
Security Analysis of a Color Image Encryption
Scheme Based on Dynamic Substitution and

Diffusion Operations

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. In 2019, Essaid et al. proposed an encryption scheme for
color images based on chaotic maps. Their solution uses two enhanced
chaotic maps to dynamically generate the secret substitution boxes and
the key bytes used by the cryptosystem. Note that both types of pa-
rameters are dependent on the size of the original image. The authors
claim that their proposal provides enough security for transmitting color
images over unsecured channels. Unfortunately, this is not the case. In
this paper, we introduce two cryptanalytic attacks for Essaid et al.’s en-
cryption scheme. The first one is a chosen plaintext attack, which for a
given size, requires 256 chosen plaintexts to allow an attacker to decrypt
any image of this size. The second attack is a a chosen ciphertext attack,
which compared to the first one, requires 512 chosen ciphertexts to break
the scheme for a given size. These attacks are possible because the gen-
erated substitution boxes and key bits remain unchanged for different
plaintext images.

1 Introduction

Because the use of social media is growing exponentially, the protection of digital
images has become a sensitive topic. Therefore, the protection of images against
theft and illegal distribution has attracted much attention. As a result, many
researchers have proposed a variety of image encryption schemes. One of the most
popular types of image encryption schemes are those based on chaotic maps, due
to their high sensitivity to the previous states, initial conditions or both. This
property makes them highly desirable because their sensitivity makes it difficult
to predict their behaviour or outputs. Hence, novel chaos based cryptographic
algorithms have been proposed over the years. We refer the reader to [7,22,24,40]
for some surveys of such proposals. Unfortunately, insufficient security analysis
and a lack of design guidelines have led to the discovery of serious security flaws
in a substantial number of chaos based image encryption schemes. To illustrate
our point we further present a list of broken schemes in Table 1. Note that the
list is not comprehensive.

https://orcid.org/0000-0003-3953-2744


2

Scheme [20] [32] [10] [11] [29] [3] [8] [23] [9]
Broken by [31] [2] [35] [1] [34] [8] [14] [13] [38]

Scheme [26] [17] [27] [28] [36] [37] [12] [25] [21]
Broken by [30] [19] [33] [39] [4] [18] [6] [15] [16]

Table 1. Broken chaos based image encryption algorithms.

In [5] a chaos based encryption scheme is proposed. The authors use the En-
hanced Logistic Map (ELM) and Enhanced Sine Map (ESM) as pseudorandom
number generators (PRNGs). Using these two PRNGs, Essaid et al. randomly
generate two substitution boxes (s-boxes), which are then used to compute the
rest of the s-boxes required by the cryptosystem. Then, the PRNGs are com-
bined to create the necessary key bytes. Since ELM and ESM are simply used as
PRNGs and the scheme’s weakness is independent of the employed generators,
we omit their description and simply consider the two s-boxes and the key bytes
as being randomly generated.

In this paper we conducted a security analysis on the Essaid et al. scheme.
More precisely, we propose a chosen plaintext attack and a chosen ciphertext
attack that allow an attacker to decrypt all images of a given size. In order
to achieve this, we need the corresponding ciphertexts of 256 chosen plaintexts
or the corresponding plaintexts of 512 chosen ciphertexts. For completeness,
we also analysed the Essaid et al. scheme when all the s-boxes are randomly
generated. This should be the most secure version of their scheme, since there
are no relationships between the s-boxes that would allow an attacker to filter out
the correct key. Unfortunately, even when the s-boxes are random, our proposed
attacks succeed in recovering the encrypted images except two or four pixels,
depending on the type of attack.

Structure of the paper. We provide the necessary preliminaries in Section 2. In
Section 3 we show how an attacker can recover the private key and secret s-boxes
in a chosen plaintext scenario. We also provide a key and s-boxes recovery attack
in a chosen ciphertext attack in Section 4. We conclude in Section 5.

2 Preliminaries

Notations. In this paper, the subset {1, . . . , s− 1} ∈ N is denoted by [1, s). The
action of selecting a random element x from a sample space X is represented by
x

$←− X, while x ← y indicates the assignment of value y to variable x. In the
case of matrices, the ← operator assigns the values position by position and the
= operator tests the equality between all positions of the two matrices. We use
the C++ language operator & as reference to a variable. By H and W we denote
an image’s height and width. Also, we denote by L = H +W − 1. Hexadecimal
numbers will always contain the prefix 0x.



3

Algorithm 1: Encryption algorithm.
Input: A plaintext p, an s-box list s, a secret seed seed and a secret key k
Output: A ciphertext c

1 for i ∈ [0, H) and j ∈ [0,W ) do
2 if i = 0 and j = 0 then c0,0 ← (seed⊕ k0,0 + s0[p0,0]) mod 256
3 else if j = 0 then ci,0 ← (ci−1,W−1 ⊕ ki,0 + si[pi,0]) mod 256
4 else ci,j ← (ci,j−1 ⊕ ki,j + si+j [pi,j ]) mod 256

5 return c

Algorithm 2: Decryption algorithm.
Input: A ciphertext c, an inverse s-box list s−1, a secret seed seed and a

secret key k
Output: A plaintext p

1 for i ∈ [0, H) and j ∈ [0,W ) do
2 if i = 0 and j = 0 then p0,0 ← s−1

0 [(c0,0 − seed⊕ k0,0) mod 256]

3 else if j = 0 then pi,0 ← s−1
i [(ci,0 − ci−1,W−1 ⊕ ki,0) mod 256]

4 else pi,j ← s−1
i+j [(ci,j − ci,j−1 ⊕ ki,j) mod 256]

5 return p

2.1 Essaid et al. Image Encryption Scheme

In this section we present Essaid et al.’s encryption (Algorithm 1) and decryption
(Algorithm 2) algorithms as described in [5]. We further consider two cases

– s-boxes s0 and s1 are randomly generated and the remaining ones are gen-
erated using Algorithm 3;

– all the s-boxes in list s are randomly generated.

The first version is according to the original paper [5], while the second one is
introduced to show that the scheme remains broken even if the s-boxes are chosen
at random. Note that the seed and the key bytes ki,j are randomly generated.

Algorithm 3: S-box table generator.
Input: Two s-boxs s0 and s1
Output: An s-box list s

1 for i ∈ [2, L) and j ∈ [0, 256) do si[j]← si−2[si−1[j]]
2 return s

3 Chosen Plaintext Attack

In a chosen plaintext attack (CPA), the attacker A has temporary access to the
encryption machine Oenc and can interrogate it on different inputs. Therefore,



4

A constructs some plaintexts that are useful for his attack and then using Oenc

obtains the corresponding ciphertexts.
We further show that Essaid et al.’s image encryption scheme is insecure in

the chosen plaintext scenario, regardless of whether the generation method of
the s-boxes is random or Algorithm 3 is used. The only difference between the
two cases is the run time of the attack.

3.1 Randomly generated s-boxes

Before formally stating our attack, we first provide an example in order to pro-
vide the intuition behind our CPA attack.

Example 1. We further assume that we encrypt images of height 3 and width 4.
We present in Figure 1 how Essaid et al.’s encryption algorithm (see Algorithm 1)
uses the generated s-boxes. We can see that the algorithm uses the same s-box
for each cell on a given minor diagonal.

s0 s1 s2 s3

s1 s2 s3 s4

s2 s3 s4 s5

Fig. 1. Used s-boxes in an image with H = 3 and W = 4.

Lets assume that the image Ipv we want to encrypt has the same pixel value
pv everywhere. We further write ci,j [pv] for the ciphertext byte ci,j computed
for Ipv. Then, if we write the ciphertext equations for the third minor diagonal
we obtain

c0,2[pv]← (c0,1[pv]⊕ k0,2 + s2[pv]) mod 256 (1)
c1,1[pv]← (c1,0[pv]⊕ k1,1 + s2[pv]) mod 256 (2)
c2,0[pv]← (c1,3[pv]⊕ k2,0 + s2[pv]) mod 256. (3)

From Equations (1) and (2) we derive

c0,2[pv]− c1,1[pv] ≡ (c0,1[pv]⊕ k0,2 − c1,0[pv]⊕ k1,1) mod 256. (4)

If we request Oenc the ciphertexts for all 256 images I0, . . . , I255 we obtain
256 equations of type Equation (4). By checking all the values x and y that
satisfy

c0,2[pv]− c1,1[pv] ≡ (c0,1[pv]⊕ x− c1,0[pv]⊕ y) mod 256,



5

for all pv values, we find the correct key pair (k0,2, k1,1) and an equivalent key
pair (k0,2⊕0x80, k1,1⊕0x80). The second solution is derived from the following
relations

c0,2[pv] ≡ (c0,1[pv]⊕ k0,2 + 128 + s2[pv] + 128) mod 256

≡ (c0,1[pv]⊕ k0,2 ⊕ 0x80+ s2[pv]⊕ 0x80) mod 256

c1,1[pv] ≡ (c1,0[pv]⊕ k1,1 + 128 + s2[pv] + 128) mod 256

≡ (c1,0[pv]⊕ k1,1 ⊕ 0x80+ s2[pv]⊕ 0x80) mod 256

which lead to

c0,2[pv]− c1,1[pv] ≡ (c0,1[pv]⊕ x⊕ 0x80− c1,0[pv]⊕ y ⊕ 0x80) mod 256.

After computing k0,2, using Equation (1) we recover the correct s-box entries

s2[pv]← (c0,2[pv]− c0,1[pv]⊕ k0,2) mod 256

and from Equation (3) we obtain

k2,0 = (c2,0[0]− s2[0] mod 256)⊕ c1,3[0].

We also obtain an equivalent s-box s̃2 from

s̃2[pv]← (c0,2[pv]− c0,1[pv]⊕ k0,2 ⊕ 0x80) mod 256

and from Equation (3) we obtain

k2,0 ⊕ 0x80 = (c2,0[0]− s̃2[0] mod 256)⊕ c1,3[0].

We can easily see that both the correct key bytes k0,2, k1,1, k2,0 and s-box s2,
and the equivalent key bytes k0,2 ⊕ 0x80, k1,1 ⊕ 0x80, k2,0 ⊕ 0x80 and s-box s̃2
can be used for decryption. Since we cannot determine the order of the correct
and equivalent key bytes when we brute force x and y, we assume that the first
solution we obtain is the correct one.

We repeat the same procedure for the second, forth and fifth minor diagonals.
The only key bytes and s-boxes that we cannot recover using the above technique
are k0,0, k2,3, s0 and s5.

Example 2. To illustrate the method presented in Example 1 we encrypted all
Ipv using seed = 0x08 and the parameters presented in Table 2. For simplicity
we omitted the 0x prefix.

In Table 3’s first half we provide the key k̃0 and the s-boxes s̃0,1, . . . , s̃0,5
obtained from the first solutions of the equations of type Equation (4). For com-
pleteness, in the second half we present the key k̃1 and the s-boxes s̃1,1, . . . , s̃1,5
obtained from the second solutions.

The formal description of our chosen plaintext attack is provided in Algo-
rithm 4 and is a generalization of the method presented in Example 1. For



6

k 21 c1 75 88 38 0c ad ad ef 62 84 d4
s0 cd f0 a2 e2 ed . . . ce 14 6a 3e fc
s1 25 de 5a 72 bb . . . 41 23 e5 10 a4
s2 26 5c 73 1e 34 . . . 49 c2 7b ca 46
s3 bd dd 6d a0 4a . . . e2 1c cc 75 06
s4 62 fa ee 0f 1d . . . f5 69 31 54 a1
s5 b9 26 ec 68 65 . . . c2 c3 5f 8f 6e

Table 2. Used secrets.

k̃0 ?? 41 75 08 b8 0c 2d 2d ef e2 04 ??
s̃0,1 a5 5e da f2 3b . . . c1 a3 65 90 24
s̃0,2 26 5c 73 1e 34 . . . 49 c2 7b ca 46
s̃0,3 3d 5d ed 20 ca . . . 62 9c 4c f5 86
s̃0,4 e2 7a 6e 8f 9d . . . 75 e9 b1 d4 21
k̃1 ?? c1 f5 88 38 8c ad ad 6f 62 84 ??
s̃1,1 25 de 5a 72 bb . . . 41 23 e5 10 a4
s̃1,2 a6 dc f3 9e b4 . . . c9 42 fb 4a c6
s̃1,3 bd dd 6d a0 4a . . . e2 1c cc 75 06
s̃1,4 62 fa ee 0f 1d . . . f5 69 31 54 a1

Table 3. Computed secrets.

completeness, in Algorithm 4 we compute two possible key, s-boxes pairs just
as in Example 2. Note that in order to be able to use our attack we must have
H,W ≥ 2.

The complexity of Algorithm 4 is O(224L + HW ) and we need 256 oracle
queries. For example, if we encrypt 2 megapixels3 images we obtain that the
complexity of Algorithm 4 is O(224 · 211.45 + 220.87) = O(235.45). In the case of
12 megapixels4, we obtain O(224 · 212.77 + 223.5) = O(236.77).

3.2 Essaid et al.’s generation method for s-boxes

As in the previous subsection, we begin with an example.

Example 3. Compared to Examples 1 and 2, in the case of Essaid et al.’s gener-
ation method it is enough to compute s̃0,1, s̃1,1, s̃0,2, s̃1,2, s̃0,3 and s̃1,3 and the
remaining s-boxes can be easily deduced using Algorithm 3. Note that in this
case we can also compute s0 and s5.

The first thing that we do after deducing ŝ0,1, ŝ1,1, ŝ0,2, ŝ1,2 from the 256
encrypted images is to compute ŝ0,1◦ŝ0,2, ŝ0,1◦ŝ1,2, ŝ1,1◦ŝ0,2, ŝ1,1◦ŝ1,2 and check
which one coincides with ŝ0,3 or ŝ1,3. This leads to two possible combinations,
one for ŝ0,3 and one for ŝ1,3. We denote the first combination by s̃0,1, s̃0,2 and
s̃0,3 and the second one by s̃1,1, s̃1,2 and s̃1,3.

3W ×H = 1600× 1200
4W ×H = 4000× 3000



7

Algorithm 4: CPA attack (randomly generated).
1 for t ∈ [0, 256) do
2 for i ∈ [0, H) and j ∈ [0,W ) do pi,j ← t
3 Send the plaintext p to the encryption oracle Oenc.
4 Receive the ciphertext c̄ from the encryption oracle Oenc.
5 ct ← c̄

6 for j ∈ [1, L− 1) do
7 α← max(0, j − (W − 1)); β ← min(j,H − 1); pos← 0
8 for x ∈ [0, 256) and y ∈ [0, 256) do
9 ctr ← 0

10 for t ∈ [0, 256) do
11 f ← ct,α,j−α − ct,α+1,j−(α+1) mod 256
12 if j ̸= α+1 then g ← (ct,α,j−α−1⊕x− ct,α+1,j−α−2⊕ y) mod 256
13 else g ← (ct,α,j−α−1 ⊕ x− ct,α,W−1 ⊕ y) mod 256
14 if f = g then ctr ← ctr + 1

15 if ctr = 256 then
16 k̃pos,α,j−α ← x; k̃pos,α+1,j−(α+1) ← y
17 for t ∈ [0, 256) do s̃pos,j [t]← (ct,α,j−α − ct,α,j−α−1 ⊕ x) mod 256

18 for t ∈ [0, 256) do s̃−1
pos,j [s̃pos,j [t]]← t

19 for t ∈ [α+ 2, β + 1) do
20 k̃pos,t,j−t ← ((c0,t,j−t − s̃pos,j [0]) mod 256)⊕ c0,t,j−t−1

21 pos← pos+ 1

22 return k̃, s̃, s̃−1

Let pos ∈ [0, 2). After computing s̃pos,1, s̃pos,2 and s̃pos,3, the remaining s-
boxes can be calculated as follows: s̃pos,4 = s̃pos,3 ◦ s̃pos,2, s̃pos,5 = s̃pos,4 ◦ s̃pos,5
and s̃pos,0 = s̃pos,2◦s̃−1

pos,1. Once all the s-boxes are known, we can easily compute
the key k̃pos.

We remark that only one of the two solutions is the correct one. We can see
that from the following relation

s̃3[i] = s3[i]⊕ 0x80 = s2[s1[i]]⊕ 0x80 = s̃2[s1[i]].

Since s̃3 is not generated by s̃2[s̃1[i]], we do not obtain the equivalent key, s-boxes
pair, and thus one of the solutions will not decrypt images correctly.

The formal description of our chosen plaintext attack is provided in Al-
gorithm 5 and is a generalization of the method presented in Example 3. The
complexity of Algorithm 5 is O(224+28L+HW ) and we need 256 oracle queries.
For example, if we encrypt 2 megapixels images we obtain that the complexity
of Algorithm 5 is O(224 + 28 · 211.45 + 220.87) = O(224.21). In the case of 12
megapixels, we obtain O(224 + 28 · 212.77 + 223.5) = O(224.85).

Note that according to [5] the security of their scheme is O(2128). Using 256
encrypted images and Algorithm 5, we lower the security strength of Essaid et
al.’s scheme from 128 bits to approximately 24 bits.



8

Algorithm 5: CPA attack (Essaid et al.’s generation method).
6 for j ∈ [1, 4) do
7 α← max(0, j − (W − 1)); pos← 0
8 for x ∈ [0, 256) and y ∈ [0, 256) do
9 ctr ← 0

10 for t ∈ [0, 256) do
11 f ← ct,α,j−α − ct,α+1,j−(α+1) mod 256
12 if j ̸= α+1 then g ← (ct,α,j−α−1⊕x− ct,α+1,j−α−2⊕ y) mod 256
13 else g ← (ct,α,j−α−1 ⊕ x− ct,α,W−1 ⊕ y) mod 256
14 if f = g then ctr ← ctr + 1

15 if ctr = 256 then
16 x̃pos,j−1 ← x; ỹpos,j−1 ← y
17 for t ∈ [0, 256) do
18 ŝpos,j−1[t]← (ct,α,j−α − ct,α,j−α−1 ⊕ x) mod 256
19 pos← pos+ 1

20 for i ∈ [0, 2) and j ∈ [0, 2] do
21 for t ∈ [0, 256) do f = ŝi,0[ŝj,1[t]]
22 if f = ŝ0,2 then s̃0,1 ← ŝi,0; s̃0,2 ← ŝj,1; s̃0,3 ← ŝ0,2
23 if f = ŝ1,2 then s̃1,1 ← ŝi,0; s̃1,2 ← ŝj,1; s̃1,3 ← ŝ1,2
24 for pos ∈ [0, 2) do
25 for j ∈ [4, L) and t ∈ [0, 256) do s̃pos,j [t]← s̃pos,j−2[s̃pos,j−1[t]]

26 for j ∈ [1, L) and t ∈ [0, 256) do s̃−1
pos,j [s̃pos,j [t]]← t

27 for t ∈ [0, 256) do s̃pos,0[t]← s̃pos,2[s̃
−1
pos,1[t]]

28 for t ∈ [0, 256) do s̃−1
pos,0[s̃pos,0[t]]← t

29 for i ∈ [0, H) and j ∈ [0,W ) do
30 if i = 0 and j = 0 then k̃pos,0,0 = (c0,0,0 − s̃pos,0[0]) mod 256

31 else if j = 0 then k̃pos,i,0 = (c0,i,0 − s̃pos,i[0]) mod 256

32 else k̃pos,i,j = (c0,i,j − s̃pos,i+j [0]) mod 256

33 return k̃, s̃, s̃−1

4 Chosen Ciphertext Attack

Compared to the chosen plaintext attack, in a chosen ciphertext attack (CCA),
A has temporary access to the decryption machine Odec. Therefore, A constructs
some ciphertexts that are useful for his attack and then using Odec obtains the
corresponding plaintexts.

In this scenario, we provide two types of attacks against Essaid et al.’s cryp-
tosystem, one for images with odd width and one for images with even width.
Again the s-box generation method is irrelevant to the success of the attacks,
the only thing that is affected is their run time.

4.1 Randomly generated s-boxes

We first provide an example for images with odd width and then one for images
with even width. After, we present the formal description of our CCA attack.



9

t 2 t 2 t

1 t 1 t 2

t 1 t 1 t

C0(t) =

2 t 2 t 2

t 1 t 1 t

1 t 1 t 1

C1(t) =

Fig. 2. Ciphertext patterns for H = 3 and W = 5.

Example 4. We further assume that we decrypt images of height 3 and width 5.
In the first part of the attack we use ciphertexts of type C0(t) (see Figure 2). If
we explicit the relations for the forth minor diagonal we obtain

s3[p0,3[t]]← (2− t⊕ k0,3) mod 256 (5)
s3[p1,2[t]]← (1− t⊕ k1,2) mod 256 (6)
s3[p2,1[t]]← (1− t⊕ k2,1) mod 256. (7)

Since we consider all t values, in Equations (5) and (6) permutation s3 iterates
through all its values. Therefore, all we need is to find the t values for which
p0,3 = p1,2. Therefore, we define

tab0[p0,3[t]]← t and tab1[p1,2[t]]← t,

and using Equations (5) and (6) we obtain

(2− tab0[i]⊕ k0,3) ≡ (1− tab1[i]⊕ k1,2) mod 256,

for all i values. By checking all the values x and y that satisfy

(2− tab0[i]⊕ x) ≡ (1− tab1[i]⊕ y) mod 256,

for all i values, we find the correct key pair (k0,3, k1,2) and the equivalent key pair
(k0,3⊕0x80, k1,2⊕0x80). As in Example 1, we consider that the first solution is
the correct one. Once the first two key bytes are known, we can easily compute
the third s-box using Equation (5) and the third key byte using Equation (7).

We repeat the process for the second and sixth minor diagonals. In the second
part of our attack, we use ciphertexts of type C1(t) (see Figure 2) and then we
use the same procedure as before for the third and fifth minor diagonal. The
only key bytes and s-boxes that we cannot recover using the above technique are
k0,0, k2,4, s0 and s6.

Example 5. For the even width case, we consider images of height 3 and width
6. In this case we use the same procedure as in Example 4, but instead of using
C0(t) and C1(t) ciphertext patterns, we use C2(t) and C3(t) (see Figure 3). The
only difference between the even and odd width cases is that in the even case
we cannot recover k0,1, k1,0 and s1. This is because in the even case we could
not put t on the last cell in the first line of C2(t) without interfering with the
recovery of the other bytes and s-boxes.



10

t 2 t 2 t 2

1 t 1 t 1 t

t 1 t 1 t 2

C2(t) =

2 t 2 t 2 t

t 1 t 1 t 2

1 t 1 t 1 t

C3(t) =

Fig. 3. Ciphertext patterns for H = 3 and W = 6.

Note that we can recover the two key bytes and one s-box if we create one
additional ciphertext pattern that satisfies the previously stated condition (see
Figure 4). However, we have to ask 256 more oracle queries. Therefore, we decided
that is more practical to lose the ability to decrypt two extra bytes, than to ask
the additional queries, since images can still be recognized without them. For
example, an emoji has a resolution of 32 × 32 and removing the four pixels it
does not affect the informational content.

t 2 3 3 3 t

1 3 3 3 3 3

3 3 3 3 3 3

C4(t) =

Fig. 4. Additional ciphertext pattern for H = 3 and W = 6.

The formal description of our chosen ciphertext attack is provided in Algo-
rithm 7 and is a generalization of the methods presented in Examples 4 and 5.
For completeness, in Algorithm 7 we compute two possible key, s-boxes pairs
just as in Algorithm 4. Note that in order to be able to use our attack we must
have H ≥ 2 and W ≥ 3.

The complexity of Algorithm 7 is the same as the complexity of Algorithm 4,
namely O(224L+HW ). The only difference between the two attacks is that in
the case of Algorithm 7 we need 512 decryption oracle queries.

4.2 Essaid et al.’s generation method for s-boxes

In the case of Essaid et al.’s generation method is enough to compute three s-
boxes using the ideas from Examples 4 and 5. Then using similar techniques as
the ones from Example 3 we can recover all the s-boxes, and implicitly all the
key bytes.

The formal description of our chosen ciphertext attack is provided in Al-
gorithm 9. The complexity of Algorithm 9 is the same as the complexity of
Algorithm 5, namely O(224+28L+HW ). The only difference is that in the case
of Algorithm 9 we need 512 oracle queries.



11

Algorithm 6: Helper functions.
1 Function choose_plaintext(parity)
2 for t ∈ [0, 256) do
3 for i ∈ [0, H) and j ∈ [0,W ) do
4 α← max(0, i+ j − (W − 1))
5 if i+ j ≡ parity mod 2 then ci,j ← t
6 else if i = α then ci,j ← 2
7 else ci,j ← 1

8 Send the ciphertext c to the decryption oracle Odec.
9 Receive the plaintext p̄ from the decryption oracle Odec.

10 pt ← p̄

11 return pt

12 Function partial_attack(low, upp, pt,&k̃,&s̃,&s̃−1)
13 for j ∈ [low, upp) and at each step increment j with 2 do
14 α← max(0, j − (W − 1)); β ← min(j,H − 1); pos← 0
15 for t ∈ [0, 256) do tab0[pt,α,j−α] = t; tab1[pt,α+1,j−(α+1)] = t
16 for x ∈ [0, 256) and y ∈ [0, 256) do
17 ctr ← 0
18 for t ∈ [0, 256) do
19 f ← (2− tab0[t]⊕ x) mod 256
20 g ← (1− tab1[t]⊕ y) mod 256
21 if f = g then ctr ← ctr + 1

22 if ctr = 256 then
23 k̃pos,α,j−α ← x; k̃pos,α+1,j−(α+1) ← y
24 for t ∈ [0, 256) do s̃pos,j [t]← (2− tab0[t]⊕ x) mod 256

25 for t ∈ [0, 256) do s̃−1
pos,j [s̃pos,j [t]]← t

26 for t ∈ [α+ 2, β + 1) do
27 k̃pos,t,j−t ← ((ct,j−t − s̃pos,j [p255,t,j−t) mod 256)⊕ ct,j−t−1

28 pos← pos+ 1

Algorithm 7: CCA attack (randomly generated).
1 Function main_odd()
2 pt ← choose_plaintext(0)

3 partial_attack(1, L− 1, pt, k̃, s̃, s̃
−1)

4 pt ← choose_plaintext(1)

5 partial_attack(2, L− 1, pt, k̃, s̃, s̃
−1)

6 return k̃, s̃, s̃−1

7 Function main_even()
8 pt ← choose_plaintext(0)

9 partial_attack(3, L− 1, pt, k̃, s̃, s̃
−1)

10 pt ← choose_plaintext(1)

11 partial_attack(2, L− 1, pt, k̃, s̃, s̃
−1)

12 return k̃, s̃, s̃−1



12

Similar to the case of the CPA attack, using 512 decrypted images and Al-
gorithm 9, we managed to lower the security strength of Essaid et al.’s scheme
from 128 bits to approximately 24 bits.

Algorithm 8: More helper functions.
1 Function partial_attack(low, upp, pt, f lag,&k̃,&s̃,&s̃−1)
2 for j ∈ [low, upp) and at each step increment j with 2 do
3 α← max(0, j − (W − 1)); pos← 0
4 for t ∈ [0, 256) do tab0[pt,α,j−α] = t; tab1[pt,α+1,j−(α+1)] = t
5 for x ∈ [0, 256) and y ∈ [0, 256) do
6 ctr ← 0
7 for t ∈ [0, 256) do
8 f ← (2− tab0[t]⊕ x) mod 256
9 g ← (1− tab1[t]⊕ y) mod 256

10 if f = g then ctr ← ctr + 1

11 if ctr = 256 then
12 x̃pos,j−1−flag ← x; ỹpos,j−1−flag ← y
13 for t ∈ [0, 256) do ŝpos,j−1−flag[t]← (2− tab0[t]⊕ x) mod 256
14 pos← pos+ 1

15 Function extract_key(pos,&k̃)
16 for i ∈ [0, H) and j ∈ [0,W ) do
17 if i = 0 and j = 0 then k̃pos,0,0 = (c0,0,0 − s̃pos,0[p255,0,0]) mod 256

18 else if j = 0 then k̃pos,i,0 = (c0,i,0 − s̃pos,i[p255,i,0]) mod 256

19 else k̃pos,i,j = (c0,i,j − s̃pos,i+j [p255,i,j ]) mod 256

5 Conclusions

In [5], the authors described an image encryption scheme that they claimed
provided a security strength of 128 bits. Unfortunately, in this paper we showed
that the actual security strength of Essaid et al.’s scheme is roughly 24 bits. To
achieve our security bound, we devised a chosen plaintext attack which needs
256 queries to the encryption oracle. We also describe a chosen ciphertext attack
which needs 512 queries to the decryption oracle and has a complexity of O(224).
For completeness, we also show how to attack Essaid et al.’s cryptosystem when
all its s-boxes are randomly generated. In this case, using our CPA or CCA
attacks, we lower the security strength to 36 bits.



13

Algorithm 9: CCA attack (Essaid et al.’s generation method).
1 Function main_odd()
2 pt ← choose_plaintext(0)

3 partial_attack(1, 4, pt, 0, k̃, s̃, s̃
−1)

4 pt ← choose_plaintext(1)

5 partial_attack(2, 3, pt, 0, k̃, s̃, s̃
−1)

6 for i ∈ [0, 2) and j ∈ [0, 2] do
7 for t ∈ [0, 256) do f = ŝi,0[ŝj,1[t]]
8 if f = ŝ0,2 then s̃0,1 ← ŝi,0; s̃0,2 ← ŝj,1; s̃0,3 ← ŝ0,2
9 if f = ŝ1,2 then s̃1,1 ← ŝi,0; s̃1,2 ← ŝj,1; s̃1,3 ← ŝ1,2

10 for pos ∈ [0, 2) do
11 for j ∈ [4, L) and t ∈ [0, 256) do s̃pos,j [t]← s̃pos,j−2[s̃pos,j−1[t]]

12 for j ∈ [1, L) and t ∈ [0, 256) do s̃−1
pos,j [s̃pos,j [t]]← t

13 for t ∈ [0, 256) do s̃pos,0[t]← s̃pos,2[s̃
−1
pos,1[t]]

14 for t ∈ [0, 256) do s̃−1
pos,0[s̃pos,0[t]]← t

15 extract_key(pos, k̃)

16 return k̃, s̃, s̃−1

17 Function main_even()
18 pt ← choose_plaintext(0)

19 partial_attack(3, 4, pt, 1, k̃, s̃, s̃
−1)

20 pt ← choose_plaintext(1)

21 partial_attack(2, 5, pt, 1, k̃, s̃, s̃
−1)

22 for i ∈ [0, 2) and j ∈ [0, 2] do
23 for t ∈ [0, 256) do f = ŝi,0[ŝj,1[t]]
24 if f = ŝ0,2 then s̃0,2 ← ŝi,0; s̃0,3 ← ŝj,1; s̃0,4 ← ŝ0,2
25 if f = ŝ1,2 then s̃1,2 ← ŝi,0; s̃1,3 ← ŝj,1; s̃1,4 ← ŝ1,2
26 for pos ∈ [0, 2) do
27 for j ∈ [5, L) and t ∈ [0, 256) do s̃pos,j [t]← s̃pos,j−2[s̃pos,j−1[t]]

28 for j ∈ [2, L) and t ∈ [0, 256) do s̃−1
pos,j [s̃pos,j [t]]← t

29 for t ∈ [0, 256) do s̃pos,1[t]← s̃pos,3[s̃
−1
pos,2[t]]

30 for t ∈ [0, 256) do s̃−1
pos,1[s̃pos,1[t]]← t

31 for t ∈ [0, 256) do s̃pos,0[t]← s̃pos,2[s̃
−1
pos,1[t]]

32 for t ∈ [0, 256) do s̃−1
pos,0[s̃pos,0[t]]← t

33 extract_key(pos, k̃)

34 return k̃, s̃, s̃−1

References

1. Alanazi, A.S., Munir, N., Khan, M., Asif, M., Hussain, I.: Cryptanalysis of Novel
Image Encryption Scheme Based on Multiple Chaotic Substitution Boxes. IEEE
Access 9, 93795–93802 (2021)

2. Arroyo, D., Diaz, J., Rodriguez, F.: Cryptanalysis of a One Round Chaos-Based
Substitution Permutation Network. Signal Processing 93(5), 1358–1364 (2013)

3. Chen, J.x., Zhu, Z.l., Fu, C., Zhang, L.b., Zhang, Y.: An Efficient Image Encryption
Scheme Using Lookup Table-Based Confusion and Diffusion. Nonlinear Dynamics



14

81(3), 1151–1166 (2015)
4. Chen, J., Chen, L., Zhou, Y.: Cryptanalysis of a DNA-Based Image Encryption

Scheme. Information Sciences 520, 130–141 (2020)
5. Essaid, M., Akharraz, I., Saaidi, A., Mouhib, A.: A New Approach of Image En-

cryption Based on Dynamic Substitution and Diffusion Operations. In: SysCo-
BIoTS 2019. pp. 1–6. IEEE (2019)

6. Fan, H., Zhang, C., Lu, H., Li, M., Liu, Y.: Cryptanalysis of a New Chaotic Im-
age Encryption Technique Based on Multiple Discrete Dynamical Maps. Entropy
23(12), 1581 (2021)

7. Hosny, K.M.: Multimedia Security Using Chaotic Maps: Principles and Method-
ologies, vol. 884. Springer (2020)

8. Hu, G., Xiao, D., Wang, Y., Li, X.: Cryptanalysis of a Chaotic Image Cipher using
Latin Square-Based Confusion and Diffusion. Nonlinear Dynamics 88(2), 1305–
1316 (2017)

9. Hua, Z., Zhou, Y.: Design of Image Cipher Using Block-Based Scrambling and
Image Filtering. Information sciences 396, 97–113 (2017)

10. Huang, X., Sun, T., Li, Y., Liang, J.: A Color Image Encryption Algorithm Based
on a Fractional-Order Hyperchaotic System. Entropy 17(1), 28–38 (2014)

11. Khan, M.: A Novel Image Encryption Scheme Based on Multiple Chaotic S-Boxes.
Nonlinear Dynamics 82(1), 527–533 (2015)

12. Khan, M., Masood, F.: A Novel Chaotic Image Encryption Technique Based on
Multiple Discrete Dynamical Maps. Multimedia Tools and Applications 78(18),
26203–26222 (2019)

13. Li, M., Lu, D., Wen, W., Ren, H., Zhang, Y.: Cryptanalyzing a Color Image En-
cryption Scheme Based on Hybrid Hyper-Chaotic System and Cellular Automata.
IEEE access 6, 47102–47111 (2018)

14. Li, M., Lu, D., Xiang, Y., Zhang, Y., Ren, H.: Cryptanalysis and Improvement in
a Chaotic Image Cipher Using Two-Round Permutation and Diffusion. Nonlinear
Dynamics 96(1), 31–47 (2019)

15. Li, M., Wang, P., Liu, Y., Fan, H.: Cryptanalysis of a Novel Bit-Level Color Im-
age Encryption Using Improved 1D Chaotic Map. IEEE Access 7, 145798–145806
(2019)

16. Li, M., Wang, P., Yue, Y., Liu, Y.: Cryptanalysis of a Secure Image Encryption
Scheme Based on a Novel 2D Sine–Cosine Cross-Chaotic Map. Journal of Real-
Time Image Processing 18(6), 2135–2149 (2021)

17. Liu, L., Hao, S., Lin, J., Wang, Z., Hu, X., Miao, S.: Image Block Encryption
Algorithm Based on Chaotic Maps. IET Signal Processing 12(1), 22–30 (2018)

18. Liu, Y., Qin, Z., Liao, X., Wu, J.: Cryptanalysis and Enhancement of an Image En-
cryption Scheme Based on a 1-D Coupled Sine Map. Nonlinear Dynamics 100(3),
2917–2931 (2020)

19. Ma, Y., Li, C., Ou, B.: Cryptanalysis of an Image Block Encryption Algorithm
Based on Chaotic Maps. Journal of Information Security and Applications 54,
102566 (2020)

20. Matoba, O., Javidi, B.: Secure Holographic Memory by Double-Random Polariza-
tion Encryption. Applied Optics 43(14), 2915–2919 (2004)

21. Mondal, B., Behera, P.K., Gangopadhyay, S.: A Secure Image Encryption Scheme
Based on a Novel 2D Sine–Cosine Cross-Chaotic (SC3) Map. Journal of Real-Time
Image Processing 18(1), 1–18 (2021)

22. Muthu, J.S., Murali, P.: Review of Chaos Detection Techniques Performed on
Chaotic Maps and Systems in Image Encryption. SN Computer Science 2(5), 1–24
(2021)



15

23. Niyat, A.Y., Moattar, M.H., Torshiz, M.N.: Color Image Encryption Based on
Hybrid Hyper-Chaotic System and Cellular Automata. Optics and Lasers in En-
gineering 90, 225–237 (2017)

24. Özkaynak, F.: Brief Review on Application of Nonlinear Dynamics in Image En-
cryption. Nonlinear Dynamics 92(2), 305–313 (2018)

25. Pak, C., An, K., Jang, P., Kim, J., Kim, S.: A Novel Bit-Level Color Image En-
cryption Using Improved 1D Chaotic Map. Multimedia Tools and Applications
78(9), 12027–12042 (2019)

26. Pak, C., Huang, L.: A New Color Image Encryption Using Combination of the 1D
Chaotic Map. Signal Processing 138, 129–137 (2017)

27. Shafique, A., Shahid, J.: Novel Image Encryption Cryptosystem Based on Binary
Bit Planes Extraction and Multiple Chaotic Maps. The European Physical Journal
Plus 133(8), 1–16 (2018)

28. Sheela, S., Suresh, K., Tandur, D.: Image Encryption Based on Modified Henon
Map Using Hybrid Chaotic Shift Transform. Multimedia Tools and Applications
77(19), 25223–25251 (2018)

29. Song, C., Qiao, Y.: A Novel Image Encryption Algorithm Based on DNA Encoding
and Spatiotemporal Chaos. Entropy 17(10), 6954–6968 (2015)

30. Wang, H., Xiao, D., Chen, X., Huang, H.: Cryptanalysis and Enhancements of
Image Encryption Using Combination of the 1D Chaotic Map. Signal processing
144, 444–452 (2018)

31. Wang, L., Wu, Q., Situ, G.: Chosen-Plaintext Attack on the Double Random Po-
larization Encryption. Optics Express 27(22), 32158–32167 (2019)

32. Wang, X., Teng, L., Qin, X.: A Novel Colour Image Encryption Algorithm Based
on Chaos. Signal Processing 92(4), 1101–1108 (2012)

33. Wen, H., Yu, S.: Cryptanalysis of an Image Encryption Cryptosystem Based on
Binary Bit Planes Extraction and Multiple Chaotic Maps. The European Physical
Journal Plus 134(7), 1–16 (2019)

34. Wen, H., Yu, S., Lü, J.: Breaking an Image Encryption Algorithm Based on DNA
Encoding and Spatiotemporal Chaos. Entropy 21(3), 246 (2019)

35. Wen, H., Zhang, C., Huang, L., Ke, J., Xiong, D.: Security Analysis of a Color
Image Encryption Algorithm Using a Fractional-Order Chaos. Entropy 23(2), 258
(2021)

36. Wu, J., Liao, X., Yang, B.: Image Encryption Using 2D Hénon-Sine Map and DNA
Approach. Signal processing 153, 11–23 (2018)

37. Yosefnezhad Irani, B., Ayubi, P., Amani Jabalkandi, F., Yousefi Valandar, M.,
Jafari Barani, M.: Digital Image Scrambling Based on a New One-Dimensional
Coupled Sine Map. Nonlinear Dynamics 97(4), 2693–2721 (2019)

38. Yu, F., Gong, X., Li, H., Wang, S.: Differential Cryptanalysis of Image Cipher Using
Block-Based Scrambling and Image Filtering. Information Sciences 554, 145–156
(2021)

39. Zhou, K., Xu, M., Luo, J., Fan, H., Li, M.: Cryptanalyzing an Image Encryption
Based on a Modified Henon Map Using Hybrid Chaotic Shift Transform. Digital
Signal Processing 93, 115–127 (2019)

40. Zolfaghari, B., Koshiba, T.: Chaotic Image Encryption: State-of-the-Art, Ecosys-
tem, and Future Roadmap. Applied System Innovation 5(3), 57 (2022)


	Security Analysis of a Color Image Encryption Scheme Based on Dynamic Substitution and Diffusion Operations

