumed to be pending, and hence
the collateral must be able to cover the customer’s expenditure during this time.
For instance, if the customer spends at most $100 during the latency period, a
collateral of $100 will be sufficient to cover all pending payments. The customer’s
collateral is independent of the total number of registered users and the number
of merchants.

The collateral size of statekeepers is independent of the number of registered
customers, and only scales with the total value of merchant’s sales during the
latency period. For instance, in a deployment of 100, 000 customers, 100 mer-
chants, and a latency period of 3 minutes, the statekeepers only account for
customers that are active during the block latency period. If customers spend $5
during the latency period on the average and the merchant accepts one payment
every 30 seconds, this results in a collateral of $3, 000 per statekeeper. A more
detailed collateral analysis is presented in [15].

Payment anonymity. Quicksilver supports payment confidentiality based on
encrypted account balances that are updated using zero-knowledge proofs. The
Zether paper [7] outlines how such payments can be extended to support pay-
ment anonymity. The main idea is to choose an anonymity set (i.e., a set of
encrypted account balances) for the sender and the recipient, and construct a
zero-knowledge proof that shows that the balance of one of the sender accounts



Censorship-Resilient and Confidential Collateralized Second-Layer Payments 23

and one of the recipient accounts was updated with a non-zero value without
revealing which accounts were updated.

The same technique could be applied to Quicksilver. However, just using
anonymity sets for the sender and recipient accounts would not be sufficient to
provide full payment anonymity. In a system like Quicksilver, de-anonymization
could be feasible by correlating payment index values between subsequent pay-
ments. An anonymous variant of Quicksilver would, therefore, need to hide pay-
ment index values and similar sources of de-anonymization from the on-chain
transactions. Another challenge is that an anonymous payment scheme would
need Ethereum transaction signatures from a fresh address to prevent identity
leakage. Obtaining unlinkable Ethereum addresses that have the required funds
to cover the transaction fees is a common challenge for anonymous applica-
tions on systems like Ethereum. A third challenge is related to high transaction
processing costs, because zero-knowledge proofs over large anonymity sets are
significantly more expensive compared to the proofs used in Quicksilver. Over-
coming such technical challenges and thus extending Quicksilver with practical
payment anonymity would be an interesting direction for future work.

C Optimized Statekeeper Registration

In Quicksilver, during registration, a statekeeper needs to make M confidential
payments to establish M separate collateral accounts (one fore each registered
merchant). The use of this technique prevents merchants from making claims
outside their assigned collateral allocation. However, such registration process
is expensive—essentially M times the cost of a confidential payment. Next, we
outline how the statekeeper registration operation could be optimized for reduced
gas use.

As before, we assume that the statekeeper already has an existing (encrypted)
account balance. To register, the statekeeper could assign an (encrypted) allo-
cation from his account for each merchant and disclose the plaintext allocation
to each corresponding merchant. The statekeeper would then need to create a
separate ciphertext (encrypted under the public key of the statekeeper) for each
merchant and share the randomness used in the computation of this cipher-
text with the corresponding merchant. Once such ciphertexts are computed, the
statekeeper can add them together (since they are encrypted under the same
public key) and use the ProveTransfer function to create a proof πtrans that shows
that the statekeeper’s account balance exceeds the sum of the above collateral
allocations altogether. The Quicksilver smart contract would then verify πtrans,
and store each ciphertext in S[ys].pcol[ym] that corresponds to the encrypted
allocation for merchant ym.
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The statement that is proven in zero knowledge to create πtrans in the case
of statekeeper registration looks as follows [7]:

sttrans :{(y, y, CL, CR, C, C,D, g;x, b∗, b′, r∗)|
C = gb

∗
yr

∗
∧ C = gb

∗
yr

∗
∧D = gr

∗
∧

CL/C = gb
′
(CR/D)x ∧ y = gx∧

b∗ ∈ {0, · · · ,MAX} ∧ b′ ∈ {0, · · · ,MAX}},
where x is the statekeepers’s secret key, b∗ is the total collateral value, b′ is the
statekeeper’s balance after all collateral allocations have been deducted from it,
and r∗ is the combined randomness used for each encryption.

If settlement is needed, a merchant could then claim funds from the state-
keeper’s account by constructing a novel proof that we call πClaimSk. This proof
would prove in zero knowledge the following statement that would allow the
merchant to authorize settlement from the statekeeper to the merchant:

stClaimSk :{(y, y, CL, CR, C, C,D, g;x, b∗, b′, r, r∗)|
C = gb

∗
yr

∗
∧ C = gb

∗
yr

∗
∧D = gr

∗
∧

CL/C = gb
′
yr−r

∗
∧ CR = gr ∧ y = gx∧

b∗ ∈ {0, · · · ,MAX} ∧ b′ ∈ {0, · · · ,MAX}},
where x is the merchant’s secret key, b∗ is the payment value to be settled, b′

is the updated statekeepers’s collateral after settlement, r is the randomness of
the statekeeper’s encrypted collateral allocations, and r∗ is the randomness used
for the claimed confidential payment. The main intuition here is that, unlike
in normal confidential transfers, the private key of the sender (in this case,
statekeeper) is not required to create the zero-knowledge proof, since

CL/C = gb
′
(CR/D)x = gb

′
gx(r−r

′) = gb
′
yr−r

∗
= CL/C.

Only CR = gr must be verified additionally to ensure that the ciphertext is
correct.

The merchant knows both r∗ and r, since statekeepers disclose the plain-
text of the allocated collateral amount and its randomness to the corresponding
merchant. Since only the corresponding merchant can claim from his assigned
allocated collateral, he can easily keep track of random values used.

The registration is cheaper with this approach because statekeepers now need
to perform only one confidential payment of 4.8M gas to transfer their collat-
eral to only one account (instead of M confidential payments previously) which
significantly improves collateral scalability with regards to number of registered
merchants/statekeepers.

D Smart Contract Algorithms

The main algorithms supported by the Quicksilver smart contract are called
Record-and-Transfer, Claim-Statekeeper and Claim-Customer. These algorithms
are listed below.
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Algorithm 1: Record-and-Transfer. The Quicksilver smart contract
records the payment and then completes the confidential transfer from
user to merchant.

Actor : Quicksilver (smart contract)
Input : Quicksilver transaction τ
Output : ⊤ or ⊥

1 yc ← τyc
2 if yc ∈ C and τi ̸∈ C[yc].D then

/* Record payment */
3 h← H(τRPID, τc, τi)
4 C[yc].D[τi]← ⟨h, τA, τq, 0⟩

/* Complete confidential transfer */
5 if VerifyTransferProof(τyc , τym , Acc[yc].bal, τc∗c , τc∗m , πtrans) then

6 Acc[ym].P ← Acc[ym].P ◦ τc∗m ▷ Add recipient

7 Acc[yc].bal← Acc[yc].bal ◦ τ−1
c∗c

▷ Deduct sender

8 return ⊤
9 return ⊥

Algorithm 2: Claim-Statekeeper. Quicksilver smart contract sends
lost funds from the misbehaving statekeepers’ collaterals to the affected
merchant.

Actor : Quicksilver (smart contract)
Input : Pending Transaction τp

Statekeeper’s public key ys

Statekeeper’s ciphertext c∗s
VRF proofs Πvrf, ZKP π′

trans, blinding value r
Conflicting transactions ⟨τ ′, τ ′′⟩

Output : ⊤ or ⊥
/* Verify all transactions */

1 T← {τp, τ ′, τ ′′}
2 if τp

c = Open(τp
ym

, r) and VerifyBLS(T) and VerifyVRF(T, Πvrf )and τ ′
i = τ ′′

i ≤ τp
i and

τ ′ ̸= τ ′′ and τp
yc

= τ ′
yc

= τ ′′
yc

and τ ′ ̸= τ ′′ then
/* Find set of equivocating statekeepers */

3 SK ← FindOverlapSet(τ ′, τ ′′)
/* Ensure claimed statekeeper is in that set */

4 if SK ̸= ∅ and ∃y′
s ∈ SK : y′

s = ys ∧ S[ys] ̸= ⊥ then
5 ycol ← S[ys].y[ym]

/* Verify ZKP */

6 if VerifyTransfer(ycol, τ
p
ym

, Acc[ycol].bal, c
∗
s , τ

p
c∗m

, π′
trans) then

/* Transfer lost funds */
7 Acc[ym].P ← Acc[ym].P ◦ c∗m ▷ Add to merchant

8 Acc[ycol].bal← Acc[ycol].bal ◦ c∗
−1

s ▷ Deduct
9 return ⊤

10 return ⊥
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Algorithm 3: Claim-customer. Quicksilver recovers lost funds from
the customer’s collateral if the request is correct.

Actor : Quicksilver (smart contract)
Input : Pending transaction τ, pending transactions Tp

VRF proof πvrf , ZKPs πclaim, πtrans, blinding value r
Output : ⊤ or ⊥

1 I∗ ← C[yc].D ▷ Pass by reference
/* Verify tx, ensure not yet processed. */

2 if !VerifyTx(τ, πvrf , r) or τi ∈ I∗ then
3 return ⊥

/* Verify signatures of preceding non-pending txs. */
4 for ∀{i ∈ I∗|I∗[i].b = 0} do
5 if Verify(I∗[i]A) then
6 I[i].b← 1
7 else
8 del I∗[i] ▷ Past tx had no approval.

/* Any pending & preceding txs missing? */
9 if ∃ i ∈ {1 . . . τi−1} such that i ̸∈ I∗ and i ̸∈ Tp then

10 return ⊥
/* Verify signatures of pending preceding txs. */

11 if !VerifyBLS(Tp) then
12 return ⊥

/* Ensure there are no conflicting transactions. */

13 for ∀τ ′ ∈ {τ} ∪ Tp do
14 if C[yc].O[τ ′

i ].h ̸= H(τ ′) then
15 return ⊥
16 J∗ ← C[yc].T ▷ Pass by reference

/* Find past compatible collateral. */
17 for ∀{j ∈ J∗} do
18 if J∗[j].idx < τi ∨ J∗[j].idx = ⊥ and ̸ ∃τ ′ : τ ′ ∈ Tp ∧ J∗[j].idx = τi then
19 bal′ ← J∗[j].bal

/* Ensure collateral covers all pending txs. */
20 c∗p ← (1, 1)

21 for ∀{c∗ ∈ τ ′|τ ′ ∈ {τ} ∪ Tp} do
22 c∗p ← c∗p ◦ c

∗

/* Verify both the transfer and claim proofs */

23 if !VerifyTransfer(τyc , τym , bal′, c∗
−1

p , πclaim) or

24 !VerifyTransfer(τyc , τym , bal′, τ−1
c∗ , τc∗m , πtrans) then

25 return ⊥
/* Process claim. */

26 Acc[τym ].P ← Acc[τym ].P ◦ c∗m
27 C[τyc ].pcol← C[τyc ].pcol ◦ τ

−1
c∗c

/* Log the updated collateral for the payment index */
28 Append(J∗, (τi, C[τyc ].pcol))

/* Store observed txs that are not yet finalized */

29 for ∀τ ′ ∈ Tp : τ ′ /∈ I∗ do
30 C[c].O[τ ′

i ].h← H(τ ′)
31 return ⊤


