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Abstract—Custodial secret management services provide a con-
venient centralized user experience, portability, and emergency
recovery for users who cannot reliably remember or store their
own credentials and cryptographic keys. Unfortunately, these
benefits are only available when users compromise the security
of their secrets and entrust them to a third party. This makes
custodial secret management service providers ripe targets for
exploitation, and exposes valuable and sensitive data to data
leaks, insider attacks, and password cracking, among other
dangers.

Several password managers and cryptocurrency wallets
today utilize non-custodial solutions, where their users are in
charge of a high-entropy secret, such as a cryptographic secret
key or a long passphrase, that controls access to their data.
One can argue that these solutions have a stronger security
model, as the service provider no longer constitutes a single
point of trust. However, the obvious downside is that it is
very difficult for people to store cryptographic secrets reliably,
making emergency recovery a serious problem.

We present Acsesor: a new framework for auditable custo-
dial secret management with decentralized trust. Our frame-
work offers a middle-ground between a fully custodial (cen-
tralized) and fully non-custodial (user-managed/distributed)
recovery system: it enhances custodial recovery systems with
cryptographically assured access monitoring and a distributed
trust assumption. In particular, the Acsesor framework dis-
tributes the recovery process across a set of (user-chosen)
guardians. However, the user is never required to interact
directly with the guardians during recovery, which allows us
to retain the high usability of centralized custodial solutions.
Additionally, Acsesor retains the strong resilience guarantees
that custodial systems provide against fraud attacks.

Finally, by allowing the guardians to implement flexible
user-chosen response policies, Acsesor can address a broad
range of problem scenarios in classical secret management
solutions. For example, a slow recovery policy, where the
guardians wait for a predefined time until responding, can
replace the cumbersome passphrases many cryptocurrency
wallets implement today for emergency recovery.

We also instantiate the Acsesor framework with a base pro-
tocol built of standard primitives: standard encryption schemes
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and privacy-preserving transparency ledgers. Our construction
requires no persistent storage from its users and supports an
expansive array of configuration options and extensions.

1. Introduction

The problem of secret management is a fundamental
one. When a user wishes to store a secret for later use,
they generally have three options: they can remember it
themselves, write it down or store it on a local device,
or entrust it to a third-party. Secret management solutions
where the user is responsible for storing and managing their
secret are called non-custodial (or self-custodial), whereas
solutions where a third-party service manages the secret on
the user’s behalf are called custodial.

Two conflicting feature requirements for any data man-
agement service are colloquially known as the “hammer”
and “toilet” tests: if you want to prevent anyone from
accessing your data, can you do so by intentionally physi-
cally destroying your personal devices? In contrast, if you
accidentally destroy the same devices, are your digital assets
recoverable? It is clearly impossible to simultaneously pass
both tests. After all, any data that can be recovered post-
catastrophe by an honest and helpful custodian can also
be recovered by a malicious or compromised custodian.
Worse, when service providers are compromised or their
data leaked, users may be left in the dark while their
credentials are exposed.

Remembering high-entropy secrets, such as strong pass-
words or passphrases, is very challenging for people. Writ-
ing down such secrets may be an option, but for high-
value secrets may not be reliable or available enough. For
example, papers and storage devices may go missing or
get stolen, people travelling or experiencing homelessness
may be unable to find any safe place to store their valuable
secrets, and medical conditions or simply advanced age may
make remembering secrets or their locations impractical.
Nevertheless, credentials with immense personal value [1],
[33] and vast amounts of wealth in cryptocurrency wal-
lets [13], [41], [58], [15], [16] are protected by self-managed
passwords, passphrases, and keys. Unfortunately, given the
option, people mostly resort to using weak passwords and
reusing the same password across multiple services. Indeed,
in 2019, a survey done by the security company Avast found



that 83% of Americans are using weak passwords [5]. In the
same year, a survey commissioned by Google found that
52% of Americans reuse passwords for multiple accounts,
and 13% reuse the same password for all accounts [24].
A study in Behavior and Information Technology [53]
identified the convenience-security tradeoff as the primary
motivator of weak password choices.

Many services today offer custodial secret management
(e.g., password managers, custodial wallets, secure cloud
storage). On the upside, these custodial systems have full
control over the user’s account and can help their users
with password reset, an array of authentication methods, and
detecting suspicious access (attempts) to the account. On the
downside, the users have to place immense trust on these
custodians. Even if such custodians have no malicious intent,
they may be compelled to provide access to law enforcement
under a subpoena, or unwittingly to hackers in case of a
security breach. Thus, custodians end up becoming valu-
able targets and single points of failure. For example, very
recently, in a security breach in LastPass, an unauthorized
party was able to gain access to some of their customers’
information. [34]. For some services, such as cryptocurrency
wallets, custodial secret management is problematic due to
the liability risks and anti-money laundering regulations that
financial service providers need to comply with.

1.1. Acsesor

In this paper, we construct Acsesor: a general framework
for auditable custodial secret management with decentral-
ized trust. Our framework offers a middle-ground between
a fully custodial (centralized) and fully non-custodial (user-
managed/distributed) recovery system. It enhances custo-
dial recovery systems with cryptographically assured access
monitoring and a distributed trust assumption. This allows
Acsesor to support the usability, availability and flexibility
of a custodial system, with the greater resilience against
attacks that a non-custodial system can provide.
The Acsesor approach. At a high level, the Acsesor ap-
proach is as follows: the user maintains an account at a
service provider, which provides a single point of access. If
a user wants to store a secret, they choose a set of guardians
among whom to distribute trust. For example, users could
select a combination of third-party guardians and their own
trusted devices. The user also chooses a policy stating the
conditions under which the guardians should aid in secret
recovery, for example, a delay period, or a required second
factor. We discuss guardians in Section 2.4 and various
policies in Section 4. They then use this information to
encode their secret, and store the resulting blob with the
service provider. When the user wants to recover their secret,
they contact the service provider with their request; the
service provider authenticates the user and then passes the
request to the appropriate guardians who aid in recovery.

To protect against a service provider that tries to initiate
a recovery attempt without the user’s knowledge or an
attacker that compromises the service provider’s authentica-
tion, Acsesor requires the service provider to log all recovery

requests in a transparent append-only log. The guardians are
responsible for ensuring that request they are responding to
is logged before responding to it. This approach is inspired
by the recent advances in transparency technology (e.g., key
transparency, binary transparency, software transparency,
credential transparency) in the: industries [8], [23], [46],
[22], [19], governments [60], standardization bodies [28]
and academic literature [40], [10], [56], [57], [11].

Finally, Acsesor asks its users to periodically monitor
their accounts (using their own devices) to detect any fraud-
ulent recovery requests in the log. If the user is logged
in on their device, the monitoring is run by that device
automatically; any requests not originating on that device
should result in a notification to the user. Thus, the user
is only alerted when some suspicious activity is detected,
providing a similar interface to the already common “Did
you log in from a new device?” alerts.
Benefits of Acsesor. The benefits of this design are the
following:

• Usability: Acsesor retains the usability of custodial
fully centralized systems, as the user only interacts
with the service provider.
The service provider can utilize any standard se-
curity and fraud detection mechanisms to protect
their users’ accounts. This means they can use weak
secrets like passwords or pins, allow account recov-
ery via SMS or a live customer service call. The
service provider can also utilize state-of-the-art fraud
detection mechanisms to determine when to allow
access and when to require additional authentication.

• Flexibility: Because we provide the user flexibility
in choosing the policy, we support a variety of dif-
ferent applications. Secret management and recov-
ery systems have many applications, and different
users may have vastly different needs. Tolerance
for latency varies substantially between applications,
as does the degree of trust in the service provider
and the availability and identities of trusted third
parties. Users may want to allow different types
of second factors, depending on the strength of
their security/availability concerns and the availabil-
ity of things like trusted hardware or devices; in
the enterprise setting organizations might want to
include their own requirements or tie into their own
established identity systems. We designed Acsesor
to accommodate all of this variation.

• Security: We can guarantee that even if the service
provider acts maliciously, as long as an appropriate
fraction of the guardians honest, the user’s policy
will be enforced, and all access requests will be
logged.

Construction overview. The Acsesor framework consists of
a lightweight base protocol with three phases: registration,
secret recovery, and monitoring. The protocol delegates
authentication entirely to the service provider, so that it may
be compatible with any existing identity systems.



In the registration phase, the user registers with the
Acsesor service provider. They choose a set of guardian
nodes to share responsibility for securing the secret. Next,
the user chooses a one-time cryptographic key, encrypts their
secret under it, and secret-shares the key; each guardian will
have access to one share. Each share is encrypted under the
corresponding guardian’s public key and sent to the service
provider for storage, along with the encrypted secret.

To recover their secrets, the user authenticates with the
service provider and requests to initiate a recovery, at which
time the service provider posts a receipt of the request in
the transparent append-only log, along with a desired one-
time public key the user has chosen. When the guardians
see this request, they download the encrypted key pieces
from the service provider, decrypt them, re-encrypt under
the user’s posted public key, and route them back to the
user through the service provider. The user downloads the
encrypted secret from the service provider, as well as the
encrypted shares of their encryption key, reconstructs the
key, and decrypts the secret.

The user will continuously monitor the transparent
append-only log for potential fraudulent recovery attempts
done on their behalf.
Acsesor policies To ensure no-one can post and complete
a fraudulent recovery attempt while the actual secret owner
is temporarily unavailable (e.g., sleeping), Acsesor supports
a user-configurable wait time policy. Upon registering their
secrets with Acsesor, the user chooses a recovery policy that
specifies a wait time the guardians must wait from the time
the message was posted on the log to when they should
proceed with their part of the recovery process. We believe
realistic wait times could be anything from an hour or two
to several months, depending on the scenario. A policy may
also specify times when recovery may not proceed (e.g., the
middle of the night in the user’s time zone).

The idea of user-specified policies can be taken much
further to provide flexibility to Acsesor. For example, most
secret accesses would probably not be emergency recovery
scenarios, in which case long wait times are impractical.
Instead, Acsesor supports policies that require the user to
provide additional evidence – a second layer of authenti-
cation – when initiating recovery. For example, a policy
could specify a very short wait time if the user additionally
proves the knowledge of a weak secret, such as a PIN
or a password. The policy can further specify a rate limit
(enforced by the guardians) on the recovery attempts with a
weak secret to prevent guessing attacks. To protect against
a scenario where they forget/lose access to the weak secret,
they can additionally register a policy with a long wait time
when no extra secret is provided or known.

In some cases, the user may not want to ever actually
recover their secret, but simply have the guardians use it
for something, such as creating a digital signature. This
is common functionality with some cryptocurrency wallets,
where the wallet provider’s servers, and possibly the user’s
device, hold signature key shares that are used in a threshold
signature protocol. Acsesor’s guardians can enact similar
threshold signing policies, as long as they do not require

the guardians to interact with each other. For additional se-
curity, the policies can be executed within trusted execution
environments (TEEs), such as Intel SGX.

1.2. Related Work

Several works have attempted to reduce the burden of
trust on custodians using specialized hardware and thresh-
old cryptography. For example, password-protected secret
sharing (PPSS) [6], [29], [30] allows a secret to be shared
across multiple custodians, removing any single points of
failure. Access to the shares is protected with a password
the user must memorize or store. The benefit is that the user
can protect a high-entropy secret, such as a cryptographic
secret key, with a low-entry secret (a password). If a suf-
ficient threshold of these custodians become compromised,
an offline password-guessing attack may be possible, but
under normal conditions the custodians can enact standard
security measures, such as two-factor authentication and rate
limiting, to mitigate online password-guessing attacks.

PPSS as a primitive has a few drawbacks for our appli-
cations. Current PPSS schemes do not support logging of
recovery attempts, and by design they do not offer recovery
options if a user forgets their password. Another downside
is that most PPSS schemes require the user to interact and
authenticate directly with all their custodians. This property
complicates 2FA, increases client communication costs, and
makes fraud detection mechanisms more costly. A partial
exception is “fully dynamic PPSS” [47], whose users do
not need to know which of their guardians are online during
recovery. In fully dynamic PPSS, after initial registration, a
majority of the guardians can deregister, rotate, and enroll
other guardians without user participation. Acsesor can also
be “fully dynamic” by this definition.

Some cryptocurrency wallets use various flavors of se-
cure multi-party computation to provide better security guar-
antees to their users. Fireblocks [18] uses distributed key
generation to create secret key shares across multiple servers
and threshold signatures to avoid ever having to bring to-
gether the users’ secret key shares. For additional protection
against malicious admins, it performs the threshold signa-
tures computations within an Intel SGX enclave. ZenGo [62]
similarly uses distributed key generation to create and store
shares on ZenGo servers and the user’s device. They utilize
biometrics (face scan) and user’s third-party cloud storage
for emergency recovery. Similar to PPSS, these schemes also
require users to authenticate to each server and do not have
support for logging.

CALYPSO [32] presents an entirely decentralized secret
document management system, based on blockchains and
skipchains [44] as compared to the hybrid model of Acsesor
(and inherits the challenges of a fully decentralized system
as discussed above). It enables auditable and fair (atomic) re-
lease of valuable documents from one owner to another, after
some kind of condition has been met. A blockchain logs
the transactions (writes and reads) and a skipchain provides
dynamic identity and access control for the participants. A
committee of trustees holds shares of the decryption key for



the secret document and validates whether conditions for its
release are met.

CanDID [38] is a decentralized identity system. In ad-
dition to multiple other issues with existing decentralized
identity proposals, it addresses the problem of secret re-
covery. The system is built upon a decentralized network
of nodes – the CanDID committee – which is also used
for emergency recovery. Namely, the CanDID committee
stores secret-shares of the user’s secret and when presented
with sufficient authentication evidence from legacy web
services (such as the user’s email provider), the committee
can release the shares to the user. But CanDID does not
have logging support.

SafetyPin [14] uses Hardware Security Modules (HSMs)
to create a system for mobile device backups. Access to
the backups are protected with weak secrets (PINs) and the
HSMs protect the PIN against guessing attacks. SafetyPin
decentralizes the trust assumption by relying on a large
network of HSMs; their security model provides data confi-
dentiality as long as a large enough fraction of the HSMs are
uncorrupted. They also add some auditability guarantees. A
downside of this approach is the reliance of special hardware
that can be expensive and whose operation is not transparent.

Tutamen [52] builds a secret-storage system with fine-
grained access control on untrusted hardware by using a de-
centralized architecture of access control servers and storage
servers that use threshold tokens and secret-sharing to dis-
tribute trust. Clients in the Tutamen system hold a long-lived
private key and certificate that they use for authentication.
Tutamen logs attempts and their associated certificates with-
out assurance, but it also proposes as future work a publicly
auditable log resembling certificate transparency [35].

The PAD Protocol [49] (“PAD” stands for Privacy-
Preserving Accountable Decryption) presents an access del-
egation system based on a decentralized set of trustee and
validator nodes. It uses a transparent log to record access
attempts. Access delegation is done by the secret owner
sharing a cryptographic access token to the delegatee. Both
the secret owner and the delegatee in this model must store
long-lived keypairs for authentication. If the secret owner
wants to track access to their secret, they must also store a
mapping from access tokens to delegatees.

Transparency logs themselves have a long history, with
numerous constructions and use-cases including key trans-
parency [40], [10], [8], [23], [27], [57], [56], [12], binary
transparency [22], [19], [50], credential transparency [11]
and transparency in US courts’ requests for access to tech
companies’ customer data [21]. We use the Append-Only
Zero-Knowledge Set (aZKS) construction of [10] to build
our transparency log, as it provides strong privacy properties.

2. The Acsesor Framework

We begin by describing the most basic version of our
framework. Here we consider a user who will store their
secret using two guardians. In this basic scheme, the user
can only store one secret. We will discuss extensions in
Section 4.

Figure 1. Recovery using Acsesor

The system operates as follows. The algorithms are
described in detail in Section 2.1.
System Setup. The service provider will run ServerInit to
initialize it’s state and produce an initial commitment to an
empty log that will be posted on the bulletin board. Each
guardian will run GuardianKeyGen to generate it’s own key
pair. (See Section 2.4 for a discussion of how Guardian
public keys could be certified and distributed.)
Storing Secrets. The user will run UserStoreSecret to gener-
ate an encrypted blob encoding their secret for their choice
of guardians, under their choice of policy. They will upload
this blob to the service provider to be stored under their
username. While we assume that they must somehow au-
thenticate to the service provider, this authentication may
not be cryptographic, and we do not model it here.
Recovering Secrets. When the user wants to recover their
secret, they will use UserRequestRecovery to generate a
request message msg . They contact the service provider,
authenticate via some potentially non-cryptographic mecha-
nism, and send this request message to the service provider.
The service provider will collect a batch of such recovery
requests from different users and add them to the log using
ServerUpdate to produce a new commitment, which is
posted to the bulletin board (Section 2.5).

As part of this process, the service provider also pro-
duces a proof that each request was included in the log. It
will then forward each request message to the appropriate
guardians along with the user’s stored blob and a proof that
the request has been added in the log. The guardians will
retrieve the latest commitment from the bulletin board and
run GuardianResponse to verify the proof and produce a
partially decrypted blob.

The responses from all the guardians will be re-
turned to the user who will combine them using
UserCompleteRecovery to reconstruct their secret.
Monitoring the log. The user’s device will periodically ask
the service provider to provide a list of all of the access
requests that have been made under their username. Again,
we assume they authenticate with the service provider, but
do not model the authentication here. The service provider
will provide this list along with a proof generated using



GetUserRecoveryHistory that this list is complete with re-
spect to the latest commitment posted on the bulletin board.
The user will verify this proof using VerifyRecoveryHistory.
Auditing the log. The approach we take, where the users
and guardians only need to retrieve the latest commitment
from the bulletin board, requires some entity to verify that
the commitments posted at different times are consistent
with one another, i.e., that the corresponding logs only
grow and no entries are ever deleted. This is done by
running AuditServerUpdate to verify the service provider’s
proof (generated in ServerUpdate) on each consecutive pair
of commitments. This could be performed by users, the
guardians, or a third party.

2.1. The Algorithms

In more detail, our system requires the following algo-
rithms:

• GuardianKeyGen(1k) → (pk, sk): The guardians
will each run this algorithm once to generate a long
term key pair. We assume that the public key comes
along with a certificate that the user can verify, but
that is outside of our model.

• ServerInit(1k) → (st0s, com0): The service provider
will run this before the system starts to initialize its
state. st0s denotes the service provider’s initial state
and com0 the first commitment that will be posted
to the bulletin board.

• UserStoreSecret(s, u, policy , gpk1, gpk2) →
storedblob: The user will run this algorithm to
generate an encryption, storedblob, of their secret
s to store with the service provider. u is the
user’s username, policy tells the guardians about
any additional conditions that must be met before
decryption, and gpk1, gpk2 are the guardians’ public
keys. The policy could, for example, specify a wait
time the guardians must wait before responding, or
a required presentation of a second factor. These
are other policies are discussed in Section 4.

• UserRequestRecovery(u) → (stu,msg): The user
will run this algorithm to prepare a recovery request
message msg . The only information required is their
username u; stu is a state that the user will later
use to extract the secret from the response to their
request.

• ServerUpdate(sts,∆) → (st ′s, com, πappend,Π):
The service provider runs this algorithm to update
the recovery log to include the additional entries
contained in ∆. Entries are of the form (u,msgu)
corresponding to each user’s recovery request. The
service provider’s initial state is sts, and its state af-
ter the update is st ′s. com is the new commitment to
the log, and π is a proof that the new log extends the
old one (append-only property). Finally, it generates
a proof that each request in ∆ has been included

in the new log; the collection of all of these proofs
is Π.

• GuardianResponse(sk, u, i,msg , storedblob, com, π)
→ (decblob, policy): The guardians run this
algorithm to process a user’s recovery request. It
takes as input the guardian’s secret key sk, the user’s
username u, an index i representing whether this
guardian corresponds to the user’s gpk1 or gpk2,
the recovery request message msg , the ciphertext
ct generated when the user stored their secret, the
latest commitment to the log com , and a proof π
that the request (u,msg) was included in the log. It
outputs a partially decrypted ciphertext decblob and
the policy policy that the guardian should apply
before releasing it.

• UserCompleteRecovery(stu, decblob1, decblob2) →
s or ⊥: The user runs this algorithm to complete
their recovery and recover the secret. It takes as input
the state the user generated as part of their recov-
ery request and the partially decrypted ciphertexts
produced by the two guardians. It produces either
the secret s, or ⊥ indicating that some error has
occurred.

• GetUserRecoveryHistory(sts, u) → (m⃗sg , π): The
service provider runs this algorithm when the user
requests the list of recovery requests for their user-
name. sts is the server’s state, u is the user’s user-
name. The output is a list m⃗sg of request messages
and a proof π that it is complete as of the latest state
of the log.

• VerifyRecoveryHistory(u, m⃗sg , com, π) → 0 or 1:
The user runs this algorithm to verify that they have
received the complete list of recovery requests. u
is the user’s username, m⃗sg is the claimed list of
requests, com is the commitment to the latest log,
and π is the service provider’s proof that this list is
complete.

• AuditServerUpdate(com, com ′, π) → 0 or 1: This
is run by an auditor (who could be user, a guardian,
or a third party) to verify that a pair of commitments
correspond to correctly extended logs. com commits
to the log at the present epoch, com ′ commits to the
log for the subsequent epoch, and π is the append
proof proving that nothing was deleted in the update.

2.2. Security and Confidentiality Guarantees

For a user registering their secrets in an Acsesor system,
the system guarantees certain properties as long as not all
3 parties (the service provider and the two guardians) are
compromised:

Confidentiality of honest user’s secrets. (honest service
provider) If the service provider is honest and at least one of
the guardians is honest then, even if the attacker controls the
other guardian and the other users, as long as the attacker is



not able to compromise the service provider’s authentication,
the attacker will not be able to learn the honest user’s secret.

(malicious service provider) If the service provider is
malicious (or if the service provider’s authentication is
compromised), and at least one of the guardians is honest,
then the attacker cannot compromise the honest user’s secret
until the following happens: the honest guardian releases
a recovery response for an adversarially generated request,
which it will only do when the user’s release policy is
satisfied.
Correctness of policy. If at least one of the guardians is
honest, then if it is asked to recover and given the user’s
storedblob, it will correctly extract the user’s intended pol-
icy.
Logging of recovery attempts. If at least one of the
guardians is honest, every recovery attempt on an hon-
est user’s account will be logged before the user’s se-
cret is released. In other words, even if the attacker con-
trols the server, the other guardian, and other users, any
recovery attempt on an honest user’s account will be
logged and must be included the next time the user runs
GetUserRecoveryHistory; otherwise the user will detect that
the history is incomplete.
Private recovery history. Only the service provider can
reveal the presence of any attempt on the log, and as long
as it behaves honestly, only authenticated users and their
designated guardians receive this information. This means,
for example, that the commitments posted on the bulletin
board and the interactions between the user and the service
provider, and between and the guardians and the service
provider, do not reveal any information about other users’
usernames or recovery request patterns.

2.3. Discussion

Our approach does have a few drawbacks, but we be-
lieve they are outweighed by the advantages of Acsesor.
Overcoming these challenges is something we leave open
for future work.

• Availability: Because the service provider provides
a single point of contact for the user, if the service
provider is unavailable (either maliciously or other-
wise), the user will be unable to reconstruct their
secret. This seems worthwhile in exchange for the
usability advantages discussed above.
A more subtle point is that the service provider also
gates access to the log: if the service provider does
not respond, then the user will be unable to monitor
the log. In this case, the user must consider their
account as potentially compromised.

• Transferring between devices: Acsesor requires
users to regularly monitor the log and report fraud-
ulent recovery attempts. If users stay logged in
on a device, this process can be automated, but
if the device is lost, broken, or logs out, the user
must proactively monitor from another device. While

many users are likely to struggle with this behavioral
shift, even if they fail to monitor the log, they are
no worse off than with current custodial solutions,
where compromise detection happens at the service
provider’s discretion. Furthermore, concerned users
can optionally sacrifice convenience for security by
adding a second factor to prevent fraudulent recovery
in the absence of regular monitoring.

• Notification fatigue. Acsesor allows the user’s device
to notify them of any suspicious access requests, but
it assumes that the user will pay attention to these
notifications. Our hope is that these notifications will
be rare enough, and the secrets important enough,
that this is not too much of a concern.

• Responding to possible compromise. If the user does
detect a recovery request they did not initiate and
this detection happens before the delay period has
passed, the user may have the opportunity to respond
before the secret is actually released. The extent to
which this is possible depends on the application.
For example, users of a password manager built from
Acsesor could change their passwords if they detect
a fraudulent recovery attempt, or if Acsesor were
used to support a cryptocurrency wallet the user
could transfer their funds to a different address.
In other applications, or if the user does not have a
local copy of the secret available, then this may not
be possible. However, even if there is no effective
way to respond to secret compromise, we view our
approach as valuable because it makes this compro-
mise visible to the user. This also gives the service
provider a reputational incentive not to compromise
user accounts.

• Compromise detection vs prevention As a custo-
dial system, Acsesor has some inherent vulnera-
bility to a malicious service provider attempting a
person-in-the-middle attack. This is one of the major
obstacles to adoption for many custodial secret-
management systems [48], and we address it in two
ways. Our first countermeasure is the transparent
log and customizable delay policy, which gives the
user advance notification of any malicious activ-
ity on their account and the time to respond. The
second countermeasure is an optional second factor
that bypasses the service provider and authenticates
the user directly to the guardians, thus preventing
person-in-the-middle attacks. We discuss how this
second factor can be used to customize the balance
between recoverability and security in more detail
in Section 4.

2.4. Guardians

The guardians must be trusted not to collude with the
provider or one another. This raises the question of who
can be trusted to operate guardians. We propose several
possibilities, which may be more or less suited for specific
applications. The guardians need to store their private keys,



and depending on the kinds of policies they support, possi-
bly a small amount of information per user (see Section 3.4
for more details).

The guardians’ operations are limited to decrypting and
re-encrypting key shares and verifying the presence of re-
covery attempts in the service provider’s log against the
commitments published on the bulletin board. Accordingly,
guardians are relatively lightweight, and we imagine they
could be run efficiently on even low-powered devices.
User-managed devices. Letting users run guardians explic-
itly places secrets back in their control. Of course, this also
places responsibility for disaster recovery on the user, and
if more than n − t guardians went offline in a burglary,
fire, or flood, the secrets would be destroyed. There are still
some advantages over purely user-managed systems: most of
the storage is offloaded onto the provider, and the threshold
architecture means that secrets could be recoverable even
when one or more devices are offline.

Similarly, the user could consider devices owned by
friends, family members, or administrators; since Acsesor
allows for many guardians, the user could require a con-
sortium of trusted people, so that no one person must be
granted full trust.
Trusted execution environments. HSMs are probably not
sufficiently flexible to provide the functionality of guardians,
but Trusted Execution Environments (TEEs), such as Intel
SGX enclaves, could. As with any secure system deploy-
ment relying on TEEs, the users would need to trust the
implementation, which would likely mean at least open-
sourcing it.

One benefit is that the service provider could run the
TEEs on machines it controls. This would then provide a
way to make the service fully custodial, in that it would
not require the involvement of user devices or third parties,
while also enforcing compromise detection.
Independent organizations. Users may not trust a single
corporation with their most high-value secrets, but they
might be more likely to trust a set of them not to collude.
This is especially promising for enterprise applications,
where there is contractual recourse for malicious behavior,
and for settings in which organizational, departmental and/or
geographic diversity adds value.
PKI. We assume a public-key infrastructure that the user can
rely on to get authentic and valid public keys for their chosen
guardians. If the guardians are public entities as in the last
option above, this can be the standard certificate based PKI.
In the case of user devices the user will have to ensure that
they has the appropriate public keys for their devices. In the
TEE case, the service provider or TEE operator would need
to post the public key of the TEE along with an attestation
that it is running the appropriate code.

2.5. Bulletin Board

The bulletin board is a place for the service provider to
commit to its state in a public and irreversible way. We
make no prescriptions about its implementation, as long

as it preserves the append-only property: once entries are
added they can never be deleted. For a robust, failure-
resistant instantiation, the bulletin board could be hosted on
a blockchain. A simpler version would be a straightforward
web server run by an independent third party, optionally
mirrored by others. It is security-critical that the user and
the guardians they choose maintain a consistent view of the
bulletin board; this should be considered by any implemen-
tation. This is a standard assumption [8], [23], [46], [22],
[19], [50], [31], [51], [40], [61], [45], [3], [10], [7], [54],
[39], [27], [37], [55], [2], [56], [11], [57]

3. Our construction

We begin by giving an overview of our construction,
then provide a more detailed description.

3.1. Construction overview

Roughly, our construction proceeds as follows:
Storing Secrets. To store a secret s, the user will pick a
random key sks which they use to encrypt the secret s to
form cts. They then secret shares that key (sks) into two,
and encrypts one share to each guardian along with their
username and the policy under which it should be released,
forming ct1, ct2. The three ciphertexts (ct1, ct2, cts) are
then stored at the server in the user’s account.
Secret Recovery. When the user requests a recovery, it
chooses a random key pair (pku, sku), and sends the public
key pku as the recovery request. The service provider logs
this request, then forwards this public key along with the
user’s ciphertexts to the guardians. Each guardian decrypts
its share of the random key and re-encrypts it under the
public key pku from the recovery request. As part of de-
crypting the share of the random key, it also gets the user’s
username and the policy under which the response should
be released. It checks that this policy has been satisfied and
that the request has been properly logged, before releasing
the re-encrypted ciphertext. Finally, the user decrypts the
ciphertexts in each of the guardian’s responses, uses the
results to reconstruct sks, and then uses that to decrypt and
extract the stored secret.
Logging. What remains is to provide more information on
how the logging occurs. The main challenge is to ensure
that the server can efficiently prove to the user that they are
seeing all of the recovery attempts, and to do that without
revealing information about other users as part of the proof.

To do this, we build on Append-Only Zero-Knowledge
Sets (aZKS) [10]. aZKS provides a way for a server to com-
mit to a dictionary and prove membership of (label, value)
pairs in that dictionary, or output (label,⊥) if the label does
not appear in the dictionary. The server can also provide
“append” proofs that given two commitments, the dictio-
nary corresponding to one commitment is a subset of the
other. Finally, these proofs are zero-knowledge in the sense
that membership and non-membership proofs reveal nothing
about the other entries in the database, and append proofs



reveal only the number of new entries that were added. An
aZKS can be implemented using a sparse Merkle Tree and
a Verifiable Random Function (VRF) [42].

What we need is somewhat more than a dictionary -
we need to be able to map a username to a list of values
(recovery requests), in such a way that we can later add
to this list, and the user can know that they are seeing
the entire list. To do this we adopt an approach from the
key transparency literature [8], [23], [40], [10], [12], [56],
[27], [57]: when the first recovery request for u is logged,
we add (u||1) to the dictionary, when the second recovery
request for that username is added, we add (u||2) etc. Then,
to prove that the user is being shown the entire history,
the service provider will prove membership for (u||i) for
each request, and then prove non-membership for the next
one (i.e. if there have been n requests, the service provider
will show non-membership for (u||n+1)). Similarly, when
the guardian checks that the request is logged, the service
provider will show it all of the requests to date - this prevents
an attack where the service provider shows the user requests
numbered 1 through n and a non-membership proof for
u||n+1 but then shows the guardian a request logged under
u||n+ 2. (See Section 3.4 for possible optimizations.)

3.2. Detailed Construction

Our construction is based on a CCA-secure public key
encryption scheme, an s-RKA-secure symmetric key encryp-
tion scheme [17], and an aZKS [10]. In more details, the
algorithms are instantiated as follows:

• GuardianKeyGen(1k): Generate and output a public
key pair.

• ServerInit(1k): Initialize the aZKS and output a
commitment to an empty dictionary.

• UserStoreSecret(s, u, policy , gpk1, gpk2): Generate
a symmetric key sks, and use it to encrypt the secret
s, forming cts. Secret share sks into sk1, sk2, i.e.,
such that sk1 ⊕ sk2 = sks. Encrypt the two shares
for the guardians, i.e., (sk1, u, policy) under gpk1 to
get ct1 and (sk2, u, policy) under gpk2 to get ct2.
Output storedblob = (ct1, ct2, cts).

• UserRequestRecovery(u): Generate a public key
pair (pku, sku). Output stu = sku as the state to
store and msg = pku as the request message to send
to the service provider.

• ServerUpdate(sts,∆):

1) Collect the set of entries to be added to the
dictionary as follows. Initialize an empty set
S. For each (u,msg) ∈ ∆, look up any
previously logged requests for this username
msg1, . . . ,msgn, and add (u||n+1,msg) to
S and to the dictionary.

2) Compute a new commitment to the dictio-
nary with S added.

3) For each of the newly added entries
(u||n + 1,msg), compute a membership
proof πj for each of the previous requests

π1, . . . , πn for that username, and a
membership proof for the new request
πn+1. Compute a non-membership proof
πn+2 for (u||n+2). Add all these, i.e., πinc =
((π1,msg1) . . . , (πn,msgn), πn+1, πn+2),
to Π as the logging proof for (u,msg).

• GuardianResponse(sk, u, i,msg , storedblob, com, πinc):
Let msgn+1 = msg and verify each of the proofs
in πinc, returning ⊥ if any verification fails.
Recall that storedblob consist of three ciphertexts
(ct1, ct2, cts) and msg = pku. Decrypt ct i using
the guardian’s secret key sk to get (ski, u′, policy).
If u′ ̸= u, output ⊥. Encrypt the resulting ski under
the public key pku from the request message to get
ctu. Return a reponse consisting of the resulting
ciphertext ctu and the original cts from the user’s
storedblob.

• UserCompleteRecovery(stu, decblob1, decblob2):
Recall that stu contains the decryption key sku, each
decblobi consists of two ciphertexts (ctui, ctsi),
and it should be the case that cts1 = cts2. If not,
then stop and output ⊥. Use sku to decrypt the
key shares sk1, sk2 from ctu1, ctu2, respectively.
Finally, combine sk1 and sk2 to obtain sk and use
it to decrypt cts1 and obtain the original secret s.

• GetUserRecoveryHistory(sts, u): Look up all logged
requests for this username msg1, . . . ,msgn. For
j ∈ 1...n compute a membership proof πj , for
(u||j,msgj). Compute a non-membership proof
πn+1 for (u||n + 1). Output the proof π =
(π1, . . . , πn+1) and the request history m⃗sg =
(msg1, . . . ,msgn).

• VerifyRecoveryHistory(u, m⃗sg , com, π): Recall that
π is a list of proofs (π1, . . . , πn+1) and m⃗sg is the
list of request messages (msg1, . . . ,msgn). Verify
all the proofs and return 1 iff all verifications suc-
ceed.

• AuditServerUpdate(com, com ′, π): Run the aZKS
VerifyUpd procedure on (com, com ′) to verify the
proof π.

3.3. Security and Confidentiality

Confidentiality of honest user’s secrets.
With an honest service provider: Since the public key

encryption scheme used by the honest guardian is CCA-
secure, the corresponding ct i in the storedblob does not
reveal any information about that key share, which in turn,
protects skS . The security of the symmetric key encryption
scheme protects ctS from leaking any information about the
secret s. Note that the malicious guardian could potentially
encrypt an incorrect ski, and as a result the user would
decrypt with an sk′s offset by an additive factor from the
correct sks. However, due to the s-RKA security of the ske
scheme, this decryption would always result in ⊥, and thus
it would not reveal any information about s.



With a malicious service provider: The differences from
the honest service provider setting are that 1) the service
provider can choose what storedblob to send to the honest
guardian, 2) we allow the service provider to see decblob1
for the honest user’s requests1, 3) the service provider can
choose what decblob1 to give to the UserCompleteRecovery.
1) is not a problem, because CCA-security of public key
encryption scheme means that any modified ciphertext will
either fail decryption or encrypt a message unrelated to s. 2)
does not reveal information, because the request is encrypted
under pku. For 3), CCA-security of the public key encryp-
tion scheme means that if the adversary tries to maul the ctu
in decblob1, it will again either fail decryption or encrypt
an unrelated message. s-RKA security of the symmetric key
encryption scheme means similarly that the adversary cannot
learn anything by modifying cts.
Correctness of policy. This property follows from the cor-
rectness of the public key encryption scheme directly. In
other words, if the user encrypts a given policy , then when
the honest guardian decrypts it, it will decrypt to the same
policy. If the service provider attempts to modify the cipher-
text, then from the confidentiality with malicious service
provider argument above, the service provider will not be
able to learn anything about s.
Logging of recovery attempts. Note that in
GuardianResponse the honest guardian will check
that the corresponding msg is logged using the
log inclusion proof πinc from the service provider.
Suppose that this proof includes membership proofs for
(u||1,msg1), . . . , (u||n,msgn), (u||n + 1,msg). Then, the
next time the user requests a history proof, we have that
by the append-only soundness property of the underlying
aZKS, the adversarial service provider cannot provide
non-membership proofs for any of (u||1), . . . , (u||n + 1),
or provide membership for incorrect values for any of these
entries. Since the user history proof requires showing a
list of membership proofs for consecutive request numbers
starting with 1 and ending with a non-membership proof,
this means that (u||n + 1,msg) must be included in the
history shown to the user; otherwise VerifyRecoveryHistory
will fail.
Private access history. The service provider logs all the re-
covery attempts in aZKS. By the privacy property of aZKS,
neither the aZKS commitments, nor the proofs (both append
proofs and membership/non-membership proofs) leak any
extra information about the underlying dictionary. Thus, he
privacy of access history directly follows from the privacy
of aZKS.

3.4. Optimizations for our Construction

The construction we presented in Section 3.2 can be
optimized in various ways. Here we describe those opti-
mizations.

1. Recall that we do not provide confidentiality once the guardian returns
decblob1 for adversarial requests.

Caching recovery history proofs. Recall that a recovery
history proof consists of the following: for a given user-
name, u, if the logged requests are msg1, . . . ,msgn, then
the recovery history proof consists of membership proofs
πj , j ∈ [n], for (u||j,msgj) and a non-membership proof
πn+1 for (u||n+1). The user’s device verifies these proofs
in VerifyRecoveryHistory.

If the user is logged in from the same device and has
cached the last version number j∗ for which it verified the
membership proof, then, next time the device gets online,
it can start checking the proofs only from u||(j∗ + 1). This
means, if the user did not make any recovery attempt during
the time this device was offline (and there was no fraudulent
attempt on this user’s account), then, ideally, the new proof
will just be a single non-membership proof for u||(j∗ + 1).

Removing cts from decblob. In our construction, decblobi
consists of (ctui, ctsi) for i ∈ {1, 2}. We include ctsi in
decblobi for notational simplicity. In practice, the service
provider could directly return cts to the user and ctsi can be
removed from decblobi. Similarly, the guardian only needs
access to ct i, so the service provider could remove the
other two ciphertexts from storedblob before it is sent to
the guardian.

Minimizing logging verification cost of guardians. In our
construction, the guardian first checks all the membership
proofs π1, . . . , πn for the given username u as part of the
logging proof. If the guardian could cache the last mem-
bership proof they checked for each username, then they
would not need to go back and check from u||1. However,
this will require the guardians to maintain state for every
user account for which they are one of the guardians. This
is not ideal.

Instead, the guardians could sign the latest version num-
ber j∗ for each user account for which they verified the
membership proof. They can send this signature and payload
to the service provider that can subsequently send it back to
the guardians as part of a new logging proof. This way the
guardians will entirely avoid verifying older membership
proofs. A malicious service provider could send a stale
version number and signature, but in the worst case this will
make the guardian redo work. In other words, this does not
affect the security or confidentiality properties of Acsesor.

Minimizing storage of guardians. Honest guardians are
supposed to release their share of the secret (encrypted under
pku) as per the policy of the user. If the policy requires a
delayed release, naively, the guardian would have to hold
on to the share until the time period has elapsed and release
it only after that. This, again, would increase the storage
at the guardian. Instead, the guardians could use the same
trick as before: they can sign the time they expect to release
the share and send it back to the service provider along
with the delay time. Once the delay period has elapsed, the
service provider can send the signed payload back, and the
guardians can check the time and then prepare and release
decblob. In any case, this does not degrade the security or
confidentiality of Acsesor.



4. Policies and Extensions

In this section we describe some policies we believe may
be most practical to address real-world problems. We also
describe technical extensions of the Acsesor system, such as
extending to use more guardians, and using an extra layer
of authentication with the guardians.
Adding more guardians and thresholding. While our ba-
sic Acsesor framework uses two guardians for simplicity,
the framework can be easily extended to support n > 2
guardians. We can extend all the security and confidentiality
guarantees in a straightforward way as well, as long as some
fraction t of the guardians are honest (our basic construction
can be viewed as n = t = 2). In the construction, we would
use t-out-of-n secret sharing scheme to split the key skS into
n shares. This can be beneficial, if availability or security
of the guardians is questionable. By using threshold secret
sharing, the secret key can be recovered, even if only a
fraction of the guardians are available.
Supporting threshold signatures and decryption. In our
basic Acsesor framework, the user recovers her secret using
UserCompleteRecovery. Usually, the recovered secret will
be used in some other cryptographic scheme, such as signing
or decryption. The Acsesor framework can be extended such
that, each guardian performs a partial signature/decryption
using their key share in a privacy-preserving way (using
a threshold signing/decryption scheme). Then, the pieces
can be put together to construct the signature/decrypt us-
ing UserCompleteRecovery. Note that, this will not require
in additional communication between any parties if the
threshold signing/decryption scheme is non-interactive (e,g.,
threshold BLS signatures [9]).
Bulletin board and auditing. When registering their secrets,
the user could specify a policy that requires the guardians to
check a custom bulletin board for consistency. For example,
users in an organization may want to have their organiza-
tion mirror the bulletin board. This can prevent situations
where bulletin board(s) commonly used by guardians are
compromised by an external attacker.

Another security-related policy the user may want to
specify is requesting guardians themselves to audit the log
(append proofs) before releasing secrets. Acting as auditors
in addition to acting as guardians could be a guarantee that
some guardians provide and advertise openly to users when
they register their secrets and select their desired guardians.
Storing many secrets. For simplicity, our Acsesor frame-
work, as presented, lets a user store one secret per username.
The framework can be easily extended to support multiple
stored secrets per user (under the same username) by letting
the user attach a “context” string to its storedblob and
encrypt it in ct i for guardian i, along with the respective
keyshare, username and policy. The context string could
contain information about context in which the secret is
stored/used.This context string can be appended to the msg
before adding it to the aZKS. While a completely different
application, context strings were used in a similar fashion
in logging in [11].

Slow and fast recovery. Another important policy is a user-
configurable wait time that the guardians are expected to
wait before releasing their share of the secret.

For example, to enable emergency recovery, one could
set a long wait time, such as a week or a month, before
the secret is released. If the slow recovery is maliciously
initiated by someone who has compromised the service
provider’s system, or by the service provider itself, the long
wait time will provide the real user enough time to notice
that a recovery process has been initiated, or at least learn
that the secrets are about to be compromised if a malicious
service provider blocks the user’s legitimate access attempts.
In this case, the user can secure their account with the
service provider and potentially change their secrets (pass-
words, keys) before they get revealed to the attacker.

Generally, a long wait time policy can allow a low-
entropy secret (password to the user’s account with the
service provider) to be the sole secret protecting stronger
secrets.

Fast recovery with a short (or no) wait time can make
sense when access to the secrets is needed immediately, and
the main concern is to be able to reliably monitor recovery
requests. For example, custodial password managers would
benefit from increased trust by using an Acsesor back-end
with fast recovery, as the log would reveal access attempts
even by the service provider itself.
Two-layer authentication.

To provide stronger protection against person-in-the-
middle attacks, especially with fast recovery policies, the
Acsesor framework can be extended to support a second
layer of authentication between the user and the guardians.

Authentication between users and guardians can be done
through a few low-overhead mechanisms: a password or
PIN, a signature-based hardware token, or a one-time email
or SMS-based code. These options are in addition to any
(possibly multi-factor) authentication performed by the ser-
vice provider.

For example, if the user intends to use a PIN as a second
factor with a particular guardian, they can include this PIN
when the form the encrypted share ct i for that guardian, and
similarly include an encryption of the PIN as part of their
request. The user would need to set up an independent PIN
with every guardian to avoid a malicious guardian leaking
the PIN. Finally the user could choose a policy instructing
the guardian to rate-limit requests (and hence PIN guesses);
as the guardian sees the user’s entire request history, this is
straightforward to enforce.
Cancellation policy. If a user’s account is hijacked by an
attacker, they may be unable to recover it before the attacker
is able to, e.g., test every possible PIN for a second factor
with a short wait time. This could be prevented by a policy
that allows only a few attempts before requiring a stronger
second factor.

5. Secret Management with Acsesor

In this section we describe how to cast many common
secret management scenarios into the Acsesor framework.



5.1. Password Management

There are both custodial and non-custodial password
managers. Popular web browsers including Chrome [26],
Firefox [20], Safari [4], and Edge [59] offer built-in pass-
word managers that allow you to save your credentials
and back them up in the web browser’s cloud service.
Most are custodial by default, although Safari’s iCloud
Keychain is non-custodial and Chrome supports a non-
custodial option [25]. These custodial managers make users’
secrets available on any device by simply logging in to your
account, and save new credentials with a single tap. The
account provider can use any standard security features for
securing the account, such as 2FA.

Many other password managers, such as 1Password [1]
and LastPass [33], have a non-custodial element to them.
For example, 1Password uses a combination of a user-stored
cryptographic secret key, as well as a master (account)
password, to protect access to the secrets. The user needs
to maintain access to the secret key, as well as memorize
the password. LastPass derives an encryption key from a
user’s master password and uses it to encrypt their se-
crets. It optionally supports additional protection by multi-
factor authentication. Neither password manager can restore
a user’s access to their secrets in case they forget their
password or lose access to any additional cryptographic
material protecting their secrets.

Acsesor can provide a strict improvement over the func-
tionalities described above. A custodial password manager
could improve its trust profile by storing the secrets with
Acsesor. The user’s account with the service provider would
allow them to log in from different devices and the service
provider can continue using standard methods to secure the
account, such as 2FA. Configured with a fast recovery policy
it would allow immediate synchronization of the secrets to
a new device, but unlike existing solutions, the user would
have a cryptographically secured log of this happening.
Thus, no-one – not even the service provider itself – would
be able to access the user’s secrets without being detected
after the compromise.

Functionality of non-custodial password managers can
be replicated and improved using Acsesor as well. The
password manager would again control the account, but this
time Acsesor would be used to register the secrets with a fast
recovery policy requiring a second factor, as was explained
in Section 4. If the second factor involves a cryptographic
secret key, then the security guarantee would be similar
to that of 1Password, but with the additional benefit of
transparency for access attempts to the password manager’s
cloud storage.

In fact, we can do better with Acsesor. The reason the
non-custodial factor has to be of cryptographic strength,
instead of a password or PIN, is to mitigate the fact that
otherwise the password manager’s servers would create a
single point of failure and, if compromised, could expose
all users’ secrets to brute force attacks. With Acsesor the
second factor can be weaker, because the guardians can limit
guessing attacks through rate limiting. The service provider

holds only data encrypted with high-entropy secrets and
every guess at the user’s second factor requires a separate
entry in the recovery log, as well as interaction with the
guardians.

In an extreme case, malware may be able to access both
a secret key held on a device, as well as read an account
password as it is typed on a keyboard. In this case the
attacker may be able to read and recover local secrets cached
on the compromised device. They would also be able to
recover passwords stored in the cloud (for example those
generated on the user’s other devices), but in this case the
access would be detected by the user.

Finally, password managers usually store a cached copy
of the secrets on local devices. This is necessary to ensure
availability in any centralized secret management system,
for example, when the user’s account is hijacked or the
service suffers a critical outage. Scenarios where cached
access is impossible (stolen, lost, or destroyed device) and
simultaneously remote access is blocked (hijacked account,
service provider behaving maliciously) are outside the scope
of all such solutions, including Acsesor.

5.2. Emergency Access and Digital Bequeathment

Password manager providers need to address the pos-
sibility of a forgotten password, lost credentials, or other
reasons a legitimate owner of the account would need to
retrieve their secrets but be unable to. In other cases, the
legitimate owner may have passed away or become disabled
to an extent that they cannot access their account anymore,
and instead their family members or coworkers may have
an immediate need to access the stored secrets through
a digital bequeathment process. In fact, the new Personal
Information Protection Law (PIPL) in China provides legal
rights for relatives to get access to a deceased person’s
information [36], even if this data is stored in different
countries.

In principle, custodial password managers do not have
this problem. The user may be able to prove to the service
provider that they truly are the rightful owner of the account,
in which case the service provider may help them recover
access. In practice, the proof of identity could require a
lengthy customer service interaction, which may be difficult
to arrange in an emergency situation. Non-custodial pass-
word manager service providers cannot assist with recovery
at all, and instead attempt to make it clear to their users that
they truly are in charge of managing their own secrets.

1Password recommends printing an emergency kit with
all account details, including the account password and the
cryptographic secret key. They recommend storing it in a
safe place and giving a copy to a trusted contact, such
as a family member. This approach has the risk of a lost
or stolen emergency kit, and heightens the potential for
technological abuse. Complicating this further, the account
owner has no way of knowing whether the emergency kit
has been used. Even if 1Password provided a notification of
a log-in attempt from a new device, this behavior relies on
1Password behaving honestly.



Both 1Password and LastPass have notions of distribut-
ing access to groups of trusted contacts that are also users
of the same service. For example, if a LastPass emergency
contact attempts to use their delegated access to unlock an
account, LastPass will notify the real owner of the account
and grant access only after a configurable wait time. The
wait time gives the owner a chance to act in case of a mali-
cious emergency recovery attempt. However, if LastPass was
itself behaving maliciously, it may be able to compromise
the emergency recovery delegation workflow and disregard
the desired wait times and not notify the user.

Acsesor’s capability to support flexible recovery policies
provides a framework suitable for implementing various
emergency access and digital bequeathment capabilities.
Upon registering their secrets with the service, the user can
specify an emergency access policy that they communicate
to the guardians. For example, a user may register the
same secret under two different policies: one for immediate
access, where the guardians expect a proof of a second
factor as usual, and another one for emergency access, where
the guardians will wait for some time before responding to
the request. The emergency access policy may optionally
require a second factor, but in some cases the user may
want to set a policy with a particularly long wait time
that requires no additional secrets. In all cases, the user, or
their designated emergency contact, would still need to be
able to authenticate with the service provider to initiate the
recovery, but for that standard account security and recovery
mechanisms (as in custodial solutions) can be used. If the
user’s device is periodically monitoring the recovery log,
they should detect any fraudulent recovery attempts before
the wait time expires. The concerns raised above regarding
a user not knowing whether a 1Password emergency kit has
been used, or whether LastPass has hijacked the emergency
recovery delegation workflow, are addressed by the trans-
parency properties of Acsesor’s recovery log.

5.3. Cryptocurrency Wallets

One of the primary non-custodial secret storage scenar-
ios today is cryptocurrency wallets. Almost all non-custodial
wallets, such as Coinbase Wallet [13], Metamask [41], Exo-
dus [16], Electrum [15], and many others, provide recovery
from a 12-word BIP-39 recovery passphrase the user must
memorize or store safely. To improve the reliability of
recovery, all wallet providers make it extremely clear that
the recovery passphrase controls access to the contents of the
wallet and cannot be restored if forgotten or lost. So-called
MPC wallets use secure multi-party computation techniques
to provide extra security by distributing the secret key gener-
ation and signature operations across multiple nodes, never
actually requiring the key to be assembled in one location;
the idea is to prevent the secret keys from being stolen from
a compromised device. However, this does require the user
to authenticate to each of the MPC nodes.

The Coinbase Wallet is an example of a non-custodial
wallet. For emergency recovery, it provides an option to back
up the recovery passphrase to Google Drive or iCloud. Since

all keys are generated from the passphrase, the wallet can
be easily recreated on a new device from the cloud backup.
On the other hand, if this storage account is compromised,
the user’s secrets may be compromised and they may be
completely unaware.

ZenGo [62] and Fireblocks [18] are both non-custodial
MPC wallets. For example, ZenGo uses distributed key
generation to create secret key shares – one for the user’s
device and one for the ZenGo server. Next, the user’s device
chooses a symmetric encryption key to encrypt its share and
stores this key in a cloud storage account owned by the
user, for example, in Google Drive. The user’s encrypted
share is stored by ZenGo and is protected by biometric
authentication: a face scan. When transactions need to be
signed, the user authenticates with ZenGo using their face
scan to retrieve their encrypted share, retrieves the share
encryption key from their cloud storage, and decrypts their
share. Finally, the transaction is signed with a threshold
signature protocol. This design is meant to protect against
single points of failure and to avoid having to memorize a
master secret. For situations where the user’s face changes
substantially, for example, as a result of an accident, ZenGo
supports adding alternative face scans for authentication.

The requirements for cryptocurrency wallets are slightly
different from password managers, because the secrets pro-
tected by wallets are always cryptographic and unmemo-
rable. If one somehow loses access to the wallet recovery
in any sense is entirely impossible, whereas many of the
accounts a password manager would protect are themselves
custodial and may be recoverable through other means. This
means that availability is particularly important for wallets.
Furthermore, delayed compromise detection is useless for
wallets, as stolen digital assets are impossible to recover,
whereas for password managers delayed detection may still
be very helpful.

Therefore, cryptocurrency wallets could use Acsesor as
a back-end to store their users’ secret keys, but fast recovery
without a strong second factor would be a very dangerous
policy to use. For policies with weak or no second factors,
the wait times should always be substantial enough. To
match the functionality of MPC wallets, the user could
specify a policy where the guardians do not actually return
the key fragments, but instead use them to (threshold-)sign
a transaction provided as a part of the recovery request. This
works particularly well with the Ethereum blockchain, as its
BLS signatures provide a particularly convenient threshold
signature scheme with no interaction between the guardians.

5.4. Enterprise Key Management Services

Enterprise key management services, such as Azure
Key Vault (Microsoft) and AWS Key Management Service
(Amazon), offer a custodial way to handle key storage and
access control of valuable keys. They aim at separating
cryptographic keys from data using either software isolation
or hardware security modules (HSMs). In both cases, access
to the keys is gated using authentication and authorization
through the service providers’ identity services. Availability



of the keys is guaranteed in a number of ways; for example,
by replicating the secrets across multiple geographically
distributed HSMs.

Secret management systems intended for the highest
value secrets, such as Microsoft Azure Key Vault’s Managed
HSM solution, require the user to download and store an
encrypted backup of the HSM for emergency recovery pur-
poses [43]. While this shifts the management and protection
burden back to the user, there is nevertheless a security and
usability gain: the encrypted backup is ideally much less
frequently used than the API on the HSM and therefore
should be easier to secure. However, the weight of this
burden should not be understated. The encryption should
be shared to at least three distinct RSA private keys and
each share being stored on a separate device, such as an
encrypted USB drive or an offline on-premise HSM, stored
in separate geographic locations and in a lock box or a safe.
No single person should have access to all of the keys.

The starkness of this picture belies a surprising piece
of information: although the service provider is unable to
access or extract keys from the managed HSMs, it does have
access to the HSM API and can therefore request signatures
or decryptions, if it is willing to accept that these operations
will be logged.

This use case seems like a perfect match for Acsesor.
It relieves the user of the need for HSMs, encrypted USB
drives, and geographically separated lock boxes or safes.
In addition, it allows for a flexible choice of the user’s
preferred guardians and enables logging of access attempts.
Accessing the HSM secrets through the encrypted backup
avoids logging entirely, whereas using Acsesor would ensure
the company is alerted when secret recovery is initiated.

In some cases, it could be possible to shift the entire key
management service to run in Acsesor. This may require
the guardians to interact to run any necessary cryptographic
multi-party protocols.

5.5. Disk Encryption

There are numerous products offering disk encryption
functionalities, with different options for key management.
Some use a combination of a password and a cryptographic
key to derive the encryption/decryption key, whereas others
only use a single cryptographic key. Some allow backing up
the cryptographic keys to a cloud storage account or shar-
ing them with their organization’s administrator. Forgetting
the password or losing access to the cryptographic key is
catastrophic, as there is no way to recover these.

Acsesor can be used to secret-share a cryptographic disk
encryption key to the guardians. In this case, instead of de-
riving the disk encryption key, it would simply be recovered
from Acsesor. For normal use, the user can set a policy for
fast recovery, requiring a password or a token device. For
emergency recovery, they can set up another fast recovery
option registered under an administrator’s password, or even
a slow recovery option. In business scenarios, at least some
of the guardians could be hosted by the organization or

a partner organization that is guaranteed to monitor every
employee’s account as a part of their normal IT operations.

6. Conclusion

We have introduced Acsesor, a new framework for secret
management, where a centralized service provider takes the
role of a custodian. Instead of having to trust the service
provider, the users will be given cryptographic proofs of its
correct behavior. To eliminate single points of trust, Acsesor
distributes the recovery process across a set of guardians
the user can choose. However, the user is never required to
interact directly with the guardians, which allows us to retain
the high usability of centralized custodial solutions. As long
as a large enough fraction of the guardians behave correctly,
the user can be guaranteed to learn whether their secrets are
being accessed by a malicious party, including the service
provider. Finally, by allowing the guardians to implement
flexible response policies, Acsesor can address a broad
range of problem scenarios in classical secret management
solutions. For example, a slow recovery policy, where the
guardians wait for a predefined time until responding, can
replace the cumbersome passphrases many cryptocurrency
wallets implement today for emergency recovery.

To the best of our knowledge, this is the first frame-
work for secret management that adds strong cryptographic
auditability and confidentiality guarantees, and opens up
several new and promising research directions. We have
already outlined how Acsesor framework can improve the
current secret management systems for a wide range of
applications. It will be interesting to tailor and optimize
Acsesor further for each of these applications, and discover
new ones.
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