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Abstract

UOV (Unbalanced Oil and Vinegar signature scheme), initially introduced
in 1997, has undergone extensive research and is widely recognized as a robust
signature scheme with excellent efficiency. Nonetheless, UOV is hindered by its
substantial public key sizes. Specifically, when targeting NIST security level I,
UOV public keys typically span from 40KB to 60KB in size. We propose a new
multivariate signature scheme SNOVA (Simple Noncommutative unbalanced Oil
and Vinegar scheme with randomness Alignment), which is a UOV-variant scheme
over noncommutative rings. In order to enhance the comprehension of SNOVA,
we introduce an intermediary phase called ring UOV, which generalizes UOV to
any noncommutative ring. However, a ring UOV may be viewed as a big UOV
system with sparse matrix representations. We further modified ring UOV to
SNOVA, which resolves the sparsity problem. In comparison to UOV, SNOVA
achieves a remarkable reduction in the public key size, making it to a mere 1KB,
while maintaining commendable performance levels.
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1 Introduction

The Unbalanced Oil and Vinegar (UOV) signature scheme [25] is a slight modification
of the Oil and Vinegar (OV) [33] signature scheme, proposed by Patarin in 1997.
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The UOV signature scheme has been studied and analyzed for a long time. To this
day, it is still believed to be a secure scheme. However, as a multivariate signature
scheme, it still suffers from the problem of having excessively large public keys. In the
literature, many related variants have been proposed, which try to address the issue of
large public keys while retaining the advantages of UOV [40, 14, 5].

On the other hand, fundamental public key compression methods have been proposed.
A. Petzoldt [34, 35] and Rainbow [13] of the third-round of NIST proposal showed that
part of the randomness of the private key can be transferred to the public key and
then a large part of public key can be generated by a PRNG (Pseudorandom Number
Generator) which we called “randomness alignment” technique here. This reduces the
public key size of UOV to the order O(m3 · log q). For the modern parameters of UOV
which aiming at NIST security level I [30], the public key sizes are about 40KB to
60KB. However, these sizes of the public key of UOV scheme are still too large.

To alleviate the problem, new possibilities have come into our view. By generalizing
the UOV scheme to noncommutative rings, we can further reduce the size of the public
key. Through some appropriate modifications, the public key compression techniques
of UOV remain applicable to our new signature scheme on noncommutative rings.

Our contribution. In this paper, we propose a new UOV variant over non-commutative
rings called SNOVA.

In SNOVA, we see several advantages:

- By building on noncommutative rings, we can reduce the size of the public key
while still maintaining the advantage of short signatures.

- The randomness alignment key-compression technique of Petzoldt [34] can be
successfully adapted to SNOVA without being affected by noncommutativity.

- There is an intuitive connection between SNOVA and UOV. In the case that l = 1
of the underlying matrix ring, SNOVA reduces to UOV scheme.

We propose parameter settings aiming for NIST security levels I, III, and V. For security
level I, one of our parameter settings results in a public key size of 1000 bytes and a
signature size of 232 bytes. With these performance, we believe that the SNOVA
scheme has strong competitiveness compared to other post-quantum signature schemes.
Additionally, through the generalization of UOV to non-commutative rings, we hope to
open up new possibilities for designing signature schemes.

2 Preliminaries

The following Tables 1, 2 are tables that list symbols fixed with specific meaning and
conventions on notations, respectively.
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Table 1: The table of symbols fixed with specific meaning in this paper.

Symbol Description

Fq finite field of order q

R Matl×l(Fq), matrix ring consisting of l × l matrices over Fq

v number of vinegar variables

o number of oil variables

S symmetric matrix in R with its characteristic polynomial
irreducible over Fq

n = v + o number of variables

m = o number of equations

F = [F1, · · · , Fm] central map of the ring UOV scheme

[Fi] matrix corresponding to Fi in F

F̃ =
[
F̃1, · · · , F̃m

]
central map of the SNOVA scheme

T invertible linear map in signature scheme

[T ] matrix corresponding to T

[T−1] matrix corresponding to the map T−1

P = [P1, · · · , Pm] public map of the ring UOV scheme

[Pi] matrix corresponding to Pi in P

P̃ =
[
P̃1, · · · , P̃m

]
public map of the SNOVA scheme

D document to be signed

Hash(D) hash value of the document D

O oil space

MQ(N,M, q) complexity of an MQ system of M equations in N variables over
Fq
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Table 2: The table of conventions on notations in this paper.

Description The font denoted with Example

Integers lower case letters n, m and l

Elements in R upper case letters A, S and Q

Variables over R upper case letters X1, · · · , Xn

Elements in Fq lower case letters a0, · · · , al−1

Variables over Fq lower case letters x1, · · · , xn

Vectors of any dimension boldface letters with an
arrow on top

#—

X and #—x

Vector spaces and rings calligraphic font O and R

The (j, k)-th entry of the
matrix [Fi], [T ] and [Pi],
respectively

subscript j, k Fi,jk, Tjk and Pi,jk

Block form of matrices [T ] upper case letters [T ] =

[
I11 T 12

0 I22

]
Block form of matrices [Fi] upper case letters [Fi] =

[
F 11
i F 12

i

F 21
i 0

]
Block form of matrices [Pi] upper case letters [Pi] =

[
P 11
i P 12

i

P 21
i P 22

i

]

2.1 Basic Notions

MQ problem. Let Fq be a finite field of order q. Given a multivariate quadratic map
P ( #—x ) = [P1(

#—x ), · · · , PM( #—x )] of M components in N variables #—x = (x1, · · · , xN) and a
vector #—y ∈ FM

q , to find a vector #—u ∈ FN
q such that P ( #—u) = [P1(

#—u), · · · , PM( #—u)] = #—y .
This problem is known to be NP-hard [21].

In this paper, we use MQ(N,M, q) to denote the complexity of solving such an MQ
problem. There are several algorithms to solve a multivariate quadratic system of M
equations in N variables over finite fields such as F4 [17], F5 [18] and XL variants
[12, 41].

Polar forms. The polar form of a homogeneous multivariate quadratic map P ( #—x ) =
[P1(

#—x ), · · · , PM( #—x )] is defined to be the map

P ′( #—x , #—y ) = [P ′
1(

#—x , #—y ), · · · , P ′
M( #—x , #—y )] (2.1)
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where for each i ∈ {1, . . . ,M} the polar form of Pi(
#—x ) is defined by

P ′
i (

#—x , #—y ) = Pi(
#—x + #—y )− Pi(

#—x )− Pi(
#—y ). (2.2)

Note that each P ′
i is symmetric and bilinear. If we write Pi(

#—x ) = #—x t [Pi]
#—x where [Pi]

is the matrix representation of Pi then the matrix representation of P ′
i is

[P ′
i ] = [Pi] + [Pi]

t . (2.3)

2.2 Unbalanced Oil and Vinegar Signature Scheme

A (v, o, q) UOV signature scheme with v > o is defined with a triple of positive integers
so that the number of variables n = v + o, the number of equations m = o, and the
scheme is over Fq.

Central map. The central map of UOV scheme is F = [F1, · · · , Fm] : Fn
q → Fm

q where
each Fi is of the form

Fi(x1, . . . , xn) =
v∑

j=1

n∑
k=j

fi,jkxjxk. (2.4)

The coefficients fi,jk’s are chosen randomly from Fq. Note that each Fi is a homogeneous
quadratic polynomials in n variables which has no terms xjxk for j, k = v + 1, · · · , n
over Fq.

Private key and public key. The private key of UOV is the pair (F, T ) where
T : Fn

q → Fn
q is an invertible linear map which is randomly chosen. The public key is

the map P = [P1, · · · , Pm] = F ◦ T : Fn
q → Fm

q where Pi = Fi ◦ T .

Oil space, O. The central map F of UOV scheme vanishes on the linear space O =
{ #—x ∈ Fn

q : x1 = · · · = xv = 0} called the oil space. Then the public map P vanishes on
the space T−1(O). For key recovery attacks against UOV, the most important task is
to find a nonzero vector in T−1(O). It is because once such a vector is found, we can
use this vector and the differential of the public map to successively get more vectors
in T−1(O), and finally to obtain a basis of T−1(O). And then such a basis can be used
to induce an equivalent key [4].

3 Ring UOV

In order to enhance the comprehension of SNOVA, we now introduce an intermediary
phase called ring UOV, which generalizes UOV to any noncommutative ring R. There
are other schemes involving noncommutative rings but with different techniques been
proposed [19, 45].
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Similar to UOV, Let n = v + o and m = o. However, due to the noncommutativity of
R we need to explicitly denote the following index set which will be used below by

Ω = {(j, k) : 1 ≤ j, k ≤ n} \ {(j, k) : v + 1 ≤ j, k ≤ n} (3.1)

where “\” denotes the set subtraction operation.

The basic structure of ring UOV. The central map of ring UOV is the map F =
[F1, · · · , Fm] : Rn → Rm with each Fi defined by

Fi(X1, . . . , Xn) =
∑

(j,k)∈Ω

ϕ(Xj)Fi,jkXk (3.2)

where the coefficients Fi,jk are randomly chosen from R. The map ϕ is a ring map with

“factor order reversed” property, i.e., ϕ
(∑

j CjXj

)
=
∑

j ϕ (Xj)ϕ (Cj) where Cj ∈ R.

The (ring) variables X1, . . . , Xv are called the vinegar variables and Xv+1, · · · , Xn are
called the oil variables.

A concrete example of ring UOV. For the purpose of explaining SNOVA, we now
fix the noncommutative ring to be R = Matl×l(Fq) and the ring map ϕ to be the matrix
transpose. Then, we have a (v, o, q, l)-type ring UOV scheme. And, for brevity, we will
call it a (v, o, q, l) ring UOV or simply a ring UOV. Due to these specification, the i-th
component, for i ∈ {1, 2, . . . ,m}, of the central map F = [F1, · · · , Fm] : Rn → Rm

becomes
Fi(X1, . . . , Xn) =

∑
(j,k)∈Ω

X t
jFi,jkXk. (3.3)

Note that we can write Fi into quadratic form over R. That is,

Fi(
#—

X) =
#—

Xt [Fi]
#—

X (3.4)

where
#—

X = (X1, . . . , Xn)
t and the matrix representation [Fi] over R corresponding to

Fi is of the form

[Fi] =
[
Fi,jk

]
=

[
F 11
i F 12

i

F 21
i 0

]
, (3.5)

F 11
i , F 12

i and F 21
i are matrices over R of size v × v, v × o and o× v, respectively.

Similar to UOV scheme, the public map P = [P1, · · · , Pm] is the composition of central

map F and an invertible ring linear map T : Rn → Rn, i.e., P (
#—

U) = (F ◦ T )( #—

U) where

Pi(
#—

U) = (Fi ◦ T )(
#—

U) for each i ∈ {1, 2, . . . ,m}. The map T is defined by its matrix
representation

[T ] =

[
I11 T 12

0 I22

]
. (3.6)

where T 12 is a v× o random matrix over R and I11, I22 are identity matrices over R of
size v × v and o× o, respectively.
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Public key and private key. For each i ∈ {1, . . . ,m}, we have

Pi(
#—

U) = (Fi ◦ T )(
#—

U) =
#—

Ut
(
[T ]t [Fi] [T ]

)
#—

U. (3.7)

Therefore, the public key consists of the corresponding matrices generated by the fol-
lowing congruence relation, for i ∈ {1, · · · ,m},

[Pi] =
[
Pi,djdk

]
= [T ]t [Fi] [T ] (3.8)

and the private key is (F, T ), i.e., the matrix [T ] and the matrices [Fi].

Some notes on a (v, o, q, l) ring UOV. Since we are working with the l × l matrix
ring R, we can observe that the components of ring map Fi will give us l

2o polynomials
over the ring variables’ entry elements in Fq. Therefore, a (v, o, q, l) ring UOV not only
can be considered as a UOV-like signature scheme over the matrix ring R but also an
(l2v, l2o, q) UOV over Fq.

However, when we consider a (v, o, q, l) ring UOV as an (l2v, l2o, q) UOV over Fq,
through the computations illustrated below, we can observe that the central map and
public map of this special UOV become sparse (coefficients of many quadratic terms
are zero). To see this, say l = 2, we consider a ring coefficient H ∈ R and two ring
variables X and Y . Then,

X tHY (3.9)

=

[
x1 x3

x2 x4

] [
h1 h2

h3 h4

] [
y1 y2
y3 y4

]
(3.10)

=

[
h1x1y1 + h2x1y3 + h3x3y1 + h4x3y3 h1x1y2 + h2x1y4 + h3x3y2 + h4x3y4
h1x2y1 + h2x2y3 + h3x4y1 + h4x4y3 h1x2y2 + h2x2y4 + h3x4y2 + h4x4y4

]
(3.11)

gives us 4 = 22 quadratic sparse polynomials over Fq, with each having at most 4
out of 16 possible quadratic terms xiyj. As a result, the efficiency of forgery attacks
targeting the public map might increase. To prevent such a possibility, we will make
some modifications to eliminate such sparsity in the public map of ring UOV to get
SNOVA.

On the other hand, for each i ∈ {1, . . . , l2o}, the i-th polynomial of the public map of
the (l2v, l2o, q) UOV vanishes on a linear space Wi such that O ⊆ Wi and dimO ≤
dimWi (herein, O denotes the oil space of this sparse (l2v, l2o, q) UOV). However, the
intersection of Wi is still the oil space O unless the coefficients of some monomial xjxk

vanish in all l2o polynomials, which is very unlikely (we already check this phenomenon
in our implementations). Therefore, we conclude that this (l2v, l2o, q) UOV will not
vanish on a linear space which is larger than the oil space O. This observation provides
us with some confidence in the security of this UOV against traditional key recovery
attacks on oil space such as KS attack [26] and intersection attack [4] in the sense that
this sparse UOV induced from ring UOV has the same size of oil space as the original
UOV.
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4 SNOVA: A Simple Noncommutative UOV Scheme

In this section, we introduce SNOVA signature scheme whose central map is a modified
ring UOV map. In order to eliminate the sparsity of ring UOV map (when we regard it
as a UOV map over field), some specific matrices will be introduced into the ring UOV
map. And we will see that, through appropriate design, these introduced matrices will
not affect the process of SNOVA public key generation. The key generation will be
almost identical to the case of the ring UOV scheme, which will be explained below.

4.1 Description

Let v, o be positive integers with v > o and Fq be of characteristic 2. For example, we
choose Fq = GF(16) for our implementation. Let n = v + o and m = o. Next, we will
proceed to introduce the subring of the matrix ring R, Fq[S]. Then, we will define a
(v, o, q, l) SNOVA scheme.

The subring Fq[S]. Let S be an l × l symmetric matrix with its characteristic poly-
nomial irreducible over Fq. The subring Fq[S] of R is defined to be

Fq[S] = {a0 + a1S + · · ·+ al−1S
l−1 : a0, a1, · · · , al−1 ∈ Fq} (4.1)

and note that the elements in Fq[S] are also symmetric and they all commute.

Central map and its core part. let Ω = {(j, k) : 1 ≤ j, k ≤ n} \ {(j, k) : v + 1 ≤
j, k ≤ n}. The central map of SNOVA scheme is F̃ =

[
F̃1, · · · , F̃m

]
: Rn → Rm and,

for i ∈ {1, · · · ,m}, Fi is defined to be

F̃i(X1, . . . , Xn) =
l2∑

α=1

Aα ·

 ∑
(j,k)∈Ω

X t
j (Qα1Fi,jkQα2)Xk

 ·Bα (4.2)

where Fi,jk’s are randomly chosen from R, Aα and Bα are invertible elements randomly
chosen from R, and Qα1, Qα2 are invertible matrices randomly chosen from Fq[S].

For the central map F̃ of SNOVA, we define its core part to be the corresponding ring
UOV map. That is, for i ∈ {1, . . . ,m}, we define

core(F̃i) := Fi =
∑

(j,k)∈Ω

X t
jFi,jkXk. (4.3)

From the above definition, we can observe that for a central map of SNOVA, there
always exists a corresponding ring UOV map. Through the core part, even if the
central map of SNOVA can not be represented as a quadratic form over ring (due to
matrices Aα, Bα, Qα1 and Qα2), its ring coefficients can still be recorded by the matrix
representation of its core part, i.e., the matrices[

core(F̃i)
]
:= [Fi] =

[
Fi,jk

]
=

[
F 11
i F 12

i

F 21
i 0

]
(4.4)
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where [Fi] is the matrix representation of the ring UOV map corresponding to the core
part of F̃i, i.e., core(F̃i).

Invertible linear map. The invertible linear map in SNOVA scheme is the map
T : Rn → Rn corresponding to the matrix

[T ] = [Tij] =

[
I11 T 12

0 I22

]
, (4.5)

where T 12 is a v × o matrix consisting of nonzero entries Tij chosen randomly in Fq[S].
Note that Tij is symmetric and commutes with other elements in Fq[S]. In particular,
Tij commutes with Qα1 and Qα2. The matrices I11 and I22 are identity matrices over
R. Therefore, [T ] is invertible and hence T . Note that since Fq is of characteristic 2,
the matrix [T−1] = [T ].

Public map. Let P̃ = F̃ ◦ T be the public map of SNOVA scheme. For i ∈
{1, 2, . . . ,m}, P̃i = F̃i ◦ T . The relation

#—

X = [T ] · #—

U where
#—

U = (U1, · · · , Un) ∈ Rn

implies that

P̃i(
#—

U) = F̃i(T (
#—

U)) =
l2∑

α=1

n∑
dj=1

n∑
dk=1

Aα · U t
dj
(Qα1Pi,djdkQα2)Udk ·Bα (4.6)

where Pi,djdk =
∑
Ω

Tj,dj ·Fi,jk ·Tk,dk by the commutativity of Fq[S] and that all elements

in Fq[S] are symmetric. Similarly, we define the core part of the public map P̃ by

core(P̃i) := Pi = core(F̃i) ◦ T = Fi ◦ T. (4.7)

Therefore, the matrix representation of the map core(P̃i) consists of the corresponding
matrices [

core(P̃i)
]
:= [Pi] =

[
Pi,djdk

]
= [T ]t [Fi] [T ] (4.8)

for i ∈ {1, . . . ,m}. By introducing the matrices Aα, Bα, Qα1, Qα2, the public map P̃ is
not a sparse UOV map when we regard it as over Fq.

Public key and private key. The public key is the matrices
[
core(P̃i)

]
that records

the ring coefficients for the core part of the public map P̃ and the matrices Aα, Bα,
Qα1 and Qα2 for α = 1, 2, . . . , l2, or simply the seed spublic which generates them. By

utilizing matrices
[
core(P̃i)

]
and the seed spublic, the verifier is capable to obtain the

public map P̃ and subsequently verify the received signature.

The private key of SNOVA is (F, T ), i.e., the matrix [T ] and the matrices [Fi] for
i = 1, 2, . . . ,m. Note that we can use the private seed sprivate to generate T .

Signature. Let D be the document to be signed and Hash(D) =
#—

Y = (Y1, · · · , Ym) ∈
Rm be its hash value. We compute the signature

#—

U step by step. First, We assign
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values to vinegar variables X1, · · · , Xv randomly and the resulting system can be seen
as a linear system over the Fq-entries of oil variables Xv+1, · · · , Xn. The remaining is
the same as in UOV scheme by regarding SNOVA as a UOV over Fq. Secondly, the

signature is
#—

U = T−1(
#—

X) ∈ Rn.

Verification. Let
#—

U = (U1, · · · , Un) ∈ Rn be the signature to be verified. IfHash(D) =

P̃ (
#—

U), then the signature is accepted, otherwise rejected.

4.2 Key generation process of SNOVA

In this section, we give the standard key generation process of SNOVA and the key
generation process with randomness alignment key-compression technique [34]. Note
that, in SNOVA scheme, Fq is of the characteristic 2.

Standard key generation process. For i ∈ {1, . . . ,m}, the matrix [Pi] is obtained
by relation

[Pi] = [T ]t [Fi] [T ] . (4.9)

Then, we have the following

P 11
i = F 11

i (4.10)

P 12
i = F 11

i T 12 + F 12
i (4.11)

P 21
i = (T 12)tF 11

i + F 21
i (4.12)

P 22
i = (T 12)t ·

(
F 11
i T 12 + F 12

i

)
+ F 21

i T 12. (4.13)

Therefore, to get [Pi], we generate the matrices [Fi], [T ] from a seed sprivate at first and
then compute [Pi] for i ∈ {1, . . . ,m} with the formulas above.

Key generation with randomness alignment. The following are steps of key
generation process of SNOVA with key randomness alignment.

First Step: Generate S, P 11
i , P 12

i and P 21
i for i ∈ {1, . . . ,m} , and [T ] from two seeds

spublic and sprivate respectively. We also generate the matrices Aα, Bα, Qα1 and Qα2

for α = 1, 2, . . . , l2 from spublic.

Second Step: Compute the matrix F 11
i , F 12

i , F 21
i , P 22

i for i ∈ {1, . . . ,m} as below.

For i ∈ {1, . . . ,m}, we have

[Fi] =
[
T−1

]t
[Pi]

[
T−1

]
. (4.14)
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Therefore, the following equations hold

F 11
i = P 11

i (4.15)

F 12
i = P 11

i T 12 + P 12
i (4.16)

F 21
i = (T 12)tP 11

i + P 21
i (4.17)

0 = F 22
i = (T 12)t ·

(
P 11
i T 12 + P 12

i

)
+ P 21

i T 12 + P 22
i . (4.18)

In other words, we then have

P 22
i =

(
T 12
)t · (P 11

i T 12 + P 12
i

)
+ P 21

i T 12. (4.19)

Public key size. The reduced size of the public key of SNOVA using alignment is

SizeSNOVA = m ·m2 · l2 (4.20)

field elements of Fq. Note that the key size here does not include the size of the public
seed spublic which is negligible in comparison to P 22

i ’s.

5 Security Analysis

The SNOVA scheme can be considered as both a UOV-like signature scheme over the
matrix ring R and a UOV over Fq. The security analysis are presented from two
different aspects: over the ring R and over the finite field Fq.

The target of this section is to explore various methods of attacking the SNOVA and
assess their feasibility. The key point is that SNOVA is based on a quadratic form
over ring, its private key T is shared with the ring UOV scheme corresponding to its
core part whose structure is much simpler. To conduct a comprehensive and prudent
security analysis, we start with the following observations.

Forgery attacks. Finding the preimage of the public map for the hash value of a
message is what constitutes signature forgery. However, the public maps of SNOVA
and ring UOV are only weakly connected as a result of the use of l2 copies with different
Aα, Qα1, Qα2, and Bα in F̃i of SNOVA. Consequently, solving the equations derived
from the public map of ring UOV corresponding to the core part does not aid in solv-
ing the equations produced by the public map of SNOVA for the purpose of forgery
attacks. Besides, one may try to directly forge valid fake signature of SNOVA over R
not returning to field level. This approach will suffer from the fact that there is no
efficient algorithm like F4, F5 and XL to solve multivariate quadratic system over the
noncommutative ring R. Therefore, the security of forgery attacks will be analyzed
with respect to the public map of the SNOVA scheme in the sense that regarding the
public map of SNOVA as a UOV public map over Fq.
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Key recovery attacks. Since the public keys of SNOVA and the ring UOV correspond-
ing to its core part both are generated by the congruence relation [Pi] = [T ]t [Fi] [T ],
they share the same private key. For key recovery attacks, the security of SNOVA will
be evaluated by analyzing the complexity of such attacks against the associated ring
UOV scheme which has a much simpler structure. To our best knowledge, we do not
find a complete key recovery attack against the ring UOV corresponding to the core
part. However, this ring UOV still induces a special UOV over field. We will point out
some structures about this UOV scheme. We hope that the analysis of these structures
will make the security analysis more comprehensive and enhance the understanding of
the SNOVA scheme and the concept of ring UOV.

5.1 Solving MQ systems and Complexity Estimation

There are several algorithms to solve a quadratic system of M equations in N variables
over finite fields such as F4 [17], F5 [18] and XL variants [12, 9, 41].

Solving MQ problem. The complexity of solving M homogeneous quadratic equa-
tions in N variables [9] can be estimated by

MQ(N,M, q) = 3 ·
(
N − 1 + dreg

dreg

)2

·
(
N + 1

2

)
(5.1)

field multiplications. The term dreg, degree of regularity of a semi-regular polynomial
system [1], equals to the smallest positive integer d such that the coefficient of td term
in the series generated by

(1− t2)M

(1− t)N
(5.2)

is non-positive.

Hybrid approach. The hybrid approach [2] randomly guesses k variables before
solving the MQ system and the corresponding complexity is

HMQ(N,M, q) = qk ·MQ(N − k,M, q) (5.3)

field multiplications for the classical case and

qk/2 ·MQ(N − k,M, q) (5.4)

field multiplications when applying Grover’s algorithm [22] for the quantum case.

Methods solving underdetermined MQ. On the other hand, several methods
[39, 20, 23] have been proposed to solve underdetermined MQ more efficiently. These
methods can transform an underdetermined MQ(N, M, q) problem to an MQ(M −
k−αk, M −αk, q) problem where the value of αk depends on the approach utilized in
each method. (Generally, the attack in [23] would be the sharpest among [39, 20, 23].)
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Hence, the main term of complexity of solving MQ system under this technique is given
by

min
k

qk ·MQ(M − k − αk,M − αk, q) (5.5)

field multiplications in the classical case and

min
k

qk/2 ·MQ(M − k − αk,M − αk, q) (5.6)

in the quantum case with different optimal values αk corresponding to different methods.

Recently, the algorithm in [23] has been revised. The updated algorithm has become
more efficient. It reduces the complexity of direct attack on the MAYO scheme with the
latest parameters in [6], making it unable to meet NIST security levels. We want to point
out that the parameter settings we have chosen still satisfies the security requirements.
When solving an underdetermined MQ system, our complexity estimations consider the
method with the lowest complexity.

Algorithms for super-underdetermined MQ. Note that, [26, 11, 28, 10] indicate
that when the number of variables N is sufficiently larger than the number of equations
M in an MQ problem then we can solve this MQ in polynomial time. Please refer to the
table in [23] for more information. Note that these four algorithms are not applicable
to the parameter settings of SNOVA.

5.2 To Attain EUF-CMA Security

For practical considerations, we use a random binary vector, called salt in order to
achieve Existential Unforgeability under Chosen Message Attack (EUF-CMA) Security
[31].

Signature. Let D be the document to be signed, we randomly choose salt and then
generate a signature for the hash value

#—

Y = Hash(Hash(D)||salt). Therefore, the

corresponding signature is of the form #—σ = (
#—

U||salt) where
#—

U is the signature of
#—

Y
generated by the SNOVA signer. Note that we want almost no salt is used for more
than one signature. Therefore, the length of salt is chosen to be 16 Bytes under the
assumption of up to 264 signatures being generated with the system.

Verification. If P (
#—

U) = Hash(Hash(D)||salt), the signature is accepted, otherwise
rejected.

5.3 Forgery attacks

In this section, we will give the security analysis of two main types of forgery attacks:
direct attack and collision attack. The ideas behind these two attacks are straightfor-
ward. They directly ignore the structure possessed by the central map and attack the
scheme by generating fake signatures.
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5.3.1 Direct attack

For a quadratic multivariate polynomial system P = [P1, · · · , Pm] consisting of m equa-
tions in n variables over Fq and an intended #—y ∈ Fm

q , an attacker can directly try to
solve the solution #—u of the system P ( #—u) = #—y algebraically with Gröbner basis ap-
proach such as [17, 18, 12, 9, 41]. We can assign values to n − m variables in the
system P ( #—u) = #—y = Hash(digest||salt) randomly and then obtain an MQ system of
m equations in n variables which can be solved with high probability. Once the system
is solved, the solution #—u will be a valid fake signature that satisfies P ( #—u) = #—y .

In the case of SNOVA, to produce a fake signature, an attacker need to regard a
(v, o, q, l) SNOVA public map as an (l2v, l2o, q) UOV public map over Fq and then forge
a signature for this UOV. Since each equation over R = Matl×l(Fq) yields l

2 equations

over Fq, the system over ring R, P (
#—

U) =
#—

Y, with m equations and n ring variables will
result in an MQ system consisting of l2m equations in l2n field variables.

Table 3 gives comparison of the degree at the first step degree falls or goes flat using F4

algorithm [17], which is strongly connected to the degree of regularity [15], in Magma
algebra system [7] that starts to go either down or flat among all step degrees of the
quadratic system obtained by SNOVA and a random quadratic system respectively.

In random systems, the first fall step degree is generally equal to the degree of regularity.
Table 3 indicates that the first fall step degrees of SNOVA systems and random systems
are identical for small size parameter sets. Thus, we can expect that the degree of
regularity of SNOVA systems, the first fall step degree, and the degree of regularity of
random systems are the same. For Gröbner bases algorithms such as F4/5 and XL, the
size of the Macaulay matrix employed in solving quadratic systems is determined by
the degree of regularity. The complexity of solving quadratic systems is determined by
the difficulty of solving the sparse Macaulay matrix using the Wiedemann solver [42].
As a result, the complexity of a direct attack on SNOVA is estimated by the complexity
of a direct attack on random systems.

The complexity of classical direct attack is given by the estimation in [23]

CompDirect; ClassicalSNOVA (5.7)

=(l2m− α− k + 1)HMQ(α, α, q) (5.8)

+ qk
(
HMQ(α− 1, α− 1, q) +HMQ(l2m− α− k, l2m− α, q)

)
. (5.9)

provided that l2n ≥ max{(α + 1)(l2m− k − α + 1, α(l2m− k)− (α− 1)2 + k} holds.
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Table 3: Table of comparison of the degree at the first step degree falls or goes flat
between SNOVA and random systems. Our experiment shows that in the case of small
size parameter sets such a quadratic system over field induced by SNOVA public key
with m equations in n variables over R = Matl×l(Fq) behaves like a random systems
consisting of l2m equations in l2n variables over a Fq.

(v, o, q, l, k) SNOVA system random system

(6, 1, 16, 2, 1) 3 3

(6, 2, 16, 2, 1) 5 5
(6, 2, 16, 2, 2) 4 4
(6, 2, 16, 2, 3) 3 3

(6, 3, 16, 2, 1) 7 7
(6, 3, 16, 2, 2) 6 6
(6, 3, 16, 2, 3) 5 5

(6, 4, 16, 2, 2) 7 7
(6, 4, 16, 2, 3) 6 6

(6, 1, 16, 3, 2) 4 4
(6, 1, 16, 3, 3) 4 4
(6, 1, 16, 3, 4) 3 3

(6, 2, 16, 3, 3) 7 7
(6, 2, 16, 3, 4) 6 6
(6, 2, 16, 3, 5) 5 5

(6, 1, 16, 4, 1) 9 9
(6, 1, 16, 4, 2) 7 7
(6, 1, 16, 4, 3) 6 6
(6, 1, 16, 4, 4) 5 5
(6, 1, 16, 4, 5) 5 5

Note that not only do the first fall degrees of SNOVA and a random system coincide,
but the numbers of columns and ranks of Macaulay matrices also exhibit the same
correspondence.

5.3.2 Collision attack

To forge a fake signature, an attacker can also try to check M intended signatures
#  —

Uj

where j = 1, · · · ,M , and N hash values Hash(digest||saltk) where k = 1, · · · , N ,

whether there exists a collision P (
#  —

Uj) = Hash(digest||saltk). And if it does, then
the attacker has a valid fake signature. Thus, M signature computations and N hash
values computations are involved. Therefore, according to the estimation of [8], the
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cost of such a collision attack would be

M · (l2m) ·
(
2(log2 q)

2 + 3 · log2 q
)
+N · 217 (5.10)

gates in the sense that regarding SNOVA as a UOV scheme over Fq. Note that a lower
bound of the complexity of collision attack is

2 ·
(
M(l2m)

(
2(log2 q)

2 + 3 · log2 q
)
·N · 217

)1/2
(5.11)

gates. If MN = ql
2m, then this lower bound turns into

2 ·
(
ql

2m(l2m)
(
2(log2 q)

2 + 3 · log2 q
)
· 217

)1/2
, (5.12)

and the collision exists with probability

1−

(
ql

2m −M

ql2m

)N

= 1−
(
MN −M

MN

)N

(5.13)

= 1−
(
1− 1

N

)N

(5.14)

≈ 1− e(
−1
N )N (5.15)

= 1− e−1. (5.16)

5.4 Key Recovery Attacks

In this subsection, we will analyze the structure of ring UOV corresponding to the
core part of SNOVA. Recall that when we consider this ring UOV as a UOV over
field, its oil space is same as the original case. (We have verified this on some small
parameter settings through some experiments.) In other words, for the key recovery
attacks against the UOV induced from the ring UOV, we consider the situation as the
same as the original UOV.

5.4.1 Quadratic forms over ring

No multi-layer structure. One may worry that the sparsity of the UOV induced by
the ring UOV corresponding to SNOVA will lead to some structures that are prone to
be broken, such as, multi-layer structure [14]. In [3, 4], Beullens proposed a series of
MinRank attack against Rainbow [14] scheme based on its multi-layer structure. Such
multi-layer structure will result in nested structure of oil spaces [4] and the low-rankness
can be used to find a vector in the linear space T−1(O) and hence an equivalent key.

Another attack that makes use of multi-layer structure is the MinRank attack proposed
by Thomae [38] against NC-Rainbow [45] which is a variant of Rainbow based on
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Quaternion ring over a finite field Fq of characteristic 2. If an attacker regards an
NC-Rainbow scheme as a Rainbow scheme over Fq, then the rank of the corresponding
matrix to the first layer of central map F of NC-Rainbow will be lower than original
Rainbow. Therefore, this low-rankness makes the MinRank attacks taking advantage
of multi-layer structure more efficient.

Recall that for each i ∈ {1, . . . , l2o}, although the i-th polynomial of the public map
of the (l2v, l2o, q) UOV induced by the ring UOV corresponding to the core part of
SNOVA is sparse and it vanishes on a linear space Wi containing oil space O, there is
no multi-layer structure among these linear subspace Wi from direct computations and
evaluations. Therefore, we can not regard the sparse (l2v, l2o, q) UOV scheme induced
by the ring UOV corresponding to the core part of SNOVA as a Rainbow scheme.
Consequently, attacks [4, 3, 38] that rely on the multi-layer structure have no security
impact on the UOV induced by the quadratic form of the ring UOV, and thus will not
affect the security of SNOVA.

Intersection of the null spaces of public key differential. In [32], Park broke
the Matrix-based UOV scheme [37] which is proposed by Tan and Tang. The central
map of matrix-based UOV is constructed using rotation sequence or linearly recurring
sequence and then result in a special shape. The main insight of this attack is: when
an attacker regards the matrices of the differential of the central map and the public
map of Matrix-based UOV as linear operators, the sparsity of some of these matrices
makes the intersections of the corresponding null spaces non-trivial, while general UOV
do not have this phenomenon. Then, by using this structure, Park showed that any
basis of this non-trivial intersection can be used to build an equivalent private key.

Since the structure of the ring UOV corresponding to the core part is different from
the central map of matrix-based UOV, the null spaces of the differential have different
structure from those for the Matrix-based UOV. In fact, in our case, direct computation
shows that the intersection of the null space corresponding to the public differential is
the same as the plain UOV in actual experiments of small parameter sets. Therefore,
the attack in [32] is not applicable to this ring UOV, and hence will not affect the
security of SNOVA.

Reconciliation Attack. The reconciliation attack proposed by [16] against UOV is
trying to find a vector #—o ∈ T−1(O) by solving the system P ( #—o ) = 0 and hence the basis
of T−1(O) can be recovered. This implies that P ( #—o ) = 0 is a quadratic system that
having a solution space of dimension m. To expect a unique solution, we can impose
m linear constraints with respect to the components of #—o . Hence the complexity of
this attack is mainly given by that of solving the quadratic system of m equations in v
variables.

A reconciliation attack on SNOVA, if considered over field, is as an attack on UOV,
thus we are in the case of solving the quadratic system of l2m equations in l2v ≥ l2m
variables. Hence the reconciliation attack usually will not outperform the direct attack
on the public map of SNOVA in which the complexity comes from solving an induced
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system of l2m quadratic equations in l2m variables.

Sparsity. Although we may observe that sparsity seems to have negative impacts and
weaknesses on the scheme, we still want to point out the differences in sparsity between
our ring UOV and other schemes. The sparsity of other schemes often arises from the
design of their central map. These schemes aim to gain some advantages by introducing
such sparsity [37, 45]. However, the public map of ring UOV corresponding to the core
part is not sparse when it is considered overR. The sparsity of UOV induced by the ring
UOV comes entirely from matrix multiplication. The public map and the central map
of the sparse UOV both are sparse (both caused by matrix multiplication) which is very
different form other schemes. Our sparsity will not provide more algebraic equations
or relationships. On the other hand, even if it is sparse, we still believe that the rank
is sufficiently high to meet security requirements. We will interpret this through the
analysis of equivalent attack in the next section.

5.4.2 Equivalent key attack

An attacker may try to find the submatrix (T−1)12 of matrix [T−1] in the top right
corner by algebraic attacks. Once the matrix [T−1] is found, the central map F can be
recovered. This can be done by considering the system P (T−1 #—x )) = F ( #—x ) and solve
for [T−1] by comparing both sides of equation at ring level. Then it induces a system
of m ·m2 · l2 quadratic equations in lvo variables over Fq and hence can be solved by
F4, F5 and XL, and the complexity is

CompT−1SNOVA = MQ(lvo+ 1, m3l2, q) (5.17)

field multiplications. Note that the multivariate quadratic system constructed by this
attack is overdetermined, hence [25, 11, 28, 10, 39, 20, 23] are not applicable.

On the other hand, one may consider executing equivalent key attack that regards a
(v, o, q, l) ring UOV corresponding to the core part of SNOVA as an (l2v, l2o, q) UOV
over Fq, then inducing a quadratic system of M = (l2m) · (l2m) · l2m+1

2
equations

in N = lvo variables over Fq. However, our experiments show that this formulation
does not increase the number of independent equations. With table 4 below, we hope
to provide some information about this equivalent key attack against our parameters
aiming that NIST security level I.

Table 4: Trend table of changes in degree of regularity.

(v, o, q, l) N M dreg

(28, 17, 16, 2) 952 19652 11
(25, 8, 16, 3) 600 4608 16
(24, 5, 16, 4) 480 2000 23
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5.4.3 Kipnis-Shamir attack (UOV attack)

The KS attack [26] is trying to find an equivalent private key by finding an equivalent
invertible linear map T and hence the corresponding matrix [T ]. Once we have an
equivalent [T ], we can recover equivalent [Fi] by the relation [Fi] = [T−1]

t
[Pi] [T

−1].
Note that [26] shows that T−1(O), the oil subspace of the public key P of UOV, induces
an equivalent key.

In [26, 4], it shows that T−1(O) is an invariant subspace of [P ′
i ]
−1 [P ′

j

]
. The KS attack

is trying to find a vector in T−1(O). Once one such vector is found, then we expect
that the whole space T−1(O) can be recovered efficiently by using method in [4]. A
vector in T−1(O) can be expected to be found with qn−2m attempts. Note that if there
are [P ′

i ]’s not invertible, then we can replace [P ′
i ] with invertible linear combinations of

[P ′
i ]’s randomly chosen and the cryptanalysis of KS attack remains the same.

First of all, we discuss the feasibility of the execution of KS attack over R. From the
design of central map F of the ring UOV corresponding to the core part of SNOVA
and the noncommutativity of R, there does not exist the notion of oil space of F over
R analogous to the space O of UOV and hence the notion of T−1(O) in the sense that
regarding T−1(O) as a left-module or a right-module over R. Such a requirement is
necessary for KS attack since to execute KS attack over R, the consistency of multipli-
cation over R given by a left-module or a right-module over R is needed. Therefore, KS
attack is not applicable to SNOVA over R. Note that [33] also proposes two methods
to find an invariant subspace: the Linearization method and the Characteristic Poly-
nomial method. These two methods become invalid over R since they still suffer from
the noncommutativity of R.

However, an attacker may treat the ring UOV which is corresponding to the core part
of a (v, o, q, l) SNOVA scheme over R as an (l2v, l2o, q) UOV system over Fq and then
carry out the KS attack over Fq.

Then we have
CompKS; classicalSNOVA = ql

2n−2l2m (5.18)

field multiplications for classical attack and

CompKS; quantumSNOVA = q(l
2n−2l2m)/2 (5.19)

field multiplications for quantum attack.

5.4.4 Intersection attack

In [4], Beullens proposed the intersection attack to attack UOV scheme. It uses the
polar form of the public key P , that is, P ′ = [P ′

1, · · · , P ′
m] with P ′

i (
# —u1,

# —u2) =
# —u1

t [P ′
i ]

# —u2

where [P ′
i ] = [Pi] + [Pi]

t.
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The intersection attack is trying to first find a vector #—y in the subspace, namely the

intersection
(
[P ′

i ] (T
−1O)

)
∩
( [

P ′
j

]
(T−1O)

)
where [P ′

i ] ,
[
P ′
j

]
are invertible, and then

to obtain an equivalent key by recovering the subspace T−1(O).

Since ([P ′
i ]
−1) #—y , (

[
P ′
j

]−1
) #—y ∈ T−1(O), we obtain the following system.

P
( (

[P ′
i ]
−1) #—y

)
= 0

P
(
(
[
P ′
j

]−1
) #—y
)
= 0

P ′
(
([P ′

i ]
−1) #—y , (

[
P ′
j

]−1
) #—y
)
= 0

(5.20)

In case of intersection attack against SNOVA, due to our construction, we can not
write the public polynomial Pi of SNOVA in quadratic form, namely # —u1

t [P ′
i ]

# —u2, when
considered as overR. Thus, the implementation of intersection attack still face the non-
commutativity, that is, there is no efficient algorithm like F4, F5 and XL to compute.
Therefore, from this perspective, to implement intersection attack against SNOVA, the
only possible strategy is to regard the ring UOV corresponding to the core part of
SNOVA as a UOV system over Fq and then to solve a system over Fq. Hence the
complexity is estimated by the following

Whenever n < 2.5m. If n < 2.5m, we have N = (l2n)k − (2k − 1)(l2m), M =(
k+1
2

)
(l2m)− 2

(
k
2

)
, and

CompIntersectionSNOVA = MQ(N + 1,M, q) (5.21)

field multiplications.

Whenever 2.5m < n < 3m. In the case 2.5m < n < 3m, N = 2(l2n)− 3(l2m), M =
3(l2m), and

CompIntersectionSNOVA = MQ(N + 1,M, q) (5.22)

field multiplications.

Whenever n ≥ 3m. If n ≥ 3m, then there is no guarantee that the subspace, namely

the intersection
(
[P ′

i ] (T
−1O)

)
∩
( [

P ′
j

]
(T−1O)

)
will exist. Therefore, the intersection

attack becomes a probabilistic attack against SNOVA. In this case, the complexity is

CompIntersectionSNOVA = q(l
2n)−3(l2m)+1 ·MQ(N + 1,M, q) (5.23)

field multiplications where N = l2n,M = 3(l2m).

Our experiment shows that the quadratic system induced by intersection attack on ring
UOV will not degenerate, e.g., in the toy example (v, o, q, l) = (3, 2, 16, 2). That is, it
behaves like a semi-regular system.
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6 Implementation and Parameters

In [29], NIST suggested several security levels for post-quantum cryptosystem design.
In the new call for additional digital signature scheme project, NIST slightly modified
their security level request. In this section, we propose our parameters aiming at three
security levels in the new call of NIST PQC project [30] levels I, III and V, respectively.

6.1 NIST Security Level

Herein, We focus on levels I, III, and V. The NIST security levels I, III and V require
that a classical attacker needs 2143, 2207 and 2272 classical gates to break the scheme,
and 261, 2125 and 2189 quantum gates for a quantum attacker, respectively.

The number of gates required for an attack against digital signature scheme can be
computed by

♯gates = ♯field multiplication · (2 · (log2 q)2 + log2 q) (6.1)

with the assumption that one field multiplication in the field Fq needs about (log2 q)
2

bit multiplications and same for bit additions and, for each field multiplication in the
computation, an addition of field elements taking log2 q bit additions.

6.2 Proposed Parameter Settings

In this section, we give our proposed parameters and the corresponding sizes of public
key and signature respectively. Finally, the comparison table of SNOVA with NIST
finalists [36, 27, 24] is given.

When it comes to parameter selection, our goal is to achieve a higher level of system
security, with a preference for smaller public key size and signature size. In general,
system security tends to increase with the increase of o and n = v + o. However, the
public key size and signature size also increase with the increase of o and n. Therefore,
we need to strike a balance and find smaller values of o and n that meet the security
requirements.

The following table shows the complexity of respective attacks against our parameters.
“Dir.”, “KS.”, “Int.”, “T−1.”, and “Col.” denote direct attack in Sec. 5.3.1, KS attack
in Sec. 5.4.3, intersection attack in Sec. 5.4.4 and equivalent key attack in Sec. 5.4.2
and the collision attack in Sec. 5.3.2, respectively.
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Table 5: Table of complexity in log2(♯gates). In any pair of complexity, the left one
denotes the complexity in classical gates and the right one denotes in quantum gates,
respectively. The lowest complexity is marked in bold fonts. The complexity of direct
attack against quantum attacker is given by the estimation 5.6.

SL (v, o, q, l) Dir. K-S. Int. T−1. Col.

I
(28, 17, 16, 2) 167/124 181/93 275 192/192 151
(25, 8, 16, 3) 171/126 617/311 819 231/231 159
(24, 5, 16, 4) 184/134 1221/613 1439 286/286 175

III
(43, 25, 16, 2) 236/175 293/149 439 279/ 279 215
(49, 11, 16, 3) 226/162 1373/689 1631 530/530 213
(37, 8, 16, 4) 287/214 1861/933 2192 424/424 271

V
(61, 33, 16, 2) 304/224 453/229 727 386/386 279
(66, 15, 16, 3) 302/220 1841/923 2178 707/707 285
(60, 10, 16, 4) 350/255 3205/1605 3602 812/812 335

The complexity of KS attack and intersection attack for each parameter set is already
far beyond the security level. Therefore, we only include the remaining complexity in
Table 5. The key-size and the length of the signature are shown in Table 6.

Table 6: Table of key-sizes and lengths of the signature of SNOVA parameter settings.
Herein, the notation Sizepk denotes the public key size and Sizesig denotes the
signature size.

Security Level (v, o, q, l) Sizepk (Bytes) Sizesig (Bytes)

I
(28, 17, 16, 2) 9826 90(+16)
(25, 8, 16, 3) 2304 148.5(+16)
(24, 5, 16, 4) 1000 232(+16)

III
(43, 25, 16, 2) 31250 136(+16)
(49, 11, 16, 3) 5989.5 270(+16)
(37, 8, 16, 4) 4096 360(+16)

V
(61, 33, 16, 2) 71874 188(+16)
(66, 15, 16, 3) 15187.5 364.5(+16)
(60, 10, 16, 4) 8000 560(+16)

Table 7 gives the comparison of SNOVA of 3 sets of parameters with those NISTPQC
signature finalists that aim at the security level I. Based on the public key sizes and
signature sizes of SNOVA, we consider SNOVA to be a competitive signature system.
Note that the 16 Bytes salt is also indicated in the size of SNOVA signature.
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Table 7: A comparison table of SNOVA with the NISTPQC signature finalists aims at
NIST security level I.

Signature Scheme Size of public key (Bytes) Size of signature (Bytes)

Dilithium-2 [27] 1312 2420
Falcon-512 [36] 897 666
SPHINCS+-128s [24] 32 7856
SPHINCS+-128f [24] 32 17088
SNOVA(24, 5, 16, 4) 1000 232(+16)
SNOVA(25, 8, 16, 3) 2304 148.5(+16)
SNOVA(28, 17, 16, 2) 9826 90(+16)

In [43, 44], they both pointed out that the protocol TLS, which we used to protect
our web browsing, is no longer secure due to the impact of the quantum computer.
Making TLS post-quantum is an important task, but such a fundamental change could
take years and be quite costly if we do not have a quantum-resistant signature that
is relatively well compatible with the existing framework. Note that [44] gives the
corresponding condition: six times signature size and two times of public key size fit
in 9KB. According to the specification of SNOVA, SNOVA could be a more practical
general-purpose signature scheme than others.

7 Conclusion

SNOVA has shown that multivariate signature schemes over noncommutative rings
could be beneficial to security and key size reduction. With tremendous efforts on
security analysis, to our best, we are confident that the SNOVA scheme is capable of
resisting all known attacks for multivariate cryptosystems. By comparison with other
post-quantum signature schemes, SNOVA is a practical secure signature scheme which
is relatively efficient on both public key size and signature size.
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