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Abstract. A Universal Circuit (UC) is a Boolean circuit of size Θ(n logn) that can simulate any
Boolean function up to a certain size n. Valiant (STOC’76) provided the first two UC constructions
of asymptotic sizes ∼ 5n logn and ∼ 4.75n logn, and today’s most efficient construction of Liu
et al. (CRYPTO’21) has size ∼ 3n logn. Evaluating a public UC with a secure Multi-Party
Computation (MPC) protocol allows efficient Private Function Evaluation (PFE), where a private
function is evaluated on private data.
Previously, most UC constructions have only been developed for circuits consisting of 2-input gates.
In this work, we generalize UCs to simulate circuits consisting of (ρ → ω)-Lookup Tables (LUTs)
that map ρ input bits to ω output bits. Our LUT-based UC (LUC) construction has an asymptotic
size of 1.5ρωn logωn and improves the size of the UC over the best previous UC construction of
Liu et al. (CRYPTO’21) by factors 1.12× - 2.18× for common functions. Our results show that the
greatest size improvement is achieved for ρ = 3 inputs, and it decreases for ρ > 3.
Furthermore, we introduce Varying Universal Circuits (VUCs), which reduce circuit size at the
expense of leaking the number of inputs ρ and outputs ω of each LUT. Our benchmarks demonstrate
that VUCs can improve over the size of the LUC construction by a factor of up to 1.45×.
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1 Introduction

A Universal Circuit (UC) U is a Boolean circuit that can simulate any Boolean circuit C consisting of
ni inputs, ng gates, and no outputs. The UC U takes, in addition to the function’s input x, a set of
programming bits pC defining the circuit C that U simulates, i.e., the UC computes U(x, pC) = C(x).

Valiant [52] proposed the first two UC constructions known as 2-way and 4-way split UCs with
asymptotically optimal size Θ(n log n) and depth O(n), where n = ni+ng+no is the size of the simulated
circuit C. Cook and Hover [13] designed a depth-optimized UC construction for simulating Boolean
circuits of size n and depth d that has size O(n3d/n) and depth O(d).Kolesnikov and Schneider [35]
gave the first practical implementation of a UC of non-optimal asymptotic size O(n log2 n). A line of
work [32,37,23,7,58] followed with the common goal to minimize the size of Valiant’s UC construction.
Recently, Liu et al. [38] provided today’s most efficient UC construction of size ∼ 3n log n.

All of these works designed UCs to simulate Boolean gates with 2 inputs and 1 output. However,
Valiant’s UC construction can be generalized to simulate circuits with (ρ → 1)-LUT, namely Lookup-
Tables with ρ inputs x1, . . . , xρ and one output y and can compute arbitrary functionalities f as y =
f(x1, . . . , xρ) [49].

In this work, we propose LUT-based UCs (LUC) that evaluate circuits composed of (ρ → ω)-LUTs
having ω output bits y1, . . . , yω and are programmed to compute yi = f i(x1, . . . , xρ) for 1 ≤ i ≤ ω
and an arbitrary functionality f i. In addition, we introduce Varying UCs (VUCs) that can simulate
circuits consisting of (ρ → ω)-LUTs with varying numbers of inputs ρ and outputs ω, thereby leaking the
number of in- and outputs of each LUT. VUCs have various applications (summarized in §1.1) like logic
locking [56], which enables the designer to provide the foundry of a chip with a ”locked” version of the
original circuit. Once the locked circuit on the chip is fabricated, authorized users can regain access to
the original functionality by using a secret key.

On top of our new UC constructions, we provide implementations of our constructions and analyze the
size optimization of simulating LUT-based circuits with LUCs and VUCs compared to using traditional
Boolean circuit-based UCs.
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1.1 Applications of (Varying) Universal Circuits

The most prominent application for UCs is Private Function Evaluation (PFE) [6], which can be seen
as a generalization of Secure Multi-Party Computation (MPC) [55,21]. In MPC, a set of k parties P1, . . . ,Pk

jointly compute a publicly known circuit C on their respective private inputs x1, . . . , xk and obtain nothing
but the result C(x1, . . . , xk). In PFE, the circuit C that shall be computed is private information as well,
i.e., party P1 with circuit input C and parties P2≤i≤k with data inputs x2, . . . , xk run a protocol that
yields nothing but C(x2, . . . , xk) and parties P2≤i≤k do not learn any information about the circuit C.

PFE can be implemented via MPC by means of UCs as follows: The parties P1, . . . ,Pk run an MPC
protocol that evaluates the universal circuit U as public circuit on the secret inputs pC of party P1 and
x2, . . . , xk of parties P2, . . . ,Pk, resulting in U(pC , x2, ..., xk) = C(x2, ..., xk). In summary, PFE based
on UCs is a very generic approach. It can simply be plugged into arbitrary MPC frameworks without
any modification to the underlying MPC protocol, resulting in the same security level (semi-honest,
covert, or malicious) as the underlying MPC framework. In addition, PFE is completely compatible with
the features included in MPC like secure outsourcing [28] and non-interactive computation [37]. PFE is
applicable for situations where customers aim to use a service from companies who want to hide how
they perform the computation and do not learn the customer’s data.1

As a trade-off between privacy and efficiency, a variant of PFE called Semi-Private Function
Evaluation (SPFE) was proposed [22,44]. Unlike PFE, SPFE does not hide the entire function, but
leaks the topology of certain sub-functions. SPFE can be applied in PFE scenarios where specific function
components are known publicly. This approach is particularly useful in cases where certain function
details have already been disclosed, often for promotional purposes. An example of this is car insurance
companies offering discounts to experienced drivers.

Beyond (S)PFE, UCs have many applications like hiding policy circuits in attribute-based encryp-
tion [8,19], multi-hop homomorphic encryption [20], verifiable computation [17], program obfuscation [59],
and hardware logic locking [41].

In this work, we introduce Varying Private Function Evaluation (VPFE) whose privacy-
guarantee lies inbetween PFE and SPFE. Similar to PFE, our Varying UCs (VUCs) for VPFE hide the
topology and functionality of the LUTs in the circuit, but leak their number of in- and outputs. This has
applications in logic obfuscation techniques called logic locking, as demonstrated in prior studies such as
LUT-Lock [27] and eFPGA [11]. These techniques proposed using LUTs to achieve secure logic locking on
Application-Specific Integrated Circuit (ASIC) designs by removing critical elements and mapping them
to custom LUTs. As shown in [11, Fig. 3], the adversary can only determine the number of inputs and
outputs of a LUT, while the LUT’s configuration bits are hidden, which is exactly our setting for VPFE
using VUCs. Without this knowledge, there is no adversarial information leakage [11, Tab. 5]. Therefore,
our VUCs can be used for secure logic locking while additionally hiding the topology of the circuit.

1.2 Outline and Our Contributions

So far, UC-based PFE research considered synthesis of the input circuit (to generate a small number of
2-input gates) and construction of the UC (to minimize its size) as independent tasks. In our work, we
show that using multi-input/output LUTs these two tasks can be combined to yield a better size. After
giving the preliminaries in §2 and summarizing the two UC constructions of Valiant [52] (§3.2) and Liu et
al. [38] (§3.3), we contribute the following:
LUT-based UC (LUC) Construction (§4). Valiant’s UC construction can be generalized to support
the evaluation of (ρ → 1)-LUT-based circuits by merging for the ρ inputs ρ instances of its basic building
block called edge-universal graph [49, App. A]. This leads to a total size of ∼ 1.5ρn log n using Liu et
al.’s [38] UC construction. In our work, we extend this into a novel UC construction to simulate for the
first time functions composed of (ρ → ω)-LUTs with ρ inputs and ω outputs. Our construction is general,
can be applied to all UC constructions based on Valiant’s framework [52] and improvements by Liu et
al. [38], and fits into the definition of UCs (cf. Def. 1 on page 4).
Size Improvements of LUCs for Basic Primitives (§4.3). Tab. 1 shows the history of improvements
in UC sizes. Taking (V)PFE as our greatest motivation for improving UC sizes, we study three basic
building blocks that can be used to construct more complex functionalities for common PFE applications:

1 UC-based PFE, unlike PFE based on Fully Homomorphic Encryption (FHE) [20,33], relies primarily on
symmetric encryption and involves far less computation.
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Table 1: Asymptotic sizes of various UC constructions and improvements over previous works. Previous
UCs were for 2-input gates, whereas our LUC construction is generalized to ρ-input LUTs.

Universal Circuit Asymptotic Size Improvement over previous work Fanin

Valiant’s 2-way [52] 5n logn - 2
Valiant’s 4-way [52] 4.75n logn 1.05× 2
Zhao et al.’s 4-way [58] 4.5n logn 1.06× 2
Liu et al.’s 2-way [38] 3n logn 1.5× 2

Our LUC 1.5ρn logn 1.12− 2.18× ρ

We compare the asymptotic circuit sizes when evaluating our new LUC construction with UCs for
equivalent binary gates (cf. Tab. 2) and achieve size improvements of factor 1.67× for full adders, 2.67×
for comparisons, and 2× for multiplexers.
Varying UC (VUC) Construction (§5). In several applications (cf. §1.1, §5.2) only the programming
of the LUTs needs to be hidden, but not their dimensions, i.e., we can leak their number of in- and
outputs. For this, we introduce Varying Universal Circuits (VUC) which are circuits that can simulate
other LUT-based circuits while hiding their topology and the LUT programmings, but leak the LUTs’
number of in- and outputs. We give the first VUC construction that eliminates the leading ρ factor of our
LUC construction (cf. Tab. 1), while still maintaining its general design, i.e., we can transform all UC
constructions to our new VUC construction.
Implementation (§6.1). We provide the first implementation of today’s most efficient UC construction
of Liu et al. [38] which is of independent interest and our LUC and VUC constructions.2 Moreover,
we integrate these three UC implementations into the MPC framework ABY [14] for PFE. To create
LUT-based circuits, we used the hardware circuit synthesis tool Yosys-ABC [54,10] and Synopsis Design
Compiler [5] for LUT-Mapping. We optimize LUT-based PFE by combining LUTs with overlapping
inputs and multiple outputs. However, hardware synthesis tools do not by default support mapping to
multiple output LUTs. To address this, we post-process the single-output LUT circuits produced by the
synthesis tool to convert them to multi-output LUT circuits.
Evaluation (§6.3). We experimentally evaluate our LUC and VUC constructions for various LUT sizes,
and compare them with the previous best construction of Liu et al. [38]. The asymptotic UC sizes and
improvements over previous works are given in Tab. 4 for LUC and in Tab. 6 for VUC. Our new LUC
constructions outperform the state-of-the-art UC [38] in terms of circuit sizes by up to 2.18×.

1.3 Related Work

Universal Circuits (UCs). Valiant [52] defined universal circuits, showed that they have a lower bound
of size Ω(n log n), and proposed two asymptotically size-optimal constructions using a 2-way or a 4-way
recursive structure of sizes ∼ 5n log n and ∼ 4.75n log n, respectively. Hence, relevant research challenges
left are reducing the prefactor and the concrete UC sizes. Valiant’s constructions can be generalized to
simulate circuits composed of (ρ → 1)-LUTs as shown by Sadeghi and Schneider [49, App. A] which is
summarized in §4.1.

A modular UC construction of non-optimal size ∼ 1.5n log2 n+ 2.5n log n was proposed and imple-
mented by Kolesnikov and Schneider [35]. Their construction beats Valiant’s construction for small circuits
thanks to small prefactors. Motivated to provide more efficient PFE, Kiss and Schneider [32] implemented
Valiant’s 2-way split construction and proposed a more efficient hybrid construction combining the
2-way split construction with the modular construction of [35]. Lipmaa et al. [37] generalized Valiant’s
construction to a k-way split construction and proved that the optimal value for k is 3.147, i.e., k ∈ {3, 4}
when k is an integer. Günther et al. [23] modularized Valiant’s construction, implemented the more
efficient 4-way split construction, gave a generic edge-embedding algorithm for k-way split constructions,
and showed that the 3-way split construction with Valiant’s framework is less efficient than the 2-way
split construction. Zhao et al. [58] improved Valiant’s 4-way split construction to size ∼ 4.5n log n, which
is today’s most efficient asymptotic size for UCs in Valiant’s framework. Alhassan et al. [7] proposed and
implemented a scalable hybrid UC construction combining Valiant’s 2-way and 4-way split constructions

2 Our code is published under the MIT license at: https://encrypto.de/code/LUC.

3

https://encrypto.de/code/LUC


with Zhao et al.’s improvements [58]. Most recently, Liu et al. [38] reduced redundancies in Valiant’s
framework and provided today’s most efficient UC construction of size ∼ 3n log n based on Valiant’s
2-way split construction, showed that k = 2-way split is the most efficient in their new UC framework, and
already almost reached their computed lower bound of ∼ 2.95n log n. We provide the first implementation
of their construction and use it as a basis for our UC constructions for LUT-based circuits.
Private Function Evaluation (PFE). Katz and Malka [31] designed a constant-round two-party PFE
protocol with linear communication complexity based on homomorphic public-key encryption. Holz et
al. [25] optimized and implemented the protocol of [31], demonstrating its superiority over the hybrid
UC implementation of Alhassan et al. [7] already for circuits with a few thousand gates. Liu et al. [39]
provide a constant-round actively secure two-party PFE protocol with linear complexity. However, all
these protocols are not generic and hence not directly compatible with arbitrary MPC frameworks, which
makes them less flexible. For instance, these protocols cannot easily be extended to multiple parties. Ji
et al. [26] demonstrated the evaluation of private RAM programs using four servers, building the first
PFE of non-Boolean and non-arithmetic functions. In fact, recent PFE applications relied on so-called
Semi-Private Function Evaluation (SPFE) where not necessarily the whole function needs to be hidden
from the other parties, but selected parts of the function can be leaked. The first SPFE construction
and implementation was proposed by Paus et al. [44] who provided several building blocks that can
be programmed with one function out of a class of functions (e.g., ADD/SUB whose circuits have the
same topology). Recently, Günther et al. [22] built an SPFE framework that allows to split the function
into public and private components, embed the private components into UCs, and merge them into
one Boolean circuit that is evaluated via MPC. They demonstrated their framework on computing car
insurance tariffs and observed that some information of the function is public, e.g., that experienced
drivers usually get discounts.
MPC on LUTs. In the area of secure multi-party computation (MPC), prior work noticed that 2-
input/1-output gates can be extended into multi-input/multi-output gates to reduce the circuit evaluation
overhead [40,24,46,15,42]. In Yao’s Garbled Circuit (GC) setting, Fairplay [40] implemented MPC protocols
to evaluate gates with up to 3-input gates. The TASTY framework [24] implemented ρ-input garbled
gates using the garbled row reduction optimization [45]. Recently, [46] proposed an MPC protocol that
works on circuits with multi-input/multi-output gates instead of working on circuits with 2-input gates.
Another line of work in the secret-sharing setting aims to optimize the rounds and communication of the
online phase without using Yao’s GC protocol: [15] extended 2-input AND gates to the general N-input
case using LUTs. Recently, ABY2.0 [42] extended AND gates from the 2-input to the multi-input setting
with a constant online communication complexity at the cost of exponential offline communication in the
number of inputs. In addition, Syncirc [43] handles the circuit generation with multi-input gates by using
industry-grade hardware synthesis tools [54,10].

2 Preliminaries

We refer to the size of a circuit n as the sum of its number of inputs ni, gates ng, and outputs no:
n = ni + ng + no.

Definition 1 (Universal Circuit [52,7]). A Universal Circuit U for ni inputs, ng gates, and no outputs
is a Boolean circuit that can be programmed to compute any Boolean circuit C with ni inputs, ng gates,
and no outputs by defining programming bits pC such that U(x, pC) = C(x) for any input x ∈ {0, 1}ni .

2.1 Graph Theory

Let G = (V,E) be a directed graph and v ∈ V . The indegree (resp. outdegree) of v which is the number
of incoming (resp. outgoing) edges is denoted by deg+(v) (resp. deg−(v)). G has fanin (resp. fanout) ρ if
deg+(v) ≤ ρ (resp. deg−(v) ≤ ρ) for all v ∈ V . We denote by Γρ(n) all directed acyclic graphs with at most
n nodes and fanin/fanout ρ for ρ, n ∈ N. For U ⊂ V , G[U ] := {U, {e = (u, v) ∈ E : u, v ∈ U}} denotes
the subgraph induced by U . We omit the index G in the above definitions if G is clear from the context.
Let G = (V,E) ∈ Γρ(n). A topological order for G is a map ηG : V → {1, ..., |V |} such that ∀(u, v) ∈ E :
ηG(u) < ηG(v).
We represent Boolean circuits as directed acyclic graph G ∈ Γρ(n) for some ρ > 1. However, almost all
previous works [52,32,37,23,58,38] restricted the circuits, that are simulated via UCs, to fanin/fanout ρ = 2.

4



The reason for this restriction can be found in the structure of universal circuits according to Valiant’s [52]
and Liu et al.’s [38] constructions. On a high level, a universal circuit (UC) for simulating circuits C ∈ Γρ(n)
is composed of ρ so-called Edge-Universal Graphs (EUGs) each of size O(n log n), i.e., the total size of
the UC grows linearly with the maximum fanin/fanout ρ of the gates in the simulated circuit C.

Definition 2 (Edge-Embedding [52,37,7,38]). Let G = (V,E) and G′ = (P,E′) be directed graphs
with P ⊂ V and G′ acyclic. An edge-embedding from G′ into G is a map ψ : E′ → PG, where PG denotes
the set of all paths in G, with the following properties:

– ψ(e′) is a u-v-path (in G) for all e′ = (u, v) ∈ E′,
– ψ(e′) and ψ(ẽ′) are edge-disjoint paths for all e′, ẽ′ ∈ E′ with e′ ̸= ẽ′.

Definition 3 (Edge-Universal Graph [52,37,7,38]). A directed graph G = (V,E), denoted as Uρ(n)
with ordered pole set P := {p1, ..., pn} ⊂ V is called an Edge-Universal Graph for Γρ(n) if:

– G is acyclic,
– Every acyclic G′ = (P,E′) ∈ Γρ(n) that is order-preserving, i.e., ∀e = (pi, pj) ∈ E′ ⇒ i < j, can be
edge-embedded into G.

On a high level, the graph G′ = (P,E′) in Defs. 2 and 3 represents a Boolean function that is embedded
into the graph G = (V,E), which represents the UC, where P ⊂ V is the pole set of size |P | = n, which
represents the inputs, gates, and outputs of the function represented in G′. As an EUG requires that
every G′ ∈ Γρ(n) can be edge-embedded into G, the UC built by the EUG can compute any function
represented by a graph in the set Γρ(n).

EUGs for Γ2(n) graphs were constructed by merging two EUGs for Γ1(n) graphs (cf. Def. 4 and Fig. 1)
[52,32,37,23,58,7,38]. Thus, research focused on minimizing the size of general EUGs for Γ1(n) graphs as
these can be merged to EUGs for arbitrary Γρ(n) graphs by merging ρ instances of Γ1(n) EUGs (cf. Cor. 1).

p1

p2

p3

p4

(a) Γ2(4) graph

p1

p2

p3

p4

(b) U1(4)

p1

p2

p3

p4

(c) U1(4)

p1

p2

p3

p4

(d) merged U2(4)

p1

p2

X

p3

Y

p4

X

Y

(e) UC

Fig. 1: (a) shows the Γ2(4) graph with already partitioned edge sets E1 and E2, (b) and (c) show the EUGs
in which the edge sets E1 resp. E2 are embedded, (d) shows the merged EUG with all edges embedded,
(e) shows the resulting UC, where p1 is an input, and p2, p3, p4 are translated to universal gates.

Definition 4 (Merging of EUG). Let G = (V,E) and Ḡ = (V̄ , Ē) be two EUG for Γρ(n) and Γρ̄(n)

with the same pole order and V ∩ V̄ = P . Then Ĝ = (V ∪ V̄ , E ∪ Ē) is called the merging of G and Ḡ
with pole set P .

Proposition 1. The merging of a Γρ(n) and a Γρ̄(n) EUG is a Γρ+ρ̄(n) EUG.

We prove Prop. 1 in App. A.

Corollary 1 ([52, Corollary 2.2]). An EUG for Γρ(n) can be constructed by merging ρ EUGs for Γ1(n).
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x0

x1x0

p = 0

x1

x1x0

p = 1

(a) Y-switch

x1x0

x1x0

p = 0

x0x1

x1x0

p = 1

(b) X-switch

Fig. 2: Switching blocks with programming bit p (from [35]).

Proof. Let G = (V,E) be a Γ1(n) EUG with pole set P . Create ρ− 1 copies of G with the same pole set
and merge these graphs successively. Correctness follows directly by applying Prop. 1 ρ times. ⊓⊔

We call the UCs that are constructed according to Cor. 1 LUT-based UCs (LUCs) and this construction
was first mentioned in [49, App. A]. In §5, we introduce our so-called Varying UC (VUC) construction
that is constructed by two instances of Γ1(n) EUGs but still allows to edge-embed graphs with arbitrary
fanin ρ.

2.2 Building Universal Circuits from Edge-Universal Graphs

Boolean Circuits. A Boolean circuit is a directed acyclic graph whose nodes are Boolean inputs,
(binary) gates, and outputs, with directed edges representing the wires. A Boolean gate is a function
z : {0, 1}k → {0, 1} for k ∈ N. However, we can always divide a k-input gate into O(2k) binary gates using
Shannon’s expansion theorem [50]. Unfortunately, we cannot avoid an exponential blow-up of the number
of gates by this transformation [53, Theorem 2.1]. The two most prominent minimization methods for
Boolean circuits are due to Karnaugh [30] and Quine-McCluskey [47]. As already mentioned, the UC
constructions by Valiant [52] and Liu et al. [38] are designed to embed Γρ(n) graphs, thus we possibly
need to reduce the outdegree of the gates to ρ by using so-called copy gates which just copy their inputs
[52, Corollary 3.1].3

From Edge-Universal Graphs to Universal Circuits. The translation from an EUG G = (V,E)
into a UC is depicted in Fig. 1 and works as follows. First, the nodes of circuit C to be embedded in G
are considered as the poles P ⊂ V of the EUG. A pole p ∈ P is translated into an input or output wire,
if p corresponds to an input or output in C, or into a so-called Universal Gate, if p corresponds to a
gate in C. Universal gates take k inputs (k = 2 in the previous works [52,7,38]), 2k programming bits,
compute one output, and can be programmed to simulate any k input Boolean gate by specifying the
truth table with the programming bits. We can implement universal gates with a binary tree of 2k − 1
multiplexers (Y-switches) spanned over the 2k programming bits, where the correct programming bit
specified by the k inputs is forwarded to the output (more details in [7,38]).4

The remaining nodes in the set V \P are for connecting the routes between the poles. A node v ∈ V \P
is translated as follows:
– if v has two incoming edges and one outgoing edge, it is translated into a multiplexer/Y-switch (cf. Fig. 2a).
A multiplexer has two inputs x0 and x1 and a programming bit p and outputs one bit, namely xp. It is
implemented with 1 AND gate and 2 XOR gates [35].

– if v has two incoming edges and two outgoing edges, it is translated into an X-switch (cf. Fig. 2b). An
X-switch has two inputs x0 and x1, one programming bit p and outputs two bits, namely (xp, x1−p). It
is implemented with 1 AND gate and 3 XOR gates [35].

– if v has one incoming wire, it is replaced by a single wire that connects all of the outgoing edges.
The programming bits of the nodes are derived from the edge-embedding.

3 Note that a Universal Circuit can also compute circuits with less than the specified number of inputs, gates,
and outputs by using dummy values with no functionality.

4 In Yao’s garbled circuit protocol [55], the UC’s universal gates can be implemented as garbled tables when the
function holder takes over the garbling part.
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3 UC Constructions

In this section, we summarize the general guidelines for constructing edge-universal graphs (§3.1), present
the original idea of Valiant [52] (§3.2), and describe the state-of-the-art construction of Liu et al. [38] (§3.3).

3.1 General EUG constructions

The strategy for building UCs via EUGs is to construct Γ1(n) EUGs of smallest size, merging ρ instances
of these (cf. Cor. 1) to construct a Γρ(n) EUG (ρ = 2 for binary gates), and translating this EUG
into a UC. Valiant [52] proposed the first two designs for Γ1(n) EUGs, today known as 2-way and
4-way constructions, having asymptotic sizes of ∼ 2.5n log n and ∼ 2.375n log n.5Recently, Liu et al. [38]
extended Valiant’s framework, simplified the construction, and achieved an EUG based on the 2-way
approach of asymptotically optimal size of ∼ 1.5n log n, which almost reaches their computed lower bound
of ∼ 1.475n log n. The concrete construction principle of both frameworks is the same.

Let us assume we aim to construct a Γ1(n) EUG G = (V,E) for a circuit of size n with a k-way
construction and pole set P ⊂ V . First, we put k distinguished poles from the set P into a block
called superpole that has k inputs and k outputs. Within this superpole, we can route edge-disjointly
between its inputs and poles, and between its poles and outputs. In total, we have ⌈n/k⌉ superpoles built
by the poles set P . The k inputs and outputs of each superpole then can be used as poles for k instances
of a Γ1(⌈n/k⌉ − 1) nested EUG, which on a high level allows to find edge-disjoint paths between the
superpoles of G.6

More formally, a superpole shall be able to edge-embed any so-called augmented k-way block (similar
to an augmented DAG in [38]). An augmented k-way block is a map that defines the routes between the
inputs and poles of the superpole, and between poles and other poles and outputs.

Definition 5 (Augmented k-way Block). An augmented k-way block G = (V,E) for pole set P ,
superpole inputs I, and superpole outputs O is a directed graph such that

– V = P ∪ I ∪O, P ∩ I = P ∩O = ∅ and |I| = |O| = k,
– G[P ] := (P,EP ) has fanin/fanout 1,
– E = EP ∪ Eio with Eio satisfying

• (Soundness) Every e ∈ Eio satisfies either e = (in, p) or e = (p, out) for p ∈ P, in ∈ I, out ∈ O,
• (Completeness) For every source (resp. sink) p ∈ P , there exists at most one in ∈ I (resp. out ∈ O)
such that (in, p) ∈ Eio (resp. (p, out) ∈ Eio).

The set of all augmented k-way blocks for P, I,O is denoted by Bk(P, I,O).

Definition 6 (k-way Superpole). A k-way superpole SP (k) is a tuple SP (k) = (G = (V,E), P,P, I,O)
with pole set P ⊂ V , with following conditions:

– P = P ∪ I ∪ O with |I| = |O| = k and P ∩ I = P ∩ O = ∅,
– G can edge-embed every G′ ∈ Bk(P, I,O).

We denote the input recursion points I of a k-way superpole as {in1, in2, ..., ink} and the output
recursion points O as {out1, out2, ..., outk}. These nodes serve as the inputs and outputs to the superpole
and will be the poles of the next recursion, i.e., of the next nested EUG. We neither require the sets
I and O to be disjoint nor that the recursion points of different superpoles must be disjoint. In fact,
Valiant [52] merges the output recursion points of the i-th superpole with the input recursion points of
the (i+1)-th superpole. On a high level, a superpole in a nested EUG U1, i.e., an EUG that is derived as
a recursion from a larger EUG U , has k entry points to an input of k distinguished superpoles in U as
well as k exit points from an output of k distinguished superpoles.

3.2 Valiant’s EUG construction [52]

Definition 7 (Valiant EUG). A Valiant EUG G = (V,E) with pole set P ⊂ V and sub-graphs
G∗, G1, ..., Gk is created by Alg. 1 ( Valiant). We also use the notation Valiantk(n) for a Valiant EUG
with n poles and split parameter k.
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Algorithm 1: Valiant(P, k)

Input :Poles P := {p1, ..., pn}, split parameter k
Output :Γ1(n) EUG G = (V,E), pole set P , sub-graphs G∗, G1, ..., Gk

1 V ← ∅, E ← ∅, G∗ ← ∅
2 O0 ← create k dummy nodes
3 for i← 1 to ⌈n

k
⌉ do

4 Pi ← {pk(i−1)+1, ..., pki}
// Use Oi−1 as input recursion points to this superpole (cf. Fig. 3b)

5 SP (k)i = (Gi = (Vi, Ei), Pi,Pi, Ii,Oi)← Createsuperpole(Pi,Oi−1, k); G
∗ ← G∗ ∪ {Gi}

6 V ← V ∪ Vi, E ← E ∪ Ei

7 for i← 1 to k do
8 if n ≤ k then
9 Gi ← (∅, ..., ∅) // Recursion base

10 else
// Take the i-th output recursion point of each superpole (but the last) as the

poles for the next sub EUG

11 P i ← {O1[i],O2[i], ...,O⌈n
k
⌉−1[i]}

12 (Gi = (V i, Ei), ...)← Valiant(P i, k)

13 V ← V ∪ V i, E ← E ∪ Ei

14 return G = (V,E), P,G∗, G1, ..., Gk

SP (2)1

SP (2)2

SP (2)⌈n
k
⌉

...

EUG1(⌈nk ⌉ − 1)

...

EUG1(⌈nk ⌉ − 1)

...

(a) Valiant’s EUG1(n) construction.

pi

pi+1

out1 out2

in1 in2

(b) Valiant’s SP (2) construction.

Fig. 3: (a) shows Valiant’s 2-way split construction of EUG1(n) using two instances of EUG1(⌈n
k ⌉ − 1).

(b) shows the corresponding superpole SP (2) construction for the EUG.
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Valiant’s k-way EUG construction is built recursively as depicted in Fig. 3a. A Γ1(n) EUG is a chain
of ⌈n/k⌉ superpoles SP (k)1 = (G1 = (V1, E1), P1, P1, I1, O1), . . . , SP (k)⌈n/k⌉ = (G⌈n/k⌉ = (V⌈n/k⌉,
E⌈n/k⌉), P⌈n/k⌉, P⌈n/k⌉, I⌈n/k⌉, O⌈n/k⌉) (lines 3-6 in Alg. 1). Createsuperpole(P,O, k) creates
a superpole with poles P , input recursion points O, and split parameter k, e.g., Valiant’s k = 2-
way superpole SP (2) (Fig. 3b). The sets O1, . . . ,O⌈n/k−1⌉, each of size k, then recursively build the
poles of the nested EUGs in the next recursion step (lines 7-13 in Alg. 1), i.e., we build k nested
EUGs G1 = (V 1, E1), . . . , Gk = (V k, Ek) with pole sets P 1, . . . , P k, where Gi ∈ Γ1(⌈n/k⌉ − 1) and
P i = (O1[i], . . . ,O⌈n/k−1⌉[i]). Note that Ii := Oi−1 for all 1 < i ≤ ⌈n/k⌉ as the k outputs of Gi ∈ SP (k)i
are pairwise merged with the respective k inputs of Gi+1 ∈ SP (k)i+1. The creation of the first output
recursion points O0 is a technical trick, and not needed because these nodes will never be used, but it
simplifies the definition of the algorithm by avoiding a case distinction. An advantage of this recursive
method is that we can also recursively reduce the edge-embedding problem to finding paths between
poles of the nested EUGs. Assuming we can easily edge-embed paths from inputs to poles and from
poles to outputs within the superpoles, we can reduce finding a path from a pole located in SP (k)i
to a pole in SP (k)j to the problem of finding a path from Oi[x] to Oj−1[x] for i, j ∈ [⌈n/k⌉], i < j,
where x is the index of the target output of the superpoles’ internal edge-embedding for the concrete
poles. Existing UC implementations [23,7] split the edge-embedding into two sub-tasks: (a) the superpole
edge-embedding that takes care that the paths within a superpole are defined in a correct manner, and
(b) the recursion-point edge-embedding which chooses the correct paths at the recursion points. We define
the following theorem and refer to [7,38] for its proof:

Theorem 1. Let G = (V,E) be a Valiant EUG with pole set P ⊂ V of size |P | = n and sub-graphs
G∗, G1, ..., Gk. Then G is an EUG for Γ1(n).

3.3 Liu et al.’s EUG construction [38]

Definition 8 (Liu+ EUG). A Liu+ EUG G = (V,E) with pole set P ⊂ V and sub-graphs G∗, G1, . . . , Gk

is created by Alg. 2 ( Liu+). We also use the notation Liu+k (n) for a Liu+ EUG with n poles and split
parameter k.

We refer to App. B for a complete description of the construction of Liu et al. [38] including Alg. 2.
In the subsequent sections of this work, we leverage the following theorem and refer to [38] for its proof:

Theorem 2 (cf. [38, Theorem 4]). Let G = (V,E) be a Liu+ EUG with pole set P ⊂ V of size
|P | = n and sub-graphs G∗, G1, ..., Gk. Then G is an EUG for Γ1(n) with size bounded by

|SP (k)| − k

k log2(k)
n log2(n) +O(n).

4 Evaluating LUTs with UCs

In this section, we extend the UC constructions from §3 to be able to simulate (ρ→ ω)-LUT-based circuits.
In §4.1, we first review the construction of [52,35] to evaluate (ρ → 1)-LUT-based circuits, i.e., circuits
that consist of LUTs with ρ inputs and one output. Then, in §4.2, we extend this to our LUT-based
UCs (LUCs) that allows the UC to simulate (ρ → ω)-LUT-based circuits. Finally, in §4.3, we analyze the
most important building blocks for PFE applications, describe how to implement them with LUTs, and
show their theoretical improvement over evaluating the same building blocks with Boolean circuits.

5 ∼ 2.25n logn with the optimizations by Zhao et al. [58] for the 4-way construction.
6 We distinguish between EUGs and nested EUGs as the recursively constructed nested EUGs differ from its first
EUG in Liu et al.’s construction [38].
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Algorithm 2: Liu+(P, k)

Input :Poles P := {p1, ..., pn}, split parameter k
Output :Γ1(n) EUG G = (V,E), pole set P , sub-graphs G∗, G1, ..., Gk

1 V ← ∅, E ← ∅, G∗ ← ∅
2 for i← 1 to ⌈n

k
⌉ do

3 Pi ← {pk(i−1)+1, ..., pki}
4 SP (k)i = (Gi = (Vi, Ei), Pi,Pi, Ii,Oi)← Createsuperpole(Pi, k)
5 G∗ ← G∗ ∪ {Gi}
6 V ← V ∪ Vi, E ← E ∪ Ei

7 for i← 1 to k do
8 if n ≤ k then
9 Gi ← (∅, ..., ∅) // Recursion base

10 else
// Take the i-th output recursion point of each superpole as the poles for the next

sub EUG

11 P i ← {O1[i],O2[i], ...,O⌈n
k
⌉−1[i],O⌈n

k
⌉[i]}

12 (Gi = (V i, Ei), ...)← Liu+(P i, k)

13 V ← V ∪ V i, E ← E ∪ Ei

14 foreach (u, v) ∈ E do
15 if u ∈ s and v is recursion point for some superpole s ∈ G∗ then
16 Gx ← the EUG in which v is a pole
17 E ← E \ {(u, v)}
18 w ← Γ−

Gx(v)
19 E ← E \ {(v, w)}
20 E ← E ∪ {(u,w)}
21 else if u is recursion point for some superpole s ∈ G∗ and v ∈ s then
22 Gx ← the EUG in which u is a pole
23 E ← E \ {(u, v)}
24 w ← Γ+

Gx(u)
25 E ← E \ {(w, u)}
26 E ← E ∪ {(w, v)}

27 remove all recursion points from V

28 return G = (V,E), P,G∗, G1, . . . , Gk

4.1 UCs for LUTs with multiple inputs [52,49]

Valiant [52] proposed a method to integrate LUTs with more than two inputs into UCs and its size has
been computed in [49].

We can get a UC with n copies of (ρ → 1)-LUT from a Γρ(n) EUG that is merged by ρ instances
of Γ1(n) EUGs according to Cor. 1. Each pole of U that is not an input or an output can then be
implemented as a LUT with ρ inputs.

Corollary 2. An EUG for Γρ(n) for ρ ∈ N≥2 can be constructed with size at most 1.5ρn log2(n) +O(n).

Proof. Construct ρ instances of Liu+2 (n) and merge them. By Cor. 1, this yields an EUG for Γρ(n) with
size bounded by 1.5ρn log2(n) +O(n). ⊓⊔

4.2 UCs for LUTs with multiple in- and outputs

In order to support (ρ → ω)-LUTs with ω > 1 outputs in UCs, we propose a general solution that is
compatible with the original UC constructions of Valiant [52] and Liu et al. [38]. The high level idea is as
follows: For every (ρ → ω)-LUT that is represented by pole vi, we add ω − 1 so-called auxiliary poles to
the EUG and the real pole vi forwards its inputs directly to these auxiliary poles. The real pole and its
auxiliary poles each compute and output one of the LUT’s output. Concretely, the first pole takes the
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ρ inputs of the LUT using any of the above UC constructions and computes the first output of the LUT.
The remaining poles copy the ρ inputs of the first poles by direct connections and compute the remaining
outputs of the LUT, resulting in a chain of ω poles.

We define the class of Γρ,ω(n) graphs that is used to map n (ρ → ω)-LUTs to a graph G ∈ Γρ,ω(n).
As the poles of the EUG are the nodes of G, we need to add for each additional output of the i-th LUT
(denoted as pole vi,1 in G) in total ω − 1 additional poles (denoted as vi,2, . . . , vi,ω). These added poles
vi,j>1 use the inputs from pole vi,1 and thus, they all have in-degree 0 (cf. condition 3 in Def. 9). We
define Γρ,ω(n) as follows:

Definition 9 (Γρ,ω(n)). Let G = (V,E) be a directed acyclic graph with topologically ordered V :=
{v1,1, . . . , v1,ω, v2,1, . . . , v2,ω, . . . , vn,1, . . . , vn,ω} and ρ, ω ∈ N. Then G ∈ Γρ,ω(n) if:

– |V | ≤ nω,

– |{vi,j ∈ V }| ≤ ω ∀i ∈ [n],

– deg+(vi,1) ≤ ρ ∧ deg+(vi,2) = · · · = deg+(vi,ω) = 0,

– deg−(vi,j) ≤ ρ ∀i ∈ [n] ∀j ∈ [ω].

To easily build an EUG with only marginal modifications, we show that Γρ,ω(n) is also a Γρ(nω) graph:

Proposition 2. Let G ∈ Γρ,ω(n). Then G ∈ Γρ(nω).

Proof. Let G = (V,E) ∈ Γρ,ω(n). Obviously, it holds that |V | ≤ nω (condition 1 in Def. 9). Further,
for all v ∈ V it holds that deg+(v) ≤ ρ and deg−(vi,j) ≤ ρ from conditions 3 and 4 in Def. 9. Thus,
G ∈ Γρ(nω). ⊓⊔

Now, we can build EUGs for multi-input and multi-output LUTs.

Corollary 3. Let ρ, ω ∈ N. Then there exists a EUG for Γρ,ω(n) with size bounded by

1.5ρnω log2(nω) +O(nω).

Proof. Step 1: Create a Γρ(nω) EUG U = (V U , EU ) with a topologically ordered pole set P ⊂ V U that
has the form (..., vi−1,ω, vi,1, ..., vi,ω, vi+1,1, ...) for all i ∈ [n], i.e., the original pole vi,1 directly preceding
the auxiliary poles vi,j for 1 < j ≤ ω: We do this by creating a Liu+ EUG U with pole set P and split
parameter k = 2. Then we merge ρ instances of it. By Thm. 2 with |SP (2)| = 5 [38] and Cor. 1, this
yields a Γρ(nω) EUG of size at most 1.5ρnω log2(nω) +O(nω).

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū : Let vi,j be an auxiliary
pole of vi,1 for i ∈ [n], 1 < j ≤ ω. Remove all of its incoming edges and replace each of them with an edge
connecting the original pole vi,1 with the auxiliary pole vi,j , i.e., remove (w, vi,j) ∈ EU for w ∈ V U and
replace it by (vi,1, vi,j). This yields ρ edges (vi,1, vi,j) per auxiliary pole vi,j (one for each EUG instance).
Thus, EU becomes a multi set. The graph that results from modifying U in the just described way is
denoted by Ū and its pole set is denoted by P .

Step 3: Embed any graph G = (P,E) ∈ Γρ,ω(n) into Ū : To show that Ū is a EUG for Γρ,ω(n), we
need to define an edge-embedding ψ from G into Ū . Thanks to Prop. 2, it holds that G ∈ Γρ(nω). Note
that the ”relative topological order” is maintained, i.e., ηG(vi) < ηG(vi+1) for i ∈ [n]. However, although
Ū has nω poles, it is not an EUG for all Γρ(nω) graphs as all poles vi,j>1 are directly connected to
pole vi,1 via the edge (vi,1, vi,j>1) for i ∈ [n], j ∈ [ω]. Thus, we cannot find edge-disjoint paths from any
pole vk<i,l to vi,j>1 for k ∈ [n], l ∈ [ω], as these would all use an ingoing edge of pole vi,1. So, we need
to show that all nodes vi,j>1 ∈ G have indegree 0 to ensure that no edge-disjoint path needs to end
up at pole vi,j>1 ∈ Ū . This, however, is fulfilled due to condition 3 of Def. 9, i.e., there exists no edge
e = (vk<i,l, vi,j>1) ∈ G for which an embedding ψ(e) needs to be defined (the same argument holds for
edges e = (vi,l<j , vi,j) ∈ G).
So far, we showed that G only contains edges e = (vk<i,l, vi,1) ∈ G, which are the only ones to edge-embed
into Ū . However, as we just added additional edges to poles vi,1 and no outgoing edges from any poles in
Ū have been removed, we can get the edge-embedding ψ directly from Cor. 2. ⊓⊔
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(3 → 1)-LUTi

(3 → 1)-LUTi+1

. . .

. . .
. . . . . .

. . . . . .

(a) Two (3 → 1)-LUTs in our LUC.

(3 → 2)-LUTi,1

(3 → 2)-LUTi,2

. . .

. . .
. . . . . .

. . . . . .

(b) One (3 → 2)-LUT in our LUC.

Fig. 4: Embedding of (3 → 1)-LUTs (a) and (3 → 2)-LUTs (b) in a single superpole of our LUC
construction. The blue line in (b) indicates that the inputs of the first LUT part are forwarded to the
second LUT part. Each of the LUT parts in (b) generate one output with the same inputs, thus building
together a (3 → 2)-LUT. The red edge is optional and can be removed as only one input in the superpole
is needed.

In Fig. 4, we present our LUC construction for the embedding of both (3 → 1)-LUTs and (3 →
2)-LUTs within a single superpole. Specifically, in Fig. 4a, a superpole consists of two (3 → 1)-LUTs,
each having three individual inputs and one output. In contrast, in Fig. 4b, a (3 → 2)-LUT requires two
poles, limiting the embedding capacity to a single (3 → 2)-LUT within one superpole. We achieve this by
implementing each pole as a (3 → 1)-LUT in our LUC construction, effectively combining them to form a
(3 → 2)-LUT. The second part of the LUT shares the same inputs as the first part (indicated by the blue
edge in Fig. 4b), eliminating the need for an additional node between the two poles. The two outputs of
the (3 → 2)-LUT are forwarded to the lower node and can then propagate to the nested EUGs through
this node. As an optimization, we can remove one incoming edge from the superpole (indicated by the
red edge in Fig. 4b) since only one outer input is utilized.

4.3 Improvement

In this section, we show improvements of our LUC for several basic building blocks like full adder (FA),
comparator (CMP), and multiplexer (MUX). As summarized in Tab. 2, our basic building blocks are
smaller than the previous constructions [23,32,38,7] in UC size by factor ≈ 1.67× - 2.67×. Note that we
compute improvement factors based only on the prefactor. The actual enhancements will be greater as
also the logarithmic term is improved. This UC size reduction is achieved by merging 2-input gates into
larger multi-input LUTs.
Full Adder (FA): The optimized implementation of a FA uses four 2-input XOR gates and one 2-input
AND gate (cf. [34, Fig. 2]). We can implement a FA using only one (3 → 2)-LUT, resulting in an
improvement by ≈ 1.67× in LUC size (cf. Tab. 2). The embedding of a (3 → 2)-LUT in our LUC is
depicted in Fig. 4b.
Comparator (CMP): The 1-bit comparator consists of three 2-input XOR gates and one 2-input AND gate
(cf. [34, Fig. 6]). Our improved LUT-based instantiating for CMP uses only one (3 → 1)-LUT, resulting
in an improvement of ≈ 2.67× in LUC size (cf. Tab. 2). The embedding of a (3 → 1)-LUT in our LUC is
depicted in Fig. 4a.
Multiplexer (MUX): The MUX block can be instantiated with two 2-input XOR gates and one 2-input
AND gate (cf. [36, Fig. 2]). In our approach, MUX can be instantiated with only one (3 → 1)-LUT,
resulting in an improvement of ≈ 2× in the LUC size (cf. Tab. 2). The embedding of a (3 → 1)-LUT in
our LUC is depicted in Fig. 4a.
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Table 2: LUC sizes for basic building blocks which can be used to construct more complex functionalities.
b denotes the frequency of occurrence of the specific building blocks within the circuit.

Building

Block (BB)
Boolean Circuit LUT-based Circuit

Improvement
# Gates Asympt. UC Size LUT type Asympt. LUC Size

4 XOR
FA

1 AND
15b log2 5b+O(b) (3 → 2)-LUT 9b log2 b+O(b) 1.67×

3 XOR
CMP

1 AND
12b log2 4b+O(b) (3 → 1)-LUT 4.5b log2 b+O(b) 2.67×

2 XOR
MUX

1 AND
9b log2 3b+O(b) (3 → 1)-LUT 4.5b log2 b+O(b) 2×

Complex Building Blocks. We now present several motivating examples that benefit from improvements
of our basic building blocks.
Addition and Subtraction. An l-bit addition is composed of a chain of l Full Adders (FA) (cf. [34, Fig. 1].
An l-bit subtraction is defined as x− y = x+ y+1 and can be constructed similarly to an addition circuit
using l FAs (cf. [34, Fig. 3]. Using our FA construction, the LUC size of the addition and subtraction is
improved by ≈ 1.67×.
Multiplication. Multiplication of two l-bit numbers can be composed of l2 of 2-input AND gates ((2 →
1)-LUT) and (l − 1) l-bit adders [34]. Using the efficient implementation for LUT-based adders, the LUC
size of the multiplication circuit is improved by ≈ 1.67×.
Multiplexer. An l-bit multiplexer circuit can be composed of l parallel MUX blocks (cf. [36, Fig. 9])
to select one of the l-bit inputs. So, using our LUT-based MUX has ≈ 2× improvement for an l-bit
multiplexer.
Comparison. An l-bit comparison circuit can be composed of a chain of l CMP blocks (cf. [34, Fig. 5]).
Thus, our CMP construction improves the LUC size of the comparison circuit by ≈ 2.67×. A minimum
circuit which selects the minimum value of a list of m l-bit values is composed of l-bit comparison and
multiplexer circuits (cf. [34, Fig. 8]) and hence is improved by ≈ 2.3×.

5 Our Varying UC (VUC) Construction

In many applications, sub-functionalities are naturally implemented by LUTs with higher dimension, e.g.,
Sboxes in AES. In this case, we aim to put single LUTs with a higher dimension (e.g., ρ = 8) into the UC.
Using our LUC construction for this concrete example, we would need to compose the UC of 8 instances
of Γ1(n) EUGs, even if we only need the full (8 → 1)-LUT few times in the whole circuit.7 Thus, our aim
is to find a way to use single LUTs with input dimension of ρ > 3 without a massive influence on the
total circuit size.

In this section, we present our Varying UC (VUC) construction, which deviates from the conventional
universal circuits (UCs) that have been widely studied [52,35,32,37,23,7,38]. Traditionally, UCs have been
designed to conceal both the topology and the gate functionality of the simulated function, and have
relied on the use of fixed computational units, namely universal 2-input gates or, like in our work, (ρ →
ω)-LUTs with a globally fixed number of inputs ρ and outputs ω. A VUC, however, allows for the use of
different programmable computational units, thereby leaking information about the types of units used.
In particular, we focus on VUCs built using (ρ → ω)-LUTs with varying numbers of inputs and outputs,
thereby revealing the dimensions of the individual LUTs.

Definition 10 (Varying Universal Circuit (VUC)). A Varying Universal Circuit V for ni inputs,
the ordered list of ng gates G = (G1, . . . ,Gng ) of varying input and output dimensions, and no outputs is a
Boolean circuit that can be programmed to compute any Boolean circuit C with ni inputs, no outputs,
and ng gates that can be topologically ordered into G by defining a set of programming bits pC such that
V(x, pC) = C(x) for all possible input values x ∈ {0, 1}ni .

In §5.2, we discuss several applications of VUCs as well as their leakage.

7 An alternative would be to decompose the larger LUTs into multiple smaller ones using Shannon expansion [50].
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Algorithm 3: AuxiliaryGraph(G)

Input :G = (V,E) ∈ ΓP+,2(n)

Output : Ḡ = (V̄ , Ē) ∈ Γ2(n+∆) with ∆ =
n∑

i=0

max{⌈P
+
i −2

2
⌉, 0}

1 Ḡ = (V̄ , Ē)← (V, ∅)
2 foreach vi ∈ V do
3 j ← 0
4 foreach e = (w, vi) ∈ E do
5 if j ≥ 2 then
6 if j ≡ 0 (mod 2) then
7 V̄ ← V̄ ∪ {u

i, j
2
}

8 Ē ← Ē ∪ {(w, u
i,⌈ j

2
⌉)}

9 else
10 Ē ← Ē ∪ {e}
11 j ← j + 1

5.1 The VUC construction

First, we show how to build our VUC for evaluating different (ρ→ 1)-LUTs with varying input dimensions
ρ. Later in this section, we show how to extend this construction to evaluate any (ρ → ω)-LUTs with
varying input and output dimensions ρ and ω. In our VUC construction, we keep building our UC from
only two instances of a Γ1(n) EUG, independent of the LUT sizes. This reduces the overhead of our
LUT-based UC construction that merges ρ instances of the large Γ1(n) EUG for (ρ → 1)-LUT. We do
this by adding auxiliary poles u to the EUG whose task is to collect up to two inputs and forward these
inputs via direct edges to a real pole v to push the indegree of v to ρ. Def. 11 defines ΓP+,P−(n) graphs,
which classify the graphs that can be edge-embedded into our VUC construction, namely, the vectors P+

and P− specify the maximum indegree and outdegree of each LUT in our circuit that we aim to evaluate
with the UC. Our VUC design additionally allows the evaluation of functions that only use a single
type of ρ input LUTs by setting P+ = 1ρ,8 i.e., each LUT in the circuit can have at most ρ inputs and
the resulting VUC implements each universal gate as a (ρ → 1)-LUT. In this case, the VUC is a real
LUT-based UC (LUC) and can be used for PFE. In the case for VPFE, the universal gates of the UC
have different implementations and therefore leak the specific input sizes of all LUTs.

Definition 11 (ΓP+,P−(n)). Let G = (V,E) be a directed acyclic graph with topologically ordered
V := {v1, ..., vn} and P+,P− ∈ Nn. Then G ∈ ΓP+,P−(n) if:

– |V | ≤ n,
– deg+(vi) ≤ P+

i ∧ deg−(vi) ≤ P−
i ∀i ∈ [n].

If P+/− = 1ρ for some ρ ∈ N, we write ρ instead of 1ρ.

In this sense, Cor. 2 yields a Γρ,ρ(n) EUG. In the following, we describe our VUC construction. An
example of the whole EUG creation and the embedding process is depicted in Fig. 5. The explicit creation
of the used auxiliary graph is given by Alg. 3.

The key observation for our VUC construction is that, when merging two instances of Γ1(n) EUGs,
each of the n poles (excluding inputs and outputs) can take two inputs, and can, but not necessarily
need to, compute one output. We can use this observation to merge poles in order to collect ρ > 2 inputs
for our LUT. For example, looking at Fig. 5, a (5 → 1)-LUT consists of the three poles p6, p7, and p8,
where pole p6 (resp. p7) just collects two (resp. one) inputs, but does not compute any output. Instead,
the ingoing edges are forwarded to pole p8 (dashed lines) and the outgoing edges (dotted gray lines) are
removed. Pole p8 now has, in addition to its two regular ingoing edges, three additional ingoing edges that
come directly from poles p6 and p7. On a high level, we can merge ⌈ρ/2⌉ poles into one (ρ → 1)-LUT,

8
1 denotes the vector where each entry is 1.
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v1 v2 v3 v5v4

v6

(a) Original graph

v1 v2 v3 v5v4

v6 u6,1 u6,2

(b) Corresponding auxiliary graph

p1

p2

p3

p4

p5

p6

p7

p8

(c) Edge-embedding of the original graph. First, the edges from the auxiliary graph are embedded. Then, dotted
gray edges are removed from the EUG, while dashed edges are added to the EUG, resp. to the edge-embedding.
The result is an edge-embedding for the original graph. Now we can replace the ingoing edges to p6 by directed
edges to the multi-input pole p8. The auxiliary pole p7 becomes a Y-Switch that only forwards the orange wire.

Fig. 5: Our varying UC construction for ρ = 5 inputs.
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while the first ⌈ρ/2⌉− 1 so-called auxiliary poles each collect up to two inputs for the LUT which are then
directly forwarded to the last pole, which takes the last two inputs of the LUT and computes the output.

More formally, we begin by constructing an auxiliary graph Ḡ. For each pole p that has ρ > 2 incoming
edges, we create an auxiliary pole for each two additional inputs, i.e., ⌈ρ/2− 1⌉ auxiliary poles. Then, we
replace all except two edges from pole p by edges to the auxiliary poles. The purpose of the auxiliary
poles is to forward their inputs to the original multi-input pole. The resulting EUG U then guarantees
that there can be a path from any pole with lower order to the corresponding auxiliary poles.

If there is a multi-input gate with an odd number of inputs ρ, then there will be one auxiliary pole in
Ḡ with only one input. In this case, we can share this auxiliary pole for two poles if both have an odd
number of inputs (which is always the case in the special case of PFE). This concrete auxiliary pole is
then later translated into an X-switching block so that the inputs can be forwarded to the correct LUT.

Theorem 3. Let P+ ∈ Nn. Then there exists an EUG for ΓP+,2(n) with size bounded by

3(n+∆) log2(n+∆) +O(n+∆),

where ∆ :=
n∑

i=1

max{⌈P+
i −2

2 ⌉, 0}.

Proof. Step 1: Create a Γ2(n+∆) EUG U = (V U , EU ) with a topologically ordered pole set P that has

the form (..., vi−1, ui,1, ..., u
i,⌈

P
+
i

−2

2 ⌉
, vi, ...) for all i ∈ [n], i.e., the auxiliary poles ui,j for j ∈ [⌈P+

i −2

2 ⌉] are

directly preceding the original pole vi: We do this by creating a Liu+ EUG U with pole set P and split
parameter 2. Then we merge two instances of it. By Thm. 2 and Cor. 1, this yields a Γ2(n+∆) EUG of
size at most 3(n+∆) log2(n+∆) +O(n+∆).

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū : Let ui,j be an auxiliary

pole of vi for i ∈ [n], j ∈ [⌈P+
i −2

2 ⌉]. Remove all of its outgoing edges and replace each of them with an edge
connecting the auxiliary pole to the original multi-input pole, i.e., remove each (ui,j , w) ∈ EU for w ∈ V U

and replace it by (ui,j , vi). This yields two edges (ui,j , vi) per auxiliary pole ui,j . Thus, E
U becomes a

multi set. If P+
i is odd and j = 1, add only one of these edges instead of two (otherwise, vi would have too

many ingoing edges). The graph that results from modifying U in the just described way is denoted by Ū .
Step 3: Embed any graph G = (P,E) ∈ ΓP+,2(n) into Ū : For this, we construct a Γ2(n+∆) graph

using auxiliary poles for nodes with indegree higher than 2 by setting Ḡ = (V̄ , Ē) = auxiliaryGraph(G) ∈
Γ2(n+∆) (Alg. 3). Note that the ”relative topological order” is maintained, i.e., ηḠ(vi) < ηḠ(vi+1) ∀i ∈ [n].
Edge-embedding Ḡ into Ū yields ψ : Ē → PŪ . To show that Ū is a ΓP+,2(n) EUG, we need to define an
edge-embedding ψ̄ from G into Ū : Note that for edges e = (vi, vl) ∈ G \ Ḡ, i.e., edges whose endpoints are
not auxiliary poles, ψ already yields edge-disjoint vi-vl-paths and we can set ψ̄(e) = ψ(e) for those edges.
Now consider edges e = (vi, vl) ∈ G∩Ḡ, i.e., the endpoints of those edges are transformed into an auxiliary

pole in Ḡ. For each e, there is exactly one ē = (vi, ul,j) ∈ Ḡ for j ∈ [⌈deg+(vl)−2
2 ⌉] (line 8 in Alg. 3). Now set

ψ̄(e) = ψ(ē) + (ul,j , vl) for one of the possibly two edges (ul,j , vl) that were added to Ū before. Obviously,
this yields a vi-vl-path. Since there are at most two edges connecting to an auxiliary pole, we can choose
a unique last edge for each path. Because the paths in the image of ψ were already edge-disjoint, also
the paths in the image of ψ̄ are edge-disjoint. Thus, ψ̄ is an edge-embedding of G into Ū . ⊓⊔

Thm. 3 gives us an EUG that can be used to build VUCs for (ρ → 1)-LUTs with varying parameter ρ
and can thus be used for VPFE. Next, we consider VUCs for a fixed constant ρ which yields classical PFE.

Corollary 4. Let P+ = 1ρ ∈ Nn for ρ > 2. Then there exists a EUG for ΓP+,2(n) with size bounded by

3⌈ρ
2
n⌉ log2(⌈

ρ

2
n⌉) +O(⌈ρ

2
n⌉).

Proof. We follow the proof of Thm. 3 and highlight the differences.
Step 1: Create a Γ2(⌈ρ

2n⌉) EUG U with topologically ordered pole set P that has the form (..., vi−1,
ui,1, ..., ui,⌈ ρ−2

2 ⌉, vi, ui+1,1, ..., ui+1,⌊ ρ−2
2 ⌋, vi+1, ...) as described in step 1 in the proof of Thm. 3.

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū as described in step 2 in
the proof of Thm. 3 with one difference: If ρ is odd, we share one auxiliary pole ui,1 for two consecutive
original poles vi and vi+1, i.e., we add the two edges (ui,1, vi) and (ui,1, vi+1).
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Step 3: Edge-embed G into Ū as described in step 3 in the proof of Thm. 3 with one difference: If ρ
is odd, the auxiliary graph Ḡ = (V̄ , Ē) shares one auxiliary pole ui,1 for two consecutive original poles vi
and vi+1, i.e., ui+1,1 is removed from V̄ and the edge (w, ui+1,1) is replaced by the edge (w, ui,1). As ui,1
and ui+1,1 both have indegree 1, ui,1 now has indegree 2. ⊓⊔

Multi-Output support for VUCs. An auxiliary graph that represents multi-output LUTs is a
ΓP+,P−,Ω−(n) graph as defined in Def. 12, i.e., ΓP+,P−,Ω−(n) classifies the graphs that can be edge-
embedded into our UC construction. Here, P+ is a vector of size n that specifies the indegree of each
node in the auxiliary graph and thus represents the maximum number of inputs of each LUT in the UC.
P− is a constant that specifies the maximum outdegree of each node in the auxiliary graph / of each LUT
in our circuit that we aim to evaluate with the UC. Similarly, Ω− describes the number of distinguished
outputs of the LUTs, i.e., P− specifies the number of copies we have for each output of a LUT in our
circuit, while Ω− sets the number of outputs for each LUT.

As later, when embedding G into the EUG, each output of a LUT represents a separate value, i.e., we
need to put each output into an individual pole. As the poles of the EUG are the nodes of the auxiliary
graph, we need to add for each additional output of the i-th LUT in total Ω−

i − 1 additional poles. In
Def. 12, we denote the outputs of the i-th LUT with vi,1, . . . , vi,Ω−

i
.

Definition 12 (ΓP+,P−,Ω−(n)). Let G = (V,E) be a directed acyclic graph with topologically ordered V :=
{v1,1, . . . , v1,Ω−

1
, v2,1, . . . , v2,Ω−

2
, . . . , vn,1, . . . , vn,Ω−

n
} and P+,P−, Ω− ∈ Nn. Then G ∈ ΓP+,P−,Ω−(n) if:

– |V | ≤
n∑

i=1

Ω−
i ,

– |{vi,j ∈ V }| ≤ Ω−
i ∀i ∈ [n],

– deg+(vi,1) ≤ P+
i ∧ deg+(vi,2) = · · · = deg+(vi,Ω−

i
) = 0,

– deg−(vi,j) ≤ P−
i ∀i ∈ [n] ∀j ∈ [Ω−

i ].

To easily build an EUG with only marginal modifications, we show that a ΓP+,P−,Ω− graph is also a
ΓP+,P− graph:

Proposition 3. Let G ∈ ΓP+,P−,Ω−(n). Then G ∈ ΓP+,P−(n+∆), where ∆ :=
n∑

i=1

Ω−
i − 1.

Proof. Let G = (V,E) ∈ ΓP+,P−,Ω−(n). It holds that |V | ≤
n∑

i=1

Ω−
i = n + ∆ where ∆ =

n∑
i=1

Ω−
i −

1 (condition 1 in Def. 12). Further, for all v ∈ V it holds that deg+(v) ≤ P+
i and deg−(vi,j) ≤ P−

i from
conditions 3 and 4 in Def. 12. ⊓⊔

We can build VUCs using Cor. 5 and UCs with constant ρ and ω using Cor. 6, whose prove directly
follows from Cors. 4 and 5.

Corollary 5. Let P+, Ω− ∈ Nn. Then there exists a EUG for ΓP+,2,Ω−(n) with size bounded by

3(n+∆) log2(n+∆) +O(n+∆),

where ∆ :=
n∑

i=1

(max{⌈P+
i −2

2 ⌉, 0}+Ω−
i − 1).

Proof. Let G = (P,E) ∈ ΓP+,2,Ω−(n) be the graph to be embedded in an EUG with P = {v1,1, . . . ,
v1,Ω−

1
, v2,1, . . . , v2,Ω−

2
, . . . , vn,1, . . . , vn,Ω−

n
}. We can transform G into a ΓP+,2(n + ∆′) graph where

∆′ :=
n∑

i=1

Ω−
i − 1 . Using Thm. 3, we get an EUG for ΓP+,2(n+∆′) that is bounded by

3(n+∆′ +∆′′) log2(n+∆′ +∆′′) +O(n+∆′ +∆′′),

where ∆′′ :=
n∑

i=1

max{⌈P+
i −2

2 ⌉, 0} and setting ∆ := ∆′ +∆′′ yields an EUG of the given size.

We need to add some more edges to the resulting EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū , namely
the inputs of the first pole associated with the LUT need to be forwarded to all remaining output poles
of the same LUT as follows:

∀i ∈ [n] : ∀vi,1 ∈ P : ∀(u, vi,1) ∈ EŪ : ∀vi,j ∈ P, j > 1 : EŪ = EŪ ∪ (u, vi,j). ⊓⊔
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Corollary 6. Let P+ = ρ ∈ Nn for ρ > 2 and Ω− = 1ω ∈ Nn for ω > 1. Then there exists an EUG for
ΓP+,2,Ω−(n) with size bounded by

3(⌈(ρ
2
+ ω − 1)n⌉) log2(⌈(

ρ

2
+ ω − 1)n⌉) +O(⌈(ρ

2
+ ω − 1)n⌉).

5.2 Applications of Varying UCs (VUCs)

If we use a VUC instead of a UC in MPC-based PFE, we get Varying Private Function Evaluation
(VPFE). VPFE allows a set of k parties P1, . . . ,Pk, to jointly compute a circuit C held by P1 on private
data x2, . . . , xk held by Pi≥2 to obtain nothing but C(x2, . . . , xk), and Pi≥2 learn nothing about C but
the dimensions of all its LUTs. Thus, VPFE does not leak the whole topology of sub-circuits like SPFE
(cf. §1.1), but leaks more information than PFE.

We can reduce the leakage by randomly changing the sequence of LUTs according to the topological
order of the simulated circuit. In this way, building blocks (e.g., full adders) do not occur as a whole block
of consecutive LUTs of the same dimension in the VUC. The function would be mapped to different
sequences of dimensions and thus we would remove fingerprints of certain functions. So, even multiple
building blocks of different circuit layers can be mixed in a sequence. This technique, however, still allows
to exclude certain functions when they cannot be mapped to the given sequence of dimensions.

Some applications, such as logic locking (cf. [11, Fig. 3] and §1.1) do not require full privacy of the
evaluated function and allow for the leakage of the sequence of dimensions of the used LUTs. However,
in general PFE applications, even knowledge of the LUT sizes may reveal too much information about
the protected function. Our analysis (cf. §4.3) and our benchmarks (cf. §6.3) demonstrate that many
functionalities can be reduced to 3-input LUTs. Consequently, we benefit from using LUCs with 3-input
LUTs in most cases. This observation is not surprising, as most arithmetic operations can be reduced
to full adders (3-input LUTs), and only a small number of sub-functionalities benefit from using LUTs
with more than 3 inputs. However, when adding only one of these larger LUTs, the overall size of the
LUC would be significantly increased, as a complete EUG graph would need to be added to the circuit
for each additional input of all LUTs, even if the higher dimension is used only once. Therefore, VUCs
are well-suited for embedding circuits with a limited number of various LUT combinations, such as
(3 → 1)-LUT and (8 → 8)-LUT, resulting in significant size improvements. By implementing simple
functionalities with (3 → 1)-LUTs and allowing complex functionalities with (8 → 8)-LUTs, a wide range
of possible functions can be achieved without compromising critical information (which can always be
implemented using a single LUT type). The (8 → 8)-LUTs offer a vast set of 256 combinations, enabling
the implementation of a large and diverse collection of functionalities. Despite the inclusion of these
additional combinations, the resulting leakage remains limited.

There are many PFE applications that benefit from such a setting, including credit checking [18], user-
specific tariff calculations [22], and medical diagnosis [9]. All these applications rely on sub-functionalities
such as classifiers. A classifier utilizes a mapping table to look up a class based on input data, and
then outputs the determined class. To illustrate, a car insurance tariff calculator may use a classifier to
establish a basic price based on the type of car a potential customer drives. Multi-input LUTs, such as
(8 → 8)-LUTs, can efficiently implement these classifiers as they provide exactly such a table lookup.
By incorporating individually tailored multi-input LUTs in a VUC, we can benefit from overall size
improvements over the LUC construction, while still maintaining the internal implementation of the
classifier, including the computation performed to obtain the address of the lookup whose topology is
hidden.

6 Implementation and Evaluation

We implement our proposed UC constructions using the MPC framework ABY [14] to provide a fair
comparison to previous PFE works on UCs [32,23,7]. MPC frameworks supporting multi-input garbled
circuits [40] reduce the communication of evaluating a single ρ input LUT to 2ρ − 1 ciphertexts. In ABY,
we implement ρ input LUTs as a multiplexer tree consisting of 2ρ − 1 2-input AND gates, requiring
2(2ρ − 1) ciphertexts using half-gates [57]. This could be further reduced to 1.5(2ρ − 1) ciphertexts using
three-halves garbling [48].
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Table 3: Number of AND and XOR gates per building block in our UCs.

Building block AND gates XOR gates

X-switching block [36] 1 3
Y-switching block [36] 1 2

Universal Gate with k ≥ 2 inputs 2k − 1 2k+1 − 2

We benchmark our LUC construction (cf. §4) and compare it with the most recent UC of Liu et
al [38] that simulates circuits with binary gates. Moreover, we evaluate our VUC construction (cf. §5) to
show the improvement over Liu et al.’s UC [38] and our LUC construction. All results in this section
use the EUG construction by Liu et al. [38] to construct the underlying Γ1 EUGs. We discuss the LUT
generation in §6.1, details about our UC compilation in §6.2, and experimental results in §6.3.

6.1 LUT Generation

Hardware synthesis is a crucial process in electronic design automation that involves converting an abstract
function description into a functionally equivalent logic implementation. This transformation is achieved
through the utilization of various optimization and technology mapping algorithms. These algorithms
have been extensively researched and developed over the course of many years. The resulting circuit
implementation is typically dependent on the target hardware platform and the manufacturing technology
employed. The two most common target hardware platforms are Application Specific Integrated Circuits
(ASICs) and Field Programmable Gate Arrays (FPGAs).

This work specifically focuses on exploiting multi-input LUTs, which are fundamental components of
FPGAs (which consist of logic cells containing programmable LUTs) and their correspondig synthesis tools.
Although ASIC synthesis tools can also map to multi-input gates, this process is laborious, impractical,
and necessitates the creation of large libraries to accommodate all possible LUTs for each input size. Thus,
we chose FPGA synthesis tools. The market offers commercial FPGA synthesis tools like Intel Quartus
Prime [1], VTR [2], XST [4], and Vivado Synthesis tools by Xilinx [3]. However, these tools synthesize
LUT-based circuits tailored to the specific features of their respective devices. For instance, most current
FPGA devices support a maximum of 6-input LUTs. In our work, we aim to generate circuits with up to
8-input LUTs, which, to the best of our knowledge, is not supported by mainstream commercial tools.

In this work, similar to [15,12], we leverage the mapping capabilities of the open-source tools Yosys [54]
and ABC [10]. Yosys allows us to transform the circuit descriptions into a network of low-level logic
operations represented in an intermediate format. Subsequently, ABC [10] organizes this network into a
Directed Acyclic Graph (DAG) and maps it to a depth-optimized circuit composed of LUTs. It is worth
noting that ABC [10] does not inherently support mapping to multi-output LUTs. To overcome this
limitation, we perform post-processing on the single-output LUT circuits generated by ABC [10] and
convert them into multi-output LUT circuits. Additionally, we use integrated Intellectual Property (IP)
libraries within the commercial ASIC synthesis tool Synopsys Design Compiler (DC) [5], to generate
circuit netlists for more complex functionalities such as floating-point operations. These circuits are
initially created as Boolean netlists by Synopsys DC [5], and we subsequently remap them to LUT-based
representations using the Yosys-ABC toolchain [10,54].

6.2 UC Compilation

Let C denote the circuit to be embedded and ρ the maximum fan-in of the circuit.
1. Parsing the circuit: The circuit is input in the Secure Hardware Definition Language (SHDL) [40]
and parsed into the internal graph representation. We reduce the fan-out of the graph to the allowed
fan-in ρ for LUCs (cf. §4) and 2 for VUCs (cf. §5) by using copy gates. For VUCs, the auxiliary graph
(cf. Thm. 3) is generated. Here, we denote the auxiliary graph by G and the former graph with possibly
reduced fan-out by Ḡ.
2. Splitting G into Γ1 graphs and creating Γ1 EUGs: Using the LUC construction yields ρ Γ1

graphs. For each Γ1 graph, we create a Γ1 EUG. Possible EUGs are Valiant’s EUG [52] and the 2-way
split EUG of Liu et al. [38]. If we use the VUC construction, we get two Γ1 graphs.
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Table 4: Comparison of the sizes of our LUT-based UC construction (LUC, cf. §4) and the best previous UC
construction of Liu et al. [38] as baseline (in number of AND gates) measured with our implementations.
The smallest size is marked in bold and always achieved by our UCs. The sizes for our UC is the best combi-
nations for (ρ → ω)-LUT for ρ ∈ {2, ..., 8} inputs and ω ∈ {1, . . . , 8} outputs for the benchmarked circuit.

Circuit
Circuit size (# AND gates)

Improvement (×) LUT sizes (ρ→ ω)
UC of [38] Our LUC

AES 1,779,105 1,779,105 1.00 2→ 1
DES 1,269,537 1,130,037 1.12 3→ 1
MD5 3,293,262 1,724,221 1.91 3→ 1
SHA-1 4,872,501 2,559,602 1.90 3→ 1
SHA-256 10,652,234 5,351,972 1.99 3→ 1

Add 32 6,926 3,907 1.77 3→ 2
Add 64 17,006 8,963 1.90 3→ 2
Comp 32 2,519 1,278 1.97 3→ 1
Mult 32x32 347,274 177,081 1.96 3→ 3
Karatsuba 32x32 286,933 156,888 1.83 3→ 3

MD256 327,203 150,046 2.18 3→ 2
ED64 1,852,419 947,679 1.95 3→ 3

FP-Add 32 113,620 90,964 1.25 3→ 1
FP-Mul 32 293,125 247,859 1.18 3→ 1
FP-Exp2 32 2,008,269 1,548,079 1.30 3→ 1
FP-Div 32 372,101 236,300 1.57 3→ 1
FP-Sqrt 32 176,176 118,873 1.48 3→ 1
FP-Comp 32 6,387 5,628 1.13 4→ 4
FP-Log 32 1,936,813 1,499,538 1.29 3→ 1

3. Edge-embedding the Γ1 graphs and merging them: Each Γ1 graph is edge-embedded into
the corresponding Γ1 EUG. This edge-embedding is coded directly into the control bits of the X- and
Y-Switches of the EUG. We do not construct an explicit edge-embedding map ψ because we only need the
control bits to create the UC and the programming bits.The concrete algorithm uses a slightly modified
version of the edge-embedding algorithm in [23]. Then, the Γ1 EUGs are merged into a Γρ EUG (LUC)
or into a Γ2 EUG (VUC).
4. Basic optimizations and correctness checking: We remove edges connecting to an input pole as
they will never be used and replace copy gates with wires. Then we remove isolated nodes or change X-
to Y-Switching nodes if one edge was removed before. We check the correctness of the edge-embedding by
checking for each edge (u, v) in G, if there is a path leading from u to v.
5. Setting the gates of the EUG: In the VUC construction, we replace the auxiliary poles with wires
connecting directly to the actual pole or a Y-Switch if only one input is forwarded. Analogously to step 4,
we check the correctness of the edge-embedding to Ḡ. For each node in G, we set the programming bits
of the corresponding EUG pole. We determine the order of inputs and then set the programming bits
accordingly. This also involves padding the programming bits if the gate has more inputs. Note that these
additional inputs are likely to occur since each Universal Gate outputs ρ (in LUC construction) or 2 (in
VUC construction) wires, independent of whether they are used in G or not. We pad the programming
bits such that additional and undesired inputs are ignored.
6. Transforming the EUG into an ABY compatible UC: As a final step, we topologically order
the EUG and output it in the UC format compatible with ABY [14]. Then, each node, along with its
incoming and outgoing wires, is written into a circuit file. At the same time, the programming bits are
written into a separate programming bits file.
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6.3 Experimental Results

Setup. Like previous works [23,32,38], we benchmark a set of real-world circuits from [51]. In addition, we
consider other useful functions like Karatsuba multiplication [29], Manhattan and Euclidean distance [15],
and floating-point operations [15]. For each functionality, we give the sizes of the resulting circuit, as well
as communication and runtime complexity when the UC is evaluated with an MPC protocol. In order to
show the improvement of our work, we use two identical machines with a LAN connection of 10 Gbit/s
bandwidth and a round-trip time of 1 ms. Each machine is equipped with an Intel Core i9-7960X@2.8
GHz with 128GB DDR4 RAM. All measurements are averaged over 10 executions.
LUC Improvement. As we have Universal Gates of different sizes, we cannot just count the number of
nodes in the EUG to compare the implementations. As underlying MPC protocol for UC-based PFE we
use Yao’s protocol [57] using free XORs [36], so XOR gates can be evaluated without communication.
Therefore, we count the number of non-free AND gates to instantiate the building blocks of the UC
(cf. Tab. 3). We experimentally compared our implementations with the best existing UC-based PFE
construction of Liu et al. [38]. We provide our results for our LUT-based UC constructions in Tab. 4.
In our circuit generation, we vary possible choices for (ρ → ω)-LUTs and select the ones with highest
improvement. We can see from Tab. 4 that our LUT-based UC construction is always smaller than that
of [38] by 1.12− 2.18×.

For a comparison of the improvements in PFE, we securely evaluate our generated UCs with the
GMW-based SP-LUT protocol [15] and Yao’s GC protocol [57]. In Tab. 5, we show the runtime and
communication of our LUT-based UC construction (LUC) compared to the most recent UC construction
of Liu et al. [38] as baseline using Yao [57] and GMW [21]. Our new UC construction is the fastest
implementation: Compared to the baseline using Yao [57], the total runtime for our sample circuits
is faster by a factor of 1.14 − 2×. The communication improvements over the baseline using Yao [57]
are 1.12 − 2.25×. The runtime of Yao’s protocol is 3.83 − 11.5× faster than that of the LUT-based
protocols which can be explained by the constant round complexity of Yao’s protocol. The SP-LUT

Table 5: Runtime and communication for our LUT-based UC construction (cf. §4) compared to the
state-of-the-art UC of [38] when evaluated with ABY [14]. We include the LAN evaluation time (in
seconds) and the total communication (in Megabytes) between the parties in LUT-based [15], Yao
sharing [57], as well as in GMW sharing [21]. The best values are marked in bold.

UC construction UC of [38] Our LUT-based UC (LUC)

MPC protocol Yao [57] GMW [21] Yao [57] SP-LUT [15]

Circuit Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB)

AES 1.811 80.315 142.193 96.845 1.811 80.315 13.187 28.427
DES 1.282 57.271 101.645 68.071 1.124 50.570 9.233 24.311
MD5 3.471 148.348 238.847 168.991 1.832 76.638 26.642 46.013
SHA1 5.184 220.065 343.344 246.708 2.756 113.859 27.268 58.641
SHA-256 11.571 481.412 722.650 528.122 5.878 238.364 54.082 123.045

Add 32 0.018 0.314 1.139 0.594 0.009 0.177 0.224 0.148
Add 64 0.026 0.770 2.323 1.230 0.017 0.404 0.452 0.319
Comp 32 0.008 0.117 0.265 0.203 0.004 0.062 0.139 0.055
Mult 32x32 0.350 15.626 31.497 19.650 0.212 7.300 4.144 4.531
Karatsuba 32x32 0.292 12.901 27.214 16.597 0.191 6.469 3.685 4.021

MD256 0.337 14.801 29.037 18.326 0.193 6.592 4.234 4.544
ED64 1.924 83.552 142.147 97.558 1.046 39.704 17.524 24.572

FP-Add 32 0.164 5.105 11.780 6.859 0.139 4.003 2.903 2.426
FP-Mul 32 0.350 13.178 28.215 16.988 0.308 10.949 6.217 4.579
FP-Exp2 32 2.292 90.555 155.881 106.023 1.612 68.651 21.531 38.330
FP-Div 32 0.458 16.743 33.686 21.024 0.296 10.443 5.918 6.528
FP-Sqrt 32 0.223 7.915 18.910 10.433 0.168 5.237 3.417 3.442
FP-Comp 32 0.014 0.290 1.066 0.553 0.012 0.235 0.226 0.118
FP-Log 32 2.083 87.330 151.423 102.369 1.600 66.510 20.198 36.287
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protocol [15] always has the lowest communication, achieving factor 1.19− 2.44× less communication
than Yao’s protocol. In Tab. 5, it is evident that the baseline employing Yao [57] exhibits superior runtime
performance and lower total communication overhead than the baseline employing the GMW protocol [21].

Table 6: Sizes, runtime, and communication for our VUC construction (cf. §5). We include LAN evaluation
times (in seconds) and total communications (in Megabytes) between the parties in LUT-based [15]
as well as in Yao sharing [57]. We show the size improvement of VUC over the UC of [38] and LUC
construction (cf. §4) in the last two columns. Note that VUCs reveal the LUTs’ dimensions, showcasing
the enhancements obtained by sacrificing some circuit privacy.

Circuit Size
Yao [57] SP-LUT [15] Size Improv. (×)

VUC/UC of [38]
Size Improv.(×)

VUC/LUC
Time Comm. Time Comm.

AES 1,584,047 1.724 71.753 142.221 2.607 1.13 1.13
DES 960,854 0.98 43.441 93.79 1.66 1.32 1.17
MD5 1,191,566 1.22 52.89 23.01 42.77 2.76 1.45
SHA-1 2,559,602 2.76 113.86 27.27 58.64 1.90 1.00
SHA-256 4,591,982 4.91 201.98 52.22 108.43 2.32 1.17

Add 32 3,907 0.01 0.18 0.23 0.15 1.77 1.00
Add 64 8,963 0.02 0.40 0.45 0.32 1.90 1.00
Comp 32 1,188 0.01 0.05 0.04 0.04 2.12 1.08
Mult 32x32 130,053 0.14 5.51 1.42 4.06 2.67 1.36
Karatsuba 32x32 112,829 0.12 5.01 1.41 3.41 2.54 1.40

MD256 112,829 0.13 5.01 1.37 4.09 2.90 1.33
ED64 947,679 1.05 39.70 17.52 24.58 1.95 1.00

FP-Add 32 90,964 0.14 4.00 2.90 2.43 1.25 1.00
FP-Mul 32 185,968 0.18 8.11 2.04 3.65 1.58 1.33
FP-Exp2 32 1,265,869 1.34 55.72 19.38 25.16 1.59 1.22
FP-Div 32 181,904 0.18 7.89 1.91 5.27 2.05 1.30
FP-Sqrt 32 89,311 0.10 3.84 1.07 2.70 1.97 1.33
FP-Comp 32 5,269 0.01 0.22 0.11 0.093 1.21 1.07
FP-Log 32 1,230,530 1.31 54.16 16.17 24.69 1.57 1.22

VUC Improvement. Tab. 6 shows that our VUC construction which – other than LUC – leaks the
fanin of the individual LUTs is up to 2.90× smaller than Liu et al.’s UC [38] when evaluated with Yao’s
protocol [57], the total runtime for our sample circuits is faster by 1.1− 2.85× and the communication is
improved by 1.06− 2.96×. This shows that significant speedups can be achieved when giving up some
function privacy.

Note that during the process of compiling our VUC construction, our tool conducts an initial verification
to determine whether the LUC construction results in a better size than VUC, and, if so, proceeds to
compile a LUC. Nonetheless, in the majority of cases, VUC yields a better size by a factor of up to 1.45×.
The superiority of VUC over LUC is strongly influenced by the circuit design. Specifically, if the circuit
can primarily be constructed using Look-Up Tables (LUTs) with identical input dimensions, the overall
size is better than VUC. However, if the circuit can be effectively constructed using LUTs with differing
input dimensions, VUC performs better.
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12. Brüggemann, A., Hundt, R., Schneider, T., Suresh, A., Yalame, H.: FLUTE: Fast and Secure Lookup Table
Evaluations. In: S&P (2023)

13. Cook, S.A., Hoover, H.J.: A Depth-Universal Circuit. SIAM J. Computing (1985)

14. Demmler, D., Schneider, T., Zohner, M.: ABY - A Framework for Efficient Mixed-Protocol Secure Two-Party
Computation. In: NDSS (2015)

15. Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni, S., Zohner, M.: Pushing the Communication
Barrier in Secure Computation using Lookup Tables. In: NDSS (2017)

16. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, Springer (2010)

17. Fiore, D., Gennaro, R., Pastro, V.: Efficiently Verifiable Computation on Encrypted Data. In: CCS (2014)

18. Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving Credit Checking. In: ACM Conference on Electronic
Commerce (2005)

19. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-Based Encryption for Circuits from Multilinear
Maps. In: CRYPTO (2013)

20. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits.
In: CRYPTO (2010)

21. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness Theorem for
Protocols with Honest Majority. In: STOC (1987)
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A Proof of Prop. 1

Proof. Let Ĝ = (V̂ , Ê) with pole set P ⊂ V̂ be the merging of the Γρ(n) EUG G = (V,E) and the Γρ̄(n)

EUG Ḡ = (V̄ , Ē). Let G′ = (P,E′) ∈ Γρ+ρ̄(n) be the order-preserving graph to be edge-embedded into Ĝ.
By Kőnig’s theorem [16, Prop. 5.3.1], we can partition E′ into disjoint E′

1 and E′
2 such that E′ = E′

1 ∪E′
2,

G′
1 = (P,E′

1) ∈ Γρ(n) and G
′
2 = (P,E′

2) ∈ Γρ̄(n). Then G
′
1 and G′

2 can be edge-embedded into G and Ḡ
respectively. Define ψĜ : E′ → PĜ as follows:

ψĜ(e
′) 7→

{
ψG(e

′), if e′ ∈ E′
1,

ψḠ(e
′), if e′ ∈ E′

2.

Since E′ = E′
1 ∪E′

2, and all edges in E′
1 and E′

2 were edge-embedded into G and Ḡ, each edge is mapped
to a path. Furthermore, these paths are edge disjoint because E and Ē, in which E′

1 and E′
2 were

edge-embedded, are disjoint. ⊓⊔
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B Details of Liu et al.’s EUG construction [38]

Liu et al.’s 2-way EUG construction (cf. Def. 8) is depicted in Fig. 6b and is separated into two parts:

1. We create an intermediate construction that Liu et al. [38] call weak EUG (lines 1-13 in Alg. 2 on page
10), which slightly differs from Valiant’s construction but does not satisfy the acyclicness condition
for EUGs (cf. Def. 3). This results in the graph depicted in Fig. 6b including the gray edges and
nodes, but excluding the red edges.

2. We destroy the poles within the nested EUGs of the intermediate construction, which implicitly
removes the cycles and leads to an EUG of smaller size (lines 14-27 in Alg. 2 on page 10). This results
in the graph depicted in Fig. 6b including the red edges, but excluding the gray edges and nodes.

As in Valiant’s construction (cf. §3.2), Liu et al. build their EUG as a chain of ⌈n/k⌉ super-
poles SP (k)1, . . . , SP (k)⌈n/k⌉ (lines 3-7 in Alg. 2 on page 10). For the nested EUGs, i.e., those EUGs
that are built by recursion, we use the superpole depicted in Fig. 6a.9) as the recursion points of two
superpoles are disjoint. Recall, in Valiant’s construction, we merge the input and output recursion
points of neighboring superpoles, namely the i-th and the (i + 1)-st superpoles. This time, however,
we merge the input and output recursion points of each superpole individually as depicted in Fig. 6a,
i.e., for SP (k)i = (Gi = (Vi, Ei), Pi,Pi, Ii,Oi), the k nested EUGs in the next recursion step are
built as G1 = (V 1, E1), . . . , Gk = (V k, Ek) with pole sets P 1, . . . , P k, where Gj ∈ Γ1(⌈n/k⌉) and
P j = (O1[j], . . . ,On/k[j]) = (I1[j], . . . , I⌈n/k⌉[j]) for i ∈ [⌈n/k⌉] and j ∈ [k]. As a consequence, this
construction then yields a pole set of size |P i| = ⌈n/k⌉ (line 11 in Alg. 2 on page 10) for the k nested
EUGs as each superpole needs a separate input/output recursion point, while in Valiant’s construction
two neighboring superpoles are able to share one input/output recursion point yielding a pole set of
size |PVali | = ⌈n/k⌉− 1 (line 12 in Alg. 1 on page 8), i.e., Liu et al.’s intermediate construction even has a
worse size than Valiant’s construction. On top of that, as Fig. 6b shows, this merging of input and output
recursion points within the same pole leads to cycles that are not allowed in EUGs according to Def. 3.

However, there is one key observation that allows to reduce the size of the intermediate EUG
tremendously. Note, so far we have built the construction as depicted in Fig. 6b including the gray edges
and excluding the red edges. Now, we want to remove the gray edges and introduce the red ones in
order to get rid of the cycles and turn this weak EUG into a real EUG. First, let us have a look at the
node v = (in/out)jl in Fig. 6b and ignoring the red edges first. When we translate this graph into a UC,
we would implement v as an X-switch because it has two inputs and two outputs. One input of this
X-switch is the output of superpole SP (k)i/2 (that contains the poles pi and pi+1) and one output of this
X-switch is the input of the same superpole SP (k)i/2. However, as we are not allowed to have cycles in a
Boolean circuit that implements combinational logic, we are not allowed to program the X-switch such
that its input coming from superpole SP (k)i/2 is forwarded to its output that is directed to the input of
superpole SP (k)i/2. Consequently, the X-switch allows only one programming, namely the one that does
not lead to a cycle. However, since the programming of this X-switch is fixed, we can replace it with two
wires, i.e., we can remove the whole X-switch and thus also the node v and connect the corresponding
wires to the other input and output of v that are not directed to/from the superpole SP (k)i/2 (cf. red
lines in Fig. 6b and lines 15-26 in Alg. 2 on page 10). This reduces the size of the superpole in nested
EUGs to 3 for k = 2 (resp. 14 for k = 4) as the two (resp. four) poles are removed.

9 Note that the main structure is equal to Valiant’s superpole (cf. Figure 3b), but the input and output
recursion points are merged. That is why createSuperpole in Alg. 2 on page 10 does not need the second
argument (cf. Alg. 1 on page 8
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(b) Basic structure for the 2-way split.

Fig. 6: (a) Superpole and (b) basic structure of Liu et al.’s 2-way split construction [38].
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