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Abstract. In this paper, we reconsider the security for CRYSTALS-
Dilithium, a lattice-based post-quantum signature scheme standardized
by NIST. In their documentation, the authors proved that the security of
the signature scheme can be based on the hardness of the following three
assumptions: MLWE, MSIS and SelfTargetMSIS. While the first two are
standard lattice assumptions with hardness well studied, the authors
claimed that the third assumption SelfTargetMSIS can be estimated by
the hardness of MSIS (and further into SIS). However, we point out that
this is in fact not the case. We give a new algorithm for solving SelfTar-
getMSIS, by both experimental results and asymptotic complexities, we
prove that under specific parameters, solving SelfTargetMSIS might be
faster than MSIS. Although our algorithm does not propose a real threat
to parameters used in Dilithium, we successfully show that solving Self-
TargetMSIS cannot be turned into solving MSIS or MISIS. Furthermore,
we define a new variant of MISIS, called sel-MISIS, and show that solving
SelfTargetMSIS can only be turned into solving sel-MISIS. We believe
that in order to fully understand the concrete hardness of SelfTargetM-
SIS and prevent potential attacks to Dilithium, the hardness of this new
problem needs to be further studied.

Keywords: Lattice-based cryptography, short integer solution problem,
concrete hardness, digital signature

1 Introduction

Since the security of classical asymmetric cryptographic algorithms has been
challenged by the fast development of quantum computing, nowadays, many
cryptographic researchers focus on constructing post-quantum encryption/signature
schemes which can resist the attack of quantum algorithms. In 2016, NIST has
risen a competition on post-quantum cryptography, which aim at standardiz-
ing quantum-resistant cryptographic algorithms, and the final results were an-
nounced in July 2022.

CRYSTALS-Dilithium [12] is one of the three digital signature schemes for
standardization, which security based on the hardness of lattice assumptions.
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Since lattice assumptions have been widely studied recent years, lattice-based
schemes are usually believed to be as reliable as others. As the authors claimed,
comparing with other candidates, Dilithium is more efficient, and simple to im-
plement especially on low-energy devices. There are already a few implementa-
tion results on Dilithium [1, 16].

Dilithium follows a paradigm called Fiat-Shamir with abort [24, 25, 11], which
is an extension of the most famous Fiat-Shamir heuristic. Fiat-Shamir heuris-
tic can be used to transform a canonical identification scheme into a signature
scheme in the random oracle model (ROM), while the unforgeability of the sig-
nature was guaranteed by the security of the identification scheme using the
forking lemma. From Fiat-Shamir heuristic, the unforgeability of Dilithium can
be (non-tightly) reduced to the hardness of MLWE and MSIS (which can be con-
sidered as LWE and SIS problem in modular lattices [22]). However, if we allow
quantum access to a random oracle (such a model is called QROM, the quantum
RO model), using forking lemma becomes more difficult. So while considering
quantum adversaries, one must find new methods to prove the unforgeability
of the signature. In [19], a new hardness assumption called SelfTargetMSIS was
presented, so that the security of Dilithium can be based on this new assump-
tion. We first informally state the hardness assumption SelfTargetMSIS before
further discussions.

SelfTarget MSIS: Let R be a polynomial ring. Given a hash function H which
hashes into small norm polynomials in R and a random matrix A Rg”k , a
random vector t < R, find a message p, small norm pair y € RF™ ¢ € R
such that H(ul|[I|Aly + ct) = c.

Although challenging the hardness of SelfTargetMSIS seems to be difficult,
the concrete security of this assumption has not yet been fully studied, compared
with other hardness assumptions used in Dilithium (MLWE and MSIS). In the
document of Dilithium, the authors claimed that in order to solve the SelfTar-
getMSIS problem, one must either invert the hash function H, or take the fol-
lowing approach: First, pick a message p and a vector w, calculate ¢ = H(u||w)
and then find a small norm solution y for [I|A]y = w — ct. The authors further
set t' = w — ct, so the equation has a same form with the lattice hard problem
MISIS. Furthermore, in order to be more conservative in the security estimation,
the authors set A’ = [A|t'], and use the hardness of MSIS problem [I|A']y’ =0
to estimate the hardness of SelfTargetMSIS.

In this paper, we point out that the authors have made the wrong claim by
presenting an algorithm for solving SelfTargetMSIS. We show by both experi-
ments and complexity analysis, that under certain parameters, solving SelfTar-
getMSIS is faster than solving the MSIS problem [I|A’]y’ = 0 using standard
lattice-solving algorithms, so it turns out to be problematic for the designers to
use MSIS/SIS for estimating the concrete hardness of SelfTargetMSIS.

We further give some theoretical analysis on the relationship between Self-
TargetMSIS and MSIS. We show that the claim by the designers is incorrect at
two points: (1) since any adversary can choose multiple pairs of (u, w), it also
gets multiple values for t', say ti, ..., t;, which means that instead of solving
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a fixed equation [I|A|t']y’ = 0 (resp. [I|A’]ly = t’), the adversary can solve one
of the following @ equations: [I\A|t;]y’ =0 (resp. [I|A']ly = t;), i1=1,...,Q; (2)
the adversary can choose w after seeing A, t, thus t' = w —ct is not independent
with A, hence [A[t] is not a uniform random matrix, which is necessary for the
hardness of MSIS or MISIS problem.

We note that in fact, the problem correlated to SelfTargetMSIS is a new
assumption different from the original MSIS or MISIS, and we call it sel-MISIS.
We also introduced another problem called mul-MISIS which is a special case of
sel-MISIS. The figure below shows the relationship between different hardness
assumptions.

H'l
SelfTargetMSIS —— +

sel-(M)ISIS «<—— mul-(M)ISIS x
\R .

USIS —— (M)SIS

Fig. 1: Relationship between hardness assumptions; A — B means that the hardness
of A is equal or harder than B.

We analyse this new problem sel-MISIS from both theoretical reduction and
concrete hardness, and show that is is nearly impossible to say that sel-MISIS is
equal or harder than MSIS. So in determining the security level of Dilithium, one
must use sel-MISIS instead of MSIS to estimate the hardness of SelfTargetMSIS.
However, since the complexity in solving sel-MISIS (or even MISIS) has not yet
been well studied, we leave the open question that whether there exists a solid
lower bound for the hardness in solving sel-MISIS.

The paper is organized as follows:

In Section 2, we give some basic knowledge on lattices. In Section 3, we
introduce basic lattice solving algorithms. In Section 4, we give our algorithm
for solving SelfTargetMSIS. In Section 5, we give some new assumptions which
are related to SelfTargetMSIS, and give some analysis. In Section 6, we draw the
conclusion.

2 Preliminaries

Notations. © < x for a distribution x means that = is sampled from x. z + X

for a set X means that x is uniformly random chosen from X. For any odd
modulus ¢, Z, and the operation mod ¢ takes value from [—q%l, q;—l] We say

that e is negligible in A, if € < 1/£02(X°) for any ¢ > 0. The polynomial ring
R:=Z[X]/(X™+1) and R, := Z,[X]/(X™ 4+ 1) (n = 256 in Dilithium).
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Infinity norm, 1-norm and 2-norm (Euclidean norm): For a polynomial 2 =
n—1

Cn—1 X" +...+c1X +co, the infinity norm ||z||e = max]'~ |¢;|, I-norm [|z||; =
S |es| and the Euclidean norm |jz]| = /317 ¢2.

For a vector x = (21,...,2y) of polynomials, the infinity norm [|x[/e =

max’ [|2;]/cc, the I-norm [[z[1 = 3771, [[#;]l1, and the Euclidean norm |[z|| =

> Nl 1>

For a vector X = (21, ..., T,,) of scalars, the infinity norm |[x|[[oc = max], |z;|,
the 1-norm [[z[|; = 3°7°, ;| and the Euclidean norm [|x|| = /377", 3.

The “target ball” in Dilithium which H hashes into: B, :={c € R: ||c||1 =
T A |lelloe = 1}

2.1 Lattice Background

Definition 2.1. Given a set of linearly independent vectors B = {by,...,bgq} C
R™, lattice L = L(B) is defined as:

d
LB):=B-Z"={>_ zb;:z cL}.
i=1

B is called a basis of the lattice L, and d is called the dimension of L. We
write A1 (L) as the length of the shortest non-zero vector in L.

Definition 2.2. The Shortest Vector Problem (SVP) is defined as: given a basis
B of a lattice L, finding the shortest non-zero vector v in L.

The ~y-approzimate Shortest Vector Problem (v-SVP) is defined as: given a
basis B of a lattice L, finding a non-zero vector v € L such that ||v] < yA1(L).

Definition 2.3. The Closest Vector Problem (CVP) is: given a basis B of a
lattice L, and a target vector t, finding the closest vector v in L to t, i.e. finding
a vector v such that ||v — t|| = minge, ||x — t]].

The ~y-approximate Closest Vector Problem (v-CVP) is: given a basis B of
a lattice L, and a target vector t, finding a vector v such that |[v —t|]| < 7 -
minger ||x — t|.

2.2 Hardness Assumptions in Dilithium

The main results in this paper do not require the detailed description of Dilithi-
um, only its hardness assumptions. Those who are interested may refer to the
document of Dilithium [12]. Below, we state the hardness assumptions used in
the security proof of Dilithium [12,19].

Definition 2.4. For integers m,k, and a probability distribution D : R, —
[0,1], we say that the advantage of algorithm A in solving the decisional MLWE,,, 1 p
problem over the ring Rq is
Adviti's (A) := | Pr[b = 1|A « R™Fit « R b+ A(A,t)]

—Pr[b=1|A « R]"F*;s; - DFiso + D™;b + A(A, As, +55)][.
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Definition 2.5. To an algorithm A we associate the advantage function Adv,'\:'f,lsw

to solve the (Hermite Normal Form) MSIS,,, i~ problem over the ring R, as
AdviiS® (A) == P10 < |lyllo < YA[IJA] -y = 0]A « RI™F;y « A(A)].
If we set R = Z, the problem degenerates into the SIS, i~ problem.

Definition 2.6. Suppose that H : {0,1}* — B, is a cryptographic hash func-
tion. To an algorithm A we associate the advantage function

SelfTargetMSIS L
Ade,m,k,’y ("4) T

0<[lylloc <~ mxk, (. |Y H()
Pr /\H(u||[I|A|t]~r):cA%Rq =L — A (A, t)].
to solve the hardness problem SelfTargetMSISy ., .

It was shown in [19] that the hardness of SelfTargetMSIS problem can be
reduced to MSIS under the random oracle model (but not quantum random
oracle model). However, it is not a tight reduction. We write the result below:

Lemma 2.1. [19] Assume that H is a random oracle, and A makes at most Qp
queries to H. Then there exists an adversary A’ such that Advifjg‘fthSls (A) ~

Adv™SS, ().

m,k,2vy

Next, we define the inhomogeneous SIS (ISIS) problem, which we will also
use in this paper.

Definition 2.7. To an algorithm A we associate the advantage function Advi\gﬁ'i{,

to solve the (Hermite Normal Form) MISIS,, i ~ problem over the ring Ry as
Adv,'\,/'ll,%'i/(A) = Pr[0 < [|ylloo < YA[I|A]'y = t|A R?Xk;t — Ry «+ A(A,t)].

If we set R = Z, the problem degenerates into 1SIS, 1.~ problem.

2.3 Gaussian Heuristics and Voronoi Cells

The definitions below are useful for the security estimation in this paper. Here
we consider only full-rank lattices, where the dimension of the lattice d is equal
to the dimension of lattice vectors n.

Definition 2.8 (Fundamental Parallelpiped). A fundamental parallelpiped
P(B) for a lattice L(B) is defined as: P(B) :=B-[-1/2,1/2)™.

Since the basis of a lattice is not unique, fundamental parallelpiped is not
unique either. However, each fundamental parallelpiped has the same volume,
which is equal to det(B). We also write det(£) = det(B).
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Proposition 2.1 (Gaussian Heuristic). Gaussian heuristic claims that, for
a (random) region £2 C RY, for a random lattice L, the number of lattice points
contained in this region is roughly equal to vol(£2)/det(L).

Moreover, det(L) is approzimately equal to the volume of B(A1 (L)), where
B(r) is an n-dimension ball with radius v (as the latter contains exactly one
lattice point). If we define

then A1 (L) = gh(L).

We note that, since the exact value of A;(£) is usually hard to calculate, in
most cases, solving y-SVP means to find a short vector x which ||x|| < v-gh(L).

Definition 2.9 (Voronoi Cells). [9] We write H(x) for half-spaces whose
boundaries are orthogonal to x and pass through %X. For a lattice L and a list
L C L, the approximate Voronoi cell generated by L is defined as:

VL = r11‘€L 7'[(1‘)

Voronoi cells are highly related to CVP. In fact, we have the following prop-
erty:

Lemma 2.2. [21] Let v be the solution of CV P(L,t), and L be the 2% shortest
vectors of L. Thent —v € V.

We also write V = Vy, if L contains the 2¢ shortest vectors of £. For a
random target t and its CVP solution v, we can heuristically assume that t — v
is uniformly distributed in V.

For the volume of a Voronoi cell, we have the following result:

Lemma 2.3. [21] If L contains 2¢ shortest vectors in L, then the volume of Vr,
is equal to det(L). Moreover, if L contains more than 24/2 shortest vectors in L,
the result holds approximately.

3 Algorithms for Solving Lattice Problems

From the definition, we can view SelfTargetMSIS as a variant of MSIS/MISIS.
Just like other researchers in this field, we simplify the problem from two aspects:

1. If we expand each polynomial into n x n matrix, solving MSIS,,  , and
MISIS,,, k.~ can be turned into solving a special case of SIS, nk,v and ISISy,p, nk -
Although these new problems have some special algebraic structures, there is cur-
rently no methods for exploiting these structures, so we simply discuss SIS /ISIS
solver instead of MSIS/MISIS solver.

2. Since currently all lattice solving algorithms consider the Euclidean norm,
we use Euclidean norm instead of infinity norm for the length of the short solu-
tion, which is the same as Dilithium itself. Note that there is a high probability
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where a vector with small Euclidean norm also has infinity norm small enough.
For a more detailed discussion, we refer the readers to [12].
It is well known that solving SIS is equivalent to solve (approximate)-SVP

%I fl} , and solving ISIS is equivalent to solve

(approximate)-CVP with the same lattice and the target vector (8)

with the following lattice basis: [

For correctness, we can easily see that any (short) vector in this lattice could
be written by y = [qui—VAv .So [I|A]'y mod ¢ =qu+Av—Av mod ¢ =0

and y is a solution to the SIS problem, and any solution to the SIS problem is
a short vector in this lattice. The correctness of ISIS is similar and we omit the
details here.

So before we move on to the problem SelfTargetMSIS itself, we first briefly
introduce the algorithms in solving SVP and CVP problems.

3.1 Lattice Sieving

Lattice sieving [2] is considered the most efficient algorithm in solving SVP or
v-SVP when - is small. Briefly speaking, a sieving algorithm takes two random
lattice vectors x,y each step from a list, and if the length of x + y is small, x +y
is added to the list, repeat such procedure until a short enough lattice vector is
found. The two most commonly used basic lattice sieving algorithms are Guass
sieve by Micciancio and Voulgaris [26], and NV sieve by Ngyuen and Vidick [28].
In [21,7,6], the authors introduced nearest neighbour data structures to store
the lattice vectors, so that it is more easier to find a pair of close vectors in
the algorithm. Other improvements include dimension-for-free [10] which lowers
the lattice dimension and triple sieve [18] which saves space complexity. Most of
these improvements can be used on both sieve.
We first give a simplified description for Gauss sieve.

Table 1: Description of Gauss sieve

Input: a set of lattice vectors L C £, |L| = (4/3)%/?, approximation factor .
Output: a set of short lattice vectors L C L.

for each pair x,y € L and ||x|| < |ly|| do:
if lx — y|| < Iy then:
L:=Lu{x—y}—{y}
if Ix + vl < ly| then:
L:=Lu{x+y}—{yh
w := the shortest vector in L;
if ||w| < -gh(L) then:
break;
Output w.
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We see that the sieving algorithm not only outputs a short vector, but also a
set of (relatively) short vectors L. This property is used in our algorithm below.

It was proven by [20], that sieving algorithms has a lower bound of O(20-292"),
which is achieved by the BDGL sieve [6] (in theory only). The most efficient
sieving algorithm in practice is the BGJ1 sieve [7], which can achieve a time
complexity of O(2°-311m).

3.2 BKZ

When the lattice dimension is large, the best algorithm in solving approximate
SVP is the blockwize Korkin-Zolotarev (BKZ) algorithm [30, 8]. BKZ algorithm
has a block size 8 as its parameter, uses SVP oracle (either enumeration or
lattice sieving) each time on a -dimension sub-lattice of the original lattice to
generate short lattice vectors, and LLL [23] on the original lattice to further
reduce the lattice basis. The complexity of BKZ is determined by its block size,
so BKZ with larger § costs more time, but the output vector is shorter.

We give the description of plain BKZ.

Table 2: Description of BKZ

Input: a basis B = (b1, ...,by,) € Z™*" for lattice £, the block size 3.
Output: the 5-BKZ reduced basis of L.

LLL(B);
2+ 0;7 « 0
while z <n —1 do:
j (j mod (n—1))+1; k+ min(j + 8 — 1,n); h + min(k + 1, n);
Find v = (vj, ..., vx) € Z¥ 7971 such that ||7Tj(2k:j vibi)|| = A (L x)s
if v # (1,0,...,0) then:
z ¢ 0; LLL(b1, ..., bj 1, > vibs, by, ..., ba);
% start from the j-th loop
else:
z + z+ 1; LLL(bu, ..., by);% start from the h — 1-th loop
Output (by,...,bs).

Since LLL is a polynomial time algorithm, the time cost of BKZ is dominated
by the time cost of SVP-oracle, i.e. enumeration or sieving. In [4], the authors
used the time of one call to SVP-oracle 202927 to estimate the time cost of BKZ,
which is called core-SVP model. We note that Dilithium also takes the same
model for estimating the security levels.

There are many other improvements to BKZ, such as progressive BKZ [5],
and pump-and-jump BKZ in G6K [3].
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3.3 Randomized Slicer and Solving CVP

Above, we introduce algorithms for solving SVP and approximate SVP, which
can also be used to solve the (M)SIS problem. However, by the definition, Self-
TargetMSIS is more like a variant of (M)ISIS than a variant of (M)SIS. While
(M)SIS can be easily turned into solving (approximate)-SVP, (M)ISIS can only
be turned into (approximate)-CVP. We first simply introduce the current results
on solving CVP.

As it was pointed out in [9, 13], the most efficient algorithm in solving CVP
is using a preprocessing method: first output an intermediate result L which is
only related with £ but not the target t; and then use L and t to solve the CVP
problem. Such approach is called CVP with preprocessing, or CVPP for short.

The first algorithm for solving CVPP is presented by Laarhoven [21], which
uses a variant of the Voronoi cells approach by Micciancio and Walter [27].
Doulgerakis et al [9] improved the method along with a randomized version of
the iterative slicing algorithm [31], gaining a 20-2924+°(@) gpace and 20-220d+o(d)
time complexity. Ducas et al [13] provided a sharp bound for the success rate of
randomized slicing algorithm, which improved the result of [9].

Solving CVPP using approximate Voronoi cells contains two steps: first using
enumeration or lattice sieving to find a set of shortest lattice vectors (prepro-
cessing step), and then using The Randomized Heuristic slicer for finding closest
vectors to find the closest lattice vector. The randomized slicing algorithm is de-
scribed as follows:

Table 3: The Randomized Heuristic slicer for finding closest vectors

Input: a list L C £ (sorted by norm from small to large) and a target t € R?
Output: closest lattice vector s € £ to t

s:=0
while s is not a closest vector to t:
Sample t’ € t + £; %Sample from discrete Gaussian
for x € L:
if ¢ — x|| < [|¢]:
t’ :=t’ — x and restart the for- loop;
if J1¢)] < [/t sl
s:=t—t
return s

From what we know, this algorithm is the fastest algorithm for solving CVP
up to now.

In [9], if L contains a? shortest vectors, the running time of randomized slicer
can be bounded by the following inequations:

16a*(a? — 1)
—9a8 + 6405 — 104a* + 6402 — 16

Vi < ( )& He(d) . det(L).
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In practice, randomized slicer runs much faster than the sieving algorithm. In
their experiment [9], for a 50-dimension lattice, sieving takes 4 seconds, while
slicer takes only 2 milliseconds.

4 Constructing SelfTargetMISIS Solver

4.1 Algorithm Description

First we briefly introduce the main idea of our algorithm. In SelfTargetMSIS, the
hash function H hashes into B, which contains more than 2* different elements,
A is the security parameter, so it is impossible to invert the hash function H.
However, finding a collision for H is much simpler. After fixing a vector w,
we generate two different sets, and try to find a collision between them: (1)
Cy C {c := H(u||lw)|p € {0,1}*} with different message u; (2) C2 C {c €
B.|[I|Aly = w —ct, ||y|| < 8} where we can find a short solution for the MISIS
problem. If we can find ¢* € C; N Cy, which means that ¢* = H(w|u*) and
[I|A]ly" = w + c*t, then u*, c¢*,y* form a solution to SelfTargetMSIS.

At a first glimpse, it seems that for generating each element in Cso, we still
need to solve an MISIS problem which is not easier than the MSIS problem.
However, if we are able to generate many elements of C5 in one run of randomized
slicer, then it might be possible to generate the set C in a reasonable time to
solve SelfTargetMSIS problem. So we modify the randomized slicer to handle
this problem.

We noticed that, for ¢/ € R which coefficients contain only 2 +1s and others
are all 0, there is a high probability that for ¢ € B, ¢ — ¢ € B, (for the
parameters in Dilithium where n = 256, 7 = 60, the probability is ~ 18%).

So if we expand the slicing set L to include short vectors y’ such that
[I|A]ly’ = ¢'t, y’ can be used to “slice” the target vector to change ¢ into another
element in B,. Also, as we include more vectors in the slicing set L, it is more
possible for the slicer to find a close vector, hence a solution to SelfTarget MSIS.

Now we give the pseudo-code for our SelfTargetMSIS solver. Below we let
0 - |B.| be the size of Cy, ¢ -y with ¢ > 1 is the length of the shortest vector
in the original slicing set, and |L'| = 4 - |L| is the size of additional slicing set.
Let M(A) be the nm x nk matrix which expands each polynomial in A into
a n X n matrix. For simplicity reason, we do not distinguish between vector of
polynomials and vector of polynomial coefficients.

We note that in this algorithm, we still choose a random w, while w in fact
can be chosen arbitrarily by the adversary. If we find a better strategy for the
adversary to choose w, the algorithm might further be improved.
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Table 4: SelfTarget MSIS-Solver

Input: the parameter A,t,~ for SelfTargetMSIS and 0, ¢, ¥
Output: a short integer solution y such that ||y|| <~

function SelfTargetMISIS-Solver(A,t, H, B-,7, 0, ¢,v):
C1:=0; W <+g Ry
for i =1 to 6 -|B;| do:
Mg {07 1}*7
Cyi= Oy U {(, H(ullw))
_ |aT M(A)],
B - [ mM(A],
L := Sieving(B, ¢ - v); %Use the sieving algorithm to generate a set of short vectors;
L' =0
for i =1 to ¢ - |L| do:
dt]
0 I,
L’ := L' U {(Slicer(L,y"),c')}; %Use a (non-randomized) slicer once for each vector;
s := 0;
do:
c4+ Br;u:=w —ct;

vie [ul:

Sample v’ € v + L(B); %Sample from discrete Gaussian;
for x € L:
if [|v' = x| < [[v']:
v’ := v’ — x; and restart the for- loop;
for (x,c') e L
if [|[v/ — x| < ||v'|| and ¢ — ¢ € B;:
v :=v' —x; c:=c— ¢ and restart the for- loop;
if V]| < v — sl
si=v-—Vv;
loop while ||s — v|| > v or Ay, (u,c) € Cy;
find p s.t. (u,c) € Ch;
return u,c,s — v;

c + B,U{0};y =

4.2 Experimental Results

We compare the efficiency of solving SelfTargetMSIS using our algorithm with
solving the corresponding MSIS problem using lattice sieving. Here, we note that
for many parameter selections, such as parameters in Dilithium and the param-

I M(Alt)
oA

in fact takes more time than solving MSIS,, » v by SVP on £ = L( [qOI M_(f‘)})

(we give a theoretical analysis in the appendix), so we only compare solving
SelfTargetMSIS g7 k4 With solving MSIS,, .

eters we choose below, solving MSIS,;, k414 by SVP on £ = £(
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For parameter selection, we set n € {20,22,24},7 = n/2, k = 3,m = 1,
g = 32768, and the norm of short vector y is 1.2 - gh(L£). We do not fix 6, ¢,
but test different values to find an optimal selection.

For solving SVP, we use Gauss sieve as the SVP-solver to compare with the
SelfTarget MSIS solver described above, and both algorithms have a same level of
optimization to show the comparison between the running time. We implement
the hash function H such that inverting H takes approximately the same time
as solving MSIS,,, i .

Let Ty-1 be the average time for inverting H, Tysis be the time for solving
MSIS, T' =Ty + 15 + T35 be the time for solving SelfTargetMSIS, where 77 is the
time of generating C7, T5 is the time for generating the slicing set LU L', and T3
is the time for randomized slicer. Our experimental results are list in the table
below:

n TH—l TMSIS T T1 T2 T3

20 ~462s 446.38s 368.86s 12.83s 343.96s 12.07s
22 ~3527s 3700.15s [3220.50s [141.08s 2956.92s |122.50s
24 ~20281s |20953.01s {19980.28s [1267.56s |17769.44s [943.28s

Table 5: Comparison between solving MSIS and SelfTargetMSIS

We can see that T' is smaller than both Ty-1 and Tusis in all parameter
selections.

Discussion on Countermeasures. We can see that there is an easy way to fix
this problem by enlarging the size of B, into 22}, so that even finding a collision
for H has complexity 2*. However, for n = 256, |B,| < 2?* for any possible
7 = 10,..,256] with A = 256, hence one must change n to reach a security for
256-bit, which cannot easily be done under the framework of Dilithium.

4.3 Asymptotic Complexity

To further show the efficiency of our new algorithm, we give an asymptotic
analysis of the complexity of our new algorithm. We suppose that the target
vector length of SelfTargetMSIS is v =+ - A1 (L).

Our SelfTargetMSIS solver can be approximately divided into four steps:
Step 1, generating C1; Step 2, generating L; Step 3, generating L’; Step 4, using
randomized slicer to solve the required short vector. Now we analyse the time
cost of each steps.

In Step 1, we suppose that each call to hash function H costs t, so the time
cost is approximately Ty = ¢ - |C1| =t0 - | B.|.

In Step 2, we call a sieving algorithm to generate a set of short vectors, which
shortest vector is ¢y’ - A1(£). By the theoretical analysis of sieving in [28], the
relationship between running time and the length of vectors is determined by a
tunable parameter 1 < § < 1.5. With a total number of vectors for no more than
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|L| a2 20:0-207d+o(d) " each iteration reduces the length of vectors to 1/ times
and costs no more than 2°°?+°(d) where ¢ &~ 0.292 for the most efficient sieving
algorithm [6]. We do not have an analytical solution for § in minimizing the total
cost, but for d > 100, § < 1.05 which is close to 1.

Suppose that we begin with a LLL-reduced basis which shortest vector length
is about 2(4=1/2); (L), the cost should be ~ (45t —log(¢'))/ log §)-29-0-292d+o(d),

In Step 3, each vector is sliced by all vectors in L before adding to the set
L'. As pointed out in [9], by using nearest neighbour search, adding a vector
costs only ~s 20-0857+0(n) "and the total cost is |L/| - 20-08%4+(d) Since the set L
is large enough, we heuristically assume that the average length of vectors in L’
is approximate to that in L. We suppose that |L’| =4 - |L|, then the total cost
of Step 2 and Step 3 is Tb = (%452 — log(¢7'))/log § + ) - 20:0:292d+o(d)

In Step 4, we calculate the cost of randomized slicer. We note that, not all
vectors in L’ can be used to slice the target vector ct, but only those vector ¢t
such that ¢ — ¢/ € B;, which fraction is p = ;EZ:;; We suppose that L* is the
actual slicing set, where |L*| & |L| + p - |L/| = (1 + pap) - 20-207d+o(d),

Let a = |L*|"/4, we heuristically assume that vectors in L* have the lengths
of approximately ¢’ times of the lengths of the |L*| shortest vectors in L.
Adopting the heuristic assumption in [9], we have:

16a*(a? — 1)

d/2+0(d) | et (L),
0% 1 64a® _ 104t + 61aZ _ 16’ et(£)

V- < (07)(

By Gaussian Heuristic, a d-dimension ball with radius A;(£) is approximate-
ly det(L), which means that a d-dimension ball with radius 4'A;(£) is approx-
imately 7/%det(£). Since cach time finding a short vector which length with-

in 4" - A;(£), there is a probability of ||gl “ = 0 for solving SelfTargetMSIS,
we can see that the running time of randomized slicer can be estimated by

_1.d 160t (a®—1) d/2+0(d)
T3 = 9(/) (79a8+64a67104a4+64a2716) :

Since |L*| = (1 4 py) - 20-207d+0(d) | we have o & (1 + pap)t/@ . 20207 > 90.207,
We can calculate that Tj < 5¢? - 20-150d+o(d),

The time cost of SelfTargetMSIS solver is T = 17 + T3 + T5. Similar to
the analysis of Step 2, we see that the time cost of MSIS solver using sieving
algorithms can be estimated by Tysis = ((% —log~y')/ log §)-20:0:292d+0(d) " Also,
for a secure hash H, the average cost of inverting H is about Ty-1 = t-(|B-|/2),
for simplicity reason, we suppose that Ty-1 = Twusis, thus 17 = 26 - Tysis.

Now we compare between the costs of SelfTargetMSIS solver 1" and MSIS
solver Tusis. We omit all the o(d) terms, and we have that:

Tusis — T >((1 - 29)(% —logv)/logd — (% —log(¢'))/ log § — o) - 20-2924

1d 0.150d
— —g? . 201504,
9¢5

Consider the expression above as a substraction of two terms, we see that for
¢ < 20-292=0.150 ~ 1 1 the former term grows faster than the latter term with d,
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as long as (1 —20)(%2 —logy')/logd — (%52 — log(¢'))/log 6 — ¥ > 0, which
is not hard to obtain by a careful choice of ¥ and 6. So Tisis — T > 0 holds
asymptotically.

By the theoretical result, we show that our SelfTargetMSIS solver is more
efficient than an MSIS solver with sieving algorithm. But for larger approximate
factor ~y, solving MSIS by BKZ proves to be more efficient than a full-dimensional
sieving, thus an MSIS solver with BKZ may take less time than our SelfTar-
getMSIS solver. We note that our SelfTargetMSIS solver cannot be accelerated
by BKZ, since randomized slicer requires a large slicing set, which can only be
generated from a full-dimensional sieving.

For the parameter choices of Dilithium, the length of target vector ~ ¢/16 is
relatively large, hence our SelfTargetMSIS solver does not propose a real threat
to Dilithium in practice. However, we show that changing the parameters of
Dilithium must be more careful, since the security analysis of Dilithium cannot
be extended to all possible parameters. Also, we cannot rule out the possibil-
ity that our algorithm can further be improved to attack Dilithium with real
parameter choices.

5 Revisiting the Relationship between SelfTargetMSIS
and MSIS

We already show that it is incorrect for the designers of Dilithium to say that
SelfTargetMSIS is harder to solve than MSIS. Now we shall give a theoretical
analysis on why this problem occurs.

In [12], the authors claimed that the hardness of SelfTargetMSIS can be
estimated by the hardness of MSIS (further into SIS) by a standard method
in estimating the security of Fiat-Shamir type signatures. However, we point
out the main difference between Dilithium and earlier Fiat-Shamir signature
schemes (such as in [17,29]). In [17,29], in order to forge a signature, one must
either break the hash function, or solve a standard hardness assumption: RSA
or discrete log. However, it is not the case for Dilithium.

We simply write down the Fiat-Shamir type signature scheme in [29] (with
slight modification) with possible attack, and discuss the differences between
breaking [29] and breaking SelfTargetMSIS.

— Setup: Let p be a prime and a be elements in Z; with prime order ¢ (a?
mod p = 1). Pick sk := s - Zy, pk := (a,v = a*). Let H : Zy x{0,1}* — Z7
be a hash function.

— Sign: For message m, pick r < Z,, set © := o mod p, e := H(x,m), and
y:=r+ se mod q. Return (e, y).

— Verify: For message m and public key pk = v, compute T = aYv® mod p,
and check that e = H(z,m).

In order to break the signature scheme, the adversary may first guess z,m,
calculate e := H(z,m), and try to find the discrete log y of x/v®. Since there
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are only two elements in the public key, the best strategy for the adversary to
choose z is to choose ¢,d € Z, and let z := v°a?, thus véad/v® = o¥. If H
is secure, the probability of e = ¢ is negligible, then we have v = q¥—9/(c—¢),
hence s = (y — d)/(c — e). So breaking [29] (using such approach) is equivalent
in either breaking discrete log or breaking the hash function H.

The discussion above holds partly due to the fact that the “single-target” and
“multi-target” versions of discrete log problem have the same hardness. We can
see that no matter for how many successful guesses, it finally results in finding
the same secret key s. However, it is not the case for breaking SelfTargetMSIS. In
Dilithium, in order to solve the SelfTargetMSIS problem using a similar method,
one must either break the hash function H, or take the following approach: First,
pick a message p and a vector w, calculate ¢ = H(u||lw) (or query the random
oracle H, while considering RO model) and then find a small norm solution y for
the problem [I|A]y = w—ct. Different successful guesses for w, ¢ lead to different
target vectors t' = w — ct, and forging a signature only results in breaking one of
them. This is in fact a multi-target version of MISIS, which we call it mul-MISIS,
and its hardness cannot be tightly reduced to the single-target version.

There is also another main difference. In breaking [29], we aim to find the
discrete log of z/v¢. No matter how the adversary chooses z := v°a?, since e is
uniformly random, z/v¢ is uniformly distributed in {a‘|i € Z,}. But for breaking
SelfTargetMSIS, t is a fixed vector and the value of ¢ is chosen form a set B,
with only about 226 elements, while w is chosen from Ry which contains more
than 220000 elements for the parameter choice in Dilithium. It is clear that ct
cannot be used to randomize w (which is chosen by the adversary), which means
that the problem corresponding with SelfTargetMSIS is not the standard MISIS
(or even the multi-target version), as the randomness of the target vector(s) are
required in MISIS.

We can see that the target vectors are determined by three parameters which
are chosen at three different timings: t is chosen at the beginning when generating
the public key; w is chosen by the adversary; c¢ is chosen by the random oracle
after given w. It is impossible to describe the concrete distribution of target
vectors, since we do not know how the adversary chooses w. Instead, we use sets
of distributions to describe the target vectors, and we call them “selection sets”.
The modified version of MISIS where target vectors are chosen from selection
sets is called selective MISIS (sel-MISIS for short), the term “selective” shows
the fact that an adversary can choose w, hence partly choose target vectors in
this problem. Below, we give the formal definition of this assumption.

5.1 New Hardness Assumptions: mul-(M)ISIS and sel-(M)ISIS

First, we formally define the multi-target version of (M)ISIS.

Definition 5.1. To an algorithm A we associate the advantage function Adv%‘j};lwgs,

to solve the (Hermite Normal Form) mul — MISIS,, . ;  problem over the ring
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R, as

Advit M (A) :=Pr(0 < |lylle < v A TA] -y =ti,i € [1]]
A RPFt = {t1,.... 6.} « Ry « A(AL ).

If we set R =7, the problem degenerates into mul — ISIS,, 1.1, problem.

We can see that MISIS,, 1y is at least as hard as mul — MISIS,,, . , as it can
be viewed as a special case which [ = 1. We also prove the fact that mul — MISIS
can be reduced to MISIS.

Lemma 5.1. If there is an adversary A which solves mul — MISIS,, 1 ; ~ with
probability € and time t, then there is an adversary A" which solves MISISm)k),Y+_Q(qu/(k+m,))
(or MSIS,, i, 4 0(gh/(+m)y) with probability € and time t+O(l)poly(n, m, k,logq).

Proof. Given a MISIS input At (or MSIS input A,t = 0), the adversary A’
does the following: let y1,...,y; be random strings such that ||y;||c < 8, 8 =
2(g™/ kM) such that [T|A]-y;, i € [I] is uniformly random in Ry, B exists by
leftover hash lemma. Let t; = t + [I|A] - y;, @ € []], and pass A, ty,...,t; to A.
If A returns y such that [I|A] -y = t;, return y — y; as the short solution. It is
easy to see that if A successes, A’ also successes, with computational overhead
linear in [ and polynomial in other parameters. Thus we have our result. a

We note that this proof only works for infinity norm. While considering
Euclidean norm, we also have a similar result, but the reduction is looser. We
omit the details here.

Below, we omit [ as long as [ is polynomial in other parameters (n, m, k,log q),
since [ only has a small effect on the running time, as it was shown in the
reduction above.

However in mul-(M)ISIS, the target vectors are still chosen randomly, which
cannot cover the fact that the adversary can partly determine the target vector in
solving SelfTargetMSIS. We give another hardness assumption which considers
such ability of an adversary.

Definition 5.2. Given a family of sets of distributions D = {D,...,D;}, D; =
{Py, ..., Ps} such that for each P; € D; € D, Pj : Rj* — [0,1] is a distribution.
For D = {Py,...,Ps} € D, let Vp(j) output a random vector t < P;. The
advantage in solving sel — MISISp , 4 is defined as:

AdvE S (A) == Pr[0 < [lyfloo <y A[TA]-y =t/|
A~ R;”Xk;D — D;y « APO(A, D);t" is an output of Vp].

Fach D € D is called a selection set.
For R =7, the problem is called sel —ISISp 1 1 ~-

We can see that the hardness of sel-MISIS is related to D. For example, if
all distributions P; in a selection set D are ~-bounded, the sel-MISIS problem
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is easy, as (g) is an obvious solution for any t’ returned by Vp. However, when
every distribution P; is a uniform distribution on Rp", sel-MISIS degenerates
into mul-MISIS which can be reduced to the standard MISIS.

For the sel-MISIS problem corresponding to SelfTargetMSIS, each selection

set Dy = {Pw|w € R]'} where Py : Rj* — [0, 1] is defined as:

_ H{ce Brlr =w —ct)|
| Br|

Pw(r)

Below, we name the selection sets as ST .

By Lemma 5.1, the reduction between mul-(M)ISIS and (M)ISIS/(M)SIS is
tight only when & >> mlogq. However, in the choice of Dilithium parameters,
k ~ m in all security levels, so even if we can reduce sel-(M)ISIS into (M)SIS by
the same way, sel-(M)ISIS it is still simpler than (M)SIS with a same parameter.
Next, we show that even that is impossible: the same reduction cannot be used
to reduce sel-(M)ISISs7 m k,r into (M)ISIS,,, g or (M)SIS,, i for selection set
ST and 1’ such that r' —r = Q(g™/(F+m)),

Let S = {x € R™|||x]|lc <’ —r}. First, we suppose that in each selection
set D = {Py,..., Ps}, ([{t|P;(t) > 0}|-[S])/|Ry"| is negligible for each i = 1,..., 5.
Since in the context of Dilithium, [{t|P;(t) > 0} < [B.| < 2°°® and |R| =
q?%0™ 5 25888 this assumption is reasonable if we let v/ — r = Q2(g™/k+™).

In order to reduce sel-MISIS to MISIS/MSIS using a same way from Lemma
5.1, given an MISIS/MSIS sample (A,t), the challenger C must find a short
integer solution for [I|A]y =t (either t = 0 or t is uniform) by challenging an
adversary 4 which can solve the sel-MISIS problem. C can choose polynomially
many short integer vectors y1, ..., y¢ such that ||y ;e < 7'—r, and asks A to solve
one of the problems [I|A]y’ =t', j = 1,..., ¢ such that [t —(t+AY;) o < 7' =,
t;*(tJFAYj)

—y,
the target t’ from a set with t|.5] vectors,gwhile the set is independent with any
distribution P; € D € D.

However, since A can arbitrarily choose from a selection set, we can let A
queries V with a same input, that is, A always samples from a distribution F;.
Since (|{t|Pi(t) > 0}[ - |S])/|Ry"| is negligible, the probability that C can find a
target t’ such that P;(t’) > 0 is also negligible, which means C cannot use A to
solve MISIS/MSIS.

Gentry et.al. [15] gave a reduction from ISIS to so called IncIVD problem
which does not require the target vector to be random. However, the reduction
requires that t be chosen before given A. Since in the definition of sel-ISIS, the
adversary is allowed to choose the target vector from a distribution after seeing
A, the same reduction cannot be applied to sel-ISIS. We recommend the readers
to [15] for more details.

then return the solution y =y’ + ( ), which means that C can choose

By the discussions above, we have strong confidence that sel-(M)ISIS cannot
be reduced to (M)ISIS or (M)SIS.
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5.2 Concrete Hardness between mul-(M)ISIS and (M)SIS

Above, we discussed the reduction between mul/sel-(M)ISIS and (M)SIS, and
now we move on to the concrete hardness of these new assumptions. Unfortu-
nately, we have not found a proper way to estimate the hardness of sel-ISIS,
mainly because that we do not know how to maximally exploit the structure of
the selection set D. In this section, we only discuss the hardness estimation for
mul-ISIS, and compare it with SIS.

The difference between solving SIS and ISIS is much like between solving
SVP and CVP. While SVP always returns the shortest lattice vector which
length is A\1(L£), the distance between the target vector t and the CVP solution
v is determined by the choice of t. It is possible that t is extremely close to a
lattice point, so that ||[v —t|| < A1(£). Although ||v —t|| = A1 (L) by average
(from Gaussian heuristic), if we choose many different target vectors ty, ..., t;,
we may get at least one lattice point v; such that ||v; — t;]] < A1 (£).

The discussion above also holds for the comparison between solving SIS and
mul-ISIS, which means that solving mul-ISIS using the same block size in BKZ
may result in a shorter solution than solving SIS. However, we note that random-
ized slicer is not designed to solve approximate-CVP, especially when the lattice
dimension is large, it is impossible to list all the shortest vectors for slicing. Here
we modify the algorithm into solving v-CVP with v > 1.

The algorithm runs in the following steps:

— Run BKZ-3 on the lattice to generate a reduced lattice basis.

— Using sieving to generate short lattice vectors on each [-dimension sub-
lattice of £, and lift them into vectors of L, the vector set is denoted by L,
and we suppose that |L| = = a®.

— Use randomized slicer on the target vector t with L to generate a close lattice
vector u.

We suppose that BKZ-5 outputs a vector which length is v\ (L), and we
heuristically assume that vectors in L have the lengths of approximately +/
times of the lengths of the [ shortest vectors. So the approximate Voronoi cell
expanded by L has the size of ' ? times of the Voronoi cell expanded by the [
shortest vectors. Adopting the heuristic assumption in [9], we have:

,d( 16a*(a? — 1)

d/2+0(d) | qet(L).
“9a® 1 61a® _ 104t + 61aZ _ 16’ et(£)

We assume that it is a good estimation, such that < is replaced by ~.

By Gaussian Heuristic, a d-dimension ball with radius A;(£) is approximate-
ly det(L), which means that a d-dimension ball with radius yA;(£) is approxi-
mately 79 det(L£). So the running time of randomized slicer can be estimated by

16a?(a®—1 o
(/MU —91184-64@—i(ﬂmfu)r64az_16)d/2+ @,
So the time complexity of solving y-CVP using randomized slicer is O(2°-29%8)+
4 2_ . .
O(a?)+ (W'/V)d(,9a8+6410¢66a,£g4a4264a2716)d/2+°(d), where 4/ is determined by 3
(which can be deduced from a BKZ simulator, see [8] for details).
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We consider a specific case, where v = 1, and we choose a = (4/3)0-95/2, We
turn SIS into solving SVP and mul-ISIS into solving approximate-CVP, and we
give the estimated time cost by the approximation above in the figure below.
We can see that solving mul-ISIS takes less time than solving SIS when n > 50.
However, for v > 1, the randomized slicer may takes much more time than BKZ,
since « is therefore small.

60
—— SIS

—e— mul-ISIS

50 A

40 1

time

30

201

50 51 52 53 54 55 56
dimension

Fig. 2: Estimation for running time of solving SIS and mul-ISIS.

In our experiments, lattice sieving can only output a vector of length ~
1.05gh(L), while randomized slicer can easily find a close vector of length <
gh(L), so for v < 1.05, mul-ISIS is obviously easier to solve. However, if we
choose 7 > 5, even the running time of randomized slicer is 10 times than that
of BKZ, the distance between t and the output lattice vector u is still larger
than the average length of vectors in L, so solving approximate-CVP with large
approximation factor v using randomized slicer turns out to be much slower
than solving approximate-SVP. We leave an open problem here to design more
efficient approximate-CVP and mul-ISIS solving algorithms.

6 Conclusion and Future Work

In this paper, we revisited the concrete hardness for the hardness assumption
SelfTargetMSIS in the NIST post-quantum standard CRYSTALS-Dilithium. We
pointed out that, although the authors used MSIS to estimate the hardness
of SelfTargetMSIS, it is in fact not the case, as we introduced an algorithm
which solves SelfTargetMSIS faster than MSIS under specific parameters. We
also analyse this problem in a theoretical way, and introduced new assumptions
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called mul-(M)ISIS and sel-(M)ISIS, where sel-(M)ISIS is a hardness assumption
related to SelfTargetMSIS. We give the reduction from mul-(M)ISIS to (M)ISIS,
but show that it is hard to reduce sel-(M)ISIS to standard (M)SIS in a same
way. We also discuss the concrete hardness for mul-(M)ISIS using an estimation
of approximate-CVP solver.

Although we solved some of the questions, we rise more questions in this
paper: (1) What is the most efficient algorithm in solving approximate-CVP
or ISIS? (2) How to construct a more efficient algorithm in solving sel-ISIS
than ISIS, especially for the selection set corresponds with SelfTargetMSIS (see
Section 5.1)7 (3) Are the parameters of Dilithium still secure if we consider
the hardness of sel-ISIS instead of SIS? We hope that these questions could be
answered in the near future.
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A The Comparison between solving MSIS,, ., and
MSIS . +1,4

We compare the concrete hardness of MSIS,, ., and MSIS,, j+1,~. By the dis-
cussion in Section 3, the naive approach for solving MSIS,, 1 ~(A) is constructing

. _ qI M(A)
a lattice £ = £([ 0 I
nm X nk integer matrix, and solve (approximate)-SVP on this lattice. Similar-
ly, solving MSIS,,, 1 -(A|t) can be turned into solving (approximate)-SVP on a
lattice £ = L( {%I M(j?t) ).

However, it is easy to see that a solution to MSIS,, k. (A) is also a solution
to MSIS,, k+1.~(Alt) by appending 0, so if finding a short vector in £ takes less
time than finding a short vector in £, we can say that solving MSIS,;, 41, is as
hard as solving MSIS,, . y. Now we discuss the condition which the statement
above holds. Since the fastest approximate SVP-solver is BKZ, we only need to
show that finding a ~-length vector in £’ needs a larger block size then finding
a v-length vector in L.

In [8], the authors estimated the quality of a BKZ-reduced lattice basis, in
the term of Hermite factor [14], which is defined as:

}), where M (A) is generated by expanding A into a

Definition A.1. For a d-dimension lattice L, let B be a basis of L, and by be
the shortest vector in B. Then, the Hermite factor of B &g is defined as:

a_ _ ball
%0(B)" = det(L£)1/d"

The authors claimed that the Hermite factor of a S-BKZ-reduced lattice basis
B can be estimated by:

(VBB 1
0o(B) ~ (—————)2G-1,
o(B) = (L0
We suppose that the problem MSIS,,, j , can be solved by performing 3-BKZ

on L, and the S-BKZ reduced basis is B. We can see that the dimension of L is
n(m+k), and det(£) = ¢"™, thus gh(L) = / 20k gm/(m+k) et ~ = 3gh(L),

2me
50 0p(B) ~ (&\/@)ﬁ

Similarly, suppose that MSIS,, ;11,4 can be solved by performing 5’-BKZ on
L’ and the §’-BKZ reduced basis of £ is B’. The dimension of £’ is n(m+k+1),

(m+k)_q(m,+k)(w7:1+k+l)

and det(£) = ¢"™. So &,(B') ~ (ﬁ\/" pr )RR
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We see that dg is only related to the block size, and since § < 8, we have
that 0o(B) > 0¢(B’), which means that:

_ In(m+k)

3 n(m+ k)

1
)w,(m,+k+1) .
2me

1 e
YAIR) 2 (F - q AR
2Te ~

We take logarithm on both side, after simplification, we get:

n(m + k)

k+1)(log# +1
(m+k+1)(log7 + log e

) & mlogg.

m log q
log 4+log \/7%
holds, and solving MSIS,;, 141,y is as hard as solving MSIS,, x . We can further
check that the parameter in Section 4.2 satisfies the inequation, we omit the
details here.

Now, we see that if k > — m — 1, then the above condition



