
TiGER: Tiny bandwidth key encapsulation
mechanism for easy miGration based on

RLWE(R). ⋆

Seunghwan Park, Chi-Gon Jung, Aesun Park,
Joongeun Choi, and Honggoo Kang

Defense Counter-intelligence Command
horriblepaper@gmail.com, wjdclrhs@gmail.com
aesunpark18@gmail.com, joongeuntom@gmail.com

honggoonin@gmail.com

Abstract. The quantum resistance Key Encapsulation Mechanism (PQC
-KEM) design aims to replace cryptography in legacy security protocols.
It would be nice if PQC-KEM were faster and lighter than ECDH or
DH for easy migration to legacy security protocols. However, it seems
impossible due to the temperament of the secure underlying problems
in a quantum environment. Therefore, it makes reason to determine the
threshold of the scheme by analyzing the maximum bandwidth the legacy
security protocol can adapt. We specified the bandwidth threshold at
1,244 bytes based on IKEv2 (RFC7296), a security protocol with strict
constraints on payload size in the initial exchange for secret key sharing.
We propose TiGER that is an IND-CCA secure KEM based on RLWE(R).
TiGER has a ciphertext (1,152bytes) and a public key (928bytes) smaller
than 1,244 bytes, even at the AES256 security level. To our knowledge,
TiGER is the only scheme with such an achievement. Also, TiGER satis-
fies security levels 1, 3, and 5 of NIST competition. Based on reference
implementation, TiGER is 2.0-2.4x faster than Kyber and 2.6-4.0x faster
than LAC.

Keywords: Post quantum cryptography migration · Ring learning with
error (RLWE) · Ring learning with rounding (RLWR) · Key encapsula-
tion mechanism (KEM)

1 Introduction

PQC-KEM (Post Quantum Cryptography Key Encapsulation Mechanism) must
be easily migrated to legacy security protocols ((D)TLS, IKE, SSH, IPSEC,
etc.), and performance, device memory, and communication bandwidth must be
similar to current KEM such as ECDH and DH for migration.

Analyzing the algorithms submitted to the NIST competition, it seems rea-
sonable to choose the Lattice problem for migration. The KEM designed based

⋆ This work is submitted to ‘Korean Post-Quantum Cryptography Competition’ (www.
kpqc.or.kr).

www.kpqc.or.kr
www.kpqc.or.kr

2 PJPCK22

on LWE, and its variants (Ring/Module LWE(R)) is fast, so it does not constrain
migration. However, KEM based on LWE and its variants are unsuitable for the
resource constraint device and communication bandwidth because the size of the
public key, private key, and ciphertext are more significant than that of DH or
ECDH, which are legacy KEM. In this respect, The NIST competition also used
the size of the public key and the size of the ciphertext as principal evaluation fac-
tors. Intuitively, structured RLWE(R) can have smaller bandwidth and efficient
performance than less structured MLWE(R). Nevertheless, the bandwidth and
operation speed of the RLWE(R) algorithm submitted to the NIST competition
were comparable to those of MLWE(R)-based Kyber or Saber, so they were all
rejected. However, we have the insight that NIST’s first chosen KEM standard,
Kyber, is a bit unsuitable to use for legacy security protocols. The bandwidth of
Ring/Module LWE(R) cannot be as small as DH and ECDH, but migration is
much easier when the security protocol fragmentation can be avoided. According
to RFC 7296, IKEv2 implementations must be able to send, receive, and process
IKE messages that are up to 1,280byte. And the first exchange message, IKE-
SA-INIT, cannot be fragmented (RFC 7383). So it is necessary to transmit the
ciphertext or public key for shared key generation in a payload of about 1,244
bytes, excluding the header. The Round5 team [9] also analyzed that ciphertext
and public key sizes of about 1,300 bytes are required in an Ethernet. If we want
to share an encryption key for AES256, which is believed to be secure even in
a quantum environment, we should use Kyber1024. Since the public key and ci-
phertext size in Kyber1024 are 1,568 bytes each, complex implementations may
be required for use with IKEv2.

We propose TiGER a compact IND-CCA secure KEM based on RLWR and
RLWE where the public key and the ciphertext size do not exceed 1,244 bytes
on all parameters. TiGER generates a public key based on RLWR, generates
a ciphertext based on RLWE, and compresses it to achieve small bandwidth.
RLWE(R) are structured lattices, but specific attacks that apply only to these
are unknown and have been well-studied for a relatively long time. Also, we
choose the RLWE(R) modulus q = 256 to cut-off a bandwidth. Since the hard-
ness of RLWE(R) is determined by the dimension n and the σ/q, where σ is
the standard deviation of noise distribution, choosing a small q is not a harmful
hardness if determining a proper noise distribution [29,23]. If an error is added
to a small q and even ciphertext compression is performed, the decryption failure
rate will be very high. We solve this problem with error correction codes XEf [9]
and D2 [7]. In particular, the unique characteristics of the ring f(X)=Xn + 1
in Rq := Zq[X]/(f(X)) are a good combination with the error correction code.
That is, in the Xn + 1, n is constrained to the power of 2, and since it is suffi-
ciently more significant than the required message size (128, 192, 256 bits), this
buffer is used as a valuable space for redundancy bits. We use a sparse ternary
uniform distribution with hamming weights for the secret/error distribution. It
chose to enjoy being able to fine-tune the standard deviation through hamming
weights while minimizing the propagation of errors. As constraints n and fixed
q, parameters that are challenging to handle can be supplemented with ham-

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 3

ming weights. It also allows to replace polynomial multiplication with bit-wise
operations.

As a result, TiGER is the only one among all LWE-based KEMs that com-
peted in the NIST competition; the size of the ciphertext and public key is
smaller than 1,244 bytes each, so it can easily migrate to the legacy security
protocol. In addition, TiGER128, TiGER192, and TiGER256 satisfy NIST compe-
tition security levels 1, 3, and 5, respectively, according to latest security strength
estimation in MATZOV [26,5] and May [27]. It is more fine-grained, state-of-arts
security strength estimates than Kyber [8] or Saber [15].

1.1 Design rationale

TiGER is an IND-CCA-secure Key Encapsulation Mechanism (KEM) based
on the hardness of solving the learning-with-rounding and learning-with-errors
problem over Ring lattices (RLWR and RLWE problem). The TiGER scheme is
constructed in two-steps: we first introduce and IND-CPA-secure PKE(Public
Key Encryption) scheme encrypting messages of a length of 16, 32 bytes. We
then use a Fujisaki–Okamoto (FO) transform by Jiang et al. [19] to construct
the IND-CCA-secure KEM.

Choice of the Ring We use f(X)=Xn + 1 in Rq := Zq[X]/(f(X)), where
n is the power of 2. It is the common choice used by most of the Ring-lattice
submitted to NIST competitions. The common ring has the advantage in that the
polynomial modular reduction operation is straightforward, and there have been
no known attacks exploit it [22]. On the other side of this choice, f(X)=Xn+1+1
in [9], where n+1 is prime and f(X)=Xn−Xn/2+1 in [28], where n = 2a3b(a and
b are positive integer) have the flexibility to select the appropriate degree n for
each security level. Although we observed these recent studies meaningfully, we
decided to enjoy the aspect of conservative security that there was no particular
weakness even though f(X)=Xn+1 was well studied and the attribute of making
the probability of decoding error the smallest. In addition, the constraint of
degree n is tricky to witness as a disadvantage because it provides a valuable
buffer space in terms of employing the error correcting code.

Choice of modulus All integer modulus in the scheme are power of 2. It im-
prove performance by replacing ⌊(p/q) ·x⌉ with ADD and AND operations [13].
Especially, fixed q = 256 is a byte size. The first proposed the choice of modulus
q below the byte size with q = 251 in LAC [23], which won the PQC competition
in china. In addition, LizarMong [20] designed the scheme with q = 256, which
is the power of 2 like ours, and then LAC also added q = 256 parameter as
an option during the NIST competition. Intuitively, this choice enjoys a small
bandwidth and improved performance. It also provides very efficient modulo op-
eration and memory usage and is suitable for single instruction multiple data
(SIMD) implementations such as AVX2 and NEON. Even though the modulus
is small, it can not affect the security since we maintain the error rate by se-
lecting proper error distribution [23,29]. The modulus p used for RLWR and the
modulus k1, k2 used for ciphertext compression are also the power of two.

4 PJPCK22

Distribution We use a sparse ternary secret with a hamming weight [13] and [9]
proved the hardness of the sparse ternary secret variants RLWE(R). Multiplica-
tion of sparse ternary secret polynomials can be replaced with bit operation to
improve performance [2,22]. It also maintains correctness by preventing decryp-
tion errors from increasing and can select the optimized standard deviation for
each security level by finely adjusting the hamming weight and has the advan-
tage of having resistance to high hamming weight attacks [23] that manipulate
the centered binomial distribution.

Adopt error correction code Rq := Zq[X]/Xn+1 constrains n to the power
of 2, so choose n = 512 or n = 1024 depending on the security level. Since
general RLWE(R) schemes map one bit message to one coefficient in Rq, n is
larger than the required size of the shared key (128, 192, 256 bits). We claim that
RLWE(R) has the best compatibility with error correcting code (ECC) regarding
message processing. A redundancy bit is inevitably required for error correction.
n larger than the length of the shared key can be used as a buffer sufficient
to use the redundancy bit. In particular, Because the RLWE(R) is a variant to
maximize performance and reduce the size(ciphertext, public key) of the LWE,
RLWE(R) with comparable performance and size to less structured MLWE is
meaningless [4]. Thus, a small q selection is needed in RLWE(R), increasing
the decoding failure probability. So, the combination of RLWE(R) and ECC is
beautiful because ECC can be an excellent choice to overcome these drawbacks.
We use the well-studied XEf [9] and D2 [7] to utilize the buffer space. Since XEf

avoids table look-up and branch conditions, it resists timing attacks [9]. That
is, a 256-bit message is encoded with XE5 to make a 512-bit code word (234
redundancy bits and 22 padding bits), and D2 encodes the code word to make a
1024-bit M̂. Decoding is in reverse order.

Compress Public-key and Ciphertext NIST’s candidate algorithms com-
monly use compression techniques. Public-key compression means sending only
the Seed instead of a in Rq, and the receiver recovers a using the hash function.
This reduces the public-key size from 2n log q to size-of-Seed + n log q. Cipher-
text compression is similar to the RLWR idea of discarding a few LSBs in c1,
c2. IND-CCA KEM also can do the same. Ciphertext compression affects the
security strength and decryption failure rate of the scheme. See subsection 5.4
and subsection 3.5 for an analysis.

1.2 Advantages and limitations

1.2.1 Advantages

• Compact : TiGER has the smallest1 ciphertext and public key size among
the LWE (include variants) algorithms that round2 of the NIST competition.
That is a natural result since we chose a small coefficient q = 256, generated
the public key RLWR, and compressed the ciphertext that made by RLWE.

1 Evaluating the IND-CCA secure scheme with security level 5

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 5

• Easily migration : Our goal in designing PQC-KEM is to replace key ex-
change algorithms in security protocols such as (D)TLS, IKE, SSH, IPSEC,
and DNSSEC. We claim that if the public key or ciphertext size is larger
than 1,244 bytes, migration to existing security protocols may be restricted.
We strongly agree with the Round5 team’s insight [9]. In other words, Eth-
ernet MTU is commonly 1,500 Bytes, but the payload, excluding the header
size, is 1,364 bytes (1,364 Bytes payload also must include important infor-
mation, such as cookies, that can be used to determine whether or not a
DoS attack 12-56 bytes). After all, the bandwidth we can send ciphertext
or public key is about 1,300 bytes. We explored more stringent payload size
constraints in IKEv2, a security protocol required for key exchange. IKEv2
(RFC 7296), a security protocol with strict constraints on payload size in
the initial exchange for secret key sharing, implementations must be able to
send, receive, and process IKE messages that are up to 1,280 bytes. And the
first exchange message, IKE-SA-INIT, cannot be fragmented (RFC 7383).
So it is necessary to transmit the ciphertext or public key for shared key
generation in a payload of about 1,244 bytes, excluding the header. So, mi-
gration is much more advantageous if the public key and ciphertext size are
smaller than 1,244 bytes. To our knowledge, TiGER is the unique IND-CCA
KEM with a ciphertext and public key size smaller than 1,244 bytes at the
AES256 security level.

• High performance : TiGER samples the secret s and the noise e from a
sparse ternary uniform distribution, making polynomial multiplication sim-
ple and efficient. Furthermore, since all moduli are a power of 2, we do not
require explicit modular reduction.

• Friendly for SIMD : TiGER is friendly for SIMD, such as AVX2 and
NEON, due to the modulus q=256 (8 bits). For example, C intrinsic data
types m256i can be stored in a 32-dimensional 8-bit integer so that only 16
m256i data types can express TiGER parameters.

1.2.2 Limitations

• Side-channel analysis attack surface is larger than Non-ECC. However, we
believe that side-channel attacks will be solved with time and the wisdom of
crowds(as in the case of RSA and ECC). The XEf resists timing attacks[32].
Some attacks assume more powerful attackers, but we firmly believe that
the respected cryptography community will solve them.

• Although RLWE and RLWR have proven hardness and have been studied for
longer than MLWE(R), their security is questioned because they are struc-
tured lattices. However, there are no known attacks in RLWE and RLWR,
and RLWE is well-studied because of the homomorphic encryption, so there
is no doubt about it.

6 PJPCK22

2 Preliminaries

2.1 Public Key Encryption

A public key encryption (PKE) scheme is a cryptographic system that uses a pair
of a public key and a corresponding private key. The security of PKE depends on
maintaining the confidentiality of the private key. The public key can be publicly
distributed, and anyone can encrypt using the public key that only the user who
has the private key can decrypt it. The following is the syntax of PKE.

Definition 1 (PKE). A PKE scheme consist of three algorithms KeyGen,
Encryption, Decryption which are defined as follows:

KeyGen(1λ): The key generation algorithm takes as input a security parameter
1λ. It outputs a public key pk and a private key sk.

Encryption(pk, M): The encryption algorithm takes as input the public key
pk and a message M ∈M. It outputs a ciphertext c.

Decryption(sk, c): The decryption algorithm takes as input the private key
sk and the ciphertext c. It outputs the message M or ⊥.

The correctness property of PKE is defined as follows: For all pk and sk gener-
ated by KeyGen(1λ), c generated by Encryption(pk, M) for M, it is required
that

• If sk is valid, then Decryption(sk, c) = M.

• If sk is invalid, then Decryption(sk, c) = ⊥.

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) is used to share the secret key of sym-
metric key encryption systems. The sender generates a ciphertext for sharing
the secret key and sends it to the receiver. The receiver decapsulates the cipher-
text and generates a secret key to be used for symmetric key encryption. The
following is the syntax of KEM.

Definition 2 (KEM). A KEM scheme consist of three algorithms KeyGen,
Encapsulation, Decapsulation which are defined as follows:

KeyGen(1λ): The key generation algorithm takes as input a security parameter
1λ. It outputs a public key pk and a private key sk.

Encapsulation(pk): The encapsulation algorithm takes as input the public key
pk. It outputs a ciphertext c and a shared key K.

Decapsulation(sk, c): The decapsulaiton algorithm takes as input the private
key sk and the ciphertext c. It outputs the shared key K or ⊥.

The correctness property of KEM is defined as follows: For all pk and sk gener-
ated by KeyGen(1λ), c and K generated by Encapsulation(pk), it is required
that

• If sk is valid, then Decapsulation(sk, c) = K̂ such that K = K̂.

• If sk is invalid, then Decapsulation(sk, c) = K̂ or ⊥ such that K ̸= K̂.

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 7

2.3 Related Works

Lattice-based Public-Key Encryption. Due to the threat of quantum com-
puters to the classical cryptography such as RSA or Diffie-Hellman, lattice-based
cryptography is attracting attention as one of various post-quantum cryptogra-
phy. The first lattice-based cryptographic construction was introduced by M.
Ajtai [1]. And, the first lattice-based public key encryption (PKE) that called
NTRU scheme is proposed by J. Hoffstein et al. [17]. The security of thier
PKE scheme was not proven under worst-case hardness assumptions. In 2005,
O. Regev [31] introduced the first lattice-based PKE scheme with the Learn-
ing With Errors (LWE) problem. The LWE problem is as difficult to solve as
the worst-case lattice problems. Since then, a variety of lattice problems such
as Learning With Rounding (LWR), Ring-LWE (RLWE), Ring-LWR (RLWR),
etc. have been proposed [24,30,25,10], and these problems have been widely used
to design public key cryptography. Also, after the process of standardizing post-
quantum cryptography (PQC), many other lattice-based PKE schemes such as
KYBER [8], NewHope [7], LAC [23], Round5 [9], Saber [15], and RLizard [22]
assuming the hardness of lattice problems have been proposed.

CCA-secure KEM. Chosen-ciphertext attack (CCA) is a security model that
allows an adversary to obtain the plaintext corresponding to the chosen cipher-
text. Because the process of establishing a session key in communications is
similar to accessing a decryption oracle by an adversary. It is very important
to design the key encapsulation mechanism (KEM) considering the chosen-
cipertext attack. Fujisaki and Okamoto [16] introduced a generic transforma-
tion method that can drive the chosen-cipertext secure KEM scheme from the
chosen-plaintext secure PKE scheme. And, this method has been widely used to
design many cryptographic algorithms. Recently, the Fujisaki-Okamoto transfor-
mation method in consideration of a quantum computing environment has been
proposed [34,19,18]. Jiang et al. [19] presented Fujisaki-Okamoto transformation
method that was proven tight security reductions in the quantum random oracle
model.

3 Specification

3.1 Notation

In this subsection, we introduce some notations used in this document.
Let Z be the ring of rational integers. We define for an x ∈ R the round-
ing function ⌊x⌉, where ⌊x⌉ means the nearest integer to the x. We denote
Rq = Zq[X]/(Xn + 1) which means the ring of integer polynomial modulo
(Xn + 1), where each coefficient is reduced modulo q.
In this paper, n is a positive integer expressed as a power of two, which means
the dimension of RLWE samples. q and p mean modulus for RLWE and RLWR,
respectively. We also use the modulus ki, where i = 1, 2, for ciphertext compres-
sion. We use p, q, k1, and k2 which are all the power of 2.

8 PJPCK22

Bold lower-case letters represent polynomials with coefficients in Rq. Multipli-
cation in Rq is represented by ∗. ⌊a⌉ is the rounding to the nearest integer
for each coefficient in the polynomial a. x ∥ y is the concatenation of x and
y. HWTn (h, Seed) is the uniform distribution over the subset of {−1, 0, 1}n
whose elements contain n − h number of zeros, and is generated using Seed.
SHAKE256(m, len) is a hash function that receives m and outputs a byte-string
of the length len. eccENC and eccDEC are functions for encoding and decoding
using the error correction codes.

3.2 Specification of TiGER.CPAPKE

Algorithm 1 IND-CPA.KeyGen

Input: The set of public parameters
Output: Public key pk = (Seeda ∥ b), Private Key sk = (s)

1: Seeda
$←− {0, 1}256

2: Seeds
$←− {0, 1}256

3: a← SHAKE256(Seeda, n/8)
4: s← HWTn(hs, Seeds)
5: b← ⌊(p/q) · a ∗ s⌉
6: pk ← (Seeda ∥ b) and sk ← s
7: return pk, sk

Algorithm 2 IND-CPA.Encryption

Input: pk, Message M ∈ {0, 1}d ; Coin w
$←− {0, 1}256

Output: Ciphertext c = (c1 ∥ c2)
1: r← HWTn(hr, w)
2: Seede1 ← (w +Nonce)
3: Seede2 ← (w +Nonce+ 1)
4: e1 ← HWTn(he, Seede1) and e2 ← HWTn(he, Seede2)
5: Seeda,b← Parsing(pk)
6: a← SHAKE256(Seeda, n/8)
7: c1 ← ⌊(k1/q) · (a ∗ r+ e1)⌉
8: c2 ← ⌊(k2/q) · ((q/2)· eccENC(M) + ((q/p) · b) ∗ r+ e2)⌉
9: c← (c1 ∥ c2)
10: return c

Algorithm 3 IND-CPA.Decryption

Input: sk, Ciphertext c = (c1 ∥ c2)
Output: Message M̂
1: c1, c2 ← Parsing(c) and s← sk
2: M̂′ ← ⌊(2/q) · ((q/k2) · c2 − ((q/k1) · c1) ∗ s)⌉
3: return M̂← eccDEC(M̂′)

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 9

3.3 Specification of TiGER.CCAKEM

We design IND-CCA KEM using the transformation technique by Jiang et
al. [19]. We use a hash function H : {0, 1}∗ → {0, 1}256, and a hash function
G : {0, 1}∗ → {0, 1}∗ for Jiang’s transformation technique.

Algorithm 4 IND-CCA-KEM.KeyGen

Input: The set of public parameters
Output: Public Key pk = (Seeda ∥ b), Private Key sk = (skcpa ∥ u)
1: pk, skcpa := IND-CPA.KeyGen(parameters)

2: u
$←− R2

3: return pk, sk ← (skcpa ∥ u)

Algorithm 5 IND-CCA-KEM.Encapsulation

Input: pk
Output: Ciphertext c = (c1 ∥ c2), Shared Key K

1: δ
$←− {0, 1}d

2: c := IND-CPA.Encryption(pk, δ ; H(δ,H(pk)))
3: K← G(H(c), δ)
4: return c,K

Algorithm 6 IND-CCA-KEM.Decapsulation

Input: pk, sk, Ciphertext c
Output: Shared Key K
1: s,u← Parsing(sk)
2: δ̂ := IND-CPA.Decryption(s, c)
3: ĉ := IND-CPA.Encryption(pk, δ̂ ; H(δ̂, H(pk)))
4: if c = ĉ then K← G(H(c), δ̂) else K← G(H(c),u)
5: return K

3.4 Parameter sets

We construct a TiGER128 that satisfies security level 1 (AES128), a TiGER192
that satisfies security level 3 (AES192) and TiGER256 that satisfies security level
5 (AES256) as required by the NIST standardization process. Table 1 shows the
detailed parameters of each security level and the bandwidth according to each
security level is summarized in Table 2.

n is the dimension of the lattice, q is the modulus of RLWE, p is the modulus
of RLWR, k1 and k2 are the modulus used for ciphertext compression, h is the
hamming weight of the secret key and the ephemeral secret used to encryption.
he1 and he2 are the hamming weight of the encryption. d is the length of the
message, which is related to the security level. f is the number of error bits fixed
by error correcting code. Bandwidth is a sum of ciphertext and public key size.

10 PJPCK22

Table 1: The detail parameters for each security level
parameters security level n q p k1 k2 hs hr he d f

TiGER128 AES128 512 256 128 64 16 142 110 32 128 3

TiGER192 AES192 1024 256 128 64 4 132 132 32 256 5

TiGER256 AES256 1024 256 128 128 4 196 196 32 256 5

Table 2: Size of pk, sk, and ciphertext (bytes)
parameters Ciphertext Public key Secret key*

TiGER128 640 480 177

TiGER192 1,024 928 198

TiGER256 1,152 928 278
* skcpa can be encoded by storing only non-zero indexes. Thus, we adopted sk can be
compressed with encoding(skcpa), a flag of 1 or -1, and u (for IND-CCA KEM).

3.5 Correctness

The following shows the correctness of our PKE scheme. Let M̂ be an encoded
message from eccENC (M), whereM ∈M. Let ψ be a positive integer parameter
and s, r, e1, e2 are randomly chosen from a same distribution D. The value of
eb is :

eb = ((
q

p
) · ⌊(p

q
) · b⌉)− b,

for some eb ∈ Rψ. The value of ec1 is :

ec1 = ((
q

k1
) · ⌊(k1

q
) · c1⌉)− c1,

for some c1 ∈ Rψ. The value of ec2 is :

ec2 = ((
q

k2
) · ⌊(k2

q
) · c2⌉)− c2,

for some c2 ∈ Rψ. Then, the decryption process is as follows:

⌊(2
q
) ·

(
(
q

k2
) · c2 − ((

q

k1
) · c1) ∗ s

)
⌉

=⌊(2
q
) ·

(
(
q

k2
) · ⌊(k2

q
) · ((q

2
) · M̂+ ((

q

p
) · ⌊(p

q
) · a ∗ s⌉) ∗ r+ e2)⌉

− ((
q

k1
) · ⌊(k1

q
) · (a ∗ r+ e1)⌉) ∗ s

)
⌉

=⌊(2
q
) ·

(
((
q

2
) · M̂+ e′br+ e′2 + ec2)− (e′1s+ ec1s)

)
⌉

=M̂,

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 11

Let f = (e′br + e′2 + ec2) − (e′1s + ec1s), We have that the error rate is ϵ̂ =
1 − Pr[⌊−q/2⌉ < f < ⌊q/2⌉], since our PKE scheme uses D2 encode that en-
codes from one message bit to two coefficients. Using the decryption failure rate
estimator of M. Albrecht2, we obtain that the error rate of each message bit is
2−44.28. Our PKE scheme uses XE3 in security level 1 to correct 3-bit errors, we
have that

ϵ = 1−
(3∑
f=0

(
512

f

)
· ((2−44.28)f) · (1− 2−44.28)512−f

)
≈ 2−145.75.

Then, our PKE scheme is (1-ϵ)-correct with ϵ < 2−128, where security parameter
λ is 128. The following Table 3 shows the decryption failure rate of our PKE
scheme’s each parameters. Note that there is a hidden margin in our decryption
failure rate calculation. XEf accurately corrects errors of f -bits and can correct
errors more than f with a high probability. Experimentally XE5 corrects 99.4%
of random 6-bit errors and 97.0% of random 7-bit errors[32].

Table 3: Decryption failure rate
parameters Bit error rate Decryption failure rate f*

TiGER128 2−44.28 2−145.75 3

TiGER192 2−33.48 2−150.41 5

TiGER256 2−41.96 2−201.29 5
* Let f be the bit length to be corrected by using the XEf .

4 Performance analysis

4.1 Description of platform

We evaluate performance (CPU cycles) using each reference code, and the evalu-
ation environment is AMD Ryzen7 5700G @3.8GHz CPU, Ubuntu 22.04.1, GCC
11.3.0 with option −O3, and the value is the average for 10,000 iterations. Also,
our implementation is available to https://github.com/honggoonin/TIGER.git.

4.2 Performance of reference implementation

TiGER is 2.1-2.8 times faster than the Kyber reference implementation3 and 1.1-
1.6 times faster than the Smaug[12] reference implementation4, with an equiv-
alent security level. In particular, the higher the security strength, the larger
the difference in performance between the TiGER and Kyber, Smaug. Kyber

2 https://bitbucket.org/malb/lwe-decryption-failure.git
3 https://github.com/pq-crystals/kyber.git
4 https://github.com/kpqc-cryptocraft/KPQClean

https://github.com/honggoonin/TIGER.git

12 PJPCK22

supports algorithms with 128, 192, and 256 security. But, considering that only
256-bit security was adopted in CNSA(Commercial National Security Algorithm
Suite) 2.0 in NSA, a base applied in real environments, the performance of
TiGER256 is superior to the other two algorithms.

This result is an advantage of our scheme’s design by choosing q in bytes to
the power of 2 and sampling the secret from a sparse ternary uniform distribu-
tion. The performance overhead of XEf and D2 is not heavy.

In addition, a recent study showed the application of NTT through modulus
switching in the NTT unfriendly parameter where the modulus q is a power of
2, improving Saber by 25-61% and LAC by 2-4 times [14]. Studies like this will
have a positive impact on our schemes as well.

Table 4: Performance (CPU cycles)
Algorithm Key generate Encapsulation Decapsulation

TiGER128 69,374 51,284 49,407

TiGER192 80,036 82,509 78,499

TiGER256 86,657 102,557 98,151

Kyber512 91,936 119,371 148,105

Kyber768 154,260 183,846 221,243

Kyber1024 235,419 265,678 311,882

Smaug128 79,467 63,588 50,367

Smaug192 114,961 89,745 82,542

Smaug256 172,480 160,111 148,003

Keygen Encap Decap

0.5

1

1.5

2

2.5

3

3.5

1 1 1
1.15

1.24

1.02

1.33

2.33

3

P
er
fo
rm

an
ce

R
at
io

TiGER128 Smaug128 Kyber512

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 13

Keygen Encap Decap

0.5

1

1.5

2

2.5

3

1 1 1

1.44

1.09 1.05

1.93

2.23

2.82
P
er
fo
rm

an
ce

R
a
ti
o

TiGER192 Smaug192 Kyber768

Keygen Encap Decap

0.5

1

1.5

2

2.5

3

3.5

1 1 1

1.99

1.56 1.51

2.72
2.59

3.18

P
er
fo
rm

an
ce

R
at
io

TiGER256 Smaug256 Kyber1024

14 PJPCK22

5 Security

5.1 Security definition

The following is the formal definition of the IND-CPA security.

Definition 3 (IND-CPA). Let PKE = (KeyGen,Encrypt,Decrypt) be a
public-key encryption scheme. The security of PKE under chosen plaintext at-
tacks is defined in terms of the following experiment between a challenger C and
an adversary A:

ExpIND-CPA
PKE,A (λ)

1. (pk, sk)← KeyGen(1λ);

2. (M0,M1)← A;
3. C flips a random coin b ∈ {0, 1};
4. ct← Encrypt(PK,Mb);

5. b′ ← A;
If b = b′, return 1.

Otherwise, return 0.

The advantage of A is defined as AdvIND-CPA
PKE,A (λ) =

∣∣Pr[b = b′]− 1
2

∣∣ where
the probability is taken over all the randomness of the experiment. A PKE
scheme is secure in the security model under chosen plaintext attacks if for all
adversary A, the advantage of A in the above experiment is negligible in the
security parameter λ.

5.1.1 Security Assumption We define decisional Ring Learning With Er-
rors (RLWE) problem and decisional Ring Learning With Rounding (RLWR)
problem. Let Rq, Rp denote the rings Zq[x]/(g(x)), Zp[x]/(g(x)), where g(x) is
an irreducible polynomial of degree n.

Definition 4 (decisional RLWE). Let n, q be positive integers. Let Rq be
polynomial ring constructed by g(x), and let Ds be a distribution over Rq. A
decisional RLWE problem RLWEn,q(Ds) is to distinguish uniformly random
(a,u) ∈ Rq ×Rq and (a,b = a ∗ s+ e) ∈ Rq ×Rq, where a is uniform randomly
chosen polynomial, e is chosen from error distribution, and s is a secret poly-
nomial. Then, the advantage of an adversary A in solving the decisional RLWE
problem RLWEn,q(Ds) is defined as follows:

AdvRLWE
n,q (A) = |Pr[A(a,b) = 1]− Pr[A(a,u) = 1]|.

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 15

Definition 5 (decisional RLWR). Let n, q, p be positive integers such that
q > p. Let Rq, Rp be polynomial rings constructed by g(x), and let Ds be a dis-
tribution over Rq. A decisional RLWR problem RLWRn,q,p(Ds) is to distinguish
uniformly random (a,u) ∈ Rq × Rp and (a,b = ⌊(p/q) · (a ∗ s)⌉) ∈ Rq × Rp,
where a is uniform randomly chosen polynomial, and s is a secret polynomial.
Then. the advantage of an adversary A in solving the decisional RLWR problem
RLWRn,q,p(Ds) is defined as follows:

AdvRLWR
n,q,p (A) = |Pr[A(a,b) = 1]− Pr[A(a,u) = 1]|.

5.2 Formal Security

5.2.1 Security of IND-CPA PKE We prove that our PKE scheme is IND-
CPA secure under the RLWE assumption and the RLWR assumption.

Theorem 1 (IND-CPA PKE). The above PKE scheme is secure under cho-
sen plaintext attacks if the the RLWE assumption and the RLWR assumption
holds. That is, for any PPT adversary A, we have that AdvIND−CPA

PKE (A) ≤
AdvRLWE

n,q (B) +AdvRLWR
n,q,p (B).

Proof. The security proof consists of the sequence of hybrid games: The first
game will be the original security game and the last one will be a game such
that the adversary has no advantage. Let M̂ = eccENC (M). We define the
games as follows:

Game G0 : This game is the original security game. In this game, the public
key and the ciphertext are properly generated. D0 is described as follows:

D0 = {pk = (Seeda ∥ b = ⌊(p
q
) · a ∗ s⌉),

ct = (⌊(k1
q
) · (a ∗ r+ e1)⌉), ⌊(

k2
q
) · ((q

2
) · M̂b + ((

q

p
) · b) ∗ r+ e2)⌉}.

Game G1 : In the next game, b in the public key is replaced with uniformly
random polynomial in Rp.D1 is described as follows:

D1 = {pk = (Seeda ∥ b
$←− Rp),

ct = (⌊(k1
q
) · (a ∗ r+ e1)⌉), ⌊(

k2
q
) · ((q

2
) · M̂b + ((

q

p
) · b) ∗ r+ e2)⌉}.

Therefore, |Pr[S0] - Pr[S1]| ≤ AdvRLWR
n,q,p (B).

Game G2 : In the final game, a ∗ r+e1 and (q/p) ·b) ∗ r+e2 are replaced with

uniformly random polynomial in Rq. Let u
$←− Rq and v

$←− Rq. D2 is described

16 PJPCK22

as follows:

D2 = {pk = (Seeda ∥ b
$←− Rp),

ct = (⌊(k1
q
) · u⌉), ⌊(k2

q
) · ((q

2
) · M̂b + v)⌉}.

Therefore, |Pr[S1] - Pr[S2]| ≤ AdvRLWE
n,q (B).

It follows that

AdvIND−CPA
PKE (A) = |Pr[S0]− Pr[S2]| ≤ |Pr[S0]− Pr[S1]|+ |Pr[S1]− Pr[S2]|

≤ AdvRLWE
n,q (B) +AdvRLWR

n,q,p (B),

which concludes the proof of Theorem 1.

5.2.2 Security of IND-CCA KEM We prove that our KEM scheme is
IND-CCA secure under the public-key encryption in the quantum random oracle.
Using Theorems 1 of Jiang et al. [19], we get the Theorem 2 for the IND-CCA
security of our KEM in the quantum random oracle model.

Theorem 2 (IND-CCA KEM in QROM). We define a public key encryp-
tion scheme PKE = (KeyGen, Encrypt, Decrypt) with message space M and
which is (1-ϵ)-correct. For any IND-CCA quantum adversary A that makes at
most qD queries to the decryption oracle, at most qG queries to the random oracle
G and at most qH queries to the random oracle H, we have that

AdvIND−CCA
KEM (A) ≤ 2qH

1

M
+ 4qG

√
1− ϵ+ 2(qG + qH)

√
AdvIND−CPA

PKE (B).

5.3 Security strength categories

TiGER128, TiGER192, and TiGER256 achieve the security-levels 1, 3, and 5 sug-
gested by the NIST [3], respectively, and the expected security strength for each
parameter set is shown in Table 5. The expected security strength is based on
MATZOV [26] and was estimated by LATTICE-ESTIMATOR [5]. In addition, we
considered the combinatorial attack [27].

5.4 Cost of known attacks

We estimate the security strength of RLWR and RLWE, respectively, due to
the character of the TiGER scheme, which uses a combination of RLWR for key
generation and RLWE for encryption. The RLWR security strength estimate
is equivalent to the LWE, whose noise distribution is uniform over the integers
in the range [−q/2p, q/2p) [11]. Estimating the security strength of ciphertext
additionally considers deterministic noise added due to ciphertext compression
in RLWE. For example, if q is 28 and k1 compressing ciphertext c1 is 26, a

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 17

Table 5: Computational complexity of best attacks

Parameters

Estimated security strength(log2)

Core-SVP

(quantum)

Core-SVP

(classical)

MATZOV

(classical)

TiGER128
RLWR 119 129 147

RLWE 126 137 149

TiGER192
RLWR 219 231 246

RLWE 231 243 258

TiGER256
RLWR 245 261 277

RLWE 247 263 279

uniform distribution noise (c1e) in the integer range of at least [−1, 1] is added
(stdev = 0.82) . If noise e1 of RLWE generates HWT (1024, 168), the standard
deviation is 0.29, so the standard deviation of the final noise is e1 + c1e = 0.86.

We estimate the security strength based on two cost reduction models. First,
our estimates are based on the classical and the quantum Core-SVP hardness [7],
which is a very conservative underestimation of the real security. Core-SVP is
most commonly used in NIST competition, making it easy to compare algo-
rithms. It also allows for a conservative approach in a quantum environment.
The conservative estimation of classical Core-SVP is challenging to compare
with the number of gates. For example, Kyber512 claims that the classical se-
curity strength 2118 based on Core-SVP can be converted to a classical gate of
2151.5 [8], and LightSaber also claims that the computational complexity of 2118

is converted into 2144 [15]. On the other hand, MATZOV [26] reported that clas-
sical gates are stricter than their estimates, Kyber512 has a security strength of
2137.5 and LightSaber has a security strength of 2138.4, which does not satisfy
the security level. Although a script replicating MATZOV’s results has not been
released, Albrecht et al. implemented it in LATTICE-ESTIMATOR [5], estimating
the security strength as 2140 for Kyber512 and 2137.8 for LightSaber, supporting
MATZOV’s result. Therefore, we present classical cost with Albrecht et al.’s esti-
mator [5] that implements MATZOV, which is the state-of-arts security strength
estimation method.

As shown in Table 5, TiGER128, TiGER192, and TiGER256 exceed the classi-
cal security strengths of 2143, 2207, and 2272 suggested by NIST, respectively. In
addition, the classical Core-SVP estimate has a security strength margin of 211,
248, and 25 compared to Kyber, corresponding to each security level.

In a quantum environment, the impact of MAXDEPTH is a major factor
in estimating security strength. NIST has described a plausible value range for
MAXDEPTH from 240 logical gates to 264 logical gates [33]. Kyber claim that
for the core-SVP-hardness operation estimates to match the quantum gate cost
of breaking AES at the respective security levels, a quantum computer would
need to support a maximum depth of 270−80 [8]. The TiGER security strength
estimates in quantum Core-SVP are slightly insufficient considering the lower

18 PJPCK22

limit of the range of MAXDEPTH suggested by NIST, but it has a lot of margin
at the upper limit. Also, TiGER has 212, 253, and 213 higher than Kyber with
the same security level, respectively. Remark, we report the all security strength
estimated by the LATTICE-ESTIMATOR [5].

As our scheme is based on the RLWE(R) designed by sparse ternary dis-
tributions with Hamming weights, it is weak against the combinatorial attack
by May [27]. By May analyzed that time complexity is roughly S0.3, and the
memory requirement of this attack is roughly S0.25, where S is the space of the
secret key. We estimate the security using the Meet-LWE python code by the
Smaug team5 and show it in Table6.

Table 6: Security Estimation for Meet-LWE Attack
Algorithm Time Memory

TiGER128 151.1 130.5

TiGER192 231.0 196.9

TiGER256 298.5 258.1

6 Summary

The PQC-KEM design aims to replace cryptography in legacy security proto-
cols. It would be nice if PQC-KEM had better performance and bandwidth than
ECDH or DH for easy migration, but it seems impossible. Therefore, the max-
imum range of performance and bandwidth acceptable to the security protocol
should be carefully considered and determined as the threshold of the scheme
design. We decided the bandwidth threshold to be 1,244 bytes based on the
IKE-SA-INIT exchange in IKEv2 and the analysis of the Round5 Team[9].

In this paper, we propose TiGER that is an IND-CCA secure KEM based
on RLWE(R). We design schemes with ciphertext and public key sizes smaller
than 1,244 bytes each to simplify migration to secure protocols. More precisely,
TiGER256 with AES256 security level has 1,152 bytes of ciphertext and 928 bytes
of public key. A bandwidth smaller than the MTU is advantageous for immigra-
tion because it prevents fragmentation in security protocols. Small ciphertext
and public key size were achieved by choosing RLWR and RLWE as the base
hardness, compressing the ciphertext, and choosing a small modulus q = 256. It
is also 2.0-2.4 times faster than the reference implementation of Kyber, NIST’s
first standard KEM. It is the advantage of choosing a sparse ternary uniform
distribution. TiGER128, TiGER192, and TiGER256 satisfy security levels 1, 3,
and 5, respectively, based on MATZOV, Core-SVP, and Meet-LWE attack. The
high decoding failure rate of the TiGER design achieved a negligible decoding
failure rate by correcting errors using XEf and D2 encoding.

5 https://kpqc.cryptolab.co.kr/smaug

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 19

In the future, TiGER is expected to achieve good results in the KpqC com-
petition through additional study on the side-channel analysis, optimal imple-
mentation, and more efficient attacks.

20 PJPCK22

7 Change Log

2022.12.8. (v1.1)
The bit error rate values in Table 3 have been changed. In TiGER (v1.0 for

the Kpqc Competition Draft), We entered the Decryption Failure Rate (DFR)
without an error-correcting code. However, To obtain the final DFR (with error-
correcting code), First, The bit error rate is obtained from the DFR without
error-correcting code; Second, the bit error rate was used to calculate the final
DFR. The final result(DFR) has not changed, but we acknowledge our mistake.
We thank Hyeongmin.Choe, a researcher at Seoul National University, for help-
ful comments.

2023.2.16. (v2.0)
1. We changed Table 1 because it improved our scheme for D. J. Bernstein’s

invaluable comment about combinatorial lattice security on the Kpqc bulletin.
Table 1 is the parameter set for our scheme. Therefore, Table 2 to Table 5 also
change. But, TiGER still satisfied each security level, has negligible decryption
failed rate, and has tiny bandwidth and efficient performance.

2. To prevent multi-target attacks, we addH(pk) to the input coin for encryp-
tion in algorithm 5 and algorithm 6. Also, input H(c) instead of the ciphertext
c in an algorithm 6 for generating the shared key.

3. Slightly optimized the reference implementation. The first is a modifica-
tion for the constant-time implementation in step 4 of algorithm 6, a well-known
side-channel attack surface. In other words, the implementation that checks
whether c and ĉ are the same modified by referring to FrodoKEM [6]. The
second is to improve polynomial multiplication and the sparse ternary sampling
with hamming-weight, which have a relatively large overhead. The basic idea
of polynomial multiplication is to turn it into a simple operation that produces
2’s complement instead of multiplying by -1. The sparse ternary sampling with
hamming-weight followed the thesis [21]. It improved performance by 10-19%.

2023.7.16. (v2.1)
1. Resolved an issue whereby the sizes of the ciphertext and public key did

not align between our official specification document (v2.0, 2023.02.21.) and
the reference implementation. The problem arose due to a data type discrep-
ancy when storing the passphrase and public key in our reference implementa-
tion. We have uploaded a new reference implementation to the official website
https://github.com/honggoonin/TIGER.git as a solution.

2. The storage method for the sk index, as sketched in our official specifica-
tion document (v2.0), has been changed to the default setting. This change has
significantly reduced the size of the private key and simplified the decapsulation
operation. Moving forward, sk will only store the index where -1 and 1 are lo-
cated, along with the negstart variable, representing the point where the values
of -1 and 1 change.

3. During the 6th KPQC workshop (2023.07.14.), Hee-Seok Kim has several
side-channel analysis vulnerabilities. We mitigate it. Firstly, we eliminated the

https://github.com/honggoonin/TIGER.git

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 21

conditional statement from the HWT function and implemented it as a constant
time operation. Additionally, we addressed the vulnerability related to power
analysis caused by differences in the Hamming weight of the mask variable in
the D2 encoding process. The updated reference implementation has also been
uploaded to the official website.

4. The enhanced reference implementation was modified based on the KPQ-
Clean project6 by Hwa-jeong Seo. As a result, the code available on the official
website can be directly compared with other algorithms implemented in the
KPQClean project.

6 https://github.com/kpqc-cryptocraft/KPQClean

22 PJPCK22

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. pp. 99–108 (1996)

2. Akleylek, S., Alkım, E., Tok, Z.Y.: Sparse polynomial multiplication for lattice-
based cryptography with small complexity. The Journal of Supercomputing 72(2),
438–450 (2016)

3. Alagic, G., Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu,
Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status report on the first round of
the NIST post-quantum cryptography standardization process. US Department of
Commerce, National Institute of Standards and Technology (2019)

4. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,
Miller, C., Moody, D., Peralta, R., et al.: Status report on the third round of the
nist post-quantum cryptography standardization process: Nistir 8413. NIST (2022)

5. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

6. Alkim, E., Bos, J., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Nikolaenko, V.,
Peikert, C., Raghunathan, A., Stebila, D., et al.: Frodokem: Learning with errors
key encapsulation (2019). URL: https://csrc. nist. gov/projects/post-quantum-
cryptography/round-2-submissions. Citations in this document 1(1.3), 1–3

7. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key ex-
change—a new hope. In: 25th {USENIX} Security Symposium ({USENIX} Se-
curity 16). pp. 327–343 (2016)

8. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber algorithm specifications
and supporting documentation. NIST PQC Round 3(4), 1–43 (2022)

9. Baan, H., Bhattacharya, S., Fluhrer, S.R., Garcia-Morchon, O., Laarhoven, T.,
Rietman, R., Saarinen, M.J.O., Tolhuizen, L., Zhang, Z.: Round5: Compact and
fast post-quantum public-key encryption. IACR Cryptology ePrint Archive 2019,
90 (2019)

10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 719–737. Springer (2012)

11. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Theory of Cryptography Confer-
ence. pp. 209–224. Springer (2016)

12. Cheon, J.H., Choe, H., Hong, D., Yi, M.: Smaug: Pushing lattice-based key encap-
sulation mechanisms to the limits. Cryptology ePrint Archive (2023)

13. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! practical post-
quantum public-key encryption from lwe and lwr. Cryptology ePrint Archive, Re-
port 2016/1126 (2016), https://eprint.iacr.org/2016/1126

14. Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J., Yang, B.Y.:
Ntt multiplication for ntt-unfriendly rings: New speed records for saber and ntru
on cortex-m4 and avx2. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems pp. 159–188 (2021)

15. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-lwr based
key exchange, cpa-secure encryption and cca-secure kem. In: International Confer-
ence on Cryptology in Africa. pp. 282–305. Springer (2018)

16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual international cryptology conference. pp. 537–554.
Springer (1999)

https://eprint.iacr.org/2016/1126

TiGER: Tiny bandwidth KEM for easy miGration based on RLWE(R). 23

17. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryp-
tosystem. In: International algorithmic number theory symposium. pp. 267–288.
Springer (1998)

18. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Theory of Cryptography Conference. pp. 341–371. Springer
(2017)

19. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Ind-cca-secure key encapsulation
mechanism in the quantum random oracle model, revisited. In: Annual Interna-
tional Cryptology Conference. pp. 96–125. Springer (2018)

20. Jung, C.G., Lee, J., Ju, Y., Kwon, Y.B., Kim, S.W., Paek, Y.: Lizarmong: Excellent
key encapsulation mechanism based on rlwe and rlwr. In: International Conference
on Information Security and Cryptology. pp. 208–224. Springer (2019)

21. Kwon, Y.B.: Optimized implementation of lizarmong using avx2. Master’s Thesis
of Hansung University Graduate School in Rep.Korea pp. 00–00 (2020)

22. Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key encap-
sulation mechanism for iot devices. IEEE Access 7, 2080–2091 (2018)

23. Lu, X., Liu, Y., Zhang, Z., Jia, D., Xue, H., He, J., Li, B., Wang, K., Liu, Z., Yang,
H.: Lac: Practical ring-lwe based public-key encryption with byte-level modulus.
IACR Cryptology ePrint Archive 2018, 1009 (2018)

24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual international conference on the theory and applications of
cryptographic techniques. pp. 1–23. Springer (2010)

25. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography. In:
Annual international conference on the theory and applications of cryptographic
techniques. pp. 35–54. Springer (2013)

26. MATZOV: Report on the Security of LWE: Improved Dual Lattice Attack (Apr
2022). https://doi.org/10.5281/zenodo.6493704, https://doi.org/10.5281/

zenodo.6493704

27. May, A.: How to meet ternary lwe keys. Cryptology ePrint Archive, Paper 2021/216
(2021), https://eprint.iacr.org/2021/216, https://eprint.iacr.org/2021/

216

28. Park, S.H., Kim, S., Lee, D.H., Park, J.H.: Improved ring lwr-based key encap-
sulation mechanism using cyclotomic trinomials. IEEE Access 8, 112585–112597
(2020)

29. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-lwe
for any ring and modulus. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing. pp. 461–473. ACM (2017)

30. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-lwe
for any ring and modulus. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing. pp. 461–473 (2017)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

32. Saarinen, M.J.O.: Hila5: On reliability, reconciliation, and error correction for ring-
lwe encryption. Cryptology ePrint Archive, Report 2017/424 (2017), https://

eprint.iacr.org/2017/424

33. of Standards, N.I., Technology: Submission requirements and evaluation criteria
for the post-quantum cryptography standardization process (2016)

34. Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto and oaep
transforms. In: Theory of Cryptography Conference. pp. 192–216. Springer (2016)

https://doi.org/10.5281/zenodo.6493704
https://doi.org/10.5281/zenodo.6493704
https://doi.org/10.5281/zenodo.6493704
https://doi.org/10.5281/zenodo.6493704
https://eprint.iacr.org/2021/216
https://eprint.iacr.org/2021/216
https://eprint.iacr.org/2021/216
https://eprint.iacr.org/2017/424
https://eprint.iacr.org/2017/424

	TiGER: Tiny bandwidth key encapsulation mechanism for easy miGration based on RLWE(R).

