
Just How Fair is an Unreactive World?

Srinivasan Raghuraman∗ Yibin Yang†

October 27, 2023

Abstract

Fitzi, Garay, Maurer, and Ostrovsky (J. Cryptology 2005) showed that in the presence of a
dishonest majority, no primitive of cardinality n−1 is complete for realizing an arbitrary n-party
functionality with guaranteed output delivery. In this work, we show that in the presence of n−1
corrupt parties, no unreactive primitive of cardinality n−1 is complete for realizing an arbitrary
n-party functionality with fairness. We show more generally that for t > n

2 , in the presence of t
malicious parties, no unreactive primitive of cardinality t is complete for realizing an arbitrary
n-party functionality with fairness. We complement this result by noting that (t+ 1)-wise fair
exchange is complete for realizing an arbitrary n-party functionality with fairness. In order to
prove our results, we utilize the primitive of fair coin tossing and the notion of predictability.
While this notion has been considered in some form in past works, we come up with a novel and
non-trivial framework to employ it, one that readily generalizes from the setting of two parties
to multiple parties, and also to the setting of unreactive functionalities.1

Keywords: Secure computation, unreactive functionalities, fair coin tossing.

∗Visa Research, srraghur@visa.com.
†Georgia Institute of Technology, yyang811@gatech.edu. This work was done in part while the author was at Visa

Research.
1The authors grant IACR a non-exclusive and irrevocable license to distribute the article under the

https://creativecommons.org/licenses/by-nc/3.0/.

Contents

1 Introduction 1
1.1 Related Work on Coin Tossing . 3
1.2 Technical Overview . 4

2 Preliminaries 7
2.1 Notation and Definitions . 7
2.2 Secure Computation . 7

2.2.1 Functionalities . 7
2.2.2 Adversaries . 8
2.2.3 Model . 8
2.2.4 Protocol . 8
2.2.5 Security with Guaranteed Output Delivery 8
2.2.6 Security with Fairness . 10

2.3 Coin Tossing Protocols . 10
2.4 The Hybrid Model . 12
2.5 Unreactive Functionalities . 12
2.6 Broadcast . 13
2.7 Synchronizable Exchange . 13

3 Bypassing [Cle86]’s Lower Bound in Unreactive Worlds 15
3.1 Our Model: The Unreactive World . 15

3.1.1 Generality . 17
3.2 Fairness versus Guaranteed Output Delivery . 18
3.3 Bypassing [Cle86]’s Lower Bound in Unreactive Worlds 19

4 Alice and Bob: Same World, Different Proofs 20

5 All-but-one Corruptions in Unreactive Worlds 24
5.1 Generalizing Predictors and Predictabilities . 24
5.2 Attackable Non-negligible Gaps . 26
5.3 Communication Channels v.s. Unreactive Fs v.s. Reactive Fs. 28

6 Threshold Corruptions in Unreactive Worlds 29
6.1 Generalizing Predictor and Predictability . 29
6.2 Attackable Non-negligible Gaps . 31

6.2.1 Resolving Challenge 1: Rearrange Unreactive Functionalities. 31
6.2.2 Resolving Challenge 2: Batch Broadcast. 32
6.2.3 Resolving Challenges 1&2. 33
6.2.4 Resolving the Special Case of n = 5, t = 3 . 33

7 Refinements: Cosmetic and Crucial 34
7.1 Ruling out Statistical Agreement . 34
7.2 Relaxing the Need to Follow the Unreactive Syntax 35

i

1 Introduction

Secure multiparty computation (MPC) [Yao86] allows a set of n mutually mistrusting parties to
perform a joint computation on their inputs that reveals only the output of the computation and
nothing else. Several definitions of MPC have been considered in the literature. Often, they have a
lot to do with the kinds of adversaries we are trying to achieve security against, and in particular, the
number of parties t that the adversary is allowed to corrupt. The most commonly used definition is
that of security-with-abort, where the adversary is allowed to abort or quit after learning its output,
even if the honest parties do not learn theirs. In contrast to security-with-abort, one can consider
stronger notions of security such as fairness and guaranteed output delivery. Fairness means that
either all parties get the output or none do. Guaranteed output delivery means that all parties
get the output. In settings where a majority of the participating parties can be corrupted, that
is, t ≥ n

2 , all feasibility results [Yao86, GMW87, BGW88, CCD88, RB89] that design a protocol
for MPC only provide security-with-abort. On the other hand, when only up to t < n

3 parties can
be corrupted, then there exist MPC protocols with guaranteed output delivery [BGW88, CCD88]
(this result can be extended to a setting where up to t < n

2 parties can be corrupted assuming the
existence of a broadcast channel [GMW87, RB89]). Cleve [Cle86] showed that dishonest majority
fair coin tossing is impossible, inferring that MPC with even fairness is impossible in general for
t ≥ n

2 (although several works [GHKL11, GK09, Ash14, ABMO15] showed the existence of non-
trivial functions for which MPC with fairness and even guaranteed output delivery is possible in
the dishonest majority setting).

Given the above fairly tight characterization of what can be achieved in the realm of MPC,
a natural question is whether additional resources, that we call channels or functionalities2, help
to achieve stronger security for MPC, and if so, by how much. Indeed, as we noted above, a
broadcast channel moves the boundary from t < n

3 to t < n
2 for MPC with guaranteed output

delivery. Even the impossibility result of Cleve [Cle86] can be trivially bypassed with access to a
fair exchange functionality. One of the seminal works in this line is that of Fitzi, Garay, Maurer,
and Ostrovsky [FGMO05] who studied functionalities that enable MPC with guaranteed output
delivery in the presence of a dishonest majority. They showed that no functionality of cardinality3

n − 1 is complete for n-party MPC. More generally, for n ≥ 3 and β < n, they show that no
functionality of cardinality β is complete when t ≥ ⌈β−1

β+1 ·n⌉. Also, when t ≥ n−2, no functionality
of cardinality β < n is complete (they also show a primitive of cardinality n that is complete for
n-party MPC when t ≥ n− 2).

The impossibility results in [FGMO05] are derived by showing the impossibility of broadcast
given a functionality of cardinality β. Cohen and Lindell [CL17] showed that the presence of a
broadcast channel is inconsequential to achieving the goal of fairness, that is, they showed that any
protocol for fair computation that uses a broadcast channel can be compiled into one that does not
use a broadcast channel assuming one-way functions (they also showed that assuming the existence
of a broadcast channel, any protocol for fair secure computation can be compiled into one that
provides guaranteed output delivery). Therefore, the impossibility results of [FGMO05] does not
extend to MPC with fairness, giving rise to the question of whether there exist functionalities of
cardinality β < n that are complete for MPC with fairness.

Gordon et al. [GIM+10] propose primitives that are complete for MPC with fairness4. However,

2These channels may be implemented via a trusted third party, or hardware or cryptographic assumptions.
3Cardinality refers to the number of parties interacting with a single instance of the ideal primitive.
4In fact, some of their primitives are also complete for MPC with guaranteed output delivery. The upside of these

1

these primitives are of cardinality n, and thus do not answer the question of whether a primitive of
cardinality less then n can be complete for MPC with fairness. Recently, Kumaresan et al. [KRS20]
propose a functionality of cardinality 2 called synchronizable fair exchange (FSyX) that is complete
for MPC with fairness in the presence of a dishonest majority, thus answering the question raised
above. However, FSyX is a reactive functionality. Reactive functionalities can be invoked multiple
times and potentially maintain state between invocations. Unreactive functionalities, on the other
hand, can only be invoked once. Reactive functionalities clearly have the potency to be far more
powerful than unreactive ones. For this and other reasons, the assumption of having a reactive
functionality is undoubtedly strong one and hard one to justify. Indeed, if one could achieve the
same things that FSyX does, but with unreactive functionalities, that would be preferable. Given
this, we pose the following question that we completely address in our work:

Just how fair is an unreactive world with only unreactive functionalities?
Is MPC with fairness achievable with unreactive functionalities?

False folklore. At first glance, it might seem that reactive functionalities can be emulated by
using unreactive functionalities and standard authenticated secret sharing techniques (to share the
state after each stage of the reactive functionality). This “folklore” emulation is not secure when
considering fair MPC. This is because reactive functionalities can provide the honest parties with
non-trivial output even if the adversary aborts. However, if one emulates a reactive functionality
using an unreactive one and secret sharing, honest parties cannot obtain such outputs after the
adversary aborts since the adversary needs to provide its shares for the emulation. This is crucial
because in the multiparty setting, invoking reactive functionalities once may be sufficient for the
adversary to get the output, but not the honest party, which is what makes our result non-trivial.

Our contributions. In this work, we show that an unreactive world is not very fair. On the
negative side, we show that unreactive functionalities of cardinality β upper bounded by n− 1 are
incomplete for MPC with fairness. More generally, for t > n

2 and β ≤ t, no unreactive functionality
of cardinality β is complete for MPC with fairness. We establish this result by showing that a
specific n-party primitive, fair coin tossing, cannot be realized using unreactive functionalities of
cardinality t in the presence of t malicious parties for t > n

2 .
One could view our work as an extension of the result of [Cle86] to the setting of unreactive

functionalities. However, the extension is non-trivial as the techniques of [Cle86] face several
challenges in the setting of unreactive functionalities. In order to surmount these challenges, we
introduce the notion of predictability which we believe is of independent interest, as it provides
highly tangible insight and directives in the design of protocols for fair coin tossing.

On the positive side, we show that for t ≥ n
2
5 and β = t + 1, the unreactive functionality of

β-wise fair exchange is complete for MPC with fairness. For t = n
2 and β = 2, the unreactive

functionality of 2-wise fair exchange is complete for MPC with fairness. This entirely covers the
space of parameters for t and β.

We summarize our contributions in Table 1 and in the (informal) theorem below.

primitives is that unlike [FGMO05], their primitive complexity is independent of the function being computed.
5Note that for t < n

2
, no functionality is needed for MPC with fairness.

2

Table 1: Our contributions.

t
Insufficient functionalities Sufficient functionalities

for fair coin tossing for fair MPC

t < n
2 – Local computation [FGMv02]

t = n
2 Local computation [Cle86] 2-wise fair exchange [ours]

t > n
2 Arbitrary unreactive t-wise [ours] (t+ 1)-wise fair exchangea [ours]

aOr 2-wise FSyX (Lemma 2, [KRS20]).

Theorem (informal).

• For n
2 < t < n, there does not exist a fair coin tossing protocol using unreactive primitives of

cardinality upper bounded by t.

• For n
2 < t < n, there exists a protocol for arbitrary MPC with fairness using (t+ 1)-wise fair

exchange.

• For t = n
2 , there exists a protocol for arbitrary MPC with fairness using 2-wise fair exchange.

Note that our results have very interesting consequences. For instance, our results show that a
2-wise fair coin toss cannot be used to obtain a 3-wise fair coin toss in the presence of 2 malicious
parties. Note that this is in contrast to the world of security-with-abort, where oblivious transfer
or 2-wise MPC with abort can be used to obtain n-wise MPC with abort for all n ≥ 2 [Kil88].

1.1 Related Work on Coin Tossing

Cleve [Cle86] showed that for any n-party R-round coin tossing protocol where parties are connected
with k communication channels, there exists an adversary that can bias the honest parties’ common
output bit by Θ(1

R)
6. Prior to [Cle86]’s lower bound, Awerbuch et al. [ABC+85] designed a coin

tossing protocol with Θ(1√
R
)7 bias8. [ABC+85]’s protocol works under any hardness assumption and

for any number of parties. Since then, there have been numerous works that focus on eliminating
this gap between Θ(1√

R
) for the protocols and Θ(1

R) in the lower bound.

Many works (e.g., [MNS09, BOO10, HT14, AO16, BHLT17]) have tried to design new coin
tossing protocols to get as close to [Cle86]’s bound as possible, while others (e.g., [MW20, BHMO22])
tried to prove a tighter bound. In the positive direction, the setting is computational and often
assumes the existence of oblivious transfer (OT). We summarize the positive and negative results
from the literature along with our own results in Table 2 and Table 3 respectively. Despite the
array of works on the topic, the problem of designing a coin tossing protocol in the computational
setting that achieves [Cle86]’s lower bound in general still remains open.

Other lines of work focus on coin tossing protocols or even general multi-party computations
with weaker security guarantees. [Blu84, IL89, Nao91, HNO+09, MPS10, HO14, BHT18] studied
coin tossing protocols with security-with-abort. [BK14, KVV16] studied general MPC protocols in
the model of fairness with penalty, where the adversary must pay a penalty (e.g., via digital currency

6More explicitly, the bias is Θ(1
nRk

).
7More explicitly, the bias is Θ(n√

R
).

8[Cle86] specified [ABC+85]’s protocol for the 2-party case and analyzed the bias.

3

Table 2: Positive results (IT is information-theoretic; Comp. is computational).

Protocol Assumption Setting Constraint Bias

[ABC+85] OWFa IT ⊥ Θ(1√
R
)

[MNS09] OT Comp. n = 2 Θ(1
R)

[BOO10] OT Comp. t < 2
3n Θ(2

22t−n

R)

[HT14] OT Comp. n = 3 O(log
3 R
R)

[AO16] OT Comp. t < 3
4n O(2

2n log3 R
R)

[BHLT17] OT Comp. n ≤ 1
2 log logR O(n4·2n·

√
logR

R1/2+1/(2n−1−2)
)

[ours] 2-wise FX
b IT t = n

2 0

[ours] (t+ 1)-wise FX IT ⊥ 0

aOWF denotes one-way function.
bFX denotes fair exchange.

Table 3: Negative results (IT is information-theoretic; Comp. is computational).

Work Assumption Setting Constraint Bias

[Cle86] ⊥ IT/Comp. t > n
2 Θ(1

R)

[CI93] ⊥ IT t > n
2 Θ(1√

R
)

[MW20] Black-box OWF, ROa ITb n = 2, t = 1c Θ(1√
R
)

[BHMO22] ⊥ Comp. ∃k ∈ N, nk ≥ Rd Θ(1√
R log(R)k

)

[ours] Unreactive t-wise F s Comp. t > n
2 Θ(1

R)

aRO denotes random oracle.
bHowever, the adversary only allows to make polynomially-many additional queries to the random oracle.
cCan be extended to t > ⌊n

2
⌋ with an adjusted bound.

dCan be extended to t > ⌊n
2
⌋ with an adjusted bound.

such as Bitcoin [Nak08]) if it aborts after learning the output. Very recently, [CGL+18, WAS22]
studied coin tossing protocols in a game-theoretic sense where each party would like to bias the
output of the coin toss in a specific direction. Coin tossing protocols have been proposed in
several other models as well. [BOL85, Sak89, AN90, Fei99, RZ01, GKP15, HKH20, KKR21]
studied collective coin-flipping in the full information model where the parties are connected to a
broadcast channel and keep no private state between the different communication rounds. [BC90,
ATVY00, Amb01, ABDR04] studied the quantum coin tossing protocols. [MN05] studied the use
of tamper-evident seals in coin tossing protocols.

1.2 Technical Overview

Upper bounds. We note that fair MPC can be reduced to fair reconstruction of a secret [GIM+10,
KRS20]. We simply demonstrate that a (t + 1)-wise fair exchange suffices to perform fair recon-
struction in the presence of t malicious parties. Intuitively, this follows from the fact that there is
always an honest party who is part of the (t+ 1)-wise fair exchange and hence learns the result of
the exchange if the adversary does. Our more interesting upper bound is for the case of t = n

2 where

4

2-wise fair exchange suffices. The intuition of the protocol that achieves this is the following. Let s
denote the secret to be reconstructed. We secret share s using an

(
n
2 + 1

)
-out-of-n secret sharing.

Our protocol will require all pairs of parties to exchange their shares using 2-wise fair exchanges.
Notice that both the adversary and the honest parties are one share away from the output. Thus,
for anyone to learn the output, at least one pair of parties, one of whom is honest and the other
malicious, must perform a 2-wise exchange successfully. But on doing so, both sides have enough
shares to reconstruct s.

Lower bounds. A first attempt at proving our lower bounds would be to consider the lower
bounds of [Cle86] and somehow generalize them to a model that allows the use unreactive function-
alities of cardinality at least 2. We call this model an unreactive world, which we formally define
in Section 3.1. However, this exercise turns out to be a futile one. Right off the bat, for some
parameters, fair MPC is not achievable in [Cle86]’s model, but is achievable in ours, as shown by
our upper bounds (see Section 3.3). Thus, one needs a different approach to prove lower bounds in
unreactive worlds.

To this end, we utilize the notions of predictability and a predictor for coin tossing protocols
(see Definitions 6 and 8).9 At a high level, a predictor is some computation which allows parties
to calculate the final output of a coin tossing protocol after executing just a prefix of it. A very
intuitive understanding of predictability is the following. Consider the beginning of the protocol,
where parties have access to their local state10 and nothing else. It is easy to see that the set of all
parties can jointly predict the output of the protocol at this stage, while individual parties may not,
in fact, should not, be able to. However, at the end of the protocol, each individual party is able to
predict the final output. Thus, over the course of protocol, predictability of every subset of parties
evolves. Our proof demonstrates and exploits the fact that there are points in the protocol where
some subsets of parties can predict the output non-negligibly better than others. In our proof, we
call such a non-negligible difference in predictabilities as a gap. The crucial step of our proofs will
be to locate a gap that will help us construct adversarial strategies that will bias the output of an
honest party non-negligibly. We call such a gap an attackable gap.

To locate an attackable gap, we introduce the notion of a predictor graph. The vertices of this
graph are predictors. Two predictors are connected by an edge in the predictor graph if and only
if they form what we call an attackable pair (see Definitions 7 and 9). It turns out that a non-
negligible gap in the predictabilities of an attackable pair is an attackable gap. Thus, it suffices to
find an attackable pair with a non-negligible gap. By virtue of the triangle inequality, this reduces
to the following problem: find a path of polynomial length in the predictor graph whose endpoints
are predictors with a non-negligible gap. Our entire proof technique is demonstrating how to find
such paths and thus locate an attackable gap.

As a toy illustration of our technique, we consider the following simple example described
in Figure 1. Consider a 6-party 1-round coin tossing protocol among the 6 parties {A,B,C,D,E, F}
which only uses the 4-wise unreactive functionalities F (1)

{C,D,E,F},F
(1)
{A,B,E,F},F

(1)
{A,B,C,D} in that order

(F (1)
S denotes the unreactive functionality which is connected to the set of parties S). At the

beginning of the protocol (Figure 1a), no party can predict the output; at the end of the protocol

9Our method of employing predictors and predictabilities to attack coin tossing protocols is distinct from other
those considered in prior works (e.g. [AOP20, Cle86, HIK+19, HZ10, IKK+11]).

10Let us assume that the local state contains all the randomness that the party will ever use through the course of
the protocol.

5

A

B

C

D

F

E

?

?

?

?

?

?

(a)

A

B

C

D

F

E

?

?

?

?

?

?
ℱ{",$,%,&}

(

(b)

A

B

C

D

F

E

?

?

?

?

!

!
ℱ{",$,%,&}

(

(c)

A

B

C

D

F

E

!

!

!

!

!

!
ℱ{",$,%,&}

(

(d)

Figure 1: Toy illustration of our technique.

(Figure 1d), all parties can predict the output. After F (1)
{C,D,E,F} is executed (Figure 1b), if the

parties {C,D} can predict the output, they will be able to attack the parties {A,B} since {A,B}
have not received any messages. Otherwise, the parties {C,D} cannot predict the output with
one message, and the parties {E,F} will be able to predict the output with two messages after

F (1)
{A,B,E,F} is executed (Figure 1c), and so they can attack the parties {C,D}.
Let us now translate this intuition into our language of predictor graphs and attackable gaps

(see Figure 2). For i ∈ {0, 1, 2} and S ∈ {{A,B}, {C,D}, {E,F}}, let P (i)
S denote the predictability

of the parties in the set S after having received i messages through invocations of unreactive

functionalities. Note that P
(0)
· = 1

2 as no party can predict the output at the beginning of the

protocol, and P
(2)
· = 1 as all parties can predict the output at the end of the protocol. We

construct a graph whose nodes are P
(i)
S and edges connect attackable pairs. We formally define

attackable pairs later, but to get a feel for them, let us explain why P
(0)
{A,B} and P

(1)
{C,D} constitute

an attackable pair. After the execution of F (1)
{C,D,E,F}, {C,D} each holds 1 message while {A,B}

each holds 0 messages. Thus, if the parties {C,D} can predict the output with 1 message, they
will be able to attack the parties {A,B} as noted before. There is more to this story, but it turns
out that the attackable pairs correspond to precisely the edges in the predictor graph in Figure 2.

Notice that the predictor graph has a path from P
(0)
{A,B} to P

(2)
{E,F}. Recall that P

(0)
{A,B} = 1

2 and

P
(2)
{E,F} = 1. By the triangle inequality, at least one of

∣∣∣P (1)
{C,D} − P

(0)
{A,B}

∣∣∣ and
∣∣∣P (2)

{E,F} − P
(1)
{C,D}

∣∣∣
must be non-negligible, i.e., at least one of the attackable pairs suffers from an attackable gap.

Our attack versus those based on [Cle86]. One may wonder how our approach of using
predictors differs from those in prior works. Indeed, both [Cle86] (and other past works) and our
work design adversarial strategies that use “back-up” values of parties in the protocol (captured
as the predictor in this work), i.e., the value that a party (or a set of parties) should output in the
case that all other parties abort. [Cle86] uses the fact that these values begin as independent from
one another and become more and more correlated as the protocol execution progresses. Our work
uses the fact that these values begin as independent from the final outcome and become a better
prediction of the final outcome as the protocol execution progresses. Our approach is not only more
intuitive but also generalizes to the multiparty setting and the setting of unreactive functionalities.

6

P
(0)
{A,B}

P
(0)
{C,D}

P
(0)
{E,F}

P
(1)
{A,B}

P
(1)
{C,D}

P
(1)
{E,F}

P
(2)
{A,B}

P
(2)
{C,D}

P
(2)
{E,F}

Figure 2: The predictor graph corresponding to the toy illustration from Figure 1. The dark thicker
edges constitute a path in the predictor graph that demonstrates the existence of an attackable gap.

2 Preliminaries

2.1 Notation and Definitions

For n ∈ N, let [n] = {1, 2, . . . , n}. Let λ ∈ N denote the security parameter. Symbols in with an
arrow over them such as −→a denote vectors. By ai we denote the i-th element of the vector −→a . By
poly(·), we denote any function which is bounded by a polynomial in its argument. An algorithm
T is said to be PPT if it is modeled as a probabilistic Turing machine that runs in time polynomial
in λ. Informally, we say that a function is negligible, denoted by δ(λ), if it vanishes faster than the
inverse of any polynomial in λ. Similarly, we denote a function is non-negligible as ϵ(λ).

Let X ,Y be two probability distributions over some set S. Their statistical distance is

SD (X ,Y) def
= max

T⊆S
{|Pr[X ∈ T]− Pr[Y ∈ T]|}

We say that X and Y are ν-close if SD (X ,Y) ≤ ν denoted by X ≈ν Y. We say that X and Y
are identical if SD (X ,Y) = 0 denoted by X ≡ Y.

2.2 Secure Computation

We recall most of the definitions regarding secure computation from [CL17] and [GHKL11]. We
present them here for the sake of completeness and self-containedness. Consider the scenario of n
parties P1, . . . , Pn with private inputs x1, . . . , xn ∈ X .

2.2.1 Functionalities

A functionality f is a randomized process that maps n-tuples of inputs to n-tuples of outputs, that
is, f : X n → Yn. We write f = (f1, . . . , fn) if we wish to emphasize the n outputs of f , but stress
that if f1, . . . , fn are randomized, then the outputs of f1, . . . , fn are correlated random variables.
Here, we refer to n as the cardinality of the functionality f .

7

2.2.2 Adversaries

We consider security against static t-threshold adversaries, that is, adversaries that corrupt a set
of at most t parties, where 0 ≤ t < n11. We assume the adversary to be malicious. That is, the
corrupted parties may deviate arbitrarily from an assigned protocol.

2.2.3 Model

We assume the parties are connected via a fully connected point-to-point network; we refer to this
model as the point-to-point model. We sometimes assume that the parties are given access to a
physical broadcast channel (defined in Section 2.6)12 in addition to the point-to-point network; we
refer to this model as the broadcast model. The communication lines between parties are assumed
to be ideally authenticated and private (and thus an adversary cannot read or modify messages
sent between two honest parties). Furthermore, the delivery of messages between honest parties is
guaranteed.

2.2.4 Protocol

An n-party protocol for computing a functionality f is a protocol running in polynomial time and
satisfying the following functional requirement: if for every i ∈ [n], party Pi begins with private
input xi ∈ X , then the joint distribution of the outputs of the parties is statistically close to
(f1(−→x), . . . , fn(−→x)). We assume that the protocol is executed in a synchronous network, that
is, the execution proceeds in rounds: each round consists of a send phase (where parties send
their message for this round) followed by a receive phase (where they receive messages from other
parties). The adversary, being malicious, is also rushing which means that it can see the messages
the honest parties send in a round, before determining the messages that the corrupted parties
send in that round.

The security of a protocol is analyzed by comparing what an adversary can do in a real protocol
execution to what it can do in an ideal scenario that is secure by definition. This is formalized
by considering an ideal computation involving an incorruptible trusted party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs and returns to each
party its respective output. Loosely speaking, a protocol is secure if any adversary interacting in
the real protocol (where no trusted party exists) can do no more harm than if it were involved in
the above-described ideal computation.

2.2.5 Security with Guaranteed Output Delivery

The security of a protocol is analyzed by comparing what an adversary can do in a real protocol
execution to what it can do in an ideal scenario that is secure by definition. This is formalized
by considering an ideal computation involving an incorruptible trusted party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs and returns to each
party its respective output. Loosely speaking, a protocol is secure if any adversary interacting in
the real protocol (where no trusted party exists) can do no more harm than if it were involved in
the above-described ideal computation.

11Note that when t = n, there is nothing to prove.
12This can also be viewed as working in the Fbc-hybrid model. See Section 2.4.

8

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. Denote the inputs
sent to the trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs: If x′i ̸∈ X for any i ∈ [n], the trusted party sets x′i to
some default input in X . Then, the trusted party chooses r uniformly at random and sends
f i(x′1, . . . , x

′
n; r) to party Pi for every i ∈ [n].

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealg.d.f,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Execution in the real model. We next consider the real model in which an n-party protocol
π is executed by P1, . . . , Pn (and there is no trusted party). In this case, the adversary A gets the
inputs of the corrupted party and sends all messages on behalf of these parties, using an arbitrary
polynomial-time strategy. The honest parties follow the instructions of π.

Let f be as above and let π be an n-party protocol computing f . Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. We let Realπ,I,A(z)(x1, . . . , xn, λ)
be the random variable consisting of the view of the adversary and the output of the honest parties
following an execution of π where Pi begins by holding xi for every i ∈ [n].

Security as emulation of an ideal execution in the real model. Having defined the ideal
and real models, we can now define security of a protocol. Loosely speaking, the definition asserts
that a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows.

Definition 1. Protocol π is said to securely compute f with guaranteed output delivery if for every
non-uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform
probabilistic polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealg.d.f,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealg.d.f,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

9

2.2.6 Security with Fairness

In this definition, the execution of the protocol can terminate in two possible ways: the first is
when all parties receive their prescribed output (as in the case of guaranteed output delivery) and
the second is when all parties (including the corrupted parties) abort without receiving output.
The only change from the definition in the case of guaranteed output delivery above is with regard
to the ideal model for computing f , which is now defined as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. Denote the inputs sent to the trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs: If x′i ̸∈ X for any i ∈ [n], the trusted party sets x′i to some
default input in X . If there exists an i ∈ [n] such that x′i = abort, the trusted party sends
⊥ to all the parties. Otherwise, the trusted party chooses r uniformly at random, computes
zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi to Pi for every i ∈ [n].

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealfairf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 2. Protocol π is said to securely compute f with fairness if for every non-uniform
probabilistic polynomial-time adversary A in the real model, there exists a non-uniform probabilistic
polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealfairf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealfairf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

2.3 Coin Tossing Protocols

In this section, we formally define coin tossing protocols. While we follow prior works, we present
the definitions for the sake of completeness.

10

Definition 3 (Coin Tossing Protocols). Consider a protocol π among n ∈ N parties P1, . . . , Pn

where each party Pi takes as input the string 1λ and outputs a single bit resi ∈ {0, 1} after the
execution of π. The protocol π is said to be a coin tossing protocol if and only if when all parties
follow the protocol:

• [Uniform Coin] For all i ∈ [n],∣∣∣∣Pr[resi = 0]− 1

2

∣∣∣∣ ≤ δi(λ)

for some negligible function δi(λ).

• [Agreement] For any i, j ∈ [n],

Pr[resi = resj] = 1

Given the above, throughout our work, we will denote the output of a coin tossing protocol by
res, as opposed to considering resi for each Pi∈[n].

The security property called t-resistance of coin tossing protocols is that even if t ∈ [n−1] parties
in the n-party coin tossing protocol π are corrupted and deviate arbitrarily from the protocol, the
remaining n− t honest parties each agree on and output a uniform bit.

Definition 4 (t-resistance). Consider a coin tossing protocol π among n ∈ N parties P1, . . . , Pn.
The protocol π is said to be t-resistant (where t ∈ [n − 1]) if and only if when any t parties are
corrupt and deviate arbitrarily from π, and the remaining n− t honest parties execute π:

• [Uniform Coin] For any output r̃esi of honest Pi where i ∈ [n]∣∣∣∣Pr[r̃esi = 0]− 1

2

∣∣∣∣ ≤ δi(λ)

for some negligible function δi(λ).

• [Agreement] For any i, j ∈ [n] such that Pi and Pj are honest,

Pr[r̃esi = r̃esj] = 1

Throughout our work, if an n-party coin tossing protocol satisfies t-resistance, we call it an
n-party t-fair coin tossing protocol. We may omit t and n if it is clear from context.

In Definitions 3 and 4, we ask that honest parties make perfect agreement, that is, the probability
that they agree is 1. This is merely for ease of presentation. All of our results also apply to the
setting where honest parties only make statistical agreement, that is, they agree with all but
probability negligible in λ. We elaborate on this in Section 7.

A critical notion, introduced by [Cle86], is that of bias, which is a measure of the non-uniformity
(with respect to a uniform coin) of the honest party’s coin in the presence of an adversary.

Definition 5 (Bias). Consider a coin tossing protocol π among n ∈ N parties P1, . . . , Pn. We say
an adversary (set of corrupt parties) can bias an honest party Pk (for k ∈ [n]) by ν(λ) if and only
if the output r̃esk of Pk satisfy ∣∣∣∣Pr[r̃esk = 0]− 1

2

∣∣∣∣ ≥ ν(λ)

11

2.4 The Hybrid Model

We recall the definition of the hybrid model from [GHKL11] and [CL17]. The hybrid model com-
bines both the real and ideal worlds. Specifically, an execution of a protocol π in the G-hybrid
model, for some functionality G, involves parties sending normal messages to each other (as in the
real model) and, in addition, having access to a trusted party computing G. The parties commu-
nicate with this trusted party in exactly the same way as in the ideal models described above; the
question of which ideal model is taken must be specified.

Let type ∈ {g.d., fair}. Let G be a functionality and let π be an n-party protocol for computing
some functionality f , where π includes real messages between the parties as well as calls to G. Let
A be a non-uniform probabilistic polynomial-time machine with auxiliary input z. A corrupts at
most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties corrupted by
A. Let HybridG,type

π,I,A(z)(
−→x , λ) be the random variable consisting of the view of the adversary and

the output of the honest parties, following an execution of π with ideal calls to a trusted party
computing G according to the ideal model “type” where Pi begins by holding xi for every i ∈ [n].
Security in the model “type” can be defined via natural modifications of Definitions 1 and 2. We
call this the (G, type)-hybrid model.

The hybrid model gives a powerful tool for proving the security of protocols. Specifically, we
may design a real-world protocol for securely computing some functionality f by first constructing
a protocol for computing f in the G-hybrid model. Letting π denote the protocol thus constructed
(in the G-hybrid model), we denote by πρ the real-world protocol in which calls to G are replaced
by sequential execution of a real-world protocol ρ that computes G in the ideal model “type”.
“Sequential” here implies that only one execution of ρ is carried out at any time, and no other
π-protocol messages are sent during the execution of ρ. The results of [Can00] then imply that if π
securely computes f in the (G, type)-hybrid model, and ρ securely computes G, then the composed
protocol πρ securely computes f (in the real world). For completeness, we state this result formally
as we will use it in this work.

Lemma 1. Let type1, type2 ∈ {g.d., fair}. Let G be an n-party functionality. Let ρ be a protocol
that securely computes G with type1, and let π be a protocol that securely computes f with type2 in
the (G, type1)-hybrid model. Then protocol πρ securely computes f with type2 in the real model.

Sometimes, while working in a hybrid model, say the (G, type)-hybrid model, we will suppress
type and simply state that we are working in the G-hybrid model. This is because type is implied by
the context, G. For instance, unless specified otherwise, when G = Fbc

13 (broadcast functionality),
type = g.d..

When working in a hybrid model that uses multiple ideal functionalities, G1, . . . ,Gk with asso-
ciated types type1, . . . , typek for some k ∈ N, we call it the (G1, type1, . . . ,Gk, typek)-hybrid model.
Furthermore, we will suppress typej when typej is implied by the context, Gj for j ∈ [k].

2.5 Unreactive Functionalities

Consider a functionality G with an associated type type. We say that G is unreactive if and only
if the computation performed by G can be realized by a circuit with access to randomness14. An

13See Section 2.6.
14One way to model this is to consider circuits which in addition to regular computational gates, additionally have

“random” gates that simply produce random bits as output.

12

Preliminaries: x ∈ {0, 1}∗. The functionality proceeds as follows:

• Upon receiving the input x from the sender P1, send x to all parties P1, . . . , Pn.

Figure 3: The ideal functionality Fbc.

alternative characterization would be that G only has one phase and hence can be emulated by a one-
time15 trusted third-party with access to randomness. Therefore, an instance of G will (1) receive
the inputs; (2) compute the intended program to obtain the outputs; and (3) deliver the outputs
(according to the type). After the delivery process, the instance will be totally obliterated, i.e., it
can no longer be accessed. This would mean that different invocations of the same functionality G
can be seen as invocations of multiple “different” functionalities.

2.6 Broadcast

Broadcast is defined as in Figure 3. We recall that the ideal functionality for broadcast, namely
Fbc, can be securely computed with guaranteed output delivery in the presence of t-threshold
adversaries if and only if 0 ≤ t < n/3 [PSL80, LSP82]. Furthermore, Fbc can be securely computed
with fairness in the presence of t-threshold adversaries for any 0 ≤ t < n [FGH+02]. Furthermore,
these results hold irrespective of the model we are working in as long as we do not have explicit
access to Fbc.

2.7 Synchronizable Exchange

Synchronizable exchange is defined as in Figure 4. In order to guarantee termination, we will need
our ideal functionality to be “clock-aware”. In this work, we stick to the formalism outlined in
[PST17]. We recall that in this model, we assume that every party and every invocation of the
ideal functionality FSyX has access to a variable r that reflects the current round number. More
generally, every function and predicate that is part of the specification of FSyX may also take r as
an input. Finally, the functionality may also time out after a pre-programmed amount of time.
We describe this clock-aware functionality in Figure 5. It is known that FSyX is complete for fair
secure multiparty computation. We state this result formally below.

Lemma 2. [KRS20] Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming
the existence of one-way functions, there exists a protocol π which securely computes FMPC with
fairness in the presence of t-threshold adversaries for any 0 ≤ t < n in the FSyX-hybrid model.

Lemma 3. [KRS20] Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming
the existence of one-way permutations, there exists a protocol π in the programmable random oracle
model which securely preprocesses for and computes an arbitrary (polynomial) number of instances
of FMPC with fairness in the presence of t-threshold adversaries for any 0 ≤ t < n in the FSyX-hybrid
model.

15No internal state is retained between invocations of the functionality.

13

Preliminaries: x1, x2 ∈ {0, 1}∗; f1, f2 are 2-input, 2-output functions; ϕ1, ϕ2 are boolean predi-
cates. The functionality proceeds as follows:

• Input phase. Upon receiving inputs (x1, f = (f1, f2, ϕ1, ϕ2)) from P1 and (x2, f
′) from

P2, check if f = f ′. If not, abort. Else, compute f1(x1, x2). If f1(x1, x2) = ⊥a, abort.
Else, send f1(x1, x2) to both parties, and go to next phase.

• Trigger phase. Upon receiving input w from party Pi, check if ϕi(w) = 1. If yes, then
send (w, f2(x1, x2, w)) to both P1 and P2.

aWe crucially require that ⊥ is a special symbol different from the empty string. We use ⊥ as a means of
signalling that the input phase of FSyX did not complete successfully. We will however allow parties to attempt
to invoke the input phase of the functionality at a later time. However, as we proceed, we will also have our
functionality be clock-aware and thus only accept invocations to the input phase until a certain point in time.
After the input phase times out, the functionality is rendered completely unusable. Similarly, if the input phase
has been completed successfully, a clock-oblivious version of the functionality can be triggered at any point in
time as long as a valid witness is provided, no matter the number of failed attempts. The clock-aware version of
the functionality, however, will only accept invocations of the trigger phase until a certain point in time. After
the trigger phase times out, the functionality is rendered completely unusable.

Figure 4: The ideal functionality FSyX.

Preliminaries: x1, x2 ∈ {0, 1}∗; f1, f2 are 2-output functions; ϕ1, ϕ2 are boolean predicates;
r denotes the current round number; INPUT TIMEOUT < TRIGGER TIMEOUT are round
numbers representing time outs. The functionality proceeds as follows:

• Load phase. If r > INPUT TIMEOUT, abort. Otherwise, upon receiving inputs of the
form (x1, f = (f1, f2, ϕ1, ϕ2)) from P1 and (x2, f

′) from P2, check if f = f ′. If not, abort.
Else, compute f1(x1, x2, r). If f1(x1, x2, r) = ⊥, abort. Else, send f i

1(x1, x2, r) to Pi for
i ∈ {1, 2}, and go to next phase.

• Trigger phase. If r > TRIGGER TIMEOUT, abort. Otherwise, upon receiving input w
from party Pi, check if ϕi(w, r) = 1. If yes, then send (w, f j

2 (x1, x2, w, r)) to both parties
Pj for j ∈ {1, 2}.

Figure 5: The clock-aware ideal functionality FSyX.

14

3 Bypassing [Cle86]’s Lower Bound in Unreactive Worlds

3.1 Our Model: The Unreactive World

Let n, β ∈ N and β < n. Our (n, β)-unreactive world is a hybrid model where n parties P ≜
{P1, . . . , Pn} are equipped with:

1. A broadcast channel, in which any of the parties can act as the broadcaster.

2. An arbitrary number of arbitrary unreactive functionalities of type type = g.d. whose cardi-
nality is upper bounded by β.

Protocols in (n, β)-unreactive world adhere to a specific syntax which called the (n,R, β)-unreactive
syntax. For simplicity, we first consider the case of β = n− 1. The (n,R, n− 1)-unreactive syntax
describes an R-round protocol that takes the following form:

• Each Pi generates its own local random tape ri.

• For each round k ∈ [R], there are n unreactive functionalities of cardinality n − 1 being

executed in sequence denoted by F (k)
P\{P1},F

(k)
P\{P2}, . . . ,F

(k)
P\{Pn}. F

(k)
S denotes the unreactive

functionality which is connected to the set of parties S in the round k.

• After the unreactive functionality phase, each round will also contain a broadcast phase,
where each party (from P1 to Pn) broadcasts in order.

• Finally, each party Pi calculates the output by invoking a procedure Πi on its random tape
ri and the 2R(n− 1) messages it obtained in the protocol.

We describe the above (n,R, n− 1)-unreactive syntax algorithmically in Figure 6.
We generalize the (n,R, n − 1)-unreactive syntax to the (n,R, β)-unreactive syntax arbitrary

β < n as follows. The main difference lies in the unreactive functionality phase of each round,
where there are

(
n
β

)
unreactive functionalities of cardinality β being executed in sequence. These(

n
β

)
unreactive functionalities are connected to the

(
n
β

)
different β-sized subsets of the n parties.

Finally, each party Pi calculates the output by invoking a procedure Πi on its random tape ri and
the R(

(
n−1
β−1

)
+ (n− 1)) messages it obtained in the protocol.

Formally, let S1, . . . ,S(nβ) be an ordering of the
(
n
β

)
β-sized subsets of the n parties. The

(n,R, β)-unreactive syntax describes an R-round protocol that takes the following form:

• Each Pi generates its own local random tape ri.

• For each round k ∈ [R], there are
(
n
β

)
unreactive functionalities of cardinality β being executed

in sequence denoted by F (k)
S1 ,F (k)

S2 , . . . ,F (k)
S(nβ)

.

• After the unreactive functionality phase, each round will also contain a broadcast phase,
where each party (from P1 to Pn) broadcasts in order.

• Finally, each party Pi calculates the output by invoking a procedure Πi on its random tape
ri and the R(

(
n−1
β−1

)
+ (n− 1)) messages from the execution.

15

Algorithm πk(inputs, 1
λ)

Fbc,F
(1)
P\{P1}

,...,F(1)
P\{Pk−1}

,F(1)
P\{Pk+1}

,...,F(1)
P\{Pn},...,F

(R)
P\{Pn}

r
$← {0, 1}ℓ(λ)

/* For round 1 */
in1 ← Πk,1(r, inputs)

out1 ← F (1)

P\{P1}(·, . . . , ·, in1, ·, . . . , ·)
in2 ← Πk,2(r, out1, inputs)

out2 ← F (1)

P\{P2}(·, . . . , ·, in2, ·, . . . , ·)
· · ·
ink−1 ← Πk,k−1(r, out1, out2, . . . , outk−2, inputs)

outk−1 ← F (1)

P\{Pk−1}
(·, . . . , ·, ink−1, ·, . . . , ·)

ink ← Πk,k(r, out1, out2, . . . , outk−1, inputs)

outk ← F (1)

P\{Pk+1}
(·, . . . , ·, ink, ·, . . . , ·)

· · ·
inn−1 ← Πk,n−1(r, out1, out2, . . . , outn−2, inputs)

outn−1 ← F (1)

P\{Pn}(·, . . . , ·, inn−1, ·, . . . , ·)

let br1 ≜ {}
receive br1,1, append br1,1 to br1
receive br1,2, append br1,2 to br1
· · ·
receive br1,k−1, append br1,k−1 to br1
br1,k ← BRk,1(r, br1, out1, out2, . . . , outn−1, inputs)
Fbc(br1,k), append br1,k to br1
receive br1,k+1, append br1,k+1 to br1
· · ·
receive br1,n, append br1,n to br1

· · ·

/* For round i */
in(i−1)(n−1)+1 ← Πk,(i−1)(n−1)+1(r, br1, . . . , bri−1, out1, . . . , out(i−1)(n−1), inputs)

out(i−1)(n−1)+1 ← F (i)

P\{P1}(·, . . . , ·, in(i−1)(n−1)+1, ·, . . . , ·)
· · ·
in(i−1)(n−1)+n−1 ← Πk,(i−1)(n−1)+n−1(r, br1, . . . , bri−1, out1, . . . , out(i−1)(n−1)+n−2, inputs)

out(i−1)(n−1)+n−1 ← F (i)

P\{Pn}(·, . . . , ·, in(i−1)(n−1)+n−1, ·, . . . , ·)
let bri ≜ {}
receive bri,1, append bri,1 to bri
· · ·
receive bri,k−1, append bri,k−1 to bri
bri,k ← BRk,i(r, br1, . . . , bri−1, out1, . . . , out(i−1)(n−1)+n−1, inputs)
Fbc(bri,k), append bri,k to bri
· · ·
receive bri,n, append bri,n to bri

· · ·

/* After R rounds */
resk ← Πk(r, br1, . . . , brR, out1, . . . , outR(n−1), inputs)

return resk

Figure 6: The (n,R, n− 1)-unreactive Syntax

16

Note that the (n,R, β)-unreactive syntax supports unreactive functionalities of cardinality below
β as well. Indeed, a functionlality of cardinality k can be emulated by some functionality of
cardinality k′ for any k ≤ k′.

Additionally, the ordering of the unreactive functionalities can be entirely arbitrary. This follows
from the proof of Lemma 4, which applies to any ordering, particularly because of the step titled
Sequentialization. Looking ahead, the fact that the ordering may be arbitrary is crucial when we
prove our lower bound in the presence of general threshold adversaries.

3.1.1 Generality

We present the following lemma which shows that our (n,R, β)-unreactive syntax captures all
protocols that can be designed in our model.

Lemma 4. Let n, β ∈ N and β < n. Given an R-round protocol among n parties in the (n, β)-
unreactive world that makes at most γ parallel invocations to any of the functionalities in any given
step, there exists an R ·O(

(
n
β

)
γ)-round protocol among n parties that follows our (n,R ·O(

(
n
β

)
γ), β)-

unreactive syntax.

Proof. We do this by going over the ways in which a generic protocol in the unreactive world can
differ in syntax from the one we have outlined, and arguing that such a protocol can be turned
into one that follows our syntax. Indeed, such a transformation may incur a change in number of
rounds (or more precisely, steps). We describe our two transformation steps, in order, ahead.

Serialization. In our syntax, parties perform invocations serially. A generic protocol in our
model may have steps where multiple parties invoke different functionalities at the same time. For
instance, a generic protocol may have a step where parties P1 and P2 are expected to broadcast
certain messages at the same time. For all such “parallel” invocations, we simply arbitrarily seri-
alize the “parallel” invocations. We argue that if the generic protocol was secure, then so is our
serialized protocol. We argue this by noting that if there is an adversary Aserial that can break the
security of the underlying protocol while executing the serialized protocol, then, there exists an
adversary Ageneric that does the same while executing the generic protocol. Ageneric does exactly
what Aserial does. The salient point to make note of here is that Ageneric can mimic Aserial, despite
the generic protocol having parallel invocations since Ageneric is rushing. This means that if Aserial

was launching an attack in a step that involved parallel invocations in the generic protocol that
we serialized, Ageneric, being a rushing adversary, could wait for the honest parties to execute their
parallel invocations before executing its own, and this would exactly emulate the serial invocations
performed before that point in the serialized protocol. It is immediate that this transformation
would make no change to the number of steps in the protocol.

Sequentialization. In our syntax, parties invoke the unreactive functionalities first, in sequence,
and then broadcast, in sequence. A generic protocol in our model may not follow the same order
of operations. For instance, a generic protocol may begin with party P2 broadcasting a certain
message. For all such mismatches, we simply “pad” or “line” the generic protocol with “dummy”
invocations of functionalities, both unreactive (the functionality itself can be set to be a “dummy”
functionality that ignores inputs and produces no outputs) and broadcast (the message broadcast
would be a “dummy” message). Since every step in the generic protocol could at most end up being

17

Preliminaries: I ⊆ [n]. The functionality proceeds as follows:

• Sample a uniform bit b← {0, 1}.

• Send b to all parties Pi for i ∈ I.

Figure 7: The ideal functionality Fcoin.

its own round in our syntax, and a round in our syntax involves O(
(
n
β

)
) steps, this transformation

would blow up the number of steps in the protocol by a factor of at most O(
(
n
β

)
) in the (n, β)-

unreactive world.

Transforming a generic protocol. From the explanation above, it is clear that if one were to
take a generic protocol in our model, serialize it and then sequentialize that, the resulting protocol
would exactly follow our syntax. The resulting protocol would have a number of steps blown up
by a factor of at most O(

(
n
β

)
).

Steps vs. Rounds. While we have discussed the impact of the transformation on the number
of steps, we have not talked about the number of rounds of the transformed protocol. For that, we
first note that what we call rounds in our syntax does in fact translate to something more akin to
a phase, since each “round”, or phase, contains O(

(
n
β

)
) serial steps. If one were to consider every

serial step to be a round, then our transformed protocol would have a number of steps blown up
by a factor of at most O(

(
n
β

)
γ), where γ denotes the maximum parallel invocations performed by

the generic protocol in any given step.

Remark. We note that [Cle86] implicitly assumes serialization and sequentialization as well.
While not explicit, these steps are indeed needed to show that the syntax in [Cle86] does capture
all protocols in that model.

3.2 Fairness versus Guaranteed Output Delivery

We recall here some of the results from [CL17].

Lemma 5. [CL17] Consider n parties P1, . . . , Pn in a model with a broadcast channel. Then,
assuming the existence of one-way functions, for any functionality f : X n → Yn, if there exists a
protocol π which securely computes f with fairness, then there exists a protocol π′ which securely
computes f with guaranteed output delivery.

Lemma 6. [CL17] Consider n parties P1, . . . , Pn in a model with a broadcast channel. Then,
assuming the existence of one-way functions, for any functionality f : X n → Yn, if there exists a
protocol π which securely computes f with fairness, then there exists a protocol π′ which securely
computes f with fairness and does not make use of the broadcast channel.

From the above lemmas, it is clear that assuming one-way functions, we can stick to the following
conventions:

18

• While proving lower bounds, we show that there is no n-party t-fair coin tossing proto-
col (as defined in Section 2.3) in an (n, β)-unreactive world for certain values of n, t, β.
From Lemma 5, this shows that there is no n-party protocol that realizes the functional-
ity Fcoin (see Figure 7) with fairness in the presence of t corruptions in a hybrid model
where parties have access to unreactive functionalities of cardinality upper bounded by β
(that is, an (n, β)-unreactive world without broadcast). In particular, this shows that unre-
active functionalities of cardinality β are incomplete for n-party fair MPC in the presence of
t corruptions.

• While proving upper bounds, or designing protocols to realize any arbitrary functionality
F in the presence of t corruptions, we will construct protocols that achieve security with
fairness against t corruptions in our (n, β)-unreactive world for certain values of n, t, β.
From Lemma 6, this shows that there exist protocols that realize F with fairness in the
presence of t corruptions in our (n, β)-unreactive world without broadcast. In particular, this
shows that unreactive functionalities of cardinality β are complete for n-party fair MPC in
the presence of t corruptions.

3.3 Bypassing [Cle86]’s Lower Bound in Unreactive Worlds

As evidenced by Cleve’s lower bound in [Cle86] for fair coin tossing in the presence of a dishonest
majority, MPC with fairness is impossible in the presence of a dishonest majority if parties are
only equipped with communication channels16, even when the adversary is only allowed to corrupt
⌈n2 ⌉ parties. In this section, we present two simple and elegent MPC protocols with fairness in
the presence of a dishonest majority by leveraging unreactive functionalities with of cardinality at
least 2, which lets us bypass Cleve’s lower bound. The existence of these protocols motivates the
exploration of lower bounds in unreactive worlds, which is the main focus of this work. Meanwhile,
it also shows that Cleve’s technique in its vanilla form (and also, many similar techniques [IKK+11,
HIK+19] based on [Cle86] from past works) is no longer sufficient to tackle the problem of proving
lower bounds in the unreactive world. In general, consider n parties out of which t may be malicious
(n2 ≤ t < n) in the (n, β)-unreactive world. Recall that β denotes the cardinality of the unreactive
functionalities that are provided.

The case of β > t. Unsurprisingly, if parties have access to an unreactive functionality of
cardinality β > t, there is a very simple and elegant protocol for fair MPC. Let P = {P1, . . . , Pn}.
The MPC protocol proceeds as follows.

1. All parties perform an unfair MPC that computes the result and β-out-of-β shares it to the
parties {P1, . . . , Pβ}.

2. P1, . . . , Pβ perform a β-wise exchange using the available β-wise functionality to reconstruct
the result.

3. Each party Pi in {P1, . . . , Pβ} broadcasts the result if it obtained it in the previous step.

To see that this protocol achieves fairness, note that an adversary corrupting only t parties
cannot learn the output in step 1 since it only has t < β shares. To get the result, the adversary

16More precisely, as long as the channels are one-directional, such as OT channels, Cleve’s lower bound holds.

19

needs to let step 2 execute correctly. However, if step 2 executes correctly, all honest parties get
the result as well. Some standard authentication techniques need to be used to ensure that the
parties submit correct shares, etc. For more on such techniques, we refer the reader to [KRS20].

The case of t = n
2 . The case of t = n

2 is rather interesting, and not representative of the case
of t ≥ n

2 . In fact, 2-wise unreactive functionalities, in particular, 2-wise exchange suffices for fair
MPC. Let P = {P1, . . . , Pn}. The MPC protocol proceeds as follows.

1. All parties perform an unfair MPC that computes the result and (n2 + 1)-out-of-n shares it
to all the parties.

2. For each i, j ∈ [n] where i < j, parties Pi and Pj perform a 2-wise exchange for their shares.

3. For each k ∈ [n], if a party Pk receives at least n
2 shares in the previous step, it broadcast

any (n2 + 1) shares it has (including its own).

4. For each k ∈ [n], if a party Pk has at least n
2 + 1 shares, it recovers the result.

To see that this protocol achieves fairness, an adversary corrupting only n
2 parties cannot learn

the output in step 1 since it only has n
2 shares. To learn the output, the adversary needs to at least

exchange one share with some honest party in step 2. Note that this honest party will get at least
n
2 (1 from the adversary, n

2 − 1 from other honest parties) in step 2 so it already has enough shares
to recover the result, and will broadcast the shares to all honest parties in step 3. Some standard
authentication techniques need to be used to ensure that the parties submit correct shares, etc.
For more on such techniques, we refer the reader to [KRS20].

4 Alice and Bob: Same World, Different Proofs

In Section 3.3, we showed that for any n
2 ≤ t < n, there exists an n-party MPC protocol with

fairness in the (n, β)-unreactive world as long as β > t. Interestingly, we showed that there exists
an n-party MPC protocol with fairness in the presence of n

2 corruptions in the (n, 2)-unreactive
world. We remind the reader that [KRS20] presents an n-party MPC protocol with fairness in the
presence of n−1 corruptions assuming the existence of 2-wise reactive functionalities, namely, in an
(n, 2)-“reactive” world. A natural attempt is to construct an n-party MPC protocol with fairness
in the presence of n− 1 corruptions in the (n, 2)-unreactive world. Unfortunately, it turns out that
for any n

2 < t < n, there is no n-party MPC protocol with fairness in the (n, t)-unreactive world.
This shows that our results are tight with our matching upper bounds and lower bounds. We will
present these lower bounds by showing that there exists no n-party (n−1)-fair coin tossing protocol
(see Definition 3) in the (n, n−1)-unreactive world in Section 5 and later generalize this lower bound
to threshold adversaries in Section 6 for all n

2 < t < n. As a warm-up, we show that there is no
2-party 1-fair coin tossing protocol in the (2, 1)-unreactive world. This is the most unsurprising
case since the (2, 1)-unreactive world is identical to the two-party model used by [Cle86].

In the (2, 1)-unreactive world, 1-wise functionalities are local computations and the broadcast
channel can be viewed as a communication channel between the two parties. Thus, it is identical
to the two-party model used by [Cle86]. We emphasize that this is the only unreactive world
that is not stronger than Cleve’s. Our proof technique in Section 5 in the case of two parties can

20

be viewed as a different take on the result of [Cle86]. Crucially, this allows us to generalize the
lower bound of the (2, 1)-unreactive world to other unreactive worlds. We remind the reader that
applying [Cle86]’s technique is not sufficient for unreactive worlds in general (and in fact, it only
works for the (2, 1)-unreactive world) since we can easily bypass [Cle86]’s impossibility in some
unreactive worlds as shown in Section 3.3. Looking ahead, our proof captures “fairness” in a more
natural way by introducing a notion we call predictability.

A two-party coin tossing protocol has two parties, Alice and Bob, who share a communi-
cation channel. A round in the protocol corresponds to each party sending a message to the
other. For simplicity, the protocol is assumed to be serialized such that Alice sends the first
message and Bob sends the second message. Specifically, the protocol is captured as (1) Alice
and Bob generate local randomness rA and rB; (2) for the next R rounds, Alice sends message
mB,i followed by Bob’s message mA,i; and (3) Alice outputs A(rA,mA,1, . . . ,mA,R) and Bob out-
puts B(rB,mB,1, . . . ,mB,R). We assume that the protocol satisfies perfect agreement. That is,
A(rA, . . . ,mA,R) = B(rB, . . . ,mB,R) = res.

Recall that the notion of fairness requires that the adversary cannot learn the output of the
protocol without the honest parties learning it too. Naturally, this means that in an unfair coin
tossing protocol, the adversary should be able to “predict” the output of the coin res at some point
while the honest party cannot. Note that res, the honest output of the coin toss, should become
“predictable” at the end of the protocol. Consider the following probabilities:

PredA,0 ≜ Pr[A(rA, 0, . . .) = res]

PredB,0 ≜ Pr[B(rB, 0, . . .) = res]

PredA,1 ≜ Pr[A(rA,mA,1, 0, . . .) = res]

PredB,1 ≜ Pr[B(rB,mB,1, 0, . . .) = res]

· · ·
PredA,R ≜ Pr[A(rA,mA,1, . . . ,mA,R) = res]

PredB,R ≜ Pr[B(rB,mB,1, . . . ,mB,R) = res]

We denote the predictability of Alice (resp. Bob) with i messages as PredA,i (resp. PredB,i) where
PredA,i (resp. PredB,i) are defined as above. In other words, PredA,i can be viewed as Alice’s
ability to use the partial information she received in the first i rounds to figure out the output.
Specifically, Alice uses her partial information and imagines Bob quits at that point. We further
name the random variable associated with PredA,i (resp. PredB,i) a predictor ΠA,i (resp. ΠB,i).
For example, ΠA,0 = A(rA, 0, . . .).

Remark 1. Our predictor is essentially the “back-up” value known in the coin-tossing literature.
In particular, it is used in [Cle86] and many subsequent works. Informally, this “back-up” value is
the output of the honest party if other parties abort. Naturally, this “back-up” value should “predict”
the final result as close as possible to ensure fairness. However, as we will show, the adversary can
also use this “back-up” value to “predict” the output to “learn” the output in advance.

From definition of res, PredA,R = PredB,R = 1, capturing that the output of the protocol must
be predictable in the end. We now argue that a fair coin tossing protocol must satisfy the following:
the predictability of Alice and Bob at the beginning of the protocol should be statistically close
to 1

2 . That is, |PredA,0 − 1
2 | ≤ δ1(λ), |PredB,0 − 1

2 | ≤ δ2(λ) for some negligible functions δ1(λ) and
δ2(λ).

21

Consider the following two adversarial strategies for Alice, Ab where b ∈ {0, 1}: Alice generates
rA and invokes the predictor ΠA,0; if the value returned by the predictor is b, Alice quits, otherwise
plays honestly. If the protocol achieves a fair coin, Ab’s bias on Bob’s output must be negligible.
That is, we have the following two negligible terms (one each for b ∈ {0, 1}).∣∣∣∣Pr[ΠA,0 = b ∧ΠB,0 = b] + Pr[ΠA,0 = 1− b ∧ res = b]− 1

2

∣∣∣∣
Therefore, |Pr[ΠA,0 = ΠB,0]− Pr[ΠA,0 = res]| ≤ δ(λ) for some negligible function δ(λ). Note that
|Pr[ΠA,0 = 0]− 1

2 | must be negligible. This can be seen by considering an adversarial strategy for
Bob where Bob unconditionally quits at the beginning of the protocol. Similarly, |Pr[ΠB,0 = 0]− 1

2 |
must also be negligible. Furthermore, since ΠB,0 and ΠA,0 are independent, |Pr[ΠA,0 = ΠB,0]− 1

2 |
must be negligible, which implies that |12−Pr[ΠA,0 = res]| is negligible. That is, |PredA,0− 1

2 | ≤ δ1(λ)
for some negligible function δ1(λ). Similarly, |PredB,0− 1

2 | ≤ δ2(λ) for some negligible function δ2(λ).
We then consider how these predictors are related to each other. Consider the point in the

protocol right after the first message mB,1 is delivered from Alice to Bob. That is, Bob holds
rB,mB,1 while Alice only holds rA. Crucially, Bob can currently launch an attack to conditionally
let Alice output ΠA,0. Similarly, Alice can conditionally let Bob output ΠB,1. Looking ahead, we
will show that if |PredB,1 − PredA,0| is non-negligible, there is an adversarial strategy for either
Alice or Bob that can bias the other (honest) party’s output by this non-negligibly. We now argue
the existence of a pair of predictabilities that differ non-negligibly. We say that such a pair induces
a non-negligible gap. Consider the following triangle inequality:

R∑
i=1

|PredB,i − PredA,i−1|+ |PredA,i − PredB,i| ≥ |PredA,R − PredA,0| (1)

Note that |PredA,R − PredA,0| ≥ 1
2 − δ(λ) for some negligible function δ(λ). A straightforward

averaging argument indicates that at least one term of the left hand side should be statistically
close to 1

2R . Crucially, every single term on the left hand side reflects some middle point of the
entire execution. For example, |PredA,i − PredB,i| is where both parties finish i rounds.

Without loss of generality, assume that |PredB,1 − PredA,0| ≥ 1
2R − δ(λ) for some negligible

function δ(λ). Consider the following two adversarial strategies for Bob, AB,b where b ∈ {0, 1}: (1)
Bob gets mB,1 from Alice; (2) invokes the predictor ΠB,1; and (3) quits if the result is b, and plays
honestly otherwise. The biases induced on Alice’s output biasAb by AB,b will be:

biasAb =

∣∣∣∣Pr[ΠB,1 = b ∧ΠA,0 = b] + Pr[ΠB,1 = 1− b ∧ res = b]− 1

2

∣∣∣∣
Similarly, consider the following two adversarial strategies for Alice, AA,b where b ∈ {0, 1}: (1)
Alice sends mB,1 to Bob; (2) invokes the predictor A(rA, 0, . . .); and (3) quits if the result is b, and
plays honestly otherwise. The biases induced on Bob’s output biasBb by AA,b will be:

biasBb =

∣∣∣∣Pr[ΠA,0 = b ∧ΠB,1 = b] + Pr[ΠA,0 = 1− b ∧ res = b]− 1

2

∣∣∣∣
Consider the sum of these four biases:

biasA0 + biasA1 + biasB0 + biasB1

22

It is: ∣∣∣∣Pr[ΠB,1 = 0 ∧ΠA,0 = 0] + Pr[ΠB,1 = 1 ∧ res = 0]− 1

2

∣∣∣∣
+

∣∣∣∣Pr[ΠB,1 = 1 ∧ΠA,0 = 1] + Pr[ΠB,1 = 0 ∧ res = 1]− 1

2

∣∣∣∣
+

∣∣∣∣Pr[ΠA,0 = 0 ∧ΠB,1 = 0] + Pr[ΠA,0 = 1 ∧ res = 0]− 1

2

∣∣∣∣
+

∣∣∣∣Pr[ΠA,0 = 1 ∧ΠB,1 = 1] + Pr[ΠA,0 = 0 ∧ res = 1]− 1

2

∣∣∣∣
≥ |Pr[ΠB,1 = res]− Pr[ΠB,1 = ΠA,0]|+ |Pr[ΠA,0 = ΠB,1]− Pr[ΠA,0 = res]|
≥ |Pr[ΠB,1 = res]− Pr[ΠA,0 = res]|

= |PredB,1 − PredA,0| ≥
1

2R
− δ(λ)

As a result, at least 1 out of these 4 adversarial strategies can induce a Ω(1
R) bias on the output

of the corresponding honest party. We emphasize that the two adversarial strategies we construct
for Alice do not use her latest predictor. Namely, even though Alice can decide to quit and let Bob
output ΠB,1 after receiving mA,1, she does not utilize the predictor ΠA,1.

No matter which term on the left-hand side of Equation (1) induces a non-negligible gap17, we
can mimic the above to construct 4 adversarial strategies where at least 1 of them will induce a
non-negligible bias.

We end this section by summarizing how our adversary is constructed and why it works. Our
attack in the case of two parties essentially relies on finding a non-negligible gap between the
predictabilities of two parties. But we require more. Consider the pair of predictors associated
with the predictabilities that differ non-negigibly. Our proof technique relies on the fact that there
exists two adversarial strategies, each using one of the predictors and forcing the honest party
to output the result of the other predictor. Apart from being intuitive, this is crucial for our
technique since it allows us to construct a telescoping sum such as in Equation (1) a la [Cle86].
Doing so reproduces the non-negligible gap which we can then utilize to argue the existence of
adversarial strategies that induce non-negligible bias. For example, the pair of predictors ΠB,2 and
ΠA,0 is suitable for our technique. This is because an adversarial strategy that uses ΠB,2 cannot
force Alice to output the result of ΠA,0 as at this point in the protocol, Alice already has her
first message mA,1 from Bob. Looking ahead, the ability to find the above suitable gap is the
core methodology we use to generalize this proof strategy to the case of n parties in the presence
of n − 1 corruptions in the (n, n − 1)-unreactive world (see Section 5) and threshold corruptions
(see Section 6).

Finally, we note that our predictors are just subroutines of the honest protocol, and hence our
adversarial strategies make use of the same computation power as the honest parties. This is in
contrast to the unbounded adversarial strategies in the coin-tossing literature (e.g., [CI93]).

17Note |PredA,R − PredB,R| = 0, so the gap will not be in this term.

23

5 All-but-one Corruptions in Unreactive Worlds

In this section, we show how we can extend our impossibility proof technique from Section 4 to the
multi-party unreactive worlds in the presence of all-but-one corruptions. We will show that there
exists no n-party (n − 1)-fair coin tossing protocol in the (n, n − 1)-unreactive world. That is, in
the presence of n−1 corruptions, (n−1)-wise unreactive functionalities are insufficient for fairness.
Recall that, without loss of generality, an n-party coin tossing protocol in the (n, n− 1)-unreactive
world can be captured by the (n,R, n− 1)-unreactive syntax.

An n-party coin tossing protocol following the (n,R, n − 1)-unreactive syntax is an R-round
protocol, where each party will get 2R(n − 1) messages from functionalities and the broadcast
channel. Specifically, in each round, the functionality without P1 is enabled first, the functionality
without P2 is enabled second, . . ., the functionality without Pn is enabled nth and each party
(from P1 to Pn) becomes broadcaster in order. We abstract the description of the protocol as
n procedures {Π1, . . . ,Πn}. Each party i will (1) generate randomness ri; (2) receive 2R(n − 1)
messages {mi,1, . . . ,mi,2R(n−1)} in sequence; and (3) output Πi(ri,mi,1, . . . ,mi,2R(n−1)). Note that
some messages are delivered synchronously. For example, after the first functionality connected to
P \ {P1} is executed, all parties except P1 will get their first message simultaneously.

We assume that the protocol achieves perfect agreement. That is, Πi(ri,mi,1, . . . ,mi,2R(n−1)) =
Πj(rj ,mj,1, . . . ,mj,2R(n−1)) = res for any i and j.

5.1 Generalizing Predictors and Predictabilities

Recall that in two-party setting, the predictor with i messages of Alice is defined by the random
variable A(ra,mA,1, . . . ,mA,i, 0, . . .). That is, it calculates Alice’s output when Alice has received
her first i messages correctly, and the rest messages from then are 0s caused by Bob having quit at
that point. Furthermore, the predictability with i messages is defined by the probability that the
output of the corresponding predictor is equal to the honest output res. We can extend predictors
and predictabilities as follows.

Definition 6 (Predictor/Predictability, n-party, (n− 1)-corruptions). For an n-party coin tossing
protocol among parties P ≜ {P1, . . . , Pn}, the predictor of party Pi with j messages is the output
of an honest party Pi, where Pi is executed with malicious P \ {Pi} such that the adversary will
follow the protocol honestly to allow Pi to obtain its first j messages correctly and then quits. We
denote this predictor by Πi,j. The predictability of party Pi with j messages is defined as Predi,j ≜
Pr[Πi,j = res] where res is the output of the honest executed protocol (assuming perfect agreement).
The probabilities are taken over the randomness of all parties and hybrid functionalities.

Remark 2. Note that our definition of a predictor and predictability is independent of the model.
Furthermore, we define predictors for each individual party. This choice is guided by the fact that
we consider all-but-one corruptions.

Consider the predictors/predictabilities for a coin tossing protocol following the (n,R, n − 1)-
unreactive syntax. For example, Π1,1 is the output of an honest P1 executed with malicious P \
{P1} such that the adversary (1) generates correct randomness; (2) participates in two unreactive
functionalities correctly where they are connected with P \ {P1} and P \ {P2}, which will send the
first message to P1 correctly; and (3) quits by sending zeros to all other functionalities. Note that
each party will get 2R(n− 1) messages in total in an honest execution of this protocol. From the

24

agreement (assuming perfect) requirement of coin tossing protocol, we know Πi,2R(n−1) = res for
all i ∈ [n]. This implies that the predictability Predi,2R(n−1) = 1. Similar to the two-party setting,
if the n-party coin tossing protocol is (n − 1)-fair, we now argue that the predictability of each
party at the beginning of the protocol (i.e., after seeing 0 messages) should be statistically close to
1
2 . For each i ∈ [n], we call Πi,0 the initial predictor for Pi and the Πi,2R(n−1) the final predictor
for Pi.

Lemma 7. Consider an n-party coin tossing protocol among parties P ≜ {P1, . . . , Pn} and the asso-
ciated predictors/predictabilities (see Definition 6). If the protocol is (n−1)-fair (see Definition 4),
then for all i ∈ [n], ∣∣∣∣Predi,0 − 1

2

∣∣∣∣ ≤ δ(i)(λ)

for some negligible function δ(i)(λ).

Proof. Without loss of generality, consider i = 1. Since the protocol is fair, the output of P1 when
executing with malicious P \ {P1}, where the adversary simply quits at the beginning, should be a
fair coin, that is, ∣∣∣∣Pr[Π1,0 = 0]− 1

2

∣∣∣∣ ≤ δ1(λ)

for some negligible function δ1(λ). Similarly, |Pr[Π2,0 = 0]− 1
2 | ≤ δ2(λ) for some negligible function

δ2(λ). Consider the following two adversarial strategies Ab (b ∈ {0, 1}) for P\{P2}: Ab (1) generates
the randomness of P\{P2} correctly; (2) invokes Π1,0 (note that this random variable does not rely
on P2’s randomness); and (3) quits if the result is b, and follows the protocol honestly otherwise.
If the protocol is fair, the bias biasb of P2’s output induced by Ab should be negligible. Formally,

bias0 =

∣∣∣∣Pr[Π1,0 = 0 ∧Π2,0 = 0] + Pr[Π1,0 = 1 ∧ res = 0]− 1

2

∣∣∣∣ ≤ δ3(λ)

bias1 =

∣∣∣∣Pr[Π1,0 = 1 ∧Π2,0 = 1] + Pr[Π1,0 = 0 ∧ res = 1]− 1

2

∣∣∣∣ ≤ δ4(λ)

where δ3(λ), δ4(λ) are some negligible functions, which implies

|Pr[Π1,0 = Π2,0]− Pr[Π1,0 = res]| ≤ δ5(λ)

for some negligible function δ5(λ). Note that Π1,0 and Π2,0 are independent, |Pr[Π1,0 = 0]− 1
2 | ≤

δ1(λ) and |Pr[Π2,0 = 0]− 1
2 | ≤ δ2(λ). Therefore,∣∣∣∣Pr[Π1,0 = res]− 1

2

∣∣∣∣ ≤ δ6(λ)⇔
∣∣∣∣Predi,0 − 1

2

∣∣∣∣ ≤ δ6(λ)

for some negligible function δ6(λ). A similar argument applies for i ̸= 1.

We end this section by noting that if an n-party coin tossing protocol is (n − 1)-fair, the
predictability gap between Π1,0 and Πn,2R(n−1) must be Ω(1). We next show how this gap implies
an attackable gap as in the two-party setting.

25

5.2 Attackable Non-negligible Gaps

Recall how we constructed adversaries in the two-party setting. Specifically, we construct 4 predict-
and-quit adversaries. These 4 adversaries rely on two underlying predictors – one predictor ΠA,i

of Alice and another predictor ΠB,j of Bob. Crucially, they need to satisfy the following two
requirements:

1. These two predictors are interchangeably attackable, and form an attackable pair. That is,
when a malicious Alice holds enough information to calculate ΠA,i, she should still be able to
let Bob output ΠB,j . A similar requirement holds for a malicious Bob.

2. The predictability of these two predictors has a gap, namely, |Pr[ΠA,i = res] − Pr[ΠB,j =
res]| ≥ ϵ(λ) for some non-negligible function ϵ(λ).

Note that in the two-party setting where Alice and Bob send messages in sequence, when
Bob has j messages from Alice, Alice should already have received j − 1 messages. This means
that a predict-and-quit Bob based on the predictor ΠB,j can only conditionally let Alice output
ΠA,k where k ≥ j − 1. Similarly, when Alice has i messages from Bob, Bob should already have
received i messages. That means that a predict-and-quit Alice based on the predictor ΠA,i can only
conditionally let Bob output ΠB,k where k ≥ i. Thus, in order to satisfy bullet point 1 above, we
will have j ≥ i and i ≥ j − 1, that is, j = i or j = i+ 1.

To show that there is an attackable predictor pair satisfying bullet point 2, we observe that
the predictability gap between PredA,0 and PredB,R must be Ω(1) in a two-party R-round fair coin
tossing protocol. Imagine a graph where each vertex represents a predictor and two vertices share
an edge if and only if they can form an attackable pair (I.e., bullet point 1). Crucially, there exists
a predictor path of length O(R) in the graph from ΠA,0 to ΠB,R, namely ΠA,0 → ΠB,1 → ΠA,1 →
· · · → ΠB,R. Therefore, by the triangle inequality, there exists at least one attackable predictor
pair (i.e., an edge in the graph) on the path such that their predictability gap is Ω(1

R).
We now transplant the above idea to the n-party setting in the (n, n− 1)-unreactive world. In

fact, using our new predictor/predictability notion, if an n-party coin tossing protocol (following the
(n,R, n− 1)-unreactive syntax) has two predictors such that (1) their predictabilities have a non-
negligible gap; and (2) they can attack each other interchangeably, we can mimic the 4 adversaries
we constructed in the two-party setting where at least 1 of them will induce a non-negligible bias.
For example, assume there is a non-negligible gap between Pred1,0 and Pred2,1. We can construct
two adversaries corrupting P \ {P2} (resp. P \ {P1}) that based on the output of Π1,0 (resp. Π2,1)
conditionally let P2 (resp. P1) output Π2,1 (resp. Π1,0). We emphasize the underlying reason why
an adversary (corrupting P \ {P1}) can let P1 output Π1,0 based on Π2,1: the adversary can get the
first message of P2 without letting P1 get its first message since the first unreactive functionality is
among P \ {P1}. A predictor may not always be able to “attack” another predictor. For example,
Π2,1 cannot “attack” Π3,0. Formally, an attackable predictor pair is defined as follows.

Definition 7 (Attackable Pair). Consider an n-party coin tossing protocol and associated predic-
tors/predictabilities (see Definition 6). Πi1,j1 and Πi2,j2 form an attackable predictor pair if they
satisfy the following properties:

• i1 ̸= i2.

26

• When an adversary corrupting P \ {Pi1} (resp. P \ {Pi2}) obtains sufficient information to
calculate Πi2,j2 (resp. Πi1,j1), it can still let Pi1 (resp. Pi2) output Πi1,j1 (resp. Πi2,j2) by
quitting.

Remark 3. In any n-party coin tossing protocol, after the invocation of any hybrid functionality
(unreactive or broadcast), the latest predictors of any two different parties form an attackable pair.

In the previous section, we show that an n-party fair coin tossing protocol must have an Ω(12) gap
between Pred1,0 and Predn,2R(n−1). Again, imagine a graph where each node represents a predictor
and two nodes share an edge if and only if they can form an attackable pair (see Definition 7).
We call this graph the predictor graph. If there is a (polynomial-length) path connecting Π1,0 and
Πn,2R(n−1) in the graph, we can argue the existence of an attackable pair whose predictabilities differ
non-negligibly. Recall that the n parties are connected via (n − 1)-wise unreactive functionalities

and a broadcast channel. For all k ∈ [R], round k proceeds as follows: F (k)
P\{P1},F

(k)
P\{P2}, . . . ,F

(k)
P\{Pn},

P1 broadcasts, P2 broadcasts, . . ., Pn broadcasts. We have the following lemma.

Lemma 8. Consider an n-party coin tossing protocol following the (n,R, n− 1)-unreactive syntax
and associated predictors/predictabilities (see Definition 6).

• (right after all unreactive functionalities/broadcast) For any 1 ≤ p ≤ 2R, (Π1,p(n−1),
Πn,p(n−1)) is an attackable pair.

• (right after each unreactive functionality/broadcast) For any i ∈ [n−1], any 0 ≤ p <
2R, (Πi+1,p(n−1)+i,Πi,p(n−1)+i−1) is an attackable pair.

Proof. Consider an honest execution of the protocol. For any 1 ≤ p ≤ 2R, there is a certain point
where all parties (including P1 and Pn) get exactly p(n − 1) messages. Namely, the execution is
in round ⌊p+1

2 ⌋ where either (1) the unreactive functionality connecting P \ {Pn} has just been
executed; or (2) Pn has just completed its broadcast. Thus, an adversary corrupting P \ {P1}
(resp. P \ {Pn}) can let P1 (resp. Pn) output Π1,p(n−1) (resp. Πn,p(n−1)) based on Πn,p(n−1) (resp.
Π1,p(n−1)). Thus, (Π1,p(n−1),Πn,p(n−1)) is an attackable pair (see Remark 3).

For any i ∈ [n−1], any 0 ≤ p < 2R, there is a certain point where Pi+1 gets p(n−1)+i messages
but Pi only gets p(n−1)+ i−1 messages. Namely, the execution is in round ⌊p+2

2 ⌋ where either (1)
the unreactive functionality connecting P\{Pi} has just been executed; or (2) Pi has just completed
its broadcast. Thus, (Πi+1,p(n−1)+i,Πi,p(n−1)+i−1) is an attackable pair (see Remark 3).

By Lemma 8, there exists a path from Π1,0 to Πn,2R(n−1) in the predictor graph of length O(nR):
Π1,0 → Π2,1 → Π3,2 → · · · → Πn,n−1 → Π1,n−1 → Π2,n → · · · → Πn,2R(n−1). As a result, there
exists at least one attackable predictor pair (i.e., an edge on the path) such that their predictability
gap is Ω(1

2nR). Without loss of generality, assume |Pred2,1 − Pred1,0| is Ω(1
nR). By mimicking the

4 adversaries we constructed in the two-party setting, there exists at least 1 adversary corrupting
P \ {P1} (or P \ {P2}) that can bias the output of P1 (or P2) by Ω(1

nR).

Theorem 1. For any n-party coin tossing protocol in the (n, n−1)-unreactive world, following the
(n,R, n− 1)-unreactive syntax, there exists a predict-and-quit adversarial strategy corrupting n− 1
parties that can bias the output of the honest party by Ω(1

nR).

We conclude this section by giving an intuitive reason why the above attackable predictor pairs
should be considered. Note that the protocol execution is a sequence of invocations of hybrid

27

functionalities ((n− 1)-wise unreactive functionalities and the broadcast channel). Since broadcast
can be viewed as a primitive delivering useful output to all parties except the broadcaster, each
hybrid functionality delivers messages to n − 1 parties. Consider these hybrid functionalities one
by one. After the kth hybrid functionality is invoked, we consider the predictor pair formed by
the latest predictors of (1) the party Ak who does not connect to this primitive; and (2) the
party Bk who does not connect to the next primitive. By Remark 3, they form an attackable
pair. Furthermore, all these attackable pairs will form a chain since Bk is precisely Ak+1 and,
importantly, the next primitive will not deliver any message to Bk/Ak+1

18, so the latest predictor
of Bk/Ak+1 stays the same. This chain will begin with some initial predictor19 and end at some
final predictor, and we know that the predictabilities corresponding to any intial predictor and any
final predictor have a gap of Ω(1). This exactly reflects the path we have presented above.

5.3 Communication Channels v.s. Unreactive Fs v.s. Reactive Fs.

[Cle86] shows that there is no n-party ⌈n2 ⌉-fair coin tossing protocol in a model where parties are
connected via communication channels. In Section 3.3, we show that by leveraging (n − 1)-wise
unreactive functionalities, Cleve’s impossibility result can be easily bypassed. In this section, we
show that there is no n-party (n− 1)-fair coin tossing protocol even using (n− 1)-wise unreactive
functionalities. However, our impossibility can also be bypassed by leveraging reactive function-
alities as shown in [KRS20]. This might be counter-intuitive since our proof technique is general.
Namely, one can apply our predictor/predictability framework to Cleve’s model or even the one
with reactive functionalities in [KRS20]. What causes the difference in results when we apply our
proof techniques in different models? The difference lies in the attackable predictor pairs. Infor-
mally, there will be potentially fewer attackable predictor pairs in the reactive model. In the same
vein, there will be potentially more attackable predictor pairs in [Cle86]’s model.

Communication channels v.s. unreactive functionalities. Consider a communication chan-
nel of A’s sending messages to {B,C,D} and an unreactive functionality connecting {B,C,D}.
After both hybrid functionalities, B,C,D each gets one new message. Assume they are each the
first hybrid functionality in two models. In the model where the communication channel is the first
hybrid functionality, malicious (A,B) can leverage ΠB,1 to let C output ΠC,0 since by colluding
with A, B can know his first message in a rushing manner. However, in the other model, malicious

(A,B) can only leverage ΠB,1 after correctly enabling F (1)
B,C,D. Crucially, they cannot let C output

ΠC,0 anymore.

Unreactive functionalities v.s. reactive functionalities. Consider two consecutive unreac-
tive functionalities connecting {B,C,D} and a 2-phase reactive functionality connecting {B,C,D}.
Suppose the two consecutive unreactive functionalities aim to functionally simulate the 2-phase re-
active functionality using secret sharing.20 Assume they are each the first hybrid functionality(ies)
in two models. In the model where the unreactive functionalities are the first hybrid functionalities,

malicious (A,C,D) can invoke ΠC,1 to let B output ΠB,1 since they can enable F (1)
B,C,D

21 and quit.

18Bk/Ak+1 is either not in the next unreactive functionality or it is the next broadcaster.
19Note that after the first unreactive functionality is enabled, the predictor of the party being “kicked-out” is still

an initial predictor.
20In general, there is no such secure simulation. We only use this as an illustration.
21Simulate the first phase of the reactive functionality.

28

However, in the reactive model, if (A,C,D) quits after triggering the first phase of the reactive
functionality to learn ΠC,1, B may output ΠB,2 by triggering the second phase of the reactive
functionality. For the same reason, ΠB,2 may not form an attackable pair with ΠC,1. Thus, there
may be no attackable predictor pair related to ΠC,1 in the reactive model.

6 Threshold Corruptions in Unreactive Worlds

In this section, we consider any t > n
2 in the (n, t)-unreactive world. As it turns out, t-wise

unreactive functionalities are insufficient for n-party t-fair coin tossing for t > n
2 . We will show this

impossibility by further extending the notion of predictors/predictabilities to threshold adversaries.
More importantly, we will show the existence of a non-negligible gap of predictability between an
(extended) attackable predictor pair.

Note that all protocols in the (n, t)-unreactive world can be viewed as following the (n,R, t)-
unreactive syntax. Recall that the main difference between the (n,R, n− 1)-unreactive syntax and
the (n,R, t)-unreactive syntax lies in the unreactive functionality phase in each round. That is,
it will be a sequence of

(
n
t

)
different t-wise unreactive functionalities connecting each subset of t

parties. As a result, each party will receive R(
(
n−1
t−1

)
+(n−1)) in total. We do not specify the order

of these t-wise unreactive functionalities in each round. In general, they can be arranged in any
fixed order.

Throughout this section, consider an n-party coin tossing protocol following the (n,R, t)-
unreactive syntax, where all the parties output res.

6.1 Generalizing Predictor and Predictability

When considering all-but-one corruptions, there will be a unique honest party. Thus, when an
honest party is attacked by the other n − 1 parties by quitting, its following execution can be
viewed as a local computation. However, when we consider t corruptions, even if t parties quit
and start to forward zeros, there might still be information exchanged between honest parties.
Therefore, we need to augment our predictors/predictabilities to support a set of honest parties.

Definition 8 (Predictor/Predictability, n-party, t-corruption). For an n-party coin tossing protocol
among parties P ≜ {P1, . . . , Pn} in the presence of t > n

2 corruptions, the predictor of party Pi with
j messages and an honest set H (where H ⊂ P, |H| = n− t and Pi ∈ S) is the output of the honest
party Pi when H is executed honestly with malicious P \H such that the adversary will follow the
protocol honestly to allow Pi to obtain its first j messages correctly and then immediately quit. We
denote this predictor by Πi,j,H . The predictability of party Pi with j messages and an honest set
H is defined as Predi,j,H ≜ Pr[Πi,j,H = res] where res is the output of the honest executed protocol
(assuming perfect agreement). The probabilities are taken over the randomness of all parties and
hybrid functionalities.

Definition 6 is a special case of Definition 8 (where t = n−1). In particular, Πi,j in Definition 6
is the same as Πi,j,{Pi} in Definition 8 (where t = n− 1).

Consider the predictors/predictabilities (Definition 8) of a protocol following the (n,R, t)-
unreactive syntax. Obviously, for any i, any party set S where Pi ∈ S and |S| = n − t, we have
Predi,R((n−1

t−1)+(n−1)),S = 1. We now argue that if the protocol is t-fair, the initial predictabilities

29

should be statistically close to 1
2 . For each i and compatible S, we call Πi,0,S the initial predictor

and Πi,R((n−1
t−1)+(n−1)),S the final predictor.

Lemma 9. Consider an n-party coin tossing protocol in the presence of t > n
2 corruptions among

parties P ≜ {P1, . . . , Pn} following the (n,R, t)-unreactive syntax and associated predictors/pre-
dictabilities (see Definition 8). If the protocol is t-fair, then for all i ∈ [n], for all H ⊆ P where
|H| = n− t and Pi ∈ H, ∣∣∣∣Predi,0,H − 1

2

∣∣∣∣ ≤ δ(i,H)(λ)

for some negligible function δ(i,H)(λ).

Proof. Note that in the (n,R, t)-unreactive syntax, the unreactive functionalities are t-wise. Since
n−t < t, for any unreactive functionality, there must be at least one party from P\H is connecting to
it. Since the unreactive functionalities are placed before the broadcasts in each round, an adversary
corrupting P \H can indeed let Pi obtain the first message incorrectly.

Let M be any subset of P\H of size n− t. Let Pj be any party in M . Since the protocol is fair,
the output of Pi when executing with malicious P \H where the adversary quits at the beginning
should be a fair coin. This means that∣∣∣∣Pr[Πi,0,H = 0]− 1

2

∣∣∣∣ ≤ δ1(λ)

for some negligible function δ1(λ). Similarly, |Pr[Πj,0,M = 0] − 1
2 | ≤ δ2(λ) for some negligible

function δ2(λ). Consider the following two adversarial strategies, Ab (b ∈ {0, 1}), that corrupt
P \M and execute as follows: Ab (1) generates the randomness of P \M correctly; (2) invokes
Πi,0,H

22; and (3) quits if the result is b, and follows the protocol honestly otherwise. If the protocol
is fair, the bias biasb of Pj ’s output induced by Ab should be negligible. Formally,

bias0 =

∣∣∣∣Pr[Πi,0,H = 0 ∧Πj,0,M = 0] + Pr[Πi,0,H = 1 ∧ res = 0]− 1

2

∣∣∣∣ ≤ δ3(λ)

bias1 =

∣∣∣∣Pr[Πi,0,H = 1 ∧Πj,0,M = 1] + Pr[Πi,0,H = 0 ∧ res = 1]− 1

2

∣∣∣∣ ≤ δ4(λ)

where δ3(λ), δ4(λ) are some negligible functions. This implies that

|Pr[Πi,0,H = Πj,0,M]− Pr[Πi,0,H = res]| ≤ δ5(λ)

for some negligible function δ5(λ). Note that Πi,0,H and Πj,0,M are independent, |Pr[Πi,0,H =
0]− 1

2 | ≤ δ1(λ) and |Pr[Πj,0,M = 0]− 1
2 | ≤ δ2(λ). Therefore,∣∣∣∣Pr[Πi,0,H = res]− 1

2

∣∣∣∣ ≤ δ6(λ)⇔
∣∣∣∣Predi,0,H − 1

2

∣∣∣∣ ≤ δ6(λ)

for some negligible function δ6(λ).

22Note that the adversary controls all parties in H.

30

6.2 Attackable Non-negligible Gaps

From the above discussion, if an n-party coin tossing protocol following the (n,R, t)-unreactive
syntax is t-fair, we know that any initial predictability is statiscally close to 1

2 and any final pre-
dictability is 1. As in the case of t = n− 1, to construct a valid adversary, it suffices to find several
(extended) attackable predictor pairs (see Definition 9), which together forms a “chain” connecting
an initial predictor and a final predictor.

Definition 9 (Attackable Pair, Extended). Πi1,j1,H1 and Πi2,j2,H2 form a attackable pair if they
satisfy the following properties:

• H1 ∩H2 = ∅.

• When an adversary corrupting P\H1 (resp. P\H2) obtains sufficient information to calculate
Πi2,j2,H2 (resp. Πi1,j1,H1), it can still let Pi1 (resp. Pi2) output Πi1,j1,H1 (resp. Πi2,j2,H2) by
quitting.

As in the case of t = n − 1, a natural way to find these pairs is by considering the point right
after each hybrid functionality (i.e., t-wise unreactive functionalities and the broadcast channel) is
executed in an honest execution. That is, after each hybrid functionality is executed, we append
the predictor pair formed by the latest predictors of (1) the parties that do not participate in this
hybrid functionality; and (2) the parties that do not participate in the next hybrid functionality.
In the specific case of t = n − 1, this strategy directly induces a valid chain. However, there are
following two major challenges in using this methodology when t ̸= n− 1.

1. Since each unreactive functionality is connected to t parties, the sets of parties not par-
ticipating in two consecutive unreactive functionalities may overlap. For example, consider
two consecutive functionalities not connecting {A,B} and {B,C}. Clearly, the predictor of
{A,B} and the predictor of {B,C} cannot form an attackable pair. This is not an issue when
t = n− 1.

2. The broadcast channel can be viewed as an (n−1)-wise functionality, namely, a party sending a
message to all other parties. That is, only the broadcaster can be viewed as “not participating”
in the broadcast channel. When t ̸= n− 1, the broadcaster itself cannot form a predictor.

We present how we resolve these two challenges separately by rearranging unreactive function-
alities in the syntax and considering the broadcast channel invocations in a batched manner. That
is, we provide methods to construct a valid chain of attackable pairs if the syntax of the protocol
only provided either unreactive functionalities or the broadcast channel. In the end, we explain
how to solder these two types of chains together to get a valid chain for the protocol following the
(n,R, t)-unreactive syntax.

6.2.1 Resolving Challenge 1: Rearrange Unreactive Functionalities.

Consider a protocol which only uses unreactive functionalities and no broadcast channel. That
is, we only need to resolve challenge 1. Note that, as we mentioned, the syntax of the protocol
can place the

(
n
t

)
unreactive functionalities in any order. Thus, a straightforward solution is to

consider whether we can place these functionalities in some order such that any two consecutive
functionalities leave out disjoint sets of parties. We also need to satisfy this property for the first

31

and the last functionality to allow for R > 1 rounds. This introduces a well-formed problem on
graphs:

Consider an integer n, the set N = [n] and an integer n
2 < t < n. n and t induce an undirected

graph (V,E) as follows: each vertex represents a subset of N of size (n− t) (so |V | =
(

n
n−t

)
=

(
n
t

)
);

two vertices share an edge if and only if two underlying sets are disjoint. Does (V,E) contain a
Hamilton cycle?

Clearly, the introduced graph when t = n − 1 contains a Hamilton cycle, which reflects our
attackable chain in Section 5.2. Incidentally, the above graph is called a Kneser graph, introduced
by Lovász in [Lov78]. In graph theory, the Kneser graph K(n, k) has as vertices all k-element
subsets of an n-element ground set, and an edge between any two disjoint sets [MM+22]. That is,
we are trying to find a Hamilton cycle in K(n, n − t). Recently, Merino et al. [MM+22] proved
that all Kneser graphs K(n, k), where n ≥ 3 and 0 < 2k < n, admit a Hamilton cycle, except the
well-known Petersen graph K(5, 2). 23

Therefore, for any n ≥ 3 and t > n
2 , except for n = 5 and t = 3, the Kneser graph K(n, n− t)

has a Hamilton cycle. We can order the t-wise functionalities in the order guided by the Hamilton
cycle of the Kneser graph K(n, n− t). In this way, after each functionality is executed, consider the
predictor pair formed by the latest predictors of (1) the parties do not connect to this functionality;
and (2) the parties do not connect to the next functionality. The predictors are of two disjoint
sets, so they form an attackable pair. We emphasize that here we consider a Hamilton cycle rather
than a Hamilton path. This is because with a cycle, this order can be repeated R > 1 times.
Namely, assume there is no broadcast, the last functionality of some round is followed by the first
functionality of the next round. We need to ensure this pair is attackable as well.

So far, we have constructed the attackable chain for any protocol that only uses unreactive
functionalities, except for the special case of n = 5, t = 3, which we will resolve later.

6.2.2 Resolving Challenge 2: Batch Broadcast.

Consider a protocol which only uses a broadcast and no unreactive functionality. That is, we only
need to resolve challenge 2. Consider a sequence of n − t parties, who take turns to invoke the
broadcast. As long as these n − t parties are honest and the first broadcast happens correctly,
these n − t parties should all get n − t − 1 new correct messages. On the one hand, an adversary
corrupting the other t parties can choose to only deliver either 0 or n− t− 1 new correct messages
to each honest party for these broadcasts. On the other hand, an adversary corrupting these n− t
parties can utilize the predictor based on all n− t broadcast messages to decide whether to reveal
all n − t messages to the honest parties. Conceptually, these n − t parties can be viewed as an
entity where all broadcasts are batched into one.

Thus, we can view a sequence of broadcasts from P1 to Pn as a sequence of (n − t)-batched
broadcasts. That is, it can be viewed as a sequence of t-wise functionalities, where in each function-
ality, the t parties connecting to it will receive a batched broadcast from the other (n− t) parties
(i.e., the broadcasters). Specifically, the first batched broadcast will connect to P \ {P1, . . . , Pn−t},
the second batched broadcast will connect to P \ {Pn−t+1, . . . , P2(n−t)} and so on. For the last
batched broadcast, if (n − t) ∤ n, we add parties P1, . . . , P(n−t)−(n mod (n−t)) to the last batch as
dummy broadcasters. They did not provide new messages in the last batched broadcast. Notably,
since t > n

2 , there will be at least three batched broadcasts.

23This is a conjecture since the 1970s.

32

Let us now consider a single round execution of these batched broadcasts. After each batched
broadcast is executed, consider the predictor pair formed by the latest predictors of (1) the broad-
casters of this batched broadcast; and (2) the broadcasters of the next batched broadcast. This
predictor pair is attackable. We emphasize that the latest predictor of the “next” broadcasters
can utilize not only the broadcast messages from this batched broadcast but also those they are
going to broadcast in the next batched broadcast. For example, after {P1, . . . , Pn−t} broadcast,
{Pn−t+1, . . . , P2(n−t)} as an entity, before making batched-broadcast, can already utilize the pre-
dictor based on the first 2(n− t) messages. This is crucial since this means that the latest predictor
of the “next” broadcasters stays unchanged after their own broadcasting, which indicates that the
above attackable pairs can form a chain.

However, this chain is not a valid one for arguing a non-negligible gap. This is because (1) it
does not begin with an initial predictor; (2) it cannot be used directly if we consider R > 1 rounds.
Unlike an unreactive functionality that leaves out {P1, . . . , Pn−t} where these parties do not get
any new messages after the functionality is executed, a batched broadcast from {P1, . . . , Pn−t} will
indeed also make these parties each get n − t − 1 new correct messages24. In other words, after
the first batched broadcast, the latest predictor of the broadcasters are not an initial predictor.
We fix the above issues by adding a dummy batched broadcast from party {Pn−t+1, . . . , P2(n−t)}
at beginning of each round. Note that this is a dummy batched broadcast so the predictor of any
parties would be unchanged after broadcasting. Essentially, {Pn−t+1, . . . , P2(n−t)} is disjoint with
the first broadcaster set and the last broadcaster set in a round, and so can be used to solder
the chains of two consecutive rounds and, more importantly, solder the first chain to some initial
predictor.

6.2.3 Resolving Challenges 1&2.

Consider a protocol in our (n,R, t)-unreactive syntax which uses both unreactive functionalities and
a broadcast channel. Our above fixes imply that we can construct attackable predictor pair chains
for the unreactive functionalities phase and the broadcast phase in each round. The remaining
thing is to argue that we can glue all these chains. Recap that for the unreactive functionality fix,
we rely on a Hamilton cycle in the Kneser graph K(n, n − t). Since it is a cycle, we can use this
cycle beginning from the vertex representing {Pn−t+1, . . . , P2(n−t)}. By doing so, all chains could be
soldered together since (1) the set of parties not connecting to the last unreactive functionality in
each round is disjoint with {Pn−t+1, . . . , P2(n−t)}, which is also the first dummy batched broadcaster
in each round; and (2) the set of the last batched broadcasters is disjoint with {Pn−t+1, . . . , P2(n−t)},
which is also the set of parties not connecting to the first unreactive functionality in the next round.

6.2.4 Resolving the Special Case of n = 5, t = 3

Even though we do not have Hamilton cycle inK(5, 2), we can add dummy unreactive functionalities
into our syntax. Crucially, it suffices to find a path that traverses every vertex in the graph (perhaps
more than once) from the vertex {Pn−t+1, . . . , P2(n−t)} and goes back. It is well-known that on
removing any vertex, the Petersen graph or K(5, 2) is Hamiltonian. Thus, we can find such a path
in K(5, 2) of length 18.
To sum up, we have the following theorem.

24Note this is not a problem if t = n− 1.

33

Theorem 2. For any n-party coin tossing protocol in the (n, t)-unreactive world, following the
(n,R, t)-unreactive syntax, there exists a predict-and-quit adversarial strategy corrupting n

2 < t < n

parties that can bias the output of some honest party by Ω

(
1

(nt)R

)
.

Remark 4. It might appear that the
(
n
t

)
term in Theorem 2 limits its applicability to a logarithmic

number of parties in λ. However, as we will see in Section 7.2, this is not the case, and a careful
refinement allows us to conclude that the bias from Theorem 2 can be improved to Ω(1

F), where F
is the number of non-dummy invocations to unreactive functionalities (see Theorem 3).

7 Refinements: Cosmetic and Crucial

In this section, we show how to extend our lower bounds to coin tossing protocols that achieve
just statistical agreement (as opposed to perfect like before). Additionally, we provide a general
lower bound for coin tossing protocols in unreactive worlds where the bias induced by our adversary
depends only on the actual number of hybrid functionalities invoked during the protocol, rather
than the potentially much larger

(
n
t

)
R.

7.1 Ruling out Statistical Agreement

For ease of presentation, throughout the paper, we focused on coin tossing protocol with perfect
agreement. Our proof technique (i.e., Sections 4 to 6) can be naturally extended to the statistical
agreement setting, where the outputs of any two honest parties will differ with probability at most
δ(λ) for some negligible function δ(λ). This can be done by applying a “Substitution Lemma”
(Cf. Lemma 10) that allows replacement of random variables that are negligibly close.

Lemma 10 (Event Substitution). Consider three one-bit random variables A,B,C. Suppose
Pr[B = C] ≥ 1− δ(λ) for some negligible function δ(λ). Then

|Pr[A = B]− Pr[A = C]| ≤ δ∗(λ)

for some negligible function δ(λ). We say that B can be substituted by C (and vice versa) in an
equality event with negligible loss.

Proof. We have

Pr[A = B] = Pr[A = B ∧B = C] + Pr[A = B ∧B ̸= C]

= Pr[A = C ∧B = C] + Pr[A ̸= C ∧B ̸= C]

= Pr[A = C|B = C] Pr[B = C] + Pr[A ̸= C|B ̸= C] Pr[B ̸= C]

Let Pr[A = C|B = C] = β1 and Pr[A ̸= C|B ̸= C] = β2. We have

Pr[A = B] = β1 Pr[B = C] + β2 Pr[B ̸= C]

We have

Pr[A = C] = Pr[A = C ∧A = B] + Pr[A = C ∧A ̸= B]

= Pr[A = C ∧B = C] + Pr[A = C ∧B ̸= C]

= Pr[A = C|B = C] Pr[B = C] + Pr[A = C|B ̸= C] Pr[B ̸= C]

34

Let Pr[A = C|B ̸= C] = β3. We have

Pr[A = C] = β1 Pr[B = C] + β3 Pr[B ̸= C]

Therefore,

|Pr[A = B]− Pr[A = C]| = Pr[B ̸= C]|β2 − β3| ≤ δ(λ)|β2 − β3| = δ∗(λ)

for some negligible function δ(λ).

By Lemma 10, if two random variables disagree with negligible probability, we can safely sub-
stitute one by the other with negligible probability loss. Now, consider coin tossing protocols with
statistical agreements. We can extend the notion of predictabilities of a party Pi to the probability
that the output of the corresponding predictor equals the output of Pi (denoted by resi). Since the
outputs of any two parties should disagree with negligible probability, we can substitute any resi
by resj with negligible probability loss. This lets us extend all of our analyses in a natural way to
rule out coin tossing protocols with statistical agreement as well.

7.2 Relaxing the Need to Follow the Unreactive Syntax

Our theorems (Cf. Theorems 1 and 2) consider coin tossing protocols following the unreactive
syntax. This is general since we can always compile a protocol in an unreactive world to one that
follows the corresponding unreactive syntax (Cf. Lemma 4). However, this compilation will result
in a blow-up in the number of rounds, which impacts the bias induced by our predict-and-quit
adversaries. Note that the compilation only inserts dummy hybrid functionalities. Crucially, in an
execution, the values of our predictabilities stay unchanged after a dummy hybrid functionality is
invoked. That is, if there exists only F (non-dummy) invocations to hybrid functionalities in a coin
tossing protocol, we should only need to include O(F) terms on the left-hand side of the triangle
inequality (e.g., Equation (1)) which captures the sum of a chain of attackable pairs. This indicates
the existence of an attackable predictor pair where their predictabilities have a gap of Ω(1

F). Thus,
we have the theorem as follows.

Theorem 3. For any n-party coin tossing protocol in the (n, t)-unreactive world, with n
2 < t < n,

that involves at most F invocations of hybrid functionalities (unreactive or the broadcast), there
exists a predict-and-quit adversarial strategy corrupting t parties that can bias the output of some
honest party by Ω

(
1
F

)
.

References

[ABC+85] Baruch Awerbuch, Manuel Blum, Benny Chor, Shafi Goldwasser, and Silvio Micali.
How to implement bracha’s o(log n) byzantine agreement algorithm. Unpublished
manuscript, 1(2):10, 1985.

[ABDR04] Andris Ambainis, Harry Buhrman, Yevgeniy Dodis, and Hein Rohrig. Multiparty
quantum coin flipping. In Proceedings. 19th IEEE Annual Conference on Computational
Complexity, 2004., pages 250–259. IEEE, 2004.

35

[ABMO15] Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete charac-
terization of fairness in secure two-party computation of Boolean functions. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography Con-
ference, Part I, volume 9014 of Lecture Notes in Computer Science, pages 199–228,
Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[Amb01] Andris Ambainis. A new protocol and lower bounds for quantum coin flipping. In
33rd Annual ACM Symposium on Theory of Computing, pages 134–142, Crete, Greece,
July 6–8, 2001. ACM Press.

[AN90] Noga Alon and Moni Naor. Coin-flipping games immune against linear-sized coalitions
(extended abstract). In 31st Annual Symposium on Foundations of Computer Science,
pages 46–54, St. Louis, MO, USA, October 22–24, 1990. IEEE Computer Society Press.

[AO16] Bar Alon and Eran Omri. Almost-optimally fair multiparty coin-tossing with nearly
three-quarters malicious. In Martin Hirt and Adam D. Smith, editors, TCC 2016-
B: 14th Theory of Cryptography Conference, Part I, volume 9985 of Lecture Notes in
Computer Science, pages 307–335, Beijing, China, October 31 – November 3, 2016.
Springer, Heidelberg, Germany.

[AOP20] Bar Alon, Eran Omri, and Anat Paskin-Cherniavsky. MPC with friends and foes.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology –
CRYPTO 2020, Part II, volume 12171 of Lecture Notes in Computer Science, pages
677–706, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Ger-
many.

[Ash14] Gilad Asharov. Towards characterizing complete fairness in secure two-party computa-
tion. In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference,
volume 8349 of Lecture Notes in Computer Science, pages 291–316, San Diego, CA,
USA, February 24–26, 2014. Springer, Heidelberg, Germany.

[ATVY00] Dorit Aharonov, Amnon Ta-Shma, Umesh V. Vazirani, and Andrew Chi-Chih Yao.
Quantum bit escrow. In 32nd Annual ACM Symposium on Theory of Computing,
pages 705–714, Portland, OR, USA, May 21–23, 2000. ACM Press.

[BC90] Gilles Brassard and Claude Crépeau. Quantum bit commitment and coin tossing pro-
tocols. In Conference on the Theory and Application of Cryptography, pages 49–61.
Springer, 1990.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th
Annual ACM Symposium on Theory of Computing, pages 1–10, Chicago, IL, USA,
May 2–4, 1988. ACM Press.

[BHLT17] Niv Buchbinder, Iftach Haitner, Nissan Levi, and Eliad Tsfadia. Fair coin flipping:
Tighter analysis and the many-party case. In Philip N. Klein, editor, 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2580–2600, Barcelona, Spain,
January 16–19, 2017. ACM-SIAM.

36

[BHMO22] Amos Beimel, Iftach Haitner, Nikolaos Makriyannis, and Eran Omri. Tighter bounds
on multiparty coin flipping via augmented weak martingales and differentially private
sampling. SIAM Journal on Computing, 51(4):1126–1171, 2022.

[BHT18] Itay Berman, Iftach Haitner, and Aris Tentes. Coin flipping of any constant bias implies
one-way functions. Journal of the ACM (JACM), 65(3):1–95, 2018.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In
Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, pages 421–439, 2014.

[Blu84] Manuel Blum. How to exchange (secret) keys. ACM Transactions on Computer Sys-
tems, 1:175–193, 1984.

[BOL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and
minima of banzhaf values. In 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985), pages 408–416. IEEE, 1985.

[BOO10] Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss with
dishonest majority. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science, pages 538–557, Santa Barbara, CA,
USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143–202, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally se-
cure protocols (extended abstract). In 20th Annual ACM Symposium on Theory of
Computing, pages 11–19, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[CGL+18] Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi. Game theoretic
notions of fairness in multi-party coin toss. In Theory of Cryptography Conference,
pages 563–596. Springer, 2018.

[CI93] Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and dis-
crete control processes. other words, 1(5), 1993.

[CL17] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure
multiparty computation. Journal of Cryptology, 30(4):1157–1186, October 2017.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In 18th Annual ACM Symposium on Theory of Computing, pages
364–369, Berkeley, CA, USA, May 28–30, 1986. ACM Press.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In 40th Annual Symposium on
Foundations of Computer Science (Cat. No. 99CB37039), pages 142–152. IEEE, 1999.

[FGH+02] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam D.
Smith. Detectable byzantine agreement secure against faulty majorities. In Proceedings
of the Twenty-First Annual ACM Symposium on Principles of Distributed Computing,
PODC 2002, Monterey, California, USA, July 21-24, 2002, pages 118–126, 2002.

37

[FGMO05] Matthias Fitzi, Juan A. Garay, Ueli M. Maurer, and Rafail Ostrovsky. Minimal com-
plete primitives for secure multi-party computation. Journal of Cryptology, 18(1):37–61,
January 2005.

[FGMv02] Matthias Fitzi, Nicolas Gisin, Ueli M. Maurer, and Oliver von Rotz. Unconditional
byzantine agreement and multi-party computation secure against dishonest minori-
ties from scratch. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 482–501,
Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg, Germany.

[GHKL11] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness
in secure two-party computation. J. ACM, 58(6):24:1–24:37, 2011.

[GIM+10] S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. On com-
plete primitives for fairness. In Daniele Micciancio, editor, TCC 2010: 7th Theory of
Cryptography Conference, volume 5978 of Lecture Notes in Computer Science, pages
91–108, Zurich, Switzerland, February 9–11, 2010. Springer, Heidelberg, Germany.

[GK09] S. Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation
without an honest majority. In Omer Reingold, editor, TCC 2009: 6th Theory of
Cryptography Conference, volume 5444 of Lecture Notes in Computer Science, pages
19–35. Springer, Heidelberg, Germany, March 15–17, 2009.

[GKP15] Shafi Goldwasser, Yael Tauman Kalai, and Sunoo Park. Adaptively secure coin-flipping,
revisited. In International Colloquium on Automata, Languages, and Programming,
pages 663–674. Springer, 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City,
NY, USA, May 25–27, 1987. ACM Press.

[HIK+19] Shai Halevi, Yuval Ishai, Eyal Kushilevitz, Nikolaos Makriyannis, and Tal Rabin. On
fully secure MPC with solitary output. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019: 17th Theory of Cryptography Conference, Part I, volume 11891 of Lecture
Notes in Computer Science, pages 312–340, Nuremberg, Germany, December 1–5, 2019.
Springer, Heidelberg, Germany.

[HKH20] Iftach Haitner and Yonatan Karidi-Heller. A tight lower bound on adaptively secure
full-information coin flip. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 1268–1276. IEEE, 2020.

[HNO+09] Iftach Haitner, Minh-Huyen Nguyen, Shien Jin Ong, Omer Reingold, and Salil Vadhan.
Statistically hiding commitments and statistical zero-knowledge arguments from any
one-way function. SIAM Journal on Computing, 39(3):1153–1218, 2009.

[HO14] Iftach Haitner and Eran Omri. Coin flipping with constant bias implies one-way func-
tions. SIAM Journal on Computing, 43(2):389–409, 2014.

38

[HT14] Iftach Haitner and Eliad Tsfadia. An almost-optimally fair three-party coin-flipping
protocol. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of
Computing, pages 408–416, New York, NY, USA, May 31 – June 3, 2014. ACM Press.

[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, edi-
tor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 466–485, French Riviera, May 30 – June 3, 2010. Springer,
Heidelberg, Germany.

[IKK+11] Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On
achieving the “best of both worlds” in secure multiparty computation. SIAM journal
on computing, 40(1):122–141, 2011.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography. In 30th Annual Symposium on Foundations of Computer Science,
pages 230–235. IEEE Computer Society, 1989.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM Sympo-
sium on Theory of Computing, pages 20–31, Chicago, IL, USA, May 2–4, 1988. ACM
Press.

[KKR21] Yael Tauman Kalai, Ilan Komargodski, and Ran Raz. A lower bound for adaptively-
secure collective coin flipping protocols. Combinatorica, 41(1):75–98, 2021.

[KRS20] Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon. Synchronizable ex-
change. Cryptology ePrint Archive, Report 2020/976, 2020. https://eprint.iacr.

org/2020/976.

[KVV16] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Improve-
ments to secure computation with penalties. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, pages 406–417, 2016.

[Lov78] László Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of
Combinatorial Theory, Series A, 25(3):319–324, 1978.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[MM+22] Arturo Merino, Torsten Mütze, et al. Kneser graphs are hamiltonian. arXiv preprint
arXiv:2212.03918, 2022.

[MN05] Tal Moran and Moni Naor. Basing cryptographic protocols on tamper-evident seals. In
International Colloquium on Automata, Languages, and Programming, pages 285–297.
Springer, 2005.

[MNS09] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In Omer Reingold,
editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture
Notes in Computer Science, pages 1–18. Springer, Heidelberg, Germany, March 15–17,
2009.

39

https://eprint.iacr.org/2020/976
https://eprint.iacr.org/2020/976

[MPS10] Hemanta K Maji, Manoj Prabhakaran, and Amit Sahai. On the computational com-
plexity of coin flipping. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 613–622. IEEE, 2010.

[MW20] Hemanta K. Maji and Mingyuan Wang. Black-box use of one-way functions is useless
for optimal fair coin-tossing. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, Part II, volume 12171 of Lecture Notes
in Computer Science, pages 593–617, Santa Barbara, CA, USA, August 17–21, 2020.
Springer, Heidelberg, Germany.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Busi-
ness Review, page 21260, 2008.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of cryptology, 4(2):151–
158, 1991.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[PST17] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested execution
secure processors. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 260–289, 2017.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In 21st Annual ACM Symposium on Theory of
Computing, pages 73–85, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[RZ01] Alexander Russell and David Zuckerman. Perfect information leader election in log*
n+ o (1) rounds. Journal of Computer and System Sciences, 63(4):612–626, 2001.

[Sak89] Michael Saks. A robust noncryptographic protocol for collective coin flipping. SIAM
Journal on Discrete Mathematics, 2(2):240–244, 1989.

[WAS22] Ke Wu, Gilad Asharov, and Elaine Shi. A complete characterization of game-
theoretically fair, multi-party coin toss. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 120–149. Springer, 2022.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto,
Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press.

Disclaimer Case studies, comparisons, statistics, research and recommendations are provided
“AS IS” and intended for informational purposes only and should not be relied upon for oper-
ational, marketing, legal, technical, tax, financial or other advice. Visa Inc. neither makes any
warranty or representation as to the completeness or accuracy of the information within this docu-
ment, nor assumes any liability or responsibility that may result from reliance on such information.
The Information contained herein is not intended as investment or legal advice, and readers are
encouraged to seek the advice of a competent professional where such advice is required.

40

These materials and best practice recommendations are provided for informational purposes
only and should not be relied upon for marketing, legal, regulatory or other advice. Recommended
marketing materials should be independently evaluated in light of your specific business needs and
any applicable laws and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any kind, contained in this
document.

41

	Introduction
	Related Work on Coin Tossing
	Technical Overview

	Preliminaries
	Notation and Definitions
	Secure Computation
	Functionalities
	Adversaries
	Model
	Protocol
	Security with Guaranteed Output Delivery
	Security with Fairness

	Coin Tossing Protocols
	The Hybrid Model
	Unreactive Functionalities
	Broadcast
	Synchronizable Exchange

	Bypassing Cleve's Lower Bound in Unreactive Worlds
	Our Model: The Unreactive World
	Generality

	Fairness versus Guaranteed Output Delivery
	Bypassing Cleve's Lower Bound in Unreactive Worlds

	Alice and Bob: Same World, Different Proofs
	All-but-one Corruptions in Unreactive Worlds
	Generalizing Predictors and Predictabilities
	Attackable Non-negligible Gaps
	Communication Channels v.s. Unreactive Fs v.s. Reactive Fs.

	Threshold Corruptions in Unreactive Worlds
	Generalizing Predictor and Predictability
	Attackable Non-negligible Gaps
	Resolving Challenge 1: Rearrange Unreactive Functionalities.
	Resolving Challenge 2: Batch Broadcast.
	Resolving Challenges 1&2.
	Resolving the Special Case of .

	Refinements: Cosmetic and Crucial
	Ruling out Statistical Agreement
	Relaxing the Need to Follow the Unreactive Syntax

