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Abstract. TinyJAMBU is one of the finalists in the NIST lightweight
standardization competition. This paper presents full round practical
zero-sum distinguishers on the keyed permutation used in TinyJAMBU.
We propose a full round zero-sum distinguisher on the 128- and 192-bit
key variants and a reduced round zero-sum distinguisher for the 256-bit
key variant in the known-key settings. Our best known-key distinguisher
works with 216 data/time complexity on the full 128-bit version and with
223 data/time complexity on the full 192-bit version. For the 256-bit ver-
sion, we can distinguish 1152 rounds (out of 1280 rounds) in the known-
key settings. In addition, we present the best zero-sum distinguishers
in the secret-key settings: with complexity 223 we can distinguish 544
rounds in the forward direction or 576 rounds in the backward direction.
For finding the zero-sum distinguisher, we bound the algebraic degree of
the TinyJAMBU permutation using the monomial prediction technique
proposed by Hu et al. at ASIACRYPT 2020. We model the monomial
prediction rule on TinyJAMBU in MILP and find upper bounds on the
degree by computing the parity of the number of solutions.

1 Introduction

Lightweight cryptographic primitives are essential for providing security for
highly resource-constrained devices that transmit sensitive information. Thus,
recent years have seen a substantial increase in the development of lightweight
symmetric cryptographic primitives. As a response, NIST started the lightweight
cryptography competition [25] in 2018. The competition aims to standardize
lightweight authenticated encryption algorithms and lightweight hash functions.
In 2021, NIST announced ten finalists out of the initial 56 candidates.

TinyJAMBU [32,33], proposed by Wu et al., is one of the finalists of the NIST
lightweight competition. The design principle of TinyJAMBU follows the sponge
duplex mode using a keyed permutation. The core component of TinyJAMBU
is a keyed permutation derived from a lightweight NFSR that contains a single
NAND gate as the non-linear component.



2 Orr Dunkelman, Shibam Ghosh, and Eran Lambooij

TinyJAMBU uses two different keyed permutations with the same key K.
These are similar in structure but differ only in the number of rounds. We denote
these two permutations Pa and Pb. The permutation Pa is used in steps where
no output is observed. Pb is used in the first initialization step and when an
internal state value is partially leaked. In the original submission of TinyJAMBU,
the round number of Pa was 384 for all variants. The round number of Pb was
1024, 1152, and 1280 for 128-, 192-, and 256-bit key variants, respectively.

1.1 Existing Analysis on TinyJAMBU Permutation

The designers of TinyJAMBU [32,33] provide a rigorous security analysis of the
underlying permutation against various attacks. From the differential and linear
attack perspectives, the designers [32] count the least number of active NAND
gates to claim security against those attacks. Later it was improved by Saha et
al. in [23] using (first order) correlated NAND gates. The authors in [23] propose
differential characteristics through 338 and 384 rounds of the keyed permutation
with probabilities of 2−62.68 and 2−70.68, respectively. These attacks lead to a
forgery attack in the TinyJAMBU mode. In response to this result, the designers
of TinyJAMBU increased the number of rounds of Pa from 384 to 640 [33].
More recently Dunkelman et al. reported related-key forgery attacks on the full
TinyJAMBU-192 and TinyJAMBU-256 (after the tweak) [11].

Sibleyras et al. [24] discuss slide attack on the full round TinyJAMBU per-
mutations. These reported attacks are key recovery attacks on TinyJAMBU per-
mutation with data/time complexities of 265, 266, and 269.5 for 128-, 192-, and
256-bit key variants, respectively.

Regarding algebraic attacks, the designers of TinyJAMBU [32,33] claim that
all the ciphertext bits are affected by the input bits after 598 rounds. This
statement was supported by a recent work by Dutta et al. [12], where the authors
bound the degree using the monomial prediction technique [17] and showed that
TinyJAMBU is secure against 32-sized cube attacks after 445 rounds. In addition,
they propose cube distinguishers in the weak-key setting for 451 rounds and 476
rounds of TinyJAMBU permutation and the size of the weak-key set is 2108.
Another cryptanalysis from an algebraic perspective was reported recently by
Teng et al. [26], where the authors propose cube attacks against TinyJAMBU.
The authors propose basic cube distinguisher on 438 rounds TinyJAMBU by
considering TinyJAMBU mode as a black-box.

1.2 Our Contributions

This paper aims to study the algebraic properties of TinyJAMBU permutation as
a standalone primitive. Notably, we construct zero-sum [2,3,5] distinguishers that
distinguish the TinyJAMBU keyed permutation in practical complexity. Zero-sum
distinguishers [2,3,5] can be used to distinguish permutations from a random
permutation by suggesting a subset of inputs whose corresponding outputs are
summed to zero. One way to do so is to bound the algebraic degree of the
output bits, as a bit of degree d is balanced over any cube of degree d+ 1. The
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most precise technique for upper bounding the degree of a Boolean function is
the Monomial prediction technique, proposed at ASIACRYPT 2020 [17]. The
Monomial prediction technique recursively predicts the existence of a monomial
in the polynomial representation of the output bits. One can model the rules of
monomial prediction using automatic tools like MILP [17] or CP/SAT [14].

We use zero-sum distinguishers both in the known-key [20] and the secret-
key settings [19,21]. We show that one can bound the degree of an output bit
after 544 rounds of the TinyJAMBU permutation by 22 by carefully choosing
the cube variables. Furthermore, we show that the degree of the inverse Tiny-
JAMBU permutation increases slower than in the forward direction. Using this,
we show that in the backwards direction, a bit can be represented as a degree 22
polynomial after 576 rounds. Combining these results, we then show full round
zero-sum distinguishers on 128- and 192-bit key versions and reduced round dis-
tinguisher on 256-bit key version in the known key settings. Our best zero-sum
distinguishers are summarized in Table 1, which are the best-known algebraic
distinguishers on TinyJAMBU permutation till date.

Key size #Rounds Complexity Model Type Section

all 480(/1024) 216 Secret Key ZS 5
all 544(/1024) 223 Secret Key ZS 5.1

128 1024 216 Known Key ZS 5.1
192 1152 223 Known Key ZS 5.2
256 1152(/1280) 223 Known Key ZS 5.2

Table 1: Zero-Sum (ZS) Distinguishers on the full Round TinyJAMBU permuta-
tion.

1.3 Paper Structure

In Section 2, we define the notation for the paper as well as giving a short in-
troduction of the monomial prediction technique. We give a short overview of
the TinyJAMBU mode and keyed primitive in Section 3. Then, in Section 4,
we show how to build a zero-sum distinguisher on the full keyed permutation
of TinyJAMBU-128 and TinyJAMBU-192. In Section 5 we show how improve
data/time complexity of the zero-sum distinguisher on the full keyed permuta-
tion of TinyJAMBU-128 and TinyJAMBU-192 Finally, we conclude the paper in
Section 6.
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2 Preliminaries

2.1 Notations

The size of a set S is denoted as ∥S∥. The Hamming weight of a ∈ Fn
2 is defined as

wt(a) =
∑i=n

i=1 ai. We use bold lowercase letters to represent vectors in a binary
field. For any n-bit vector s ∈ Fn

2 , its i-th coordinate is denoted by si, thus we
have s = (sn−1, ..., s0). 0 represents the binary vector with all elements being 0.
For any vector u ∈ Fn

2 and x ∈ Fn
2 , we define the bit product as xu =

∏n
i=1 xi

ui .
Let Y ⊆ Fn

2 be a multi-set of vectors. A coordinate position 0 ≤ i < n is
called a balanced position if

⊕
y∈Y yi = 0.

2.2 Boolean Functions and Upper Bounds on the Degree

An n-variable Boolean function f is a function from Fn
2 to F2. If f is a Boolean

function then there exists a unique multivariate polynomial in

F2[x0, x1, ......, xn−1]/(x
2
0 + x0, x

2
1 + x1, ......, x

2
n−1 + xn−1)

such that
f(x0, x1, ......, xn−1) =

⊕
u∈Fn

2

afux
u.

This multivariate polynomial is called the algebraic normal form (ANF) of f . In
this paper, we primarily look at the algebraic degree of a Boolean function. The
definition of the algebraic degree of a Boolean function is as follows

Definition 1. The algebraic degree of a function f : Fn
2 → F2 is d if d is the

degree of the monomial with the highest algebraic degree in the ANF of f , i.e.,

d = max
u∈Fn

2 ,a
f
u ̸=0

wt(u).

Many well-known attacks such as integral attacks [18], higher-order differ-
ential attacks [21], cube attacks [9], and zero sum distinguishers [4] exploit a
low degree of a Boolean function. Hence, the problem of finding the degree of
a cryptographic function is important in cryptanalysis. Numerous methods for
computing (or bounding) the degree of cryptographic Boolean functions have
been proposed in the literature. A study on various degree evaluation methods
can be found in [7].

Canteaut et al. proposed a method for upper bounding the algebraic degree
of composite functions at EUROCRYPT 2002 [6], which was improved by Boura
et al. [3] at FSE 2011 with applications to the Keccak-f function.

In CRYPTO 2017, Liu [22] proposed the numeric mapping technique, which
is an approach for upper bounding the algebraic degree of a non-linear feedback
shift register based stream ciphers. The main idea of this technique is to estimate
the degree of a monomial by computing the sum of degrees of all the variables
contained in this monomial. Thus, one can use the degree of previous states to
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estimate the degree of the current state. Using the numeric mapping technique,
the author found several zero-sum distinguishers for round-reduced Trivium,
Kreyvium, and TriviA-SC .

Another approach for the degree evaluation is based on the division prop-
erty which was proposed as a generalization of the integral property by Todo
at Eurocrypt 2015 [27]. It is used in [28] to offer the first attack on the full
MISTY1 cipher. The division property proposed by Todo is word-based, i.e., the
propagation of the division property captures information only at the word level.

In FSE 2016, Todo and Morii introduced the bit-based division property [29].
However, the accuracy of this approach is determined by the accuracy of the
“propagation rules” of the underlying detection algorithms for division proper-
ties. The monomial prediction technique, proposed at ASIACRYPT 2020 [17],
offers an exact method to do so. We use the monomial prediction technique in
this paper to find an upper bound on the degree of a Boolean function. In the
following subsection we briefly discuss how to use it to compute the algebraic
degree.

2.3 Monomial Prediction

Finding algebraic properties, such as the degree of the vectorial Boolean func-
tions corresponding to cryptographic primitives, is usually very hard regarding
computational complexity. One way to determine various algebraic properties of
a Boolean function is to determine the exact algebraic structure, i.e., predict the
presence of particular monomials in its ANF. Monomial prediction technique [17]
is an indirect way to determine the presence of a particular monomial in the bit
product function of the output bits. In this section, we discuss an overview of
monomial prediction technique and how to find the degree of a Boolean function
with this technique.

Let f : Fn
2 → Fm

2 be a vectorial Boolean function that maps x = (xn−1, ..., x0) ∈
Fn
2 to y = (ym−1, ..., y0) with yi = fi(x), where fi : Fn

2 → F2 is a Boolean func-
tion called the i-th coordinate of f . The monomial prediction problem is to
identify if the monomial xu is present or absent as a monomial in the polyno-
mial representation of yv for some u ∈ Fn

2 and v ∈ Fm
2 . We denote that the

monomial xu is present in yv by xu → yv, likewise, xu ↛ yv denotes that xu

is not present in yv.
As most of the Boolean functions that appear in symmetric cryptographic

primitives are built as a composition of a sequence of vectorial Boolean functions,
the authors of [17] proposed a recursive prediction model. Naturally, the function
f can be written as a composition of round functions:

y = f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x)

and x(i+1) = f (i)(x(i)) for all 0 ≤ i < r. We can represent x(i) as a function of
x(j) for j < i as x(i) = f (i−1) ◦ · · · ◦ f (j)(x(j)).

Definition 2. (Monomial Trail [17]) Let x(i+1) = f (i)(x(i)) for 0 ≤ i < r.

We call a sequence of monomials ((x(0))u
(0)

, (x(1))u
(1)

, ..., (x(r))u
(r)

) an r-round
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monomial trail connecting (x(0))u
(0)

to (x(r))u
(r)

with respect to the composite
function f(x) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x) if

(x(0))u
(0) → (x(1))u

(1) → · · · → (x(i))u
(i) → · · · → (x(r))u

(r)

If there is at least one monomial trail connecting (x(0))u
(0)

to (x(r))u
(r)

, we

denote it as (x(0))u
(0)

⇝ (x(r))u
(r)

.

It is important to note that there can be multiple monomial trails connecting

(x(0))u
(0)

to (x(r))u
(r)

. This leads to the definition of a monomial hull which

is the set of all trails connecting (x(0))u
(0)

and (x(r))u
(r)

, which is denoted as

{(x(0))u
(0)

↬ (x(r))u
(r)}. The size of a monomial hull can be found recursively

as given in the following Lemma 1 from [17].

Lemma 1. ([17]) For r ≥ 1, (x(0))u
(0)

⇝ (x(r))u
(r)

, then

∥{(x(0))u
(0)

↬ (x(r))u
(r)}∥ =

1, if r = 1∑
(x(r−1))u

(r−1)→(x(r))u
(r)

∥{(x(0))u
(0)

↬ (x(r−1))u
(r−1)}∥, otherwise

It is easy to observe that the presence or absence of a monomial in (x(r))u
(r)

,
depends on the parity of the size of the monomial hull, which is captured in
Proposition 1.

Proposition 1. ([17]) (x(0))u
(0) → (x(r))u

(r)

if and only if ∥{(x(0))u
(0)

↬

(x(r))u
(r)}∥ is odd.

To conclude, the problem of finding the degree of a polynomial is reduced
to finding the parity of the size of the monomial hull of the monomial with the
highest degree.

2.4 Computing the Algebraic Degree Using Monomial Prediction

To determine the algebraic degree d, of a Boolean function f , one can use the
monomial prediction technique [17]. To compute an upper bound on the degree
we only need to prove the existence of a monomial xu with wt(u) = d such that
xu → f and xu′ ↛ f for all u′ with wt(u′) > wt(u).

To automate this task, the authors in [17] proposed a Mixed Integer Linear
Programming (MILP) approach. The core idea is to model the monomial trails
of a function with linear inequalities so that only the valid trails satisfy the
system. For more information on the MILP modeling, we refer to [15,16,17].

To find the existence of a specific monomial, one can choose a monomial (i.e.,
the exponent vector u) and check for the feasibility of the MILP model. On the
other hand, one can find the maximum degree by setting the objective function
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of the MILP model to maximize wt(u) according to maxxu→f wt(u). Finally, to
confirm the presence of a monomial, we need to check if the number of solutions
is even or odd. To do this, PoolSearchMode of the Gurobi1 solver is used in [17].
The PoolSearchMode is implemented by Gurobi solver to systematically search
for multiple solutions.

3 The Specification of TinyJAMBU

The TinyJAMBU [32] family of authenticated encryption with associated data
(AEAD), is a small variant of JAMBU [31]. It is one of the finalists of the
NIST lightweight competition. The design principle of TinyJAMBU is based on
the sponge duplex mode using keyed permutations derived from a lightweight
NLFSR.

In this paper we call the internal keyed permutation the TinyJAMBU permu-
tation. The round function of the TinyJAMBU permutation is defined as follows:
Pk : F128

2 → F128
2 such that for a key bit k ∈ F2 and input x = (x127, ..., x0),

Pk(x) = (z127, ..., z0) where{
z127 = 1⊕ k ⊕ x91 ⊕ x85x70 ⊕ x47 ⊕ x0

zi = xi+1, for 0 ≤ i ≤ 126.
(1)

We denote the r-round permutation by Pr
K. Given a key K = (kκ−1, ..., k0) of size

κ and a 128-bit input, Pr
K outputs a 128-bit state by calling the round function

r times as follows
Pr
K(x) = Pkκ−1

· · · ◦ Pk1
◦ Pk0

(x),

where each subscript i of the key bits are computed as ki = ki(mod κ). The round
function of the TinyJAMBU permutation is depicted in Figure 1.

0

⊕ ki

47

⊕

7085

NAND

⊕

91

⊕

127

Fig. 1: Round function of the TinyJAMBU permutation.

We define the inverse of Pr
K as P−r

K , such that for any K and x, P−r
K (Pr

K)(x) =
x. We follow the convention that the input to the P−r

K is rotated, i.e., the i-
th input bit becomes 127 − i for all 0 ≤ i < 128. The round function of the
TinyJAMBU inverse permutation is defined as follows: P−1

k : F128
2 → F128

2 such
that for a key bit k ∈ F2 and input z = (z127, ..., z0), Pk(z) = (x127, ..., x0) where

1 https://www.gurobi.com.

https://www.gurobi.com.
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{
x127 = 1⊕ k ⊕ x37 ⊕ x43x58 ⊕ x81 ⊕ x0

zi = xi+1, for 0 ≤ i ≤ 126.
(2)

Given a key K = (kκ−1, ..., k0), the TinyJAMBU inverse function is computed
as follows

P−r
K (x) = P−1

kκ−1
· · · ◦ P−1

k1
◦ P−1

k0
(x),

where each subscript i of the key bits are computed as ki = k(κ−i)(mod κ). The
round function of the inverse TinyJAMBU permutation is depicted in Figure 2.

0

⊕ ki

37

⊕

4358

NAND

⊕

81

⊕

127

Fig. 2: Round function of the inverse TinyJAMBU permutation.

TinyJAMBU has a 32-bit message injection part (rate), a 32-bit squeezing
part, and a 96-bit unaltered capacity part. The capacity part of the state is
XORed with the 3-bit frame constants denoted by consti. TinyJAMBU uses two
different keyed permutations using the same key K in different phases of the
encryption. We denote them as Pa and Pb. The only differene between these
two permutation is the number of rounds.

TinyJAMBU has three variants based on key size used in the permutation,
whose parameters are listed in Table 2.

Variant #Rounds Pa #Rounds Pb State Key Nonce Tag
TinyJAMBU-128 640 1024 128 128 96 64
TinyJAMBU-192 640 1152 128 192 96 64
TinyJAMBU-256 640 1280 128 256 96 64

Table 2: Parameters of the tweaked TinyJAMBU [33].

We denote internal state as s. The encryption algorithm of TinyJAMBU can
be divided into the following four phases.

Initialization. In this step Pb is applied to the 128-bit initial state s = (0, 0, ..., 0)
to inject the key into the state. After that, in the nonce setup phase, a 96-bit
nonce N is split up into three 32-bit nonce parts N0∥N1∥N2 and for each part
of the nonce the state is updated with Pa after which the nonce is added to the
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most significant part of the state. A depiction of the initialization is given in
Figure 3.

0

K

Key setup Pa
K Pa

K Pa
K

⊕

const1

⊕

⊕

N0

const1

⊕

N1

⊕

const1

⊕

N2

⊕

const1

Fig. 3: TinyJAMBU initialization.

Associated Data Processing. The associated data is divided into 32-bit
blocks. For each block, the 3-bit frame constant of the associated data phase
is XORed with the state and then the state is updated with Pa, after which
the 32 bits of the associated data part is XORed with the state. The schematic
diagram associated data processing and finalization step is depicted in Figure 4.

K

N

Init Pa
K Pa

K Pa
K

r

r

⊕

const2

c
· · ·

⊕

⊕r

r

c

A[1]

const2

c

r

r

c ⊕

⊕

A[a]

const3

Fig. 4: TinyJAMBU Authenticated Encryption for a blocks of associated data,
and m blocks of message.

Encryption. The plaintext is divided into 32-bit blocks. For each block, the
frame bits for encryption are XORed into the state. Then the state is updated
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with Pb, after which the plaintext block is XORed into the most significant
part of the state. Finally, we obtain the 32-bit ciphertext block by XORing bits
95 . . . 64 of the state with the plaintext block. Note that, the plaintext and nonce
are added to the 32 most significant bits of the state which are 127 . . . 96 and
the key stream used for encryption, is obtained from bits 95 . . . 64.

Finalization. After encrypting the plaintext, the 64-bit authentication tag
T0∥T1 is generated in two steps. First, the frame bits for the finalization are
XORed into the state which is followed by the application of Pa after which 32-
bit T0 is extracted from bit 95 . . . 64 of the state. Then, again the frame bits for
the finalization are XORed with the state followed by application of Pa and 32-
bit T1 is extracted. The schematic diagram plaintext processing and finalization
step is depicted in Figure 5.

Pb
K Pb

K Pb
K Pb

K
Pa
K

r

r
⊕

⊕

M [1] C[1]

c

const3

⊕

r

r
⊕

⊕

M [2] C[2]

c

const3

⊕
· · ·

⊕ r

r

c

⊕

M [m] C[m]

⊕

const4

T1

⊕

const4

T2

Fig. 5: TinyJAMBU Authenticated Encryption for a blocks of associated data,
and m blocks of message.

4 Zero-sum Distinguishers on TinyJAMBU

In this section, we show how to construct a zero-sum distinguisher [2] for the
TinyJAMBU permutation. The idea of this distinguisher, as the name ‘zero-
sum’ suggests, is to find a set of inputs and corresponding outputs of an n-bit
permutation such that the bits in the inputs and outputs sum to 0 over F2.
In the case of TinyJAMBU we choose an affine vector space ν as a subspace of
F128
2 of dimension d. We then show that the polynomial representation of all (or

some) of the targeted output bits of the TinyJAMBU permutation have a degree
less than d after r rounds. In such a case, the outputs corresponding to all the
elements in ν sum to 0 for the targeted bits as the dimension is greater than
the degree. In other words, if the algebraic degree of a Boolean function f is less
than d, there exists an affine vector space ν of dimension at least d for which⊕

x∈ν f(x) = 0. The time and data complexity of the attack is O(2d) and the
memory complexity is O(1).
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The input set ν usually consists of inputs taking all possible combinations
in d input bits and the remaining bits take a fixed value. Thus the input set
forms an affine vector space of dimension d. So the resulting output sets are
the d-th derivative of the corresponding vectorial Boolean function with respect
to ν. Recall that this idea was first proposed as the higher order differential
attack [19,21].

In the following we discuss various zero-sum distinguishers on the Tiny-
JAMBU permutation. The basis for all the distinguishers is finding an upper
bound on the degree of the polynomial representation of input/output bits. This
is done using a MILP model of the monomial prediction trail of the TinyJAMBU
permutation.

4.1 MILP Modeling

Let us consider a function f : Fm
2 → Fn

2 such that y = f(x). Every pair of (u,v)
is a valid monomial trail through f if and only if xu → yv. The main motivation
of MILP modeling is that it is easy to test validity of a monomial trail using the
MILP. Let us consider the following monomial trail

(x(0))u
(0) → (x(1))u

(1) → · · · → (x(i))u
(i) → · · · → (x(r))u

(r)

We consider the transition of the exponents (u(0)),u(1)), ...,u(r))) through the
round functions and construct a MILP model by modeling the propagation
of monomial trails. Any function can be decomposed into smaller operations,
namely, COPY, XOR, AND and NOT. We recall the MILP model from [15,16]
that supports the following operations.
COPY [15]. Consider the function COPY : F2 → Fm

2 such that COPY(a) =
(a, a, ..., a), i.e., one bit is copied to m bits. Let (u, (v1, v2, ..., vm)) denote the
monomial trail through the COPY function, then, it can be represented using
the following MILP constraints:

v1 + v2 + · · ·+ vm ≥ u

u ≥ vi,∀i ∈ {1, 2, ...,m}
u, v1, ..., vm are all binary variables.

XOR [15]. Consider the function XOR : Fm
2 → F2 such that XOR(a1, ..., am) =

a1⊕· · ·⊕am. Let ((u1, u2, ..., um), v) denote the monomial trail through the XOR
function, then, it can be represented using the following MILP constraints:{

u1 + u2 + · · ·+ um − v = 0

u1, ..., um, v are all binary variables.

AND [15]. Consider the function AND : Fm
2 → F2 such that AND(a1, ..., am) =

a1a2 · · · am. Let ((u1, u2, ..., um), v) denote the monomial trail through the AND
function, then, it can be represented using the following MILP constraints:{

v = ui,∀i ∈ {1, 2, ...,m}
u1, ..., um, v are all binary variables.
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NOT [16]. Consider the function NOT : F2 → F2 such that NOT(a) = 1 ⊕ a.
Let (u, v) denote the monomial trail through the NOT function, then, it can be
represented using the following MILP constraint:{

v ≥ u

u, v are binary variables.

4.2 MILP model for the Monomial Trails of TinyJAMBU

We now discuss a MILP model to capture the valid monomial trails through
the TinyJAMBU permutation. We denote the i-th intermediate state of the
TinyJAMBU permutation and the TinyJAMBU inverse permutation as x(i) =
(xi

127, . . . , x
i
0) and x̄(i) = (x̄i

127, . . . , x̄
i
0) for 0 ≤ i ≤ r, respectively. Thus the

input (state) variables are x(0) = (x0
127, . . . , x

0
0), and the output (state) vari-

ables after r-rounds are x(r) = (xr
127, . . . , x

r
0). We let u(i) = (ui

127, . . . , u
i
0)

and ū(i) = (ūi
127, . . . , ū

i
0) denote the exponents of the i-th intermediate state

of the TinyJAMBU permutation and the TinyJAMBU inverse permutation, re-
spectively. Also the exponents corresponding to the key variables are denoted
by (u0

128+κ, . . . , u
0
128).

To represent the feedback polynomial of TinyJAMBU permutation and its
inverse, we define the function CORE : F5

2 → F5
2 such that

CORE(x5, x4, x3, x2, x1, x0) = (y5, y4, y3, y2, y1, y0)

where

(y5, y4, y3, y2, y1, y0) =



y5 = x5

y4 = x4

y3 = x3

y2 = x2

y1 = x1

y0 = 1⊕ x0 ⊕ x1 ⊕ x2x3 ⊕ x4 ⊕ x5.

(3)

The way we model the i-th round works in two steps. At the first step the
CORE function is applied to (kii, x

i
91, x

i
85, x

i
70, x

i
47, x

i
0), i.e.,

(ki+1
i , xi+1

91 , xi+1
85 , xi+1

70 , xi+1
47 , xi+1

0 ) = CORE(kii, x
i
91, x

i
85, x

i
70, x

i
47, x

i
0).

In the second step all the state variables and key variables are rotated, i.e.,
xi+1
j = xi+1

j+1 mod 128 and ki+1
j = ki+1

j+1 mod 128. To construct a monomial trail of
the round function of TinyJAMBU permutation, we decompose the CORE func-
tion given in Equation 3 into COPY, XOR, AND and NOT operations. Then we
can model the monomial trails through the CORE function as shown in Table 3,
by introducing 7 intermediate variables wi for i = 0, 1, ..., 7. In Table 3, ui’s and
vi’s represent the MILP variables to denote exponents of xi’s and yi’s respec-
tively. For the second step we just rotate the indices. In Algorithm 1, we discuss
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how to generate a complete MILP model for TinyJAMBU permutation, where L
represents the inequalities for the CORE function as given in Table 3.

The model for the inverse TinyJAMBU permutation works almost similarly.
The only difference is the input to the CORE function. In the case of the inverse
round, the CORE function is applied as follows

(ki+1
i , xi+1

81 , xi+1
58 , xi+1

43 , xi+1
37 , xi+1

0 ) = CORE(kii, x
i
81, x

i
58, x

i
43, x

i
37, x

i
0).

operation trail MILP constraints

x1
COPY−−−→ (z1, y1) (u1, (w1, v1)) u1 ≤ w1, u1 ≤ v1, w1 + v1 ≥ u1

x2
COPY−−−→ (z2, y2) (u2, (w2, v2)) u2 ≤ w2, u2 ≤ v2, w2 + v2 ≥ u2

x3
COPY−−−→ (z3, y3) (u3, (w3, v3)) u3 ≤ w3, u3 ≤ v3, w3 + v3 ≥ u3

x4
COPY−−−→ (z4, y4) (u4, (w4, v4)) u4 ≤ w4, u4 ≤ v4, w4 + v4 ≥ u4

x5
COPY−−−→ (z5, y5) (u5, (w5, v5)) u5 ≤ w5, u5 ≤ v5, w5 + v5 ≥ u5

(z2, z3)
AND−−−→ z6 ((w2, w3), w6) w6 == z2, w6 == z3

(x0, z1, z6, z4, z5)
XOR−−−→ z7 ((u0, w1, w6, w4, w5), w7) w7 == u0 + w1 + w6 + w4 + w5

z7
NOT−−−→ y0 (w7, v0) v0 ≥ w7

Table 3: Inequalities to represent the CORE function.

4.3 Degree Estimation of the TinyJAMBU Permutation

We now bound the degree of TinyJAMBU permutation using the MILP model
generated in Algorithm 1. In the following discussion, we consider the key K =
(kκ−1, ..., k0) as a constant. Thus, the j-th state bit after i rounds of PK, x

i
j ,

is a polynomial on x(0) = (x0
127, . . . , x

0
0), and we need to determine the degree

of the polynomial over x(0) = (x0
127, . . . , x

0
0). In all of our attacks, we fix our

target output (state) bit to the 127-th bit and thus for an r-round permutation
u(r) = (ur

127, ..., u
r
0) is

ur
j =

{
1, if j = 127

0, otherwise.
(4)

We discuss the detailed procedures to find the degree of the TinyJAMBU per-
mutation in Algorithm 2, where we call Algorithm 1 to generate a MILP model
for the TinyJAMBU. Algorithm 2 works as follows: we first generate a MILP
modelM and solve the model to get a possible monomial m in the polynomial
representation of the 127-th bit of the output state. Our next task is to confirm
the presence of the monomial m in the polynomial representation of the 127-th
bit of the output state. To do so we generate another MILP modelM′ (line 11



14 Orr Dunkelman, Shibam Ghosh, and Eran Lambooij

Algorithm 1 TinyJAMBUMILP (Generating a MILP model)

1: Input: r, the targeted number of rounds
2: Output: The MILP model M for r-round TinyJAMBU permutation, MILP

variable representing initial and final states
3: Declare an empty MILP modelM;
4: M.var ← u(0) = (u0

127+κ, . . . , u
0
128, u

0
127, . . . , u

0
0);

5: M.var ← s = (s127+κ, . . . , s0);
6: s← u(0);
7: for i = 0; i < r; i = i+ 1 do
8: M.var ← (w7, . . . , w0);
9: M.var ← (v128, v91, v85, v70, v47, v0);

10: M.con← L(s128, s91, s85, s70, s47, s0, v128, v91, v85, v70, v47, v0, w7, . . . , w0);
11: si = vi, i ∈ {0, 47, 70, 85, 91, 128};
12: for j = 0; j < 128; j = j + 1 do
13: sj ← sj+1 mod 128;

14: for j = 128; j < κ; j = j + 1 do
15: sj ← s128+{(j+1) mod κ};

16: ur ← s
17: returnM,u0,ur;

in Algorithm 2). Here we set the initial variables (u′(0)) ofM′ according to the
solution ofM and solve it. In this case we count the number of solutions ofM′.
If the number of solutions is odd, then we confirm that the obtained monomial
m exists (line 19 in Algorithm 2) in the polynomial representation of the 127-th
bit of the output state. Otherwise, if the number of solution is even, then the
number of trails from the monomial m is even. So, we remove the solution cor-
responding to m (line 22-26 in Algorithm 2) and solve the modelM again. We
do this until we get a monomial with an odd number of trails.

We have listed our findings of degree for TinyJAMBU-128 permutation and
its inverse permutation in Table 7 and Table 8, respectively, in Appendix A. The
source code for MILP modeling can be found in

https://github.com/ShibamCrS/zeroSumDistinguishersOnTinyJambu.git.

4.4 Basic Zero-sum Distinguisher

We now discuss a basic zero-sum distinguisher on TinyJAMBU-128. To find this
we upper bound the degree of TinyJAMBU permutation using Algorithm 2. We
set the objective function to maximize the sum of initial variables, i.e.,

∑127
j=0 u

0
j

and check for the parity of the number of solutions as in Algorithm 2. With the
help of Algorithm 2 we are able to evaluate an upper bound on the algebraic
degree of the TinyJAMBU-128 up to 333 rounds. The degree of all the bits in
x(333) is upper-bounded by 38 for 333 rounds. Thus, if we consider an affine
subspace ν of dimension 39 and consider the sum of the output states over all

https://github.com/ShibamCrS/zeroSumDistinguishersOnTinyJambu.git
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Algorithm 2 Degree estimation of the TinyJAMBU permutation

1: Input: r, the targeted number of rounds
2: Output: The degree d of r-round TinyJAMBU permutation
3: (M,u(0),u(r))← TinyJAMBUMILP (r);
4: M.constraint← {ur

127 = 1};
5: for i = 0; i < 127; i = i+ 1 do
6: M.constraint← {ur

i = 0};
7: M.objective← max(u0

127 + . . .+ u0
0);

8: while true do
9: M.update();

10: M.optimize();
11: if M.status is OPTIMAL then
12: d←M.objvalue

13: (M′,u′(0),u′(r))← TinyJAMBUMILP (r);
14: ur

127 ← 1;
15: for i = 0; i < 127; i = i+ 1 do
16: ur

i ← 0;

17: for i = 0; i < 128; i = i+ 1 do
18: u′0

i ← u0
i .value;

19: M′.optimize();
20: if M′.status is OPTIMAL then
21: if Number of solution inM′ is odd then
22: return d;
23: else
24: for i = 0; i < 127 + κ; i = i+ 1 do
25: if u0

i .value = 0 then
26: M.constraint← {u0

i = 1};
27: else
28: M.constraint← {u0

i = 0};
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the elements of ν, we get 0, i.e.,⊕
x(0)∈ν

P333
K (x(0)) = 0.

Which gives us that all the state bits are balanced after 333 rounds.
We can extend this distinguisher to cover more rounds due to the basic nature

of the shift register. From the design of the round function, we can observe that
each bit is shifted to its previous bit, i.e., xi

j = xi
j+1. Thus after 448 rounds the

following 12 bits are still balanced

(x
(448)
11 , x

(448)
10 , . . . x

(448)
0 ).

The complexity of this distinguisher is 239. When the same affine subspace passes
through a random permutation, the outputs satisfy the above condition with
probability 2−12. Thus, the distinguishing advantage of this distinguisher 1 −
2−12.

We can increase the distinguishing advantage by considering ℓ affine subspace
of dimension 39 instead of taking one affine subspace. This comes at the cost of
complexity. In this case the the distinguishing advantage of this distinguisher is
1− 2−12ℓ and the complexity is ℓ239. Let us take ℓ = 4. Then the distinguishing
advantage increases to 1− 2−48 and complexity of this distinguisher is 241.

We can increase the number of rounds up to 460 and still can use this zero-
sum property. However, the distinguishing advantage of the attack decreases. If
A is the distinguishing advantage, then the number of rounds r ∝ log(1 − A),
where 333 ≤ r ≤ 460.

Zero-sum Distinguisher of the Inverse Permutation We now discuss a
basic zero-sum distinguisher on the inverse permutation. Similar to the forward
direction, here also we set the objective function to maximize

∑127
j=0 ū

0
j and to

check for the parity of the number of solutions. We noticed in our experiments
that in the inverse direction the degree increases significantly slower compared
to the forward direction. This is because the update function has only one non-
linear operation on bit number 70 and 85 and for the inverse permutation, the
first non-linear operation is after 70 rounds, while in the forward direction the
first non-linear operation occurs after 42 rounds.

With the help of monomial prediction, we are able to evaluate an upper
bound on the algebraic degree of the inverse TinyJAMBU-128 up to 502 rounds.
The degree of all the bits in x̄(502) is upper-bounded by 41 for 502 rounds. Thus
if we consider an affine subspace ν of dimension 42 and consider the sum of the
output states over all the elements of ν, we get 0, i.e.,⊕

x(0)∈ν

P−502
K (x̄(0)) = 0.

As in the forward direction, we can extend this distinguisher for more rounds
using shifting property of the register. After 608 rounds the following 21 bits are
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still balanced

(x̄
(608)
20 , x̄

(608)
19 , ..., x̄

(608)
0 ).

The data and time complexity of this distinguisher is 242 and the distinguish-
ing advantage of this distinguisher 1 − 2−21. Similar to the forward direction,
we can increase the distinguishing advantage by considering few more subspaces
of dimension 41. If we consider 4 subspaces of dimension 41, the distinguishing
advantage increases to 1− 2−84 and complexity of this distinguisher is 244.

4.5 Extending to Full Rounds Using Inside-out Approach

We extend the above zero-sum distinguishers to a full round distinguisher using
the inside-out approach. We start in the middle of the permutation and compute
the degree outwards. We consider an affine subspace ν of dimension d and for
all 2d possible intermediate states we compute the outputs. Suppose that we
consider the state after r1 rounds for an r-round permutation where r1+ r2 = r.
For all these 2d intermediate states x(r1) ∈ F128

2 , we compute Pr2(x(r1)) and
P−r1(x(r1)). If the degree of both functions Pr2 and P−r1 are less than d, we
get zero-sum on both outputs, i.e.,⊕

x(r1)∈ν

Pr2(x(r1)) =
⊕

x(r1)∈ν

P−r1(x(r1)) = 0.

The idea is depicted in Figure 6.

ν
deg(Pr2) < ddeg(P−r1) < d

zero-sumzero-sum

Fig. 6: Zero-sum distinguisher from an intermediate vector space ν.

However, to use this distinguisher to distinguish the TinyJAMBU permutation
from a random permutation, we need to know the secret key K, i.e., this is a
known-key zero-sum distinguisher. This cryptographic model, distinguishing a
cryptographic permutation from a random permutation with the knowledge of
the key, was introduced by Knudsen et al. in [20] at ASIACRYPT 2007. The
authors in [20] found a distinguisher on the 7-round AES [8] using this model.
There are other examples of this approach in the literature, for example on
KECCAK and Luffa [3,5], PHOTON [30], Ascon [10] or MiMC [13].

To apply the technique to the TinyJAMBU-128 permutation, we bound the
degree of Pr2 and P−r1 using a MILP model of the monomial prediction rules.
We find that the degree of all the bits of x(332) is upper-bounded by 37 af-
ter applying 332 rounds of P. On the other hand, the degree of all the bits of
x̄(482) is upper bounded by 37 for round number 482 of P−1. We set r1 =
448 and r2 = 576 giving r = r1 + r2 = 1024. If we take P448(x(576)) =
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(z127, ..., z0), then we get the zero-sum at the bit positions (z10, z9, ..., z0). Simi-
larly, if P−576(x(576)) = (y127, ..., y0), then we get the zero-sum at the following
33 bit positions (y32, y31, ..., y0). Thus we consider an affine vector space ν of di-
mension 38 and compute outwards by setting the intermediate state to all possi-
ble 238 vectors from ν. We collect the outputs of P448 and the outputs of P−576.
Finally, we have a set of inputs X = {x = (x127, ..., x0)} with

⊕
x∈X xi = 0

for all 0 ≤ i ≤ 32. Also, a set of outputs Z = {P1024(x) : x ∈ X} such that⊕
x∈X zi =

⊕
x∈X(P1024(x))i = 0 for all 0 ≤ i ≤ 10. Combining the two results

we have a zero-sum distinguisher of full round TinyJAMBU-128 permutation with
time and data complexity O(238). See Figure 7 for a depiction of the attack.

ν
deg(P448) < 38deg(P−576) < 38

zero-sumzero-sum

Fig. 7: Zero-sum distinguisher on full TinyJAMBU-128.

5 Improved Zero-sum Distinguisher

In the previous section, we suggested a distinguisher on the full round Tiny-
JAMBU-128 permutation by considering degree of the TinyJAMBU permutation
and inverse permutation over all 128 state variables. In this section we improve
the time and data complexity of the distinguisher by choosing the proper vari-
ables (or in other words a proper affine subspace ν), i.e., we want to find the
degree of the TinyJAMBU permutation over some selected variables. This sce-
nario is also similar to the cube attack [9] or a cube tester [1].

Given a Boolean polynomial f in m variables, we choose a set of variables
(also called the cube variables in a cube attack) of size n and set the rest of the
m − n variables to a constant (typically they are set to zero). We reduced the
function f to a function on n-variables. If we can show that the reduced function
has degree lower than some value d, we have a zero-sum property.

Proper Choice of Variables Let us consider the following subspace ν of
dimension 23 from F128

2

x ∈ ν ⇐⇒


xi+47 = xi, if 0 ≤ i ≤ 22

0, if 23 ≤ i ≤ 46

0, if 70 ≤ i ≤ 127.

(5)

From the algebraic description of the round permutation we get that after one

round, the feedback polynomial is x
(1)
127 = 1 ⊕ x

(0)
0 ⊕ x

(0)
47 ⊕ x

(0)
70 x

(0)
85 ⊕ x

(0)
91 ⊕ k0.

If we set x(0) to any vector from ν, we have x
(1)
127 = 1 ⊕ k0. This is also true

for first 23 rounds. Therefore, for the first 23 rounds the degree of the feedback
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polynomial is 0 in the cube variables. Then, from round 24 to 47, the degree of
the feedback polynomials is also 0 in the cube variables. It is now clear how the
locations of the fixed 0 bits were chosen - to ensure that as many forward rounds
with degree 0 as possible. We conclude the results with the following Lemma 2.

Lemma 2. If we choose the input state x(0) of the TinyJAMBU permutation

from the subspace ν as described in (5), we get deg(x
(i)
127) = 0 for all 0 ≤ i ≤ 47.

More precisely, if P47
K (x(0)) = z, then the coordinates of z satisfies the following

conditions:

zi = x
(0)
i for 0 ≤ i ≤ 22

zi = 0 for 22 ≤ i ≤ 80

zi = 1⊕ k81−i, for 81 ≤ i ≤ 117

zi = k155−i ⊕ k118−i, for 118 ≤ i ≤ 127

After 47 rounds, the degree is upper bounded by 1 and state bits 23 to 128
do not contain any cube variables. So we do not consider these MILP variables
in the objective function.

After 388 rounds the degree in all bits of x(388) is upper bounded by 22.
Consequently, as we have started after 47 rounds, we can compute the degree
after 47 more rounds. The degree in all bits of x(435) after 435 rounds is upper
bounded by 22. Using the subspace ν mentioned in (5), after applying the per-
mutation for 544 rounds, i.e., P(544), we get a zero sum on the following 18 bit
positions

(x
(544)
17 , x

(544)
16 , ..., x

(544)
0 ).

Similar distinguishers also works on TinyJAMBU-192. The results are summa-
rized in Table 4.

key size #rounds #balanced bits complexity

128 480 16 16
128 480 38 18
128 512 9 18
128 544 18 23
128 448 12 39∗

192 490 6 16
192 555 8 23

256 490 6 16
256 555 8 23

Table 4: Secret-key zero-sum distinguishers TinyJAMBU permutation. ∗ implies
the basic distinguisher of sec 4.4.
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5.1 Extending to Full Rounds Using Inside-out Approach

Similar to the basic distinguisher, we can extend this distinguisher to the full
round TinyJAMBU-128 without increasing time or data complexity. The advan-
tage we get for forward direction from projecting degree for 47 rounds at the
starting, is not possible for the inverse permutation. However, as we discussed
earlier, the degree of the inverse permutation already increases slowly.

For the inverse permutation we set the MILP variable as follows ūi = 0 if
0 ≤ i ≤ 58 or 81 ≤ i ≤ 105. After 472 rounds we have that the degree in all the
bits of x̄(472) are upper bounded by 22. Thus, after 576 rounds of the inverse
permutation we get a zero sum on the following 23 bit positions

(x̄
(576)
22 , x̄

(576)
21 , . . . x̄

(576)
0 ).

Similar distinguishers also works on TinyJAMBU-192. The results are summa-
rized in Table 5.

key size #rounds #balanced bits complexity

128 544 6 16
128 544 16 18
128 576 23 23
128 592 7 23
128 608 21 42∗

192 544 6 16
192 597 4 23

256 544 6 16
256 597 4 23

Table 5: Secret-key zero-sum distinguishers TinyJAMBU inverse permutation. ∗
implies the basic distinguisher of sec 4.4.

To extend the above results to full rounds we set r1 = 512 and r2 = 512,
and we have a zero-sum distinguisher on full rounds with 50 balanced bits on
the output of the forward direction and 87 balanced bits on the output of the
inverse direction. Other combinations of r1 and r2 are possible with the trade-off
on data/time complexity to number of balanced bits. Our best distinguisher on
full TinyJAMBU-128 works with the time/data complexity of 216. For these we
set r1 = 480 and r2 = 544 such that r1 + r2 = 1024. We get 16 balanced bits in
the forward direction and 6 balanced bits in the backward direction. Results on
full round attack with various combinations of r1 and r2 are given in Table 6.
Also see Figure 8 for a depiction of the attack.
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ν
deg(P512) < 23deg(P−512) < 23

zero-sumzero-sum

Fig. 8: Improved zero-sum distinguisher on full TinyJAMBU-128.

5.2 Attack on TinyJAMBU-192 and TinyJAMBU-256

The improved distinguisher discussed in the previous of this section also works on
the full round TinyJAMBU-192 and reduced round TinyJAMBU-256 in a similar
manner. The results are summarized in Table 6.

5.3 Experimental Verification

We conducted experiments to verify the existence of the zero-sum distinguishers.
All of our distinguishers on TinyJAMBU-128 are verified with the reference im-
plementation of TinyJAMBU. The source codes of the verification can be found
in:

https://github.com/ShibamCrS/zeroSumDistinguishersOnTinyJambu.git.

key size #rounds #balanced bits complexity
forward inverse after P after P̄

128 480 544 16 6 16
128 480 544 38 16 18
128 512 512 50 87 23
128 448 576 11 33 38∗

192 555 597 8 4 23

256 555 597 8 4 23†

Table 6: Known-key zero-sum distinguishers on full round TinyJAMBU-128 and
TinyJAMBU-192 and reduced round TinyJAMBU-256. ∗ implies basic distin-
guisher of sec 4.4. † implies reduced rounds.

6 Conclusion

We discussed full round zero-sum distinguishers for the TinyJAMBU permuta-
tion, based on the algebraic properties of the permutation. All the distinguishers
have practical complexities, that allowed for complete experimental verification
of the attacks.

One important note is that the keyed permutation is the main contribution
of the TinyJAMBU submission to the NIST lightweight competition. Our attack

https://github.com/ShibamCrS/zeroSumDistinguishersOnTinyJambu.git


22 Orr Dunkelman, Shibam Ghosh, and Eran Lambooij

is not possible inside the mode. Nevertheless, as we have shown, the keyed per-
mutation used in TinyJAMBU is easily distinguished in the known-key setting.
Combining this with the fact that the mode is proven to be secure under the
assumption that the internal keyed permutation is robust could lead to problems
in the future.
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A The Algebraic Degree of TinyJAMBU-128 Permutation
and its Inverse

offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0+ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20+ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
40+ 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
60+ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
80+ 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5
100+ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
120+ 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7
140+ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
160+ 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10
180+ 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12
200+ 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 15
220+ 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
240+ 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 19 19 19 20
260+ 20 20 21 22 22 22 22 22 22 22 23 24 24 24 24 24 24 25 25 25
280+ 25 25 25 26 26 26 26 26 26 26 26 27 27 27 27 27 28 28 28 29
300+ 29 29 30 30 30 31 31 31 31 31 31 32 33 33 34 34 34 35 35 35
320+ 36 36 36 36 36 36 36 36 36 37 37 37 37 38

Table 7: Degree of the 127-th bit of TinyJAMBU-128 permutation up to 333
rounds.
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offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0+ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20+ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
40+ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
60+ 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
80+ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
100+ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4
120+ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
140+ 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
160+ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
180+ 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6
200+ 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7
220+ 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8
240+ 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 10 10
260+ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
280+ 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12
300+ 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14
320+ 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15
340+ 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16
360+ 16 16 16 16 17 17 18 19 19 19 19 19 19 20 20 20 20 20 20 20
380+ 20 20 20 20 20 20 20 21 21 21 22 22 22 22 22 22 23 23 24 24
400+ 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25
420+ 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 27 28 29 29 29
440+ 29 29 29 30 30 31 31 31 31 31 31 31 31 31 31 31 31 32 32 32
460+ 32 32 32 32 33 33 34 34 35 35 35 36 36 36 36 36 36 36 37 37
480+ 37 37 37 38 38 38 39 39 39 39 40 40 40 40 40 40 41 41 41 41
500+ 41 41 41

Table 8: Degree of the 127-th bit of TinyJAMBU-128 inverse permutation up to
502 rounds.
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