
Exploiting Algebraic Structures in Probing
Security.

Maxime Plançon‹
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Abstract. The so-called ω-encoding, introduced by Goudarzi, Joux and
Rivain (Asiacrypt 2018), generalizes the commonly used arithmetic en-
coding. By using the additionnal structure of this encoding, they pro-
posed a masked multiplication gadget (GJR) with quasilinear (random-
ness and operations) complexity. A follow-up contribution by Goudarzi,
Prest, Rivain and Vergnaud in this line of research appeared in TCHES
2021. The authors revisited the aforementioned multiplication gadget
(GPRV), and brought the IOS security notion for refresh gadgets to al-
low secure composition between probing secure gadgets.
In this paper, we propose a follow up on GPRV, that is, a region-probing
secure arithmetic circuit masked compiler. Our contribution stems from a
single Lemma, linking algebra and probing security for a wide class of cir-
cuits, further taking advantage of the algebraic structure of ω-encoding,
and the extension field structure of the underlying field F that was so far
left unexploited. On the theoretical side, we propose a security notion
for ωd-masked circuits which we call Reducible-To-Independent-K-linear
(RTIK). When the number of shares d is less than or equal to the de-
gree k of F, RTIK circuits achieve region-probing security. Moreover,
RTIK circuits may be composed naively and remain RTIK. We also pro-
pose a weaker version of IOS, which we call KIOS, for refresh gadgets.
This notion allows to compose RTIK circuits with a randomness/security
tradeoff compared to the naive composition.
To substantiate our new definitions, we also provide examples of com-
petitively efficient gadgets verifying the latter weaker security notions.
Explicitly, we give 1) two refresh gadgets that use d ´ 1 random field
elements to refresh a length d encoding, both of which are KIOS but not
IOS, and 2) a multiplication gadget with bilinear multiplication com-
plexity dlog 3 and uses d fresh random elements per run. Our compiler
outperforms ISW asymptotically, but for our security proofs to hold, we
do require that the number of shares d is less than or equal to the degree
of F as an extension, so that there is sufficient structure to exploit.

Keywords: Masking, RTIK, Refresh Gadget, Multiplication Gadget

1 Introduction

Since their introduction in the late 90’s by Kocher [KJJ99, Koc96], side-channel
attacks have proven to be a major threat to cryptography. While cryptanalysis
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can evaluate the black-box security of cryptographic protocols, their security can
be totally compromised by physical attacks. In a nutshell, side-channel attacks
refer to any attack taking advantage of the implementation of a cryptographic
protocol, rather than only the public parameters and public communications.
If a hardware device is manipulating carelessly a secret value, many observable
signals (such as its temperature, power consumption, electromagnetic field, etc)
are likely to leak secret information, and might even lead to a full-key recovery.
These practical security flaws call for a solid non-ad hoc response.

Of all the side-channel adversary models such as the noisy leakage model
[PR13, DDF14, DFS15] or the random probing model [ADF16], arguably the
easiest to deal with is the so called (threshold) t-probing model [ISW03]. A t-
probing adversary may choose adaptively and learn any t intermediate values of
the circuit. While t-probing security reduces to the more realistic models, the
reductions are somewhat loose and depend more on the ratio t divided by the
size of the circuit than t itself.

Masking is a countermeasure that provably prevents recovering information
when the adversary is snooping on the circuit. Informally, masking uses secret-
sharing techniques to provide probing security to a circuit. A sensitive interme-
diate value x of the cryptographic protocol is encoded into a vector of d shares
px0, . . . , xd´1q. While the knowledge of all d shares allows to recover the secret
it encodes, masking requires that any d ´ 1 shares are independent of the se-
cret value x. Any partial knowledge of the shares is therefore made useless in
masking schemes, so as to provide t-probing security for t ă d. The operations
(additions, negations and multiplications for arithmetic circuits) then have to be
performed securely in the encoded domain, so as to never manipulate secret vari-
ables directly. Each operation (or gate) of the circuit is transformed into a secure
counterpart (or gadget), that takes as input encodings of the secrets, and outputs
an encoding of the evaluation of the corresponding operation. Usually, masking
schemes admit a coordinate-wise secure addition, leaving the multiplication the
most challenging operation to perform securely in the encoded domain.

Replacing every gate with probing secure gadgets unfortunately does not im-
ply probing security for the whole circuit [BCPZ16, CPRR13], and extra efforts
have to be put into composition security. Composition of gadgets is a line of re-
search that has received a lot of attention, and is still an active field of research
[ADF16, CS20, BCPZ16, GPRV21, BBD`16].

The first masked multiplication for any number of shares was introduced in
2003 in [ISW03], and several variants achieving different trade-offs have been
proposed [RP10, BBP`16, BBP`17]. The encoding used by ISW is the so called
arithmetic masking (originally for boolean masking, but the arithmetic masking
translation remains secure [RP10]), where the shares x “ px1, . . . , xdq of some
field element x P F are such that x1 ` ¨ ¨ ¨ ` xd “ x. Another way to interpret
arithmetic masking is to say that the shares are the coefficients of a polynomial
such that its evaluation in 1 is the secret. From a high level, the multiplica-
tion of two sharings a,b of two secrets a, b in ISW computes the coefficients of
the polynomial c “ ab and rearranges the coefficients so as to have c of the
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same length d as a and b. This polynomial multiplication is performed following
the schoolbook multiplication algorithm mixed up with some randomness for
security. This yields a multiplication gadget running in Opd2q time with Opd2q
randomness. The paper [GJR18], started a line of research towards constructing
multiplication gadgets based on the Fast Fourier Transform. GJR uses a different
type of encoding called ω-encoding, where a’s evaluation is taken in some field
element ω rather than 1. Arithmetic masking seems to be incompatible with the
FFT since a1 ` ¨ ¨ ¨ ` ad is an intermediate value of the FFT algorithm, which
the adversary may therefore probe, and immediately break the masking scheme.
There was a flaw in the original security proof of the GJR multiplication gadget,
which was patched later in [GPRV21] and named GJR+. While GJR is a the-
oretical breakthrough, its range of application excludes AES for example. The
security relies on the random choice of ω, hence for reaching a reasonable level of
security, GJR+ requires an underlying field of exponential size in the security pa-
rameter, which limits its practical applications. The follow-up paper [GPRV21]
proposed a security proof for GJR+ for fields of smaller sizes. This security proof
relies on a non-standard ad-hoc assumption. This assumption, roughly speaking
assumes that the computation of the FFT and inverse FFT of a polynomial are
both probing secure. While one can check this hypothesis by exhaustive search,
the computation becomes very costly as d increases. The authors raise the open
problem to build a strong theoretical foundation for replacing their assumption
with a full proof.

The randomness complexity of a compiler (meaning the transformation of
a circuit that replaces operation gates with secure masked gadgets) is of ma-
jor importance. The predilection physical support for masked implementation is
embedded systems, where randomness is expensive to produce. In this consider-
ation, one of the goals in the field of masking is to achieve notions of security
using as little randomness as possible. The authors of [GPRV21] give a generic
composition Theorem that only requires t-probing security for the operation gad-
gets, and mask refreshing (they give such refresh algorithm verifying the desired
Input-Output-Separation property) in between any two gadgets. This theorem
ensures that the obtained compiler achieves the r-region-probing-security no-
tion. Informally, region probing security means that the circuit can be split into
independent regions, in which the side-channel adversary may probe a fixed
ratio of the intermediate values yet learns no information on the secrets. The
authors prove that a variant of the refresh gadget from [BCPZ16] achieves the
IOS property and only requires d log d

2 random field elements.

1.1 Results and Technical Overview

From a high level, this paper is a retake on the circuit compiler from [GPRV21],
and proposes a region-probing secure masked compiler for arithmetic circuits
over extension fields. The contributions of this paper are listed in 4 categories:

1. Revisiting probing security from a probabilistic angle.
2. Introduction of new security notions tailored for circuits over extension fields:

for operation gadgets (RTIK) and for refresh gadgets (RTK, KIOS)
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3. Composition Theorems for RTIK gadgets and KIOS refresh gadgets, and
security reductions from the latter notions to region-probing security.

4. Examples of competitively efficient multiplication gadgets and refresh gad-
gets achieving the aforementioned notions, constituting our masked compiler.

We detail separately each of these items in the following.

From game-based definitions to probabilistic definitions. The usual def-
inition of t-probing security involves the existence of a simulator able to sim-
ulate the distribution of given wires with only partial knowledge of the secret.
This simulation-based definition is inherited from the idea that a t-probing side-
channel adversary plays a t-probing security game, in which the adversary learns
some information on the wires W of the circuit C, then wins if he guesses right
the decoding of the sharings. The simulation argument implies that the side-
channel information yields no advantage. While simulators can be suitable tools
for proving probing security, they do not seem to be a good fit with our tech-
niques. We propose to take a different path and redefine probing security as
the statistical independence of the leakage and the secrets. While this idea is
nothing new, we believe that the formal definitions from Subsection 3.1 can be
of independent interest. In particular, we formally define the intuitive idea that
a given set of probes Q contains more information than some other set of probes
P . This syntax enables “game hop”-based proof strategy. Informally, we let the
adversary pick the initial set of probes P of his choice, then instead of proving
some independence relation between P and the secrets directly, we reduce, via
successive elementary game hops, the set of probes P to a set of probes Q that
at least preserves the information of the adversary. At the end of this reduction
from P to Q, the latter set of probes Q is such that our techniques apply and we
manage to prove the independence of Q and the secrets, which in turn implies
independence between P and the secrets.

Bridging algebra and probing security. We consider a circuit C over a finite
field F. We remind that our goal in this paper is to exploit the underlying field
extension structure of F, thus for the sake of clarity, we assume that F “ Fpk is
the finite field with pk elements where p is a prime and k ě 2. An even more
concrete example is taking F to be the AES field F28 . We deal with polynomial
encodings, which is a special case of linear sharings where our decoding vector is
chosen to be ωd “ p1, ω, . . . , ω

d´1q, for some field element ω P F. In other words,
an ωd-encoding x P Fd of some element x is such that

ωTd x “
d´1
ÿ

i“0

xiω
i “ x.

The bridge relating the structure of F and probing security is a single Lemma 4.2.
Consider that our circuit C takes as input an ωd-encoding x. In a nutshell,
Lemma 4.2 says that under the conditions that

1. The number of shares is at most the degree of the extension: d ď k
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2. The intermediate values that the adversary can probe in C are of the form
pTx with p P Fdp,

then there exists a choice of ω for which C is d ´ 1-probing secure. This choice
of ω is actually any ω of algebraic degree greater than d over Fp. The geometry
of this Lemma makes it intuitively more permissive than the usual definitions
for t-probing, r-region-probing, (strong) non-interference and probe-isolating-
non-interference. Indeed, the latter definitions (in probabilistic terms) require
roughly speaking that the probes are independent of at least one coordinate of
each sharings. The former on the other hand implies security regardless of the
direction of the affine subspace in which the encoding lies, provided that the
latter subspace is directed by the kernel of a matrix over the subfield, and that
its dimension is at least 1.

By following the rules for modifying the set of probes of the adversary, we
can relax condition 2.: our circuit C is also d´ 1-probing secure if for all sets P
of d ´ 1 probes (that does not necessarily verify 2.), we can find a set of d ´ 1
probes Q that contain at least as much information as P , but Q does verify 2.

The RTIK security notion (which stands for Reducible-To-Independent-K-
Linear) for ωd-masked circuits over extension fields roughly encompasses the
circuits that fulfill the requirements of the above. The requirements for a circuit
to be RTIK are slightly more general: the subfield K that contains the coefficients
of the probes may be bigger than the prime field of F, and the circuit C may take
several encodings as input. In that case, we simply require that there exists some
mutually independent encodings px1, . . . ,xnq and sets of probes pQ1, . . . , Qnq
such that each Qi is K-linear in xi. Notice that some of these encodings may
not be inputs neither outputs of C.

Since by construction, RTIK circuits over extension fields fall into the require-
ments of the core Lemma, it follows that RTIK circuits are d´1-probing secure.
Actually, RTIK circuits are secure in the stronger r-region-probing model, where
the adversary may place some number of probes in several different subcircuits.
We note that similarly as the Probe-Isolating-Non-Interfering security notion
[CS20], (all known) RTIK gadgets can be composed directly without refresh,
in which case the composition of RTIK circuits remains RTIK, which in turn
is r-region probing secure for some ratio r. We also mention that in terms of
implementation, RTIK circuits seem rather stable, since as long as the wires are
of the right K-linear form, the order of the operations does not affect security.

Although RTIK circuits may be composed directly and remain region-probing
secure, the size of the probing regions of the composite circuits may increase and
hence reduce the probing ratio, thus reduce the overall security of the implemen-
tation. To mitigate this loss of security, we introduce a security notion for refresh
gadgets inspired by the Input-Output Separative (IOS) property. We briefly re-
call the idea behind the IOS property. Consider an IOS refresh gadget R and
two encodings x and y with y “ Rpxq. Let us also assume that x is an output of
some gadget G1, and y is an input of some gadget G2. We now let the t-probing
adversary pick and learn t intermediate variables in either G1, R, or G2. In this

5



setting, the IOS property claims that any probe inside of the refresh gadget can
be “moved” to a probe on a coordinate of x and/or a probe on a coordinate of y.
The probes on x are then considered as probes in G1, the probes on y are then
considered as probes on G2, and R itself is no more probed by the adversary.
This reduces the security of the composition of the two gadgets G1, G2 to the
individual security of each of the two gadgets. The security notion α-KIOS that
we define is identical to the IOS property, except the probes on x and y do not
have to be coordinates, but any K-linear function of those inputs.1 Executing
the same reduction as the one explained above for IOS refresh gadgets, one ends
up with K-linear probes on x, y, which in turn fall into the requirements of
our core Lemma. Applying a KIOS refresh to an encoding in between two RTIK
circuits creates a new region at the cost of using random elements.

KIOS refresh gadgets using d´1 randomness for length d input encod-
ing. To substantiate the KIOS notion, we give examples of KIOS refresh gadgets.
Notice that 1-KIOS is strictly weaker than IOS, and therefore any IOS refresh
is an example of 1-KIOS refresh, including the one from [GPRV21](Actually,
we prove the IOS property for a mild generalization of this algorithm) which
uses d log d

2 random elements. We also give an example of a 2-KIOS refresh gad-
get that is not IOS. This gadget is obtained by simply adding coordinate-wise
an encoding of 0, obtained by running the algorithm PolyGenZero presented
in Algorithm 4, which uses d ´ 1 random field elements. We highlight that for
security, we need the algebraic degree of ω over K to be greater than d, and for
PolyGenZero to be correct, we also need the algebraic degree of ω over K to be
less than d. In other words, we need ω to have algebraic degree exactly d over
K, and such choice of ω is only possible when d divides rF : Ks. The intuition
on the construction of this 2-KIOS gadget is detailed in Section 5.2.

We give a second example of KIOS refresh, which also uses d ´ 1 random
elements, and is 1-KIOS. The counterpart for this improvement is that it is
slightly bigger than the previous one as a circuit. The intuition behind this
algorithm is derived from the RTIK multiplication gadget Algorithm 8. In a
nutshell, the idea is to sample a uniformly random vector r, then multiply it
using Karatsuba’s algorithm with some fixed polynomial u. Provided that the
only common factor of u and the minimal polynomial of ω is X ´ ω (which
again requires degKpωq “ d), this algorithm generates ωd-encodings of 0, which
we can add coordinate-wise to obtain a 1-KIOS refresh gadget.

A tight compression algorithm. The masked multiplication of two order
d encodings should remain an order d encoding, but the computation of the
polynomial product of two polynomials a,b of degree d´ 1 yields a polynomial
z of degree 2d ´ 1. The compression algorithm proposed in [GJR18, GPRV21]
entails a loss of a factor 2 on the number of tolerated probes in the (region)
probing security of the multiplication gadget. We define a folding algorithm

1 We also add a coefficient α to its definition, which upper bounds the ratio of K-
linear probes on x, y after the reduction and the count of initial probes in the KIOS
gadget.
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that achieves the conversion of order 2d ´ 1 encoding into order d encoding,
and such that each of its intermediate values are K-linear. As a consequence,
it can be composed without refresh and without tightness loss at the end of
a multiplication gadget. Nonetheless, our folding algorithm is a bigger circuit
(we left as an interesting open question estimating the count of operations in
this algorithm depending on ω and K) than the compression algorithm from
[GJR18, GPRV21], which mildly decreases the tolerated probing rate of the
adversary.

Multiplication gadgets with subquadratic randomness and multipli-
cations.2 The multiplication gadget GJR+ [GPRV21] has two security proofs,
depending on the size of F (and to some extent d). When |F| ě 2λ for some
security parameter λ a statistical argument based on the random choice of ω
implies security in the random-probing model. When |F| is too small, the au-
thors rely on a non-standard ad-hoc assumption that the circuit computing the
FFT and its inverse are t-probing secure. Due to combinatorial explosion, it is
only possible to test the assumption for small values of d, thus leaving a hole
in the shape of the RTIK notion. Our first multiplication gadget is a general-
ization of GJR+, where one can use any evaluation-interpolation polynomial
multiplication algorithm (not only the FFT), and turn it into a multiplication
gadget. The regimes in which we can prove that [GPRV21]’s assumption hold is
restricted to the tuples pF, dq such that d ď rF : Ks. The subfield K for which
the RTIK property holds is the smallest subfield that contains the coefficients of
both evaluation and interpolation. Hence for maximizing the upper bound on d,
one should choose the multiplication algorithm so that K is as small as possible,
which is a first hint towards switching to Karatsuba’s multiplication.

We also propose an optimized version of a multiplication gadget based on
Karatsuba’s algorithm. This Algorithm 8 uses d random field elements per run
(which is most likely close to optimal), but does dlog 3 bilinear multiplications.
It verifies the RTIK property, thus it is composable without extra refreshing.3

The intuition behind the optimizations is detailed in Section 6. We compare
the performances of our optimized multiplication gadget with a few existing
constructions in Figure 1. We highlight that Algorithm 8 and ISW are the only
multiplication gadgets that can be securely composed without extra refreshing.
In terms of bilinear multiplication, Algorithm 8 is worse than GJR+ and Beläıd
bil, but better than Beläıd rand and ISW. In terms of randomness, Algorithm 8
is close to optimal with d random elements, only beaten by Beläıd rand by one
random element. Further details on this comparison can be found in Appendix A,
including estimates of the probing ratio of the gadgets, where Algorithm 8 is also
competitive.

2 Please note that while we discuss about the asymptotic behaviour of the perfor-
mances of our multiplication gadgets, their security only falls into our framework for
bounded order of masking d, for a fixed F.

3 This multiplication gadget actually behaves as a KIOS refresh with regards to region-
probing secure composition. It introduces d random elements to increment the num-
ber of regions when composed with other circuits.
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ISW Beläıd bil Beläıd rand GJR+ Algorithm 8

Bilinear mul d2 2d´ 1 d2 2d dlog 3

Randomness dpd´1q
2

2pd´ 1q2 ` pd´1qpd´2q
2

d´ 1 d logp2dq d

t-threshold d´ 1 d´ 1 d´ 1 d{2´ 1 d´ 1

Composable YES NO NO NO YES

Fig. 1. Comparison table of multiplication gadgets for a number of shares d. ISW
[ISW03] for arithmetic encodings, Belaid rand [BBP`17] Alg. 5, Belaid bil [BBP`17]
Alg. 4, and GJR+ [GPRV21]). The composable row answers the question: ”Is naive
composition of this multiplication gadget secure ¿‘

1.2 Limitations and open questions.

Lack of concreteness. Our contribution mostly stands on the theoretical side.
While we give performance comparisons Appendix A and make a toy implemen-
tation in sage available, the concrete evaluation of the algorithms developed in
this paper would deserve a thorough investigation, that is left for future work.
Determining if masking an actual cryptographic algorithm using our techniques
can be more efficient than state-of-the-art masked implementation is another
interesting open question.

Range of applications. An extension field F{K of degree k is proven secure with
our techniques up to d “ k shares. For example, in the AES field F256, we have
k “ 8, thus our masked compiler tolerates a number of shares d up to 8, with
extra efficiency for d|k, i.e d P t2, 4, 8u. The real world masked implementation
are for the most part within this range, but it seems to be an interesting open
question to lift the upper bound, especially for the extension field of lower degree,
that have insufficient algebraic structure for our techniques to apply. An example
where this restriction is virtually absent is in the NTRUprime field [BCLV17].
This field is chosen as Fpq , where both q and p are primes, and q is a few hundreds.
Gadget expansion[AIS18, BCP`20, BRTV21, BRT21], which is, waving hands,
aiming at boosting the security by repeating the masked compilation several
times instead of just one, is an interesting direction which we leave for future
work.

Masking lattice-based cryptography. We believe that part of the techniques and
algorithms proposed in this paper may apply to the usual power-of-two cyclo-
tomic ring structure underlying lattice-based cryptography. It is also an inter-
esting open question to know to what extent our constructions survive in the
ring setting. Since the standardization of several lattice-based schemes, especially
Kyber, constructing efficient equality-testing gadgets[DVBV22, CGMZ21, BC22]
has received a lot of attention and the contributions of this paper may provide
a different angle towards constructing efficient equality-test gadgets.

Formal verification of implementations. Maskverif [BBC`18, BBC`19] is a tool
that, roughly speaking, when fed an implementation and an adversary model
returns the level of security achieved by the input implementation against the
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given adversary model. The RTIK property seems like a nice property for au-
tomated testing, and appears to be more resilient against glitches (due to the
fact that the order in which a computation is made is irrelevant, as long as the
wires are K-linear) thus it is also an interesting open question to construct a
verification tool for implementations.

Remark 1.1. The proofs of Propositions and Theorems that are missing from the
body of the paper can be found in the appendix, sorted by Sections in increasing
order.

2 Background

2.1 Notations

Algebra. Throughout the paper, F denotes a field and K Ă F a subfield of F. We
write Fq the finite field with q elements. Field elements are written in lower-case
letters, vectors are written in bold lower-case letters and matrices are written
in bold upper-case letters. Unless stated otherwise, vectors are column vectors,
and for a vector x, we denote xT its transpose. We write d the component-
wise product of two vectors. We write FdrXs the set of polynomials in X of
degree at most d that have coefficients in F. To ease the readability, we identify
a polynomial to its list of coefficients, and use either notations interchangeably.
An element a P Fd can be treated as an element of Fd´1rXs depending on
context, e.g by writing apωq the evaluation of the polynomial whose coefficients
list is a in a field element ω, or multiplying two polynomials ab while keeping
the vector notation. We write πKpωq the minimal polynomial of ω over K, and
we write degKpωq the degree of πKpωq. The notation rns shall denote the set
t1, . . . , ns.

Distributions. For a distribution D, we do not have notation conventions
whether the support of D is a scalar or a vector, but rather rely on context.
For random variables X,Y , we write X K Y when X is independent of Y. For a
random variable X and a set A in the domain of X, we use the standard notation
XpAq “

ř

aPAXpaq. We write pX|Y q the conditional probability of X given Y .
To ease the notations, we write pX|Y,Zq “ pX|pY, Zqq.

Circuits. A circuit is a directed acyclic graph whose vertices are operations,
and each edge is an intermediate value, intermediate variable or wire. We shall
call internal randomness of a circuit the list ρ of the elements sampled by ran-
dom gates in the circuit. This way, every intermediate value of the circuit is a
deterministic function of its input and the internal randomness of the circuit.
For a set of intermediate values P “ pp1, . . . , pnq of a circuit with input χ and
internal randomness ρ, we write P pχ,ρq “ pp1pχ,ρq, . . . pnpχ,ρqq. When ρ is
not in the argument of P , we shall write P pχq the random variable P pχ,ρq for a
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uniformly random ρ. We assume throughout the paper that the secret informa-
tion manipulated by a circuit is a deterministic function of its input and internal
randomness. For a circuit C, we usually write W its set of wires, and we shall
write |W| the number of intermediate variables of C.

2.2 Masking

Encodings For a vector v P pFzt0uqd, a v-linear sharing of an element x P F is a
vector x satisfying vTx “ x. Arithmetic masking is a particular case of v-linear
sharing, where v “ p1 . . . 1q. For ω an element of F, we let ωd “ pω

iq0ďiďd´1.
We say that a vector x P Fd is an ωd-encoding of a field element x P F when
ωTd x “ x (or equivalently xpωq “ x), which is also a particular case of linear
sharing. For x P F, the set of v-encodings of x is Hv

x “ tx P Fd, vTx “ xu and
can be seen both as an affine hyperplane (with the convention Hv

0 “ Hv). We
shall omit the supscript v when it is clear from context, and we notice that Hωd

x

can also be seen as the set of degree d polynomials x such that xpωq “ x. We
define Uvpxq to be the uniform distribution over Hv

x , and extend it coordinate-
wise when applied on multiple entries. We say that px1, . . . ,xnq are mutually
independent ωd-encodings when for all x1, . . . , xn, the distributions px1|ω

T
d x1 “

x1q, . . . , pxn|ω
T
d xn “ xnq are mutually independent.

We call an addition gadget (respectively a multiplication gadget) with respect
to ωd-encodings a circuit that takes as input two ωd-encodings a,b and returns
an ωd-encoding of ωTd a`ωTd b (respectively ωTd a ¨ωTd b). A correct refresh gadget
with respect to ωd-encodings is a circuit that takes as input an ωd-encoding and
returns an ωd-encoding of the same secret. In general, for a gate g in a circuit C,
we say that G is a correct ωd-encoding gadget for g when G takes as input ωd-
encodings of the sensitive inputs of g, and returns ωd-encodings of the sensitive
outputs of g.

Security properties. We define the threshold-probing security game, region-
probing security game, the simulation-based Input-Output Separation property
for refresh gadgets and the associated Composition Theorem.

Definition 2.1 (t-probing security game). Let n, t ě 1, C be a circuit and
W be its set of intermediate varibles. Let χ be the distribution of the input in of C
and x1, . . . , xn be secret random variables following a distribution φ. A t-probing
adversary A on pC, χ, φq plays the following game :

1. The challenger samples the input in from χ
2. A chooses a set of probes P ĂW with |P | ď t
3. The challenger runs Cpinq and sends P pinq to A
4. A returns py1, . . . , ynq. He wins if py1, . . . , ynq “ px1, . . . , xnq.

A circuit C for which there is no unbounded adversary A, playing the t-
probing security game with respect to secrets x1, . . . , xn, that has an advantage
against an adversary who skips steps 1) and 2) is called t-probing secure. In the
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context of masking, the input distribution χ of C contains uniform encodings of
the secret inputs, and the decoding of these are the secrets of this circuit that
the adversary attempts to guess after probing.

Definition 2.2 (r-region probing security game). Let n ě 1, 0 ă r ă
1, C be a circuit with input random variable in following a distribution χ and
x1, . . . , xn be secret random variables following a distribution φ. Let C1, . . . , Cm be
subcircuits of C such that pC1, . . . , Cmq is a disjoint covering of C, W1, . . . ,Wm be
the respective sets of intermediate variables of each subcircuit. A r-region probing
adversary against pC, χ, φq with regions C1, . . . , Cm plays the following game :

1. The challenger samples the input in from χ
2. A chooses m sets of probes pPi ĂWiqiďm with |Pi| ď rr|Wi|s

3. The challenger runs Cpχq and sends pPipχqqiďm to A
4. A returns py1, . . . , ynq. He wins if py1, . . . , ynq “ px1, . . . , xnq.

With identical input distribution χ and secrets to hide, any t-probing secure
circuit C is trivially t{|C|-region probing secure. Conversely, if a circuit is r-region
probing secure with m “ 1, it is tr|C|u-probing secure. When χ and φ are clear
from context, we simply say that C is t-probing secure, and similarly for region-
probing security. For saving space and improving the readability, we omit the
input of the probes when it is clear from context and write P instead of P pinq.

Definition 2.3 (t-input-output separation). Let v P pFzt0uqd. A refresh
gadget GR is called t-input-output separative when for any x,y with y “ GRpxq,
we have that y follows UpvTxq and for any set of intermediate values W with
|W| ď t, we have that there exists a two-stage simulator SGR,W “ pS1

GR,W ,S2
GR,Wq

with the following properties.

1. The first one S1
GR,W , returns two sets of indices I,J Ă rds such that

|I|, |J | ď |W|.
2. The second one S2

GR,W , ran on input x|I ,y|J , returns an output identically

distributed as Wpx, rq, where r is the internal randomness of GR, x|I is x
restricted to the coordinates that appear in I and similarly for y|J .

The following composition Theorem claims that if a circuit C is split into
t-probing secure subcircuits separated by t-IOS refresh gadgets, then the whole
circuit is r-region probing secure for some ratio r. The statement of the Theorem
deals with so-called standard masked compilers of arithmetic circuits, but similar
proof techniques could aim for a more general claim involving non-arithmetic
gadgets.

Theorem 2.4 (Composition Theorem, adapted from Theorem 1 [GPRV21]).
Let C be an arithmetic circuit. If G` is a t`-probing secure addition gadget, Gˆ

is a tˆ-probing secure multiplication gadget and GR is a tR-IOS refresh gad-
get, then the circuit pC taking as input an encoding of the input of C obtained
by replacing addition gates with G`, multiplication gates by Gˆ and applying a
refresh gadget GR to any input of an operation gadget is r-region probing secure,
with

r “ max
tďtR

min

ˆ

t` ´ 3t

|G`|
,
tˆ ´ 3t

|Gˆ|
,

t

|GR|

˙

.
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3 Probabilistic approach to probing security

In this section, we make our first step towards bridging probing security and
algebra, which boils down to redefining from a probabilistic perspective the usual
definitions of probing security, region-probing security and the IOS composition
property. While the usual simulation-based definitions have their advantages,
the probabilistic versions of the latter properties are a much better fit with our
techniques. All the results, definitions and propositions in this section are stated
for linear sharings (v-encodings for any v P pFzt0uqd).

3.1 Redefining probing security through sets of probes and
distribution of secrets.

The t-probing security game, as defined in Definition 2.1, is usually translated
as the simulatability of the leakage. In this subsection, we redefine t-probing
security (as well as r-region probing security) in a formalism that relies on dis-
tributions rather than simulation. From a high level, one can think of these
probabilistic definitions as simply cutting the middle-man, where the middle-
man is the simulator. Indeed, in a simulation-based proof, one has to define the
simulator for any given set of probed wires (and maybe modify the probes of
the adversary before doing so), and then justify that this simulator is actually
giving samples of the right distribution. By relying directly on the distribution
argument, we focus on proving that the leakage distribution is independent of
the secrets, which in our mind highlights the key arguments of the proof and
arguably makes it shorter.

We start off with a binary relation written ď on sets of probes, from which
we derive that various elementary operations on sets of probes at least preserve
the information learnt by the adversary.

Definition 3.1 (Partial order of probe sets). Let P,Q be two sets of probes
on a circuit C, taking as input a random variable in following a distribution χ
and manipulating secret random variables x1, . . . , xn following a distribution φ.
We say that Q contains more information than P , and we write P ď Q, when

ppx1, . . . , xnq|pP pinq, Qpinqqq “ ppx1, . . . , xnq|Qpinqq.

When P ď Q, intuitively, all the sensitive information on the input in of
C carried by P is also carried by Q. The binary relation ď verifies reflexivity
and transitivity, but not antisymmetry. Since antisymmetry is irrelevant for our
purposes, we chose to write this binary relation as a partial order relation. The
point of this binary relation is to provide a formal justification for modifying the
set of probes that the adversary initially choses in the probing security games.
By using a few allowed elementary operations one after another, we are able to
reduce any initial set of probes to another set of probes that has a shape that
fits our techniques in the following sections.
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We now provide an illustration of elementary operations on a set of probes
P1. The obtained sets P2, P3 are such that P3 ě P2 ě P1, thus P3 ě P1. Consider
some circuit C that takes as input two arithmetic encodings px0, x1q, py0, y1q. The
secrets manipulated by the circuit are x “ x0`x1 and y “ y0`y1. Consider that
a 3-probing adversary choses the set of probes P1 “ p2x0, y0, x0 ` y0q. The first
operation that we can do on this set of probes while preserving the information
it contains is to remove the constant factor 2: with P2 “ px0, y0, x0 ` y0q, we
have P2 ě P1. Second, we can remove the redundancy : if the adversary learns
x0 and y0, he might as well compute x0`y0 himself. With P3 “ px0, y0q, we have
P3 ě P2. Adding extra relations to a set of probes also yields that it contains
more information. For instance if Q1 “ px0 ` y0q, then Q2 “ px0, y0q is such
that Q2 ě Q1. Examples of proofs that rely on an increasing sequence of sets of
probes can be found in the proofs of Propositions 5.1 and 5.2 and Theorems 6.2
and 6.3.

We now proceed to define t-probing security and r-region probing security
for masked circuit from a probabilistic perspective.

Definition 3.2 (t-probing security of linear-masked circuits, convenient
version). Let v P pFzt0uqd, C be a circuit taking as input v-encodings x1, . . . ,xn
and W be the set of intermediate variables of C. Then C is t-probing secure when
@P ĂW with |P | ď t, we have

pvTx1, . . . ,v
Txnq K P px1, . . . ,xnq.

Definition 3.3 (r-region-probing security of linear-masked circuits, con-
venient version). Let v P pFzt0uqd, 0 ă r ă 1, C be a circuit, C1, . . . , Cm be
subcircuits of C such that pC1, . . . , Cmq is a disjoint covering of C, W1, . . . ,Wm

be the induced sets of intermediate variables of the subcircuits. We let x1, . . .xn
be the input v-encodings of C. Then C is r-region-probing secure when @P “

pP1, . . . , Pmq ĂW1 ˆ ¨ ¨ ¨ ˆWm, with Pi ĂWi and |Pi| ď rr|Ci|s, we have

pvTx1, . . . ,v
Txnq K P px1, . . . ,xnq.

In both definitions, the information learnt by the adversary (i.e P px1, . . . ,xnq)
is therefore independent of the secrets hidden in the circuit (i.e each sensitive
entry xi “ vTxi). Since there is information-theoretically no information learnt
by the adversary by probing, if a masked circuit verifies one of the definitions
above, it also verifies the corresponding usual game-based definition. The follow-
ing Proposition links the relation ď to region probing security.

Proposition 3.4. Let v P pFzt0uqd, 0 ă r ă 1, C be a circuit taking as input
v-encodings x1, . . . ,xn. Assume that there exists a set of disjoint subcircuits
C1, . . . , Cm covering C, inducing sets of intermediate variables pW1, . . . ,Wmq,
such that for all set of probes P “ pP1, . . . , Pmq with |Pi| ď rr|Wi|s for all
i ď m, there exists a set of probes Q “ pQ1, . . . , Qmq such that

1. @ i ď m, Pi ď Qi
2. pvTx1, . . . ,v

Txnq K Qpx1, . . . ,xnq.
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Then C is r-region probing secure.

Using the correspondence between t-probing security and r-region probing
security with m “ 1, the Proposition above then implies that if for any set P of
t probes on a circuit C, there exists a set Q with P ď Q and Q is independent
of the secrets, then the latter circuit is C is t-probing secure.

3.2 Revisiting Input-Output-Separation: Refreshing ωd-encodings
and composition of gadgets

For our own technical purposes (e.g the proof of Theorem 6.2) and for expos-
ing the close relation between KIOS Definition 4.7 and IOS Definition 2.3, we
redefine the Input-Output Separation property introduced in [GPRV21]. The
property Reducible-To-Coordinates (RTC) for generators of v-encodings of 0 is
closely connected to the `-free property defined in the proof of Theorem 2 from
[GPRV21] (from which the authors deduce the IOS property), thus we redefine
the IOS property based on this RTC property. We prove that our new defini-
tion encompasses the original one, and give explicitly the template to build an
IOS refresh gadget Algorithm 2 and Proposition 3.9 from an RTC generator of
encodings of 0.

Definition 3.5. (Reducible-To-Coordinates) Let v P pFzt0uqd, t be an integer
and R be a gadget taking as input a dimension d, and returning a uniform v-
encoding r of 0. We say that R is Reducible-To-Coordinates (RTC) when the
distribution of r is uniform conditioned on vT r “ 0 and for every set of t probes
P on R, there exists two sets of probes Q1, Q2 such that

1. |Q1| ď t
2. pQ1, Q2q ě P
3. Every probe in Q1 is a coordinate of r
4. The distributions Q2 and pr|Q1q are independent

Notice that in the definition above, the binary relation ď is taken with respect
to the secret r0, . . . , rd´1, i.e all the coordinates of the fresh vector r, where for
t-probing security of masked circuits we take the secrets to be the decoding of
the masked inputs.

Proposition 3.6. Algorithm 1 is RTC with v “ p1, . . . , 1q.

The Proposition above is a mild generalization of Theorem 2 from [GPRV21].
They prove that the refresh gadget obtained by adding coordinate-wise an en-
coding of 0 generated using ArithGenZero is IOS when d is a power-of-two. We
adapt their result from IOS to RTC, and extend it to any d ě 1 by considering
the refresh gadget from Appendix C [BCPZ16].

Definition 3.7. (Input-Output Separative) Let v P pFzt0uqd, t be an integer
and G be a gadget taking as input a v-encoding x, and returning an encoding y
of the same secret as x. We say that G is t-IOS when the distribution of y is
uniform conditioned on vTy “ vTx and for every set of t probes P on G, there
exists three sets of probes Qx, Qy, Q2 such that

14



Algorithm 1 ArithGenZero, adapted from Appendix C [BCPZ16]
.

Require: Masking order d
Ensure: t P Fd such that

ř

ri “ 0

1: if d “ 1 then
2: return 0
3: end if
4: if d “ 2 then
5: r Ð F
6: return p´r, rq
7: end if
8: pr0, . . . , rtd{2u´1q “ ArithGenZeroptd{2uq

9: prtd{2u, . . . , rd´1q “ ArithGenZeroprd{2sq

10: for i “ 0 to td{2u´ 1 do
11: si Ð F
12: ti “ ri ` si
13: ttd{2u`i “ rtd{2u`i ´ si
14: end for
15: return t

1. |Qx| ď t, |Qy| ď t
2. pQx, Qy, Q2q ě P
3. Every probe in Qx is a coordinate of x and every probe in Qy is a coordinate

of y
4. The distributions Q2 and ppx,yq|pQx, Qyqq are independent

Proposition 3.8. Let v P pFzt0uqd, t be an integer and G be a gadget taking
as input a v-encoding x, and returning an encoding y of the same secret as
x. If G is t-IOS according to Definition 3.7, then it is also t-IOS according to
Definition 2.3 and vice-versa.

Algorithm 2 RTC generator to IOS refresh template

Require: Masking order d, v P pFzt0uqd, RTC generator of arithmetic encodings of 0
R, v-encoding x

Ensure: y P Fd such that vTy “ vTx

1: r “ Rpdq
2: for i “ 0 to d´ 1 do
3: si “ v´1

i ri
4: end for
5: y “ x` s
6: return y
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Proposition 3.9. If R is an RTC generator of arithmetic encodings of 0, then
the refresh gadget obtained by instantiating Algorithm 2 with R is an IOS refresh
gadget for v-encodings.

4 Algebraic approach in probing security for extension
fields

In this section, we focus on the setting where F is an extension field over some
subfield K. We only consider a specific type of encoding, which is ωd-encoding,
where ωd “ p1, ω, ω

2, . . . , ωd´1q is the vector with all the first d powers of some
fixed field element ω P F. Unless specified otherwise, ω is chosen so that its
algebraic degree over the subfield K is at least the number of shares, in order
to apply the core Lemmas from Section 4.1. We remind the reader that the
notions detailed in this section exploit the algebraic structure of F, and for our
techniques to apply, the number of shares d cannot exceed rF : Ks.

In the first subsection, we state the core Lemmas that make the connection
between the extension field structure of F{K and probing security. In the second
subsection, we introduce the RTIK security notion for circuits (a priori of any
size between operation gadget to a full cryptographic algorithm implementation)
that in turn implies region-probing security. In the last subsection, we show that
RTIK circuits admit nice composition properties without refresh. We finally show
that refreshing the encodings in between two RTIK circuits gives more security
at the cost of randomness, and that the refresh gadget is still secure with a
slightly weaker notion KIOS than the IOS notion.

4.1 Probing security of K-linear circuits

This subsection contains two technical results Lemmas 4.1 and 4.2 that are
building blocks for proving t-probing security of ωd-masked circuits.

From a high level, the first Lemma 4.1 claims that when degKpωq ě d, the
vector ωd is never in the span of ` ă d vectors over K, where K is a subfield of
F. The intuition of the connection between this statement and probing security
is as follows: This statement says, roughly speaking, that the probes are linearly
independent of the decoding operation, and this statement is in turn used to
prove the probabilistic independence between probes and secret in Lemma 4.2.

To illustrate the correspondance between K-linear circuits and threshold-
probing security, consider a t-probing adversary against some circuit C, taking
as input a uniform ωd-encoding of the secret. We assume that the adversary
has no prior knowledge on the secret a “ ωTd a manipulated by C, hence from
the adversary’s perspective, before probing, a is distributed uniformly over Fd.
Now, say we can force every intermediate value of our circuit C to be K-linear in
a. Then, when the adversary probes t ă d linearly independent inner products
of the encoding a, he receives some values v P Ft of the form v “ Pa where
P P Ktˆd. The probability that the secret is some a1 P F, from the adversary’s
perspective, is then proportional to the number of solutions to the equations
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v “ Pa and ωTd a “ a1. When degKpωq ě d is satisfied, Lemma 4.1 tells us
that ωd R Span PT , from which follows that the set of solutions to the latter
equations is an affine subspace of dimension d ´ t ´ 1, of cardinality |F|d´t´1

no matter what a1 P F is. In other words, the secret in the adversary’s view is
distributed uniformly random, therefore the adversary did not learn anything
by probing, which is t-probing security.

We prove (in a slightly more general fashion) the result sketched above in
Lemma 4.2. This Lemma is central in our framework: every security notion
introduced in the next subsection relates to it. The convenient form of Lemma 4.2
makes it likely to find other applications in constructing efficient masked gadgets.

Lemma 4.1. Let F be a finite field, K be a subfield of F, P P Ktˆd such that
rank P “ t and ω P F. If degKpωq ě d and t ă d, then

rank

„

P
ωTd



“ t` 1.

Lemma 4.2. Let d be an order of masking, C be a circuit taking as input a
uniform ωd-encoding x with ω P F. If all the intermediate variables p of C are
of the form ppxq “ pTx for some vector p P Kd, then C is d´ 1-probing secure.

4.2 Weaker condition for region-probing security in extension fields

In this section, we extend the results of the above subsection to circuits manipu-
lating several ωd-encodings. Namely, we introduce the RTIK security notion and
show that RTIK circuits are region-probing secure. Rephrasing (and simplifying)
the RTIK property: an ωd-masked circuit C is said RTIK when any set of probes
P can be reduced to a set of probes Q in which every probe is K-linear in a
single ωd-masked encoding.

Definition 4.3 (Reducible-To-Independent-K-Linear (RTIK)). Let C be
a circuit over a finite field F, K be a subfield of F, W be the set of wires of C
and px1, . . . ,xnq be mutually independent ωd-encodings. We say that C is RTIK
w.r.t px1, . . . ,xnq when for all set of probes P ĂW, there exists a set of probes
Q “ pQ1, . . . , Qnq ĂW such that the following holds:

1. Q ě P
2. @i P rns, |Qi| ď |P |
3. For all i P rns, every probe in Qi is a linear function of xi over K.

Theorem 4.4 (Security of RTIK circuits.). Let n, d be integers, C be a
circuit over a finite field F, K be a subfield of F, W be the set of wires of C,
ω P F be a field element such that degKpωq ě d and px1, . . . ,xnq be mutually
independent ωd-encodings.

If C is RTIK with respect to px1, . . . ,xnq, then there exists a number m ě n,
a ratio r, and m regions pC1, . . . , Cmq such that C is r-region-probing secure with
respect to pC1, . . . , Cmq. The probing ratio r and the subcircuits C1, . . . , Cm are
explicited in the proof.
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On the encodings x1, . . . ,xn. RTIK circuits are not restricted in terms of size,
ranging from a simple gadget to a full masked implementation of a cryptographic
algorithm. There may exist multiple lists of encodings px1, . . . ,xnq for which a
single circuit is RTIK. Nonetheless, their number n is unique. For example,
the naive coordinate-wise addition gadget computing c “ a ` b is RTIK with
respect to any two encodings among pa,b, cq. For these smaller circuits, such as
gadgets, the encodings x1, . . . ,xn can still be thought of as the input encodings
and/or the output encodings, which is also the case for the multiplication gadgets
defined in Section 6. For bigger gadgets, for example a round of AES, or even
a full AES implementation, then the encodings px1, . . . ,xnq contain many more
extra encodings than just the inputs and outputs. The number n of encodings
is actually the number of fresh independent input encodings ` the number of
refresh gadgets in the masked circuit.4

Regions and probing ratio. The details of how the regions are constructed
and the corresponding probing ratio is established are only given in the proof,
thus we give practical examples of how RTIK translates into region-probing
secure.

We consider the example above of a circuit computing coordinate-wise c “
a`b, which is RTIK with respect to e.g a,b. Its set of wires W can be partitioned
into the following subsets: Wa “ tai, i P rdsu, Wb “ tbi, i P rdsu and Wab “

tci, i P rdsu. There are three regions in this circuit: C1 “ Wa, C2 “ Wb and
C3 “ Wab. The computation of the probing ratio works as follows. Firstly, by
symmetry, the expression over which the minimum is taken is identical for both
a and b, thus we may write that

r “
d´ 1
ř

IĂta,bu
aPI

|WI |
.

Computing the above ratio, we obtain r “ pd´1q{p|Wa|` |Wab|q “ pd´1q{p2dq.
More involved examples can be found in Section 6.

4.3 Composition notions for RTIK circuits

We first show that some RTIK gadgets with a nice additionnal feature can be
composed naively and still enjoy region-probing security.

Theorem 4.5. Let C be a circuit over a finite field F, and K be a subfield of F.
If C can be split into two disjoint subcircuits C1, C2 such that

1. C1 is RTIK with respect to encodings px1
1, . . . ,x

1
nq

2. C2 is RTIK with respect to encodings px2
1, . . . ,x

2
mq

3. The intersection of the input encodings of C2 and the output encodings of C1
is contained in both px1

1, . . . ,x
1
nq and px2

1, . . . ,x
2
mq,

4 The multiplication gadget Algorithm 8 also counts as a refresh here, as it somewhat
contains a built-in refresh.
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then C is RTIK.

On the extra condition for naive composition of RTIK circuits. The
condition 2. from the Theorem above asks, roughly speaking, that when evalu-
ating C2 on (part of) the output of C1, the encodings that are passed on from
C1 to C2 are part of those vectors that define the RTIK property for both cir-
cuits. In practice, we are not aware of any combination of useful circuits that
do not verify the aforementionned property. In all generality, we were not able
to prove that this condition is always verified, but all our gadgets, as well as
all coordinate-wise gadgets do verify the condition, and any circuit composed of
our gadgets also verifies this condition.

Composition of more than two gadgets. As one would expect, it is possible
to prove that the composition of several gadgets which enjoy the nice extra
composability feature is RTIK. Indeed, by induction, one can step by step prove
using Theorem 4.5 that the successive compositions are indeed RTIK, as the
property propagates with no slack from two circuits to their composition. The
fact that there is no slack is ensured by 2. from Definition 4.3. While it is possible
to construct gadgets that verify 1. 2. and 4. as well as |Qi| ď α|P | for some slack
factor α (e.g the NaiveFold algorithm defined in Section 5.1), we decide not
to introduce this extra notation as the slack factor of a compound circuit grows
exponentially with the number of subcircuits, and thus leads to rather inefficient
constructions.

Why refreshing a secure circuit ? Again, the probing ratio r is given by the
minimum over i of the individual d´1

ř

|WI |
, where I is a subset of indices containing

i, and WI is the set of wires mapped to |I| probes, each on a single encoding
xj , j P I. When one of the subcircuits

ď

IĂrns
iPI

WI ,

is particularly large compared to the others, it may be beneficial to break it
down into smaller independent subcircuits so as to increase the security of the
compound circuit. This act of splitting a circuit into subcircuits can be done
using an IOS refresh on the encodings, but the weaker notion of KIOS, more
adapted to our RTIK circuits, is also suited. This notion is very similar to the
IOS notion, thus we follow a similar path towards defining it.

Definition 4.6. (Reducible-To-K-Linear) Let ω P F and K be a subfield of F.
Consider a gadget R taking as input a dimension d and returning an ωd-encoding
r of 0. Let α ą 0 be the slack factor of R. We say that R is α-Reducible-To-K-
Linear (RTK) when the output distribution of R is a uniform ωd-sharing of 0,
and for any set of independent probes P on R with |P | “ t ă d, there exists sets
of probes Q1, Q2 such that

1) |Q1| ď αt.
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2) pQ1, Q2q ě P
3) Every probe in Q1 is K-linear in r.
4) The distributions Q2 and pr|Q1q are independent.

Notice that with this definition, if R is RTC with respect to ωd, then R is
1-RTK. We now define the security notion achieved by the ωd-encoding refresh
gadget obtained by adding coordinate-wise a fresh ωd-encoding of 0 to the input.
The intuition why the KIOS security notion for refresh gadget brings composition
security is similar to the one for IOS refresh gadgets. If we have y “ r`x, where
x is some input ωd-encoding and r is generated using an α-RTK generator of
encodings of 0, then we can reduce the probes in the α-RTK to K-linear probes
on r, given by some matrix P. In the next reduction step, we give to the adversary
Px and Py, which are still both K-linear. We can then remove the probes on r
as they are redundant, and that way we achieve separation between x and y.

Definition 4.7. (K-Input-Output Separative) Let ω P F, K be a subfield of F,
α ą 0 and G be a gadget taking as input an ωd-encoding x, and returning an ωd-
encoding y of the same secret as x. We say that G is K-Input-Output Separative
(KIOS) when the distribution of y is uniform conditioned on ypωq “ xpωq and
for every set of t probes P on G, there exists three sets of probes Qx, Qy, Q2 such
that

1. |Qx| ď αt, |Qy| ď αt
2. pQx, Qy, Q2q ď P
3. Every probe in Qx is K-linear in x, and every probe in Qy is K-linear in y
4. The distributions Q2 and ppx,yq|pQx, Qyqq are independent

We finally state in the Theorem below that placing a KIOS refresh in be-
tween RTIK circuits achieves region-probing security as well. The idea behind
this composition Theorem is very similar to the intuition detailed in [GPRV21]
on IOS composition. The basic idea is that when C2 takes as input the output
of some circuit C1, one applies a KIOS refresh gadget on each input encoding
of C2. In the reduction, using the KIOS property, the leakage of the refresh is
transferred to K-linear probes on C1 and C2. The leakage from the two sub-
circuits are then independent, and from the RTIK property, those leakages are
K-linear, and Lemma 4.2 yields the region probing security.

Randomness/security tradeoffs of refreshing. As stated throughout the
subsection, using KIOS refresh gadgets on the encodings increases the amount
of encodings px1, . . . ,xnq in the RTIK definition, which in turn increases the
number of subcircuits in the region-probing security of the latter circuit, and
eventually increases the region-probing ratio r. One has to keep in mind that
refreshing the shares of an encoding is costly in terms of randomness (and slightly
increases the total number of wires in the circuit), thus one has to carefully
optimize the amount of refreshing in a circuit to reach the desired security level.
Notice that we assume that we use a KIOS refresh gadget in the statement of the
KIOS composition Theorem with slack factor 1. Indeed, when the slack factor
of the KIOS refresh is 1, then the resulting circuit is RTIK, but when the slack
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factor α ą 1, the resulting circuit is not RTIK as it does not verify the property
3. of the RTIK definition, but it does verify the other ones 1. 2. and 4. When
α ą 1, the resulting circuit remains r-region probing secure, but the number of
tolerated probes per region is divided by α.

Theorem 4.8 (KIOS Composition Theorem). Let C be a circuit over a
finite field F, and K be a subfield of F. If there exists two disjoint RTIK subcir-
cuits C1, C2 of C such that C is the composition of C1 and C2, then the circuit pC
obtained by applying a 1-KIOS refresh to the outputs of C1 that are inputs of C2
is RTIK.

5 Miscellaneous RTIK and KIOS gadgets.

This section contains two ωd-encodings building-block algorithms for construct-
ing a masked compiler. Both algorithms rely on an additional restriction on d and
degKpωq: For security in our framework of RTIK gadgets, we need d ď degKpωq
and for correctness of the gadgets presented in this section, we also need d ě
degKpωq. In other words, we need ω to be of degree exactly d. A classical result
in algebra tells us that such a choice of ω is only possible when d is a factor of
rF : Ks. The reason why we add the restriction d ě degKpωq for correctness is
that we will exploit the minimal polynomial ω, which we write πω throughout
the section, in ways that are detailed in the subsections below.

5.1 Folding gadget

This subsection is dedicated to a folding gadget that exploits the algebraic struc-
ture brought by ωd-encodings. Folding gadgets are those that on input some
ωd1 -encoding x return an ωd2-encoding y of the same secret, where d1 ě d2.
Since we only need pd1, d2q “ p2d´ 1, dq, we shall particularize to these specific
values in the following, but our construction extends to d1 ě 2d ´ 1. We first
recall the so-called NaiveFold algorithm, as used in [GJR18, GPRV21]. This fold-
ing algorithm does not require any extra condition to be correct, but entails a
factor two loss in probe tolerance.

Algorithm 3 NaiveFold
Require: ω2d´1-encoding x
Ensure: y P Fd such that xTω2d´1 “ yTωd

1: for i “ 0 to d´ 2 do
2: yi “ xi ` ω

dxd`i

3: end for
4: yd´1 “ xd´1

5: return y

As stated above, one problem with this compression is that in the current
state-of-the-art methods for proving probing security, when the adversary probes
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some xi ` ωdxd`i, we have to give away both xi and xd`i. This entails a slack
factor of 2 that doubles the number of probes of the adversary, hence in the
end halves the number of probes tolerated in the region. Evaluating our folding
matrix is an RTIK circuit (in particular it has no slack factor), but it may also
contain more wires than the NaiveFold algorithm, thus the gain in probing ratio
is slightly fewer than a factor 2. We also remark that the NaiveFold algorithm
computes the reduction modulo pXd ´ ωdq, while the folding matrix computes
the reduction modulo πω.

The intuition of the construction is as follows: we define a full-rank folding
matrix F P Kdˆp2d´1q, with coefficients in the subfield K, and mapping the
ω2d´1-encodings of some x P F to the ωd-encodings of this same x. This way,
the computation of y “ Fx is K-linear and the folding circuit is RTIK. The
existence of this matrix is only guaranteed when degKpωq ě d, therefore, so we
can also use Lemma 4.2, we actually need the equality.

We now proceed to describe how to construct such a matrix, for a given ω and
d. Suppose degKpωq “ d. Then, the minimal polynomial πω of ω over K has
degree d, therefore π “ ωd´πω is of degree d´ 1 and is such that πpωq “ ωd. In
general, any ωd`i for 0 ď i ď d ´ 2 is a polynomial in ω with coefficients in K
and degree ď d ´ 1. Let us therefore write πi the column vector of coefficients
of the i-th polynomial, for example π0 “ π. One can check that the matrix

F “
“

Id π0 π1 . . . πd´2

‰

satisfies the equation FTωd “ ω2d´1. This implies that ωT2d´1x “ ω
T
d Fx “ ωTd y.

Optimizing the choice of ω. We emphasize on the fact that one should choose
ω so as to minimize the count of operations in the folding process, to in turn
minimize the ratio of tolerated probes per gate in the region. The element ω has
to be chosen from a fixed field F, among the elements of given degree d over
some fixed subfield K and it seems hard to make a general statement about
the sparsity of the matrix F. Nonetheless, in very specific cases, F can be very
sparse. For example, if K “ Fp, and d ` 1 is a prime, one can chose ω to be
a primitive d ` 1-th root of unity. This way, the minimal polynomial of ω is
1`X ` ¨ ¨ ¨ `Xd, and ωd`1 “ 1. Then, for any 0 ď d´ 3, we have ωd`1`i “ ωi

and ωd “
řd´1
i“0 ω

i. In this particular setting, the computation of y “ Fx takes
approximately 3d wires.

5.2 Refresh gadgets

In this subsection, we describe a 2-RTK generator of ωd-encodings of 0 that only
uses d´ 1 random field elements, as well as a 1-RTK generator of ωd-encodings
of 0 that uses d´ 1 random field elements. While the second one seems strictly
better than the first one, it also contains more gates, and thus depending on
the use-case and the metric to be optimized, the first one may yield a better
efficiency. We may recall that we are using the minimal polynomial πω of ω,
which can only be made possible if d|rF : Ks.
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2-RTK algorithm. For the first construction, we require, on top of the condition
d|rF : Ks, that the greatest common divisor of ωd ´ πω and Xd ´ ωd is X ´ ω.
The intuition how Algorithm 4 works is as follows. First, the algorithm samples a
uniformly random vector x P Fd´1. Next, we compute s “ πωx, and we obtain a
polynomial s of degree d`d´2. The algorithm then returns r as the naive fold of s
as described in the subsection above. The correctness is verified by construction:
the evaluation of r in ω is 0 since πω divides s and the evaluation in ω is invariant
through the naive fold. Remember that as explained in the previous section, the
algorithm that takes as input an ωd-encoding x and returns y “ x` r where r
is generated by such an α-RTK generator of encodings of 0 is α-KIOS.

Algorithm 4 PolyGenZero

Require: Masking order d with d “ degKpωq
Ensure: r P Fd such that rTωd “ 0

1: xÐ Fd´1

2: s “ πωx
3: r “ NaiveFoldpsq
4: return r

Proposition 5.1. If degKpωq “ d and the greatest common divisor of πω and
Xd ´ ωd is X ´ ω, then PolyGenZero is 2-RTK.

1-RTK algorithm.

The second RTK algorithm that we detail here is very similar to the re-
freshing procedure of Algorithm 8 that cuts the bilinear dependencies of our
optimized RTIK multiplication gadget. We detail the instantiation of this RTK
algorithm with Karatsuba’s multiplication. More details on the associated eval-
uation matrix M1 and interpolation matrix M2 can be found in Appendix A.
We start off by fixing a polynomial u P Fd with the following properties:

The Karatsuba evaluation u1 “ M1u has all non-zero entries (1)

The greatest common divisor of upXq and πωpXq is X ´ ω. (2)

We store the fix evaluation vector u1. Then, Algorithm 5 samples a uniformly
random polynomial r P Fd, which therefore encodes a uniformly random value.
We compute its Karatsuba evaluation of r1 “ M1r, and multiply this vector
with u1 coordinate-wise to obtain x1 “ r1 d u1. Finally, we return s “ FM2x

1,
which is the folding of the Karatsuba’s interpolation of x1.

Proposition 5.2. If degKpωq “ d and the vector u P Fd is such that Equa-
tions (1) and (2) hold, then Algorithm 5 is a 1-RTK generator of ωd-encodings
of 0.
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Algorithm 5 KaratsubaRTK

Require: Masking order d with d “ degKpωq
Ensure: s P Fd such that sTωd “ 0

1: rÐ Fd´1

2: r1 “M1r
3: x1 “ r1 d u1

4: s “ FM2px
1
q

5: return s

5.3 Square gadget in characteristic 2

In this subsection, we show that the usual square gadget in characteristic 2 is
RTIK. The typical example of use of this gadget is to compute the inverse of an
element of F256 in the AES S-box as a subalgorithm of the square-and-multiply
computation of the 255-th power. The RTIK security of this gadget falls into
the wider class of coordinate-wise gadgets.

The algorithm works as follows: since we are working in characteristic 2, we
have the classical identity that for any x, y P F, px ` yq2 “ x2 ` y2. We apply
this identity to the decryption of the encoding x:

˜

d´1
ÿ

i“0

xiω
i

¸2

“

d´1
ÿ

i“0

x2iω
2i.

In other words, to compute and encoding y of the square of xTωd, we can
square each coordinate of x, and multiply the result coordinate-wise with the
vector w “ pω´iq0ďiďd´1. Correctness follows from the latter identity, and since
all the operations are coordinate-wise, this gadget is RTIK.

Algorithm 6 SquareGadget

Require: Encoding x P Fd of length d
Ensure: y P Fd such that yTωd “ px

Tωdq
2

1: z “ x2
Ź Coordinate-wise operation

2: y “ zdw
3: return y

6 Subquadratic multiplication gadgets

In this section, we show that the FFT-based multiplication gadget from GPRV
[GPRV21] can be proven secure in the region-probing model - provided that
there is sufficient structure in F for the targeted number of shares. The frame-
work that we prove secure in the first subsection is actually a generalization of
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GPRV, where the evaluation-interpolation polynomial multiplication algorithm
used does not have to be the FFT, but any evaluation-interpolation-based mul-
tiplication gadget. There is a counterpart for using a polynomial multiplication
with low bilinear multiplication complexity: roughly speaking, the fewer bilinear
multiplications, the lower the upper bound on the available number of shares. In
the second subsection, we detail an optimized version of the previous construc-
tion based on Karatsuba’s multiplication. This masked multiplication gadget is
RTIK (Thus in the proper setting, it is region-probing secure) and performs com-
petitively well (see Appendix A for detailed comparison with existing gadgets.)
The mutliplication gadgets presented in this section verify the extra composabil-
ity condition from Theorem 4.5.

6.1 (Re)Revisited Quasilinear masked multiplication:
Region-probing security proof for GPRV

In this subsection, we show that (almost) any polynomial multiplication algo-
rithm can be turned into a masked multiplication gadget. More precisely, the
polynomial multiplication gadgets that fit our transformation p are those algo-
rithms that are based on evaluation-interpolation. This definition encompasses
Karatsuba’s algorithm, all Toom-Cook variants (which contains Karatsuba) and
the FFT. The FFT instantiation of this transformation is GPRV’s multiplica-
tion.

Definition 6.1 (Evaluation-Interpolation-Based Polynomial Multipli-
cation Algorithms). Let M be an algorithm taking as input two polynomials
of degree d ´ 1 that returns the product of the two inputs and K a subfield
of F. We say that M is a K-Interpolation-Multiplication algorithm (K-IM for
short) when there exists matrices M1,M2 with coefficients in K such that for
any pa,bq P Fd´1rXs

2, we have Mpa, bq “ M2 ¨ pM1adM1bq.

The architecture of our transformation applied to the FFT follows the blueprint
from [GPRV21], whose security relies on the assumption that the circuits com-
puting the evaluation and interpolation of the FFT are t-probing secure for some
t. The assumption can be tested by exhausting the subsets of probes for a given
size among the circuits, which is only possible for small number of shares. Our
gadgets on the other hand are proven RTIK, which in turn yields region-probing
security through Lemma 4.1. Our gadgets are thus theoretically sound, since
they rely on no assumption, but rather a condition relating the multiplication
algorithm M, the order of masking d and to some extent the size of F (we need
d ď log |F|). This condition is d ď k where k “ rF : Ks, in order to apply
Lemma 4.1. To be specific, K is defined as the subfield such that M is a K-IM,
as defined in Definition 6.1. In other words, K is the smallest subfield of F such
that the evaluation and interpolation operations induced by M are K-linear.

Intuition of the transformation. The transformation of a suitable multipli-
cation algorithm M taking as input two polynomials a,b into a secure multi-
plication gadget works as follows. Since M can be split into two phases, namely
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evaluation and interpolation, our gadget xM starts by computing the evalua-
tion of both polynomial entries a1 “ M1a and b1 “ M1b. Then, xM computes
the evaluation x1 “ a1 d b1 of the product ab by multiplying coordinate-wise
their evaluations. Before proceeding to interpolation, we need to cut the bilinear
dependencies between a,b, which is done using the IOS refresh template Algo-
rithm 2, with a suitably chosen v (that depends on the interpolation of M) and

ArithGenZero Algorithm 1. xM now computes the interpolation of the refreshed
encoding y1, which yields the 2d´ 1 coefficients of a polynomial z encoding ab.
Notice that if apωq “ a, bpωq “ b, we want to find a polynomial c that encodes
ab, for the same ω and masking order d. To this end, we multiply z with the
folding matrix F so c “ Fz has degree d´ 1, and cpωq “ zpωq “ apωqbpωq “ ab,
and the algorithm finally returns this c. The construction of the matrix F is
detailed in Section 5.1.5

Intuition of the security proof. By definition of K, all the wires in the eval-
uation and interpolation subcircuits are K-linear. When the adversary probes
an xi “ a1ib

1
i, the reduction gives him both factors a1i, b

1
i, which we recall are K-

linear functions of a,b. The effect of the refresh is to create a third independent
encoding c (the output of the gadget), together with a third probing region in
which the probes are reducible to K-linear functions of c. Notice that since the
length of x is T pdq (the multiplication complexity of M), the cost of this refresh
in randomness is T pdq log T pdq{2. When the folding matrix F does not exist, one
can use the NaiveFold algorithm instead. Probes in the NaiveFold of the form
pzi ` ωdzd`iq are reduced to pzi, zd`iq, doubling the total number of probes of
the adversary in the circuit.

Algorithm 7 Multiplication gadget xMpa,bq. The algorithm R on line 4 is
Algorithm 2 instantiated with ArithGenZero

Require: A K-IM M with matrices M1,M2, folding matrix F (see Subsection 5.1)
and two input encodings a,b P Fd

Ensure: c P Fd such that ωT
d a ¨ ω

T
d b “ ωT

d c

1: a1 “M1a Ź Evaluation of a
2: b1 “M1b Ź Evaluation of b
3: x1 “ a1 d b1 Ź Component-wise multiplication of evaluations
4: y1 “ Rpx1,MT

2 ω2d´1q Ź Refresh
5: z “M2y

1
Ź Interpolation of the product

6: c “ Fz Ź Folding
7: return c

5 We assume that the folding matrix exists i.e d|rF : Ks. If this condition is not verified,
one can still use the NaiveFold at the cost of roughly halving the tolerated probing
ratio.
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Theorem 6.2. Let d be an order of masking, K be a subfield of F, M be a
K-IM and ω P F such that degKpωq “ d. Then, the instantiation of Algorithm 7
with M is a correct RTIK multiplication gadget.

6.2 Efficient Karatsuba-based multiplication gadget

In this subsection, we detail an optimized version of the GPRV-type transforma-
tion from the previous subsection. The optimizations come from various technical
improvements detailed below. We assume in the description of Algorithm 8 that
d is a divisor of k, where k is the degree of F over its prime field. This assumption
allows us to work with the degree d minimal polynomial π of ω over K, hence
use the folding matrix Section 5.1.

Choice of Karatsuba’s multiplication. Chosing particularly Karatuba’s mul-
tiplication benefits our algorithm in several ways. Firstly, Karatsuba’s algorithm
offers a trade-off between the size of the circuit and the number of bilinear mul-
tiplications that is advantageous for degrees relevant to masking in practice (e.g
between 2 and a few dozens). Second, the subfield K associated to Karatuba’s
algorithm is F’s prime field, which maximizes the degree k of F{K. Remind that
in our framework, the maximum number of probes per region is k ´ 1. Finally,
Karatsuba’s algorithm verifies a crucial property for the randomness optimiza-
tion detailed below.

Linear randomness. The transformation presented in Section 6.1 yields a
multiplication gadget running in the same time OpT pdqq as M, and requiring
OpT pdq log T pdqq random field elements. The randomness cost of the multipli-
cation comes solely from the use of ArithGenZero on the evaluation vector of
the product. Intuitively, it may seem expensive to spend T pdq log T pdq{2 random
field elements on refreshing an encoding that masks the product of the two in-
puts. The encoding x1 to be refreshed is even compressed into the ωd-encoding
c, thus a single ωd-encoding of 0 is enough entropy to mask x1. To refresh x1

into y1, we compute x1 “ y1`r1du1 as follows. We sample a completely uniform
ωd-encoding r from Fd, and compute its Karatsuba’s evaluation r1 “ M1r. We
then multiply this vector r1 coordinate-wise with a fixed vector u1 and add this
vector to x1 to obtain y1. This vector u1 is the Karatsuba’s evaluation of some
fixed polynomial u satisfying the following two properties.

1. We require that u is such that its evaluation u1 has all non-zero coefficients.
This condition allows us to swap the probes of the form r1i for probes of the
form r1iu

1
i.

2. We require that the GCD of upXq and πpXq isX´ω. The first consequence of
the latter condition is that upωq “ 0, thus rupωq “ 0 from which we deduce
the correctness of the gadget. The second consequence of this condition is
that the reduction modulo pπq of the polynomial ru is therefore a uniformly
random encoding of 0, from which we conclude the mutual independence of
a,b, c.
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Special variant for d “ 2. We mention that a variant of Algorithm 8, where r
is sampled with an RTC generator of encodings of 0 such as ArithGenZero and
u only has to be such that u1 has all non-zero entries. This variant is also RTIK
and uses d log d

2 random elements. While d log d
2 means more random elements

than the d random elements needed for Algorithm 8 whenever d ě 3, for d “ 2,
this variant uses only one random element versus two for Algorithm 8.

Algorithm 8 Multiplication gadget karaoptipa,bq

Require: a,b P Fd independent encodings
Ensure: c P Fd such that ωT

d a ¨ ω
T
d b “ ωT

d c

1: a1 “M1a Ź Evaluation of a
2: b1 “M1b Ź Evaluation of b
3: x1 “ a1 d b1 Ź Share-wise multiplication
4: rÐ Fd

Ź Fresh uniform encoding
5: r1 “M1r
6: s1 “ r1 d u1

7: y1 “ x1 ` s1 Ź Refresh
8: z “M2y

1
Ź Interpolation of the product

9: c “ Fz Ź Folding
10: return c

Theorem 6.3. Let F be a finite field of degree k over its prime field K, ω P F
be a fixed element of F, π be the minimal polynomial of ω over K, d be the
number of shares and u P Fd a fixed polynomial. Let M1,M2 be the evaluation
and interpolation matrices of Karatsuba’s multiplication. We assume that the
two entries a,b are mutually independent encodings.

If we have the following three properties:

1. degKpωq “ d
2. gcdpupXq, πpXqq “ X ´ ω
3. M1u “ u1 has all non-zero coefficients

then karaopti is a correct RTIK multiplication gadget with respect to a,b, c.
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A Performances comparison

In this section, we provide some extra implementation details, especially about
Karatsuba’s multiplication and compare our multiplication gadget with the ex-
isting multiplication gadgets.
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We’ll write Karatsuba’s algorithm for polynomial multiplication M. Again,
Karatsuba’s algorithm is a good candidate for our transformation as it is com-
petitively fast in practice, and it can be used in any characteristic. We describe
below the matrices M1,M2 that make Karatsuba a Fp-IM, where p is the char-
acteristic of F. As a consequence, if F “ Fpk , we’ll assume that d|k so we can

use the Folding matrix, and in this case, xM and |M both support d ď k.

A.1 Karatsuba matrices.

We define recursively the matrices M1,M2 associated to Karatsuba algorithm.

We will write Md
1 P K

dlog 3
ˆd,Md

2 P K
p2d´1qˆlog 3 the matrices for degree d ´ 1

input. Remind that here, K is the smallest subfield of F that contains ´1, 0, 1,
that is Z{pZ where p is the characteristic of F. We assume for simplicity that
d “ 2` is a power of 2. Otherwise, one can fill the coefficients of the inputs with
zeros until the degree indeed is a power of 2. For clearer exposition, we introduce
another sequence of matrices Bd.

We have M1
1 “ p1q,M

1
2 “ p1q and for d a power of two:

M2d
1 “

»

–

Md
1 0d

Md
1 Md

1

0d Md
1

fi

fl B2d “

»

–

0d 0d 0d
´Md

2 Md
2 ´Md

2

0d 0d 0d

fi

fl M2d
2 “

»

–

Md
2 0d 0d

0d 0d 0d
0d 0d Md

2

fi

fl`B2d.

The two block columns of M2d
1 are of length d, and the block rows are of size 3`,

so the dimensions of Md
1 are 3` ˆ d. The rows of B2d are of length respectively

d, 2d ´ 1, d, while its columns are of length 3`. The matrix Md
2 has the same

dimensions p2d ´ 1q ˆ 3` as Bd. With a,b two polynomials of degree d ´ 1, we
have

a ¨ b “ Md
2

`

Md
1adMd

1b
˘

.

With the matrix M1 defined this way, we can check that the property of Karat-
suba’s multiplication claimed in the discussion on linear randomness from the
previous section is indeed true. When implementing the usual recursive Karat-
suba’s algorithm, the way the matrix-vector product M1x is evaluated respects

the recursion defined above: to evaluate some M2d
1

„

xL
xR



, the algorithm will first

evaluate the three matrix-vector products Md
1xL,M

d
1pxL ` xRq,M

d
1 and so on

until it reaches the maximum depth of recursion at the base case. To climb back
the recursion, a single addition is necessary at each step, and all 3 evaluations
per recursion are indeed added to the output.

A.2 Comparison of the performances of multiplication gadgets.

In this subsection, we give comparison tables of our multiplication gadget Al-
gorithm 8 with the following multiplication gadgets:ISW[ISW03](we consider
the arithmetic encoding variant from [RP10]), both the randomness optimized
variant and the bilinear multiplications optimized variants of [BBP`17] denoted
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respectively Belaid rand and Belaid bil, and finally the multiplication gadget
from [GJR18](we actually consider the so called gadget GJR+ from [GPRV21]).
We then compare for d P t2, 4, 8u various metrics: the number of bilinear mul-
tiplications, the randomness cost (in field elements) and the estimated probing
ratio. We chose d P t2, 4, 8u because in the benchmark setting of the AES field,
these specific values of d are the most suited to our techniques (we can use the
folding matrix), and thus we can highlight the efficiency of Algorithm 8. We
nonetheless remind the reader that while ISW, Beläıd rand and Beläıd bil exist
and have a security proof for any d, GJR+ is only secure when the underlying
field is of exponential size (or if the probing security of the FFT and inverse FFT
can be computationally checked) and Algorithm 8 requires F to be an extension
field of degree at least d to have a security proof, and requires d to be a factor
of the degree of this extension for improved efficiency.

ISW Beläıd bil Beläıd rand GJR+ GPRV Algorithm 8

Bilinear mul d2 2d´ 1 d2 2d dlog 3

Randomness dpd´1q
2

2pd´ 1q2 ` pd´1qpd´2q
2

d´ 1 d logp2dq d

t-threshold d´ 1 d´ 1 d´ 1 d{2´ 1 d{2´ 1 d´ 1

Condition* YES NO NO NO NO YES

Fig. 2. Comparison table of multiplication gadgets for a number of shares d.

d “ 2

ISW Beläıd bil Beläıd rand GJR+ Algorithm 8

Bilinear mul 4 3 4 4 3

Randomness 1 2 1 8 2

Probing ratio 7.7% 4.7% 6.3% 3.1% 4.5%

d “ 4

Bilinear mul 16 7 16 8 9

Randomness 6 21 3 24 4

Probing ratio 5.5% 2.2% 4.7% 1.9% 4.7%

d “ 8

Bilinear mul 64 15 64 16 27

Randomness 28 119 7 64 8

Probing ratio 3.2% 1.0% 2.7% 1.2% 3.6%

Fig. 3. Comparison table of multiplication gadgets for a number of shares d P t2, 4, 8u.

We mean by Bilinear mul in Figures 2 and 3 the number of products between
two variables in F during a single run of the multiplication gadget. Randomness
denotes the number of random field elements from F are required for a single
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run of the multiplication algorithm. t-threshold denotes the maximum number of
tolerated probes (per region in the circuit), and the line condition* corresponds
to the answer to the following question for the corresponding multiplication
gadget: Can we compose the multiplication without refreshing its inputs and
outputs ? Finally, in Figure 3, the Probing ratio is the estimation of the random
probing probability p, which we compute as the ratio between the number of
probes tolerated per region divided by the size of the largest region-probing
subcircuit. The gadgets that are secure in t-probing model are thus considered
as having a single subcircuit.

The probing ratio is mostly an indication of the level of security that these
multiplication gadgets offer, but the concrete evaluation of the latter should be
done in a much more involved way to be more than an indication. To estimate
the number of wires in the largest subcircuit of Algorithm 8, we upper bound
the number of operations to compute the matrix-vector product of the folding
matrix F by d` d2.

We also remind the reader that the probing ratios are only indications, as the
security proof of GPRV does not cover all the orders d depicted, and similarly,
without more precision on F, xM and |M may not have a security proof available.

B Proofs of Section 3

Proof of Proposition 3.4

Proof. Let 0 ă r ă 1, C be a circuit taking as input v-encodings x1, . . . ,xn and
C1, . . . , Cm be a covering set of subcircuits of C. We take a set of probes P “

pP1, . . . , Pmq with |Pi| ď rr|Wi|s for all i ď m. Since P verifies the requirements
of the Proposition, we take Q “ pQ1 . . . , Qmq verifying the conditions above. We
have

pvTx1 . . . vTxnq “
`

pvTx1 . . . vTxnq|Qpx1, . . . ,xnq
˘

(3)

“
`

pvTx1 . . . vTxnq|pP px1, . . . ,xnq, Qpx1, . . . ,xnq
˘

, (4)

where Equation (3) follows from independence and Equation (4) follows from the
hypothesis of the proposition. It follows that ppvTx1 . . . vTxnq|P px1, . . . ,xnqq “
pvTx1 . . . vTxnq thus C is r-region-probing secure.

Proof of Proposition 3.6

Proof. Uniformity. If d “ 1, then the algorithm returns p0q and it is indeed a
uniform arithmetic encoding of 0. If d “ 2, then the algorithm returns pr,´rq
for some uniformly random r, which is also distributed uniformly among the
arithmetic encodings of 0.

For d ě 3, we assume by induction that the uniformity holds for every order
less than d´ 1. In particular, rL “ pr0, . . . , rtd{2u´1q and rR “ prtd{2u, . . . , rd´1q
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are uniform independent encodings of 0 of respective orders td{2u and rd{2s. Let

x P Fd. We let tL “ rL ` s and tR “ rR ` s and u “
řd{2´1
i“0 si.

If d is even, then tL is distributed uniformly random among the arithmetic
encodings of length d{2 of u. We have

Ppt “ xq “ PptL “ xL X tR “ xRq

“ Ppu “
d{2´1
ÿ

i“0

pxLqi X tL “ xL X tR “ xRq

“ Ppu “
d{2´1
ÿ

i“0

pxLqi X rL “ xL ´ uX rR “ xR ` uq

First, we rule out the case
řd{2´1
i“0 pxLqi ‰ ´

řd{2´1
i“0 pxRqi. On one hand we

have
ř

yi “
ř

pyLqi `
ř

pyRqi “
ř

prLqi `
ř

prRqi “ 0, and on the other hand
ř

pyLqi`
ř

pyRqi “
ř

pxLqi`
ř

pxRqi ‰ 0, therefore this event has probability 0.

Otherwise,
řd{2´1
i“0 pxLqi “ ´

řd{2´1
i“0 pxRqi, hence xL ´ u is in the domain of rL

and xL ´ u is in the domain of rR. The random variables u, rL, rR are uniform
over their respective domains, mutually independent, hence Ppt “ xq is constant
uniform over the set of x such that

ř

xi “ 0.

RTC. If d “ 1, then t “ 0 hence Q1 “ Q2 “ H, and 1) 2) 3) 4) are trivially
verified. If d “ 2, either t “ 0 and 1) 2) 3) 4) are trivially verified, or t “ 1. The
one probe can only be r or ´r, hence Q1 “ prq, Q2 “ H and 1) 2) 3) 4) are
verified.

If d ě 3, we assume by induction that ArithGenZero is RTC for all 3 ď i ď
d ´ 1. We let P be a set of probes with |P | “ t ď d ´ 1, and split this set
of probes into pPL, PR, PP q, with respectively PL in the first recursive call and
|PL| “ tL, PR in the second recursive call and |PR| “ tR and PP with |PP | “ tP
in the post-processing layer. We first deal with PP , and more precisely we split
PP into subsets P iP for each i P rtd{2us as follows : P iP contains the probes taken
from the variables that are together in the ith step of the loop:

ti “ ri ` si (5)

ttd{2u`i “ rtd{2u`i ´ si. (6)

For each of these P iP , we create a set QiP , so as to have QiP ě P iP and the
probes in QiP are only coordinates of t and r, except when the si gives away no
information. Explicitly, unless when P iP “ tsiu, we set QiP “ P iP , and replace
si with a variable among tti, ti`d{2, ri, ri`d{2u such that si can be deduced from
QiP . When P iP “ tsiu, we set QiP “ tsiu. Finally, we create QP , P

1
L, P

1
R as follows

: QP is the concatenation of all the QiP ’s, P 1L “ PL, P
1
R “ PR, and we move the

probes of QP of the form ri to P 1L and ri`d{2 to P 1R. Notice that for some integers
kL, kR such that kL` kR ď tP , we have |QP | “ tP ´ kL´ kR, P 1L “ tL` kL and
P 1R “ tR ` kR.

We then use the induction hypothesis on P 1L and P 1R and we obtain Q1
L, Q

2
L

satisfying
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1 |Q1
L| ď tL ` kL,

2 pQ1
L, Q

2
Lq ď P 1L,

3 Every probe in Q1
L is a coordinate of rL,

4 The distributions Q2
L and prL|Q

1
Lq are independent,

and similarly for pQ1
R, Q

2
Rq.

We now construct two sets of probesQ1, Q2 from the setsQ1
L, Q

2
L, Q

1
R, Q

2
R, QP ,

and show that they verify 1) 2) 3) and 4). First, the sets of probes Q2
L, Q

2
R are

added to Q2. The probes in QP that are coordinates of t are added to Q1. Only
remains probes that are coordinates of r and probes of the form si. For each
probe of the form si, there exists two options. Either ri P Q

1
L or ri`d{2 P Q

1
R,

in which case we add the ti and/or the ti`d{2 that can be deduced to Q1. Else,
we add si to Q2. The probes that are coordinates of r are added to Q2, with
one exception. When ri P Q

1
L, ri`d{2 P Q

1
R and ti P QP , then ti`d{2 is added to

Q1(and similarly when ri P Q
1
L, ri`d{2 P Q

1
R and ti`d{2 P QP , then ti is added

to Q1).
We now prove that Q1, Q2 verify the conditions 1) 2) 3) and 4) so Algorithm 1

is RTC. First, we count the number of probes in Q1. These probes are either
i) transferred directly from QP , ii) or computed from the knowledge of si and
some ri, or iii) computed from ri, ri`d{2 and ti`d{2. We write kS the number of
probes in QP that are not coordinates of t. The number of probes that are added
during i) is tP ´kL´kR´kS . The number of probes that are added during ii) is
bounded by kS . The number of probes that are added during iii) is bounded by
minpQ1

L, Q
1
Rq. Thus we have |Q1| ď tP ď |P |. Second, pQ1, Q2q are constructed

so as to fulfil 2). Again by construction the probes in Q1 are of the form ti, and
finally we carefully constructed Q2 so it verifies 4), which completes the proof.

Proof of Proposition 3.8

Proof. Direct implication Let G be a t-IOS gadget for Definition 3.7. First, the
output distribution of G is a uniform v-encoding of vTx, hence we only need to
prove the existence of the simulator.

Let P be a set of probes on G. There exists pQx, Qy, Q2q that satisfy the
conditions of Definition 3.7. From 3), the probes in Qx, Qy define two sets of
indices I,J , such that every probe in Qx is some xi for i P I and every probe
in Qy is some yj for j P J . From 1), both of these sets are such that |I| ď t and
|J | ď t. These sets are therefore valid outputs for the first simulator. From 2),
the distribution of P px,yq is determined by the distribution of Qxpxq, Qypyq and
Q2px,yq. From 4), Q2 is independent of ppx,yq|pQx, Qyqq (here ppx,yq|pQx, Qyqq
is the distribution of the remaining unknown coordinates of x and y). Therefore,
one way the second simulator can perfectly simulate the distribution of the
probes is to first pick a uniform y1 such that y1j “ yj for all j P J , then pick x1

so that x1 encodes the same element as y1 and x1i “ xi for all i P I, and finally
return a sample from the distribution P px1,y1q.

Conversely, let us assume that G is t-IOS with respect to Definition 2.3.
We start off by taking a set P of t probes on G. We run the first simulator
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for the latter set of wires P and obtain two sets of indices I and J such that
|I|, |J | ď |P | ď t. We define Qx “ txi, i P Iu and Qy “ tyj , j P Ju, and
we have |Qx|, |Qy| ď t. Finally, we consider the set of probes Q2 such that
Q2 “ pP |Qx, Qyq. The existence of the second simulator tells us that the dis-
tribution of P given Qx, Qy is independent of ppx,yq|Qx, Qyq. In other words,
Q2 K ppx,yq|Qx, Qyq, which completes the proof.

Proof of Proposition 3.9

Proof. Let P be a set of t probes on Algorithm 2 instantiated with R. These
probes are either in R or coordinates of x, or coordinates of y. We split P into
those three sets of probes PR, Px, Py, and we have |PR|`|Px|`|Py| “ t. Because
R is assumed RTC, there exists Q1, Q2 such that

1. |Q1| ď |PR|
2. pQ1, Q2q ď PR
3. Every probe in Q1 is a coordinate of r
4. The distributions Q2 and pr|Q1q are independent

We construct pQ1x, Q
1
y, Q3q that verify the conditions of Definition 3.7 as follows:

for each probe of the form ri in Q1, we add xi to Q1x. We add every probe from Px
to Q1x. Similarly, we construct Q1y as the merge of Py and the probes yi for each
ri in Q1. Notice that we can remove Q1 from the set of probes as they are now
redundant with pQ1x, Q

1
yq. We set Q3 “ Q2. We have 1) |Q1x| ď |Px| ` |Q1| ď t

and |Q1y| ď |Py| ` |Q1| ď t, 2) holds since we only used elementary operations
on sets of probes as detailed in the early section Definition 3.1, 3) holds by
construction and 4) holds under the RTC of R, which completes the proof.

C Proofs of Section 4

Proof of Lemma 4.1

Proof. Let us assume for one moment that rank

„

P
ωTd



“ t, i.e ωd P Span PT .

This means that there exists t coefficients λi P Ft such that PTλ “ ωd. Now,
since t ă d, there exists vectors pt`1, . . . ,pd with coefficients in K that complete
P into an invertible matrix. We let Q be its inverse, and we write q the last row
of Q. We have

“

PT |pt`1| . . . |pd
‰

»

—

—

—

–

λ
0
...
0

fi

ffi

ffi

ffi

fl

“ ωd

»

—

—

—

–

λ
0
...
0

fi

ffi

ffi

ffi

fl

“ Qωd.
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Taking the last row in the last equality, we get qTωd “ 0. In other words, the
polynomial with coefficients q cancels ω and has degree at most d´ 1, which is
a contradiction with degKpωq ě d, and the claim follows.

Proof of Lemma 4.2

Proof. Let A be a d´1-probing adversary against C, probing a set P of interme-
diate values of C. Let φ be the distribution of the secret input x, inducing by uni-
formity a distribution φ̄pxq “ 1

|F|d´1φpω
Txq. There exists a matrix P P Kpd´1qˆd

such that P pxq “ Px. We assume without loss of generality that P is full-rank,
otherwise some rows of P are redundant and the matrix P1 obtained by removing
redundancy defines a set of probes P 1 ě P , and is full-rank. For x P F,v P Fd´1,
we have

PpωTd x “ xX P pxq “ vq “ PpωTd x “ xXPx “ vq (7)

“ φ̄

ˆ

ker

„

P
ωTd



` x˚
˙

(8)

“ φ̄ px˚q “
1

|F|d´1
φpxq (9)

“ PpP pxq “ vqq ¨ PpωTd x “ xq, (10)

where Equation (7) is the hypothesis of the Lemma, Equation (8) holds for

some solution x˚ to the equation

„

P
ωTd



x˚ “

„

v
x



, Equation (9) follows from

Lemma 4.1 which implies that the matrix

„

P
ωTd



is of rank d, therefore its

kernel is 0, and Equation (10) holds because PpP pxq “ vq “ Ppx P Dq “
1

|F|d´1

ř

yPF φpyq “
1

|F|d´1 , where D is a one-dimensional affine space directed by

the kernel of P.

Proof of Theorem 4.5

Proof. We start the proof by taking any set of probes P over C. Since C is a
disjointly covered by C1 and C2, P defines two disjoint subsets of probes P1 over
C1 and P2 over C2. We first use the RTIK property of C1, for the encodings
px1

1, . . . ,x
1
nq, which ensures the existence of sets of probes pQ1, . . . , Qnq ě P1

such that Qi is K-linear in x1
i and |Qi| ď |P1|. We repeat the operation and use

the RTIK property on C2, for the encodings px2
1, . . . ,x

2
nq, and yields the sets of

probes pR1, . . . , Rnq ě P2 such that Ri is K-linear in x2
i and |Ri| ď |P2|.

We now write ` the number of output encodings of C1 that are also input
encodings of C2, and assume without loss of generality that those encodings
are px1

n´``1, . . . ,x
1
nq “ px

2
1, . . . ,x

2
`q. We now justify that the circuit C is RTIK

with respect to the following encodings px1
1, . . . ,x

1
n,x

2
``1, . . . ,x

2
mq. We define

S1, . . . , S` as respectively pQn´``1, R1q, . . . , pQn, R`q. The set of probes we con-
sider is Q “ pQ1, . . . , Qn´`, S1, . . . , S`, R``1, . . . , Rmq. The encodings we con-
sider are indeed mutually independent encodings, and we have that Q ě P. We
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also have that |Qi| ď |P1| ď |P | for i P rn´ `s, |Si| ď |P1| ` |P2| “ |P | for i P r`s
and |Ri| ď |P2| ď |P | for all ` ` 1 ď i ď m. Finally, the K-linearity property
of the subcircuits C1, C2 is indeed passed on to the sets of probes for C, which
completes the proof.

Proof of Theorem 4.4

Proof. Let F{K be an extension field of degree at least d, where d is the number
of shares. Let ω P F be a field element of algebraic degree at least d over K.

We first give a sketch of the intuition behind the proof, then proceed to the
actual proof. The RTIK property says, roughly speaking, that the probes on C
can all be moved to K-linear probes. In other words, each wire w on C depends
only on some encodings pxiqiPIw , where Iw is some subset of rns that depends on
the wire, and w contains less information than the knowledge of |Iw| K-linear
functions, where each function depends on a single encoding from pxiqiPIW .

For each encoding xi with i P rns, we can then consider the set of wires w
such that i P Iw, which set we shall name Si. We can now notice that if the
adversarily chosen set of probes P on C is such that |P XSi| ď d´1 for all index
i P rns, then the adversary does not learn anything about the xi’s. Indeed, all
the information contained in the set of wires P on an encoding xi is contained
in P X Si, due to the mutual independence of the xi’s. Actually, the mutual
independence of the encodings even means that the set Qi obtained by passing
P through the RTIK property is the same as the one obtained by passing P XSi
through the RTIK property. We thus conclude that |Qi| ď |P X Si| ď d ´ 1,
and the aforementioned intermediate result follows by applying Lemma 4.2 on
all indices i P rns. It is then merely technical to define subcircuit C1, . . . , Cm and
the probing ratio r so that P can only be chosen such that |P X Si| ď d ´ 1,
from which the Theorem statement follows.

We consider an RTIK circuit C with respect to mutually independent encod-
ings x1, . . . ,xn. First, we prove the following claim: There exists a reduction map
R that takes as input any probe w PW, and returns a list of K-linear functions
Rpwq, of length n, and such that Rpwq ě twu. Moreover, the aforementioned
K-linear functions each depend on a single encoding xi for i P rns, distinct for
any two distinct K-linear function from Rpwq.

This fact follows by taking P “ twu, and applying the RTIK property to
this set of a single probe. The set Q “ pQ1, . . . , Qnq that we obtain is such
that |Qi| P t0, 1u, and Qi is linear in xi with coefficients in K. We simply take
Rpwq “ pQiqiPrns, and extend R to sets of wires as follows:

RpP q “

˜

ď

wPP

Rpwqi

¸

iPrns

.

Next, we consider the sets of indices Iw “ ti P rns { Rpwqi ‰ Hu, that is,
the indices of the encodings for which Rpwq contains a non-trivial probe. For all
subset of indices I Ă rns, we define WI “ tw PW { Iw “ Iu. The map I ÞÝÑWi
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is the reciproqual of the map w ÞÝÑ Iw, thus the subsets of wires pWIqIĂrns
form a partition of W. Notice that some subcircuits WI may be empty (which
happens when no wire in the circuit depends on all the xi’s for i in I), and that
the empty list is mapped to the wires that yield no information (e.g constant
wires). Based on the previous definitions, we make the following claim: the circuit
C is r-region-probing secure, with

r “ min
iPrns

¨

˚

˚

˚

˝

d´ 1
ř

IĂrns
s.t iPI

|WI |

˛

‹

‹

‹

‚

.

To prove the latter, we let P ĂW be a set of probes on C verifying the r-region-
probing security game for the ratio r above. Due to the mutual independence of
the encodings xi, it is enough to prove that @i P rns, P K ωTd xi to conclude that
C is r-region-probing secure. Let i P rns. As argued above, due to the mutual
independence of the xi’s, all the RpP qj for j ‰ i are independent of xi. Only
remains to prove that RpP qi K ωTd xi.

We have

|RpP qi| “ |
ď

wPP

Rpwqi|

“ |
ď

wPP
s.t iPIw

Rpwqi| ď
ÿ

wPP
s.t iPIw

|Rpwqi| ď
ÿ

wPP
s.t iPIw

1 ď |tw P P { i P Iwu|

ď |
ď

IĂrns
iPI

tw P P { w PWI | ď
ÿ

IĂrns
s.t iPI

|P XWI | ď d´ 1.

To conclude, RpP qi contains at most d´ 1 ă degKpωq linear probes on xi with
coefficients in K, thus RpP qi K ωTd xi is a direct application of Lemma 4.1, which
completes the proof.

Proof of Theorem 4.8

Proof. We start with a set of probes P , which naturally defines P1 over C1, P2

over C2 and R1, . . . , R` where Ri corresponds to the leakage of the i-th refresh
gadget, and ` is the number of encodings that are outputs of C1 and inputs of
C2. We use the KIOS property of the refresh gadgets, which implies that for all
i P r`s, at most |Ri| probes are added to both P1 and P2, and the probes from
Ri are K-linear in the i-th encoding the probes in C1 and C2 for all i P r`s. After
this step, we can use the RTIK properties of C1 and C2, where the initial probes
on C1 and C2 are respectively P1 and P2 augmented with the propagated probes
from the refresh. Similarly as in the proof of Theorem 4.5, one can check that
the two sets of probes Q1 from C1 and Q2 from C2 verify the conditions of RTIK
for C.
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D Proofs of Section 5

Proof of Proposition 5.1

Proof. Correctness: First, since r “ NaiveFoldpsq, we have rpωq “ spωq. Now
since πωpωq “ 0, we have spωq “ πωpωqxpωq “ 0, which completes the proof of
correctness.
Uniformity: One can check that the NaiveFold algorithm performs a reduction
modulo Xd ´ ωd. This way, we have r “ πωx mod pXd ´ ωdq “ x ¨ pπω
mod pXd ´ ωdq. If the greatest common divisor of ωd ´ πω and Xd ´ ωd is
X ´ ω,6 then as x varies across Fd´1, r takes |F|d´1 different values, which
completes the proof.

2-RTK: We start with a general set of probes P on PolyGenZero chosen by the
adversary. We split the probes into three subsets: A set P1 made of t1 probes
that are K-linear in x, a set of t2 probes P2 that are coordinates of s and a set of
t3 probes P3 made of probes that are coordinates of r. We define an increasing
sequence of sets of probes aiming for a set of probes satisfying the conditions of
Definition 4.6.

Set of probes 1:

pP1, P2, P3q,

with t1 ` t2 ` t3 ď. Any set of at most t probes on PolyGenZero is of this form,
as argued above. Since πω has coefficients in K, P1 is indeed K-linear in x.

Set of probes 2:

pP 11, P3q,

with |P 11| “ t11 ď t1 ` t2. The set P 11 is the concatenation of P1 and P2, where
since πω has coefficients in K, each coordinate of s is K-linear in x, therefore P 11
is K-linear in x.

Set of probes 3:

pP 12, P3q,

with |P 11| “ t12 ď t11. We transform the K-linear probes P 11 on x to K-linear
probes on s as follows. The probes from P 11 are of the form P1x “ v with
P1 P K

t11ˆpd´1q and v P Ft11 . Also, the adversary knows that s is computed as
s “ πωx. As the multiplication with πω is a full-rank K-linear operation, there
exists a matrix M P Kpd´1qˆp2d´1q such that Ms “ x. Summing up these facts,
the adversary knows Ms “ x and P11x “ v. By substitution, the set of probes
given by P12s “ v, where P12 “ P1M is equivalent to P 11, thus we have P 12 ě P 11.

Set of probes 4:

pQ2, P3q

6 This condition seems to be always satisfied in finite fields, but we have no rigorous
proof of that statement at the moment.
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with |Q2| ď 4pt1 ` t2q and Q2 is K-linear in s. The adversary’s knowledge out
of set of probes 3 is given by the relations:

»

–

´I I ωdI
P3 0 0
0 PL PR

fi

fl

»

–

r
sL
sR

fi

fl “

»

–

0
v1

v2

fi

fl ,

where v1,v2 are the values learned by the adversary from his probes, PL (re-
spectively PR) is the first d ´ 1 columns of P2 (respectively the remaining d
columns of P2), and we define sL, sR accordingly. The set Q2 is defined as the
concatenation of the probes PLsL,PRsR,PLsR,PRsL. The set P 12 is determined
by PLsL `PRsR hence Q2 ě P 12.

Set of probes 5:
pQ3, Q

1
2q

verifying the conditions from Definition 4.6. We introduce the notation

Q “

„

PL

PR



.

We define Q3 “ pP3,Qrq, and Q12 “ QsL, and proceed to prove all 4 items from
Definition 4.6. We have |Q3| ď 2pt1` t2q` t3 ď 2pt1` t2` t3q thus 1) holds with
α “ 2. The subset of probes Q2 is given by pQsL,QsRq. The relation QsR “
ω´dpQsL ´ Qrq implies that QsR is redundant, hence pQ3, Q

1
2q ě pQ2, P3q.

Using the sequence of sets of probes above, we conclude that 2) is also verified.
The subset of probes Q3 is K-linear in r as required by 3). We finish the proof
by showing that pr|Q3q K Q2. Due to the uniformity of x, the distribution
ppr, sL, sRq|Q3 XQ2q is uniform over the set of solutions of

»

—

—

–

´I I ω´dI
P3 0 0
Q 0 0
0 Q 0

fi

ffi

ffi

fl

»

–

r
sL
sR

fi

fl “

»

—

—

–

0
vr
v1r
vL

fi

ffi

ffi

fl

,

for some probed value vectors vr,v
1
r,vL. It follows that the marginal distribution

of pr|Q3 XQ2q is uniform over some affine subspace. In particular, the first row
of the left hand side matrix is redundant, hence this matrix induces the same
affine subspace of solutions as the matrix

»

–

Q 0 0
0 Q 0
0 0 Q

fi

fl .

The latter matrix is block-wise diagonal, hence the distributions of sL, sR are
independent of the distribution of r, which completes the proof.

Proof of Proposition 5.2
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Proof. Correctness: From the correctness of Karatsuba’s multiplication, we have
that M2x

1 “ ru, where the multiplication ru is the polynomial multiplication in
FrXs. From the correctness of the folding matrix, we have that spωq “ rpωqupωq,
and since Equation (1) ensures that X ´ω divides u, we do have that spωq “ 0.

Uniformity: From Equation (2), we have that u ^ πω “ X ´ ω. It follows that
the reduction modulo πω maps the dimension d ´ 1 vector space of multiples
of u of the form ru where r has degree ď d ´ 2 to a subspace of dimension
d ´ 1 of FrXs{πωpXq. Since we just proved that spωq “ 0, this subspace is the
hyperplane of ωd-encodings of 0, thus by taking r uniformly random, we obtain
a uniformly random output s over the ωd-encodings of 0.

RTK: We start off with any set of t probes P , which we parse into pPr, Pr1 , Px1 , Psq.

Set of probes 2: P2 “ pP
1
r1 , Px1 , Psq. The set of probes P 1r1 is the concatenation

of Pr and Pr1 , which is only made of coordinate probes of the form r1i due to the
fact that intermediate values of Karatsuba’s evaluation are all outputs(in par-
ticular the probes from Pr which are inputs of the evaluation are also outputs).

Set of probes 3: P2 “ pP
1
x1 , Psq. The set P 1x1 is the concatenation of P 1r1 and

P 1x1 . More precisely, the probes from the set P 1r1 which are all of the form r1i are
modified into x1i “ r1iu

1
i. This is made possible by Equation (1).

Set of probes 4: P4 “ Qs. The set Qs contains the probes from Ps, as well
as the probes from P 1x1 . Since M2 has all its coefficients in the prime field of F,
its coefficients are in particular in K. Similarly, F has coefficients in K, thus Qs
contains only K-linear probes in s, which completes the proof.

E Proofs from Section 6

Proof of Theorem 6.2

Proof. Correctness. Let a,b P Fd. We have:

ωTdMpa,bq “ ωTd FM2RpM1adM1b,M
T
2 ω2d´1q (11)

“ ωTd FM2pM1adM1bq “ ω
T
d Fpa ¨ bq (12)

“ ωT2d´1a ¨ b, (13)

where Equation (11) is the definition of xMpa,bq, Equation (12) follows from
the correctness of R and M, and Equation (13) holds since F is crafted so

Fω2d´1 “ ωd. Therefore xM is a valid multiplication gadget.
RTIK. We consider the ωd-encodings a,b, c, and let P be a set of t probes

chosen by the adversary. Remind that a and b are the two inputs of the algo-
rithm, thus are assumed to be independent encodings. Due to the uniformity of
R, y1 is a fresh re-encoding of x1, and therefore c “ FM2y

1,a,b are mutually
independent. Hence 1. from Definition 4.3 is verified by a,b, c. We now proceed
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to construct an increasing sequence of probes until we reach Q that satisfies 2.
3. and 4.

Set of probes 1: P1 “ P “ pPa, Pb, Px, PR, Py, Pz, Pcq, where the subset of
probes PX is a set of probes that are a function of X for X P ta,b,x1,y1, z, cu,
and PR is the subset of probes within the refresh R. This is the set of t probes
chosen by the adversary.

Set of probes 2: P2 “ pPa, Pb, P
1
x, P

1
y, Pz, Pcq. We obtain this set by using

the IOS property Definition 3.7 on R. We obtain the sets of probes PRa , P
R
b , P2

verifying Definition 3.7. We add the probes from PRa on a1 to Pa to obtain
P 1a, and similarly we add the probes from PRb on b1 to Pb to obtain P 1b. The
probes from P2 are independent from ppa1,b1q|P 1a, P

1
bq, thus are independent from

ppa1,b1q|P 1a, P
1
bq and may be discarded.

Set of probes 3: P3 “ pQa, Qb, P
1
y, Pz, Pcq. We obtain this set of probes as

follows. Notice that every probe from P 1x is a coordinate of x1. The sets of probes
Qa and respectively Qb are initially defined as P 1a and respectively P 1b. Then, we
remove each probe in P 1x, and replace it with two probes on the corresponding
coordinate of a1 and b1. These probes are added to Qa and Qb respectively.

Set of probes 4: Q “ pQa, Qb, Qcq. We obtain this set of probes by merging
P 1y, Pz, Pc into Qy. One can check that |Qa|, |Qb|, |Qc| ď |P |, and that all these
probes are indeed K-linear, which completes the proof.

Proof of Theorem 6.3

Proof. Correctness. We use the same notations as Algorithm 8. We have

ωTd c “ ωT2d´1z (14)

“ ωT2d´1M2y
1 (15)

“ ωT2d´1M2x
1 ` ωT2d´1M2s

1 (16)

“ ωTd a ¨ ωTd b` ωTd r ¨ ωTd u (17)

“ ωTd a ¨ ωTd b, (18)

where Equation (14) follows from the correctness of the folding matrix, Equa-
tion (15) follows form the definition of z, Equation (16) follows from the definition
of y1, Equation (17) follows from the correctness of Karatsuba’s multiplication,
and Equation (18) follows from the fact that pX ´ ωq|u, thus ωTd u “ 0.

RTIK. Let P be a set of probes. We parse P into

P0 “ pPa, Pa1 , Pb, Pb1 , Px1 , Pr, Pr1 , Ps1 , Py1 , Pz, Pcq,

where Pa contains the probes on a, P 1a contains the probes on a1, Pb contains
the probes on b, P 1b contains the probes on b1, Px1 contains the probes on x1, Pr
contains the probes on r and r1, Ps1 contains the probes on s1, Py1 contains the
probes on y1, and Pz contains the probes on z and Pc contains the probes on c.
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One can check that the latter list of subsets of probes covers any set of probes P
on the multiplication gadget that the adversary may select. We now construct
sets of probes pPiqiď5 such that Pi`1 ě Pi.

Set of probes 2:

P2 “ pPa, Pa1 , Pb, Pb1 , Px1 , P
1
r1 , Ps1 , Py1 , Pz, Pcq.

The set of probes P 1r1 contains the probes from Pr1 as well as the probes from Pr.
By following the usual evaluation algorithm of Karatsuba’s multiplication, the
computation of r1 “ M1r is such that all the wires are coordinates of r1. Thus
it turns out that all the probes in P 1r1 are coordinates of r1.

Set of probes 3:

P3 “ pPa, Pa1 , Pb, Pb1 , Px1 , Ps1 , Py1 , Pz, Pcq.

The set of probes P 1s1 contains the probes from Ps1 , as well as the probes s1i “ r1iu
1
i

for each probe in P 1r1 (which we recall are of the form r1i). Since none of the u1is
are zero, we do preserve the information of the set of probes hence we have
P3 ě P2.

Set of probes 4:

P4 “ pPa, Pa1 , Pb, Pb1 , P
1
x1 , P

1
y1 , Pz, Pcq.

The set of probes P 1x1 contains the probes from Px1 , as well as the probe x1i for
each probe s1i P P

1
s1 . Similarly, the set of probes P 1y1 contains the probes from

Py1 , as well as the probe y1i for each probe s1i P P
1
s1 . Since we have s1i “ y1i ´ x1i,

we have that P4 ě P3.

Set of probes 5:
P5 “ pPa, P

1
a1 , Pb, P

1
b1 , P

1
y1 , Pz, Pcq.

The set of probes P 1a1 contains the probes from Pa1 as well as the probe a1i for
each probe x1i “ a1ib

1
i in P 1x1 . Similarly, P 1b1 contains all the probes from Pb1 as

well as the probe b1i for each probe x1i “ a1ib
1
i in P 1x1 . Since all the probes from

P 1x1 are coordinates of x, and that we have x1i “ a1ib
1
i, we can discard P 1x1 and

still have P5 ě P4.

Set of probes 6:
P6 “ pQa, Qb, P

1
y1 , Pz, Pcq.

The set of probes Qa contains the probes from Pa, as well as the probes from
P 1a1 . The probes from P 1a1 are all coordinates of a1, which are themselves K-linear
functions of x, thus Qa contains only K-linear probes in a. Similarly, the set of
probes Qb contains the probes from Pb as well as the probes from P 1b1 , and the
probes from Qb are K-linear in b.

Set of probes 7:
P7 “ pQa, Qb, Qcq.
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The set of probes Qc contains all the probes from P 1y1 , Pz and Pc. Since M2

has coefficients in K, the probes from Py1 are K-linear in y1. Throughout the
reduction, we only added to Py1 probes that are coordinates of y1 to construct
P 1y1 , thus P 1y1 contains only K-linear probes in y1. Since F has coefficients in K,
the probes from Pz are K-linear in z. The probes on c are coordinates of c, thus
are also K-linear in c. As we have c “ FM2y

1, then K-linear probes on y1 are
also K-linear probes on c. Similarly, c “ Fz, thus K-linear probes on z are also
K-linear probes on c. In the end, Qc contains only K-linear probes in c.

Conclusion of the proof. To summarize: We started off with any set of probes
P , and created a set of probes P7 “ pQa, Qb, Qcq ě P, such that Qa, Qb, and Qc
are respectively K-linear in a,b and c. Throughout the reduction, we do increase
the amount of probes of the adversary (In all generality we have |P7| ě |P |),
but one can check that we still have |Qa|, |Qb|, |Qc| ď |P |. To finish the proof,
we now argue that a,b and c are mutually independent encodings.

Since a,b are the two inputs of the gadgets, we can assume that these two
encodings are mutually independent. To prove that c is independent of a,b, we
notice the following:

c “ ab` ru mod π. (19)

Remind that the effect of the folding matrix is to reduce its input modulo π,
where π is the minimal polynomial of ω over K. Since we chose u such that the
GCD of u and π is X´ω, then we have that ur mod π is distributed uniformly
random among the ωd-encodings of 0. Thus from Equation (19), we do have that
c is a fresh ωd-encoding of ωT2d´1ab, which completes the proof.
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