
Do Not Trust in Numbers:
Practical Distributed Cryptography With General Trust

Orestis Alpos
University of Bern

orestis.alpos@unibe.ch

Christian Cachin
University of Bern

christian.cachin@unibe.ch

Abstract

In distributed cryptography independent parties jointly perform some cryptographic task. In the last
decade distributed cryptography has been receiving more attention than ever. Distributed systems
power almost all applications, blockchains are becoming prominent, and, consequently, numerous
practical and efficient distributed cryptographic primitives are being deployed.

The failure models of current distributed cryptographic systems, however, lack expressibility. As-
sumptions are only stated through numbers of parties, thus reducing this to threshold cryptography,
where all parties are treated as identical and correlations cannot be described. Distributed cryptogra-
phy does not have to be threshold-based. With general distributed cryptography the authorized sets,
the sets of parties that are sufficient to perform some task, can be arbitrary, and are usually modeled
by the abstract notion of a general access structure.

Although the necessity for general distributed cryptography has been recognized long ago and
many schemes have been explored in theory, relevant practical aspects remain opaque. It is unclear
how the user specifies a trust structure efficiently or how this is encoded within a scheme, for example.
More importantly, implementations and benchmarks do not exist, hence the efficiency of the schemes
is not known.

Our work fills this gap. We show how an administrator can intuitively describe the access struc-
ture as a Boolean formula. This is then converted into encodings suitable for cryptographic primi-
tives, specifically, into a tree data structure and a monotone span program. We focus on three general
distributed cryptographic schemes: verifiable secret sharing, common coin, and distributed signa-
tures. For each one we give the appropriate formalization and security definition in the general-trust
setting. We implement the schemes and assess their efficiency against their threshold counterparts.
Our results suggest that the general distributed schemes can offer richer expressibility at no or in-
significant extra cost. Thus, they are appropriate and ready for practical deployment.

1 Introduction

1.1 Motivation

Throughout the last decade, largely due to the advent of blockchains, there has been an ever-increasing
interest in distributed systems and practical cryptographic primitives. Naturally, the type of cryptography
most suitable for distributed systems is distributed cryptography: independent parties jointly hold a secret
key and perform some cryptographic task.

Many deployments of distributed cryptography exist today. Threshold signature schemes [24, 9] dis-
tribute the signing power among a set of parties. They have been used in state-machine replication (SMR)
protocols, where they serve as unique and constant-size vote certificates [65, 45]. Furthermore, random-
beacon and common-coin schemes [19, 13] provide a source of reliable and distributed randomness. In
SMR protocols they facilitate, among other tasks, leader election [14, 21, 52] and sharding [66, 37]. As
a third example, multiparty computation (MPC) is a cryptographic tool that enables a group of parties
to compute a function of their private inputs. It finds applications in protecting digital assets1, or pri-
1 Fireblocks: https://www.fireblocks.com, Sepior: https://sepior.com

1

orestis.alpos@unibe.ch
christian.cachin@unibe.ch
https://www.fireblocks.com
https://sepior.com

vate keys and cryptocurrency wallets2, often worth millions of dollars. Applications also include highly
sensitive and private data3, related, for example, to DNA4 or efforts against human trafficking [20]. Se-
curity is, hence, of paramount importance. MPC has been combined with blockchains to enable private
computations [8] and fairness [41, 3].

One can thus say that we are in the era of distributed cryptography. However, all currently deployed
distributed-cryptographic schemes express their trust assumptions through a number, with a threshold,
hence reducing to the setting of threshold cryptography, where all parties may misbehave with the same
probability. In other words, parties are considered identical, leading to a monoculture-type view of the
system. On the other hand, distributed cryptography does not have to be threshold-based. In general
distributed cryptography the authorized sets, the sets of parties sufficient to perform the task, can be
arbitrary, and are specified through a general, non-threshold access structure (AS). Our position is that
general distributed cryptography is essential for distributed systems.

Increasing systems resilience and security. First, general distributed cryptography has the capacity
to increase the resilience of a system, as failures are, in practice, always correlated [64]. Cyberattacks,
exploitation of specific implementation vulnerabilities, zero-day attacks, and so on very seldom affect
all parties in an identical way — they often target a specific operating systems or flavor of it, a specific
hardware vendor, or a specific software version. Similarly, attackers may compromise specific parties
more easily, due to different administrator policies or different levels of cyber and physical security.
In another example, blockchain nodes are typically hosted by cloud providers or mining farms, hence
failures are correlated there as well. Such failure correlations are known and have been observed; they
can be expressed in a system that supports general trust, significantly increasing resilience and security.

Let us now see a concrete example of how such correlations can be captured. Cachin [12] describes
an AS where parties are differentiated in two dimensions, based on their location and operating system
(OS). In an instantiation with 16, possibly Byzantine, parties, organized in four locations and four OS,
the AS tolerates the simultaneous failure of all parties in one location and all parties with a specific OS.
Hence, it encodes specific knowledge and correlation patterns, and can even tolerate executions with up
to seven failed parties, something not possible in the threshold setting, where only five out of the 16 may
fail. Once general distributed cryptography is deployed, this example can be generalized to any number
of parties and dimensions.

Facilitating personal assumptions and Sybil resistance. Some works in the area of distributed sys-
tems generalize trust assumptions in yet another dimension: they allow each party to specify its own. The
consensus protocol of Stellar [40], implemented in the Stellar blockchain5, allows each party to specify
the access structure of its choice, which can consist of arbitrary sets and nested thresholds. Similarly, the
consensus protocol implemented by Ripple [57] in the XRP ledger6 also allows each party to choose who
it trusts and communicates with. In both networks, the resulting representation of trust in the system,
obtained when the trust assumptions of all parties are considered together, can only be expressed as a
generalized structure. Hence, current threshold-cryptographic schemes cannot be integrated or used on
top of these networks. For example, a common coin scheme — necessary for achieving consensus in
asynchronous networks — would need to support general trust. In addition to that, practical and easy to
deploy general distributed cryptographic schemes can function as a catalyst for more applications built
on top of these blockchains.

Another feature of both Stellar and Ripple is that they achieve open membership without employing a
proof-of-work or proof-of-stake mechanism. That is, they achieve Sybil resistance by allowing a party to
selectively trust or ignore other parties. This approach can lead to more efficient, less energy consuming,
and arguably more open and inclusive blockchains. As described earlier, however, this results in trust
assumptions where parties are not treated as identical. Departing from a threshold mindset towards
2 DFNS: https://www.dfns.co/, Keyless: https://keyless.io, Zengo: https://zengo.com, Unbound security:
https://github.com/unboundsecurity 3 Sharemind: https://sharemind.cyber.ee, Partisia: https://partisia.com
4 https://partisia.com/better-data-solutions/surveys 5 https://www.stellar.org/ 6 https://ripple.com/

2

https://www.dfns.co/
https://keyless.io
https://zengo.com
https://github.com/unboundsecurity
https://sharemind.cyber.ee
https://partisia.com
https://partisia.com/better-data-solutions/surveys
https://www.stellar.org/
https://ripple.com/

general access structures is, thus, a prerequisite for wider adoption.

1.2 State of the art

In this work we focus on three important distributed-cryptographic primitives for distributed protocols.

Verifiable secret sharing. Secret sharing [58] allows a dealer to share a secret in a way that only autho-
rized sets can later reconstruct it. Verifiable Secret Sharing (VSS) [31, 51] additionally allows the parties
to verify their shares against a malicious dealer.

Common coin. A common coin [54, 13] scheme allows a set of parties to calculate a pseudorandom
function U , mapping coin names C to uniformly random bits U(C) ∈ {0, 1} in a distributed way.

Distributed signatures. A distributed signature [24, 9] scheme allows a set of parties to collectively
sign a message. The parties hold key shares of an unknown private key and create signature shares on
individual messages. Once sufficient signature shares are available, they are combined into a unique dis-
tributed signature, which can be verified with the standard algorithm of the underlying signature scheme.

The generalization of threshold-cryptographic schemes to any linear access structure is known and typi-
cally employs Monotone Span Programs (MSP) [36], a linear-algebraic model of computation. General
schemes using the MSP have already been described in theory [17, 48, 44, 29]. However, no implemen-
tations or deployments exist yet, despite all the merit of general distributed cryptography. In our point of
view, the reasons are the following.

• Essential implementation details are missing, and questions related to the usability of general
schemes have never been answered in a real system. How can the trust assumptions, initially only
in the mind of an administrator, be encoded in a cryptographic scheme? How does the system
administrator efficiently do this? Previous general distributed schemes assume the MSP is given to
all algorithms, but how is this built from the trust assumptions? Usability is a necessary ingredient
for the adoption of a new technological setting, and usability in turn leads to increased security.

• Some distributed cryptographic schemes, such as VSS, have been described in models weaker than
the MSP. Others, such as common coins, have, to the best of our knowledge, not been formulated
with general trust assumptions. Can we describe and prove all schemes of interest in a unified
language? This would facilitate the understanding of general distributed cryptography and pave
the way for easier standardization and implementation.

• Most importantly, implementations and benchmarks do not exist, hence the efficiency of general
schemes is not known. What is the concrete efficiency of the MSP? How does a generalized
scheme compare to its threshold counterpart? How much efficiency needs to be “sacrificed” in
order to support general trust?

1.3 Contributions

The goal of this work is to bridge the gap between theory and practice by answering the aforementioned
questions, so as to pave the way for the adoption of general distributed cryptography.

• We explore intuitive ways for an administrator to specify the trust assumption, starting from a
collection of sets or a Boolean formula, described in a JSON file. This is then converted into two
different encodings, a tree data structure and an MSP, the former used for checking whether a set
of parties is authorized and the latter for all algebraic operations. An algorithm and its efficiency
are shown for building the MSP from the user input. Finally, the practicality of these encodings is
validated through examples, among which an access structure used in the live Stellar blockchain.

• In this work, we first recall a general VSS scheme. We then extend the common-coin construction
of Cachin, Kursawe, and Shoup [13] into the general-trust model. Moreover, we present a general
distributed-signature scheme based on BLS signatures [10], which extends the threshold scheme

3

of Boldyreva [9]. All schemes are in the MSP model, and we provide security definitions and
proofs that are appropriate for the general-trust setting.

• We implement and benchmark the aforementioned schemes, both threshold and general versions.
We assess the efficiency of the general schemes and provide detailed explanation of the observed
behavior, insights, and possible optimizations. The benchmarks include multiple trust assump-
tions, thereby exploring how they affect the efficiency of the schemes.

1.4 Related work

General distributed cryptography. Secret sharing over arbitrary access structures has been exten-
sively studied in theory. The first scheme is presented by Ito, Saito, and Nishizeki [35], where the secret
is shared independently for every authorized set. Benaloh and Leichter [7] use monotone Boolean formu-
las to express the access structure and introduce a recursive secret-sharing construction. Gennaro presents
a general VSS scheme [29], where trust is specified as Boolean formulas in disjunctive normal form. As
a result, a party receives as many shares as the number of conjunctions it appears in. Choudhury presents
general asynchronous VSS and common-coin schemes secure against a computationally-unbounded ad-
versary [16].

Later, the Monotone Span Program (MSP) is introduced [36] as a linear-algebraic model of com-
putation. Since then, VSS schemes with general access structures have been formulated in terms of an
MSP. In the information-theoretic setting, Cramer, Damgård, and Maurer [17] construct a VSS scheme
for any monotone access structure. Nikov et al. [48] extend this work to add proactive resharing. A gen-
eral VSS scheme is also presented by Mashhadi, Dehkordi, and Kiamari [44], which requires multiparty
computation for share verification.

A different line of work encodes the access structure using a vector-space secret-sharing scheme [11],
a special case of an MSP.7 Specifically, Herranz and Sáez [33] construct a VSS scheme based on Ped-
ersen’s VSS [51]. Herranz, Padró, and Sáez [32] construct general distributed RSA signatures based on
the threshold RSA scheme of Shoup [60]. Distributed key generation schemes have also been described
based on vector-space secret sharing [22, 23].

Attribute-based signatures. ABS schemes [42] are related to distributed signatures. In ABS a signer
possesses a number of attributes and can only produce a valid signature if they satisfy a certain predi-
cate on the set of all attributes. ABS schemes are similar to distributed signatures in that they usually
encode the attribute predicate as an MSP, but differ from distributed signatures in terms of security re-
quirements (they have to consider attribute privacy and adaptive attribute selection), and hence result in
more complicated schemes [49, 39].

Common coin schemes. Common coin schemes (also called shared coins, coin tossing schemes, or
random beacons [25, 19]) model randomness produced in a distributed way. Multiple threshold schemes
have been proposed in the literature [19, 13, 54] and are used in practice [25]. Raikwar and Glig-
oroski [55] present an overview and classification. Our work extends the common-coin scheme of
Cachin, Kursawe, and Shoup [13]. The same threshold construction appears in DiSE [1, Figure 6],
where it is modeled as a DPRF [46]. The scheme outputs an unbiased value.

Lower bounds for general secret sharing. Superpolynomial lower bounds are known for MSPs [56,
4] and general secret sharing [38]. As the focus of this work is on practical aspects, we assume that
the administrator can, in the first place, efficiently describe the trust assumptions, either as a collection
of sets or as a Boolean formula. Arguably, access structures of practical interest fall in this category.
Moreover, it is known that MSPs are more powerful than Boolean formulas and circuits. Babai, Gál, and
Wigderson [4] prove the existence of monotone Boolean functions that can be computed by a linear-size
7 A vector-space secret-sharing scheme can be seen as an MSP where each party owns exactly one row. The MSP is, hence, a
stronger model as it can encode any access structure [36, 6].

4

MSP but only by exponential-size monotone Boolean formulas. In those cases the MSP can be directly
plugged into a generalized scheme.

2 Background and model

Notation. A bold symbol a denotes a vector of some dimension in N+. However, we avoid distin-
guishing between a and aᵀ, that is, a denotes both a row and a column vector. Moreover, for vectors
a ∈ K|a| and b ∈ K|b|, where K is a field, a‖b ∈ K|a|+|b| denotes their concatenation, and ai is short for

a[i]. The notation x $← S means that x is chosen uniformly at random from set S. The set of all parties
is P = {p1, . . . , pn}.

Adversary structures [34] and access structures [7]. An adversary structure F is a collection of all
unauthorized subsets of P , and an access structure (AS) A is a collection of all authorized subsets of P .
Both are monotone. Any subset of an unauthorized set is unauthorized, i.e., if F ∈ F and B ⊂ F , then
B ∈ F , and any superset of an authorized set is authorized, i.e., if A ∈ A and C ⊃ A, then C ∈ A. As
in the most general case [34] we assume that any set not in the access structure can be corrupted by the
adversary, that is, the adversary structure and the access structure are the complement of each other. We
say that F is a Q2 adversary structure if no two sets in F cover the whole P .

Corruption model. In all schemes we assume that the adversary structure F , implied by the access
structureA, is a Q2 adversary structure. The adversary is Byzantine and static, and corrupts a set F ∈ F
which is, w.l.o.g, maximally unauthorized, i.e., there is no F ′ ∈ F such that F ′ ⊃ F .

Monotone span programs [36]. Monotone span programs (MSP) have been introduced as a linear-
algebraic model of computation. Given a finite field K and a set of parties P , an MSP is a tuple (M,ρ),
where M is an m× d matrix over K and ρ is a surjective function {1, . . . ,m} → P that labels each row
of M with a party. We say that party pi owns row j ∈ {1, . . . ,m} if ρ(j) = pi. The size of the MSP is
m, the number of its rows. Finally, the fixed vector e1 = [1, 0, . . . , 0] ∈ Kd is called the target vector.

For any setA ⊆ P we defineMA to be themA×dmatrix obtained fromM by keeping only the rows
owned by parties in A, i.e., rows j with ρ(j) ∈ A. Let Mᵀ

A denote the transpose of MA and Im(Mᵀ
A) the

span of the rows of MA. We say that the MSP accepts A if the rows of MA span e1, i.e., e1 ∈ Im(Mᵀ
A).

Equivalently, there is a recombination vector λA such that λAMA = e1. Otherwise, the MSP rejects A.
For any access structure A, we say that an MSP accepts A if it accepts exactly the authorized sets

A ∈ A. It has been proven that each MSP accepts exactly one monotone access structure and each
monotone access structure can be expressed in terms of an MSP [6, 36]. Hence, an MSP uniquely
defines an access structure, which in turn implies an adversary structure.

Algorithm 1 (Linear secret-sharing scheme). A linear secret-sharing scheme (LSSS) over a finite field
K shares a secret x ∈ K using a coefficient vector r, in such a way that every share is a linear combination
of x and the entries of r. Linear secret-sharing schemes are equivalent to monotone span programs [6,
36]. We formalize an LSSS as two algorithms, Share() and Reconstruct().

1. Share(x) . Choose uniformly at random d−1 elements r2, . . . , rd fromK and define the coefficient
vector r = (x, r2, . . . , rd). Calculate the secret shares x = (x1, . . . , xm) = Mr. Each xj , with
j ∈ [1,m], belongs to party pi = ρ(j). Hence, pi receives in total mj shares, where mj is the
number of MSP rows owned by pi.

2. Reconstruct(A,xA) . To reconstruct the secret given an authorized set A and the shares xA of
parties in A, find the recombination vector λA and compute the secret as λAxA.

A secret-sharing schemes satisfies two properties. The first is correctness, which demands that any
authorized set A ∈ A can reconstruct the secret. It is satisfied by construction of the MSP, which accepts

5

the access structureA. The second is privacy, stating any unauthorized set F ∈ F obtains no information
about the secret. This is formalized by the following lemma.

Lemma 1 (Privacy of linear secret-sharing schemes [36]). Let M = (M,ρ) be an MSP over finite
field K, which accepts the access structure A, and F an unauthorized set, i.e. F 6∈ A, with shares
xF = MFr. Then, for every secret x̃ ∈ K there exists a coefficient vector r̃ which shares the secret x̃,
i.e., r̃1 = x̃, and satisfies xF = MF r̃.

Computational assumptions. Let G = 〈g〉 be a group of prime order q and x0
$← {0, . . . , q−1}. The

Discrete Logarithm (DL) assumption is that no efficient probabilistic algorithm, given g0 = gx0 ∈ G, can
compute x0, except with negligible probability. The Computational Diffie-Hellman (CDH) assumption

is that no efficient probabilistic algorithm, given g, ĝ, g0 ∈ G, where ĝ $← G and g0 = gx0 , can compute
ĝ0 = ĝx0 , except with negligible probability.

Definition 1 (Gap Diffie-Hellman group [10]). Let G1 = 〈g1〉 and G2 = 〈g2〉 be two groups of prime

order q, and h $← G1. Let α, β $← {0, . . . , q − 1}.
• The computational co-Diffie-Hellman (co-CDH) problem on (G1, G2) asks, on input g2, g

α
2 ∈ G2

and h ∈ G1, to compute hα ∈ G1.

• The decisional co-Diffie-Hellman (co-DDH) problem on (G1, G2) asks, on input g2, g
α
2 ∈ G2

and h, hβ ∈ G1, to output TRUE if α = β and FALSE otherwise. In the first case we say that
(g2, g

α
2 , h, h

α) is a co-Diffie-Hellman tuple.

• We say that (G1, G2) is a Gap co-Diffie-Hellman (co-GDH) group pair if co-DDH is easy but
co-CDH is hard to solve on (G1, G2). For a more formal definition we refer the reader to [10].

3 Specifying and encoding the trust assumptions

An important aspect concerning the implementation and deployment of general distributed cryptography
is specifying the Access Structure (AS). We require a solution that is intuitive, so that users or admin-
istrators can easily specify it, that facilitates the necessary algebraic operations, such as computing and
recombining secret shares, and in the same time offers an efficient way to check whether a given set is
authorized.

The administrator first specifies the access structure as a monotone Boolean formula, which consists
of and, or, and threshold operators. A threshold operator ΘK

k (q1, . . . , qK) specifies that any subset of
{q1, . . . , qK} with cardinality at least k is authorized, where each qi can be a party identifier or a nested
operator. Observe that the and and or operators are special cases of this, but we allow them as well for
better usability. We remark that the representation as a monotone Boolean formula also includes the case
where the access structure is initially given as a collection of sets. That is, if A1, A2, . . . , Am are the
authorized sets, and Ai = {pi1 , pi2 , . . . , pimi}, then this can be seen as Boolean formula in disjunctive
normal form, f = A1 ∨A2 ∨ . . .∨Am, where Ai = {pi1 ∧ pi2 ∧ . . .∧ pimi}. Hence, we assume the AS
can be described as a monotone Boolean formula. This is an intuitive format and can be easily specified
in JSON format, as shown in the examples that follow.

The next step is to internally encode the access structure within a scheme. For this we use two differ-
ent encodings. First, the Boolean formula is encoded as a tree, where a node represents an operator and
its children are the operands. The size of the tree is linear in the size of the Boolean formula. Checking
whether a set is authorized consists in a depth-first traversal of the tree, and hence takes time linear in
the size of the tree. This data structure allows for efficient evaluation of the Boolean formula, The sec-
ond is Monotone Span Program (MSP), which is the basis for all our general distributed cryptographic
primitives. The MSP is directly constructed from the JSON-encoded Boolean formula. Both are made
available to all parties.

6

Building the MSP from a monotone Boolean formula [47, 2]. We now describe how an MSP can
be constructed given a monotone Boolean formula. The details of the algorithm can be found in Ap-
pendix A. We use a recursive insertion-based algorithm. The main observation is that the t-of-n thresh-
old access structure is encoded by an MSP M = (M,ρ) over finite field K, with M being the n × t
Vandermonde matrix

V (n, t) =

1 x1 x2

1 · · · xt−1
1

1 x2 x2
2 · · · xt−1

2
...

...
...

. . .
...

1 xn x2
n · · · xt−1

n

 ,

for xi ∈ K pairwise different and nonzero. The algorithm parses the Boolean formula as a sequence of
nested threshold operators (and and or are special cases of threshold). Starting from the outermost op-
erator, it constructs the Vandermonde matrix that implements it and then recursively performs insertions
for the nested threshold operators. In a high level, an insertion replaces a row of M with a second MSP
M ′ (which encodes the nested operator) and pads with 0 the initial matrix M , in case M ′ is wider than
M .

If the Boolean formula includes in total c operators in the form Θmi
di

, then the final matrix M of the
MSP that encodes it has m =

∑c
1mi − c+ 1 rows and d =

∑c
1 di − c+ 1 columns, hence size linear in

the size of the formula.

Example 1. Recent work [27] presents the example of an unbalanced-AS8, where n parties in P are
distributed into two organizations P1 and P2, and the adversary is expected to be within one of the
organizations, making it easier to corrupt parties from that organization. They specify this with two
thresholds, t and k, and allow the adversary to corrupt at most t parties from P and in the same time
at most k parties from P1 or P2. For example, we can set t = bn/2c and k = bt/2c − 1. let n = 9,
P1 = {p1, . . . , p5}, P2 = {p6, . . . , p9}, t = 4, and k = 1. The access structure (taken as the complement
of the adversary structure) is A = {A ⊂ P : |A| > 4 ∨ (|A ∩ P1| > 1 ∧ |A ∩ P2| > 1)}. In terms
of a monotone Boolean formula, this can be written as FA = Θ9

5(P) ∨
(
Θ5

2(P1) ∧Θ4
2(P2)

)
. The MSP

constructed with the given algorithm has m = 2n rows and d = t+ 2k + 2 = n− 1 columns.

Example 2. Another classical general AS from the field of distributed systems is the M-Grid [43].
Here n = k2 parties are arranged in a k × k grid and up to b = k − 1 Byzantine parties are tol-
erated. An authorized set consists of any t rows and t columns, where t = d

√
b/2 + 1e.9 Let us

set n = 16 and, hence, k = 4, b = 3, and t = 2. This means that and any two rows and two
columns (twelve parties in total) make an authorized set. The Boolean formula that describes this AS
is FA = Θ4

2

(
Θ4

4(R1),Θ4
4(R2),Θ4

4(R3),Θ4
4(R4)

)
∧Θ4

2

(
Θ4

4(C1),Θ4
4(C2),Θ4

4(C3),Θ4
4(C4)

)
, where R`

and C` denote the sets of parties at row and column `, respectively. We call this access structure the
grid-AS.

Example 3. The Stellar blockchain supports general trust assumptions for consensus [40]. Each party
can specify its own access structure, which is composed of nested threshold operators. We extract10 the
AS of one Stellar validator and show in Figure 1 a JSON file that can be used in our general schemes.
It can be directly translated into an MSP, enabling general distributed cryptography in or on top of the
blockchain of Stellar. The MSP constructed with the presented algorithm has m = 25 rows and d = 15
columns.

4 Verifiable secret sharing

In this section we recall a general Verifiable Secret Sharing (VSS) scheme [33]. It generalizes Pedersen’s
VSS [31, 51] to the general setting.
8 This is a special case of bipartite AS [50]. 9 The conditions on b and t of an M-Grid for the so-called dissemination Byzan-
tine quorum systems have been stated by Alpos and Cachin [2]. 10 https://www.stellarbeat.io/, https://api.stellarbeat.io/docs/

7

https://www.stellarbeat.io/
https://api.stellarbeat.io/docs/

Figure 1. A JSON file that specifies the access structure of the SDF1 validator in the live Stellar
blockchain (we use the literals returned by Stellar as party identifiers).

Security. The security of a general VSS scheme is formalized by the following properties (in analogy
with the threshold setting [31, 51]).

1. Completeness. If the dealer is not disqualified, then all honest parties complete the sharing phase
and can then reconstruct the secret.

2. Correctness. For any authorized sets A1 and A2 that have accepted their shares and reconstruct
secrets z1 and z2, respectively, with overwhelming probability it holds that z1 = z2. Moreover, if
the dealer is honest, then z1 = z2 = s.

3. Privacy. Any unauthorized set F has no information about the secret.

The scheme. The scheme is synchronous and uses the same communication pattern as the standard
VSS protocols [31, 51]. Hence complaints are delivered by all honest parties within a known time
bound, and we assume a broadcast channel, to which all parties have access. Let G = 〈g〉 be a group of

large prime order q and h $← G.
1. Share(x) . The dealer uses Algorithm 1 to compute the secret-shares x = (x1, . . . , xm) =
LSSS.Share(x) . The dealer also chooses a random value x′ ∈ Zq and computes the random-
shares x′ = (x′1, . . . , x

′
m) = LSSS.Share(x′). Let r = (x, r2, . . . , rd) and r′ = (x′, r′2, . . . , r

′
d)

be the corresponding coefficient vectors. The dealer computes commitments to the coefficients
C1 = gxhx

′ ∈ G and C` = gr`hr
′
` ∈ G, for ` = 2, . . . d, and broadcasts them. The indexed share

(j, xj , x
′
j) is given to party pi = ρ(j). Index j is included because each pi may receive more than

one such tuples, if it owns more than one row in the MSP. We call a sharing the set of all indexed
shares Xi = {(j, xj , x′j) | ρ(j) = pi} received by party pi.

2. Verify(j, xj , x′j) . For each indexed share (j, xj , x
′
j) ∈ Xi, party pi verifies that

gxjhx
′
j =

d∏
`=1

C
Mj`

` , (1)

whereMj is the j-th row-vector of M and Mj`, for ` ∈ {1, . . . d}, are its entries.

3. Complain() . Complaints are handled exactly as in the standard version [31]. Party pi broadcasts
a complaint against the dealer for every invalid share. The dealer is disqualified if a complaint is
delivered, for which the dealer fails to reveal valid shares.

4. Reconstruct(A,XA) . Given the sharings XA = {(j, xj , x′j) | ρ(j) ∈ A} of an authorized set
A, a combiner party first verifies the correctness of each share. If a share is found to be invalid,
reconstruction is aborted. The combiner constructs the vector xA = [xj1 , . . . , xjmA], consisting of
the mA secret-shares of parties in A, and, using Algorithm 1, returns LSSS.Reconstruct(A,xA) .

Theorem 2. Under the discrete logarithm assumption for group G, the above general VSS scheme is
secure (satisfies completeness, correctness, and privacy).

8

A proof can be found in Appendix C. Completeness holds by construction of the scheme, while
correctness reduces to the discrete-log assumption. For the privacy property, we pick arbitrary secrets x
and x̃ and show that the adversary cannot distinguish between two executions with secret x and x̃.

5 Common coin

The scheme extends the threshold coin scheme of Cachin, Kursawe, and Shoup [13] to accept any general
access structure. It works on a group G = 〈g〉 of prime order q and uses the following cryptographic
hash functions: H : {0, 1}∗ → G, H ′ : G6 → Zq, and H ′′ : G → {0, 1}. The first two, H and H ′, are
modeled as random oracles. The idea is that a secret value x ∈ Zq uniquely defines the value U(C) of a
publicly-known coin name C as follows: hash C to get an element g̃ = H(C) ∈ G, let g̃0 = g̃x ∈ G,
and define U(C) = H ′′(g̃0). The value x is secret-shared among P and unknown to any party. Parties
can create coin shares using their secret shares. Any party that receives enough coin shares can then
obtain g̃0 by interpolating x in the exponent.

Security. The security of a general common-coin scheme is captured by the following properties (anal-
ogous to threshold common coins [13]).

1. Robustness. Except with negligible probability, the adversary cannot produce a coin C and valid
coin shares for an authorized set, such that and their combination outputs a value different than
U(C).

2. Unpredictability. Unpredictability is defined through the following game. The adversary corrupts,
w.l.o.g, a maximally unauthorized set F . It interacts with honest parties according to the scheme
and in the end outputs a coin name C, which was not submitted for coin-share generation to any
honest party, as well as a coin-value prediction b ∈ {0, 1}. Then, the probability that U(C) = b
should not be significantly different from 1/2.

The scheme. It consists of the following algorithms.

1. KeyGen() . A dealer chooses uniformly an x ∈ Zq and shares it among P using the MSP-based
LSSS from Algorithm 1, i.e., x = (x1, . . . , xm) = LSSS.Share(x) . The secret key x is destroyed
after it is shared. We call a sharing the set of all key shares Xi = {(j, xj) | ρ(j) = pi} received
by party pi. The verification keys g0 = gx and gj = gxj , for 1 ≤ j ≤ m, are made public.

2. CoinShareGenerate(C) . For coin C, party pi calculates g̃ = H(C) and generates a coin share
g̃j = g̃xj for each key share (j, xj) ∈ Xi. Party pi also generates a proof of correctness for each
coin share, i.e., a proof that logg̃ g̃j = logg gj . This is the Chaum-Perdersen proof of equality of
discrete logarithms [15] collapsed into a non-interactive proof using the Fiat-Shamir heuristic [28].
For every coin share g̃j a valid proof is a pair (cj , zj) ∈ Zq × Zq, such that

cj = H ′(g, gj , hj , g̃, g̃j , h̃j), where hj = gzj/g
cj
j and h̃j = g̃zj/g̃

cj
j . (2)

Party pi computes such a proof for coin share g̃j by choosing sj at random, computing hj =
gsj , h̃j = g̃sj , obtaining cj as in (2), and setting zj = sj + xjcj .

3. CoinShareVerify(C, g̃j , (cj , zj)) . Verify the proof above.

4. CoinShareCombine() . Each party sends its coin sharing {(j, g̃j , cj , zj) | ρ(j) = pi} to a desig-
nated combiner. Once valid coin shares from an authorized set A have been received, find the
recombination vector λA for set A and calculate g̃0 = g̃x as

g̃0 =
∏

j|ρ(j)∈A

g̃
λA[j]
j , (3)

where the set {j | ρ(j) ∈ A} denotes the MSP indexes owned by parties in A. The combiner
outputs H ′′(g̃0).

9

Theorem 3. In the random oracle model, the above general common coin scheme is secure (robust and
unpredictable) under the assumption that CDH is hard in G.

The proof is presented in Appendix D. In a high level, we assume an adversary that can predict the
value of a coin with non-negligible probability and show how to use this adversary to solve the CDH
problem in G. The simulator, which is given g, the public key g0 = gx, and some ĝ as a CDH instance,
programs the random oracle H to output ĝ for some hash query Ĉ of the adversary. If the adversary
succeeds in predicting the value of Ĉ, then the simulator can extract ĝ0 = ĝx, the solution to its CDH
input, from the hash query H ′′(ĝ0) made by the adversary. The proof has to handle specific issues that
arise from the general access structures. Specifically, the simulator, given the shares of F , has to create
valid shares (sometimes ‘hidden’ in the exponent) for other parties. As opposed to the threshold case, it
can be the case that the shares of F , together with the secret x, do not fully determine all other shares. In
that case, the simulator chooses specific shares and assign them values with appropriate distribution. We
describe the details for this in Appendix B.

6 Distributed signatures

In a distributed signature scheme parties hold key shares of an unknown private key, created with a
KeyGen() algorithm, run either by a trusted party or in a distributed manner. Using these, they cre-
ate signature shares on individual messages, using algorithm Sign() . Once sufficient signature shares
are available, they can be combined into a unique distributed signature, using algorithm SigShareCom-
bine() . Both signature shares and the distributed signature can be verified as a standard signature of the
underlying signature scheme, using SigShareVerify() and Verify() , respectively.

We now show a general distributed-signature scheme based on the BLS signature scheme [10], which
extends the threshold scheme of Boldyreva [9] in the general-trust setting. It works with a co-GDH group
pair G1, G2 = 〈g2〉 with |G1| = |G2| = q, for q prime.

Security. In accordance with threshold distributed signatures [60], we demand two basic requirements
from general distributed signatures, robustness and unforgeability.

1. Robustness. We say that the scheme is robust if the adversary cannot prevent the successful termi-
nation (creation of a valid general distributed signature).

2. Unforgeability. It is defined through the following game. The adversary corrupts an adversary set
F ∈ F of its choice. In the dealing phase the adversary receives all the private-key shares owned
by parties in F , as well as the public key and all verification keys. After the dealing phase the
adversary submits signing requests for messages of its choice to the honest parties. We say that
the adversary forges a signature if at the end of the game it outputs a valid signature on a message
that was not submitted as a signing request to any honest party (together with F this would have
given the adversary enough signature shares to reconstruct the distributed signature). The scheme
is unforgeable if it is infeasible for the adversary to forge a signature.

The scheme. It consists of the following algorithms.

1. KeyGen() . A trusted dealer chooses random x ∈ Zq as the global and unknown to all parties
private key and shares it among P using the MSP-based LSSS from Algorithm 1, i.e., x =
(x1, . . . , xm) = LSSS.Share(x) . The public key is v = gx2 ∈ G2 and the verification keys are
vj = g

xj
2 ∈ G2, for 1 ≤ j ≤ m, and they are published. The sharing Xi = {(j, xj) | ρ(j) = pi}

is given to pi.

2. Sign(µ,Xj) . For each indexed share (j, xj) ∈ Xi, the owner party pi calculates an indexed share
of the signature (j, σj), where σj = H(µ)xj ∈ G1.

3. SigShareVerify(µ, σj , v, vj) . Verify that (g2, vj , H(µ), σj) is a co-Diffie-Hellman tuple.

10

4. SigShareCombine((j1, σj1), . . . , (jmA , σjmA)) . Once the indexed signature shares σj1 , . . . , σjmA
from an authorized groupA have been received, recover the distributed signature as σ =

∏
j∈A σ

λA[j]
j ,

where λA[j] are the entries of the recombination vector that corresponds to A.

5. Verify(µ, σ, v) . Verify that (g2, v,H(µ), σ) is a co-Diffie-Hellman tuple.

Theorem 4. Assuming that standard BLS signatures are secure, the above general distributed signature
scheme is secure (robust and unforgeable).

The proof is presented in Appendix E. We show that the general distributed signature scheme is sim-
ulatable. This, together with the unforgeability of the standard BLS scheme, implies the unforgeability
property [30, Definition 3].

7 Evaluation

In this section we compare the polynomial-based and MSP-based encodings for trust assumptions, and
benchmark the presented schemes on multiple general trust assumptions. To this goal, we benchmark
each scheme on four configurations, resulting from different combinations of encoding and access struc-
ture (AS), as seen in Table 1. Notice that the first two describe the same threshold AS, encoded once
by a polynomial and once an MSP. With the first two configurations we investigate the practical differ-
ence between polynomial-based and MSP-based encoding of the same access structure. The last three
configurations measure the efficiency we sacrifice for more powerful and expressive AS.

Table 1. Evaluated configurations and corresponding MSP dimensions. Configurations with general AS
encode it as an MSP (necessary for algebraic operations, such as sharing and reconstruction) and as a
tree (for checking whether a set of parties is authorized).

MSP dimensions
Configuration Encoding Access Structure m d

polynomial (n+ 1)/2 polynomial dn+1
2 e-of-n - -

MSP (n+ 1)/2 MSP+tree dn+1
2 e-of-n n dn+1

2 e
MSP Unbalanced MSP+tree unbalanced-AS, Example 1 2n n− 1

MSP Grid MSP+tree grid-AS, Example 2 2n 2(n+ t− k) ≈ 2n

We implement all presented schemes in C++. The benchmarks only consider CPU complexity, by
measuring the time it takes a party to execute each algorithm. Network latency, parallel share verification,
and communication-level optimizations are not considered, as they are independent to the encoding of
the AS. All benchmarks are made on a virtual machine running Ubuntu 22.04, with 16 GB memory and
8 dedicated CPUs of an AMD EPYC-Rome Processor at 2.3GHz and 4500 bogomips. The number of
parties n is always a square, for grid-AS to be well-defined, and we report mean values and standard
deviation over 100 runs with different inputs.

7.1 Benchmarking basic properties of the MSP

We first measure the space (size in KB) needed to store the MSP that describes each general AS. The
MSP needs to be stored by every party, as it used to compute the recombination vector. We remark that,
by construction of Algorithm 3, an AS described with a large number of nested operators results in a
spare MSP matrix. The result for different values of n is shown in Figure 2a.

We next measure the size (as number of parties) of authorized sets for each AS. Authorized sets are
obtained in the following way. Starting from an empty set, add a party chosen uniformly from the set
of all parties, until the set becomes authorized. This simulates an execution where shares arrive in an
arbitrary order, and may result in authorized sets that are not minimal, in the sense that they are supersets
of smaller authorized sets, but contain redundant parties. We repeat this experiment 1000 times and

11

report the average size in Figure 2b. For the dn+1
2 e-of-n AS, of course, authorized sets are always of size

dn+1
2 e. For the unbalanced-AS they slightly smaller, and for the grid-AS they are significantly larger, as

they contain full rows and columns of the grid.
We next measure the bit length of the recombination vector. This is relevant because the schemes

involve interpolation in the exponent, exponentiation is an expensive operation, and a shorter recombi-
nation vector results in fewer exponentiations. We observe in Figure 2c that the complexity of the AS (in
terms of the size of the Boolean formula or the JSON file that describes it) does not necessarily affect the
bit length of the recombination vector. There are two important observations to explain Figure 2c. First,
each entry of the recombination vector that corresponds to a redundant party is 0, as that share does not
contribute to reconstruction. Second, we observe through our benchmarks that, when the MSP is sparse
and has entries with short bit length, then the recombination vector also has a short bit length.

Finally, in Figure 2d we report the time it takes to check whether a given set is authorized. This set is
chosen uniformly at random among all subsets of P and an average is taken over 1000 sets. As explained
in Section 3, the algorithm that checks for authorized sets uses the tree representation of the AS, as it is
more efficient than using the MSP.

(a) Size (in KB) of the MSP (b) Size (number of parties) of authorized set

(c) Bit length of recombination vector (d) Time to check for authorized set

Figure 2. Benchmarking basic properties of the MSP, for a varying number of parties. In 2d, the tree
representation of the AS is used and the set is chosen uniformly among all subsets of P .

12

7.2 Running time of verifiable secret sharing

We implement and compare the MSP-based scheme of Section 4 with Pedersen’s VSS11 [51], which we
refer to as general VSS and threshold VSS, respectively. For the Share() algorithm we report the time it
takes a dealer to share a random secret s ∈ Zq, for Verify() the average time it takes a party to verify
one of its shares (notice that in the general scheme a party may receive more than one shares), and for
Reconstruct() the time it takes a party to reconstruct the secret from an authorized group. For the latter,
the group is assumed authorized, i.e., we do not include the time to check whether it is authorized, as this
is efficiently done using the tree encoding. The results are shown in Figure 3.

The first conclusion (comparing the first two configurations in Figures 3a and 3b) is that the MSP-
based and polynomial-based operations are equally efficient, when instantiated with the same AS. The
only exception is the Reconstruct() algorithm, shown in Figure 3c, where general VSS is up to two times
slower. This is because computing the recombination vector employs Gaussian elimination, which has
cubic time complexity. Nevertheless, the reconstruction of the secret only involves operations in field K,
which is relatively fast — Reconstruct() is an order of magnitude faster than Verify() .

The second conclusion (comparing the last three configurations, i.e., the ones that use general trust)
is that general VSS is moderately affected by the complexity of the AS. For Share() , shown in Figure 3a,
more complex AS incur a slowdown because a larger number of shares and commitments have to be
created. Reconstruct() , in Figure 3c, is also slower with more complex AS, because it performs Gaussian
elimination on a larger matrix. We conclude this is the only part of general VSS that cannot be made as
efficient as in threshold VSS. On the other hand, Verify() , in Figure 3b, exhibits an interesting behavior:
the more complex the AS, the faster it is on average to verify one share. This might seem counter-
intuitive, but can be explained from the observations of Section 7.1; more complex AS result in an MSP
with many 0-entries, hence the exponentiations of (1) are faster.

An observation that might be useful for future optimizations is that almost the entire time of Share()
is spent computing commitments; the dealer computes d commitments, which require 2d exponentia-
tions. As shown in Figure 3d, the computation of shares is orders of magnitude faster. Another possible
optimization is to parallelize algorithm Share() , since the computation of shares and commitments is
independent of each other.

7.3 Running time of common coin

We implement the general scheme of Section 5 and the threshold coin scheme from [13]. For both
schemes G is instantiated as an order-q subgroup of Zp, where p = qm + 1, for q a 256-bit prime, p a
3072-bit prime, and m ∈ N. These lengths offer 128-bit security and are chosen according to current
recommendations for discrete logarithm prime fields [26, Chapter 4.5.2] 12. The arithmetic is done with
NTL [62]. The hash functions H,H ′, H ′′ use the openSSL implementation of SHA-512 (so that it’s not
required to expand the digest before reducing modulo the 256-bit q [61, Section 9.2]).

The results are shown in Figure 4. We only show the benchmark of CoinShareCombine() , because
KeyGen() behaves very similar to Share() in the VSS, and CoinShareGenerate() and CoinShareVerify()
are identical in the general and threshold scheme (the average time to create and verify, respectively, one
coin share was always approximately 4.5ms). In Section 7.2 we observed that Reconstruct() was slower
for the general scheme, because it involved no exponentiations and the cost of matrix manipulations
dominated the running time. Here, however, CoinShareCombine() runs similarly in all cases, as the
exponentiations in (3) become dominant. As a matter of fact, the general scheme is sometimes faster.
This is because complex AS often result in recombination vectors with shorter bit length, as shown in
Section 7.1, hence exponentiations are faster.
11 Polynomial evaluation is done without the DFT optimization. 12 Summary of recommendations from multiple organiza-
tions: https://www.keylength.com/en/3

13

https://www.keylength.com/en/3

(a) Time taken for Share() (b) Time taken for Verify()

(c) Time taken for Reconstruct() (d) Time taken by Share() calculating shares and commitments

Figure 3. Time taken by each algorithm in the threshold and general VSS for a varying number of
parties. Figure 3a measures the time for a dealer to share a secret, 3b the time for a party to verify
one of its shares, and 3c the time for a party to reconstruct the secret. Figure 3d compares the time (in
logarithmic scale) needed by Share() to compute the shares against the time to compute commitments to
the shares.

7.4 Running time of distributed signatures

We have implemented the general distributed signature scheme from Section 6. Our extension for gener-
alized operations are made on the bls library, which in turn uses mcl13 for pairing operations. The security
of these libraries has been reviewed [53] on behalf of the Ethereum Foundation. The benchmarks are
done over BLS12-381[5], a widely used pairing-friendly curve offering 128 bits of security [18, Section
4.1].

The observations are similar to those for the previous schemes. Creating and verifying a single
signature share, as shown in Figure 5a, does not depend on the scheme or the complexity of the AS,
hence the corresponding algorithms run in constant time. On the other hand, SigShareCombine() , as
shown in Figure 5b, is moderately affected by the complexity of the AS: similar to Reconstruct() in the
VSS and different from CoinShareGenerate() in the common-coin scheme, SigShareCombine() does not
involve exponentiations, but only calculation of the recombination vector and multiplication of elliptic
curve points by constants. For this reason the computation of the recombination vector dominates running
13 https://github.com/herumi/bls, commit 64d13b9, https://github.com/herumi/mcl, version 1.40.

14

https://github.com/herumi/bls
https://github.com/herumi/mcl

Figure 4. Time taken by CoinShareCombine() in the threshold and general coin for a varying number
of parties.

(a) Time taken for Sign() and Verify() (b) Time taken for SigShareCombine()

Figure 5. Time taken by each algorithm in the threshold and general distributed signature scheme for
a varying number of parties. Figure 5a measures the time for a party to create and verify one signature
share and 5b the time to combine an authorized set of signature shares.

time, and SigShareCombine() becomes slower on more complex AS.
We finally remark that the general distributed signature scheme is considerably more efficient than

the state-of-the-art solution: assuming we have m signatures from an authorized set, the state-of-the-
art would require each party to verify all of them. When a scheme with general trust is available, the
signatures can first be combined. The cost of combining them remains in all cases much lower than the
cost of verifying each one individually.

8 Discussion

Conclusion. In this work we provide the first implementation and practical assessment of distributed
cryptography with general trust. We fill all gaps on implementation details and show how a system can
be engineered to support general distributed cryptography. We describe, implement, and benchmark dis-
tributed cryptographic schemes, specifically, a verifiable secret-sharing scheme, a common-coin scheme,
and a distributed signature scheme (as a generalization of threshold signatures), all supporting general
trust assumptions. For completeness, we also present the security proofs for all general schemes and

15

handle specific cases that arise from the general trust assumptions (see Theorem 3). Our results suggest
that practical access structures can be used with no significant efficiency loss. It can even be the case
(VSS share verification, Figure 3b) that operations are on average faster with complex trust structures
encoded as Monotone Span Programs (MSP). We nevertheless expect future optimizations, orthogonal to
our work, to make MSP operations even faster. Similar optimizations have already been discovered for
polynomial evaluation and interpolation [63]. We expect that our work will improve the understanding
and facilitate the wider adoption of general distributed cryptography.

Future work. Distributed key generation (DKG) is a significant component in distributed crypto-
graphic schemes. It eliminates the strong assumption of a trusted dealer by distributing this task among
the parties. The basic idea is that each party runs an instance of VSS in parallel, sharing a random secret,
and then locally adds the shares of the instances that successfully terminated (i.e., their dealer did not
get disqualified). The shared secret, which never becomes known to any party, is uniquely determined
as the sum of the random secrets of the instances that terminated. This technique can be used in MSP-
based DKG protocols, as well, although we leave the formal description of an MSP-based DKG scheme
as future work. This boils down to the linearity of MSPs: adding two share vectors z1 = Mr1 and
z2 = Mr2, where r1[1] = x1 and r2[1] = x2, and then interpolating from some authorized set A will
always result in the sum of the two shared secrets, i.e., λA(z1 + z2) = λAM(r1 + r2) = x1 + x2.

Acknowledgments

This work has been funded by the Swiss National Science Foundation (SNSF) under grant agreement
Nr. 200021 188443 (Advanced Consensus Protocols).

References

[1] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal, “Dise: Distributed symmetric-key encryp-
tion,” in CCS, pp. 1993–2010, ACM, 2018.

[2] O. Alpos and C. Cachin, “Consensus beyond thresholds: Generalized byzantine quorums made
live,” in SRDS, pp. 21–30, IEEE, 2020.

[3] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Secure multiparty compu-
tations on bitcoin,” Commun. ACM, vol. 59, no. 4, pp. 76–84, 2016.

[4] L. Babai, A. Gál, and A. Wigderson, “Superpolynomial lower bounds for monotone span pro-
grams,” Comb., vol. 19, no. 3, pp. 301–319, 1999.

[5] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves with prescribed embedding
degrees,” in SCN, vol. 2576 of Lecture Notes in Computer Science, pp. 257–267, Springer, 2002.

[6] A. Beimel, Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion, 1996.

[7] J. C. Benaloh and J. Leichter, “Generalized secret sharing and monotone functions,” in CRYPTO,
vol. 403 of Lecture Notes in Computer Science, pp. 27–35, Springer, 1988.

[8] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Rabin, and L. Reyzin,
“Can a public blockchain keep a secret?,” in TCC (1), vol. 12550 of Lecture Notes in Computer
Science, pp. 260–290, Springer, 2020.

[9] A. Boldyreva, “Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme,” in Public Key Cryptography, vol. 2567 of Lecture Notes in Com-
puter Science, pp. 31–46, Springer, 2003.

16

[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” J. Cryptol., vol. 17,
no. 4, pp. 297–319, 2004.

[11] E. F. Brickell, “Some ideal secret sharing schemes,” in EUROCRYPT, vol. 434 of Lecture Notes in
Computer Science, pp. 468–475, Springer, 1989.

[12] C. Cachin, “Distributing trust on the internet,” in DSN, pp. 183–192, IEEE Computer Society, 2001.

[13] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantinople: Practical asynchronous
byzantine agreement using cryptography,” J. Cryptol., vol. 18, no. 3, pp. 219–246, 2005.

[14] J. Camenisch, M. Drijvers, T. Hanke, Y. Pignolet, V. Shoup, and D. Williams, “Internet computer
consensus,” IACR Cryptol. ePrint Arch., p. 632, 2021.

[15] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in CRYPTO, vol. 740 of Lecture
Notes in Computer Science, pp. 89–105, Springer, 1992.

[16] A. Choudhury, “Almost-surely terminating asynchronous byzantine agreement against general ad-
versaries with optimal resilience,” in ICDCN, pp. 167–176, ACM, 2023.

[17] R. Cramer, I. Damgård, and U. M. Maurer, “General secure multi-party computation from any
linear secret-sharing scheme,” in EUROCRYPT, vol. 1807 of Lecture Notes in Computer Science,
pp. 316–334, Springer, 2000.

[18] Crypto Forum Research Group (CFRG), Internet Research Task Force (IRTF), “Pairing-Friendly
Curves.” https://www.ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-curves-10.html, 2021.

[19] S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable distributed randomness beacon with
transparent setup,” in IEEE Symposium on Security and Privacy, pp. 2502–2517, IEEE, 2022.

[20] Data Sharing Coalition, “Developing a safe and trusted collaboration environment to
monitor and combat human trafficking,” 2021. https://datasharingcoalition.eu/2021/
developing-a-safe-and-trusted-collaboration-environment-to-monitor-and-combat-human-trafficking.

[21] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain,” in EUROCRYPT (2), vol. 10821 of Lecture Notes in Com-
puter Science, pp. 66–98, Springer, 2018.

[22] V. Daza, J. Herranz, and G. Sáez, “Constructing general dynamic group key distribution schemes
with decentralized user join,” in ACISP, vol. 2727 of Lecture Notes in Computer Science, pp. 464–
475, Springer, 2003.

[23] V. Daza, J. Herranz, and G. Sáez, “On the computational security of a distributed key distribution
scheme,” IEEE Trans. Computers, vol. 57, no. 8, pp. 1087–1097, 2008.

[24] Y. Desmedt, “Society and group oriented cryptography: A new concept,” in CRYPTO, vol. 293 of
Lecture Notes in Computer Science, pp. 120–127, Springer, 1987.

[25] Drand, “A distributed randomness beacon daemon,” 2022. https://drand.love.

[26] ECRYPT-CSA, “Algorithms, key size and protocols report,” H2020-ICT-2014 – Project 645421,
2018. https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf.

[27] R. Eriguchi and K. Nuida, “Homomorphic secret sharing for multipartite and general adver-
sary structures supporting parallel evaluation of low-degree polynomials,” in ASIACRYPT (2),
vol. 13091 of Lecture Notes in Computer Science, pp. 191–221, Springer, 2021.

17

https://www.ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-curves-10.html
https://datasharingcoalition.eu/2021/developing-a-safe-and-trusted-collaboration-environment-to-monitor-and-combat-human-trafficking
https://datasharingcoalition.eu/2021/developing-a-safe-and-trusted-collaboration-environment-to-monitor-and-combat-human-trafficking
https://drand.love
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

[28] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and signature
problems,” in CRYPTO, vol. 263 of Lecture Notes in Computer Science, pp. 186–194, Springer,
1986.

[29] R. Gennaro, Theory and practice of verifiable secret sharing. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1996.

[30] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold DSS signatures,” in EURO-
CRYPT, vol. 1070 of Lecture Notes in Computer Science, pp. 354–371, Springer, 1996.

[31] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed key generation for discrete-
log based cryptosystems,” J. Cryptol., vol. 20, no. 1, pp. 51–83, 2007.

[32] J. Herranz, C. Padró, and G. Sáez, “Distributed RSA signature schemes for general access struc-
tures,” in ISC, vol. 2851 of Lecture Notes in Computer Science, pp. 122–136, Springer, 2003.

[33] J. Herranz and G. Sáez, “Verifiable secret sharing for general access structures, with application
to fully distributed proxy signatures,” in Financial Cryptography, vol. 2742 of Lecture Notes in
Computer Science, pp. 286–302, Springer, 2003.

[34] M. Hirt and U. M. Maurer, “Complete characterization of adversaries tolerable in secure multi-party
computation (extended abstract),” in PODC, pp. 25–34, ACM, 1997.

[35] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing general access structure,”
Electronics and Communications in Japan, vol. 72, pp. 56–64, 1989.

[36] M. Karchmer and A. Wigderson, “On span programs,” in Computational Complexity Conference,
pp. 102–111, IEEE Computer Society, 1993.

[37] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Omniledger: A
secure, scale-out, decentralized ledger via sharding,” in IEEE Symposium on Security and Privacy,
pp. 583–598, IEEE Computer Society, 2018.

[38] K. G. Larsen and M. Simkin, “Secret sharing lower bound: Either reconstruction is hard or shares
are long,” in SCN, vol. 12238 of Lecture Notes in Computer Science, pp. 566–578, Springer, 2020.

[39] J. Li, M. H. Au, W. Susilo, D. Xie, and K. Ren, “Attribute-based signature and its applications,” in
AsiaCCS, pp. 60–69, ACM, 2010.

[40] M. Lokhava, G. Losa, D. Mazières, G. Hoare, N. Barry, E. Gafni, J. Jove, R. Malinowsky, and
J. McCaleb, “Fast and secure global payments with stellar,” in SOSP, pp. 80–96, ACM, 2019.

[41] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. K. Miller, “Honeybadgermpc and
asynchromix: Practical asynchronous MPC and its application to anonymous communication,” in
CCS, pp. 887–903, ACM, 2019.

[42] H. K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-based signatures,” in CT-RSA, vol. 6558
of Lecture Notes in Computer Science, pp. 376–392, Springer, 2011.

[43] D. Malkhi, M. K. Reiter, and A. Wool, “The load and availability of byzantine quorum systems,”
SIAM J. Comput., vol. 29, no. 6, pp. 1889–1906, 2000.

[44] S. Mashhadi, M. H. Dehkordi, and N. Kiamari, “Provably secure verifiable multi-stage secret shar-
ing scheme based on monotone span program,” IET Inf. Secur., vol. 11, no. 6, pp. 326–331, 2017.

[45] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of BFT protocols,” in CCS,
pp. 31–42, ACM, 2016.

18

[46] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random functions and kdcs,” in EURO-
CRYPT, vol. 1592 of Lecture Notes in Computer Science, pp. 327–346, Springer, 1999.

[47] V. Nikov and S. Nikova, “New monotone span programs from old,” IACR Cryptol. ePrint Arch.,
p. 282, 2004.

[48] V. Nikov, S. Nikova, B. Preneel, and J. Vandewalle, “On distributed key distribution centers and un-
conditionally secure proactive verifiable secret sharing schemes based on general access structure,”
in INDOCRYPT, vol. 2551 of Lecture Notes in Computer Science, pp. 422–436, Springer, 2002.

[49] T. Okamoto and K. Takashima, “Decentralized attribute-based encryption and signatures,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., vol. 103-A, no. 1, pp. 41–73, 2020.

[50] C. Padró and G. Sáez, “Secret sharing schemes with bipartite access structure,” IEEE Trans. Inf.
Theory, vol. 46, no. 7, pp. 2596–2604, 2000.

[51] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in
CRYPTO, vol. 576 of Lecture Notes in Computer Science, pp. 129–140, Springer, 1991.

[52] Protocol Labs, “Filecoin: A decentralized storage network.” https://filecoin.io/filecoin.pdf, 2017.

[53] Quarkslab SAS, “Technical assessment of herumi libraries.” https://blog.quarkslab.com/resources/
2020-12-17-technical-assessment-of-herumi-libraries/20-07-732-REP.pdf, 2020.

[54] M. O. Rabin, “Randomized byzantine generals,” in FOCS, pp. 403–409, IEEE Computer Society,
1983.

[55] M. Raikwar and D. Gligoroski, “Sok: Decentralized randomness beacon protocols,” in ACISP,
vol. 13494 of Lecture Notes in Computer Science, pp. 420–446, Springer, 2022.

[56] R. Robere, T. Pitassi, B. Rossman, and S. A. Cook, “Exponential lower bounds for monotone span
programs,” in FOCS, pp. 406–415, IEEE Computer Society, 2016.

[57] D. Schwartz, N. Youngs, and A. Britto, “The Ripple protocol consensus algorithm.” Ripple Labs,
available online, https://ripple.com/files/ripple consensus whitepaper.pdf, 2014.

[58] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979.

[59] V. Shoup, “Lower bounds for discrete logarithms and related problems,” in EUROCRYPT, vol. 1233
of Lecture Notes in Computer Science, pp. 256–266, Springer, 1997.

[60] V. Shoup, “Practical threshold signatures,” in EUROCRYPT, vol. 1807 of Lecture Notes in Com-
puter Science, pp. 207–220, Springer, 2000.

[61] V. Shoup, A Computational Introduction to Number Theory and Algebra Version 2. Cambridge
University Press, 2009.

[62] V. Shoup, “Number Theory Library for C++ version 11.5.1,” 2020. https://shoup.net/ntl.

[63] A. Tomescu, R. Chen, Y. Zheng, I. Abraham, B. Pinkas, G. Golan-Gueta, and S. Devadas, “To-
wards scalable threshold cryptosystems,” in IEEE Symposium on Security and Privacy, pp. 877–
893, IEEE, 2020.

[64] W. Vogels, “Life is not a State-Machine.” https://www.allthingsdistributed.com/2006/08/life is not
a statemachine.html, 2006.

[65] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham, “Hotstuff: BFT consensus with
linearity and responsiveness,” in PODC, pp. 347–356, ACM, 2019.

[66] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via full sharding,” in
CCS, pp. 931–948, ACM, 2018.

19

https://filecoin.io/filecoin.pdf
https://blog.quarkslab.com/resources/2020-12-17-technical-assessment-of-herumi-libraries/20-07-732-REP.pdf
https://blog.quarkslab.com/resources/2020-12-17-technical-assessment-of-herumi-libraries/20-07-732-REP.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://shoup.net/ntl
https://www.allthingsdistributed.com/2006/08/life_is_not_a_statemachine.html
https://www.allthingsdistributed.com/2006/08/life_is_not_a_statemachine.html

A Building the MSP from a monotone Boolean formula

In this section we present the algorithm used in our model to construct the monotone span program
(MSP)M = (M,ρ) for a given monotone Boolean formula (MBF) F . The algorithm is also used in the
works of Nikov and Nikova [47], and Alpos and Cachin [2].

The algorithm parses F as a sequence of nested threshold operators (and and or are special cases of
threshold). Starting from the outermost operator, it constructs the Vandermonde matrix that implements
it and then recursively performs insertions for the nested threshold operators.

Definition 2 (The MSP for a threshold access structure [6]). The n × t Vandermonde matrix is the
matrix

V (n, t) =

1 x1 x2

1 · · · xt−1
1

1 x2 x2
2 · · · xt−1

2
...

...
...

. . .
...

1 xn x2
n · · · xt−1

n

 ,

for xi ∈ K pairwise different and nonzero. An MSPM = (M,ρ), with M = V (n, t) and ρ a function
that maps each row ri of M to party pi ∈ P encodes the t-of-n threshold access structure over the set of
parties P .

Definition 3 (Insertion). Let M(k) = (M (k), ρ(k)), for k ∈ {1, 2, 3}, be MSPs over a finite field K,
where M (k) has dimensions mk × dk. Denote by r(k)

i the rows of each M (k) , for 1 ≤ i ≤ mk, by r[j]
the jth column of a row r, by r[j1 : j2] a range of columns j1 to j2, by 0` a row with ` zero elements,
and by r‖r′ the concatenation of two rows r and r′. Let rz be the unique w.l.o.g. row of M (1) owned
by pz ∈ P(1). The insertion of M (2) in row rz of M (1), written as M(1)(rz → M(2)), is an MSP
M(3), which has rows identical to M (1), except for rz , which is repeated m2 times in M (3), each time
multiplied by the first column of M (2), and with the rest of the columns 2 to d2 of M (2) appended in the
end. The function ρ(3) labels the rows of M (3) with the same owners as ρ(1), except for rz , as the newly
inserted rows are labeled according to ρ(2).

Formally, M (3) is an (m1 +m2 − 1)× (d1 + d2 − 1) matrix with rows

r
(3)
i =

r

(1)
i || 0d2−1 1 ≤ i ≤ z − 1

rz ∗ r(2)
i−z+1[1] || r(2)

i−z+1[2 : d2] z ≤ i ≤ z +m2 − 1

r
(1)
i−m2+1 || 0d2−1 z +m2 ≤ i ≤ m1 +m2 − 1

(4)

and ρ(3) is a surjective function {1, . . . ,m1 +m2 − 1} → (P(1) \ {pz}) ∪ P(2) defined as

ρ(3)(i) =

ρ(1)(i) 1 ≤ i ≤ z − 1

ρ(2)(i− z + 1) z ≤ i ≤ z +m2 − 1

ρ(1)(i−m2 + 1) z +m2 ≤ i ≤ m1 +m2 − 1

The pseudocode is shown in Algorithm 1. If F = Θm
d (F1, . . . , Fm) is an MBF, where each Fi can

be a party or a nested threshold operator, the algorithm first extracts the values m, d and F1, . . . , Fm
from F (line 2) and creates the MSP for F (lines 1–13). For each Fi, if it is a nested operator, a fresh
virtual party vi is created and associated with Fi (the map Vmap is used to keep track of this association).
A virtual party is treated exactly as an actual party, except it is used only during this construction. The
MSP for F is a Vandermonde matrix (line 13), created using both actual and virtual parties as the set P .
In the second part of the algorithm (lines 14–17) the MSPs for the nested operators (virtual parties vi)
are recursively created (line 15) and inserted inM, according to Definition 3. The mapping ρ−1, that
maps a party to the rows they own inM, is used to get the row ri of M that was labeled with vi. Notice
that in line 10, a fresh variable is created for each nested operator, so vi owns a single row.

If F includes in total c threshold operators in the form Θmi
di

, the resulting matrix M has m =∑c
1mi − c+ 1 rows and d =

∑c
1 di − c+ 1 columns.

20

Algorithm 1 Construction of an MSP from a monotone Boolean formula F .
1: buildMSP(F)
2: let Θm

d (F1, . . . , Fm) be the formula F
3: R← ∅
4: V ← ∅
5: Vmap ← ∅
6: for each Fi do
7: if Fi is a literal p then
8: R← R ∪ {p}
9: else
10: declare vi a new virtual party
11: V ← V ∪ {vi}
12: Vmap ← Vmap ∪ {(vi, Fi)}
13: M← Vandermonde-MSP(m, d,R ∪ V)
14: for each vi ∈ V do
15: M2 ← buildMSP(Vmap(vi))
16: ri ← ρ−1(vi)
17: M←M(ri →M2)
18: returnM

B Interpolation on general access structures

LetM = (M,ρ) be an MSP over K, with M an m× d matrix. We have seen in the definition of LSSS
that an authorized set A can reconstruct the secret through the equation λAxA = x. Besides that, in the
following sections we will sometimes have to perform a different kind of interpolation: given the secret
shares of parties in a set F ∈ F that is maximally unauthorized, i.e., there exists no F ′ ∈ F such that
F ′ ⊃ F , and the secret x, we want to compute valid secret shares for parties not in F , where valid means
that the reconstruction of the secret from any authorized set will result in the same value. In this section
we explain why this interpolation is not trivial and present an algorithm that achieves it.

In threshold secret sharing this is done using polynomial interpolation: the secret shares of F and the
secret x uniquely determine every other share. In general secret sharing it can be the case that F , even
though maximally unauthorized, and the secret x do not uniquely determine the secret shares for the rest
of the parties. For example, this can be because a party pi 6∈ F can now own more than one secret shares,
in a way that adding all the shares of pi to F makes it authorized, while adding some shares of pi to F
keeps in unauthorized. More specifically, if the rank of MF is d − 1 then all secret shares are uniquely
defined. If the rank of MF is d−1−k, for k ∈ N, then there exist k secret shares (each corresponding to
an MSP row), that do not belong to parties in F and are linearly independent from the shares of parties
in F . The values of these secret shares can be chosen arbitrarily from K in the interpolation we wish to
perform. These extra rows are given to the interpolation algorithm in the form of a set R ⊂ {1, . . . ,m}.

Formally, the algorithm has the following inputs and outputs.
• Inputs: (1) A maximally unauthorized set of parties F ⊂ P and their secret shares xF ∈ KmF ,

(where mF is the number of MSP rows owned by parties in F , and might be greater than |F |).
(2) A set of extra MSP-row indexes R ⊂ {1, . . . ,m}, with ρ(j) 6∈ F , for all j ∈ R, and the
corresponding secret shares xR ∈ KmR (where mR = |R|). The sets F and R are such that
the rank of the matrix

(
MF
MR

)
, that consists of the MSP rows either owned by parties in F or

corresponding to indexes in R, is d− 1. Notice that the rows indexed by R can all be chosen to be
linearly independent from each other and from the rows owned by parties in F , hence the shares
xR can be chosen uniformly from the underlying field. (3) The secret x that corresponds to the
secret shares xF and xR. (4) An index j ∈ [1, . . .m].

• Output: Coefficients Λ
(1)
j ∈ K and Λ

(2)
j ∈ KmF+mR , such that the secret share xj can be cal-

culated as a linear combination of these coefficients and the input values, that is, xj = Λ
(1)
j x +

21

Λ
(2)
j (xF ‖xR).

The algorithm works as follows. The given secret shares xF ‖xR have been computed as(
xF
xR

)
=

(
MF

MR

)
r (5)

where r = (x, r2, . . . , rd) is unknown, except for the secret x. Since we know x, we can rewrite the
previous equation as x

xF
xR

 =

 e1

MF

MR

 r.
We define

M =

 e1

MF

MR

 .

Observe that the MSP rows determined by F andR together are still unauthorized, and thus e1 is linearly
independent from the rows in

(
MF
MR

)
. Moreover, by construction of F and R, the rank of

(
MF
MR

)
is d− 1.

From these facts we get that M has full rank d. Moreover, let m be the number of rows in M .
We now make use of d recombination vectors λ`, for ` ∈ [1, . . . d]. Each recombination vector λ` is

defined as an m-vector such that λ`M = e`, where e` is the `-th unit vector (i.e., consists of 0s, except
for a 1 in position `) of dimension d. In other words, λ` expresses a linear combination of rows of M
that gives the vector e`. Since the rank of M is d, all these recombination vectors exist. Additionally,
define Λ as the (d,m) matrix with the d recombination vectors as rows, i.e.,

Λ =

λ1

λ2

. . .
λd

 .

Notice that
Λ ·M = Id,

where Id is the (d, d) identity matrix, and, by multiplying both members with r,

Λ ·

 x
xF
xR

 = r.

By defining as Λ(1) the first column of Λ and as Λ(2) the last m − 1 columns, the last equation can be
rewritten as (

Λ(1)Λ(2)
)
·

 x
xF
xR

 = r,

or
Λ(1)x+ Λ(2)(xF ‖xR) = r.

From the last equation we get

xj = M jr = M jΛ
(1)x+M jΛ

(2)(xF ‖xR),

or, by setting Λ
(1)
j = M jΛ

(1) and Λ
(2)
j = M jΛ

(2),

xj = Λ
(1)
j x+ Λ

(2)
j (xF ‖xR).

22

C Proof of Theorem 2 for the VSS scheme

We first repeat from [36] the related proof of Lemma 1.

Proof. Let the dimensions of M be m × d, and let the secret shared by r be x, i.e., r1 = x. By
definition of an unauthorized set, the rows of MF do not span e1. That means, rank(MF) < rank(MF

e1
)

and, from linear algebra, we know that |kernel(MF)| > |kernel(MF

e1
)|. This implies the existence of a

vector w ∈ Kd, w 6= 0, such that MFw = 0 (i.e., w ∈ kernel(MF)), and w1 = 1 (i.e., w 6∈
kernel(MF

e1
)). Define r̃ = r + (x̃ − x)w. Notice that r̃1 = x̃, so r̃ shares the secret x̃. Moreover,

MF r̃ = MFr + (x̃− x)MFw = MF r̃.

We now prove Theorem 2.

Completeness. By inspection of the scheme, honest parties accept their shares. Equation (1) will hold
because

d∏
`=1

C
Mj`

` = g
∑d
`=1 r`Mj`h

∑d
`=1 r

′
`Mj` = gMjrhMjr

′
= gxjhx

′
j

Furthermore, by definition of aQ2 adversary structure, an authorized setAmade of honest parties always
exists, and, by definition of the MSP, the recombination vector λA of A always exists. Thus, a party can
always reconstruct the secret from the shares of A.

Correctness. For the first part assume, towards a contradiction, that z1 6= z2. Also, let z′1 and z′2 be the
reconstruction from the random-shares of the two sets. Since the shares are correct, it must hold that
gz1hz

′
1 = C1 = gz2hz

′
2 . Here we show that gz1hz

′
1 = C1. For k = 1, 2 the secret shares and random

shares of parties in the two sets are

xAk = {x(k)
j | ρ(j) ∈ Ak} , x′Ak = {x′(k)

j | ρ(j) ∈ Ak}.

Moreover, z1, z
′
1, z2, z

′
2 are calculated by honest parties as

zk = λAkxAk , z′k = λAkx
′
Ak

(6)

Written as vectors, where mk is the number of shares in Ak, for k = 1, 2, we have

xAk = (xj1 , . . . , xjmk)

x′
Ak = (x′j1 , . . . , x

′
jmk

)

λAk = (λj1 , . . . , λjmk).

(7)

23

We have that

gz1hz
′
1

(6)
= gλA1

xA1h
λA1

x′
A1

(7)
= g

∑
j:ρ(j)∈A1

λjx
(1)
j h

∑
j:ρ(j)∈A1

λjx
′(1)
j

=
∏

j:ρ(j)∈A1

(
gx

(1)
j hx

′(1)
j
)λj

(1)
=

∏
j:ρ(j)∈A1

(d∏
`=1

C
Mj`

`

)λj
=

d∏
`=1

∏
j:ρ(j)∈A1

C
Mj`λj
`

=
d∏
`=1

C

∑
j:ρ(j)∈A1

Mj`λj

`

=
d∏
`=1

CλAMA`
` , whereMA` is the `-th row of MA

λAMA=e1=
d∏
`=1

Ce1`` , where e1` is the `-th entry of e1

e1=[1,0,...,0]
= C1

In the same way we get that gz2hz
′
2 = C1.

Now, since z1 6= z2, it is also the case that z′1 6= z′2. But from this one can extract the logarithm of h
with base g as logg h = (z1 − z2)/(z′2 − z′1), which is, by assumption, not known.

The second part follows immediately from the fact that the dealer is honest and by simple observation
that the output of Reconstruct() is λAxA = λAMAr = e1r = x, for any authorized set A.

Privacy. Fix wlog a maximally unauthorized set F consisting of parties controlled by the adversary and
let mF the number of shares owned by parties in F . Assume the dealer has shared a secret x using
coefficient vectors r = (x, r2, . . . , rd) and r′ = (x′, r′2, . . . , r

′
d). The view of the adversary consists of

the shares xF = (xj1 , . . . , xjmF) and x′F = (xj1 , . . . , xjmF), where ρ(jk) ∈ F , for k ∈ {1, . . . ,mF },
and the commitments C1 = gxhx

′
and C` = gr`hr

′
` , for ` ∈ {2, . . . , d}, created by the dealer. We then

choose arbitrary x̃ 6= x ∈ K. We want to show that the view of the adversary is consistent with an
execution of the VSS where x̃ is the secret shared by the dealer.

Observe that x̃ uniquely defines an x̃′ such that C1 = gx̃hx̃
′
. From Lemma 1, we know there exist

coefficient vectors r̃ = r + (x̃− x)w and r̃′ = r′ + (x̃′ − x′)w, with w ∈ Kd, that share the secrets x̃
and x̃′, respectively, while the resulting shares x̃F and x̃′F satisfy x̃F = xF and x̃′F = x′F . Notice that
the w in the proof of Lemma 1 depends on MF and not on the coefficient vector, thus it is the same in
the equations for r̃ and r̃′.

It remains to show that the commitments C̃` = gr̃`hr̃
′
` , for ` ∈ {2, . . . , d}, also satisfy C̃` = C`.

Let b be the discrete logarithm of h with basis g, i.e., h = gb. Recall that C1 = gxhx
′

= gx+bx′ and
C1 = gx̃hx̃

′
= gx̃+bx̃′ . These two equations give

x+ bx′ = x̃+ bx̃′. (8)

We now define the vectors c = r + br′ and c̃ = r̃ + br̃′ and observe that C` = gc` and C̃` = gc̃` , where

24

c` and c̃` are the entries of c and c̃, respectively. It is thus enough to show that c = c̃. We have that

c = c̃⇔ r + br′ = r + (x̃− x)w + br′ + b(x̃′ − x′)w
⇔ (x̃− x)w + b(x̃′ − x′)w = 0

w 6=0⇔ x̃− x+ b(x̃′ − x′) = 0,

which holds from (8).

D Proof of Theorem 3 for the common-coin scheme

The proof for the general coin construction follows the lines of the threshold coin scheme [13], but use
our method from Section B to handle the interpolation with general access structures.

Proof. Robustness follows from the soundness of the interactive proof of equality of the discrete loga-
rithms. Moreover, the underlying access structure is Q2, hence there will be enough honest parties to
combine the shares and interpolate the coin value.

The rest of this proof concerns unpredictability. We assume an adversary that can predict the value of
a coin with non-negligible probability and show how to use this adversary to solve CDH. To successfully

attack CDH, it is enough to construct an algorithm that, on input elements g, ĝ, g0 ∈ G, where ĝ $← G
and g0 = gx0 , outputs a list that contains ĝ0 = ĝx0 with non-negligible probability [59]. The adversary
makes a series of queries for coins C1, . . . , Ct for a polynomially large t, and tries to predict the value of
the target coin Ĉ. We assume that Ĉ = Cs, for a random s ∈ {1, . . . , t}, which decreases our advantage
by a factor of t. For the target coin, let ĝ = H(Ĉ) and ĝj = ĝxj

Only for this part of the proof, we let the adversary corrupt a set T ⊇ F , as long as T 6∈ A, i.e., T
is a maximal superset of F that remains unauthorized. This is w.l.o.g: if the adversary cannot predict
the coin from T , it cannot predict it from F either. The algorithm simulates the view for the adversary
as follows. For party pi in T we choose its key shares xj , where ρ(j) = pi, uniformly from Zq. The
verification keys can then be computed as gj = gxj . For the rest of the verification keys the idea is to use
the verification keys we just calculated and g0, and perform an interpolation in the exponent. However,
as explained in Section B, for these to be uniquely determined, the shares of T (called F in Section B)
and of some extra indexes R are required. The set of row indexes R is chosen arbitrarily, under the
conditions described in Section B. The shares xj , where j ∈ R, are also chosen uniformly at random,
and the corresponding verification keys are again vj = gxj , where j ∈ R.

We can now use the algorithm described in Section B, with input sets T and R, and with shares xT
and xR and the secret x raised to g2:

vj = vΛ
(1)
j ·

∏
` such that

ρ(`)∈T∨`∈R

v
Λ
(2)
j`

` . (9)

After the verification keys are chosen, we simulate the interaction with the adversary as follows. In
the random oracle model, the adversary queriesH to obtain g̃ or ĝ and the simulator can respond to these
queries as it wishes. For coins C 6= Ĉ, the simulator chooses r ∈ Zq at random and sets g̃ = gr as
the value of H at point C. The coin shares for all honest parties can be calculated as g̃j = grj , where
ρ(j) 6∈ T .

The proof of correctness for each coin share can be simulated by invoking the random oracle model
for H ′. When an honest party is supposed to create a coin share g̃j , the simulator chooses cj , zj ∈
Zq at random, and sets the output of H ′ at point (g, gj , g

zjg
−cj
j , g̃, g̃j , g̃

zj g̃
−cj
j) to be c. Except with

negligible probability, the simulator has not already defined the output of H ′ at this point, so this part of
the simulation succeeds.

For the target coin Ĉ we set H(Ĉ) = ĝ. By construction of T , the adversary is not allowed to ask
honest parties for coin shares, thus the simulator never has to produce any valid shares. Observe that the

25

adversary, in order to make the prediction b ∈ {0, 1} for Ĉ, must query H ′′ at point ĝ0. Hence, when it
terminates we output the list of all these queries — by assumption it will contain the solution to CDH
with a non-negligible probability. The simulation is perfect, since all the shares and verification keys
have the same distribution as in an actual execution of the protocol, except for a negligible probability
that our zero-knowledge simulations fail.

E Proof of Theorem 4 for the general distributed signatures

Robustness. Because A is Q2, there exists an authorized set A that consists entirely of honest parties.
Moreover, only valid signatures, made with a party’s private key share, can pass the verification of
algorithm SigShareVerify() . Thus, a combiner can verify and use the signature shares of A in algorithm
SigShareCombine() to create a valid distributed BLS signature.

Unforgeability. We show that the general distributed signature scheme is simulatable. Simulatability,
together with the unforgeability of the standard BLS scheme, imply unforgeability for the general dis-
tributed signature scheme [30, Definition 3]. Simulatability means that a simulator, on input the public
key v, a message µ with signature σ, and the key shares xj of parties in F , i.e., ρ(j) ∈ F , can simulate
the view for the adversary that is polynomially indistinguishable from an execution of the real protocol
that outputs σ as the signature of µ, and where the adversary has key shares xj , where ρ(j) ∈ F . Intu-
itively, this shows that an adversary who sees all the private information of parties in F and the signature
on a message µ could generate by itself all the public information of the protocol.

The simulator works as follows. First, it has to provide valid verification keys for all parties and all
their shares. For parties in F , the simulator can use the given shares xj , where ρ(j) ∈ F , to compute the
verification keys. The rest of the shares are interpolated from the shares xj . However, as explained in
Section B, for these to be uniquely determined, some extra indexesR are required. The set of row indexes
R is chosen arbitrarily, under the conditions described in Section B, and the shares that correspond to the
indexes in R are chosen uniformly at random. For sets F and R, the simulator computes the verification
keys as vj = g

xj
2 , where ρ(j) ∈ F or j ∈ R. For any other pj the simulator uses the interpolation

algorithm described in Section B, with input sets F and R, and with shares xF and xR and the secret x
raised to g2, calculating vj exactly as in (9).

Second, the simulator also has to respond to the adversary’s signature queries. Following exactly the
same techniques, the simulator can generate all the signature shares given the standard BLS signature σ
of message m.

Finally, for any row j ∈ {1, . . . ,m} of the MSP, the verification key vj = g
xj
2 and the signature share

σj = H(µ)x
′
j will satisfy xj = x′j . For j such that ρ(j) ∈ F or j ∈ R this holds because the simulator

used a known xj to calculate these values, while for any other j this holds from the MSP interpolation.
Hence, (g2, vi, H(m), σi) is a valid co-Diffie-Hellman tuple and the signature shares will be verified.
Moreover, the interpolated key shares have the same distribution as if produced by the real dealer. The
view of the adversary is thus statistically indistinguishable from an execution of the real protocol.

26

	Introduction
	Motivation
	State of the art
	Contributions
	Related work

	Background and model
	Specifying and encoding the trust assumptions
	Verifiable secret sharing
	Common coin
	Distributed signatures
	Evaluation
	Benchmarking basic properties of the MSP
	Running time of verifiable secret sharing
	Running time of common coin
	Running time of distributed signatures

	Discussion
	Building the MSP from a monotone Boolean formula
	Interpolation on general access structures
	Proof of Theorem 2 for the VSS scheme
	Proof of Theorem 3 for the common-coin scheme
	Proof of Theorem 4 for the general distributed signatures

