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Abstract. In settings such as delegation of computation where a prover
is doing computation as a service for many verifiers, it is important to
amortize the prover’s costs without increasing those of the verifier. We
introduce folding schemes with selective verification. Such a scheme al-
lows a prover to aggregate m NP statements xi ∈ L in a single statement
x ∈ L. Knowledge of a witness for x implies knowledge of witnesses for all
m statements. Furthermore, each statement can be individually verified
by asserting the validity of the aggregated statement and an individ-
ual proof πi with size sublinear in the number of aggregated statements.
In particular, verification of statement xi does not require reading (or
even knowing) all the statements aggregated. We demonstrate natural
folding schemes for various languages: inner product relations, vector
and polynomial commitment openings and relaxed R1CS of NOVA. All
these constructions incur a minimal overhead for the prover, comparable
to simply reading the statements.

Keywords: Folding · Aggregation · Delegation of computation · SNARKs
· Vector commitments · Verifiable databases.

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) have been proven
an invaluable tool in the last decade, both in theoretical as well as practical
terms. Such constructions allow a prover to convince a verifier that some NP
relation is satisfied in a way such that communication and (in some cases) verifi-
cation time are sublinear in the size of the NP witness. They can also be adapted
to satisfy the zero-knowledge property, which guarantees that no information
about the NP witness is leaked through the proof.

While the first real-world application of SNARKs [2] aimed at preserving the
privacy of the prover, the potential of this primitive for improving scalability in
many applications is increasingly recognized, for example roll-up architectures or
the Filecoin network. In these applications, where the size of the computations
is really large, the efficiency of the prover is the main bottleneck. Therefore,
improving prover’s efficiency is an active area of research, trying to reduce prover
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overhead [5, 6, 20] or memory requirements [8] or building hardware accelerators
for the provers, to name a few approaches.

Despite the many improvements achieved and those that for sure will come
after the considerable research effort we have seen in reducing this cost, SNARK
proofs will remain expensive for the prover. Also, it is natural to envisage a
scenario where these proofs are outsourced to some powerful entity, in the spirit
of secure delegation of computation [17], where an untrusted prover performs
computations as a service to several “muggles”, or computationally weak verifiers.
In this scenario, the prover is providing a service to many verifiers and also has
their data (i.e. there are no privacy requirements). The current overhead of the
prover is crucial in this scenario. The efficiency of the prover is essential in this
scenario, as it will seriously hinder scalability, and also the cost of the prover will
be directly reflected in the cost of the service. On the other hand, using some kind
of batching or recursive proof composition in this setting seems unsatisfactory,
as each verifier does not necessarily want to know all the other statements that
are being verified and incur the additional costs that this represents.

1.1 Our Contributions

The aim of this work is to mitigate the necessity of large computational resources
for the prover in applications where he provides services to many clients. Instead
of trying to improve the efficiency of SNARK constructions, we take a different
approach: we amortize the proving cost across multiple proofs of independent and
unrelated statements. This means that, when having to make M computations of
different statements, instead of producing M separate SNARK proofs for each,
the prover “collapses” all these statements into a single statement in a verifiable
way and only produces a proof for the latter using a SNARK. This is a novel
application of folding schemes [19], originally introduced to improve recursive
proof composition. The guarantee we get is that if the proof for the aggregated
statement verifies, then all statements are correct.

Additionally, since the ultimate goal is to be able to prove unrelated state-
ments, possibly coming from different parties, we augment aggregation with a
local property we call selective verification. This property captures that a small
proof πi -which importantly, is sublinear in the number of aggregated statements-
is evidence that a statement xi was considered in the construction of the final
aggregated statement and, thus, a proof for the latter along with πi stands as
a proof for the validity of xi. Note that it is not necessary to even know the
statements used in aggregation to assert the validity of xi.

A crucial requirement for efficiency is that aggregation of M statements is
more efficient than producing M SNARK proofs. We demonstrate this by con-
sidering natural aggregation schemes for various relations through simple public
coin protocols and the Fiat-Shamir transform. Specifically, we consider (1) in-
ner product relations of committed values, (2) vector commitment openings, (3)
knowledge of openings of polynomial commitments at the same point, and (4)
the relaxed R1CS relation of NOVA [19].
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All the constructions are extremely efficient for the prover, who during fold-
ing does work comparable to reading the statements/witnesses (modulo a linear
number of hash function computations needed to derive the non-interactive chal-
lenge of the Fiat-Shamir transform). Verification incurs a small overhead since
now the verifier also needs to check, apart from the SNARK proof, that the
statement in question is indeed “contained” in the aggregated statement. This
is dominated by logM hash function computations where M is the number of
aggregated statements. This seems a good compromise since the verifier benefits
from the reduced costs of the service as well.

Nevertheless, there are several other advantages in the construction for the
verifier. First, the same techniques used for folding can be used “locally” by the
verifier to aggregate many statements into a single statement xi which will then
be aggregated with other independent queries from other verifiers. Therefore,
the additional cost of each verifier can be amortized when the verifier makes
multiple queries. Second, since all verifiers need to assert the validity of the
same folded statement, one could explore the possibility of distributing this task,
incentivizing a few randomly chosen verifiers to check the aggregated statement.
As long as one is honest, a cheating prover will be identified. If a verifier does
not validate the proof himself, it can still query it in the future to the prover
(along with other statements of interest that it locally aggregates) instead of
simply relying on other parties. Thus, the verification cost can be fine-tuned on
large scale systems without compromising security.

Our techniques are quite general. In particular, (1) we show a generic way to
augment every non-interactive 2-folding scheme to a non-interactive M -scheme
using combinatorial techniques, (2) show this construction achieves selective ver-
ification, and (3) we do not rely on some specific SNARK construction.

1.2 Applications

As we have discussed, selective verification can improve efficiency on applica-
tions with a single server serving multiple clients in a trustless way. It allows
us to amortize the server’s costs across multiple queries from clients, while only
incurring a small overhead for the clients. We discuss two applications in more
detail.

Delegation of computation as a service. For delegation of computation in a trust-
less setting, one would normally resort to a SNARK, especially in cases where
interaction is prohibitive. We discuss how to use folding schemes to mitigate the
problem of prover’s costs.

We will consider two cases: (1) each party needs to perform arbitrary com-
putations, and (2) all parties are interested in doing the same computation on
different inputs. Especially in the latter case, we can significantly reduce the
costs of the prover through folding schemes with selective verification.

For case (1), many SNARKs are constructed by separately considering some
information-theoretic part and a cryptographic primitive. Two main approaches
are known: (i) using interactive oracle proofs [1] and vector commitments [14]

3



and (ii) using algebraic [15] or polynomial [13] holographic proofs and polynomial
commitments [18]. In the former, the prover and verifier, after interacting, reduce
the validity of the claim to the opening of some commitments to vectors at some
random indices, while in the latter the validity of the statement is reduced to
opening some polynomial commitments in random values. The interaction can
be removed through the Fiat-Shamir transform.

In either case, we can use the folding constructions of the previous section to
amortize the cost of the latter step: inner product arguments for the former and
polynomial commitment for the latter3. Specifically, with each computational
query, the prover computes all the commitments that are part of the SNARK but
it refrains for the time from computing the opening of (the vector or polynomial)
commitment. After multiple interactions with different verifiers, it folds all the
(vector or polynomial) commitments to a single one and opens the latter at
some random indices or points respectively. The randomness can be derived by
hashing the folded statement. Each verifier can now assert the folding proof as
well as some evidence sent by the server asserting the inclusion of her statement.
To be concrete, for example in Plonk [16], the prover will compute round until
round 3 for each different statement. Then, it will wait to open the polynomial
commitments until it has the transcripts of many other protocols until round 3.
Using a technique presented by Turel et al. in [22], the prover will then create a
Merkle tree of hashes of the transcript, to derive an opening point that is a hash
of all involved transcripts. Then, the prover will send all the openings that each
verifier needs to verify its statement (including an opening of the linearization
polynomial r(X)), together with a proof that all the commitments corresponding
to these openings have been folded into a single commitment value, and a proof
of correct opening of this commitment4.

In case (2), where all parties are interested in performing the same compu-
tation on different inputs, one could use the NOVA approach. Specifically, the
computation is encoded as a relaxed R1CS statement and the various instances
of this statement are aggregated using the NOVA folding scheme compiled to
support selective verification. As we discussed, a folding of this type of state-
ments is very efficient. This is in constrast to the previous case, since the SNARK
information theoretic part (which needs to be in fact executed for each query to
the proving server) is in fact costly for the prover. Considering the case of a single

3 In fact, both inner product arguments and polynomial commitment folding can be
used for either approach but the presentation becomes more natural by using one
approach for each.

4 We note that it is also possible to use a different strategy if one changes slightly the
statement about the polynomial commitments: the prover can fold statements of the
form “I know a polynomial that is a valid opening of a commitment” and fold such
statements for each verifier resulting in a claim about a single polynomial commit-
ment. Then, it can prove this statement at a single point which will be the same
for all verifiers. The point is derived by hashing the final folded statement. During
folding, the transcript of the first protocol rounds is included in the hashing part of
the folding. Thus, each verifier can check that its transcript indeed contributed in
the sampling of the FS challenge point.
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computation allows us to completely remove the need for this part and directly
fold statements, which is not much costlier than simply reading the statements.

Verifiable Databases. In a verifiable database, a client outsources the storage of a
database to a server in a trustless way. Specifically, the client only holds a small
digest of the database and can query/modify the database in a verifiable way
through communication with the prover. Such a construction can be built using
vector commitments. The database is encoded as a vector and the client only
needs to hold the (constant size) commitment to the database. A query to the
database can be answered verifiably by asking the server to open the commitment
to the desired locations. Furthermore, if the underlying commitment scheme is
homomorphic (for example the Pedersen commitment), updating the database is
efficient since one just needs to homomorphically update the digest by removing
the old values and adding the new ones.

Consider the case where a server outsources storage to various clients. Naively
implementing this would require that it sends an (expensive to produce) proof
of opening for every query of every client to its database. Using a folding scheme
with selective verification (for example the inner product language construction)
can naturally minimize this cost.

In particular, each query to the server is answered without any verifiability
guarantee; the clients simply get their responses and perform their updates act-
ing in good faith. However, periodically, the server folds all the claims from all
the clients using the folding scheme and publishes a single statement and indi-
vidualized proofs for each client to convince about the validity of all statements
of one period. Due to the efficiency of the folding scheme, the amortized cost for
this is much less than proving each claim individually.

An interesting feature of the described mechanism is that it can be used to
any algebraic commitment (i.e. any Pedersen type) commitment, in particular,
they can be used in DLOG groups without pairings. In this setting, to open a
vector to many positions, the cost of the verifier is linear in the size of the com-
mitment. Our solution allows amortizing the prover cost in this setting without
much overhead to the verifier, which is critical in this setting where individual
verification is already quite expensive.

1.3 Related Work

The techniques in this work are inspired by a recent line of work on proof com-
position techniques, namely [9, 12, 11, 4]. In general, these techniques consider
the notion of proof aggregation, namely, how to derive a single proof π that
asserts the validity of two or more proofs. The motivation for this line of work
is twofold. First, amortizing the cost of the (inefficient) verification of folding
technique based constructions [7, 10] and second, to construct proof carrying
data [3] and incrementally verifiable computation [21].

Our work differs in that (1) the main goal is to amortize the proving cost
and (2) we consider the notion of aggregating unrelated statements, that is,
one should assert the validity of statement without even knowing the other
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statements considered during aggregation. NOVA [19] is closer to our work in
that it directly considers aggregating statements instead of proofs, in an attempt
to minimize the proving cost.

Perhaps closest to our work is [22]. There, they use a tree like structure
similar to ours in order to derive the same Fiat-Shamir challenge across multiple
parallel executions of an inner product argument protocol [10] with different
parties. In particular, the protocol transcripts are committed in a Merkle tree so
that each party can assert that its transcript was considered in the production of
the challenge. We consider statement aggregation instead of executing multiple
proofs in parallel which is conceptually different and more efficient.

2 Definitions

In this section we recall the definition of folding schemes for NP relations intro-
duced in NOVA [19]. On a high level, given an NP language L and the corre-
sponding NP relation R, a folding scheme allows a prover and a verifier to reduce
the validity of 2 or more statements of the form xi ∈ L to a single statement
x ∈ L. The resulting statement is of the same form, so it can be further aggre-
gated. A prover knowing witnesses wi s.t. (xi, wi) ∈ R for all the statements
also obtains a witness w for the folded statement x.

A folding scheme takes to the extreme proof composition techniques used to
construct PCD [3] and IVC [21]. The core idea of these techniques is to incre-
mentally prove statements that assert that (1) a computation step is performed
correctly and (2) there exists a proof that asserts that the input of the compu-
tation in this step is correct. Using generic constructions, however, is extremely
inefficient.

To alleviate this, a recent line of work [9, 12, 11, 4] follows a different ap-
proach: they defer an expensive part of proof verification of the aforementioned
proof and aggregate it with deferred parts from other steps. At any point, the
verifier can perform this expensive part and assert that all steps of the compu-
tation are correct. Importantly, the aggregation part is cheap and the deferred
part does not grow with the number of computational steps proven. Therefore,
the expensive part is performed once for an arbitrarily large number of steps.

NOVA takes this approach to the extreme in the following sense: it defers
the verification of the statement itself. More concretely, the statement asserting
the correctness of the first i− 1 steps is encoded as a statement X ∈ L for some
language and the correctness of the i-th step as x ∈ L for the same language.
The two statements are then “folded” to a new statement X∗ ∈ L, correctness
of which implies correctness of both statements. Since all statements are of the
same form, the process can be repeated for an arbitrary number of steps and it
is enough to prove the final statement to assert correctness of all steps.

Assuming the existence of such a mechanism to fold statements, one can
then encode in a circuit the verification process of this folding and construct an
IVC scheme. Importantly, the folding verification is cheap, achieving very low
recursion overheads.
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In our work, we consider using similar techniques, albeit for a different goal:
aggregating statements to reduce the amortized proving cost of proving many
different statements. That is, instead of encoding the folding verification as a
circuit and build IVC, we directly use the folding scheme to allow a prover to
prove the validity of a bunch of M different statements using only a single proof
by means of aggregation. Additionally, we present a mechanism, selective verifi-
cation that allows a verifier to assert the correctness of one of the M statements
efficiently: it needs to know neither all the M aggregated statements nor the en-
tire proof of aggregation (which grows linearly in M). It simply needs the proof
of the final statement and a proof that is sublinear in M .

Taking into account that producing proofs is a computationally intense task,
this allows much better amortized proving time with little overhead for verifica-
tion. Indeed, [19] introduces a folding scheme construction that captures all NP
computations and allows very fast statement aggregation.

2.1 Folding Schemes

We next present the formal definition of a folding scheme. The notion is essen-
tially the same as presented in [19] with two modifications: we only consider
a non-interactive definition, namely the prover simply presents a proof of cor-
rect folding to the verifier, and we consider a definition that allows aggregating
M statements instead of 2 as it is discussed in NOVA. Looking ahead, our
concrete instantiations will be folding schemes for 2 statements that are then
bootstrapped to folding schemes of M statements using a generic bootstrapping
compiler.

The formalization of a folding scheme is quite natural. Given a number of
instance/witness pairs (xi, wi) that satisfy some NP relation, there exists a fold-
ing algorithm that outputs a new instance/witness pair (x,w) that also satisfies
the NP relation, along with some evidence π that the new instance x is indeed a
”folded” statement derived from the statements xi. One can think of the folded
statement as encoding all statements of interest. The properties required are:

1. completeness, stating that if we aggregate instance-witness pairs (xi, wi) sat-
isfying the NP relation, then (1) folding results in an instance-witness pair
also satisfying the relation and (2) the folding proof is accepted;

2. knowledge soundness, stating that if after correct aggregation the proving
party knows a witness for the resulting statement, then it should also know
witnesses for all statements (xi, wi) that were considered during aggregation.

Definition 1 (Folding scheme). Let λ ∈ N be a security parameter and Lpp

be an NP language parametrized by some parameters pp(λ) depending on λ and
Rpp the corresponding relation. Finally, let M = poly(λ). An M -folding scheme
FS for the language family L = {Lpp}pp∈{0,1}∗ is a tuple of an algorithms FS =

(Fold,FoldVrfy) such that for all pp = pp(λ) and m ≤M

– (x,w, π) ← Fold (pp, x1, w1, . . . , xm, wm): takes as input the parameters pp,
and m instance-witness pairs (xi, wi) ∈ Lpp and outputs a new instance-
witness pair (x,w) ∈ Rpp and a proof of correct folding π,
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– 0/1 ← FoldVrfy (pp, x1, . . . , xm, x, π): takes as input the parameters pp, m
instances xi, an aggregated statement x and a proof of correct folding π and
outputs a bit indicating whether folding was done correctly or not,

that satisfies the following properties:

1. Completeness: for all m ≤ M , all pp = pp(λ) and all (even computation-
ally unbounded) algorithms A,

Pr


(x1, w1), . . . , (xm, wm)← A(pp)

{q1, . . . , qm} ⊆ Rpp ∧ q1 = (x1, w1), . . . , qm = (xm, wm)
((x,w) ̸∈ Rpp ∨ b = 0) (x,w, π)← Fold (pp,q)

b← FoldVrfy (pp,x, x, π)

 ≤ negl(λ)

2. Knowledge soundness: for all m ≤ M and all pp = pp(λ) there exists a
PPT extractor E such that for all PPT algorithms A

Pr

 (x,w) ∈ Rpp ∧ (x, x, w, π)← A(pp)
b = 1 ∧ w← EA(pp)

∃1 ≤ i ≤ m s.t. (xi, wi) ̸∈ Rpp b← FoldVrfy (pp,x, x, π)

 ≤ negl(λ)

In Sec. 4 we present 2-folding schemes for various relations: inner product
relations of committed values, vector and polynomial commitment openings and
the relaxed R1CS relation of [19]. We derive the constructions by means of
public coin protocols that we compile to a non-interactive variant through the
Fiat-Shamir heuristic.

Remark 1. We emphasize that after folding the statements, the corresponding
witnesses are not needed. In particular, the witnesses are only used to construct
the witness for the final folded statement and then they can be safely deleted. In-
deed, to assert the validity of all statements, it is enough to (1) present the proof
of correct folding and (2) convince about the validity of the folded statement.
The latter can be done using only the folded statement/witness pair, for exam-
ple with a SNARK. Put it differently, while the folded statements “encodes” all
the aggregated statements by means of a folding proof, it is also -in some sense-
independent of them after the folding has taken place.

2.2 Folding Schemes with Selective Verification

As we discuss in the introduction, the main goal of this work to allow to reduce
the resources used in “as a service” scenarios: a prover needs to serve multiple
verifiers in a trustless way. A characteristic example is a prover that verifiably
outsources its computational resources to verifiers who need to perform arbitrary
computations.

We emphasize that this is a different goal from NOVA [19] and related works,
which aim to achieve proof composition and construct IVC schemes. In our case,
there are natural additional properties one would want to achieve. Perhaps the
most natural is to allow verifying single statements that are “encoded” in the
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folded statements without the need to know or even care about the validity of
the rest of the statements. Let us elaborate on this.

Consider the case where a prover wants to serve m statements for m dif-
ferent parties. Simple folding is indeed a means to that goal: the prover needs
to convince for the validity of a single statement to convince all verifiers about
the validity of all m statements. Nevertheless, it is still inefficient in terms of
verification. The inefficiency stems from the fact that in order to verify correct
folding, all the statements need to be considered as part of the proof of correct
aggregation.

While this is natural in cases where a single verifier is interested in many
statements, it can be prohibitive in scenarios where multiple verifiers are in-
terested in the validity of different statements: first, the verifiers need to know
each others’ queries to the prover to assert validity of the folded statement, and
second, the verification cost scales linearly with the total number of statements
considered.

In this section, we mitigate this issue by considering a stronger notion of
folding schemes that allows to assert that a single statement was considered
during aggregation of multiple statements -and hence knowledge of a witness of
the latter implies knowledge of the witness of the former, without the need to
know all the statements involved. Importantly, verification of inclusion of a single
statement to the folded statement is sublinear in the total number of statements
involved. We call this stronger notion folding with selective verification.

We require (and later achieve) a strong version of this notion: one can derive
a proof of inclusion of a single statement to a folded statement only by knowing
the aggregated statements and the proof of correct folding. In particular, creation
of such a proof does not require any witness information on the statements
and can be performed by parties different than the prover. Looking ahead, our
bootstrapping construction achieves this property by simply handing parts of the
folding proof corresponding to each statement, each being sublinear (logarithmic)
in the total size of the folding proof.

We next define the stronger notion of a folding scheme that supports selective
verification.

Definition 2 (Folding scheme with selective verification). Let λ ∈ N
be a security parameter and Lpp be an NP language parametrized by some pa-
rameters pp(λ) depending on λ and Rpp the corresponding relation. Finally,
let M = poly(λ) and let FS = (Fold,FoldVrfy) be an M -folding scheme for
L = {Lpp}pp∈{0,1}∗ . FS has selective verification if there exists a pair of al-
gorithms (SelPrv,SelVrfy) such that for all m ≤M ,

– (π1, . . . , πm) ← SelPrv(pp, x1, . . . , xm, x, π): takes as input the parameters
pp, m instances x1, . . . , xm, a folded instance x and a folding proof π and
outputs m proofs π1, . . . , πm,

– 0/1 ← SelVrfy(pp, x, i, xi, πi): takes as input the parameters pp, a folded
statement x, a position i ∈ {1, . . . ,m}, a statement xi and a proof πi and
outputs a bit indicating if xi was aggregated (among other statements) to x,

9



that satisfies the following properties:

1. Selective completeness: for all m ≤ M , all pp = pp(λ) and all (even
computationally unbounded) algorithms A,

Pr


{q1, . . . , qm} ⊆ Rpp ∧

x1, w1, . . . , xm, wm ← A(pp)

∃i ∈ {1, . . . ,m} :
q1 = (x1, w1), . . . , qm = (xm, wm)

bi = 0
(x,w, π)← Fold (pp,q)

(π1, . . . , πm)← SelPrv(pp,x, x, π)
bi ← SelVrfy(pp, x, i, xi, πi)

 ≤ negl(λ)

2. Selective knowledge soundness: for all m ≤ M = poly(λ) and all pp =
pp(λ) there exists a PPT extractor E such that for all PPT algorithms A

Pr

[
SelVrfy(pp, x, i, xi, πi) = 1 ∧ (i, xi, πi, x, w)← A(pp)
(x,w) ∈ Rpp ∧ (xi, wi) ̸∈ Rpp wi ← EA(pp)

]
≤ negl(λ)

3. Efficiency: |πi| = o(m · |x|), namely, the proof size should be asymptotically
smaller than the total size of folded statements.

The definition captures that if (1) the prover knows a valid witness w for
the folded statement x and (2) the i-th proof verifies, then it should be the case
that the prover knows witness wi such that (xi, wi) ∈ Rpp. Note that from the
perspective of a party asserting the validity of xi, it is not necessary to know
the other statements considered in the construction of x. Furthermore, the other
statements need not be honestly generated; even if the adversary samples them,
knowledge of the witness of the i-th statement is still guaranteed.

The efficiency condition rules out trivial constructions. Without it, one could
set the proof of statement i to be simply the set of all aggregated statements
along with a proof of correct folding. The verifier would then simply need to
check that one of the statements corresponds to the one that is of interest to her.
The interesting part of the definition is to achieve the same goal with sublinear
communication.

Finally, note that we do not require the extractor to be able to extract all
m statements that would “explain” the folded statement x; rather, we ask that
given a witness for the folded statement and a valid proof, we can extract a
witness only for the i-th statement. This is exactly what one would want for
selective verification since ultimately, this is a local property : we want to ensure
that some statement is correct without caring how we end up with the folded
statement; the latter is simply a means to verify correctness of the statement of
interest.

3 Bootstrapping Construction for Folding Schemes

In this section we show how to bootstrap any 2-folding scheme to an M -folding
scheme for any polynomial M . Additionally, the bootstrapped construction sat-
isfies the stronger notion of selective verifiability. Thus, to construct a selectively
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verifiable folding scheme, it is enough to construct a simple 2-folding scheme –
which as we shall see is a relatively simple task using Σ-protocol techniques–
and simply applying the bootstrapping compiler.

The crucial observation to bootstrapping is that statement aggregation is
by definition “incremental”. The fact that the folded statement is of the same
form as the folded ones directly implies that we can further fold the former
with a new statement. A simple argument shows the final statement “encodes”
all three statements and a single proof for it along with the two folding proofs
is convincing for the validity of all. The process can be repeated an arbitrary
amount of times.

To achieve the additional property of selective verifiability we only rely on
combinatorial properties: instead of incrementally aggregating statements, we
arrange them in a statement tree. Thus, the fact that a single statement is “en-
coded” in the final folded statement only depends on a small amount of state-
ments: the ones that consist the path from the leaf (statement we want a proof
for) to the root (folded statement). Thus, the corresponding proof is sublinear
in the number of statements, consisting of the folding proofs for the statements
in this path.

We next present the bootstrapping construction and then we show that it
also achieves the stronger notion of selective verifiability.

3.1 Construction

Our construction allows to derive an M -folding scheme from any 2-folding scheme5.
Roughly, to aggregate M = 2k (w.l.o.g.) statements, we create a statement

aggregation tree as follows. We build a tree by putting the statements on the
leaves of the tree and we fold each pair of them resulting in 2k−1 statements
of the same form. Then we proceed recursively until we are left with a single
statement.

To prove that the folded statement encodes all the statements, we give a
proof π consisting of all the 2-folding proofs we made along the way to derive
the root of the tree.

It is easy to see that the construction satisfies knowledge soundness. Consider
the final 2-folding proving that the root is the folded statement of its two children.
Given a valid witness for the folded statement and a proof of correct aggregation,
we can extract witnesses for its two children –guaranteed by the knowledge
soundness of the base 2-folding scheme.

We emphasize that our construction is incremental as well: the final statement
–having the same form as the folded statement– can be furthered aggregated if
needed.

5 The bootstrapping construction can in fact bootstrap any m-folding scheme for
m ≥ 2. We only present the m = 2 case for ease of presentation. All constructions in
this work are derived from 2-folding schemes but one could in fact consider m > 2
to improve concrete efficiency.
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Fig. 1: Demonstration of the process of deriving the folding tree. We assume we
fold 2k statements (the leaves of the tree). We index with the position of the
node in the tree in binary and we use superscript for the level of the node in
the tree. A node x

(l)
b is computed as the (non-interactive) folding of x(l−1)

b0 and
x
(l−1)
b1 using the underlying scheme FS. The aggregation proof consists of all the

folding proof performed.

We give a pictorial representation of the construction in Fig. 1 and present
the bootstrapping construction in Fig. 2. Next we show that the resulting con-
struction is an M -folding scheme for any polynomial size m.

Theorem 1. Let FS be a 2-folding scheme for a language family L with cor-
responding relations R. Then, for any constant constant k ∈ N, construction
BootstrapFS of Fig. 2 is a 2k-folding scheme for the same language family.

Proof. Completeness follows directly by straightforward calculations and the
completeness of BootstrapFS. We next show that BootstrapFS satisfies knowledge
soundness.

Let m = 2k, x1, . . . , xm be statements and w a witness for the folded state-
ment x output by an adversary A. We construct an extractor E that extracts
the witnesses w1, . . . , wm given a witness for the folded statement w and a valid
folding proof π, that uses as a black box the extractor E ′ for FS guaranteed to
exist by knowledge soundness of FS.

Consider the binary tree defined by the honest BootstrapFS.FoldVrfy algo-
rithm: the leaves are defined in the first level by the statements, that is, we label
each leaf with (x

(k)
1 ,⊥), (x(k)

2 ,⊥), . . . , (x(k)
m ,⊥) where x

(k)
j = xj and for each pair

of statements folded, we define a parent node connected to each of them labeled
by the folded statement and the proof of correct folding. Note that verification
passes, if

12



BootstrapFS.Fold(pp, q1 = (x1, w1), . . . , qm = (xm, wm)):
– Denote m = 2k

– if k = 0 then output q1, π1 = ⊥, otherwise group the 2k statements to 2 groups
of 2k−1 elements each and denote them q1,q2

– Recursively compute:
(q̃1 = (x̃1, w̃1), π̃1)← BootstrapFS.Fold(pp,q1)
(q̃2 = (x̃2, w̃2), π̃2)← BootstrapFS.Fold(pp,q2)

– (q = (x,w), π∗)← FS.Fold(pp, q̃1, q̃2)
– output q, π = (π1, π2, x̃1, x̃2, π

∗)

BootstrapFS.FoldVrfy(pp, x1, . . . , xm, x, π):
– Denote m = 2k

– if k = 0 then output 1 iff x = x1, otherwise
1. group the 2k statements to 2 groups of 2k−1 elements each and denote

them x1,x2

2. parse the proof as π = (π1, π2, x̃1, x̃2, π
∗)

– recursively compute
b1 ← BootstrapFS.FoldVrfy(pp,x1, x̃1, π̃1)
b2 ← BootstrapFS.FoldVrfy(pp,x2, x̃2, π̃2)

– b← FS.FoldVrfy(pp, x̃1, x̃2, x, π
∗)

– output b ∧ b1 ∧ b2

Fig. 2: Bootstrapping construction BootstrapFS for deriving an m-folding scheme
from a 2-folding scheme FS. We assume (w.l.o.g.) that the number of initial
statements is 2k.

1. for any node labeled (x
(i−1)
j , π

(i−1)
j ) with child nodes (x

(i)
2j−1, ·), (x

(i)
2j , ·) veri-

fication passes, namely, FS.FoldVrfy(pp, x(i)
2j−1, x

(i)
2j , x

(i−1)
j , π

(i−1)
j ) = 1

2. the root node is labeled with (x, ·)

We next show that for all such adversaries A, there exists a family of extractors
E ij for 0 ≤ i ≤ k − 1, 1 ≤ j ≤ 2i such that given as input a derived tree for
some statements x1, . . . , xm, E(i)j extracts valid witnesses w

(i+1)
2j−1 , w

(i+1)
2j for the

statements x
(i+1)
2j−1 , x

(i+1)
2j that are the children nodes of x(i)

j in the derived tree.
The construction is recursive. We denote E(∗) the trivial extractor that given the
witness for the root node (output by the adversary A), it simply outputs it.
Base case: E(0)1 runs E(∗) to get the witness w

(0)
1 for the root. It then queries

the derived tree and constructs the adversary A(0)
1 that outputs x(1)

1 , x
(1)
2 , folded

statement-witness pair x
(0)
1 , w

(0)
1 and proof π(0)

1 which is part of the label of the
root node. Finally, it invokes E ′ with access to A(0)

1 to derive witnesses w(1)
1 , w

(1)
2

for the statements x
(1)
1 , x

(1)
2 .

Recursive case: Now, let i ≥ 1 and consider any j with 1 ≤ j ≤ 2i. We
construct an extractor E(i)j assuming the existence of an extractor for a level
closer to the root node. Let (x

(i−1)
p(j) , ·) denote the label of the parent node of

13



the node labeled with (x
(i)
j , π

(i)
j ) and let (x(i+1)

2j−1 , ·), (x
(i+1)
2j , ·) be the labels of the

children of x(i)
j . Now, we construct A(i)

j that has hardcoded the binary tree and
works as follows:

– It invokes the extractor E(i−1)
p(j) corresponding to statement x

(i−1)
p(j) to get a

witness w
(i)
j for x

(i)
j (and all its siblings which it ignores).

– It then constructs an adversary A(i)
j that outputs x

(i+1)
2j−1 , x

(i+1)
2j , the folded

statement-witness pair x
(i)
j , w

(i)
j and the proof of correct folding π

(i)
j con-

tained in the node label.
– Finally, it invokes the extractor E ′ of FS with access toA(i)

j and gets witnesses
w

(i+1)
2j−1 , w

(i+1)
2j .

– It outputs witnesses w
(i+1)
2j−1 , w

(i+1)
2j .

We are now ready to construct the extractor E . E queries A to get statements
x1, . . . , xm, a folded statement-witness pair (x

(0)
1 , w

(0)
1 ) and a proof of correct

folding π. It then uses the proof and the statements to construct the tree, queries
the extractors E(k−1)

1 , . . . , E(k−1)
m/2 -each of which outputs 2 witnesses for 2 leaf

nodes- and concatenates their outputs.
Let’s now consider the running time and the probability of success of the

extractor E .
For the running time, let t(λ) be the running time of E ′ and denote ti(λ)

the running time of an extractor on level i (note that all these extractors are
identical). By construction, we have that ti(λ) = ti−1(λ) + t(λ) and t0(λ) =
|w|, namely the time to output the folded witness w. This recurrence relation
corresponds to ti(λ) = i · t(λ) + |w|. Finally, the running time of the extractor E
is

tE(λ, k) = tBootstrapFS(λ, k) + 2k−1tk−1(λ) =

= tBootstrapFS(λ, k) + 2k−1(k − 1) · t(λ) + |w|

where tBootstrapFS(k) is the time of BootstrapFS.FoldVrfy algorithm for folding
m = 2k statements (equivalently the time needed to construct the statement
tree). This corresponds to a quasilinear overhead m logm for the time of the
extractor E , which is polynomial for any number of polynomial statements.

We next show that the advantage of E is polynomially related to that of
E ′. We denote with p′ the probability that extractor E ′ succeeds in outputting
the witnesses in FS conditioned on A outputting a valid witness for the folded
statement and a verifying proof, namely,

p′ = Pr


(x1, x2, x, w, π)← A(pp)

{(x1, w1), (x2, w2)} ⊆ Rpp
(w1, w2)← E ′A(pp)

FoldVrfy (pp, x1, x2, x, π) = 1
(x,w) ∈ Rpp


Claim. Consider any adversary A against BootstrapFS and the folding tree de-
rived by its output. Fix i, j such that 0 ≤ i ≤ k− 1 and 1 ≤ j ≤ 2i and consider
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the tree node (x
(i)
j , π

(i)
j ) and let (x

(i+1)
2j−1 , ·), (x

(i+1)
2j , ·) be its children. Let Wi be

the event that the extractor E(i)j outputs a valid witness for all the children nodes
of x(i)

j , that is

Wi =

{{
(x

(i+1)
2j−1 , w

(i+1)
2j−1 ), (x

(i+1)
2j , w

(i+1)
2j )

}
⊆ Rpp

(x1, . . . , xm, x, w, π)← A(pp)
(w

(i+1)
2j−1 , w

(i+1)
2j )← E(i) A

j (pp)

}
Then Pr[Wi] ≥ p′ Pr[Wi−1].

Proof. We have Pr[Wi] ≥ Pr[Wi | Wi−1] Pr[Wi−1]. Now, the probability of Wi

conditioned on Wi−1 is the probability that an extractor on the i-th level suc-
ceeds conditioned on the probability that the extractor on level i − 1 succeeds.
If the extractor of the parent node succeeds, then its output contains a valid
statement/witness x(i)

j , w
(i)
j and therefore A(i)

j outputs a valid folded witness by
construction. Thus, the probability of this event is exactly p′.

■

Solving the recurrence relation gives that Pr[Wk−1] ≥ p′k−2 Pr[W1]. Now, Pr[W1]
is the probability that the extractor associated with the root node outputs valid
witnesses assuming that A outputs a valid witness for the (final) folded state-
ment. This means that, conditioned on A outputting a valid witness, Pr[Wk−1] ≥
p′k−1.

Finally, consider the probability that E succeeds conditioned on A outputting
a valid witness. This events happens if all extractors in level k − 1 succeed. So,
the probability that E fails is bounded by m

2 (1−p
′k−1) = 2k−1(1−p′k−1). Noting

that
1− p′

k−1
= (1− p′)(p′

k−2
+ · · ·+ 1) ≤ (1− p′)(k − 1)

we get for any adversaries A,A′ against knowledge soundness of BootstrapFS
and FS respectively, AdvA(λ, k) ≤ (k − 1)2k−1AdvA′(λ) □

Remark 2. As noted in Remark 1, after performing a folding and computing
a witness for the folded statement, there is no need to store the witnesses for
the initial statements any more. We note that this is the case for the compiled
construction as well. In particular, in applications where the statements to be
aggregated are “streamed” the prover can be implemented to perform the folding
by storing only three witness at any time. This can drastically reduce the memory
requirements for aggregation.

Remark 3. NOVA and similar related work inherently rely on heuristic argu-
ments for security. In particular, to construct IVC schemes, it is inherent in the
techniques used in these works that one needs to encode the folding/proof ag-
gregation in a circuit and prove statements about it. Since aggregation relies on
the random oracle, one needs to instantiate it using a hash function and prove
statements about it. Thus, we need to make the heuristic argument that the
hash function instantiation is secure. In contrast, our application does not in-
volve encoding the folding argument in a circuit and proving statements about
it. Therefore, our construction does not need to rely on such heuristic arguments.
In particular, our construction is secure in the random oracle model.
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Fig. 3: Demonstration of the process of deriving the folding tree. We assume we
fold 2k statements (the leaves of the tree). We index with the position of the node
in the tree in binary and we use superscript for the level of the node in the tree. A
node x

(l)
b is computed as the (non-interactive) folding of x(l−1)

b0 and x
(l−1)
b1 using

the underlying scheme FS. Bold edges denote the path the verification follows
and rectangles the statements the prover presents to the verifier of statement i.

3.2 Selective Verifiability of the Bootstrapped Construction

Our bootstrapping construction also satisfies the stronger notion of selective
verifiability without further modifications. This follows by the tree structure
employed: proving inclusion of a single statement needs only to consider the
foldings occurring from the root node (final statement) to the leaf correspond-
ing to the statement in consideration. This is similar to how tree-based vector
commitment schemes (e.g. Merkle trees) work.

A crucial observation is that if we have a statement of the form x1 ∈ L and
we are presented with a different statement x2 ∈ L, after folding these to a
third statement x ∈ L, knowledge of a witness for the latter ensures knowledge
for both statements (in particular the first which is of interest to us) even if the
second is selected adversarially. This means that from the perspective of a verifier
interested in a specific statement, it is not important what other statements are
considered or how they are sampled as long as they correctly end up to the
claimed aggregated statement.

We first demonstrate how a statement “inclusion” proof works in Fig. 3.
Next, we formally present the algorithms that lead to selective verifiability of
the bootstrapped construction in Fig. 4. The resulting protocol achieves selective
verifiability with proof size |πi| = O(|x|·k) when folding m = 2k statements. This
means we can aggregate polynomially many statements while each statement can
be verified with a proof that is logarithmic in the number of statements.
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An important observation, as far as efficiency is concerned, is that the proofs
themselves are folded statements with their corresponding proofs, and thus yield
little overhead to produce/verify –assuming the underlying folding scheme is con-
cretely efficient. Essentially, the prover has to perform O(2k) number of foldings
and simply save the intermediate results in the process to be able to present as
evidence later. As we will see in the next section, folding itself can be extremely
efficient for many languages of interest. In some cases, the overhead induced
by folding for the prover is comparable to the time needed to simply read the
statements. This can lead to significant improvements compared to -for example-
producing a SNARK proof for each statement.

We next show that the bootstrapped construction equipped with the addi-
tional algorithms presented in Fig. 4 achieves the stronger notion of selective
verifiability. The proof is essentially identical to that of Thm. 1; the only dif-
ference is that we simply focus on a small part of the implicit tree which we
construct using the elements contained in the proof for a single statement.

BootstrapFS.SelPrv(pp, x1, . . . , xm, x, π):
– Parse the input (x, x, π) as a tree where
• (x

(k)
1 ,⊥), . . . , (x(k)

m ,⊥) are the leaves
• For each pair of nodes xL = (x

(ℓ)
2j−1,⊥), xR = (x

(ℓ)
2j ,⊥) add the node

(xF , πF ) = (x
(ℓ−1)
j , π

(ℓ−1)
j ) where πF is a proof of correctness of the folding

of xL, xR to xF , namely:

FS.FoldVrfy(pp, xL, xR, xF , πF ) = 1

– For 1 ≤ j ≤ m:
• set πj := ()
• Let j = bk · · · b1 in binary notation
• For 1 ≤ ℓ ≤ k:

πj :=
(
πj ,

(
x
(ℓ)
bk···bk−ℓ+20

, x
(ℓ)
bk···bk−ℓ+21

, π
(ℓ−1)
bk···bk−ℓ+2

))
– Output π1, . . . , πm

BootstrapFS.SelVrfy(pp, x, j, xj , πj):
– Let j = bk · · · b1 in binary notation.
– Set x

(0)
1 = x

– Parse πj =
(
(x

(1)
0 , x

(1)
1 , π

(0)
1 ), . . . , (x

(k)
bk···b20, x

(k)
bk···b21, π

(k−1)
bk···b2)

)
– For 1 ≤ ℓ ≤ k

Set xL = x
(ℓ)
bk···bk−ℓ+20

, xR = x
(ℓ)
bk···bk−ℓ+21

,

Set xF = x
(ℓ−1)
bk···bk−ℓ+2

, πF = π
(ℓ−1)
bk···bk−ℓ+2

bℓ := FS.FoldVrfy(pp, xL, xR, xF , πF )

– Output b1 ∧ · · · ∧ bℓ ∧ (xj = x
(k)
bk···b1)

Fig. 4: The SelPrv,SelVrfy that make construction BootstrapFS achieve selective
verification. We again assume (w.l.o.g.) that the number of initial statements is
m = 2k for some fixed constant k.
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Theorem 2. Let FS be a 2-aggregation scheme for a language family L with
corresponding relations R Then, for any constant k construction BootstrapFS of
Fig. 2 satisfies selective verification through the algorithms of Fig. 4

Proof. Assume (w.l.o.g.) that m = 2k. Selective completeness follows directly
by straightforward calculations and the completeness of BootstrapFS. Efficiency
follows by the fact that a proof of inclusion of statement i contains O(logm)
statements of Lpp and proofs of correct folding, which are polynomially related
to the size of the statement. We next show that BootstrapFS satisfies selective
knowledge soundness.

To simplify matters, we define the notion of the derived ℓ-th sub-tree defined
by the proof, a statement xℓ and the folded statement. Concretely, we consider
the sub-tree defined by the proof for the ℓ-th statement πℓ: it contains the part
of the statement tree defined from the root to the leaf node (xℓ,⊥) along with
all the sibling nodes in the path.

Now let (ℓ, xℓ, π, x) and the derived sub-tree defined by these values. As in
the previous proof, we construct recursively a series of extractors, one for each i
with 0 ≤ i ≤ k − 1.
Base case: For i = 0, E(1)0 runs E(∗) to get the witness w

(0)
1 for the root. It

then queries the derived sub-tree and constructs the adversary A(0)
1 that out-

puts x
(1)
1 , x

(1)
2 , x

(0)
1 , w

(0)
1 , π

(1)
0 . Finally, it invokes E ′ with access to A(1)

1 to get
corresponding witnesses w

(1)
1 , w

(1)
2 .

Recursive case: Let x(1), . . . , x(k) be the statements contained in path from the
root of the derived sub-tree to the leaf labeled with (xi,⊥) and let (x

(i+1)
1 , ·),

(x
(i+1)
2 , ·) be the labels of the children of x(i). Now, we construct A(i) that has

hardcoded the derived sub-tree and works as follows:

– It invokes the extractor E(i−1) corresponding to the parent statement x(i−1)

to get a witness w(i) for statement x(i) (and all its siblings which it ignores).
– It then constructs an adversary A(i) that outputs x(i+1)

1 , x
(i+1)
2 , x(i), w(i) and

the proof π(i).
– Finally, it invokes the extractor E ′ of FS with access toA(i) and gets witnesses

w
(i+1)
1 , w

(i+1)
2 which it then outputs.

We then construct the extractor E . E queries A to get ℓ, xℓ, x, π and a witness
for the folded statement w

(1)
1 . Then it simply queries E(k−1) and outputs the

witness corresponding to xℓ.
Working as in the proof of Thm. 1, we can deduce that the running time of

the extractor is

tE(λ, k) = tSelVrfy(λ, k) + (k − 1) · t(λ) + |w|

where tSelVrfy(λ, k) is the time of BootstrapFS.SelVrfy algorithm and t(λ) is the
time of the extractor E ′ of FS.

Finally, for the success probability of the extractor, it is enough to note
that the proof verifies if the final folded statement computed during verification
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is the same as the claimed statement by the adversary A, which means it is
accompanied by a valid witness in the case of successful adversaries. Working as
in the proof of Thm. 1 we get that for any adversaries A,A′ against selective
knowledge soundness of BootstrapFS and knowledge soundness of FS respectively,

AdvA(λ, k) ≤ (k − 1)AdvA′(λ)

□

4 Folding Schemes from Interactive Public Coin
Protocols

In this section we present folding schemes for various relations. We present four
constructions:

1. a folding scheme for the language of inner product relations of committed
values under algebraic commitments,

2. a folding scheme for the language of openings of algebraic vector commit-
ments,

3. a folding scheme for the language of openings of polynomial commitments
at the same point.

We also recall the 2-folding scheme construction of NOVA [19] that allows to
fold arbitrary (variants of) R1CS relations that capture general compuatation.

All the constructions are derived through simple public coin protocols. Thus,
they can be compiled to non-interactive folding schemes through the Fiat-Shamir
transform. Selective verifiability can then be achieved by means of the boot-
strapping construction of Fig. 2,4. In all constructions we assume a base folding
scheme for folding m = 2 statements.

We emphasize that the folding overhead for all constructions is low. The
prover is dominated by field operations and the verifier by group operations
(constant for each 2-folding). Both need to also perform hash computations in
the non-interactive version of the protocols. Nevertheless, since we do not need
to encode the folding as a circuit and prove statements about it –as is done
by previous works– we can instantiate the construction with any hash function
instead of “SNARK friendly” ones. Thus, the overhead for hashing is insignificant.

We start by introducing some notation for groups.

Notation. We use additive notation for groups. Let gk be the description of a
group sampled by some group generation algorithm, gk ← G(1λ). Let P be a
fixed generator of the group described in gk. We denote with [x] the element xP.
We naturally extend this notation to vectors of elements. With this notation,
a Pedersen commitment key6 is denoted as [r] ∈ Gn and a commitment to
x ∈ Fn as [c] = [r]⊤x. We recall that the binding property states that it is
computationally infeasible to find x ̸= x′ such that [r]⊤x = [r]⊤x′ given a
uniformly distributed commitment key [r].
6 We only consider the non-hiding version in this work. The results can be extended

to the hiding version as well.
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4.1 Folding Scheme for Inner Product Relation of Committed
Values

Consider a language family L containing languages parametrized by a group
key gk and two Pedersen commitment keys [r], [s] ∈ Gn, each consisting of n
uniformly distributed group elements7.

The NP language is defined as

Lgk,[r],[s] =
{
([c], [d], z) | ∃a,b s.t. [c] = [r]⊤a, [d] = [s]⊤b and z = a⊤b

}
and let Rgk,[r],[s] be the corresponding NP relation. We show how to fold two
statements of this form to a single statement. The construction is similar with
the folding technique of Bootle et. al. [7]. Let

q1 = (([c1], [d1], z1), (a1,b1)) , q2 = (([c2], [d2], z2), (a2,b2)) ,

such that (supposedly) q1, q2 ∈ Rgk,[r],[s]. The strategy to fold the statements is
as follows:

– The prover P first sends “cross-term values” z1,2 = a1
⊤b2 and z2,1 = a2

⊤b1.
– The verifier V then sends a random challenge χ ∈ F
– The prover and verifier construct the new statement ([c], [d], z) as

[c] = [c1] + χ[c2], [d] = [d1] + χ2[d2], z = z1 + χz2,1 + χ2z1,2 + χ3z2

and the prover sets the new witness to a = a1 + χa2, b = b1 + χ2b2.

It is easy to assert that the new witness pair satisfies the NP relation as long
as the two initial statements do. Intuitively, this satisfies soundness since (1)
a prover being able to open a commitment of the form [α] + χ[β] for a ran-
dom χ should in fact know openings for the combined commitments since they
are defined before the challenge χ and (2) the “mixed” inner products z1,2, z2,1
are defined before the challenge χ is known, which means that one could treat
the resulting relation as a polynomial relation on a formal variable X, that is
a(X)⊤b(X) = z(X). If this relation holds formally, then it is to assert that both
a1

⊤b1 = z1 and a2
⊤b2 = z2 hold. The challenge essentially is a randomized test

on this relation.
We define the protocol formally in Fig. 5. Next, we show that (1) an honest

prover always outputs a valid statement-witness pair, and (2) given an adver-
sary that outputs a valid witness after the execution of the protocol for the
folded statement, we can extract witnesses for the two statements x1, x2. Note,
that if this holds, the Fiat-Shamir compiled construction directly yields a non-
interactive 2-folding scheme, where the proof is simply the pair of elements
z1,2, z2,1 sent from the prover to the verifier.
7 The construction works for the generalized Pedersen commitment scheme, namely

keys that are sampled from distributions other than the uniform one. The only re-
quirement is that the distribution satisfies some hardness assumption that guarantees
the commitment scheme is binding.
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for i ∈ {1, 2}: xi = ([ci], [di], zi), wi = (ai,bi)

P : qi = (xi, wi) V : xi

z1,2 = a1
⊤b2, z2,1 = a2

⊤b1
z1,2, z2,1

χ χ← F

a = a1 + χa2 [c] = [c1] + χ[c2]

b = b1 + χ2b2 [d] = [d1] + χ2[d2]

z = z1 + χ · z2,1 + χ2 · z1,2 + χ3z2

w = (a,b) xi = ([c], [d], z)

Fig. 5: Public coin protocol for folding statements for the language of inner prod-
uct of openings of committed values.

Theorem 3. Consider construction of fig. 5. Then the following conditions
hold:

1. The resulting statement-witness pair defined after the end of the protocol
satisfies the NP relation Rgk,[r],[s] and

2. The protocol satisfies special-soundness, namely, given four accepting execu-
tions for distinct verifier challenges, we can extract witnesses w1, w2 for the
initial statements x1, x2 except with negligible probability.

Proof.

1. We simply need to verify the NP relation is satisfied. First, we check that
the openings of the commitments are valid. We have

[r]⊤(a1 + χa2) = [r]⊤a1 + χ[r]⊤a2 = [c1] + χ[c2] = [c]

[s]⊤(b1 + χ2b2) = [s]⊤b1 + χ2[s]⊤b2 = [d1] + χ2[d2] = [d]

Finally, we assert that the inner product is correct. We have

a⊤b = (a1 + χa2)
⊤(b1 + χ2b2)

= a1
⊤b1 + χ2a1

⊤b2 + χa2
⊤b1 + χ3a2

⊤b2

= z1 + χ2z1,2 + χz2,1 + χ3z2 = z

2. Assume we have four accepting executions of the interactive protocol with
different challenges χ1, χ2, χ3, χ4. First we show that using any two tran-
scripts we can extract valid openings for the commitments [c1], [d1], [c2], [d2].
We first focus on the commitments [c1], [c2]. After successful execution with
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challenges χi, χj , we have two openings a(i), a(j) for commitments [c(i)] =
[c1] + χi[c2] and [c(j)] = [c1] + χj [c2] respectively. This means that

[c1] + χi[c2] = [r]⊤a(i), [c1] + χj [c2] = [r]⊤a(j)

Denote with Xi,j the matrix whose first row is (1, χi) and second row is
(1, χj) and note that this matrix is invertible for χi ̸= χj . We can write the
above system of equations as

Xi,j

[
c1
c2

]
= [r]⊤

(
a(i)

a(j)

)
Denoting X−1

i,j the inverse of Xi,j we get[
c1
c2

]
= [r]⊤X−1

i,j

(
a(i)

a(j)

)
so we indeed extract openings for the two commitments. Furthermore, note
for any pair i ̸= j with i, j ∈ {1, 2, 3, 4} we extract the same openings a1,a2
except with negligible probability, otherwise we break the binding property
of the commitment scheme. Similarly, we extract openings b1,b2 for the
commitments [d1], [d2]. Now, since we have an accepting witness for each of
the four executions the following equations hold:

a(i)⊤b(i) = z1 + χ2
i z1,2 + χiz2,1 + χ3

i z2, 1 ≤ i ≤ 4

Assuming that no breaking of the binding property has happened, each open-
ing a(i) can be written as a(i) = a1 + χia2 for the same a1,a2 and similarly
for the [d1], [d2] commitments. We can now rewrite the above equations as

(a1 + χia2)
⊤(b1 + χ2

ib2) = z1 + χ2
i z1,2 + χiz2,1 + χ3

i z2

or equivalently

a1
⊤b1 + χia2

⊤b1 + χ2
ia1

⊤b2 + χ3
i
⊤a2

⊤b2 = z1 + χ2
i z1,2 + χiz2,1 + χ3

i z2

Viewing this as a polynomial equation of degree 3 and noting it is satisfied for
4 distinct points, it should hold as a polynomial identity, therefore a1

⊤b1 =
z1 and a2

⊤b2 = z2.

□

Efficiency. The work of the prover consists of a linear number of field operations,
specifically, combining the two witness with the random challenge of the verifier
χ and computing the cross term inner products z1,2 and z2,1. The verifier per-
forms a constant number of operations in the field and group to derive the new
statement. In the context of non-interactive folding with selective verification,
folding M statements of size n consists of O(Mn) field operations and O(M)
hash computations for the prover and O(logM) field and group operations and
hash computations for the verifier.
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4.2 Folding Scheme for Algebraic Vector Commitment Openings

A vector commitment [14] allows a prover to succinctly commit to a vector
a ∈ Fn and later verifiably open a subset S ⊆ {1, . . . , n} of the positions of the
committed vector. We construct a folding scheme for the language of openings of
algebraic vector commitments. Here, algebraic means that (1) the commitment
key consists of a vector group elements and (2) the commitment algorithm is
the inner product of the key with the committed vector given as elements in the
field. In what follows, we denote with a|S the subvector of a defined by the set
S ⊆ {1, . . . , n} More concretely, we consider the language

Lgk,[r] =
{
([c], S,aS) | ∃a s.t. [c] = [r]⊤a and a|S = aS

}
Our strategy for constructing a folding scheme for this relation is to reduce

it to an inner product. That is, we first show that the language above can be
interactively reduced to an inner product statement, and then we can use the
folding scheme of the previous section for inner product relations.

For the reduction, we first note that the validity of an S-subopening can be
expressed as |S| inner products: for each s ∈ S we need to assert that a⊤en,s =
as, where en,s is the n-dimensional vector which is 0 everywhere except the s-th
condition. These |S| statements can be compressed to a single inner product
by taking a sufficiently random linear combination of the equations. This is a
well-known technique that reduces many inner products to a single “twisted"
instance, as in [7].

That is, consider a vector b that is bi = 0 for all i ∈ {1, . . . , n} \ S and takes
some different power of a challenge χ in the rest of the positions, for some random
element χ ∈ F. Then, with overwhelming probability the relation a⊤b = a⊤Sb
holds if and only if all the relations hold.

We can now express the above as an instance of an inner product relation.
Let [c] be some committed value and aS a claimed opening at positions S. The
verifier reduces this claim to an inner product by doing the following:

– It samples χ← F and constructs the vector b = (1, χ, . . . , χ|S|−1)
– It commits to the vector b as [d] = [r|S ]

⊤b. Note that this corresponds to a
commitment w.r.t. [r] which is 0 everywhere outside S.

– It computes the inner product z = a⊤Sb.
– It sends χ to the prover and asks to prove the IP statement ([c], [d], z)

A simple application of the Schwartz-Zippel lemma is enough to assert that
([c], [d], z) is a valid inner product statement if and only if the S opening of [c]
is aS (except with negligible probability).

We present the interactive reduction of VC opening to inner product in Fig. 6.
After applying the reduction we can simply fold the reduced statement with other
IP statements.

Theorem 4. Consider construction of Fig. 6.

1. The resulting statement-witness pair defined after the end of the protocol
satisfies the inner product NP relation Rgk,[r],[r], and
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x = ([c], S,aS), w = a

P : q = (x,w) V : x

χ χ← F

b = (1, χ, . . . , χ|S|−1) b = (1, χ, . . . , χ|S|−1)

[d] = [r|S ]
⊤b [d] = [r|S ]

⊤b

z = a⊤
Sb z = a⊤

Sb

w′ = a,b x′ = ([c], [d], z)

Fig. 6: Public coin protocol for interactively reducing a VC opening claim to an
inner product claim.

2. The protocol satisfies special-soundness, namely, given |S| valid statement-
witness pairs after distinct verifier challenges, we can extract a valid witness
w for the initial statement x except with negligible probability.

Proof.

1. Let b′ be the vector that agrees with b on S and is zero everywhere in
{1, . . . , n} \ S and note this corresponds to an opening of [d]. We have

z = a⊤b′ =

n∑
i=1

aib
′
i =

∑
s∈S

asb
′
s =

∑
s∈S

asbs = a⊤Sb

2. After each execution, we get a valid opening a for [c]. All these openings
should be the same except with negligible probability, otherwise we break
the binding property of the vector commitment. We next show that aS = a|S .
Since each inner product is valid, the following relation is satisfied for each
execution a|Sb = aSb.
Equivalently, we have (a|S−aS)⊤b = 0. Next, note that, since each b encodes
monomials of degree bounded by |S| − 1 derived from some field element χ,
this corresponds to |S| polynomial relations of the form p(χ) = 0. Since p’s
degree is bounded by |S| − 1 and it has |S| roots, it should be the case that
p is identically zero, which means that (a|S = aS).

□

The only efficiency overhead for both the prover and the verifier is to compute
the values [d], z each needing |S| field and group operations.

4.3 Folding Scheme for Polynomial Commitment Openings

A polynomial commitment scheme [18] is a primitive that allows a prover to
succinctly commit to a polynomial and later open it at an arbitrary point. Our
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next construction allows to fold statements about openings of polynomial com-
mitments at the same point v. We assume a linearly homomorphic polynomial
commitment, namely if [c], [d] are commitments to p(X), q(X), then α[c]+β[d] is
a commitment to αp(X)+βq(X). The language is parameterized by parameters
and a key for a polynomial commitment scheme pp, ck as well as an opening
point v ∈ F. We assume that all polynomials are of a fixed degree d; generalizing
this to achieve any degree d ≤ D for some bound D and hiding commitments is
also possible. Formally, the language is defined as

Lpp,ck,v =
{
[c], y | ∃p(X) ∈ F≤d[X] s.t. [c] = Compp,ck(p(X)) and p(v) = y

}
The construction follows simple techniques of [11]. We combine the two poly-

nomial commitments with a random challenge from the verifier. We present the
construction in Fig. 7. We present a theorem capturing the properties of the
protocol next.

i ∈ {1, 2}: xi = [ci], yi, wi = pi(X)

P : qi = (xi, wi) V : xi

χ χ← F

p(X) = p1(X) + χp2(X) [c] = [c1] + χ[c2]

y = y1 + χy2

w = p(X) x = ([c], y)

Fig. 7: Public coin protocol for folding statements for the openings of polynomial
commitments.

Theorem 5. Consider construction of Fig. 7. Then the following conditions
hold:

1. The resulting statement-witness pair defined after the end of the protocol
satisfies the NP relation Rpp,ck,v, and

2. The protocol satisfies special-soundness, namely, given two accepting execu-
tions for distinct verifier challenges, we can extract witnesses w1, w2 for the
initial statements x1, x2 except with negligible probability.

Proof.

1. This follows directly by the homomorphic properties of the commitment
scheme.

2. For special soundness, it is enough to note that given d+1 valid transcripts
for different challenges, we can solve a linear system of equations of the form
p(i)(X) = p1(X) + χip2(X) to get coefficients for polynomials p1(X), p2(X)
that are valid openings for [c1], [c2] respectively. Additionally, consider any
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pair of these equations and note that if the final statement is valid, then
p(i)(v) = y(i) for two distinct i. This means that p1(v) + χip2(v) = y(i) =
y1 + χiy2. This system admints a unique solution, namely, p1(v) = y1 and
p2(v) = y2.

□

Efficiency. In this construction, the proof of correct folding is trivial: the chal-
lenge χ fully defines the aggregated statement and witness pair. The work of the
prover and verifier consists of a linear number of field operations and a constant
number of group operations, respectively. In the context of non-interactive fold-
ing with selective verification, aggregating M statements of size n is dominated
by O(Md) field operations and O(M) hash computations for the prover and
O(logM) group operations and hash computations for the verifier.

4.4 Folding Scheme for Committed Relaxed R1CS

NOVA [19] introduces a generalization the R1CS characterization of NP, called
relaxed R1CS which is amenable to folding, that is, there exists an efficient fold-
ing scheme for this language. Roughly, given three m×m matrices A,B,C, the
relaxed R1CS language parameterized by these matrices and a natural number
n < m is defined as:

Lrelaxed
A,B,C =

{
(x,u, e) ∈ Fn × F× Fm | ∃w ∈ Fm−n s.t.

z =

x
u
w

 ∧ Az ◦Bz = uCz+ e
}

It is easy to see that this language indeed captures NP : we can just consider
instances with u = 1 and e = 0. These extra terms are introduced so as to be
able to fold two statements to a single statement without changing the language
structure. They then modify the language to be compatible with commit and
prove techniques. In what follows we denote with C the commitment space for
an additively homomorphic commitment scheme8. One can simply consider the
(generalized) Pedersen commitment scheme.

The new relation, denoted Committed Relaxed R1CS is described next:

Lc-relaxed
ck1,ck2,A,B,C =

{
(x,u, [e], [w]) ∈ Fn × F× C2 | ∃(w, e) ∈ Fm−n × Fm s.t.

[w] = Comck1(pp,w) ∧ [e] = Comck2(pp, e) ∧
((x, u, e),w) ∈ Rrelaxed

A,B,C

}
We recall NOVA’s 2-folding scheme for the latter relation in Fig. 8.
Since this construction (when made non-interactive by means of the Fiat-

Shamir transform) is a 2-folding scheme, we can directly apply the bootstrapping

8 We omit the blinding factor for the commitment schemes for the sake of simplicity.
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i ∈ {1, 2}: xi = (xi, ui, [e1], [w1]), wi = (wi, ei)

P : qi = (xi, wi) V : xi

zi = (x⊤
i , ui,w

⊤
i )⊤

t = Az1 ◦Bz2 +Az2 ◦Bz1

− u1Cz2 − u2Cz1

[t] = Comck2(pp2, t)
[t]

χ χ← F

e = e1 + χt+ χ2e2 [e] = [e1] + χ[t] + χ2[e2]

w = w1 + χw2 [w] = [w1] + χ[w2]

u = u1 + χu2

x = x1 + χx2

w = (w, e) x = (x, u, [e], [w])

Fig. 8: Public coin protocol for folding statements for the openings of polynomial
commitments.

construction that allows us to achieve selective verification. The limitation of the
constructions stems from the fact that the two initial instances have to describe
the same computation.

We state the fact that there exists a non-interactive folding scheme for this
language. We refer the reader to [19, Sec. 5] for the underlying details.

Theorem 6. There exists a non-interactive 2-folding scheme for the family of
languages of committed relaxed R1CS. The prover’s computation is dominated
by O(m) field operations and the verifier’s work is dominated by O(ℓ) field op-
erations and a constant number of group and field operations. Both prover and
verifier also need to perform a hash function computation.

This corresponds to [19, Construction 3] and is obtained by applying the
Fiat-Shamir transform to the interactive folding scheme [19, Construction 2].

Efficiency. There is a minimal overhead for the prover, who -apart from a linear
number in hash computations- does little more work than reading the witnesses:
almost all of its work consists of field operations. The verifier performs a logarith-
mic number of hash computations and group operations. It additionally needs to
do n logM field operations, where M is the total number of folded statements.
The latter part can be reduced to logM group operations if one considers a vari-
ation of the language where the part of the statement x is succinctly committed
as well.
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