
Misuse-resistant MGM2 mode

Liliya Akhmetzyanova, Evgeny Alekseev, Alexandra Babueva,
Andrey Bozhko and Stanislav Smyshlyaev

CryptoPro LLC, Russia
{lah, alekseev, babueva, bozhko, svs}@cryptopro.ru

Abstract

We introduce a modification of the Russian standardized AEAD MGM mode – an MGM2 mode, for
which a nonce is not encrypted anymore before using it as an initial counter value. For the new mode
we provide security bounds regarding security notions in the nonce-misuse setting (MRAE-integrity
and CPA-resilience). The obtained bounds are even better than the bounds obtained for the original
MGM mode regarding standard security notions.

Keywords: MGM, AEAD mode, security notion, security bounds, nonce-misuse, misuse-resistant

1 Introduction

Authenticated Encryption with Associated Data (AEAD) schemes, which aim at pro-
viding both integrity and confidentiality of data, are recently considered to be among
the most widely used cryptographic schemes. Therefore, the security of such schemes is
crucial. Security analysis of AEAD-schemes is usually carried out in the provable security
paradigm regarding standard notions, introduced in [6], they are IND-CCA and IND-CPA
for confidentiality and INT-CTXT for integrity.

One of the examples of such schemes is an MGM block cipher mode of operation, that
was adopted in Russia as a standard AEAD-mode [13]. The MGM plaintext encryption
procedure is quite similar to encryption in the СTR2 [18] mode. The main element of the
MGM authentication procedure is a multilinear function with secret coefficients produced
in the same way as the secret masking blocks used for plaintext encryption. Integrity and
confidentiality of MGM were analysed in [1] regarding standard security notions. Since
MGM was not developed with provable security in mind, security proofs turned out to be
cumbersome and, hence, difficult to verify.

Even though analysis of AEAD-schemes in the standard models is mandatory and
enough for use in many applications, some environments require other unusual crypto-
graphic properties, e.g. leakage resilience [5], RUP («Release of Unverified Plaintext»)
security [3], KDM («Key Dependent Message») security [10], misuse-resistance [19], etc.
In the current paper we focus on misuse-resistance or nonce misuse property [19]. A
nonce (number used only once) is an input to encryption or decryption algorithms of
AEAD-schemes that has to be unique (within a fixed key), but in some applications such
requirement is hard to obtain, not to mention implementation faults. Misuse-resistant
schemes aim to ensure the best possible security when faulty nonce is provided.

Security notions for misuse-resistant authenticated encryption were originally pro-
posed by Rogaway and Shrimpton in [19] and further developed in [4]. Strong variant of
misuse-resistant notions, called MRAE («Misuse-Resistant AE»), was introduced in [19].
This notion is the extensions of the IND-CCA and INT-CTXT notions by allowing an

1

adversary to repeat nonces in all of its’ queries. The MRAE notion is similar to a DAE
notion [19] («Deterministic AE») where confidentiality is formalised as follows: cipher-
text of each new query (not only new nonce) has to be indistinguishable from a random
string. Providing such confidentiality is rather strong, and trying to achieve it seems to
lead to loss in performance. All MRAE-secure modes, known to the authors, demand
sufficiently larger amount of block cipher calls [16] or lose online property [15, 22]. For
the reasons above, weak notions for confidentiality called CPA-res and CCA-res («Chosen
Plaintext/Ciphertext Attack-resilience») were introduced in [4], where the confidentiality
should be achieved only for messages that were encrypted correctly using unique nonces.

In nonce-misuse setting the MGM mode is obviously insecure in the MRAE model
regarding confidentiality since counter-based encryption is actually used. MRAE-integrity
of the MGM mode was analysed in [17]: the birthday type attack was proposed. However,
no lower bounds for MGM were proven. So, there is a «hope» to provide non-trivial security
bounds for MGM in the MRAE-integrity and CCA-res models.

Motivating by expectation that the security proof for the MGM mode in non-standard
models will be even more complex, than in standard ones, we introduce modification
of MGM mode – MGM2. The main difference between two modes lies in the way how
secret masking blocks and secret coefficients of the multilinear function are produced –
for the MGM2 mode this process is carried out in the СTR [18] style (without preliminary
nonce encryption). Note, that the main cryptographic core of the construction, namely
multilinear function, is not changed. We provide the security bounds for MGM2 in the
MRAE-integrity and CPA-res models that turned out to be even better, than the bounds
for the original MGM mode in the standard models. The corresponding security proofs are
relatively short and, we hope, easier to verify. Among other advantages, the design of the
MGM2 mode also allows to transparently integrate internal re-keying without a master
key [2] (in the same way as for CTR-ACPKM [14] done) to achive new security properties
like leakage-resilience and increase key lifetime.

2 Preliminaries

By {0, 1}s we denote the set of s-component bit strings and by {0, 1}∗ we denote the
set of all bit strings of finite length including the empty string. Let |a| be the bit length
of the string a ∈ {0, 1}∗. For a bit string a we denote by |a|n = ⌈|a|/n⌉ the length of the
string a in n-bit blocks. By {0, 1}⩽s we denote the set of bit strings which length is less
or equal to s.

For a string a ∈ {0, 1}∗ and a positive integer l ⩽ |a| let msbℓ(a) be the string,
consisting of the leftmost l bits of a. For nonnegative integers l and i let strl(i) be l-bit
representation of i with the least significant bit on the right. For bit strings a ∈ {0, 1}n and
b ∈ {0, 1}n we denote by a⊗b a string which is the result of their multiplication in GF (2n)
(here strings encode polynomials in the standard way). If the value s is chosen from a set
S uniformly at random, then we denote s

U←− S. We define a function Set1r : {0, 1}n →

{0, 1}n, Set1r(x) = x or (
r︷ ︸︸ ︷

0 . . . 0 1

n−r−1︷ ︸︸ ︷
0 . . . 0), 0 ⩽ r < n.

For any set S, define Perm(S) as the set of all bijective mappings on S (permu-
tations on S), and Func(S) as the set of all mappings from S to S. A block cipher
E (or just a cipher) with a block size n and a key size k is the permutation family(
EK ∈ Perm({0, 1}n) | K ∈ {0, 1}k

)
, where K is a key.

2

3 Security models

This section introduces models for an adversary that may repeat nonces in its queries.
We define security model using the notion of «experiment» or «game» played between

a challenger and an adversary. The adversary and challenger are modelled using consis-
tent interactive probabilistic algorithms. The challenger simulates the functioning of the
analysed cryptographic scheme for the adversary and may provide him access to one or
more oracles (for details see [8]).

We describe challengers and adversaries using pseudocodes with the following nota-
tions. If a variable x gets a value val then we denote x ←− val. Similarly, if a variable x
gets the value of a variable y then we denote x ←− y. If the variable x gets the result of
a probabilistic algorithm A we denote x

$←− A. If we need to emphasize that A is deter-
ministic than we denote it by x←− A. The event when A returned value val as a result is
denoted by A → val (or A $−→ val if A is probabilistic).

Firstly, we introduce the general definition of an AEAD-scheme.

Definition 1. Let K be a set of keys, P be a set of plaintexts, A be a set of associated
data, C be a set of ciphertexts, and T be a set of tags. An AEAD-scheme with nonce is a
set of algorithms Π = {Π.Gen, Π.Enc, Π.Dec}, where

– Π.Gen()
$−→ K : A probabilistic key generation algorithm outputting a key K ∈ K.

– Π.Enc(K,N,A, P) −→ (C, T) : A deterministic algorithm of authenticated encryption
taking a key K ∈ K, a nonce N ∈ N, associated data A ∈ A, a plaintext P ∈ P. An
output of the algorithm is a ciphertext C ∈ C and a tag T ∈ T.

– Π.Dec(K,N,A,C, T) −→ P : A deterministic algorithm of authenticated decryption
taking a key K ∈ K, a nonce N ∈ N, associated data A ∈ A, a ciphertext C ∈ C
and a tag T ∈ T. An output of the algorithm is a plaintext P ∈ P or error symbol ⊥.

Let define a MRAE-int («Misuse-Resistant Authenticated Encryption - integrity»)
security notion for integrity (the integrity part of MRAE [19]).

Definition 2 (MRAE-int). For an AEAD-scheme Π the advantage of a MRAE-int-
adversary A is defined as follows:

AdvMRAE-int
Π (A) = Pr

[
ExpMRAE-int

Π (A)→ 1
]
,

where experiment ExpMRAE-int
Π is defined below:

ExpMRAE-int
Π (A)

K
$←− Π.Gen()

sent← ∅
win← false

AEncrypt,Decrypt()

return win

Oracle Encrypt(N,A, P)
(C, T)← Π.Enc(K,N,A, P)

sent← sent ∪ {(N,A,C, T)}
return (C, T)

Oracle Decrypt(N,A,C, T)
P ← Π.Dec(K,N,A,C, T)

if (P ̸= ⊥) ∧ ((N,A,C, T) /∈ sent) :

win← true

return P

Let introduce the CPA-res («Chosen Plaintext Attack - resilience») security notion
for confidentiality, defined in [4].

Definition 3 (CPA-res). For an AEAD-scheme Π with the tag length s the advantage of
a CPA-res-adversary A is defined as follows:

AdvCPA-res
Π (A) = Pr

[
ExpCPA-res-1

Π (A)→ 1
]
− Pr

[
ExpCPA-res-0

Π (A)→ 1
]
,

where experiments ExpCPA-res-b, b ∈ {0, 1}, are defined below:

3

ExpCPA-res-b
Π (A)

K
$←− Π.Gen()

L1,L2 ← ∅

b
$←− AO1,O2()

return b

Oracle O1(N,A, P)
if N ∈ L1 ∪ L2 :

return ⊥
if b = 1:

(C, T)← Π.Enc(K,N,A, P)

else :

C ∥ T U←− {0, 1}|P |+s

L1 ← L1 ∪ {N}
return (C, T)

Oracle O2(N,A, P)
if N ∈ L1 :

return ⊥
(C, T)← Π.Enc(K,N,A, P)

if N /∈ L2 :

L2 ← L2 ∪ {N}
return (C, T)

In [4] the CCA-res («Chosen Сiphertext Attack - resilience») security notion is also
defined. This notion differs from CPA-res in that an adversary is provided with additional
access to a decryption oracle. By the technique similar to one described in [20] it is easy
to show that MRAE-int-security and CPA-res-security jointly imply CCA-res-security.
Therefore, further we consider the CPA-res security notion only.

4 MGM2 mode

MGM2.Gen()

K
U←− {0, 1}k

return K

MGM2.Enc(K,N,A, P)

h← |A|n, q ← |P |n
ℓ← h+ q + 1

.Encryption

for i = 1 . . . q do :

Γi ← EK(N∥00∥strn−r−2(i− 1))

C ← P ⊕msb|P |(Γ1 ∥ . . . ∥ Γq)

. Padding

a← n|A|n − |A|
c← n|C|n − |C|
len← strn/2(|A|) ∥ strn/2(|C|)
M1∥ . . . ∥Ml ← A∥0a∥C∥0c∥len

.Tag generation

for i = 1 . . . ℓ do :

Hi ← EK(N∥01∥strn−r−2(i− 1))

τ ← Set1r

(
l⊕

i=1

Mi ⊗Hi

)
T ← msbs(EK(τ))

return (C, T)

MGM2.Dec(K,N,A,C, T)

h← |A|n, q ← |C|n
ℓ← h+ q + 1

. Padding

a← n|A|n − |A|
c← n|C|n − |C|
len← strn/2(|A|) ∥ strn/2(|C|)
M1∥ . . . ∥Ml ← A∥0a∥C∥0c∥len

. Tag verification

for i = 1 . . . ℓ do :

Hi ← EK(N∥01∥strn−r−2(i− 1))

τ ← Set1r

(
l⊕

i=1

Mi ⊗Hi

)
T ′ ← msbs(EK(τ))

if T ′ ̸= T : return ⊥

.Decryption

for i = 1 . . . q do :

Γi ← EK(N∥00∥strn−r−2(i− 1))

P ← C ⊕msb|C|(Γ1 ∥ . . . ∥ Γq)

return P

Figure 1: AEAD mode MGM2

In this section we describe a new AEAD mode called MGM2 which is a slight modifi-
cation of the MGM mode. By MGM2[E, r, s] we will denote the parametrized MGM2 mode

4

with a block cipher E (with block size n and key size k), a nonce length r,
n

2
⩽ r ⩽

3n

4
and a tag length s, 1 ⩽ s ⩽ n.

For MGM2[E, r, s] the corresponding sets are as follows: K = {0, 1}k, N = {0, 1}r,
A = P = C = {0, 1}⩽n(2n−r−2−1), T = {0, 1}s. Moreover, the following condition should
be satisfied: 0 < |A|+ |P | ⩽ n(2n−r−2−1). The key generation, encryption and decryption
algorithms are defined in Figure 1.

Difference from MGM. The main difference of the new MGM2 mode from the orig-
inal MGM mode is in the modification of the way to produce the mask values for encryp-
tion (Γi), the coefficients of the multilinear function (Hi), and the tag values T . In MGM2
block cipher inputs, used to generate values for different use cases (we have three use
cases: Γi, Hi, T), are separated by fixing the certain bits of inputs. Such a modification
allows to obtain better security bounds, since the collision among block cipher inputs may
occur only among values τ .

5 Security analysis

The security of block cipher modes of operation is commonly analyzed under assump-
tion that the underlying block cipher is PRP-CPA-secure (see [7]), i.e. EK for a random key
is computationally indistinguishable from a random permutation. We follow this approach
and provide security bounds directly for the mode with a random permutation.

We write MGM2[Perm(n), r, s] for MGM2 that uses a random permutation π as EK

and we write MGM2[Func(n), r, s] for MGM2 that uses a random function ρ.

5.1 Integrity

Theorem 1. For any MRAE-int-adversary A, making at most QE queries to the Encrypt
oracle and at most QD queries to the Decrypt oracle, where the total block-length of
associated data in all queries is at most σA and the total block-length of plaintexts and
ciphertexts in all queries is at most σP ,

AdvMRAE-int
MGM2[Perm(n),r,s](A) ⩽

(
Q(Q− 1)

2n
+

QD

2s

)(
1− σ − 1

2n

)−σ/2

, (1)

where Q = QE +QD and σ = 2σP + σA + 2Q.

Note that for n ⩾ 128 and σ ⩽ 2n/2, the bound (1) can be converted as follows:

AdvMRAE-int
MGM2[Perm(n),r,s](A) ⩽ 1.7

(
Q(Q− 1)

2n
+

QD

2s

)
. (2)

Thus, the MGM2 mode provides integrity beyond birthday bound. Note that for the
original MGM mode, if total amount of processed data achieves 2n/2, the bound, presented
in [1], becomes trivial. This result also allows to use MGM2 as a MAC function (and even
as a PRF, see further) by fixing N with the constant value. Further we provide proof of
the Theorem 1.

Proof. The proof is carried out in two steps. In the first step we introduce an auxil-
iary MAC-scheme with nonce called MGM2-MAC[r, s] and estimate its security (see Sec-
tion 5.1.1).

In the second step we show that the UF-CMA-security of the MGM2-MAC[r, s]
scheme tightly implies the MRAE-int-security of the MGM2[Func(n), r, s] scheme (see
Section 5.1.2).

5

The security bound for MGM2[Perm(n), r, s] is obtained using Bernstein’s result [9],
Theorem 2.3. Due to that theorem for any distinguisher Df with oracle f : {0, 1}n →
{0, 1}n, making at most q queries, the following inequality holds:

Pr[Dπ → 1] ⩽ Pr[Dρ → 1] ·
(
1− q − 1

2n

)−q/2

,

where π
U←− Perm(n) and ρ

U←− Func(n).
If we let D be the algorithm ExpMRAE-int

MGM2[·,r,s](A), where it makes queries to the oracle
instead of calling the underlying function (block cipher), we obtain the target bound.

5.1.1 Security of MGM2-MAC

We introduce an auxiliary MAC-scheme with nonce called MGM2-MAC[r, s] based on
the scheme MGM2[Func(n), r, s]. Usually MAC-scheme is defined as a set of algorithms
MAC = {MAC.Gen,MAC.Tag,MAC.Verify}, for MGM2-MAC[r, s] these algorithms are de-
fined in Figure 2. This scheme is defined for the message set {M = M1∥ . . . ∥Mℓ : Mi ∈
{0, 1}n, Mℓ ̸= 0n, 1 ⩽ ℓ ⩽ 2n−r−2} (the message length is divisible by n, the last block is
non-zero).

MGM2-MAC.Gen()

ρ, ρ′
U←− Func(n)

K ← (ρ, ρ′)

return K

PreTag(ρ′, N,M)

l← |M |n
for i = 1 . . . ℓ do :

Hi ← ρ′(N∥01∥strn−r−2(i− 1))

τ ← Set1r

(
l⊕

i=1

(Mi ⊗Hi)

)
return τ

MGM2-MAC.Tag(K,N,M)

τ ← PreTag(ρ′, N,M)

T ← msbs(ρ(τ))

return T

MGM2-MAC.Verify(K,N,M, T)

τ ← PreTag(ρ′, N,M)

T ′ ← msbs(ρ(τ))

if T ′ ̸= T : return false

return true

Figure 2: The scheme MGM2-MAC

Firstly, we introduce the standard PRF security notion (in nonce-misuse setting)
for nonce-based MAC-schemes and obtain the PRF-security bound for the MGM2-MAC
scheme.
Definition 4 (PRF). For a MAC-scheme MAC the advantage of a PRF-adversary A is
defined as follows:

AdvPRF
MAC(A) = Pr

[
ExpPRF−1

MAC (A)→ 1
]
− Pr

[
ExpPRF−0

MAC (A)→ 1
]
,

where experiments ExpPRF−b
MAC (A), b ∈ {0, 1} are defined below:

ExpPRF−b
MAC (A)

if b = 1:

K
$←− MAC.Gen()

sent← ∅

b′
$←− ATagb()

return b′

Oracle Tag1(N,M)
if (N,M) ∈ sent :

return ⊥
T← MAC.Tag(K,N,M)

sent← sent ∪ {(N,M)}
return T

Oracle Tag0(N,M)
if (N,M) ∈ sent :

return ⊥

T
U←− {0, 1}s

sent← sent ∪ {(N,M)}
return T

6

Lemma 1. For any PRF-adversary A, making at most Q queries to the Tag oracle:

AdvPRF
MGM2-MAC[r,s](A) ⩽

Q(Q− 1)

2n
.

Proof. Let define auxiliary experiments Exp0 and Exp1 (see Figure 3), which differ from
the experiment ExpPRF−1

MGM2-MAC[r,s] as follows. During the setup phase, the tau set is addi-
tionally initialized to empty value, and the flag bad is set to false. During the experiment
execution, the values τ are put in the tau set, and the flag bad is set to true iff collision
among the τ values occurs. Also, in the Exp0 experiment the tag value is chosen from
{0, 1}s uniformly at random in the case of collision (see line in box).

Expb(A), b ∈ {0, 1}
(ρ, ρ′)

$←− MGM2-MAC.Gen()

bad← false

tau, sent← ∅

b′
$←− ATagb()

return b′

Oracle Tagb(N,M)

if (N,M) ∈ sent :

return ⊥
τ ← PreTag(ρ′, N,M)

T ← msbs(ρ(τ))

if τ ∈ tau :

bad← true

if b = 0: T
U←− {0, 1}s

tau← tau ∪ {τ}
sent← sent ∪ {(N,M)}
return T

Figure 3: Experiments Exp0 and Exp1

It is easy to see that Exp1 is exactly the ExpPRF−1
MGM2-MAC[r,s] experiment. Moreover,

for any A the value Pr
[
Exp0(A)⇒ 1

]
is exactly the value Pr

[
ExpPRF−0

MGM2-MAC[r,s](A)⇒ 1
]
.

Indeed, in the Exp0 experiment all tag values T are produced according to the uniform
distribution as in ExpPRF−0

MGM2-MAC[r,s] for the following reasons. For the queries, whose cor-
responding τ value is new (not in the current set tau), the uniform random function ρ is
applied to the new input and, therefore, returns uniform output. For the other queries the
T value is directly sampled uniformly at random (see the line in box, Figure 3). Therefore,

AdvPRF
MGM2-MAC[r,s](A) = Pr

[
Exp1(A)⇒ 1

]
− Pr

[
Exp0(A)⇒ 1

]
.

Note that before the bad flag is set to true (denote this event as bad = true) the Exp0

and Exp1 experiments are functioning identically, therefore (due to Lemma 2, [8]) the
following inequality holds:

Pr
[
Exp1(A)⇒ 1

]
− Pr

[
Exp0(A)⇒ 1

]
⩽ Pr[bad = true].

Let estimate Pr[bad = true]. Without loss of generality, we assume the adversary to
be deterministic and making Q pairwise different queries (Ni,M

i), i = 1, . . . , Q. Denote
by ρ̃ and ρ̃′ the uniform random variables with sample space Func(n). We will also use
notation colli, i = 2, . . . , Q, to denote the event that the bad flag is set to true during the
first i queries processing. Thus,

Pr[bad = true] =

Q∑
i=2

Pr
[
colli ∩ colli−1

]
,

7

where the probability is defined by the random variables ρ̃ and ρ̃′. Let estimate the value
Pr

[
colli ∩ colli−1

]
for any i = 2, . . . , Q.

Note, that each i-th query – the pair (Ni,M
i), where M i = M i

1∥...∥M i
li
, M i

j ∈ {0, 1}n
– is determined by the tag values T1, . . . , Ti−1 previously obtained from the oracle. Without
loss of generality, we assume l1 = . . . = li. Indeed, otherwise we can pad the messages
with zero blocks to the length l := max(l1, . . . , li). This does not change the tag value,
and the padded messages will stay pairwise different because of M j

lj
̸= 0n. Therefore, the

T1, . . . , Ti−1 values fully determine l and (N1,M
1), . . . , (Ni,M

i).
For fixed Nj we denote by H̃j

k, j = 1, . . . , i; k = 1, . . . , l, the random variable

ρ̃′(Nj∥01∥strn−r−2(k − 1)). Notice that Pr
[
H̃j

k = B
]
=

1

2n
for any B ∈ {0, 1}n. Note

that the random variables H̃j
k and H̃ t

k for some j ̸= t and any k are dependent, namely

Pr
[
H̃j

k = H̃ t
k

]
= 1, iff Nk = Nj.

For short we denote by H̃j the random variable (H̃j
1 , . . . , H̃

j
ℓ). Also for set

H = (H1, . . . , Hℓ) and message M = M1∥ . . . ∥Mℓ let τ(H,M) be the function

Set1r

(
l⊕

k=1

Hk ⊗Mk

)
. So, we have

Pr
[
colli ∩ colli−1

]
=

∑
T1,...,Ti−1

Pr
[
colli ∩ colli−1 ∩ {T̃j = Tj}i−1

j=1

]
,

where we write T̃j for random variable msbs(ρ̃(τ(H̃j,M j))), and sum is taken over all
(T1, . . . , Ti−1) ∈ ({0, 1}s)i−1.

For fixed (N1,M
1), . . . , (Ni,M

i) introduce the following conditions on set H1, . . . , H i,
Hj := (Hj

1 , . . . , H
j
ℓ), j = 1, . . . , i:

Condition E1: ∀ j, t, 1 ⩽ j < t ⩽ i− 1: τ(Hj,M j) ̸= τ(H t,M t).

Condition E2: ∃ j, 1 ⩽ j ⩽ i− 1: τ(H i,M i) = τ(Hj,M j).

For any fixed T1, . . . , Ti−1, and hence fixed (N1,M
1), . . . , (Ni,M

i), the event colli ∩
colli−1 occurs iff random variables H̃1, . . . , H̃ i take such values H1, . . . , H i that the con-
ditions E1 and E2 are satisfied. For short we will denote the events that these conditions
are satisfied by the same way, namely, by E1 and E2 correspondingly.

Note that fixing values Hj, j = 1, . . . , i, leads to fixing values τj := τ(Hj,M j).
Therefore,

Pr
[
colli ∩ colli−1

]
=

∑
T1,...,Ti−1

Pr
[
E1 ∩ E2 ∩ {T̃j = Tj}i−1

j=1

]
=

=
∑

T1,...,Ti−1

∑
H1,...,Hi :

E1∩E2

Pr
[
{H̃j = Hj}ij=1 ∩ {msbs(ρ̃(τj)) = Tj}i−1

j=1

]
=

=
∑

T1,...,Ti−1

∑
H1,...,Hi :

E1∩E2

Pr
[
{H̃j = Hj}ij=1

]
· Pr

[
{msbs(ρ̃(τj)) = Tj}i−1

j=1

]
.

Here, sum is taken over all H1, . . . , H i, Hj ∈ ({0, 1}n)l, for which the E1 and E2 conditions
are satisfied. The last transition is due to the fact that ρ̃ and H̃j, j = 1, . . . , i, are
independent.

8

Consider the value Pr
[
{msbs(ρ̃(τj)) = Tj}i−1

j=1

]
. For any T1, . . . , Ti−1 and H1, . . . , H i−1

for which the condition E1 is satisfied, this probability is exactly the probability to sample

function ρ, such that i−1 fixed inputs correspond to outputs with fixed s bits, i.e
1

2s(i−1)
.

Thus:

Pr
[
colli ∩ colli−1

]
=

∑
T1,...,Ti−1

∑
H1,...,Hi :

E1∩E2

Pr
[
{H̃j = Hj}ij=1

]
· 1

2s(i−1)
=

=
1

2s(i−1)

∑
T1,...,Ti−1

Pr[E1 ∩ E2] ⩽
1

2s(i−1)

∑
T1,...,Ti−1

Pr[E2].

Now consider Pr[E2] for any fixed T1, . . . , Ti−1, and, hence, any fixed
(N1,M

1), . . . , (Ni,M
i).

Pr[E2] = Pr
[
∃ j, 1 ⩽ j ⩽ i− 1: τ(H̃ i,M i) = τ(H̃j,M j)

]
=

= Pr

[
i−1⋃
j=1

{
τ(H̃ i,M i) = τ(H̃j,M j)

}]
⩽

i−1∑
j=1

Pr
[
τ(H̃ i,M i) = τ(H̃j,M j)

]
.

Let estimate p := Pr
[
τ(H̃ i,M i) = τ(H̃j,M j)

]
for any j = 1, . . . , i − 1. We consider

two cases:

1. Ni ̸= Nj (in this case H̃ i
k and H̃j

k are independent).

2. Ni = Nj (in this case H̃ i
k and H̃j

k are dependent).

The first case: p =
#{H i, Hj : τ(H i,M i) = τ(Hj,M j)}

22nl
.

#{H i, Hj : τ(H i,M i) = τ(Hj,M j)} =

= #
{
H i, Hj :

l⊕
k=1

H i
k ⊗M i

k =
l⊕

k=1

Hj
k ⊗M j

k

}
+

+#
{
H i, Hj :

l⊕
k=1

H i
k ⊗M i

k =
l⊕

k=1

Hj
k ⊗M j

k ⊕ Set1r(0
n)
}
.

Since M i
ℓi
̸= 0n for any i, the cardinality is 2 · 2n(2l−1). And, p =

2

2n
.

The second case: p =
#{H i : τ(H i,M i) = τ(H i,M j)}

2nl
.

#{H i : τ(H i,M i) = τ(H i,M j)} =

= #
{
H i :

l⊕
k=1

H i
k ⊗ (M i

k ⊕M j
k) = 0n

}
+

+#
{
H i :

l⊕
k=1

H i
k ⊗ (M i

k ⊕M j
k) = Set1r(0

n)
}
.

Since for the same nonce the messages M i and M j should be different, there exists k such

that M i
k ⊕M j

k ̸= 0n. Therefore, the cardinality is 2 · 2n(l−1). And, p =
2

2n
.

9

Summing up, we have:

Pr[bad = true] =

Q∑
i=2

1

2s(i−1)

∑
T1,...,Ti−1

i−1∑
j=1

2

2n
=

Q∑
i=2

i− 1

2n−1
=

Q(Q− 1)

2n
.

Now we introduce the standard UF-CMA security notion for nonce-based MAC-
schemes and obtain the UF-CMA-security bound for the MGM2-MAC scheme.

Definition 5. For a MAC-scheme MAC the advantage of a UF-CMA-adversary A is
defined as follows:

AdvUF-CMA
MAC (A) = Pr

[
ExpUF-CMA

MAC (A)→ 1
]
,

where experiment ExpUF-CMA
MAC (A) is defined below:

ExpUF-CMA
MAC (A)

K
$←− MAC.Gen()

sent← ∅
win← false

ATag,V erify()

return win

Oracle Tag(N,M)
if (N,M) ∈ sent :

return ⊥
T ← MAC.Tag(K,N,M)

sent← sent ∪ {(N,M)}
return T

Oracle V erify(N,M, T)
res← MAC.Vf(K,N,M, T)

if res ∧ ((N,M) /∈ sent) :

win← true

return res

Using Proposition 7.3 [7] and Lemma 1 we obtain the following result.

Corollary 1. For any UF-CMA-adversary A, making at most QT queries to the Tag
oracle and at most QV queries to the V erify oracle:

AdvUF-CMA
MGM2-MAC[r,s](A) ⩽

Q(Q− 1)

2n
+

QV

2s
,

where Q = QT +QV .

5.1.2 Security of MGM2 with random function

Lemma 2. For any MRAE-int-adversary A, making at most QE queries to the Encrypt
oracle and at most QD queries to the Decrypt oracle, there exists a UF-CMA-adversary
B, making at most QE queries to the Tag oracle and at most QD queries to the V erify
oracle, such that

AdvMRAE-int
MGM2[Func(n),r,s](A) ⩽ AdvUF-CMA

MGM2-MAC[r,s](B)
Proof. Let construct an adversary B, that uses the adversary A as a black box. The
adversary B (see Figure 4) intercepts the queries of the adversary A and process them by
itself using its own oracles. For encryption/decryption B implements lazy sampling for ρ′′.
For tag generation/tag verification the adversary B implements the padding procedure
and send the appropriate query to its oracles.

Note that the adversary B simulates for A exactly the experiment ExpMRAE-int
MGM2[Func(n),r,s].

Indeed, since for MGM2[Func(n), r, s] the inputs to the random function in case of 1) tag
generation, 2) computing values Hi and 3) computing values Γi are different (because
of fixed bits in inputs), using one random function is indistinguishable from using three
independent random functions ρ, ρ′, ρ′′ for these three cases. Also, note that messages M ,
formed by B, satisfy conditions for message set of MGM2-MAC[r, s].

If the adversaryA forges, then the adversary B also forges in ExpUF-CMA
MGM2-MAC[r,s]. Indeed,

if A makes non-trivial valid query (N,A,C, T) to the Decrypt oracle, then the adversary
makes B corresponding non-trivial query (N,M = A∥0a∥C∥0c∥len, T) to the V erify
oracle.

10

BTag,V erify
A

ρ′′
U←− Func(n) // lazy sampling

return ASEncrypt,SDecrypt()

SEncrypt(N,A, P)

h← |A|n, q ← |P |n

. Encryption

for i = 1 . . . q do :

Γi ← ρ′′(N∥00∥strn−r−2(i− 1))

C ← P ⊕msb|P |(Γ1 ∥ . . . ∥ Γq)

.Padding.

a← n|A|n − |A|
c← n|C|n − |C|
len← strn/2(|A|) ∥ strn/2(|C|)
M ← A∥0a∥C∥0c∥len

. Tag Genetation

T ← Tag(N,M)

return (C, T)

Oracle SDecrypt(N,A,C, T)

h← |A|n, q ← |C|n

.Padding.

a← n|A|n − |A|
c← n|C|n − |C|
len← strn/2(|A|) ∥ strn/2(|C|)
M ← A∥0a∥C∥0c∥len

.Tag Verification

if V erify(N,M, T) = false :

return ⊥

. Decryption

for i = 1 . . . q do :

Γi ← ρ′′(N∥00∥strn−r−2(i− 1))

P ← C ⊕msb|C|(Γ1 ∥ . . . ∥ Γq)

return P

Figure 4: Adversary B

5.2 Confidentiality

Theorem 2. For any CPA-res-adversary A, making at most Q1 queries to the O1 oracle
and at most Q2 queries to the O2 oracle, where the total block-length of associated data
in all queries is at most σA and the total block-length of plaintext and ciphertexts in all
queries is at most σP ,

AdvCPA-res
MGM2[Perm(n),r,s](A) ⩽

σ2

2n
+

Q(Q− 1)

2n−1
, (3)

where Q = Q1 +Q2 and σ = 2σP + σA + 2Q.

Proof. Firstly, we apply PRP-PRF switching lemma [12] to replace Perm(n) by Func(n)

(this gives us the term σ2

2n
in the bound), and then we obtain the CPA-res-security bound

for MGM2[Func(n), r, s].
The security bound for MGM2[Func(n), r, s] is obtained in the same way as in the

proof of Theorem 1. Indeed, ciphertexts C, received from the O1 oracle, are absolutely
indistinguishable from uniform random strings since the inputs to the uniform random
function ρ used to produce Γi are unique. The indistinguishability of the tags T , re-
ceived from the O1 oracle, from uniform random strings is estimated by constructing two
PRF-adversaries for MGM2-MAC that uses CPA-res-adversary as a black box. Therefore,
AdvCPA-res

MGM2[Func(n),r,s](A) ⩽
Q(Q−1)
2n−1 .

6 Conclusion

In the current paper we introduce the modification of the MGM mode — the MGM2
mode. For this mode we obtain the security bounds for non-standard notions MRAE-int

11

and CPA-res, allowing the adversary to repeat nonces. In comparison with the original
mode, the security proof appears to be rather simple and short.

In the future work we are going to develop a SIV-construction (see [15]) of the MGM2
mode to achieve MRAE-conf-security. Also we are going to incorporate re-keying mech-
anisms in the MGM2 mode to achive new security properties like leakage-resilience and
increase key lifetime.

References

[1] Akhmetzyanova L., Alekseev E., Karpunin G., Nozdrunov V. Security of Multilinear Galois Mode (MGM).,
IACR Cryptology ePrint Archive 2019, p. 123, 2019.

[2] Akhmetzyanova L., Alekseev E., Smyshlyaev S., Oshkin I. (2020) On Internal Re-keying. In: van der Merwe T.,
Mitchell C., Mehrnezhad M. (eds) Security Standardisation Research. SSR 2020. Lecture Notes in Computer
Science, vol 12529. Springer, Cham. https://doi.org/10.1007/978-3-030-64357-7_2

[3] Andreeva E., Bogdanov A., Luykx A., Mennink B., Mouha N., Yasuda K. (2014) How to Securely Release
Unverified Plaintext in Authenticated Encryption. In: Sarkar P., Iwata T. (eds) Advances in Cryptology
– ASIACRYPT 2014. ASIACRYPT 2014. Lecture Notes in Computer Science, vol 8873. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-662-45611-8_6

[4] Ashur T., Dunkelman O., Luykx A. Boosting authenticated encryption robustness with minimal modifications
//Annual International Cryptology Conference. – Springer, Cham, 2017. – С. 3-33.

[5] Davide Bellizia and Olivier Bronchain and Gaëtan Cassiers and Vincent Grosso and Chun Guo and
Charles Momin and Olivier Pereira and Thomas Peters and François-Xavier Standaert, Mode-Level vs.
Implementation-Level Physical Security in Symmetric Cryptography: A Practical Guide Through the Leakage-
Resistance Jungle, Cryptology ePrint Archive, Report 2020/211, 2020, https://eprint.iacr.org/2020/211

[6] Bellare M., Namprempre C. Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm //International Conference on the Theory and Application of Cryptology and Infor-
mation Security. – Springer, Berlin, Heidelberg, 2000. – С. 531-545.

[7] Bellare M., Rogaway P. Introduction to modern cryptography //Ucsd Cse. – 2005. – Т. 207. – С. 207.
[8] Bellare M., Rogaway P. The Security of Triple Encryption and a Framework for Code- Based Game-Playing

Proofs // LNCS, Advances in Cryptology - EUROCRYPT 2006, 4004, ed. Vaudenay S., Springer, Berlin,
Heidelberg, 2006.

[9] Bernstein, D.J.: Stronger Security Bounds for Permutations (2005), http://cr.yp.to/papers.html (accessed
on May 31, 2012)

[10] John Black, Phillip Rogaway, and Thomas Shrimpton. 2002.Encryption-Scheme Security in the Presence of
Key-Dependent Messages. In Revised Papers from the 9th Annual International Workshop on Selected Areas
in Cryptography (SAC ’02). Springer-Verlag, Berlin, Heidelberg, 62–75.

[11] CAESAR competion. https://competitions.cr.yp.to/caesar.html
[12] D. Chang and M. Nandi, A Short Proof of the PRP/PRF Switching Lemma // IACR ePrint Archive, 2008,

Report 2008/078, https://eprint.iacr.org/2008/078.
[13] Federal Agency on Technical Regulating and Metrology, Information technology. Cryptographic data security.

Authenticated encryption block cipher operation modes, R 1323565.1.026-2019, 2019.
[14] Federal Agency on Technical Regulating and Metrology, Information technology. Cryptographic data security.

Cryptographic algorithms accompanying the use of block ciphers, R 1323565.1.017—2018, 2018.
[15] Gueron S., Lindell Y. GCM-SIV: full nonce misuse-resistant authenticated encryption at under one cycle per

byte //Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. –
2015. – С. 109-119.

[16] Hoang V.T., Krovetz T., Rogaway P. (2015) Robust Authenticated-Encryption AEZ and the Problem That It
Solves. In: Oswald E., Fischlin M. (eds) Advances in Cryptology – EUROCRYPT 2015. EUROCRYPT 2015.
Lecture Notes in Computer Science, vol 9056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
662-46800-5_2

[17] Kurochkin A., Fomin D. MGM Beyond the Birthday Bound // 8th Workshop on Current Trends in Cryp-
tology (CTCrypt 2019).

[18] Rogaway P. (2004) Nonce-Based Symmetric Encryption. In: Roy B., Meier W. (eds) Fast Software
Encryption. FSE 2004. Lecture Notes in Computer Science, vol 3017. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-25937-4_22

[19] Rogaway P., Shrimpton T. A provable-security treatment of the key-wrap problem //Annual International
Conference on the Theory and Applications of Cryptographic Techniques. – Springer, Berlin, Heidelberg,
2006. – С. 373-390.

[20] Shrimpton T.: A Characterization of Authenticated-Encryption as a Form of Chosen-Ciphertext Security. In:
Cryptology ePrint Archive, Report 2004/272 (2004).

12

[21] Smyshlyaev, S., Nozdrunov, V., Shishkin, V., and E. Smyshlyaeva Multilinear Galois Mode (MGM) // 2019,
<https://tools.ietf.org/html/draft-smyshlyaev-mgm-17>

[22] Shrimpton T., Terashima R. S. A modular framework for building variable-input-length tweakable ciphers
//International Conference on the Theory and Application of Cryptology and Information Security. –
Springer, Berlin, Heidelberg, 2013. – С. 405-423.

13

