
Avoiding Lock Outs: Proactive FIDO Account

Recovery using Managerless Group Signatures

Sunpreet S. Arora, Saikrishna Badrinarayanan, Srinivasan
Raghuraman, Maliheh Shirvanian, Kim Wagner and Gaven Watson

Visa Research

Abstract

Passwords are difficult to remember, easy to guess and prone to hack-
ing. While there have been several attempts to solve the aforementioned
problems commonly associated with passwords, one of the most success-
ful ones to date has been by the Fast Identity Online (FIDO) alliance.
FIDO introduced a series of protocols that combine local authentication
on a user device with remote validation on relying party servers using
public-key cryptography.

One of the fundamental problems of FIDO protocols is complete re-
liance on a single user device for authentication. More specifically, the
private key used for signing relying party challenges can only be stored
on a single device. Each FIDO authenticator key is linked uniquely to
an account with a relying party service. As a result a lost or stolen user
device necessitates creation of new user account, using a new device, with
each (previously enrolled) relying party service.

To overcome this limitation, we introduce a dynamic managerless
group signature scheme that organizes authenticators into groups. Each
authenticator in a group has a unique private key that links it to an ac-
count with a relying party, which can sign relying party challenges. The
relying party server has a group verification key that can validate chal-
lenges signed using the private key of any authenticator in a group. Our
approach provides additional redundancy and usability to the FIDO pro-
tocol whilst still achieving the security properties expected in the FIDO
setting such as unforgeability and unlinkability.

1 Introduction

“Nobody likes passwords. They are inconvenient, insecure, and ex-
pensive.”

The aforementioned quote from Microsoft’s Security Team [42] succinctly
summarizes the problem of passwords. Given the challenges associated with

1

gvk, {D1, D2, D3}
1- User starts registration

2- User approves registration (e.g., PIN)
3- Authenticator 3 (D3) runs the protocol
with any member of the group to get gsk3

5- Server add D3 name to table and
verifies response using gvk

2- Challenge2- Challenge

Compatible Client Relying PartyAuthenticators

4- Response 4- Response

3- Add Member

(gsk1, gvk)
(gsk2, gvk)

(gsk3, gvk)

(a)

(gsk1, gvk)

(gsk2, gvk)

gvk, {D1, D2, D3}1- User starts login

5- Server verifies response using gvk

Authenticators

(gsk3, gvk)

2- User approves login (e.g, on D2 using PIN)
3- Authenticator unlocks gsk2 and creates
response (signs challenge using gsk2)

Compatible Client Relying Party

2- Challenge2- Challenge

4- Response 4- Response

(b)

Figure 1: Proposed managerless group signature scheme for proactive FIDO account
recovery. Fig (a) Registration: each authenticator can add a new authenticator to the
group. Fig (b) Authentication: each authenticator has its own signing key gsk that
is used to sign a challenge c at the time of authentication. The FIDO server S has a
single group verification key gvk that is used to verify c signed by any gsk.

passwords, there has been a big push in the authentication industry toward pass-
wordless authentication [42]. Eliminating passwords altogether is a challenging
problem given their legacy in authentication systems and the associated con-
sumer habituation. Biometrics-based authentication solutions, e.g., TouchID [4]
and FaceID [3], address the conundrum of security and convenience in the con-
text of local authentication to applications on a consumer device but still rely
on passwords as a backup. Another key trend in the authentication industry
is that of two-factor (2FA) and multi-factor authentication (MFA) [36]. Hence,
relying parties are increasingly leveraging 2FA/MFA solutions offered by service
providers (e.g., Google [28], Microsoft [34] and HID [29]) for securing financial
transactions and consumer accounts.

One of the most successful initiatives in the authentication industry is being
undertaken by the Fast Identity Online (FIDO) Alliance [22]; an industry con-
sortium focused on developing open authentication standards with the goal of re-
ducing the world’s reliance on passwords. FIDO introduced a series of standards
and specifications targeted toward passwordless [21] and 2FA/MFA [20] that
combine native authentication on a user device (e.g., using TouchID, FaceID)
with public-key cryptography techniques for server-side validation. A funda-
mental problem with FIDO protocols is complete reliance on the storage of a
single copy of the private key used for signing relying party challenges. Account
recovery in case the device is lost, stolen or inaccessible is, therefore, a critical
challenge to address for widespread FIDO adoption.

1.1 The Problem of Account Recovery

Account recovery is a crucial component of any web-based service. Most re-
covery processes involve retrieval or reset of an account credential such as a
password or secret key used to secure the account. Password managers, e.g.,
[16, 1, 31] are one of the most popular methods to store and manage such creden-
tials. Here, a cloud-based password vault is generally protected using a master
password. In case a user loses their account credentials, the password vault can
be restored from the cloud using the master password.

Compared to password managers, a device or cloud-based hardware ap-
proach provides a more secure alternative. An example of a device-based ap-

2

proach is the Secure Enclave in Apple devices which enables a secure vault
called KeyChain [5] to securely store website passwords, credit card, and other
secret information. A backup of the Keychain can be stored in the cloud such
that the information is end-to-end encrypted using a secret key that is unique
to the device and derived using the device passcode. A recent approach called
Safetypin [17] provides additional fault tolerance by distributing encrypted cre-
dentials backups across a collection of cloud-based hardware security modules.
A PIN can be used to recover the credentials on the device.

1.2 Account recovery in FIDO

Account recovery in the context of FIDO authentication is fundamentally dif-
ferent from other forms of authentication such as passwords and 2FA. While
passwords and other secret keys can be stored in a cloud-based password vault
and/or device or cloud-based secure hardware devices, FIDO secret keys are de-
vice dependant and cannot be backed-up directly or encrypted to a secondary
device or the cloud. In the 2019 whitepaper titled “Recommended Account Re-
covery Practices for FIDO Relying Parties” [27], the FIDO alliance recommends
two strategies to overcome this limitation: (i) use of identity proofing or user on-
boarding methods (e.g., in-person or remote KYC) for account recovery. (ii) use
of multiple client authenticators per account to reduce the likelihood of account
recovery. The latter is discussed further in a follow-up whitepaper by FIDO [37].
More recently, FIDO introduced the concept of multi-device credentials which
allows FIDO secret keys to be synced across devices using a platform provider’s
cloud [2]. Apple recently introduced a solution based on this concept called
Passkeys [6] which lets a user sync their FIDO credentials using iCloud. Table 3
given in Appendix B compares prevailing FIDO account recovery approaches.

Our goal is to enable multiple authenticators per user account for account
recovery. However, unlike aforementioned solutions (i) the relying party only
needs to hold one public key per account which reduces the verification costs
compared to earlier solutions while still satisfying the unlinkability properties
expected in FIDO, (ii) the addition and removal of authenticators can be man-
aged by a user on a client device without a strict dependency on a relying
party, (iii) and an authenticator group can be used with multiple relying parties
thereby reducing the burden on the user to register additional authenticators
separately with each relying party.

1.3 Our Contributions

We address the problem of account recovery via a protocol that permits a user
to enroll a group of authenticators. Any one of these authenticators can then
be used for authentication (see Figure 1). The protocol permits a user to add
or remove authenticators from an authenticator group at any time.

A näıve solution for account recovery would extract an authenticator’s secret
signing key and share the key across all members of the group. This key sharing,
however, has significant security issues. Our approach instead utilizes a special

3

type of signature scheme known as a group signature [7, 9, 11, 12]. Such a
scheme permits each member of a group to individually sign messages using
their own unique secret key. The signed message can then be verified as being
signed by the group using a public key associated with that group. We provide
further background on group signature schemes in Appendix C.

State-of-the-art group signature schemes rely on a privileged member that
is responsible for maintaining the structure of the group called the Manager.
The manager holds the secret information necessary for adding or removing
group members. As a result, there is complete dependency on the manager
for recovery. If the manager device is lost or stolen, so too is the ability to
recover/change the group.

Democratic Group Signatures [33] were introduced to address the setting
of a managerless group signature scheme. However, they require all members
to participate in order to add a new member, thus making addition of new
members as expensive as a setup. In addition, the addition of a new member
changes the group verification key.

1) Introducing Managerless Group Signatures in Section 2, 3: We
introduce the first Managerless Group Signature (MGS) scheme which avoids
challenges related to using standard group signature schemes when applied to
FIDO account recovery. In an MGS scheme, each member of a group has the
ability (through collaboration) to change the group structure. We formalize
the proposed scheme by providing security definitions for properties relevant
to group signatures, such as Unforgeability, Anonymity, Traceability and Re-
vocability, in the managerless setting, some of which (such as traceability) are
of interest to applications beyond FIDO authentication. In our setting, unlike
democratic group signatures, each member can individually or collaboratively
add a new member, and addition of the new members does not change the
verification key.

2) FIDO Account Recovery using MGS in 4 and Section 5: We
can apply MGS within the FIDO context and achieve the required security
properties of unforgeability and unlinkability.

Our protocol design has minimal impact on the existing FIDO protocol.
The message flow during authentication as well as the user experience during
FIDO authentication remain the same. The only fundamental change to the
core FIDO authentication protocol is the underlying signature scheme that is
used to support device groups. The signing and verification algorithms that are
introduced in the proposed solution are, however, direct plug-in replacements
for the core algorithms used in commercial FIDO deployments. We discuss how
this MGS-based FIDO achieves the unforgeability and unlinkability properties
specified by The FIDO Security Reference document [19].

3) Implementation and Performance Evaluation in Section 6: We im-
plement and provide a performance evaluation of this enhanced MGS-based
FIDO protocol. Our evaluation shows that our cryptographic operations are
light-weight (about 20-100ms depending on the signature scheme and curve
type) and only slightly slower than ECDSA used in FIDO2. More importantly,

4

adding a new authenticator has a negligible delay (≈0ms) and does not increase
verification cost. This is in contrast to FIDO, where adding a new authenticator
requires running key generation in collaboration with a relying party, and the
verification cost increases linearly as the number of authenticators increases.

4) MGS with Full Security in Section 7: Finally we present an MGS con-
structions which achieves all the properties of group signature scheme, including
traceability. While such properties are not needed in the FIDO setting, they
are not only of theoretical interest but also desirible additional properties to
achieve.

2 Signing Key Re-randomizable Signatures

Let us first revisit traditional signature schemes and discuss how they can be
extended with additional properties that will be useful to define the proposed
scheme. A hash function is typically used to process messages prior to the
messages being signed. Let Hash : {0, 1}∗ → Zq be such a collision-resistant
hash function.

In what follows we focus on the Schnorr signature scheme [39] but similar
extensions also hold for the El Gamal signature scheme [24]. Further details on
this are provided in Appendix E.

Let
∑

Schnorr be the Schnorr signature scheme [39] over a group G of
prime order q = O(2λ) with generator g, consisting of the following algorithms:

• KeyGen(1λ): Samples a random x← Zq and sets sk = x and vk = gx.

• Sign(m; sk = x): Samples a random r ← Zq and sets e = Hash(gr‖m),
s = r − xe and σ = (s, e).

• Ver(m, (s, e); vk): Checks if e = Hash(gsvke‖m).∑
Schnorr is secure in the random oracle model based on the discrete logarithm

assumption [40].

2.1 Re-randomizable Signature Scheme

Consider the notion of expanding the space of signing keys in order to have an
arbitrarily large number of functionally equivalent signing keys for any given
verification key. In this context, it would be desirable to generate a random
functionally equivalent signing key given any one signing key corresponding to
a verification key. To do so, we describe a generic ideal functionality FReRand

in Figure 2.
We show that by extending the signing key space of the signature scheme

in a simple way, we can indeed achieve these properties. Let M = 2O(λ) be a
scaling parameter (that is exponentially large in λ). The overall idea is that
instead of working modulo q, we will work modulo Mq. We elaborate on this
in more detail below. Also, note that the techniques described in the following

5

FReRand

A has (vk, skA)←
∑
.KeyGen(1λ) for a signature scheme

∑
.

B wants a random signing key skB corresponding to vk.

Inputs: pub = vk, inpA = skA, inpB = ⊥

Outputs: outpB = skB uniformly distributed subject to the
constraint that, for all m, r:∑
.Ver (m,

∑
.Sign(m, skB; r), vk) = 1.

Figure 2: Ideal Functionality FReRand

section can be used to enhance most group-based signature schemes with the
property of signing-key re-randomization.

2.2 Re-randomizable Schnorr Signatures

Let
∑∗

Schnorr be the modified Schnorr signature scheme over a group G of
prime order q = O(2λ) with generator g, consisting of the following algorithms:

• KeyGen(1λ): Samples a random x← ZMq and sets sk = x and vk = gx mod q.

• Sign(m, sk = x): Samples a random r ← Zq and sets e = Hash(gr‖m),
s = (r − xe) mod q and σ = (s, e).

• Ver(m, (s, e), vk): Checks if e = Hash(gsvke‖m).

Figure 3 describes a protocol ΠSchnorr that securely realizes FReRand for the
above scheme. The security of ΠSchnorr is easy to observe from the correctness
of the modified Schnorr signature scheme. We also prove that the modified
signature scheme is existentially unforgeable in Appendix E.

3 Managerless Group Signatures (MGS)

We define a dynamic managerless group signature scheme where members of
the group can collectively function (as enforced by a group structure) as man-
agers – for issuing and/or revoking – in addition to being able to generate
signatures on data. A formal definition of the syntax of such a scheme is pro-
vided in Section 3.1. For security guarantees, we draw from the various security
properties satisfied by traditional manager-based group signature schemes (see
Appendix C), e.g., to achieve some form of full-anonymity and full-traceability
as allowed for by the group structure.

Finally, security against dishonest managers would translate to some form
of security against collusions of subsets of parties as dictated by the group
structure. Similar to prior works [9, 10], we opt for a game-based definition of
security. See Section 3.2 for detailed description of the security games.

6

ΠSchnorr

A has a key-pair (vk, skA)←
∑∗

Schnorr.KeyGen(1λ)
B wants a random signing key skB corresponding to vk.

Inputs: pub = (G, q,M, vk), inpA = skA, inpB = ⊥

Protocol:

1. A computes and sends x = (skA mod q) to B.

2. B samples random y ← ZM .

3. B outputs skB = x+ yq.

Outputs: outpA = ⊥, outpB = skB

Figure 3: Protocol ΠSchnorr for realizing FReRand in the modified Schnorr signature
scheme.

3.1 Syntax Definition

We define a managerless group signature scheme
∑w/o manager

Group for group G with
respect to a group structure Π. Since each of the operations for a manager-
less group signature scheme may potentially involve interaction among multiple
members of the group, we define them as protocols as opposed to algorithms.
Formally, it consists of the following protocols:

• KeyGen(1λ, G,Π): Samples a public group verification key gvk, a public iden-
tity ledger Table and private keys for each of the individual group members
{gski, iki, oki, rki}i∈G where gsk denotes a group signing key, ik denotes an
issuing key, ok denotes an opening key and rk denotes a revocation key.

• AddMember(j; {iki}i∈X): Adds a new member j to G (updating Table,1 G and
Π accordingly) and generates a private key {gskj , ikj , okj , rkj} for the new
member of the group, assuming the members of set X satisfy Π.

• Sign(m; {gski}i∈X): Generates a signature σ assuming the members of set X
satisfy Π.

• SigOpen(m,σ; {oki}i∈X)2: Determines the members Y of the group who gen-
erated σ, assuming the members of set X satisfy Π.

• RevokeMember(j; {rki}i∈X): Revokes an existing member j ∈ G from G (up-

1AddMember will add an entry to Table without affecting any of the other entries in the
ledger. Furthermore, the new entry also identifies the set X that was involved in adding the
new member j, whose identity is however hidden.

2This algorithm may be augmented to also produce a “proof” π that can be (publicly)
verified by a “judging” algorithm Judge.

7

dating Table,3 G and Π accordingly), assuming the members of set X satisfy
Π.

• Ver(m,σ; gvk): Outputs 0 or 1.

We define correctness of such a scheme informally: for all honestly generated
parameters, honestly generated signatures always verify, and can be opened
using the allowed sets of opening keys. The security guarantees provided by the
scheme are also described.

3.2 Security Definition

Intuitively, we would like to capture the properties of unforgeability anonymity,
traceability and revocability. We opt for a game-based security definition, where
we define a security game played between a challenger and an adversary, who
will attempt to break one of the properties listed above. We first describe the
guarantees associated with each of these properties.

Unforgeability requires that an adversary is not able to produce a valid
message-signature pair that it cannot trivially create (for instance, using the
keys of the corrupt parties or replaying a pair generated by honest parties).

Anonymity requires that an adversary is not able to distinguish between
signatures generated by different sets of parties involving honest parties, except
trivially, which could be by possessing enough keys to open signatures, or re-
voking parties so as to disambiguate signatures by seeing how Ver’s behavior
differs pre- and post-revocation.

Revocability requires that an adversary is not able to generate a valid signa-
ture that opens to a set containing a revoked member.

Traceability requires that an adversary is not able to generate a valid signa-
ture that cannot be traced back correctly to the signers who created it even if
it is so permitted by the group structure Π.

With the above intuitive descriptions of the security properties, we proceed
to define the security games formally below. Note that we define separate secu-
rity games for each of the properties described above. Only the definitions for
unforgeablity and revocability will be needed to achieve security in the FIDO
setting, while the notions of anonymity and traceability are of further theoreti-
cal interest in the context of group signatures.

Syntax of the games. Each security game for the group signature scheme∑
=
∑w/o manager

Group will be played between a challenger C and a probabilistic
polynomial time (PPT) adversary A. During the game, A interacts with C in a
specified way (defined in Figure 6, Figure 7, Figure 8 and Figure 9), and based
on this interaction, C, at the end of the game, outputs either True (indicating
that A won the game, or equivalently, that A broke the specific property of

3RevokeMember will flag an entry to Table as “revoked” without affecting any of the other
entries in the ledger. Furthermore, the flag also identifies the set X that was involved in
revoking the member j, whose identity is however hidden.

8

Oracle Add2U(i)

if i ∈ U, return ⊥
else U = U ∪ {i}, H = H ∪ {i}

Oracle Corrupt(i)

if i 6∈ H, return ⊥
else H = H\{i}, return (gski, iki, oki, rki)

Oracle Add2G(j,X)

if j 6∈ U\(G ∪R), return ⊥
elseif X 6⊆ G or X ∩H = ∅ or (X, add) 6∈ Π, return ⊥
else

(gskj , ikj , okj , rkj)←
∑

.AddMember(j; {iki}i∈X)

if j 6∈ H, return (gskj , ikj , okj , rkj)

Oracle Append2G(j,X, (gsk, ik, ok, rk))

if j 6∈ U\(G ∪R), return ⊥
elseif X 6⊆ G or X ∩H 6= ∅ or (X, add) 6∈ Π, return ⊥
else

G = G ∪ {j}

if j ∈ H, (gskj , ikj , okj , rkj)←
∑

.AddMember(j; {iki}i∈X)

else (gskj , ikj , okj , rkj)← (gsk, ik, ok, rk)

Figure 4: Oracles that an adversary has access to in the security games (Part 1/2).

the scheme) or False (indicating that A lost the game). During the course of
the game, A is allowed access to some specific set of oracles (among the ones
described in Figure 4 and Figure 5). If A has access to an oracle, it may issue
queries to it and obtain responses.
Notation. The universe of parties is U , the set of honest parties is H and
the set of revoked parties is R. At the beginning of each of the games, these
sets are initialized to be empty. During the course of the game, they may be
updated (by the oracles). G will denote the parties who are (currently) part of
the group and Π will denote the group structure. G and Π will be picked by A
at the beginning of each game. Subsequently, G and Π may be updated (by the
oracles).

Two other pieces of notation are List, which denotes the list of messages
signed by the Sign oracle, and Chall, which denotes the challenge signature (for

the anonymity game Expanonymity∑
,A,λ defined in Figure 7). More about List and Chall

9

Oracle Sign(m,X)

if X 6⊆ G or X ∩H = ∅ or (X, sign) 6∈ Π, return ⊥
else

σ ←
∑

.Sign(m; {gski}i∈X)

List = List ∪ {(m,σ,X)}
return σ

Oracle SigOpen(m,σ,X)

if X 6⊆ G ∪R or (X, open) 6∈ Π, return ⊥

elseif
∑

.Ver(m,σ; gvk) = 0, return ⊥

else

Y ←
∑

.SigOpen(m,σ; {oki}i∈X)

return Y

Oracle Remove2G(j,X)

if X 6⊆ G or X ∩H = ∅ or (X, revoke) 6∈ Π, return ⊥
else∑

.RevokeMember(j; {rki}i∈X)

R = R ∪ {j}

Oracle Delete2G(j,X)

if X 6⊆ G or X ∩H 6= ∅ or (X, add) 6∈ Π, return ⊥
else G = G\{j} and R = R ∪ {j}

Figure 5: Oracles that an adversary has access to in the security games (Part 2/2).

can be found in the expositions ahead.
Oracles. Each game gives the adversary access to the following oracles:

• Add2U(i): To add the party with identifier i to set U . At this point, i is also
added to H. New parties are honest by default, but can later be corrupted.

• Corrupt(i): To corrupt an existing honest (in H) party with identifier i.
i gets removed from H. If there are any keys associated with i (such as
gski, iki, oki, rki), they are handed over to A.

• Add2G(j,X): To add an existing party with identifier j to the group G using
the keys of parties in set X. The oracle requires that X ∩ H 6= ∅ because,
otherwise, the adversary can add the member using the keys it already has.
The oracle runs

∑
.AddMember(j; {iki}i∈X) to obtain {gskj , ikj , okj , rkj}. If

10

Expforgery∑
,A,λ

U = ∅, H = ∅, R = ∅, List = ∅

(G,Π, state)← AAdd2U,Corrupt(1λ)

if G 6⊆ U, return False

(gvk, {gski, iki, oki, rki}i∈G)←
∑

.KeyGen(1λ, G,Π)

state = (gvk, {gski, iki, oki, rki}i∈G\H)

(m∗, σ∗, X∗)← AOracles(state)

Z ←
∑

.SigOpen(m∗, σ∗; {oki}i∈X∗)

if
∑

.Ver(m∗, σ∗; gvk) = 0 return False

elseif (m∗, σ∗, ·) 6∈ List and Z ∩H 6= ∅ return True

else return False

Figure 6: Security game for unforgeability. Oracles de-
notes the set of oracles the adversary has access to, specifically
{Add2U,Corrupt,Add2G,Append2G, Sign, SigOpen,Remove2G,Delete2G}.

j 6∈ H, it hands over {gskj , ikj , okj , rkj} to A.

• Append2G(j,X, {gsk, ik, ok, rk}): To add the existing party with identifier j
to the group G using the keys of parties in set X.4 The oracle adds j
to G. If j ∈ H, it additionally runs

∑
.AddMember(j; {iki}i∈X) to obtain

{gskj , ikj , okj , rkj}. Otherwise, {gsk, ik, ok, rk} are the keys for j.5

• Sign(m,X): To sign a message m using the keys of parties in set X. The
oracle requires that X ∩H 6= ∅ because, otherwise, the adversary can sign the
message using the keys it already has. The oracle runs

∑
.Sign(m; {gski}i∈X)

to obtain σ. The oracle adds σ (along with m and X) to List and hands over
σ to A.

• SigOpen(m,σ,X): To open a (valid) signature σ on a message m using the
keys of parties in setX. The oracle runs

∑
.SigOpen(m,σ; {oki}i∈X) to obtain

Y and hands over Y toA. An important point to note is that in the anonymity
game (Expanonymity∑

,A,λ defined in Figure 7), this oracle will not open the challenge

signature Chall.

• Remove2G(j,X): To remove the existing party with identifier j from the group
G using the keys of parties in set X. Once again, the oracle requires that
X ∩ H 6= ∅ because, otherwise, the adversary can revoke the member using

4This oracle requires that X ∩ H = ∅. We note that this oracle, as well as Delete2G are
meant to handle the cases where the adding and revoking parties are all corrupt. More on
this can be found in Remark 2.

5More on this can be found in Remark 2.

11

Expanonymity∑
,A,λ

U = ∅, H = ∅, R = ∅, List = ∅,Chall = ⊥, b← {0, 1}

(G,Π, state)← AAdd2U,Corrupt(1λ)

if G 6⊆ U , return False

(gvk, {gski, iki, oki, rki}i∈G)←
∑

.KeyGen(1λ, G,Π)

state = (gvk, {gski, iki, oki, rki}i∈G\H)

(m∗, X∗0 , X
∗
1 , state)← AOracles(state)

if X∗0 ∩H = ∅ or X∗1 ∩H = ∅
or X∗0 ∩R 6= ∅ or X∗1 ∩R 6= ∅ return False

σ∗ ←
∑

.Sign(m∗; {gski}i∈X∗
b

)

Chall = (m∗, σ∗)

b′ ← AOracles(σ∗, state)
if ∃ X ⊆ (G ∪R) \H : (X, open) ∈ Π return False

elseif (m∗, ·, X∗0) ∈ List or (m∗, ·, X∗1) ∈ List return False

elseif X∗0 ∩H = ∅ or X∗1 ∩H = ∅
or (X∗0∆X∗1) ∩R 6= ∅ return False

elseif b′ = b return True

else return False

Figure 7: Security game for anonymity. Oracles denotes
the set of oracles the adversary has access to, specifically
{Add2U,Corrupt,Add2G,Append2G, Sign, SigOpen,Remove2G,Delete2G}. We let
∆ denote the symmetric difference operator for two sets (elements in exactly one of
the two sets).

the keys it already has. The oracle runs
∑
.RevokeMember(j; {rki}i∈X) and

adds j to R.

• Delete2G(j,X): To remove the existing party with identifier j from the group
G using the keys of parties in set X where X ∩H = ∅. The oracle removes j
from G and adds j to R.

Game setup. In the beginning of each security game, the sets U , H, R and
List are set to empty. In the anonymity game Expanonymity∑

,A,λ , we additionally

initialize the challenge signature C to ⊥ and sample a random challenge bit
b. A then gains access to the oracles Add2U and Corrupt using which it can
add parties to the universe and corrupt some/all of them. A chooses a start-
ing group G (⊆ U), group structure Π and hands them over to C. C runs∑
.KeyGen(1λ, G,Π) to obtain (gvk, {gski, iki, oki, rki}i∈G) and hands to A the

state = (gvk, {gski, iki, oki, rki}i∈G\H) .

Unforgeability game Expforgery∑
,A,λ. In the unforgeability game, A, with access

12

Exprevocability∑
,A,λ

U = ∅, H = ∅, R = ∅, List = ∅

(G,Π, state)← AAdd2U,Corrupt(1λ)

if G 6⊆ U, return False

(gvk, {gski, iki, oki, rki}i∈G)←
∑

.KeyGen(1λ, G,Π)

state = (gvk, {gski, iki, oki, rki}i∈G\H)

(m∗, σ∗, X∗)← AOracles(state)

Z ←
∑

.SigOpen(m∗, σ∗; {oki}i∈X∗)

if
∑

.Ver(m∗, σ∗; gvk) = 0 return False

elseif Z 6⊆ G return True

else return False

Figure 8: Security game for revocability. Oracles de-
notes the set of oracles the adversary has access to, specifically
{Add2U,Corrupt,Add2G,Append2G, Sign, SigOpen,Remove2G,Delete2G}.

to all the oracles described in Figure 4 and Figure 5, attempts to exhibit a valid
(checked by

∑
.Ver) non-replayed (checked by List) message-signature pair that

opens to a set containing an honest party. Since A did not have access to the
keys of that honest party, this would count as a forgery. Expforgery∑

,A,λ outputs True

if the adversary succeeds in exhibiting such a message-signature pair. Otherwise,
Expforgery∑

,A,λ outputs False.

Anonymity game Expanonymity∑
,A,λ . In the anonymity game, A, with access to

all the oracles described in Figure 4 and Figure 5, chooses a message and two
sets of parties, each containing an honest party, and each containing no revoked
parties (these checks are merely to ensure that both sets of parties can generate
signatures but the adversary cannot generate signatures on behalf of either set
of parties), and hands them over to C. C then generates the challenge signature
Chall, using the keys of one of the sets as determined by the challenge bit b that
it chose at the beginning of the game. After receiving the challenge signature, A,
with continued access to all the oracles described in Figure 4 and Figure 5, tries
to disambiguate the challenge signature. In doing so, A outputs a bit b′, which
if equal to b, constitutes a breach of anonymity and a win for A. However, if A
invoked oracles during the game that helped trivially disambiguate the challenge
signature, then it does not win. This includes the following cases: (a) A has the
keys corresponding to a set of parties with opening privileges, that is, A has the
ability to open the challenge signature and trivially break anonymity; (b) A has
effectively seen the challenge signature before (checked by List, more on this in
Remark 5); (c) A has revoked parties such that verifying the challenge signature
would reveal the set of parties used in its creation (that is, there is a revoked

13

Exptraceability∑
,A,λ

U = ∅, H = ∅, R = ∅, List = ∅

(G,Π, state)← AAdd2U,Corrupt(1λ)

if G 6⊆ U, return False

(gvk, {gski, iki, oki, rki}i∈G)←
∑

.KeyGen(1λ, G,Π)

state = (gvk, {gski, iki, oki, rki}i∈G\H)

(m∗, σ∗, X∗, Y ∗, r)← AOracles(state)

Z′ ←
∑

.SigOpen(m∗, σ∗; {oki}i∈X∗)

Z′′ ←
∑

.SigOpen(m∗, σ∗; {oki}i∈Y ∗)

Z′′′ ←
∑

.SigOpen(m∗,
∑

.Sign(m∗; {gski}i∈X∗ , r); {oki}i∈Y ∗)

if
∑

.Ver(m∗, σ∗; gvk) = 0 return False

elseif {(m∗, σ∗, X∗), (m∗, σ∗, Y ∗)} ⊂ List return True

elseif Z′ = ⊥ or Z′′ = ⊥ or Z′′′ = ⊥ return True

elseif Z′ 6= Z′′ return True

elseif (m∗, σ∗, ·) ∈ List and (m∗, σ∗, Z′) 6∈ List return True

elseif Z′′′ 6= X∗ return True

else return False

Figure 9: Security game for traceability. Oracles de-
notes the set of oracles the adversary has access to, specifically
{Add2U,Corrupt,Add2G,Append2G, Sign, SigOpen,Remove2G,Delete2G}.

party that belongs to exactly one of the sets6). If none of these cases occurs
and A did disambiguate the challenge signature successfully, this would count
as a breach of anonymity and Expanonymity∑

,A,λ outputs True. Otherwise, Expanonymity∑
,A,λ

outputs False.
Revocability game Exprevocability∑

,A,λ . In the revocability game, A, with access to

all the oracles described in Figure 4 and Figure 5, attempts to exhibit a valid
(checked by

∑
.Ver) message-signature pair that opens to a set containing a

revoked party. (Technically, this is noted as Z 6⊆ G and not Z ∩ R 6= ∅. This
is to cover the “impossible” cases of Z containing a party in U \ (G ∪ R)).
This would count as a breach of revocability and if the adversary succeeds in

6To be precise, this condition is more than what is required. All we need is that A never
revoked a party that belonged to exactly one of the sets at a time when neither set contained
a revoked party (and hence revoking this party would have implied different pre- and post-
revocation behaviors for

∑
.Ver). This can be captured in our game precisely by having a flag

that would be updated by the oracles Remove2G and Delete2G. For ease of exposition, we
choose to stick to this stronger condition that A has to satisfy, but note that the definition can
be easily modified to support this and that our constructions do indeed satisfy this stronger
notion of security.

14

exhibiting such a message-signature pair, Exprevocability∑
,A,λ outputs True. Otherwise,

Exprevocability∑
,A,λ outputs False.

Traceability game Exptraceability∑
,A,λ . In the the traceability game, A, with access

to all the oracles described in Figure 4 and Figure 5, attempts to exhibit a valid
(checked by

∑
.Ver) message-signature pair that violates the traceability of the

scheme. Amay do so in the following ways: (a) A demonstrates a valid message-
signature pair generated by the Sign oracle (checked by List) twice, with two
different sets of creating parties; (b) A demonstrates a valid message-signature
pair along with a set of opening parties that fails to open the signature; (c) A
demonstrates a valid message-pair and two sets of opening parties that open the
signature to two different sets of creating parties; (d) A demonstrates a valid
message-signature pair that was generated by the Sign oracle (checked by List)
with one set of creating parties, and a set of opening parties that opens the
signature to another set of creating parties; and (e) A exhibits a message, a set
of creating parties and the randomness (More on this in Remark 5) required
to generate an “untraceable” signature–this signature when opened by a set
of opening parties demonstrated by the adversary opens to a different set of
creating parties. If any of these cases occurs, A did succeed in demonstrating a
breach of traceability of the scheme and Exptraceability∑

,A,λ outputs True. Otherwise,

Exptraceability∑
,A,λ outputs False.

Definition 1. A managerless group signature scheme
∑

=
∑w/o manager

Group is said
to be secure if, for any probabilistic polynomial time (PPT) adversary A, the
advantage of the adversary in the unforgeability, anonymity, revocability and
traceability games, as defined below, are negligible in λ:

Advforgery∑
,A,λ = Pr

[
Expforgery∑

,A,λ = True
]

Advanonymity∑
,A,λ =

∣∣∣∣Pr
[
Expanonymity∑

,A,λ = True
]
− 1

2

∣∣∣∣
Advrevocability∑

,A,λ = Pr
[
Exprevocability∑

,A,λ = True
]

Advtraceability∑
,A,λ = Pr

[
Exptraceability∑

,A,λ = True
]

3.3 Discussion

Noted below are a few observations given some of the choices underlying our
security definition.

Remark 1. Once the adversary corrupts a party, it can never “un-corrupt”
it. Hence, once a party has been corrupted, we do not provide any security
guarantees for that party.

Remark 2. We assume that all changes to Table are performed entirely hon-
estly, that is, in accordance with the changes that are specified by the protocols

15

AddMember and RevokeMember. We stress that this is not limiting; this as-
sumption is in accordance with our constructions as well as applications, where
parties who wish to alter Table must generate a proof that shows that the changes
made were indeed correct. Thus, when such changes do not involve any honest
parties within our security game, we assume that the adversary communicates
the change to the challenger by invoking the oracles Append2G and Delete2G
right after making such changes. In the context of our application, edit access
to Table would be restricted in a manner so as to ensure correct changes. Fur-
thermore, for changes to G to take effect functionally in terms of generating
signatures, etc., it is imperative that Table be updated accordingly, which would
correspond in our security game to invoking the oracles Append2G and Delete2G.
Additionally, when a new member is added to the group by corrupt parties alone,
we require that the adversary honestly provide the keys of the added member to
C. We stress that this is not a limiting constraint and is merely for book-keeping
and ease of exposition. An underlying assumption with regards to this, however,
is that any party picks their keys at the times of their addition to the group and
that they use these keys while performing subsequent operations. This can and
will be enforced by the integrity of Table in our constructions.

Remark 3. We do not allow the adversary to add a revoked member back into
the group again. This is merely to simplify the exposition. With some more book-
keeping, it is possible to allow the adversary to add revoked members back into
the group, without any change to security guarantees that are already offered.

Remark 4. We do not consider it a security breach if revoked members open
signatures that were generated after they had been revoked. We discuss this in
more detail while describing our construction of a managerless group signature
scheme, but at a high-level, we note that if this were not the case, then, when a
member is revoked, other members would necessarily have to interact and refresh
their keys. It is possible to include such a protocol in the syntax of the scheme
and then one could provide a stronger guarantee that revoked members lose their
opening privileges. For efficiency concerns, we omit such a re-keying protocol
from the syntax of our scheme and hence also allow for revoked members to
continue opening signatures. While revoked members may still attempt to add
new members by interacting with them and helping them generate their own
new (potentially valid) keys, they will never be able to successfully add new
members. The reason is that revoked members as well as users who interacted
with a revoked (at the time) member in an attempt to be added to the group will
not be able to generate signatures that verify. This will be ensured because of
Table being refreshed when a member is revoked. Additionally, such members
will not be able to revoke other members as well, since revocation would involve
refreshing Table in a verifiable way, where the identities of the parties performing
the revocation is public. Thus, informally, revoked members as well as users who
interacted with a revoked (at the time) member in an attempt to be added to the
group will be able to open signatures but not add or revoke other members. Note
that in a sense, users who interacted with a revoked (at the time) member in an
attempt to be added to the group are functionally similar to revoked members

16

themselves.

Remark 5. In our security definition, we implicitly account for the signature
scheme’s signing algorithm possibly being deterministic. That is, it would be
possible for such a scheme to still be secure under our definition. This is done
through a myriad of checks sprinkled throughout the game, for example, the ad-
versary is not allowed to see a signature on a message created by some set of
parties and then challenge anonymity with that very message and set of par-
ties; if signing were deterministic, an adversary who is allowed to make such
challenges can trivially break anonymity. It is thus important to note in this
context that if one had additional guarantees regarding the signature scheme,
for instance that signing is “well-randomized”, one would potentially be able to
come up with a game where the adversary has additional capabilities and thus
put forth a definition that provides stronger security guarantees. We however
do not go into these enhancements for the purposes of our work.

4 Building MGS for FIDO

4.1 Supporting Unilateral Adds

A näive approach to support a group of signers would be to simply share the
secret key with all members of the group. However, sharing secret keys with
additional parties is something which the FIDO and WebAuthn standards dis-
courage. See for example the definition7 of a “credential private key” where it
states the “private key . . . is expected to never be exposed to any other party”.
Instead we will support groups where each member holds a different secret key
but these are all verified by the same public key. One of the important design
considerations is the group structure we would like to support. In this work, we
will always support unilateral signing of messages, that is, any single current
group member can sign messages on their own. In our first construction, we
would like to support unilateral adding of members, that is, any single current
member of the group can add a new member on their own. This group structure
has some consequences, which we also discuss.

A simple way to construct a group signature scheme where any single existing
member of the group can unilaterally add a new member is as follows. Consider
a regular signature scheme where all members of the group will possess the
secret signing key. Clearly, any member of the group can unilaterally add a new
member by giving them the signing key as well. While this is technically correct,
for applications which might use such a primitive, an added restriction is that
parties may not share keys.8 We show that by using signing key re-randomizable
signature schemes, we can make the previous idea work. At a high-level, while
added a new member, the existing member does not share their own key, but
rather “re-randomizes” their key to provide a new key for the new member.

7https://www.w3.org/TR/webauthn-2/#credential-private-key
8Alternatively, secret keys may not leave the device.

17

https://www.w3.org/TR/webauthn-2/#credential-private-key

Formally, let
∑

SR be a signing key re-randomizable signature scheme with

protocol ΠReRand for FReRand. We define a group signature scheme
∑w/o manager

Group,unilateral+

for a group G with the unilateral-add group structure consisting of |G| = n
members without a group manager to consist of the following protocols:

• KeyGen(1λ, G): Samples (vk, sk)←
∑

SR.KeyGen(1λ) and sets gvk = vk. Then,
for each i ∈ [|G|], the algorithm runs ΠReRand (playing the role of both parties)
for the scheme

∑
SR using input sk to obtain iki. Set gski = iki.

• AddMember(j, iki): Parties i and j run ΠReRand using iki as i’s input with j
obtaining gskj = ikj .

• Sign(m; gski): Generates σ ←
∑

SR.Sign(m; gski).

• Ver(m,σ; gvk = vk): Outputs
∑

SR.Ver(m,σ; vk).

Notice that the above scheme is fully-anonymous. In fact, it is not possible to
learn the identity of the signer of a message from the signature. Indeed, sig-
natures created by all members are identically distributed as they are simply
signatures from a single regular signature scheme. Thus, revocation, in this
context, would essentially necessitate re-keying the entire scheme. This is the
reason for omitting oki, rki, SigOpen and RevokeMember from the description.
Owing to these syntactic differences and the stronger anonymity we achieve in
this case, we make the following formal claim regarding the anonymity of our
construction (rather than working with the definition of anonymity in Defini-
tion 1).

It is easy to see that the anonymity guarantee provided by Lemma 1 is at
least as strong as that guaranteed in Definition 1 as the adversary’s capability in
Lemma 1 is strictly stronger than in Definition 1 (barring the ability to revoke
members and open signatures) as the adversary has access to keys of not just
the corrupt parties but also the honest parties.

Lemma 1. Let
∑

1 =
∑w/o manager

Group,unilateral+ be the group signature scheme defined
above. Assuming

∑
SR is a secure signing key re-randomizable signature scheme,

for any adversary A, the quantity Advstrong−anonymity∑
1,A,λ

is 1
2 , where Advstrong−anonymity∑

1,A,λ

18

is defined to be

Pr

G← A
(gvk, {gski, iki}i∈[|G|])←

∑
1.KeyGen(1λ, G)

Q = {gvk} ∪ {gski, iki}i∈[|G|] ikj ← A(Q)
(gsk, ik)←

∑
1.AddMember(ikj)

Q = Q∪ {gsk, ik}

j

m← A(Q)
I0, I1 ← [|G|] : I0 6= I1, b← {0, 1}

σ ←
∑

1.Sign(m; gskIb) ikj ← A(Q)
(gsk, ik)←

∑
1.AddMember(ikj)

Q = Q∪ {gsk, ik}

j

b′ ← A(Q, I0, I1,m, σ)

: b = b′

Proof. The proof of the lemma is rather straightforward. Indeed, the entire
view of A, prior to the sampling of I0, I1 and b, reduces to the key-pair
(vk, sk) sampled during

∑
1.KeyGen as (vk, sk) ←

∑
SR.KeyGen(1λ), where

∑
SR

is a signing key re-randomizable signature scheme. Furthermore, it is also
straightforward to observe that for m chosen by the adversary, the distribu-
tions {

∑
1.Sign(m; gskI0)}, {

∑
1.Sign(m; gskI1)} and {

∑
SR.Sign(m; sk)} are

identical. Hence, the probability that A guesses b′ = b is exactly 1
2 .

5 Applying MGS to FIDO

5.1 Overview of FIDO User Authentication

FIDO’s Universal Authentication Framework (UAF) protocol [21] uses public-
key cryptography in conjunction with a local authentication such as PIN, pass-
word, or biometrics on a user device such as a smartphone or laptop (FIDO UAF
authenticator) for remote user authentication by a relying party server (FIDO
server). Another FIDO protocol called the Universal 2nd Factor (U2F) [20]
allows a relying party server to request a second factor for stronger two-factor
authentication using the same FIDO challenge-response cryptographic protocol.
Later on, FIDO alliance worked jointly with the Worldwide Web Consortium
(W3C) to introduce the second generation of FIDO protocols commonly called
FIDO2. Figure 12 in Appendix A shows the registration and authentication
flows.
Registration. When a user intends to register a FIDO authenticator associated
with an account with a relying party FIDO server, the authenticator generates a
unique public-private key pair, corresponding to the user account and associated
relying-party service. The private key is stored securely on the authenticator
and the public key is registered with the server.
Authentication. When a relying-party service intends to authenticate the
user, the FIDO server sends a challenge to the FIDO authenticator through the

19

client. This challenge prompts the user to use a registered FIDO authenticator.
Local user authentication unlocks the corresponding private key stored on the
authenticator which is used to sign the server’s challenge. The signed challenge
is sent to the server and verified using the corresponding registered public key
for user authentication.

5.2 Enrollment & Authentication using MGS

The proposed group signature protocol can be used for user authentication,
either as a passwordless or second-factor authentication mechanism. Similar to
FIDO authentication, we consider three main entities: 1) a client machine C on
which the user initiates a login session. 2) a relying party server S enrolling and
authenticating users, and 3) Group of Devices D1, . . . , Dn serving as external
(roaming) authenticators. We assume that all these entities run an application
supporting our protocol, e.g., an app on a smartphone and browser extension
on the client. The interaction between the server and device is handled through
the client. Specifically, the client interacts with the server to receive a challenge
message and passes it to a subset of devices in the group, who will sign the
challenge as evidence that registered devices are available during authentication.
The client receives the response from the devices and sends it to the server for
verification.

Setup: setup runs among the parties to establish a secure connection. This
setup can be run prior to or during new device registration and consists of the
following processes:

• SetupD: the setup process running between devices to discover each other
and run a key exchange to secure their connection.

• SetupD−C : the setup process running between device(s) and the client to
establish a secure connection.

• SetupC−S : trivially the client to server connection is secured using common
techniques such as TLS over the internet.

While the setup process is out of the scope of our protocol, we can consider
that this procedure is performed by the user. For example, the user connects
the client and their devices to the same network (or turns on Bluetooth), installs
the client browser extension, installs the app on the devices, connects devices
with each other and pairs devices with the client. In FIDO, each authentica-
tor is registered independently with the relying party and hence a connection
between devices is not needed. Therefore, SetupD is specific to our protocol,
while other parts of the setup process are implicitly required by FIDO, too.
Similar to our approach, the Yubico backup and recovery proposal [23] assumes
a communication channel between authenticators.

Registration (adding device(s) for the first time): registration (a.k.a.
enrollment) is done using the KeyGen protocol of the managerless group sig-
nature scheme. It runs between the new device(s) and the server to sign up

20

the first authenticator(s) with the authentication protocol offered by the server.
The (gski, gvk) key pair is generated on device i using the KeyGen protocol of
the managerless group signature scheme. The device stores gski securely and
gvk is transferred to the server. The list Table that is part of the managerless
group signature scheme is created and maintained on the server. As part of the
KeyGen protocol, a new entry would be added to Table which can be referenced
by a device nickname. At the end of this phase, a round of authentication can
take place to verify the enrollment. This stage is similar to registering to FIDO
authentication with a server and adding a FIDO-enabled security key. The main
difference is the type of the key-pair generated on the device.

The user interaction flow can remain similar to FIDO authentication enroll-
ment. The user logs in to the server using the first authentication factor (e.g.,
username and/or password) to enroll in the service. The server sends a request
to the client for it to obtain and pass the group public key gvk to the server.
The client forwards the message to all connected devices known through the
SetupD−C . The user receives a notification on all devices but may approve the
registration on only one of the devices (lets say Di which consequently runs
the KeyGen protocol with all other connected devices known through SetupD.
At this stage the user may also get the option to form a group of devices she
wishes to correspond to the enrolling service/account. For example, the user
may select only her work laptop and work smartphone when registering to a
FIDO service to access workplace services. Hence, only the two devices run the
KeyGen protocol. At the end of this round, the gvk and a list of all members
of the group are passed to the server through the client and updated on the
client and the server. Parties can run one authentication attempt to validate
the protocol.

Authentication: The authentication flow is similar to FIDO user authentica-
tion (Figures 1(b) and 12(b)). The server sends a one-time nonce through the
client to the registered devices. The user can attend (or locally authenticate to)
any of the available devices, which sign the challenge (the nonce and any input
from the client), using the Sign protocol of the managerless group signature
scheme. The response is returned to the server and the signature is verified
using the Ver protocol of the managerless group signature scheme.

Client Sync: Authentication from a new client does not require re-enrollment.
However, the setup should happen between devices and the new client.

Add extra device(s): After the initial registration of the first authenticator(s),
adding extra devices only relies on the AddMember protool of the managerless
group signature scheme. To add additional devices the user first runs a setup
processes to establish connections to the new device. On any of the previously
enrolled devices, the user selects services that the new device should be enrolled
with and runs the AddMember protocol to add the new group member. Depend-
ing on the group structure that the user wants, this step would involve one or
more registered authenticator(s) to participate in addition to the new authen-
ticator. The system can update the device list (Table) on the server during the
first authentication attempt from the new device. Unlike the enrollment of the

21

initial devices, adding a new member can run only between the user’s devices
and does not require the devices to interact with the server. However, to keep
the user flow similar to FIDO, the user can initiate the process on the client
(Figure 1(a) and 12(a)).

Revocation: In case one of the devices gets lost, the user can run the RevokeMember
protocol of the managerless group signature scheme between (some subset of)
registered devices to remove the lost device from the group and update the list
(Table) on the server accordingly after the revocation (either immediately or
during the next authentication call). Similar to the FIDO protocol, such revo-
cation is important to make sure that the lost device does not take part in future
login attempts, particularly when local authentication to the authenticator is
not in place.

Quorum-based addition and revocation: As discussed in Section 7.1, when
adding or revoking members, we can also use the threshold version of our man-
agerless group signature scheme, thereby requiring a threshold number (a tun-
able parameter) of devices to participate in the add or revoke member protocols
and provide protection against maliciously added devices gaining control of the
group.

Multiple Relying Parties: A major advantage of our approach is that it
streamlines the enrollment of backup devices across relying parties. While other
approaches require enrollment of a backup device/authenticator with each rely-
ing party account of a user, we instead can run multiple instances of the group
signature protocol among the backup devices. When enrolling a new backup
device, we run the registration for each protocol instance concurrently (without
any need to contact the individual relying parties).

5.3 Security in FIDO

The FIDO Security Reference [19] defines the exact security properties required
in the FIDO setting. The two properties relevant in the context of this work
are Unforgeability [19, cf. SG11] and Unlinkability [19, cf. SG4]. Earlier work
by Barbosa et al. [8] performed a detailed analysis of the FIDO 2.0 protocol
focusing on unforgeability and we can reuse some of their results here.

Security Model. First let us recap the model and assumptions made by
Barbosa et al. [8]. In their analysis they consider WebAuthN as a Passwordless
Authentication protocol (PlA), between three parties: an authenticator (held by
the user - referred to by Barbosa et al. as a token), a client (such as web browser),
and a relying party server. We make no assumptions about the communication
channels between parties. Authenticators are assumed to be tamper-proof, and
have an attestation keypair injected at manufacture with a certified root pre-
registered with relying parties.

The PlA protocol will perform two operations: enrollment (registration) and
authentication. At a high-level, a PlA is secure (unforgeable) if, when a relying
party successfully completes the authentication protocol, there exists a unique
authenticator that has engaged in the same session of the protocol.

22

Unforgeability. The following result by Barbosa et al. [8], showed that the
WebAuthN protocol is a secure PlA protocol given the underlying signature
scheme is unforgeable.

Theorem (Theorem 1 of [8] restated). Assuming H is a collision resistant
hash function, and the signature scheme sig is existentially unforgeable, then
WebAuthn is a secure PlA protocol.

The current Webauthn protocol is instantiated using RSASSAPKCS1-v1 5
and RSASSA-PSS which we know to be existentially unforgeable in the random
oracle model. This result also shows that we could securely use WebauthN with
our new group signature scheme since it is also unforgeable (Theorem 1).

Unlinkability. The FIDO Security Reference defines unlinkability as the
ability to protect the protocol conversation such that any two relying parties
cannot link the conversation to one user (i.e. be unlinkable). Prior work on
analyzing this property from a symbolic perspective has been performed by
Feng et al. [18].

Assuming the same security model as above we can make more straightfor-
ward arguments (without a mathematical security definition) about the unlink-
ability of our scheme:

1. As each group generates a unique group verification key for each relying
party. This is equivalent to the standard FIDO approach where a unique
key pair is generated when enrolling with new relying parties as analyzed
by Feng et al. [18]. Hence linking across parties based on public keys is
not possible.

2. Moreover, in the full version of the paper we show that our MGS scheme
additionally achieves anonymity properties and hence it is not possible to
determine which member of the group signed a message. It is therefore
impossible to link signed messages according to their creator. While this
is not required by FIDO it is still a desirable property to achieve.

6 Implementation and Evaluation

6.1 System Implementation and Setup

To study the feasibility of the system and understand its performance, we de-
ployed a proof of concept implementation of the system. We developed a web
server application that verifies the username and password as the first factor
and runs our managerless group signature protocol to validate the presence of
a registered device. Following applications and services were developed as part
of the proof of concept.

• The managerless group signature library to generate signing key pairs, add a
new member to a group, sign a message, and verify a signature. We imple-

mented our protocol
∑w/o manager

Group,unilateral+ from Section 4.1 that supports unilateral

23

signing and unilateral addition of members. We implement two versions of our
scheme: one based on Schnorr [39] and the other based on ElGamal [24] signa-
ture schemes as the underlying signing-key rerandomizable signature schemes.
We used the following libraries as part of this implementation: BouncyCas-
tle [13], and SpongyCastle [41].

• An Android app developed in Java for Android that can generate a signature,
add new members, and being added as a member to a group using our group
signature library. The app receives a challenge from the client, signs the
challenge, and returns the response to the client.

• A Chrome browser extension developed in Javascript that communicates with
the web server to receive a nonce, transfer it to the device, receive the response
from the device, and relay it to the web server.

• An authentication server developed in Java for generating a challenge and
verifying the response. Signature verification uses our group signature library.

• A web server running PHP and Javascript scripts to interact with the user
(receiving username and password), to communicate with the authentication
server to receive the nonce and send the response, to communicate with the
browser extension to send the nonce and receive the response. The webserver
and the authentication server can be considered as one entity, namely the
relying party.

• Communication between the web server and server happens over the internet
using UDP sockets, where the authentication server runs the UDP server
and the web server runs the UDP client part. Communication between the
client and the web server is facilitated using Chrome messaging API. A client-
server UDP communication runs between the devices and Chrome browser
extension.

6.2 Performance Evaluation

We implement our group signature schemes (both using Schnorr and ElGamal)
using the standard P-256 256-bit prime field Weierstrass elliptic curve (also
known as secp256r1 and prime256v1). We report the execution and commu-
nication cost of our protocol, averaged over 10000 iterations, in Table 1. In
this evaluation, all entities are connected to the same WiFi local network. The
relying party is executed on a HP Envy x360 laptop with Intel Core i7-6500U
processor and 16GB memory running Ubuntu 20 operating system. The client
machine is a Macbook Air with 1.3GHz Intel Core i5 and 4GB of memory. We
executed the android app on a Huawei Honor 7X with Kirin 659 processor and
3GB memory. As shown in Table 1 and 2, the cryptographic operations are
lightweight and the total execution cost for one round of authentication on a
local network is about 100ms. We compare our performance with that of the
ECDSA signature scheme [30] using NIST P-256 curve, which is suggested as

24

part of the FIDO2 specification. Our ECDSA implementation uses Java Secu-
rity Library and follows the example given in [35].

Table 1: Average communication and running time of cryptographic operations used
in the managerless group signature scheme vs that of the ECDSA scheme used in
FIDO2. Time is shown in milliseconds; n is the number of public keys registered for
a user account (i.e number of authenticators).

Signature El Gamal Schnorr ECDSA
Curve Type secp256r1
Key Gen 3.12 3.26 1.58
Signing 3.07 3.18 2.23
Verification 6.20 4.93 n x 2.22
Add Member 0 1.58
Communication ≈ 1 ms

Inferences. We observe that the cost of our key generation and signing algo-
rithms, is comparable to ECDSA. Our verification algorithm has a fixed cost
since there is only a single group public key, while in the case of ECDSA, each
authenticator has a different public key and hence, the verification needs to be
processed with each of them. The biggest advantage of our scheme is in the
cost of adding a new member – it is almost negligible since it only involves re-
randomizing an existing key. However, in the ECDSA version used currently in
FIDO2, adding a member requires running the key generation algorithm again.
For communication, as part of key generation, the user sends one message from
the new device to the server. When adding a member, the old member sends
one message to the new one being added. The signing and verification are
non-interactive.

Given the low cryptographic operation costs that are comparable to ECDSA
(and similar to that of the current FIDO specification), the protocol works well
even on resource constrained devices. In this evaluation, we did not include the
cost of system setup (not the key generation) as it happens only once.

With respect to user interaction model, user authentication flow is similar
in our method and FIDO2 as shown in Figure 1(b) and 12(b). In both case,
the user starts the login from the client machine, and approves the login on
any of the authenticators, for example by using FaceID to locally authenticate
to the smartphone. The key difference between our technique and FIDO2 is
registration of a new authenticator, as shown in Figure 1(a) and 12(a). While
in FIDO2, each authenticator is enrolled independently with the relying part, in
our technique, the two authenticators communicate to add the new authentica-
tor as to the group. From the user’s interaction perspective this process can be
similar to FIDO2 registration. Of course, we need to assume a communication
channel has been setup between the two authenticators. Note that the com-
munication channels are often in place specially when authenticators are users’
personal devices such as laptops and smartphones. Hence, the usability of the

25

proposed system is similar to FIDO2 and has previously been studied in depth
(e.g., [14, 32, 15]).

Table 2: Group operations in the managerless group signature scheme vs that of
the ECDSA scheme used in FIDO2. Mul denotes multiplication and Exp denotes
exponentiation; n is same as in the previous table.

Signature Schnorr El Gamal ECDSA
Mul Exp Mul Exp Mul Exp

Key Gen 0 1 0 1 0 1
Signing 0 1 0 1 0 1
Verification 1 2 1 3 n 1 + n
Add Member 0 0 0 0 0 1

7 MGS with Full Security

The unilateral adds scheme from Section 4.1, while being fully anonymous and
sufficient for the FIDO context, is not traceable at all. This additional no-
tion is not needed for FIDO but is of theoretical interest when construct the
best possible MGS scheme. One could now ask if not achieve it is a drawback
of our first scheme or a consequence of the group structure itself. To better
understand the situation, we posit that there is a way for parties to uniquely
identify themselves.9 For our scheme to be traceable, it should be possible to
“open” a signature and determine the identity of its signer. At a high level,
since a single member was able to unilaterally add a new member, an adver-
sarial member could unilaterally “add” an old member once again. That is, an
adversarial member can “manufacture” valid credentials, unless there is some
public information that hides and yet authenticates the credentials of members.
Essentially, when a member is added, the party adding them needs to generate
some public certificate that hides the new member and yet allows it to authen-
ticate itself with respect to this certificate. An underlying assumption is that
parties cannot alter this public information arbitrarily, but only do so under
some moderation. Therefore, an adversary cannot re-write this information in
an attempt to generate some other certificate for another party. Since the new
member alone will be able to prove knowledge of the secret information that
was agreed upon when they joined the group (that is, authenticate itself with
respect to this certificate), an adversary cannot re-use this public certificate on
behalf of any other party. To avoid timing attacks, as well as members being
added without their consent, there must be a mechanism for parties to explicitly
prove their interest in joining the group. With these assumptions in place, using
ideas from [9], we can extend our scheme from the previous section to also be
traceable. Further discussion on how our extended scheme captures traceability

9We can assume that there is some sort of identity platform in place. This is done to avoid
the case of an adversary simply creating spurious “ghost” parties.

26

can be found in the full version of the paper.
We prove the security of our construction in Figure 11 in Appendix F. For

completeness, we present the formal theorem statement proving security here.

Theorem (Theorem 1 from Appendix F). Assuming Com is a computation-
ally hiding and perfectly binding commitment scheme,

∑
SR is a secure signing

key re-randomizable signature scheme, Γ is a CCA2-secure public key encryp-
tion scheme and NIZK is a a non-interactive zero-knowledge argument, scheme∑w/o manager

Group (Figure 11) is a dynamic managerless group signature scheme that
satisfies Definition 1 with respect to group structure Πuni.

7.1 Further Extensions

Forward Security. As in the case of [9], we observe that our group signature
scheme achieves forward security if the underlying signing key re-randomizable
signature scheme

∑
SR is forward secure. That is, if

∑
SR is forward secure,

any adversary A would not be able to produce valid signatures for an earlier
time period given only keys corresponding to a later one. Also, as noted earlier,
achieving signing key re-randomizability is straightforward in most signature
schemes, including forward secure ones.
Supporting Threshold Group Structures. In order to support thresh-
old group structures, we simply distribute all keys in an appropriate threshold
manner. Note that simple Shamir secret sharing suffices. Furthermore, Shamir
secret sharing allows us to generate fresh shares, given the secret, which can
be done using a simple multi-party computation protocol.10 This would be of
importance while adding or revoking new members.
Symmetry of Group Members. A final note we present is regarding the
possibility of the group structure being asymmetric towards group members.
For instance, this may also mean that not all parties have the same signing,
adding, opening and/or revoking capabilities. It is important to note that
different (possibly asymmetric) group structures may allow for more efficient
schemes, involving fewer or more efficient instances of multi-party computation
protocols.

8 Conclusion

We propose a method that inherently enables multiple FIDO authenticators per
user account for account recovery. The proposed method organizes FIDO au-
thenticators into groups and assigns each authenticator in a group a unique pri-
vate key for an account with a relying party. Each authenticator in a group can
sign relying party challenges independently using its own private key. However,
the relying party server can use the same verification key to validate challenges

10This would be a simple polynomial interpolation, but there may be other, more efficient
options involving threshold cryptography and/or other threshold sharing schemes.

27

∑w/o manager
Group

Technical Ingredients: A commitment scheme Com, signing key re-randomizable
signature scheme

∑
SR with protocol ΠReRand for FReRand (with associated simulator

SimReRand), a CCA2-secure public key encryption scheme Γ and a non-interactive
zero-knowledge argument NIZK.

KeyGen(1λ, G,Πuni):

• Sample pp ← Com.Gen(1λ), crs ← NIZK.CRSGen(1λ), (vk, sk) ←
∑

SR.KeyGen(1λ)
and (ek, dk)← Γ.KeyGen(1λ).

• Sample random values r, ω and commitment com = Com(r;ω). Set gvk =
(pp, crs, vk, ek, com,Table) where Table = ⊥.

• For each i ∈ [|G|],

– Run ΠReRand (playing the role of both parties) using input sk to obtain ski.

– Compute commitments comi,1 = Com(ri;ωi), comi,2 = Com(αi; ·) using random-
ness ri, ωi, αi.

– Compute ciphertext cti = Γ.Enc((comi,1, comi,2); ek, βi) using randomness βi.

– Set gski = (ski, ri, ωi, comi,2, βi), iki = (ski, dk, r, ω), oki = dk and rki =
(r, ω, ri, ωi, comi,2, βi).

– Set Tablei = (cti, INIT, IN).

– Add ({i}, add), ({i}, sign), ({i}, open) and ({i}, revoke) to Π.

AddMember(j; iki = (ski, dk, r, ω)):

• Parties i and j run ΠReRand using ski as i’s input with j obtaining skj . Party i also
passes along (dk, r, ω) to party j.

• Party j computes commitment comj,1 = Com(rj ;ωj) using random values rj , ωj .

• Party i computes commitment comj,2 = Com(αj ; rj,2) using random values αj , rj,2.

• Parties i and j then exchange comj,1 and comj,2.

• Party j computes ciphertext ctj = Γ.Enc((comj,1, comj,2); ek, βj) using randomness
βj . Sends (ctj , βj) to party i.

• Party i computes π ← NIZK.Prove(stmtadd; [ri, ωi, comi,2, βi, comj,1, αj , rj,2, βj])
where stmtadd = (i, ctj , gvk) and the relation is de-
fined by: ∃ [ri, ωi, comi,2, βi, comj,1, αj , rj,2, βj] : Tablei =
(Γ.Enc((Com(ri;ωi), comi,2); ek, βi), ·, IN) and ctj =
Γ.Enc((comj,1,Com(αj ; rj,2)); ek, βj) and sets Tablej = (ctj , (i, π), IN).

• Party i adds j to G and ({j}, add), ({j}, sign), ({j}, open) and ({j}, revoke) to Π.

• Finally, party j sets gskj = (skj , rj , ωj , comj,2, βj), ikj = (skj , dk, r, ω), okj = dk and
rkj = (r, ω, rj , ωj , comj,2, βj).

Figure 10: Our dynamic managerless group signature scheme
∑w/o manager

Group (Part 1/2).

28

∑w/o manager
Group

Sign(m; gski = (ski, ri, ωi, comi,2, βi)):

• Generate signature σ′ ←
∑

SR.Sign(m; ski). Compute ciphertext ct =
Γ.Enc([i, σ′]; ek, r) using randomness r.

• Compute proof π ← NIZK.Prove(stmtsign; [i, σ′, r, ri, ωi, comi,2, βi]) where
stmtsign = (m, ct, gvk) and the relation is defined by: ∃ [i, σ′, r, ri, ωi, comi,2, βi] :∑

SR.Ver(m,σ′; vk) = 1, ct = Γ.Enc([i, σ′]; ek, r) and Tablei =
(Γ.Enc((Com(ri;ωi), comi,2); ek, βi), ·, IN).

• Set σ = (ct, π).

SigOpen(m,σ = (ct, π); oki = dk):

Output ⊥ if Ver(m,σ; gvk) = 0. Else, compute plaintext [i, σ′] = Γ.Dec(ct; dk) and
output i.

RevokeMember(j; rki = (r, ω, ri, ωi, comi,2, βi)):

• Compute proof π ← NIZK.Prove(stmtrevoke; [r, ω, ri, ωi, comi,2, βi]) where stmtrevoke =
(i, gvk) and the relation is defined by: ∃ [r, ω, ri, ωi, comi,2, βi] : com = Com(r;ω) and
Tablei = (Γ.Enc((Com(ri;ωi), comi,2); ek, βi), ·, IN) and set Tablej = (·, (i, π), OUT).

• Party i removes j from G and ({j}, sign), ({j}, revoke) from Π.

Ver(m,σ = (ct, π); gvk = (pp, crs, vk, ek, com)):
Output NIZK.Verify(π, stmtsign = (m, ct, gvk), crs).

Figure 11: Our dynamic managerless group signature scheme
∑w/o manager

Group (Part 2/2).

29

signed using the private key of any authenticator in a group. The key advan-
tages of the proposed method are: (i) the relying party server only needs to
hold one public key per account which drastically reduces the verification costs
compared to earlier solutions while still satisfying the unlinkability properties
expected in FIDO, and (ii) a user can dynamically manage authenticators (e.g.,
add new or revoke existing authenticators from a group) on any client device
without a strict dependency on the server. Given that the user interaction flow
is similar to that of FIDO user authentication and the cryptographic methods
do not impose significant delay, our study suggests that the proposed technique
could be efficiently deployed in practice for authentication. Finally, we show a
further construction of theoretical interest which achieves the further security
notion of traceability not needed in the FIDO context.

References

[1] 1Password. How 1Password protects your data. https://support.

1password.com/sync-options-security/, 2021. Online.

[2] FIDO Alliance. How FIDO Addresses a Full Range of Use Cases .
https://media.fidoalliance.org/wp-content/uploads/2022/03/

How-FIDO-Addresses-a-Full-Range-of-Use-Cases-March24.pdf,
2022. Online.

[3] Apple. Use Face ID on your iPhone or iPad Pro. https://support.apple.
com/en-us/HT208109, 2020. [Online; accessed 25-May-2021].

[4] Apple. Use Touch ID on your iPhone or iPad Pro. https://support.

apple.com/en-us/HT201371, 2020. [Online; accessed 25-May-2021].

[5] Apple. Accessing Keychain Items with Face ID or Touch ID. https:

//developer.apple.com/documentation/localauthentication/

accessing_keychain_items_with_face_id_or_touch_id, 2021. Online.

[6] Apple. Supporting Passkeys. https://developer.apple.com/

documentation/authenticationservices/public-private_key_

authentication/supporting_passkeys, 2022. Online.

[7] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A prac-
tical and provably secure coalition-resistant group signature scheme. In Mi-
hir Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 2000, Proceedings, volume 1880 of Lecture Notes in Computer
Science, pages 255–270. Springer, 2000.

[8] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi.
Provable security analysis of FIDO2. Cryptology ePrint Archive, Report
2020/756, 2020. https://eprint.iacr.org/2020/756.

30

https://support.1password.com/sync-options-security/
https://support.1password.com/sync-options-security/
https://media.fidoalliance.org/wp-content/uploads/2022/03/How-FIDO-Addresses-a-Full-Range-of-Use-Cases-March24.pdf
https://media.fidoalliance.org/wp-content/uploads/2022/03/How-FIDO-Addresses-a-Full-Range-of-Use-Cases-March24.pdf
https://support.apple.com/en-us/HT208109
https://support.apple.com/en-us/HT208109
https://support.apple.com/en-us/HT201371
https://support.apple.com/en-us/HT201371
https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id
https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id
https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id
https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://developer.apple.com/documentation/authenticationservices/public-private_key_authentication/supporting_passkeys
https://eprint.iacr.org/2020/756

[9] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In Eli Biham, editor, Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-
8, 2003, Proceedings, volume 2656 of Lecture Notes in Computer Science,
pages 614–629. Springer, 2003.

[10] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signa-
tures: The case of dynamic groups. In Alfred Menezes, editor, Topics in
Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA Con-
ference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceed-
ings, volume 3376 of Lecture Notes in Computer Science, pages 136–153.
Springer, 2005.

[11] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004,
24th Annual International CryptologyConference, Santa Barbara, Califor-
nia, USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes
in Computer Science, pages 41–55. Springer, 2004.

[12] Dan Boneh and Hovav Shacham. Group signatures with verifier-local re-
vocation. In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick D. Mc-
Daniel, editors, Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS 2004, Washington, DC, USA, October 25-
29, 2004, pages 168–177. ACM, 2004.

[13] Bouncy castle, 2022. https://www.bouncycastle.org/java.html.

[14] Stéphane Ciolino, Simon Parkin, and Paul Dunphy. Of two minds about
two-factor: Understanding everyday FIDO U2F usability through device
comparison and experience sampling. In Fifteenth Symposium on Usable
Privacy and Security (SOUPS 2019), pages 339–356, 2019.

[15] Sanchari Das, Andrew Dingman, and L Jean Camp. Why johnny doesn’t
use two factor a two-phase usability study of the FIDO U2F security key.
In International Conference on Financial Cryptography and Data Security,
pages 160–179. Springer, 2018.

[16] Dashlane. Security at Dashlane. https://support.dashlane.com/hc/

en-us/articles/360012686840-FAQ-about-security-at-Dashlane,
2021. Online.

[17] Emma Dauterman, Henry Corrigan-Gibbs, and David Mazières. SafetyPin:
Encrypted backups with human-memorable secrets. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20),
pages 1121–1138, 2020.

31

https://www.bouncycastle.org/java.html
https://support.dashlane.com/hc/en-us/articles/360012686840-FAQ-about-security-at-Dashlane
https://support.dashlane.com/hc/en-us/articles/360012686840-FAQ-about-security-at-Dashlane

[18] Haonan Feng, Hui Li, Xuesong Pan, and Ziming Zhao. A formal analysis of
the FIDO UAF protocol. In 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The
Internet Society, 2021.

[19] FIDO Alliance. FIDO security reference, 2017. https://fidoalliance.

org/specs/fido-uafv1.1-ps-20170202/fido-security-ref-v1.

1-ps-20170202.html.

[20] FIDO Alliance. FIDO U2F overview. https://fidoalliance.org/specs/
u2f-specs-master/fido-u2f-overview.html, 2021. [Online; accessed
25-June-2021].

[21] FIDO Alliance. FIDO UAF architectural overview. https:

//fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/

fido-uaf-overview-v1.1-id-20170202.html, 2021. [Online; accessed
25-June-2021].

[22] FIDO Alliance. Simpler, Stronger Authentication: Solving the World’s
Password Problem. https://fidoalliance.org, 2021. [Online; accessed
25-June-2021].

[23] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, Mark
Manulis, and Dain Nilsson. Asynchronous remote key generation: An anal-
ysis of yubico’s proposal for w3c webauthn. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
pages 939–954, 2020.

[24] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

[25] GitHub. Configuring two-factor authenticationxf recovery methods.
https://docs.github.com/en/github/authenticating-to-github/

securing-your-account-with-two-factor-authentication-2fa/

configuring-two-factor-authentication-recovery-methods, 2021.
Online.

[26] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic
Techniques. Cambridge University Press, 2001.

[27] Hidehito Gomi, Bill Leddy, and Dean H Saxe. Recommended account
recovery practices for FIDO relying parties, February 2019.

[28] Google LLC. Google Authenticator. https://tinyurl.com/rakk4ycy,
2021. [Online; accessed 25-May-2021].

[29] HID Global. Advanced Multi-factor Authentication. https:

//www.hidglobal.com/solutions/identity-access-management/

advanced-multi-factor-authentication, 2021. [Online; accessed
25-May-2021].

32

https://fidoalliance.org/specs/fido-uafv1.1-ps-20170202/fido-security-ref-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uafv1.1-ps-20170202/fido-security-ref-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uafv1.1-ps-20170202/fido-security-ref-v1.1-ps-20170202.html
https://fidoalliance.org/specs/u2f-specs-master/fido-u2f-overview.html
https://fidoalliance.org/specs/u2f-specs-master/fido-u2f-overview.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-overview-v1.1-id-20170202.html
https://fidoalliance.org
https://docs.github.com/en/github/authenticating-to-github/securing-your-account-with-two-factor-authentication-2fa/configuring-two-factor-authentication-recovery-methods
https://docs.github.com/en/github/authenticating-to-github/securing-your-account-with-two-factor-authentication-2fa/configuring-two-factor-authentication-recovery-methods
https://docs.github.com/en/github/authenticating-to-github/securing-your-account-with-two-factor-authentication-2fa/configuring-two-factor-authentication-recovery-methods
https://tinyurl.com/rakk4ycy
https://www.hidglobal.com/solutions/identity-access-management/advanced-multi-factor-authentication
https://www.hidglobal.com/solutions/identity-access-management/advanced-multi-factor-authentication
https://www.hidglobal.com/solutions/identity-access-management/advanced-multi-factor-authentication

[30] Don Johnson, Alfred Menezes, and Scott A. Vanstone. The elliptic curve
digital signature algorithm (ECDSA). Int. J. Inf. Sec., 2001.

[31] LastPass. LastPass Security History. https://www.lastpass.com/

security/what-if-lastpass-gets-hacked, 2021. Online.

[32] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael
Backes, and Sven Bugiel. Is FIDO2 the kingslayer of user authentication? a
comparative usability study of FIDO2 passwordless authentication. In 2020
IEEE Symposium on Security and Privacy (SP), pages 268–285. IEEE,
2020.

[33] Mark Manulis. Democratic group signatures: on an example of joint ven-
tures. In Proceedings of the 2006 ACM Symposium on Information, com-
puter and communications security, pages 365–365, 2006.

[34] Microsoft. Microsoft Authenticator. https://www.microsoft.com/

en-us/account/authenticator, 2021. [Online; accessed 25-May-2021].

[35] Deepak Mishra. ECDSA digital signature verifica-
tion in java. https://metamug.com/article/security/

sign-verify-digital-signature-ecdsa-java.html, 2019. Online.

[36] NIST Cybersecurity Insights. Out with the old, in with the
new: making MFA the norm. https://www.nist.gov/blogs/

cybersecurity-insights/out-old-new-making-mfa-norm, 2018. [On-
line; accessed 25-May-2021].

[37] Wataru Oogami and Max Hata. Multiple authenticators for reducing ac-
count recovery needs for FIDO-Enabled consumer accounts, June 2020.

[38] David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. J. Cryptol., 13(3):361–396, 2000.

[39] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, Advances in Cryptology - CRYPTO ’89, 9th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in
Computer Science, pages 239–252. Springer, 1989.

[40] Yannick Seurin. On the exact security of schnorr-type signatures in the ran-
dom oracle model. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture
Notes in Computer Science, pages 554–571. Springer, 2012.

[41] Spongy castle, 2017. https://rtyley.github.io/spongycastle/.

33

https://www.lastpass.com/security/what-if-lastpass-gets-hacked
https://www.lastpass.com/security/what-if-lastpass-gets-hacked
https://www.microsoft.com/en-us/account/authenticator
https://www.microsoft.com/en-us/account/authenticator
https://metamug.com/article/security/sign-verify-digital-signature-ecdsa-java.html
https://metamug.com/article/security/sign-verify-digital-signature-ecdsa-java.html
https://www.nist.gov/blogs/cybersecurity-insights/out-old-new-making-mfa-norm
https://www.nist.gov/blogs/cybersecurity-insights/out-old-new-making-mfa-norm
https://rtyley.github.io/spongycastle/

[42] Microsoft Security Team. Building a world without pass-
words. https://www.microsoft.com/security/blog/2018/05/01/

building-a-world-without-passwords, 2021. [Online; accessed
25-June-2021].

[43] Yubico. Have a Backup and Recovery Plan. https://www.yubico.com/

blog/backup-recovery-plan/, 2021. Online.

34

https://www.microsoft.com/security/blog/2018/05/01/building-a-world-without-passwords
https://www.microsoft.com/security/blog/2018/05/01/building-a-world-without-passwords
https://www.yubico.com/blog/backup-recovery-plan/
https://www.yubico.com/blog/backup-recovery-plan/

(sk1,pk1)

(sk2,pk2)
{pk1, pk2}1- User starts registration

2- User approves registration (e.g., PIN)
3- Authenticator independently creates (sk2, pk2),
stores sk2, and shares pk2

5- Server stores pk2 and verifies
response (verifies signature using pk2)

2- Challenge2- Challenge

4- pk2,
Response

4- pk2,
Response

Compatible Client Relying PartyAuthenticators

(a)

(sk1,pk1)

(sk2,pk2)

(sk3,pk3)
{pk1, pk2, pk3}1- User starts login

2- User approves login (e.g., on D2 using PIN)
3- Authenticator unlocks sk2 and creates response
(signs challenge using sk2)

5- Server verifies response (verifies
possible signatures using pk’s)

2- Challenge2- Challenge

4- Response 4- Response

Compatible Client Relying PartyAuthenticators

(b)

Figure 12: FIDO user authentication (a) registration, and (b) authentication steps.

A FIDO User Authentication

Figure 12 illustrates the registration and authentication steps during FIDO user
authentication.

B FIDO Account Recovery Approaches

Table 3 provides a comparison of prevailing FIDO account recovery approaches.

C Group Signatures

This section describes the various security notions considered for group signa-
tures in prior work, and also discusses group signatures in the dynamic setting
(where the group changes with time).

Full-anonymity. Informally, anonymity requires that an adversary not in pos-
session of the group manager’s secret key should find it hard to recover the
identity of the signer from a signature. Formally, this is defined as an in-
distinguishability requirement, on which is superimposed an adversary with
strong attack capabilities. To capture the possibility of an adversary collud-
ing with group members, the adversary is given the secret keys of all group
members. To capture the possibility of the adversary seeing the results of previ-
ous openings by the group manager, they also have access to an opening oracle,
SigOpen(·, ·; gmsk), which when queried with a message m and signature σ, an-
swers with SigOpen(m,σ; gmsk).

Full-traceability. Informally, traceability requires that signer anonymity can
be revoked by the group manager. In particular, no colluding set X of group
members (even consisting of the entire group, and even being in possession of the
secret key for opening signatures) can create signatures that cannot be opened,
or signatures that cannot be traced back to some member of the coalition. Note
that giving the opening key to the adversary does not model corruption of the
group manager, but rather compromise of the group manager’s key by the ad-
versary.

35

Dishonest group managers. The last consideration with regards to the defi-
nition pertains to the case where the group manager holding gmsk is not honest.
If the group manager is truly dishonest, one should also assume that they do not
behave as prescribed when applying the opening algorithm. For example, when
asked to open a signature they can falsely accuse an arbitrary user, or claim that
the signature cannot be opened. A solution to this problem is that when open-
ing a signature, the group manager (on input opening key gmsk, message m and
signature σ) outputs not only a user identity i, but also a “proof” π. This proof
can be (publicly) verified by a “judging” algorithm Judge (which is added to the
syntax of the group signature scheme,) such that if SigOpen(m,σ; gmsk) = (i, π)
then Judge(m,σ, i, π) = 1. Within this framework, it is possible to formally cap-
ture security requirements regarding dishonest behavior of the group manager.

Relations to other security notions. Several security properties have been
proposed in the context of group signatures thus far in the literature:

• Unforgeability : Only members of the group can create valid group signatures.
Unforgeability is implied by full-traceability.

• Anonymity : Given a message and its signature, the identity of the individ-
ual signer cannot be determined without the group manager’s secret key.
Anonymity is implied by full-anonymity.

• Traceability : Given any valid signature, the group manager should be able
to trace which user issued the signature. (This and the previous requirement
imply that only the group manager can break users’ anonymity.) Traceability
is implied by full-traceability.

• Unlinkability : Given two messages and their signatures, we cannot tell if the
signatures were from the same signer or not. Anonymity and unlinkability
are essentially the same property.

• No framing : Even if all other group members (and the manager) collude, they
cannot forge a signature for a non-participating group member. This property
is also referred to exculpability. No framing is implied by full-traceability.

• Coalition resistance: A colluding subset of group members cannot generate
a valid signature that the group manager cannot link to one of the colluding
group members. Coalition resistance is implied by full-traceability.

Dynamic Group Signatures. We next consider the setting of dynamic group
signature schemes with a group manager. In an incremental group signature
scheme (groups supporting an add operation), the key generation algorithm
produces (beside the group public key gvk) two secret keys: an issuing key
gmik and an opening key gmok. No signing keys gsk are output by the key
generation algorithm. The two keys gmik, gmok are given to two different group
managers, one of which has authority on the group membership, and the other
has authority on traceability. Using gmik, the key issuer can generate (possibly

T
a
b
le

3
:

C
o
m

p
a
ri

so
n

o
f

p
ro

m
in

en
t

m
et

h
o
d
s

fo
r

F
ID

O
a
cc

o
u
n
t

re
co

v
er

y.

R
e
c
o
v
e
r
y

A
p
p
r
o
a
c
h

M
e
t
h
o
d

S
u
m

m
a
r
y

A
d
v
a
n
t
a
g
e
s

D
is

a
d
v
a
n
t
a
g
e
s

T
r
u
s
t

R
e
-e

s
t
a
b
li
s
h
m

e
n
t

O
n
e
-T

im
e

P
a
s
s
c
o
d
e

T
w
o

fa
c
t
o
r

a
u
t
h
e
n
t
ic

a
t
io

n
u
s
in

g
o
n
e
-t

im
e

P
IN

/
p
a
s
s
c
o
d
e

o
v
e
r

a
b
a
c
k
u
p

c
h
a
n
n
e
l,

e
.g

.,
e
m

a
il

o
r

S
M

S
.

-
U
s
e
r
s

a
r
e

h
a
b
it
u
a
t
e
d

-
N
o

a
d
d
it
io

n
a
l

b
u
r
d
e
n

o
n

u
s
e
r
s

t
o

m
a
n
a
g
e

a
b
a
c
k
u
p

c
o
d
e
/
p
a
s
s
w
o
r
d

-
S
u
s
c
e
p
t
ib

le
t
o

p
h
is
h
in

g

B
a
c
k
u
p

c
o
d
e
s

[2
5
]

G
e
n
e
r
a
t
e
d

a
t

t
h
e

t
im

e
o
f

a
c
-

c
o
u
n
t

c
r
e
a
t
io

n
/
r
e
c
o
v
e
r
y
;

s
e
t
u
p

a
n
d

s
t
o
r
e
d

p
h
y
s
ic

a
ll
y

o
r

d
ig

it
a
ll
y

b
y

u
s
e
r
.

-
F
o
r

p
h
y
s
ic

a
l

s
t
o
r
a
g
e
,

u
s
e
r

d
o
e
s
n
’t

n
e
e
d

t
o

t
r
u
s
t
a

c
r
e
d
e
n
t
ia

l
m

a
n
a
g
e
r

o
r

a
c
c
o
u
n
t

m
a
n
a
g
e
m

e
n
t

s
e
r
v
ic

e
fo

r
s
e
c
u
r
in

g
t
h
e
ir

b
a
c
k
u
p

c
r
e
d
e
n
t
ia

ls

-
P
r
o
n
e

t
o

b
e
in

g
fo

r
g
o
t
t
e
n
,

lo
s
t

o
r

s
t
o
le

n
-
S
u
s
c
e
p
t
ib

le
t
o

p
h
is
h
in

g

ID
d
o
c
u
m

e
n
t

v
e
r
if
ic

a
t
io

n
,

F
ID

O
r
e
c
o
m

m
e
n
d
e
d

[2
7
]

Id
e
n
t
it
y

p
r
o
o
fi
n
g

u
s
in

g
p
ic

t
u
r
e
s

o
f
a

u
s
e
r
’s

id
e
n
t
it
y

d
o
c
u
m

e
n
t
a
n
d

s
e
lf
ie

.

-
ID

d
o
c
u
m

e
n
t
s

a
r
e

a
s
t
r
o
n
g
e
r

r
o
o
t

o
f

t
r
u
s
t

c
o
m

p
a
r
e
d

t
o

O
T
P
/
b
a
c
k
u
p

c
o
d
e
s

-
C
o
n
v
e
n
ie

n
t

u
s
e
r

e
x
p
e
r
ie

n
c
e

-
U
n
r
e
li
a
b
le

in
d
if
fe

r
e
n
t

c
a
p
t
u
r
e

s
e
t
t
in

g
s
,
e
.g

.,
il
lu

m
in

a
t
io

n
-

S
u
s
c
e
p
t
ib

le
t
o

s
p
o
o
fi
n
g
,

e
.g

.,
d
ig

it
a
l
d
e
e
p
fa

k
e
s

M
u
lt
i-
d
e
v
ic

e
c
r
e
d
e
n
t
ia

ls
,

F
ID

O
r
e
c
o
m

m
e
n
d
e
d

[2
]

B
a
c
k
u
p

a
n
d

s
y
n
c

F
ID

O
c
r
e
d
e
n
-

t
ia

ls
(
s
e
c
r
e
t
k
e
y
s
)
a
c
r
o
s
s
m

u
lt
ip

le
d
e
v
ic

e
s

u
s
in

g
p
la

t
fo

r
m

p
r
o
v
id

e
r
’s

(
e
.g

.,
A
p
p
le

,
G

o
o
g
le

)
c
lo

u
d
.

-
U
s
e
r
s

a
r
e

h
a
b
it
u
a
t
e
d

t
o

s
t
o
r
-

in
g

o
t
h
e
r

c
r
e
d
e
n
t
ia

ls
(
e
.g

.,
p
a
s
s
-

w
o
r
d
s
,

c
r
e
d
it

c
a
r
d

d
e
t
a
il
s
)

o
n

p
la

t
fo

r
m

p
r
o
v
id

e
r
s

c
lo

u
d

-
C
o
n
v
e
n
ie

n
t

u
s
e
r

e
x
p
e
r
ie

n
c
e

(
s
e
t

a
n
d

fo
r
g
e
t
,

a
u
t
o
m

a
t
ic

s
y
n
c
,

b
a
c
k
u
p
)

-
P
la

t
fo

r
m

p
r
o
v
id

e
r

c
a
n

t
r
a
c
k

F
ID

O
c
r
e
d
e
n
t
ia

l
u
s
a
g
e

a
c
r
o
s
s
d
if
-

fe
r
e
n
t

r
e
ly

in
g

p
a
r
t
ie

s
-

F
ID

O
c
r
e
d
e
n
t
ia

ls
n
o
t

t
r
u
ly

d
e
c
e
n
t
r
a
li
z
e
d
;

t
h
e
ir

s
e
c
u
r
it
y

d
e
fa

u
lt
s

t
o

p
la

t
fo

r
m

p
r
o
v
id

e
r
’s

c
lo

u
d
.

E
n
r
o
ll
in

g
a
d
d
i-

t
io

n
a
l

a
u
t
h
e
n
t
ic

a
t
o
r
s

Y
u
b
ic

o
[4

3
],

F
ID

O
r
e
c
o
m

m
e
n
d
e
d

[2
7
,
3
7
]

R
e
ly

in
g

p
a
r
t
y

h
o
ld

s
p
u
b
li
c
k
e
y

fo
r

a
ll

r
e
g
is
t
e
r
e
d

a
u
t
h
e
n
t
ic

a
t
o
r
s

a
n
d

v
e
r
if
ie

s
r
e
s
p
o
n
s
e
s
a
g
a
in

s
t
a
ll

p
u
b
-

li
c

k
e
y
s
.

-
N
o
t

p
r
o
n
e

t
o

p
h
is
h
in

g

-
R
e
q
u
ir
e
s

u
s
e
r

t
o

r
e
g
is
t
e
r

a
d
-

d
it
io

n
a
l
a
u
t
h
e
n
t
ic

a
t
o
r
s

w
it
h

e
a
c
h

r
e
ly

in
g

p
a
r
t
y

-
M

a
n
a
g
e
m

e
n
t
o
f
m

u
lt
ip

le
k
e
y
s
b
y

r
e
ly

in
g

p
a
r
t
y

s
e
r
v
e
r

Y
u
b
ic

o
(
p
r
o
p
o
s
a
l)

[2
3
]

B
a
c
k
u
p

a
u
t
h
e
n
t
ic

a
t
o
r

p
e
r
fo

r
m

s
a
s
y
n
c
h
r
o
n
o
u
s
k
e
y

a
g
r
e
e
m

e
n
t
w
it
h

p
r
im

a
r
y

a
u
t
h
e
n
t
ic

a
t
o
r

-
N
o
t

p
r
o
n
e

t
o

p
h
is
h
in

g

-
R
e
q
u
ir
e
s

u
s
e
r

t
o

r
e
g
is
t
e
r

a
d
-

d
it
io

n
a
l
a
u
t
h
e
n
t
ic

a
t
o
r
s

w
it
h

e
a
c
h

r
e
ly

in
g

p
a
r
t
y

-
R
e
q
u
ir
e
s
a
d
d
it
io

n
a
l
c
o
m

m
u
n
ic

a
-

t
io

n
w
it
h

r
e
ly

in
g

p
a
r
t
y

s
e
r
v
e
r
s

O
u
r

M
e
t
h
o
d

A
u
t
h
e
n
t
ic

a
t
o
r

G
r
o
u
p
s

w
it
h

e
a
c
h

a
u
t
h
e
n
t
ic

a
t
o
r

h
a
v
in

g
u
n
iq

u
e

p
r
i-

v
a
t
e

k
e
y
,
a
n
d

r
e
ly

in
g

p
a
r
t
y

s
e
r
v
e
r

h
a
v
in

g
a

g
r
o
u
p

v
e
r
if
ic

a
t
io

n
k
e
y

-
R
e
ly

in
g

p
a
r
t
y

o
n
ly

n
e
e
d
s

o
n
e

v
e
r
if
ic

a
t
io

n
k
e
y

p
e
r

a
c
c
o
u
n
t

-
A
d
d
it
io

n
a
n
d

r
e
m

o
v
a
l

o
f

a
d
-

d
it
io

n
a
l

a
u
t
h
e
n
t
ic

a
t
o
r
s

w
it
h
o
u
t

in
t
e
r
a
c
t
io

n
w
it
h

r
e
ly

in
g

p
a
r
t
y

s
e
r
v
e
r
s

-
S
a
m

e
a
u
t
h
e
n
t
ic

a
t
o
r

g
r
o
u
p

c
a
n

b
e

r
e
g
is
t
e
r
e
d

a
n
d

u
s
e
d

a
c
r
o
s
s

m
u
lt
ip

le
r
e
ly

in
g

p
a
r
t
ie

s

-
R
e
q
u
ir
e
s

u
s
e
r

t
o

c
r
e
a
t
e

a
n
d

m
a
n
a
g
e

a
u
t
h
e
n
t
ic

a
t
o
r

g
r
o
u
p
s

37

via an interactive process) signing keys gski and distribute them to prospective
group members. In terms of security definitions, the key gmik is given to the
adversary in the definition of anonymity, but not in the definition of traceability,
as knowledge of this key would allow to generate “dummy” group members and
use their keys to sign untraceable messages. Alternatively, one can postulate
that if the signature opener cannot trace a signature, then he will blame the
key issuer. Although the above definition allows the group to change over time,
the security properties are still static: a signer i that joins the group at time
t, can use the newly acquired key gski to sign documents that predate time
t. This problem can be easily solved enhancing the signatures with an explicit
time counter, and using the technique of forward security. Forward security for
group signatures is defined using a key evolution paradigm. The lifetime of the
public key is divided into time periods, and signing keys of the group members
change over time, with the key of user i at time t denoted by gski[t]. At the
end of each time period, each user updates his key using an update algorithm
gski[t + 1] = Upd(gski[t]). A forward secure group signature schemes requires
that an attacker should not be able to produce valid signatures for any earlier
time period. A (forward) secure incremental group signature scheme supporting
the add operation is obtained letting the key issuer generate key gski[t] when
user i joins the group at time t.

Finally, we consider fully dynamic group signature schemes, that are both
incremental and decremental (groups supporting a revoke operation). Here, a
question that immediately comes up is when should a signature generated by a
revoked member be accepted by the signature verification algorithm? There are
two possible answers: (1) if they were a group member when then signature was
generated, or (2) if they belonged to the group at the time verification algorithm
is invoked.11 Clearly, there is no “right” answer, and what definition should be
used depends on the application. In either case, different kinds of inefficiency
are necessarily introduced in the protocol. More formally, consider a signature σ
produced (using key gski) by some user i who belonged to the group at time t1,
but not at times t0 and t2, Now, say σ is verified at time t ∈ {t0, t1, t2} (using
key gvk[t], where gvk denotes the verification key at time t). In case (2), σ
should be accepted using gvk[t1], but not using gvk[t0] or gvk[t2]. In particular,
the public keys gvk[t] must be different. This is undesirable because it requires
the verifier to continuously communicate with the group manager to update the
group public key. Moreover, this definition raises potential anonymity problems:
by verifying the same signature against different public keys gvk[t], one can
determine when the signer joined and left the group, and possibly use this
information to discover the signer identity. Consider case (1), where signatures
are valid only if signer belongs to the group at the time the signature is issued.
Now, σ should be accepted using gvk[t0], gvk[t1] and gvk[t2]. This time, the
public key may stay the same throughout the lifetime of the group, but in order
to achieve forward security, the update function Upd should not be publicly

11Notice that in the first case, signatures should remain valid (and the signer anonymous)
even after the signer leaves the group, while in the second case removing the signer from the
group should immediately invalidate all of its signatures.

38

computable by the group members. This introduces inefficiency, as the group
members now need to interact with the key issuer to update their signing key
from one time period to the next.

D Cryptographic Preliminaries

Throughout the paper, we use λ to denote the security parameter. An algorithm
T is said to be PPT if it is modeled as a probabilistic Turing machine that
runs in time polynomial in λ. Informally, we say that a function is negligible
if it vanishes faster than the inverse of any polynomial. If S is a set, then
x ← S indicates the process of selecting x uniformly at random over S (which
in particular assumes that S can be sampled efficiently). Similarly, x ← T (·)
denotes the random variable that is the output of a randomized algorithm T .
Furthermore, x = T (·; r) denotes the output of a randomized algorithm T with
randomness r.

We use the following cryptographic primitives in our constructions. We refer
to [26] for their formal security properties.

Commitment. A commitment scheme consists of the following algorithms:

• Gen(1λ): Samples public parameters pp.

• Com(m;ω): Generates a commitment com to m using randomness ω.

• Open(com;ω): Opens the commitment com using the opening randomness ω
to obtain m.

Public-Key Encryption. A public-key encryption scheme consists of the
following algorithms:

• KeyGen(1λ): Samples a public key ek and secret key dk.

• Enc(m; ek): Generates a ciphertext ct by encrypting the plaintext m.

• Dec(ct; dk): Decrypts ciphertext ct to obtain the plaintext m.

Non-interactive Zero-Knowledge Argument (NIZK). A NIZK consists
of the following algorithms:

• CRSGen(1λ): Generates a common reference string crs.

• Prove(stmt, crs;w): Generates a proof π of the statement stmt using crs and
witness w.

• Verify(π, stmt, crs): Verifies proof π using crs and outputs 0 or 1.

In our use of a NIZK, we suppress crs for ease of exposition.

39

E Signing Key Re-randomizable Signatures

E.1 Re-randomizable Schnorr Signatures

Recall the modified Schnorr signature scheme.

• KeyGen(1λ): Samples a random x← ZMq and sets sk = x and vk = gx mod q.

• Sign(m, sk = x): Samples a random r ← Zq and sets e = Hash(gr‖m),
s = (r − xe) mod q and σ = (s, e).

• Ver(m, (s, e), vk): Checks if e = Hash(gsvke‖m).

We now prove that the above modified signature scheme is existentially un-
forgeable. Recall that a signature scheme

∑
is said to be existentially unforge-

able if, for any probabilistic polynomial time (PPT) adversary A, the advantage

AdvExist-Forge∑
,A,λ of A, defined by the probability term below, is negligible in λ:

Pr

(vk, sk)←

∑
.KeyGen(1λ)

Q = ∅ mi ← A(1λ,Q)
σi ←

∑
.Sign(mi; sk)

Q = Q∪ {(mi, σi)}

i

(m,σ)← A(1λ,Q)

:

∑
.Ver(m,σ; vk) = 1
∧(m,σ) 6∈ Q

Suppose

∑∗
Schnorr is existentially forgeable. That is, suppose there exists an

adversary A such that AdvExist-Forge∑∗
Schnorr,A,λ

is non-negligible in λ. We construct an

adversary B such that AdvExist-Forge∑
Schnorr,B,λ

is also non-negligible in λ. Since we know

that no such B exists, this proves that
∑∗

Schnorr is existentially unforgeable. Let
C be the challenger of the existential forgeability game for

∑
Schnorr. C begins by

running (vk, sk) ←
∑

Schnorr.KeyGen(1λ) and sends vk to B. B then forwards vk
to A. Note that this first message is identically distributed with respect to the
vk that A must receive for the existential forgeability game of

∑∗
Schnorr. After

this, for every message mi that A issues a signature query for, B forwards mi to
C and obtains a signature σi which B forwards to A. We now proceed to argue
that signatures for

∑
Schnorr produced by C using signing key sk = x ∈ Zq are

valid signatures for
∑∗

Schnorr as well. Consider any x∗ ∈ ZMq such that x∗ = x
mod q. We show that B’s interaction with A is consistent with a world where
B is working with signing key sk∗ = x∗. First, note that the verification key
corresponding to sk∗ is vk∗ = gx

∗
= gx

∗ mod q = gx since g is a generator of
the group G of order q. Next, let σi ←

∑
Schnorr.Sign(mi; sk = x). That is,

σi = (si, ei), where ei = Hash(gri‖mi) for some random ri ← Zq sampled by
C, and si = ri − xei. Now, let σ∗i ←

∑∗
Schnorr.Sign(mi; sk

∗ = x∗). That is, let
σ∗i = (s∗i , e

∗
i), where e∗i = Hash(gr

∗
i ‖mi) for some random r∗i ← Zq which was

to be sampled by B, and s∗i = r∗i − x∗e∗i . Let us suppose that r∗i = ri. Then,
we have e∗i = ei and s∗i = (ri − x∗ei) mod q = ri − xei = si. That is, σ∗i = σi
is a valid signature for

∑∗
Schnorr. Finally, we know that A outputs a pair (m,σ)

40

such that (m,σ) 6= (mi, σi) for any i, and
∑∗

Schnorr.Ver(m,σ; vk) = 1. This
implies that

∑
Schnorr.Ver(m,σ; vk) = 1. Thus, B simply forwards (m,σ) to C.

We have that AdvExist-Forge∑
Schnorr,B,λ

= AdvExist-Forge∑∗
Schnorr,A,λ

. This completes our reduction

and shows that
∑∗

Schnorr is existentially unforgeable.

E.2 Re-randomizable El Gamal Signatures

Let
∑

ElGamal be the El Gamal signature scheme [24] over the multiplicative
group Z∗q modulo prime q = O(2λ) with generator g, consisting of the following
algorithms:

• KeyGen(1λ): Samples a random x← Z∗q and sets sk = x and vk = gx.

• Sign(m; sk = x): Samples a random r ← Z∗q such that (r, q − 1) = 1 so that
r−1 mod (q− 1) exists. Set s = gr, e = r−1(Hash(m)−xs) mod (q− 1) and
σ = (s, e).

• Ver(m, (s, e); vk): Checks if gHash(m) = vksse.∑
ElGamal is secure in the random oracle model based on the discrete logarithm

assumption [38].
The El Gamal signature scheme can be modified in a similar manner. Let∑∗

ElGamal be the modified El Gamal signature scheme over the multiplica-
tive group Z∗q modulo the prime q = O(2λ) with generator g, consisting of the
following algorithms:

• KeyGen(1λ): Samples a random x ← ZM(q−1) and sets sk = x and vk =

gx mod (q−1).

• Sign(m; sk = x): Samples a random r ← Z∗q such that (r, q − 1) = 1 so that
r−1 mod (q− 1) exists and sets s = gr, e = r−1(Hash(m)− xs) mod (q− 1)
and σ = (s, e).

• Ver(m, (s, e); vk): Checks if gHash(m) = vksse.

Figure 13 describes a protocol ΠElGamal that securely realizes FReRand for
the above scheme. As in the previous case, the security of ΠElGamal is easy to
observe from the correctness of the modified El Gamal signature scheme. We
also prove that the modified signature scheme is existentially unforgeable.

F Proof of Security

Theorem 1. Assuming Com is a computationally hiding and perfectly binding
commitment scheme,

∑
SR is a secure signing key re-randomizable signature

scheme, Γ is a CCA2-secure public key encryption scheme and NIZK is a a

non-interactive zero-knowledge argument, scheme
∑w/o manager

Group (Figure 11) is
a dynamic managerless group signature scheme that satisfies Definition 1 with
respect to group structure Πuni.

41

ΠElGamal

A has a key-pair (vk, skA)←
∑∗

ElGamal.KeyGen(1λ)
B wants a random signing key skB corresponding to vk.

Inputs: pub = (G, q,M, vk), inpA = skA, inpB = ⊥

Protocol:

1. A computes and sends x = skA mod (q − 1) to B.

2. B samples random y ← ZM .

3. B outputs skB = x+ y(q − 1).

Outputs: outpA = ⊥, outpB = skB

Figure 13: Protocol ΠElGamal for realizing FReRand in the modified El Gamal signature
scheme.

Proof. We now prove that our scheme satisfies each of the four properties. As

in the definition, for brevity, we denote
∑

=
∑w/o manager

Group .

Unforgeability. Recall that an adversary A breaks the unforgeability property
if it outputs (m∗, σ∗, X∗) such that, with non-negligible probability:

∑
.Ver(m∗, σ∗; gvk) =

1, Z ∩ H 6= ∅ where Z ←
∑
.SigOpen(m∗, σ∗; okX∗) and (m∗, σ∗) was not

previously output by the signature oracle. We prove security using a hybrid
argument.

• Hyb0: This corresponds to the original experiment.

• Hyb1: In this hybrid, challenger C does the following: for any invocation of
protocol ΠReRand as part of protocol AddMember where a corrupt party j is
trying to add an honest user i, instead of running the honest execution of
ΠReRand, C runs the simulator SimReRand on behalf of the user i.

Since protocol ΠReRand securely realizes functionality FReRand for signature
scheme

∑
SR, it is easy to observe that for any adversary A, its advantage in

outputting a tuple (m∗, σ∗, X∗) that breaks the unforgeability game remains
negligibly close to its advantage in the original experiment Hyb0.

• Hyb2: In this hybrid, on behalf of any honest party i, whenever running
the signing algorithm Sign, challenger C runs the simulator of the NIZK to
generate the proof π. C also generates a simulated CRS in the key generation
step.

From the zero knowledge property of the NIZK, for any adversary A, its
advantage in outputting a tuple (m∗, σ∗, X∗) that breaks the unforgeability
game remains negligibly close to its advantage in Hyb1.

42

We now argue that in Hyb2, A does not break the unforgeability property
and this completes the proof. Let’s assume for the sake of contradiction that
there exists an adversary A that manages to break the unforgeability probability
in Hyb2. First, since the signature σ∗ verifies successfully, from the soundness of
the NIZK argument, with overwhelming probability, ∃ (i, σ′, r, ri, ωi, comi,2, βi),
such that:

•
∑

SR.Ver(m∗, σ′; vk) = 1

• ct = Γ.Enc([i, σ′]; ek, r)

• Tablei = (Γ.Enc((Com(ri;ωi), comi,2); ek, βi), ·, IN)

From the correctness of the decryption algorithm Γ.Dec and the verification
algorithm NIZK.Verify,

∑
.SigOpen outputs this index i with overwhelming

probability. Since A wins the game, it must be the case that (m∗, σ∗, ·) /∈ List
and i ∩H 6= ∅. From the correctness of the encryption scheme Γ, except with
negligible probability, there doesn’t exist another tuple (Com(rj ;ωj), comj,2, βj)
with j 6= i such that Tablei = Γ.Enc((Com(rj ;ωj), comj,2); ek, βj). We now use
this adversary to build a reduction B that breaks the hiding of the commitment
scheme. B interacts with a challenger Ccom of the commitment scheme and for
every honest party i, it sends a pair (randi, 0) to Ccom. Ccom tosses a bit b and
if b = 0, responds back with a commitment to randi for each i and if b = 1,
responds with a commitment to 0 for each i. For each i, B sets this commitment
received as the value comi,1 and interacts with the adversary A exactly as done
by challenger C. Now, since A successfully breaks the unforgeability property, B
runs the extractor Ext of the NIZK on the proof π∗ that A outputs as part of σ∗

to recover witness (i, σ′, r, ri, ωi, comi,2, βi). Thus, B learns whether ri = randi
or 0 and can break the hiding of the commitment scheme with overwhelming
probability which is a contradiction. This completes the proof.

Anonymity. In the anonymity game, one of the conditions for any A to win
is that the following is not true: ∃ X ⊆ (G ∪ R) \H : (X, open) ∈ Π. For the
group structure Πuni, this means that for every corrupt party j, (j, open) /∈ Π:
A does not learn the opening key for any party. This essentially translates to
the fact that the adversary does not corrupt any party in the system because
any party once added, never loses opening privileges (even on being revoked).
Having noted this observation, we now prove the anonymity property via a
hybrid argument.

• Hyb0: This corresponds to the original anonymity experiment where the chal-
lenger C picks bit b = 0.

• Hyb1: In this hybrid, on behalf of any honest party i, whenever generating
a NIZK (as part of

∑
.AddMember,

∑
.Sign or

∑
.RevokeMember), challenger

C runs the simulator of the NIZK to generate the proof. C also generates a
simulated CRS in the key generation step.

43

From the zero knowledge property of the NIZK, Hyb1 is computationally
indistinguishable from Hyb0.

• Hyb2: For any invocation of protocol ΠReRand as part of protocol
∑
.AddMember

where an honest party i is trying to add a corrupt j, instead of running the
honest execution of ΠReRand, C runs the simulator SimReRand on behalf of the
user i.

Since protocol ΠReRand securely realizes functionality FReRand for signature
scheme

∑
SR, Hyb2 is computationally indistinguishable from Hyb1.

• Hyb3: In protocol
∑
.KeyGen and on behalf of every honest party in protocol∑

.AddMember, C generates every commitment as a commitment to 0 instead
of as in the original protocol.

From the hiding property of the commitment scheme, Hyb3 is computationally
indistinguishable from Hyb2.

• Hyb4: In this hybrid, on behalf of every honest party i, C does not use the
tuple (r, ω, ri, ωi, comi,2, βi) anymore. That is, the revoking key rki is not
used as part of algorithm

∑
.RevokeMember and except for ski, the rest of iki

and gski are not used for
∑
.AddMember and

∑
.Sign respectively.

This hybrid is just a syntactic change. Observe that since the NIZK proofs
and protocol ΠReRand were anyway already simulated, in the previous hybrid
too, the values (r, ω, ri, ωi, comi,2, βi) were not being used. Thus, Hyb4 is
identical to Hyb3.

• Hyb5: In this hybrid, as part of computing the challenge signature Chall =
(m∗, σ∗), the term σ′ is computed as σ′ =

∑
SR.Sign(m∗; sk1) instead of

σ′ =
∑

SR.Sign(m∗; sk0).

As observed in the proof of the warm-up construction in Section 4.1, for the
signing key re-randomizable signature scheme

∑
SR, for any m∗ chosen by the

adversary, the distributions {
∑

SR.Sign(m∗; sk0)} are {
∑

SR.Sign(m∗; sk1)}
are identical. Thus, Hyb5 is identical to Hyb4.

• Hyb6: In this hybrid, as part of computing the challenge signature Chall =
(m∗, σ∗), the term ct is computed as ct = Γ.Enc([1, σ′]; ek, r) instead of as an
encryption of (0, σ′).

The only difference between the two hybrids is in the generation of the ci-
phertext ct that is part of σ∗. If there exists an adversary A that can dis-
tinguish between these two hybrids with non-negligible probability, we build
a reduction B that can break the CCA security of the encryption scheme Γ.
B interacts with a challenger CΓ as part of the CCA game. Upon receiving

44

public key ek, it begins an interaction with A as in Hyb5. B runs the KeyGen

as in Hyb5 except that it sets ek using the value received from CΓ and does
not set any dk. Observe that A does not learn dk at all since it is not allowed
to corrupt any party to win the anonymity game. Now, whenever B wishes
to run Γ.Dec (as part of

∑
.SigOpen), it uses the decryption oracle provided

by CEnc to do so. B submits tuple (0, σ′) and (1, σ′) to CΓ where σ′ is gener-
ated as the first part of the challenge signature Chall = (m∗, σ∗). It sets the
ciphertext ct∗ received from CΓ as the ciphertext ct in the challenge signature
σ∗ and proceeds interacting with A. If A guesses Hyb5, then B guesses that
ct∗ is an encryption of (0, σ′) and if A guesses Hyb6, B guesses that ct∗ is
an encryption of (1, σ′). Thus, observe that if there exists an adversary A
that can distinguish between these two hybrids with non-negligible probabil-
ity, there exists a reduction that breaks the CCA security of the encryption
scheme Γ which is a contradiction.

• Hyb7: In protocol
∑
.KeyGen and on behalf of every honest party in protocol

AddMember, C generates every commitment honestly as in the original pro-
tocol instead of as a commitment to 0. Observe that implicitly, part of the
tuple (r, ω, ri, ωi, comi,2, βi) is also used now.

As before, from the hiding property of the commitment scheme, Hyb7 is com-
putationally indistinguishable from Hyb6.

• Hyb8: For any invocation of protocol ΠReRand as part of protocol
∑
.AddMember

where an honest party i is trying to add a corrupt j, C runs an honest execu-
tion of ΠReRand instead of running the simulator SimReRand.

As before, since protocol ΠReRand securely realizes functionality FReRand for
signature scheme

∑
SR, Hyb8 is computationally indistinguishable from Hyb7.

• Hyb9: In this hybrid, on behalf of any honest party i, whenever generating a
NIZK (as part of

∑
.AddMember,

∑
.Sign or

∑
.RevokeMember), challenger C

runs the honest prover algorithm NIZK.Prove to generate the proof instead
of the simulator. C also generates an honestly generated CRS in the key gen-
eration step. This corresponds to the original anonymity experiment where
the challenger C picks bit b = 1.

As before, from the zero knowledge property of the NIZK, Hyb9 is computa-
tionally indistinguishable from Hyb8.

Finally, observe that since Hyb0 is computationally indistinguishable from Hyb9,
the adversary’s advantage in guessing bit b′ in the anonymity game is negligibly
close to 1/2 and this completes the proof.

Revocability. Suppose, for the sake of contradiction, there exists an adver-
sary A that breaks the revocability property. That is, it outputs (m∗, σ∗, X∗)

45

such that, with non-negligible probability:
∑
.Ver(m∗, σ∗; gvk) = 1, i∗ /∈ G

where i∗ ←
∑
.SigOpen(m∗, σ∗; okX∗). From the correctness of the decryption

algorithm Γ.Dec and the verification algorithm NIZK.Verify, observe that i∗

is indeed same as the identity of the party who generated σ∗. That is, σ∗ =∑
.Sign(m, gski∗). Since

∑
.Ver(m∗, σ∗ = (ct∗, π∗); gvk) = 1, NIZK.Verify(π∗, stmtsign =

(m∗, ct∗, gvk), crs) = 1. This means that Tablei∗ is of the form (·, ·, IN). How-
ever, observe that if a party i /∈ G, either i has never been added to G or
it has been added and subsequently revoked. In other words, Tablei∗ = ⊥ or
Tablei∗ = (·, ·, OUT). Thus, if there exists an adversary A that breaks the revoca-
bility property, we can use A to build a reduction B that breaks the soundness
of the NIZK argument with non-negligible probability which is a contradiction.
This completes the proof.

Traceability. To prove traceability, we argue that for any adversary A, each of
the winning conditions occurs only with negligible probability. Let (m∗, σ∗, X∗, Y ∗, r)
be the tuple output by the adversary. Let Z ′ ←

∑
.SigOpen(m∗, σ∗; okX∗),

Z ′′ ←
∑
.SigOpen(m∗, σ∗; okY ∗) and Z ′′′ ←

∑
.SigOpen(m∗,

∑
.Sign(m∗; skX∗ , r); okY ∗).

1. {(m∗, σ∗, X∗), (m∗, σ∗, Y ∗)} ⊂ List:
Suppose (m∗, σ∗, X∗) ∈ L. From the definition of algorithm

∑
.Sign,

σ∗ = (ct∗, π∗) where ct∗ = Γ.Enc([X∗, σ′]; ek, r∗) using some randomness
r∗ and σ′ =

∑
SR.Sign(m; skX∗). From the correctness of encryption

scheme Γ, ct∗ 6= Γ.Enc([Y ∗, ·]; ek, ·). Thus, (m∗, σ∗, Y ∗) 6⊂ L.

2. Z ′ = ⊥ or Z ′′ = ⊥ or Z ′′′ = ⊥:
Since

∑
.Ver(m∗, σ∗; gvk) = 1, from the soundness of the NIZK argument,

σ∗ = (ct∗, π∗) where ct∗ = Γ.Enc((·, ·); ek, ·). Thus, both Z ′ 6= ⊥ and Z ′′ 6=
⊥. Similarly, since

∑
.Sign(m∗; skX∗ , r) is generated honestly, Z ′′′ 6= ⊥.

3. Z ′ 6= Z ′′:
From the description of our scheme

∑
, okX∗ = okX∗ = dk. Thus,∑

.SigOpen(m∗, σ∗; okX∗) =
∑
.SigOpen(m∗, σ∗; okY ∗) and hence Z ′ =

Z ′′.

4. (m∗, σ∗, ·) ∈ List and (m∗, σ∗, Z ′) 6∈ List:
Suppose (m∗, σ∗, i∗) ∈ List for some i∗. This implies that σ∗ was honestly
generated. That is, σ∗ = (ct∗, π∗) where ct∗ = Γ.Enc([i∗, ·]; ek, ·). By
the correctness of the decryption algorithm Γ.Dec, except with negligible
probability, Γ.Dec(ct; dk) = (i∗, ·). Thus, Z ′ = i∗ and (m∗, σ∗, Z ′) ∈ List,
except with negligible probability.

5. Z ′′′ 6= X∗:
As before, since

∑
.Sign(m∗; skX∗ , r) is honestly generated and okY ∗ =

dk, from the correctness of the decryption algorithm Γ.Dec, except with
negligible probability, Z ′′′ = X∗.

46

	Introduction
	The Problem of Account Recovery
	Account recovery in FIDO
	Our Contributions

	Signing Key Re-randomizable Signatures
	Re-randomizable Signature Scheme
	Re-randomizable Schnorr Signatures

	Managerless Group Signatures (MGS)
	Syntax Definition
	Security Definition
	Discussion

	Building MGS for FIDO
	Supporting Unilateral Adds

	Applying MGS to FIDO
	Overview of FIDO User Authentication
	Enrollment & Authentication using MGS
	Security in FIDO

	Implementation and Evaluation
	System Implementation and Setup
	Performance Evaluation

	MGS with Full Security
	Further Extensions

	Conclusion
	FIDO User Authentication
	FIDO Account Recovery Approaches
	Group Signatures
	Cryptographic Preliminaries
	Signing Key Re-randomizable Signatures
	Re-randomizable Schnorr Signatures
	Re-randomizable El Gamal Signatures

	Proof of Security

