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Abstract

Primal attack, BKW attack, and dual attack are three well-known attacks to LWE.
To build efficient post-quantum cryptosystems in practice, the structured variants
of LWE (i.e. MLWE/RLWE) are often used. Some efforts have been spent on ad-
dressing concerns about additional vulnerabilities introduced by algebraic struc-
tures and no effective attack method based on ideal lattices or module lattices has
been proposed so far; these include refining primal attack and BKW attack to
MLWE/RLWE. It is thus an interesting problem to consider how to enhance the
dual attack against LWE with the rich algebraic structure of MLWE (including
RLWE). In this paper, we present the first attempt to this problem by observing
that each short vector found by BKZ generates another n− 1 vectors of the same
length automatically and all of these short vectors can be used to distinguish. To
this end, an interesting property which indicates the rotations are consistent with
certain linear transformations is proved, and a new kind of intersection lattice is
constructed with some tricks. Moreover, we notice that coefficient vectors of dif-
ferent rotations of the same polynomial are near-orthogonal in high-dimensional
spaces. This is validated by extensive experiments and is treated as an extension to
the assumption under the original dual attack against LWE. Taking Newhope512
as an example, we show that by our enhanced dual attack method, the required
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blocksize and time complexity (in both classical and quantum cases) all decrease.
It is remarked that our improvement is not significant and its limitation is also
touched on. Our results do not reveal a severe security problem for MLWE/RLWE
compared to that of a general LWE, this is consistent with the findings by the pre-
vious work for using primal and BKW attacks to MLWE/RLWE.

Keywords: Lattice-based cryptography, dual attack, Module-LWE

1. Introduction

The rapid development of computing (especially quantum computing) tech-
nology has made a huge impact on the widely used cryptographic applications
at present. For examples, systems based on factorization and discrete logarithm
are no longer secure in quantum computing framework, so gradual replacement
is necessary. It is believed that several fundamental lattice problems are resistant
to quantum attacks, among them, the learning with error (LWE) problem intro-
duced by Regev [1] in 2005 is considered as one of the most promising choices
for establishing secure and reliable post-quantum cryptosystems.

For LWE schemes, the security is not the only goal, a great attention has been
paid to its efficiency as well. In 2010, an algebraic variant of LWE called Ring-
LWE (RLWE) was proposed by Lyubashevsky et al.[2]. It answered the open
question whether extra algebraic structure can be used to promote the efficiency
of LWE and its applications. RLWE has many attractive features, for example,
the size of the public key is reduced by a factor of n. The Module-LWE (MLWE)
problem was first introduced in [3], and then thoroughly studied in [4]. Informally
speaking, it replaces the single ring elements with module elements over the same
ring. So RLWE can be seen as a special case of MLWE. These two variants have
received more and more popularity, and several candidate algorithms based on
them have been presented, for examples, RLWE-based public key cryptographic
schemes Newhope[5] and LAC[6], MLWE-based key encapsulation mechanism
Kyber[7], as well as MLWE-based signature scheme Dilithium [8]. It is worth
noting that the last two algorithms have been selected as NIST PQC standard.

The MLWE/RLWE achieve performance improvements, but there are security
concerns about additional vulnerabilities with the injection of number-theoretical
structure. To date, the theoretical foundation of RLWE has only been shown to be
the hardness of approximate-SVP on arbitrary ideals, usually in a cyclotomic ring
and for near-polynomial approximation factors, (but not known to be equivalent).
It was found in [9, 10, 11, 12] that there exists an asymptotic gap between the
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search of mildly short vectors in general lattices and in certain structured lattices
(i.e. ideal lattices), in other words, the search for short vectors in such lattices (i.e.
Ideal-SVP) is easier. However, these proposed algorithms do not lead to practical
attacks. On the one hand, the approximation factors in these methods are too large
to affect any actual RLWE schemes. On the other hand, the gap between Ideal-
SVP and RLWE is still unclear. In certain sense, MLWE can be viewed as an
interpolation between LWE and RLWE. It is believed that MLWE provides both
a better security level than RLWE, and a better performance than LWE.

Since no effective attack method based on ideal lattices or module lattices has
been put forward so far, the security of the schemes based on MLWE (including
RLWE) is usually evaluated by first converting the underlying MLWE instance
into an LWE one and then attacking it by the best known algorithms against LWE.
It is thus an interesting problem to consider how to enhance the existing attacks
against LWE with the rich algebraic structure of MLWE. Actually, there have been
some such attempts. It is noted that there are three major attacks on LWE, namely
the primal attack, the dual attack, and the BKW attack. In 2021, Nakamura and
Yasuda [13] proposed a new kind of extended lattice which contains multiple short
vectors. They found that performing the decoding attack (via Kannan’s embed-
ding [14]) or the primal attack (via Bai-Galbraith embedding [15]) on the new
lattice increases the probability of finding a target vector by pruned ENUM. How-
ever, their increased success rate sometimes is at the cost of enlarging blocksize.
Ring-BKW, a version of the Blum-Kalai-Wasserman algorithm which respects the
ring structure was presented in [16]. Its primary advantage is that there is no need
for back-substitution, and the hypothesis testing phase supports parallel process-
ing. Even so, only a polynomial factor speedup can be expected.

We fill the gap for the dual attack. To be specific, we improve the original dual
attack against LWE by exploring special algebraic structure of MLWE (includ-
ing RLWE). It is observed that each MLWE sample produces n LWE samples.
A relatively simple case is discussed first, where the number of LWE samples
used (which is denoted by m) is a multiple of n. An interesting property has
been proven, which indicates that the rotations are consistent with certain linear
transformations. It shows that with any short vector found by BKZ, the adver-
sary could construct n− 1 additional short vectors automatically (instead of using
BKZ). With some tricks, this conclusion is extended to the case of a general m
by considering a new kind of intersection lattice. In summary, we propose an en-
hanced dual attack method in this paper. Short vectors are first searched in the
new lattice, and then the number of the vectors increases to n times the original
size by “rotation” operation. Finally, all of these short vectors can be used to make
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a distinction.
Since the coefficient vectors of different rotations of the same polynomial vec-

tor are all included, we suppose that they are near-orthogonal, for sample indepen-
dence. This could be regarded as an extension of the assumption under the original
dual attack against LWE. We give some theoretical explanations as well as exten-
sive experimental validation for this assumption. By our improved approach, the
required blocksize and time complexity (in both classical and quantum cases) all
decrease. It is remarked that our improvement is not significant and its limitation
is also touched on. In conclusion, our results do not reveal a severe security prob-
lem for MLWE/RLWE compared to that of a general LWE, we notice that this
is consistent with the findings by the previous work for using primal and BKW
attacks to MLWE/RLWE.

The remaining of the paper is organized as follows. Section 2 contains neces-
sary notations, properties as well as useful algorithms. In the first half of Section
3, we describe a way of constructing more short vectors of the same length us-
ing the ones found by BKZ. The complete enhanced dual attack method against
MLWE is given in the second half of Section 3, as well as its complexity and
correlation analysis. Experiments with this improved algorithm are conducted in
Section 4, corresponding results and some explanations are both provided.

2. Preliminaries

For any distribution D, we use x← D to express that x is sampled according
to D. The uniform distribution over some set X is written as U(X). For any
matrix A, we denote the submatrix formed by its i-th to j-th rows by A[i:j]. While
v[i:j] represents the subvector that contains the i-th to the j-th entries of some
vector v. For any matrix B ∈ Rm×n, L(B) is the lattice generated by B. For two
vectors y, z ∈ Rd, let θ(y, z) be the angle between them.

2.1. Statistics
The Gaussian distribution is one of the most important distributions in lattice

cryptography, as in most schemes based on LWE or its variants, the coefficients
of the error (sometimes as well as the secret) are independently picked up from
the discrete Gaussian distribution.

Let σ > 0. For any x ∈ R, the density of the d-dimensional centered Gaussian
distribution with standard deviation σ (i.e. Nd

σ ) is defined as ρdσ(x) = 1

(2π)
d
2 σd
·
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e−
‖x‖2

2σ2 . Reducing it modulo q gives the discrete Gaussian distribution Gd
σ,q over

Zdq , whose probability mass function (pmf) is gdσ,q(x) =
∑
t∈Zd ρ

d
σ(x+tq)∑

t∈Zd ρ
d
σ(t)

,∀x ∈ Zdq .
Recall that the discrete Fourier transform (DFT) of a function f : Zdq →

C is given by f̂(y) =
∑

x∈Zdq
e−

2πi〈x,y〉
q f(x),∀y ∈ Zdq . It is a powerful tool in

cryptanalysis. For example, for any pmf φ over Zq, its bias is defined as B(φ) =

Ex←φ
[
e−

2πix
q

]
= φ̂(1). It has been shown in [17] that DFT can be used to derive

the distinguish advantage in a dual attack, and this idea was further developed in
[18].

Lemma 1. Given two positive integers d, q, let σ > 0. Suppose that x ∼ Gd
σ,q is

a random vector. For any v ∈ Zdq , we denote the pmf of (the random variable over

Zq) 〈v, x〉 (mod q) by f〈v,x〉, then f̂〈v,x〉(1) ≥ e
− 2π2σ2‖v‖2

q2 .

Given the distinguish advantage, the well-known Chernoff-Hoeffding inequal-
ity is useful for estimating the number of samples required.

Lemma 2. Let ξ1, · · · , ξM be real-valued independent bounded random variables
with ξj ∈ [c, d] and E[ξj] = µj, j = 1, 2, · · · ,M . Then for any ε ≥ 0,

Pr

∣∣∣∣∣∣ 1M
M∑
j=1

(ξj − µj)

∣∣∣∣∣∣ ≥ ε
 ≤ 2 · e−

2Mε2

(d−c)2 .

The following lemma is used to assess the independence (or correlation) of
multiple samples, as this is a requirement of the Chernoff-Hoeffding inequality.

Lemma 3. ([19, Example 2.2]) Let X be a random vector in Rd whose covari-
ance matrix is Σ. Then for any y, z ∈ Rd,

cov (〈X, y〉 , 〈X, z〉) = 〈y,Σz〉 .

It is known that for the X, y, z above, var(〈X, y〉) = yTΣy and var(〈X, z〉) =
zTΣz, so we derive the corollary below.

Corollary 1. Let X be a random vector in Rd whose covariance matrix is Σ.
Then for any y, z ∈ Rd,

r (〈X, y〉 , 〈X, z〉) =
〈y,Σz〉√

yTΣy ·
√
zTΣz

,
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where r(·, ·) denotes the correlation coefficient. In particular, if Σ = σ2Id for
some σ > 0, then we have

r (〈X, y〉 , 〈X, z〉) =
〈y, z〉
‖y‖ · ‖z‖

= cos (θ(y, z)) .

2.2. Lattice and BKZ
In this subsection, we shall provide some properties and algorithms in lattice

cryptography that are useful in our later discussion.
Recall that a d-dimensional lattice Λ is a discrete additive subgroup of Rd.

The set {bj}rj=1 ⊆ Rd is a basis of Λ, if b1, · · · , br are linearly independent and

Λ =
{∑r

j=1 zjbj : zj ∈ Z
}

. Then r is called the rank of Λ. We write B =

(b1 b2 · · · br), and the volume of Λ is defined as vol(Λ) =
√

det(BTB).
For a lattice Λ with basisB, its dual lattice is denoted by Λ∗ = {y ∈ Span(B) : ∀x ∈ Λ, 〈x, y〉 ∈ Z}.

It is easy to verify that the dual matrix B∼T of B is a basis of Λ∗, and thus
vol(Λ∗) = 1

vol(Λ)
.

The “primitiveness” of a set of lattice vectors is related to its ability to be ex-
tended to a lattice basis. To be specific, the column vectors of Φ = (φ1 φ2 · · · φt)
are said to be primitive with respect to Λ, if they are linearly independent and
Λ ∩ Span(Φ) = L(Φ). The following lemma is a natural extension of lemma
12 in [20] and a proof is given in [21, appendix B]. It predicts the volume of the
intersection of a lattice and some subspace, if certain primitiveness conditions are
met.

Lemma 4. Given a lattice Λ. Suppose that Φ = (φ1 · · · φt) contains a set of
primitive vectors of Λ∗, then Λ ∩ Span(Φ)⊥ is a lattice of volume

√
det (ΦTΦ) ·

vol(Λ).

The BKZ algorithm put forward by Schnorr and Euchner [22] in 1991 is a
strong tool of the dual attack. Since it was proposed, there have been many vari-
ants of it, such as [23]. At present, the BKZ algorithm with sieving [24] as the
SVP oracle is regarded as the most common and efficient choice. The “blocksize”
b in it is a core parameter. When applying the BKZ algorithm with blocksize b

(BKZ-b), the Hermite factor δ0(b) ≈
(

b
2πe

(πb)
1
b

) 1
2(b−1)

[25] is useful for predict-
ing the length of the output vectors. b also determines the number of the output
and the running time of the algorithm.
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Assumption 1. For a lattice Λ of rank r, given any of its basis as input, BKZ-b
with sieving as the SVP oracle provides 20.2075b short vectors in one run, whose
norms are all close to δr0(b) · vol(Λ)

1
r . This costs

TBKZ(b) =

{
20.292b classical case
20.265b quantum case .

Moreover, it is generally assumed that the short vectors found by BKZ are
non-directional. To be more precisely, each of their coefficients independently
obeys the same Gaussian distribution. This is also known as the BKZ balance
assumption.

Assumption 2. Let v ∈ Rd be a short vector found by BKZ, then each entry of v
follows a Gaussian distribution with mean 0 and standard deviation ‖v‖√

d
.

2.3. Rotations
Let n, q, k be three positive integers. In MLWE-based schemes, we mainly

work on the rings R = Z[x]/(xn + 1) and Rq = Zq[x]/(xn + 1). For any poly-
nomial a = a0 + a1x + · · · + an−1x

n−1 ∈ Rq, we define its coefficient vector
as a = (a0, a1, · · · , an−1)T ∈ Znq . This could be easily extended to the case of a

polynomial vector α =


α1

α2

...
αk

∈ Rk
q , whose coefficient vector is


α1

α2

...
αk

 ∈ Zn·kq .

The “rotations” are useful for simplifying the inner product in Rk
q . Fix a posi-

tive integer r, an r-rotation of a polynomial vector α ∈ Rk
q is given by

α(r) =
(
xr · α1(x

−1) (mod xn + 1), · · · , xr · αk(x−1) (mod xn + 1)
)T ∈ Rkq .

The following properties of rotations are also relevant to our discussion.

Lemma 5. For any two polynomial vectors α, β ∈ Rk
q , we have

(i) αTβ =
∑n−1

j=0 α
Tβ(j)xj .

(ii) For any integer r, α(n+r) = −α(r) and α(2n+r) = α(r).

(iii) Fix r ∈ {0, 1, · · · , n− 1} and k = 1. Let αj and α(r)
j be the j-th (0 ≤ j ≤

n− 1) degree coefficients of α and α(r) respectively, then

α
(r)
j =

{
αr−j 0 ≤ j ≤ r

−αn+r−j r + 1 ≤ j ≤ n− 1
.

7



We shall introduce some notations for the sake of the later analysis. For any
polynomial a ∈ Rq, we write a to be the square matrix consisting of the coefficient

vectors of the 0-rotation to the (n−1)-rotation of a, i.e. a =
(
a(0) a(1) · · · a(n−1)

)
∈

Zn×nq . This concept also applies to polynomial vectors and even matrices. That is,

for any polynomial matrix A =

a11 · · · a1k
... . . . ...
at1 · · · atk

 ∈ Rt×k
q , we define

A =

a11 · · · a1k
... . . . ...
at1 · · · atk

 ∈ Ztn×knq , (1)

and call A the H-rotation of A, as it contains the rotations of A within half cycle.

2.4. Module-LWE
We focus on the case of Module-LWE (including Ring-LWE) in this paper.

They are structured variants of LWE that were introduced to achieve higher effi-
ciency.

Definition 1. Fix positive integers n, q, k and the secret s ∈ Rk
q . Let χ be a

distribution over Zq with a mean of 0 and a small standard deviation of σχ. Then
an Module-LWE sample with parameters (n, q, k, χ) is of the form

(a, b) ∈ Rk
q ×Rq with b = 〈a, s〉+ e,

where a ← U
(
Rk
q

)
and each coefficient of the error e ∈ Rq is sampled inde-

pendently according to χ, i.e., e ← χn. Further, the Search-MLWE is to find
s when given a limited number of samples, while the Decision-MLWE asks for
distinguishing these samples between uniform ones.

Remark 1: When k = 1, the problem is reduced to Ring-LWE.

Reduction to LWE Although MLWE features more algebraic structure, no more
efficient algorithm has been proposed based on this. The security of actual MLWE-
based schemes are usually assessed by first transforming the MLWE instance to
an LWE one and then attacking it by methods against LWE.

The following describes a transformation way for an MLWE instance (A, b =
As+e) ∈ Rt×k

q ×Rt
q consisting of t MLWE samples. Some structure is preserved

8



in the sample matrix of the resulting LWE instance. Specifically, let b =

(
b1
...
bt

)

and e =

(
e1
...
et

)
. We denote the i-th row of A = (aij) by ATi . Then from lemma 5

(i), we have

bi = ATi s+ ei =
n−1∑
j=0

A
(j)
i

T

s xj + ei, i = 1, 2, · · · , t. (2)

Writing bi =
∑n−1

j=0 bijx
j, ei =

∑n−1
j=0 eijx

j , and comparing the j-th (0 ≤ j ≤
n− 1) degree coefficient of the two sides of equation (2), we have

bij = A
(j)
i

T

s+ eij, i = 1, 2, · · · , t; j = 0, 1, · · · , n− 1. (3)

These make up t · n LWE samples that can be reformulated as:

b1...
bt

 =



A
(0)
1

T

.

.

.

A
(n−1)
1

T

.

.

.

A
(1)
t

T

.

.

.

A
(n−1)
t

T


· s+

e1
...
et

 (mod q), (4)

or further summarized as (a proof is given in Appendix A):

b = AT
T

· s+ e (mod q). (5)

Recall that AT is the H-rotation of AT , and b, s, e are the coefficient vectors of
b, s, e respectively.

From the above, t · n LWE samples can be converted from t MLWE samples,
and the new (k · n)-dimensional secret s is the coefficient vector of the original se-

cret s. Some structure has been preserved in the sample matrixAT
T

. More specif-
ically, it is easy to see that for i = 1, 2, · · · , t, the (n · (i− 1) + 1)-th through the

(n · (i− 1) + n)-th rows ofAT
T

respectively correspond to the coefficient vectors
of different rotations of the same polynomial vector Ai. This property is exactly
what we will use later to enhance the dual attack against MLWE.
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Remark 2: It should be noticed that AT
T

6= A although they are both tn × kn

matrices. Actually, it is easy to verify that AT
T

=

a11
T · · · a1k

T

...
. . .

...
at1

T · · · atk
T

, and the

reason why it is not equal to A is because
{
aij
}

and A are not symmetric.

Remark 3: For actual schemes such as MLWE-based Kyber and RLWE-based
Newhope, there are only k + 1 MLWE samples available to the attacker, i.e.,
t ≤ k+ 1. So the number of LWE samples used in a dual attack should be limited
to (k + 1) · n.

Remark 4: In the following, we focus on the case where the coefficients of the
secret s also obey the error distribution χ independently, i.e., s ← χk·n. Then,
the resulting LWE instance is referred to as an instance in Hermite Normal Form
(HNF). This manner of selecting s is often used in practice, for example, Kyber
(with certain parameter sets)[7], Newhope [5], FrodoKEM[26] and LAC [6] all
use the same distribution to sample the entries of s and the e. Moreover, a way
was given in [27] to transform the distribution of the secret to be that of the error
through Gaussian elimination.

3. Dual Attack against MLWE

This section discusses the dual attack against MLWE. The special structure
mentioned earlier of the resulting LWE sample matrix gives the possibility of
making an enhancement to the dual attack on it. Actually, as we shall see, each
short vector found by BKZ contributes much more. To be specific, it is described
in Section 3.1 that, using a short vector found in L′ (see equation (8)), the attacker
can construct another n − 1 vectors in L (see equation (6)) of the same length
automatically. All of these short vectors can be used to distinguish. Our enhanced
attack method utilizes this interesting property, and is given in Section 3.2. Its
complexity and correlation analysis are also provided.

3.1. Constructing more short vectors in L

In this subsection, we describe a method of constructing more short vectors
from those returned by the BKZ algorithm.
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Suppose that the goal of the adversary is to distinguish whether a given in-
stance (A, b) ∈ Rt×k

q ×Rt
q is from MLWE or not. After performing the transforma-

tion described in Section 2.4, he/she gets an instance
(
AT

T

, b

)
∈ Ztn×knq × Ztnq .

There is a noteworthy phenomenon in the dual attack that the optimal per-
formance may not be achieved when all of the obtained samples are used. The
reason is that using more samples makes the dimension of the lattice higher.

This means that we may not have to use all of the samples in
(
AT

T

, b

)
. Let

m = hn+ g, 0 < g ≤ n. Without loss of generality, we assume that the first n · h
LWE samples come from the first h MLWE samples, and the remaining g LWE
samples are derived from the (h+ 1)-th MLWE sample.

In the following, let us start with a simple case: assume that m is a multiple
of n, i.e., m = (h + 1) · n, 0 ≤ h < t. Then, the LWE sample matrix used in the
dual attack is of the form(

A
(0)
1 · · ·A

(n−1)
1 · · ·A(0)

h+1 · · ·A
(n−1)
h+1

)T
=
(
A1 · · ·Ah+1

)T
= AT[1:h+1]

T

.

To perform a dual attack on the instance (AT[1:h+1]

T

, b[1:h+1]), the adversary con-
siders the lattice

L =

{(
u
v

)
∈ Z(h+1)n+kn : AT[1:h+1] · u = v (mod q)

}
. (6)

It is an ((h+ 1)n+ kn)-dimensional lattice of volume qkn and has a basis

B =

(
I(h+1)n O(h+1)n×kn

AT[1:h+1] qkn

)
∈ Z((h+1)n+kn)×((h+1)n+kn).

Short vectors will be searched in L by BKZ to distinguish whether the in-

stance (AT[1:h+1]

T

, b[1:h+1]) comes from LWE or is uniform. The difference here is
that, with any short vector found in L, the adversary could construct n− 1 addi-
tional short vectors in L by himself/herself (instead of using BKZ). This means
that if M short vectors in L are obtained by BKZ, they will be expanded to n ·M
short vectors in L, and then all of these short vectors will be used for distinguish-
ing. Therefore, fewer short vectors are required during the BKZ search phase, and
the cost is thus reduced.

11



Before showing this interesting fact, we shall give a useful proposition which
indicates that the rotations are consistent with linear transformations whose ma-
trices are H-rotation matrices.

Proposition 1. Given positive integers z, k. For any polynomial matrix P ∈ Rk×z
q

and polynomial vectors α ∈ Rz
q , β ∈ Rk

q , if P · α(r) = β(r), then P · α(r+1) =

β(r+1), r ∈ {0, 1, · · · , n− 2}.

The proof of proposition 1 is given in Appendix B. From it we know that, for

any short vector
(
u
v

)
∈ L, it is easy to find polynomial vectors α ∈ Rh+1

q and

β ∈ Rk
q

1, such that α(0) = u and β(0) = v. ThenAT[1:h+1]·α(0) = β(0). By applying

proposition 1 multiple times for r = 0, 1, · · · , n − 2, we have AT[1:h+1] · α(j) =

β(j), j = 1, 2, · · · , n − 1. In other words, the attacker could use
(
u
v

)
=

(
α(0)

β(0)

)
to immediately construct another n−1 different short vectors (of the same length)
in L: (

α(1)

β(1)

)
,

(
α(2)

β(2)

)
, · · · ,

(
α(n−1)

β(n−1)

)
.

To make it more clear, we give an example below.

Example 1: Assume that n = k = t = h + 1 = 2. Let A = (aij)2×2, where

aij =
∑1

k=0 aijkx
k. Let A1 =

(
a11

a12

)
and A2 =

(
a21

a22

)
, then

AT
[1:h+1]

= AT =

(
a11 a21
a12 a22

)
=

a(0)11 a
(1)
11 a

(0)
21 a

(1)
21

a
(0)
12 a

(1)
12 a

(0)
22 a

(1)
22

 =


a110 a111 a210 a211
−a111 a110 −a211 a210
a120 a121 a220 a221
−a121 a120 −a221 a220

 .

For any short vector
(
u
v

)
∈L, we denote u=

(
u0
u1
u2
u3

)
=

(
α
(0)
1

α
(0)
2

)
and v=

(
v0
v1
v2
v3

)
=

(
β
(0)
1

β
(0)
2

)
,

1As u, v are both short vectors in the q-ary lattice L, it is natural to think that their coefficients
all belong to Zq .
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where α1, α2, β1, β2 are polynomials in Rq. As AT · u = v (mod q), we have,
a110u0 + a111u1 + a210u2 + a211u3 = v0

−a111u0 + a110u1 − a211u2 + a210u3 = v1

a120u0 + a121u1 + a220u2 + a221u3 = v2

−a121u0 + a120u1 − a221u2 + a220u3 = v3

.

This could be reformulated as AT


u1
−u0
u3
−u2

 =


v1
−v0
v3
−v2

, i.e.,

α
(1)
1

α
(1)
2

β
(1)
1

β
(1)
2

 is also a vector

belong to L and it is as short as
(
u
v

)
. �

Now we are ready for the discussion on the case where m is not a multiple of
n. This is necessary as in a dual attack against actual LWE schemes, the lowest
cost is usually obtained when the number of used samples is not a multiple of n.
Let m = hn + g, where 0 ≤ h < t, 0 < g < n. A naive idea is to construct
an analogue lattice to L of dimension (hn + g + kn) that considers the sample
matrix (

A
(0)
1 · · ·A

(n−1)
1 · · ·A(0)

h · · ·A
(n−1)
h A

(0)
h+1 · · ·A

(g−1)
h+1

)T
. (7)

However, since the last g columns do not form the whole Ah+1, proposition
1 is not applicable. From another perspective, because the last g entries of u
cannot constitute a complete coefficient vector, rotations can not be applied on it
to produce more short vectors.

To deal with this problem, we come up with a new kind of lattice where only
m samples are used implicitly, and meanwhile the missing entries of u are suc-
cessfully padded. Specifically, define the subspace V = {w ∈ R(h+1)n+kn :
〈w, γj〉 = 0, j = hn+ g + 1, · · · , (h+ 1)n}, where γj represents the unit vector
in Z(h+1)n+kn with only the j-th coefficient being 1. Then the attacker searches
short vectors in

L′ = L ∩V. (8)

Although L′ ⊆ Z(h+1)n+kn, it is easy to see that rank(L′) = m+kn. Properly

speaking, for a vector w =

(
u
v

)
∈L′, the (hn+g+1)-th through the (h+1)n-th

entries of u are all 0, making the corresponding columns (hn+ g+ 1) to (h+ 1)n

of AT[1:h+1] (i.e. A(g)
h+1, · · · , A

(n−1)
h+1 ) lose their effects. This implies only m samples

13



mentioned in equation (7) are used. According to [20], a basis B′ of L′ could be
computed by the following way:

1. Calculate D = ΠV ·B−T , where ΠV is the orthogonal projection matrix
onto V.

2. Apply the MLLL algorithm on D to eliminate linear dependencies. Delete
n− g zero vectors in the result and denote the remaining vectors by DV.

3. Output the dual matrix of DV as B′.

We need to take care of the volume of L′, as it is closely related to the cost of
the dual attack (see Section 3.2 for details). Actually, vol(L′) can be computed

even without calculating B′. Since B is a basis of L, B−T =

 I(h+1)n −
AT

[1:h+1]

T

q

Okn×(h+1)n
1
q
Ikn


is a basis of L∗. It can be seen that

{
γhn+g+1, · · · , γ(h+1)n

}
forms a set of prim-

itive vectors with respect to L∗, as they can be extended to B−T . Then from
lemma 4,

vol(L′) = vol(L) = qkn.

In conclusion, we reduce the rank of L′ but without changing its volume 2.

For any vector w =

(
u
v

)
∈ L′, just like before, we could find a polynomial

vector η =

(
α
β

)
∈ R(h+1)+k

q , such that α(0) = u, β(0) = v. Then u(1), · · · , u(n−1)

all have at least n−g zero coefficients (but may not necessarily be in the last n−g
positions). As a result, all of η(1), · · · , η(n−1) are short vectors of length ‖w‖ in
L. We should note that these vectors may not belong to L′, but this has no effect
on our dual attack as we shall see later.

The above analysis is summarized as the following theorem.

2As we know, for the original dual attack against LWE, the volume of the lattice depends only
on the dimension of the secret, not on the number of samples used. So qkn is exactly what we
expect. It should be noted that the volume of the intersection lattice is usually larger than that of
the original lattice. This is disadvantageous to an adversary who performs a dual attack, because
it is easier to find (unspecified) short vectors in a lattice of a smaller volume. Fortunately, the
new lattice L′ we constructed has the same volume as the original lattice L, because certain
primitiveness requirements are met.
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Theorem 1. For any short vector
(
u
v

)
∈ L (or L′), let η =

(
α
β

)
∈ R(h+1)+k

q

be the polynomial vector that satisfy α(0) = u and β(0) = v, then η(j) ∈ L, j =
0, 1, · · · , n− 1.

Remark 5: It is not hard to see that L is the lattice corresponding to L′ when
g = n. So for simplicity, we just say that short vectors are found in L′ by BKZ
in both cases.

3.2. The enhanced algorithm as well as its correlation and complexity analysis
In this subsection, we shall give a detailed description of our enhanced attack.

Its correlation and complexity analysis are also provided.
To distinguish the target instance (A, b) ∈ Rt×k

q × Rt
q of MLWE from uni-

form, the adversary constructs the lattice L′ as in equation (8) and looks for short
vectors in it.

Suppose that M short vectors
(
uj
vj

)
∈ L′, j = 1, 2, · · · ,M of length at most

l are found. As described in the previous subsection, let ηj =

(
αj
βj

)
∈ R(h+1)+k

q

be the polynomial vectors that satisfy α(0)
j = uj and β(0)

j = vj, j = 1, 2, · · · ,M .

Then according to theorem 1, the attacker obtains n ·M short vectors
{
η

(r)
j

}
j,r

in

L.
All of these short vectors will be used for distinguishing. To be specific, the

difference in the distributions of
{〈

α
(r)
j , b[1:h+1]

〉
(mod q)

}
j,r

in the two cases is

key to the distinction. If b is uniform, then so is b[1:h+1], and thus
〈
α

(r)
j , b[1:h+1]

〉
(mod q)← U (Zq). While if b = As+e, we have b[1:h+1] = AT[1:h+1]

T

·s+e[1:h+1]

(mod q). Let S =

(
e[1:h+1]

s

)
, then

〈
α

(r)
j , b[1:h+1]

〉
=

〈(
α

(r)
j

β
(r)
j

)
,

(
e[1:h+1]

s

)〉
=〈

η
(r)
j , S

〉
(mod q) is relatively small, as η(r)

j , S are both short vectors.

In consequence, the attacker calculates
∑M
j=1

∑n−1
r=0 e

−
2πi

〈
α
(r)
j

,b[1:h+1]

〉
q

nM
and it goes to∑M

j=1

∑n−1
r=0 f̂

〈
α
(r)
j

,b[1:h+1]

〉(1)

nM
as M increase, where f〈

α
(r)
j ,b[1:h+1]

〉 refers to the pmf of
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〈
α

(r)
j , b[1:h+1]

〉
(mod q). The result is 0 when b is uniform, and is∑n−1

r=0

∑M
j=1 f̂

〈
S,η

(r)
j

〉(1)

nM
≥ e

−
2π2σ2χ

∥∥∥∥∥η(r)j
∥∥∥∥∥
2

q2 ≥ e
−

2π2σ2χl
2

q2 := ε

in the other case from lemma 1. The distinction is made according to whether the
calculated value is closer to 0 or ε. To achieve a constant success rate, by lemma
2, nM = 1

O(ε2)
short vectors are sufficient.

Remark 6: It is noted that lemma 1 is true for any v ∈ Zdq . Hence, the fact

that there are some zero coefficients in η(r)
j does not have any effect on the above

analysis.
Now we shall derive the cost model of our improved dual attack method

against MLWE, as well as the selection approach of each parameter. From as-
sumption 1, when BKZ-b is applied and m LWE samples are used, 20.2075b short
vectors in L′ of length l(m, b) = δm+kn

0 (b) · q
kn

m+kn will be found. By the way
described in Section 3.1, they can be extended to n ·20.2075b short vectors in L (of

length l(m, b)), each giving a distinguish advantage of ε(m, b) = e
−

2π2σ2χl
2(m,b)

q2 .
To achieve a constant success rate, O

(
1

ε2(m,b)

)
short vectors are needed. So

the BKZ search process has to be repeated at leastR(m, b) = max
{

1, 1
n·20.2075b·ε2(m,b)

}
times. Then the time complexity is

T (m, b) = TBKZ(b) ·R(m, b).

Hence, the attacker should figure out the optimal blocksize b∗ and the opti-
mal number of samples m∗, so that T (m∗, b∗) is minimized (i.e. T (m∗, b∗) =
minm,b {T (m, b)}). As we know, for the original dual attack against LWE, m∗ is

actually a function of b [28, 29]. That is, m∗ =
√

n ln q
ln(δ0(b))

− n. We notice that an
analogue of this relationship is still available in the case of MLWE:

m∗(b) =

√
kn · ln q
ln(δ0(b))

− kn, (9)

as it is the only zero of the derivative of l(m, b) with respect to m.
To sum up, only the optimal blocksize b∗ needs to be searched to meet

b∗ = argminb {T (m∗(b), b)} ,
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and then the optimal number of samples is m∗(b∗).
In the last part of this subsection, we further show the correctness of the above

algorithm. As mentioned earlier, the analysis of the dual attack relies on the
Chernoff-Hoeffding inequality, which requires the independence between sam-

ples. We notice that η(0)
j , η

(1)
j , · · · , η(n−1)

j are coefficient vectors of different ro-
tations of the same polynomial vector, their correlations should be examined for
using Chernoff-Hoeffding inequality.

It is a widely used analytic approach for the dual attack against LWE to sup-
pose the so-called near-orthogonality assumption of high-dimensional spaces and
the balance assumption of BKZ. These two assumptions will be used in our anal-
ysis of MLWE as well. In our case, we only need to address the issue of near-
orthogonality.

Properly speaking, what we care about is the correlation between
〈
S, η

(r1)
j1

〉
and

〈
S, η

(r2)
j2

〉
. Their correlation coefficient is cos

(
θ

(
η

(r1)
j1

, η
(r2)
j2

))
according

to corollary 1. When j1 6= j2, by the BKZ balance assumption, η(r1)
j1

and η(r2)
j2

could be regarded as random vectors whose directions are uniform. Then from

the near-orthogonality assumption, η(r1)
j1

and η(r2)
j2

are close to be perpendicular
and hence the cosine of the angle between them is close to 0. While for the case
of j1 = j2 and r1 6= r2, owing to the independence of the coefficients of ηj1
and the high dimension, cos

(
θ

(
η

(r1)
j1

, η
(r2)
j2

))
will still have a very small absolute

value, meaning that they are less correlated as in the case for independent η(r1)
j1

and η(r2)
j2

(j1 6= j2). This interesting observation is supported by extended exper-
iments in Section 4.1. The above analysis can be summarized as the following
assumption.

Assumption 3. For 1 ≤ j ≤ M , if r1, r2 ∈ {0, 1, · · · , n − 1} are chosen ran-

domly, then cos
(
θ
(
η

(r1)
j , η

(r2)
j

))
≈ 0 with an overwhelming probability.

4. Experiments

We notice that our enhanced dual attack method is more suitable for RLWE-
based schemes with small parameter sets. On the one hand, for an MLWE-based
cryptosystem, since the coefficient vector of the secret is of dimension k · n, at
the same security level, k = 1 obviously results in a larger n. This means that the
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original dual attack new algorithm in this paper

m∗ 569 570
b∗ 382.67 376.86
T ∗c 2111.740 2110.043

T ∗q 2101.408 299.868

Table 1: A comparison between the original dual attack and our improved algorithm when attack-
ing a Newhope512 instance.

attacker is able to construct more short vectors for distinguishing from theorem 1.
On the other hand, in a larger parameter set, although n is larger, however, so is the
blocksize b. As mentioned earlier, 20.2075b short vectors will be provided by BKZ
in one run. In fact, the increase in n is small compared to that in 20.2075b, mak-
ing the improvement effect relatively less obvious. In the following experiments,
Newhope512 is taken as an example.

4.1. Newhope512
The RLWE-based Newhope [5] is a second round candidate in NIST’s post-

quantum standardization effort. In Newhope512, n = 512, k = 1, q = 12289.
Each coefficient of the secret and the error is independently picked up from the
centered binomial distribution ψ8

3 with a standard deviation of 2. As done in [5],
we assume that this does not lead to much difference in the conclusions we deduce
earlier on the discrete Gaussian distribution.

Table 1 compares the original dual attack against Newhope512 with our im-
proved one. The optimal blocksize and the optimal number of samples are denoted
by b∗ and m∗ respectively, and then the time complexity is T ∗c (T ∗q ) in the classical
(quantum) case. Although the blocksize b needs to be selected as an integer in
practice, setting its precision to 0.01 helps us to give a more accurate prediction.

It can been seen that, by taking advantage of the special algebraic structure
in Newhope512, we reduce the blocksize b∗ by 5.81. The time complexity is

3It is known that the ideal discrete Gaussian sampler is not available in practical LWE
schemes, not only due to the limitation of precisions, but also because of the high cost.
Recall that the central binomial distribution ψµ is a common substitute defined on the set
X = {−µ,−µ+ 1, · · · , µ− 1, µ} with the probability assignment at k ∈ X to be ψµ(k) =(

2µ

k + µ

)
1

22µ . Moreover, it has a variance µ
2 .
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decreased by a factor of 21.697 in the classical case and 21.540 in the quantum case.
The optimal number of samples is 570, which is very close to the predicted value
of 567.16 in equation (9). When taking b = 376.86, the BKZ algorithm finds
20.2075∗376.86 ≈ 278 short vectors in one run, the results from the previous section
imply that the attacker can actually have 512 · 278 = 287 short vectors available
for distinguishing. We see that the improvement is not that significant in the dual
attack against Newhope512 (as well as other MLWE/RLWE schemes), this is due
to the fact that 20.2075b∗ � n.

We also conduct some experiments to show the rationality of assumption 3. If
m∗ = 549 LWE samples are used, the lattice is of rank 549 + 512 = 1061 and
dimension 1024 + 512 = 1536. The length of the short vectors found by BKZ
is l(549, 376.86) ≈ 7612.185, hence each of their non-zero coefficients follows
a Gaussian distribution with a mean of 0 and a standard deviation of 7612.185√

1061
≈

233.696.
The steps below are repeated multiple times:

1. Take η1 ← N1061
233.696 and define η =

(
η1

0475

)
.

2. Pick up r1, r2 ← U ({0, 1, · · · , n− 1}) independently. If r1 6= r2, then goto
step 3, otherwise go back to step 2.

3. Compute cos
(
θ
(
η(r1), η(r2)

))
.

(a) The case of cos
(
θ
(
η(r1), η(r2)

))
. (b) The case of cos (θ (η1, η2)).

Figure 1: The dispersion of the cosine values of the angles in the two cases.

Figure 1(a) shows the dispersion of the results of 500-times experiments. We
can observe that

∣∣∣cos
(
θ
(
η(r1), η(r2)

))∣∣∣ is always within 0.1. The independence
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is implied, as it is generally recognized that a coefficient with an absolute value
within 0.1 indicates a negligible relationship. For comparison, we also provide
figure 1(b). The case of cos (θ (η1, η2)) is characterized, where η1, η2 ← N1061

233.696

are independent. It should be pointed out that the two situations in figure 1(a)
and (b) is quite similar, so it is reasonable to consider the coefficient vectors of
different rotations of the same polynomial vector to be independent and nearly-
orthogonal.
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Appendix A. The sample matrix of the LWE instance

We just have to prove that AT =

(
A

(0)
1 · · ·A

(n−1)
1 · · ·A(0)

t · · ·A
(n−1)
t

)
. Let Ai =(

ai1
...
aik

)
∈ Rk

q , i = 1, 2, · · · , t, then AT =

a11 · · · at1
...

. . .
...

a1k · · · atk

 =


a
(0)
11 · · · a

(n−1)
11 · · · a

(0)
t1 · · · a

(n−1)
t1

...
. . .

...
. . .

...
. . .

...

a
(0)
1k · · · a

(n−1)
1k · · · a

(0)
tk · · · a

(n−1)
tk

 =

(
A

(0)
1 · · ·A

(n−1)
1 · · ·A(0)

t · · ·A
(n−1)
t

)
.

Appendix B. The proof of proposition 1

From lemma 5 (iii), for r ∈ {0, 1, · · · , n − 2}, we have the following equa-
tions:

α
(r+1)
f =

{
−α(r)

n−1 f = 0

α
(r)
f−1 1 ≤ f ≤ n− 1

, (B.1)

α
(r)
f =

{
α

(r+1)
f+1 0 ≤ f ≤ n− 2

−α(r+1)
0 f = n− 1

. (B.2)
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We denote P = (Pij)k×z , α =

(
α1

...
αz

)
and β =

(
β1
...
βk

)
. Let Pij,l, αi,l, βi,l, P

(r)
ij,l , α

(r)
i,l , β

(r)
i,l

be the l-th (0 ≤ l ≤ n − 1) degree coefficients of Pij, αi, βi and P (r)
ij , α

(r)
i , β

(r)
i

respectively, then from P · α(r) = β(r), we haveP11 · · · P1z
... . . . ...
Pk1 · · · Pkz

 ·
α

(r)
1
...

α
(r)
z

 =

β
(r)
1
...

β
(r)
k

 .

Then for i = 1, 2, · · · , k,

β
(r)
i =

z∑
d=1

Pid · α
(r)
d =

z∑
d=1

(
P

(0)
id · · · P

(n−1)
id

)
α

(r)
d,0
...

α
(r)
d,n−1

 =

z∑
d=1

n−1∑
c=0

P
(c)
id · α

(r)
d,c.

Compare the entries of the vectors on both sides of the above formula, we have

z∑
d=1

n−1∑
c=0

α
(r)
d,cP

(c)
id,f = β

(r)
i,f , f = 0, 1, · · · , n− 1; i = 1, 2, · · · , k. (B.3)

Now we consider the value of β(r+1)
i,f in two cases of f = 0 and 1 ≤ f ≤ n−1.

Case 1 f = 0.

β
(r+1)
i,0

equ.(B.1)
======= −β(r)

i,n−1

equ.(B.3)
======= −

z∑
d=1

n−1∑
c=0

α
(r)
d,cP

(c)
id,n−1

equ.(B.2)
=======
equ.(B.1)

−
z∑
d=1

(
n−2∑
c=0

α
(r+1)
d,c+1 ·

(
−P (c+1)

id,0

)
+
(
−α(r+1)

d,0

)
· P (0)

id,0

)
c′=c+1
======

z∑
d=1

(
n−1∑
c′=1

α
(r+1)
d,c′ P

(c′)
id,0 + α

(r+1)
d,0 · P (0)

id,0

)

=
z∑
d=1

n−1∑
c′=0

α
(r+1)
d,c′ · P

(c′)
id,0 .

Case 2 1 ≤ f ≤ n− 1.

β
(r+1)
i,f

equ.(B.1)
======= β

(r)
i,f−1

equ.(B.3)
=======

z∑
d=1

n−1∑
c=0

α
(r)
d,cP

(c)
id,f−1
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equ.(B.2)
=======
equ.(B.1)

z∑
d=1

(
n−2∑
c=0

α
(r+1)
d,c+1P

(c+1)
id,f + α

(r)
d,n−1P

(n−1)
id,f−1

)
c′=c+1
======

z∑
d=1

(
n−1∑
c′=1

α
(r+1)
d,c′ P

(c′)
id,f +

(
−α(r+1)

d,0

)
·
(
−P (0)

id,f

))

=

z∑
d=1

n−1∑
c′=0

α
(r+1)
d,c′ P

(c′)
id,f .

Combine case 1 with case 2, we get
z∑
d=1

n−1∑
c=0

α
(r+1)
d,c P

(c)
id,f = β

(r+1)
i,f , i = 1, 2, · · · , k; f = 0, 1, · · · , n− 1.

So

β
(r+1)
i =

z∑
d=1

n−1∑
c=0


α

(r+1)
d,c P

(c)
id,0

...
α

(r+1)
d,c P

(c)
id,n−1

 =

z∑
d=1

n−1∑
c=0

α
(r+1)
d,c P

(c)
id

=
z∑
d=1

(
P

(0)
id · · · P

(n−1)
id

)
α

(r+1)
d,0

...
α

(r+1)
d,n−1

 =
z∑
d=1

Pid · α
(r+1)
d

=
(
Pi1 · · · Pid

)
α

(r+1)
1

...

α
(r+1)
z

 = Pi · α(r+1), i = 1, 2, · · · , k.

Then the conclusion is drawn since

P · α(r+1) =

P1
...
Pk

 · α(r+1) =

β
(r+1)
1

...

β
(r+1)
k

 = β(r+1).
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