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Abstract.Various systematic modifications of vectorial Boolean functions have been
used for finding new previously unknown classes of S-boxes with good or even optimal
differential uniformity and nonlinearity. Recently, a new method was proposed
for modification a component of a bijective vectorial Boolean function by using a
linear function. It was shown that the modified function remains bijective under the
assumption that the inverse of the function admits a linear structure. A previously
known construction of such a modification based on bijective Gold functions in odd
dimension is a special case of this type of modification. In this paper, we show that
the existence of a linear structure is necessary. Further, we consider replacement of a
component of a bijective vectorial Boolean function in the general case. We prove
that a permutation on Fn2 remains bijective if and only if the replacement is done
by composing the permutation with an unbalanced Feistel transformation where the
round function is any Boolean function on Fn−1

2 .

1 Introduction
Search for S-boxes that satisfy desirable cryptographic criteria has been under intensive
study since they were proposed for use as the main nonlinear component in the
construction of cryptographic primitives.
Among other methods, systematic variation of S-boxes has been proposed. In this
paper we consider bijective S-boxes and their modification by changing one component
in such a way that the new S-box is also a permutation.
Beierle and Leander suggested that an S-box which has one linear component but
is otherwise highly nonlinear could be a good starting point when constructing new
highly nonlinear S-boxes [BL20]. Further, they give two examples of permutations
on F2n that have low differential uniformity but one linear component. In odd
dimension, their construction is done for the inverse of a Gold function, while in even
dimension the starting point is an earlier construction of a 2-to-1 function based on
the multiplicative inverse function on F2n−1 .
Recently, the example using Gold function was shown to be a special case of a more
general method based on the existence of a linear structure of type 1 for a component
of the inverse of the permutation [Nyb22]. Since the components of a Gold function
have linear structures of type 1, any component of the inverse of a Gold function can
be replaced by a linear Boolean function.
The multiplicative inverse function in a finite field does not have linear structures.
Therefore the question arises, whether existence of a linear structure is necessary for
the construction of permutations with linear components. In this paper we answer
this question affirmatively.
More generally, we show that the existence of linear structures is a necessary prerquisite
for any componentwise modification of a permutation that preserves bijectivity. In
particular, we establish a characterisation of the relationship between two different
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extensions of a 2-to-1 function in terms of existence of a linear structure of type 1.
This characterisation is then further expressed in terms of a Feistel transformation.

Outline. We start by introducing the necessary preliminaries in Section 2. In
Section 3 we recall the modification method derived from the existence of a linear
structure. The necessity of the existence of a linear structure is proved in Section 4
where also the connection to Feistel transformations is established. Our characterisa-
tion of bijectivity preserving componentwise modification is presented in Section 5
and the conclusions are drawn in Section 6.

2 Preliminaries
We consider the vector space Fn2 of dimension n over F2 where n is a positive integer.
A vector x ∈ Fn2 can be represented as an n-tuple x = (x1, . . . , xn) of coordinates
xi ∈ F2, i = 1, . . . , n. We denote by ‘⊕’ the addition in Fn2 . The zero element
in Fn2 is denoted by 0n, where the subscript is omitted if n = 1. For two vectors
x = (x1, . . . , xn) ∈ Fn2 and y = (y1, . . . , yn) ∈ Fn2 we define an inner product denoted
as x · y by setting

x · y = x1y1 ⊕ · · · ⊕ xnyn.

The nth coordinate vector (0, . . . , 0, 1) is denoted by en. The orthogonal complement
of a subspace U ⊂ Fn2 is denoted by U⊥.
A Boolean function f : Fn2 → F2 is said to be balanced if the size of its support is
equal to 2n−1. This is equivalent to saying that the Walsh transform of f at 0n is
equal to 0.
Let F : Fn2 → Fm2 be a vectorial Boolean function. Given a vector β ∈ Fm2 , β 6= 0, we
define a component of F as the Boolean function

x 7→ β · F (x), x ∈ Fn2 ,

and denote this function by β · F . A vectorial Boolean function from Fn2 to Fn2 is a
permutation (bijection) if and only if all its components are balanced.
Let f : Fn2 → F2 be a Boolean function. Then f is said to have a linear structure if
there is a vector w ∈ Fn2 , w 6= 0n, such that

f(x⊕ w)⊕ f(x) = δ, for all x ∈ Fn2 ,

where δ ∈ F2 is a constant [MS89]. Then we say that w is a linear structure of type δ
of f .

3 Replacing a Component by a Linear One
Beierle and Leander studied bijective APN Gold functions in odd dimension. They
showed that the inverse of such a Gold function, which is APN and has high nonlin-
earity, can be modified by replacing one component by a linear function in such a
way that the resulting modification is also a permutation [BL20].
This construction was studied in [Nyb22] where it was shown that a sufficient prereq-
uisite allowing the linear replacement, is that any component of a Gold function has
a linear structure of type 1. Let us restate the result from [Nyb22].

Theorem 1. Let F : Fn2 → Fn2 be a bijective vectorial Boolean function and assume
that one of its components, say β · F has a linear structure w of type 1. Let α ∈ Fn2
be such that α ·w = 1 and F−1 be modified by replacing the component α ·F−1 by the
linear function x 7→ β · x. Then the resulting function is a bijection.

The main tool for connecting the linear structure to the bijectivity property is the
permutation π constructed as follows.
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Theorem 2. Let f : Fn2 → F2 be a Boolean function with a linear structure w of type
1. We define a function π : Fn2 → Fn2 by setting

(γ · π) (x) = γ · x, x ∈ Fn2 ,

for all γ ∈ {0, w}⊥. The remaining components are defined by first fixing an α ∈ Fn2
such that α · w = 1 and then setting

α · π(x) = f(x), x ∈ Fn2 .

Then π is a permutation.

Example Let f be a Boolean function on Fn2 of the form

f(x1, . . . , xn) = xn ⊕ g′(x1, . . . , xn−1). (1)

Then en = (0, . . . , 0, 1) is a linear structure of f . The resulting permutation π is
given as follows

π(x1, . . . , xn) =
(
x1, . . . , xn−1, xn ⊕ g′(x1, . . . , xn−1)

)
. (2)

Such a permutation is known as one round of an unbalanced Feistel network where
the round function g′ is a Boolean function on Fn−1

2 . We shall call it the unbalanced
(n− 1, 1) Feistel transformation.
The goal of this paper is to show that an unbalanced Feistel transformation is
essentially the only possible function to be applied on a permutation if bijectivity is
desired to be preserved in componentwise modification.

4 A Linear Structure Is Necessary
The second construction of a differentially 4-uniform permutation with null nonlinear-
ity given in [BL20] was obtained by adding a linear component to a known example
of a differentially 4-uniform 2-to-1 function.
Let S : Fn2 → Fn−1

2 be a 2-to-1 function. Given a Boolean function f on Fn2 , let us
define a function Rf from Fn2 to Fn2 by setting

Rf (x) = (S(x), f(x)) .

As noted in [BL20] the function Rf is a permutation if and only if f is balanced and
S (supp(f)) = Fn−1

2 . Such f can always be found be dividing the input space into
two disjoint sets A and B such that S |A and S |B are injections, and setting

f(x) =
{

0, if x ∈ A
1, if x ∈ B.

The question is, can f be chosen to be linear, in other words, can the set A be chosen
to be a hyperplane in Fn2 .
In this section we show that if a linear extension exists, then any other bijective
extension of S has an inverse which has a component with a linear structure of type
1. More generally, we shall show that a component of a vectorial Boolean function
can be replaced by a linear function only if the inverse of the said function has a
component with a linear structure.
We start by showing that the existence of a linear structure of type 1 for the function
f is necessary in the construction of π given in Theorem 2.

Theorem 3. Let π be a permutation on Fn2 such that the component γ · π is the
linear function x 7→ γ · x for all γ in an (n− 1)-dimensional subspace U of Fn2 . Let
α /∈ U . Then the unique nonzero vector in U⊥ is a linear structure of type 1 of α · π.
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Proof. Let w ∈ Fn2 be the unique non-zero vector such that w · γ = 0 for all γ ∈ U .
Then w · γ = 1 for all γ ∈ Fn2 \ U . Since π is a permutation, the functions

x 7→ α · π(x)⊕ γ · π(x) = α · π(x)⊕ γ · x

are balanced for all γ ∈ U . Using the inverse Walsh transform we get

(−1)α·π(x) = 2−n
∑
γ∈Fn

2

(−1)γ·x
∑
z∈Fn

2

(−1)α·π(z)⊕γ·z

= 2−n
∑

γ∈Fn
2 \U

(−1)γ·x
∑
z∈Fn

2

(−1)α·π(z)⊕γ·z,

for all x ∈ Fn2 . By using this expression for π(x⊕ w) we get

(−1)α·π(x⊕w) = (−1)γ·α(−1)α·π(x) = (−1)α·π(x)⊕1,

for all x ∈ Fn2 .

Corollary 1. In the context of Theorem 1 a replacement of a component α · F−1 by
a linear function x 7→ β · x is possible if and only if the component β · F has a linear
structure w of type 1 such that α · w = 1.
To state another consequence of this result, let us first recall the following property
of Boolean functions with a linear structure of type 1, see e.g. [Car21].
Proposition 1. A Boolean function on Fn2 has a linear structure of type 1 if and
only if it is linearly equivalent to a function of the form

x = (x1, x2, . . . , xn) 7→ xn ⊕ g′ (x1, . . . , xn−1) , (3)

where g′ is a Boolean function from Fn−1
2 to F2.

Corollary 2. A vectorial Boolean function on Fn2 of the form

(x1, . . . , xn) 7→ (x1, . . . , xn−1, f(x1, . . . , xn))

is a permutation if and only it is an unbalanced (n− 1, 1) Feistel transformation as
given by Equation (2).

5 Replacing a Component: General Case
More generally, we can ask whether two Boolean functions f and g, for which
Rf = (S, f) and Rg = (S, g) are permutations, are somehow related. An answer is
given by the following theorem.
Theorem 4. Let S : Fn2 → Fn−1

2 be a 2-to-1 function and f a Boolean function
such that Rf = (S, f) is a permutation. Then f can be replaced by another Boolean
function g by preserving bijectivity if and only if the vector en is a linear structure of
type 1 of the Boolean function g ◦R−1

f .

Proof. Assume first that g gives a permutation Rg. We observe that the first n− 1
coordinate functions of Rf and Rg are equal and given by S. This holds also when
composed with R−1

f . This means that the first n− 1 coordinate functions of Rg ◦R−1
f

are given by

S
(
R−1
f (y)

)
= (y1, . . . , yn−1),

for all y = (y1, . . . , yn−1, yn) ∈ Fn2 . This means that only the last coordinate functions
of the functions Rg ◦R−1

g and Rg ◦R−1
f are different. In the first case it is the linear

function y 7→ yn and in the second case the function y 7→ g
(
R−1
f (y)

)
. By Theorem 3

we get that w = en is a linear structure of g(R−1
f ).
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Assume now that en is a linear structure of g ◦R−1
f of type 1. Then we can define a

permutation π as in Theorem 2 by choosing α = en and setting

π(y) =
(
y1, . . . , yn−1, g

(
R−1
f (y)

))
.

Then Rg = π ◦Rf is a permutation.

Since π is a Feistel transformation, we get the following corollary, from where it
follows that any modification of one component of a vectorial Boolean function is
essentially done by first using a bijective linear transformation to place the component
to be the rightmost coordinate function and then applying an unbalanced Feistel
transformation.

Corollary 3. Let F = (f1, . . . , fn) be a permutation on Fn2 . Then F ′ = (f1, . . . , fn−1, g)
is a permutation if and only if there is a Boolean function g′ on Fn−1

2 such that

g(x) = fn(x)⊕ g′ (f1(x), . . . , fn−1(x))

for all x ∈ Fn2 .

Proof. We apply Theorem 4 by choosing Rf = F . Then the vector en is a linear
structure of g ◦ F−1 if and only if there is a Boolean function g′ on Fn−1

2 such that(
g ◦ F−1) (y) = yn ⊕ g′(y1, . . . yn−1).

This equality holds for all y = (y1, . . . , yn) ∈ Fn2 , if and only if it holds for all x ∈ Fn2
such that y = F (x) = (f1(x), . . . , fn(x)).

We also see that the number of replacements of a component preserving bijectivity is
the square root of the total of 22n

different Boolean functions on Fn2 .

6 Conclusions
We have studied the previously suggested method for replacing a component of a
permutation on Fn2 with a linear one under the assumption that the inverse of the
permutation has a linear structure of type 1. We have proved that the existence of
the linear structure is necessary for such a modification. More generally, a component
f of a permutation F can be replaced by a function g by preserving bijectivity if and
only if g ◦ F−1 has a linear structure of type 1. In concrete terms, this means that a
modification of a rightmost component of a permutation will result in a permutation
if and only if the modification is done by applying an unbalanced (n− 1, 1) Feistel
transformation to the permutation.
We hope that this new characterisation may be used to facilitate search of modifications
of bijective S-boxes with desired cryptographic criteria.
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