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Abstract. Recently, in post-quantum cryptography migration, it has
been shown that an IND-1-CCA-secure key encapsulation mechanism
(KEM) is required for replacing an ephemeral Diffie-Hellman (DH) in
widely-used protocols, e.g., TLS, Signal, and Noise. IND-1-CCA securi-
ty is a notion similar to the traditional IND-CCA security except that
the adversary is restricted to one single decapsulation query. At EU-
ROCRYPT 2022, based on CPA-secure public-key encryption (PKE),
Huguenin-Dumittan and Vaudenay presented two IND-1-CCA KEM con-
structions called TCH and TH , which are much more efficient than the
widely-used IND-CCA-secure Fujisaki-Okamoto (FO) KEMs. The securi-
ty of TCH was proved in both random oracle model (ROM) and quantum
random oracle model (QROM). However, the QROM proof of TCH relies
on an additional ciphertext expansion. While, the security of TH was
only proved in the ROM, and the QROM proof is left open.
In this paper, we prove the security of TH and TRH (an implicit variant
of TH) in both ROM and QROM with much tighter reductions than
Huguenin-Dumittan and Vaudenay’s work. In particular, our QROM
proof will not lead to ciphertext expansion. Moreover, for TRH , TH and
TCH , we also show that a O(1/q) (O(1/q2), resp.) reduction loss is u-
navoidable in the ROM (QROM, resp.), and thus claim that our ROM
proof is optimal in tightness. Finally, we make a comprehensive compar-
ison among the relative strengths of IND-1-CCA and IND-CCA in the
ROM and QROM.

Keywords: quantum random oracle model · key encapsulation mecha-
nism · 1CCA security · tightness · KEM-TLS

1 Introduction

With the gradual advancement of NIST post-quantum cryptography (PQC) s-
tandardization, research on migration from the existing protocols to post-quantum
protocols with new standardized algorithms has been a hot topic. For ephemer-
al key establishment, one has to move the current Diffie-Hellman (DH) key-
exchange to post-quantum key encapsulation mechanisms (KEMs).



The security goal required for such a substitutive KEM has been thoroughly
analyzed for TLS 1.3 [15, 21], KEM-TLS [37, 38], Signal [9] and Noise [2]. In gen-
eral, the security of these DH-based protocols is proved based on the PRF-ODH
assumption [10]. But, when one uses KEM to replace DH, IND-1-CCA security
is required instead, see post-quantum TLS [15, 21, 37, 38], post-quantum Sig-
nal [9] and post-quantum Noise [2]. In addition, Huguenin-Dumittan and Vau-
denay [21] pointed out that IND-1-CCA KEMs are also used in Ratcheting [4,
25, 32]. Roughly speaking, IND-1-CCA security says that the adversary is re-
quired to distinguish an honestly generated key from a randomly generated key
by making at most a single decapsulation query.

IND-1-CCA security is obviously implied by IND-CCA security that has been
widely studied in [16, 17, 35, 22–24, 6, 26, 19, 14]. In general, IND-CCA-secure
KEMs are obtained by applying Fujisaki-Okamoto-like (FO-like) transform to a
OW/IND-CPA-secure public-key encryption (PKE). In particular, all the KEM
candidates to be standardized and Round-4 KEM submissions [30] adopted
FO-like construction. The current implementations of KEM-TLS [37, 38], post-
quantum TLS 1.3 [31] and post-quantum Noise framework [2] directly take
IND-CCA-secure KEMs as IND-1-CCA-secure KEMs. However, FO-like IND-
CCA-secure KEMs require re-encryption of the decrypted plaintext in decapsu-
lation, making it an expensive operation. For instance, as shown in [21], when
re-encryption is removed, there will be a 2.17X and 6.11X speedup over decapsu-
lation in CRYSTALS-Kyber [8] and FrodoKEM [28] respectively. Moreover, the
re-encryption makes the KEM more vulnerable to side-channel attacks and al-
most all the NIST-PQC Round-3 KEMs are affected, see [39, 3]. Meanwhile, the
side-channel protection of re-encryption will significantly increase deployment
costs and thus complicate the integration of NIST-PQC KEMs [27]. Therefore,
designing a dedicated IND-1-CCA-secure KEM without re-encryption was taken
as an open problem raised by Schwabe, Stebila and Wiggers [37].

This problem was recently studied by Huguenin-Dumittan and Vaudenay [21].
They found that simple modification of the current FO-like KEMs can achieve
an IND-1-CCA-secure KEM without re-encryption. In detail, they presented two
constructions. One construction (called TCH) is that an additional hash value
of message and ciphertext is appended to the original ciphertext (usually called
key-confirmation). The security of TCH was proved in the random oracle model
(ROM) with tightness εR ≈ O(1/q)εA, and in the quantum random oracle model
(QROM) with tightness εR ≈ O(1/q3)ε2A, where εR (εA, resp.) is the advantage
of the reduction R ( adversary A, resp.) breaking the security of the underly-
ing PKE (the resulting KEM, resp.), and q is the number of A’s queries to the
random oracle (RO). Different from ROM, QROM allows the adversary to make
quantum queries to the RO. To prove the post-quantum security of cryptosys-
tem, one has to prove in the QROM [7]. Unfortunately, the QROM proof of TCH
in [21] relies on key-confirmation (i.e., an additional length-preserving hash is
required)3, which will leads to a ciphertext expansion.

3 The length-preserving property of the additional hash is implicitly required by the
QROM proof in [21] and will increase the ciphertext size by |ct| + |m|, where |ct|
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The second construction given in [21] is TH , where ciphertext c is obtained
by encrypting a randomly message m, the key is derived by H(m, c). In decap-
sulation, if m′ = Dec(sk, c) = ⊥, ⊥ is returned, otherwise H(m′, c) is returned,
where Dec is the decryption algorithm of PKE, and sk is the secret key. In fact,
TH is the same as U⊥ in [17]. Note that both TCH and TH do not require re-
encryption. But, compared with TCH , TH will not lead to ciphertext expansion.
However, Huguenin-Dumittan and Vaudenay [21] only gave the ROM proof of
TH with tightness εR ≈ O(1/q3)εA. The QROM proof is left open due to the
challenge that a lot of RO programming property is used4.

1.1 Our Contributions

Our contributions are as follows.

1. First, we prove the security of TH and its implicit variant TRH in both ROM
and QROM. TRH is the same as the TH except that in decapsulation a
pseudorandom value H(?, c) is returned instead of an explicit ⊥ for an invalid
ciphertext c such that Dec(sk, c) = ⊥. In particular, our QROM proof will
not lead to ciphertext expansion. In the ROM, our reduction has tightness
εR ≈ O(1/q)εA, which is much tighter than εR ≈ O(1/q3)εA given by [21] for
TH . In the QROM, our reduction achieves tightness εR ≈ O(1/q2)ε2A, which
is tighter than εR ≈ O(1/q3)ε2A given by Huguenin-Dumittan and Vaudenay
in [21] for TCH (with ciphertext expansion).

2. Then, for TH , TRH and TCH , we show that if the underlying PKE meets
malleability property, a O(1/q) (O(1/q2), resp.) loss is unavoidable in the
ROM (QROM, resp.). That is, our ROM reduction is optimal in general.
Roughly speaking, the malleability property says that an adversary can ef-
ficiently transform a ciphertext into another ciphertext which decrypts to
a related plaintext. In particular, such a malleability property is met by
real-world PKE schemes, e.g., ElGamal, FrodoKEM.PKE [28], CRYSTALS–
Kyber.PKE [8], etc..

3. Finally, we compare the relative strengths of IND-1-CCA and IND-CCA in
the ROM and QROM, see Fig 1. For each pair of notions A, B ∈{IND-1-
CCA ROM, IND-CCA ROM, IND-1-CCA QROM, IND-CCA QROM}, we
show either an implication or a separation, so that no relation remains open.

is the PKE ciphertext size and |m| is the message size. Very recently, Huguenin-
Dumittan and Vaudenay [20] updated their ePrint version and presented a new
proof for TCH using the extractable RO technique [14] with improved bound εR ≈
O(1/q2)ε2A−O(q3/2n)−O(q/

√
2n) (n is the RO-output length), which removes the

length-preserving requirement. But, the additional key-confirmation is still required.
4 At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [21] conjectured that the

popular compressed oracle technique proposed by Zhandry [42] might be of use in
the QROM proof. Surprisingly, in our QROM proof, only the other two well-known
techniques called one-way to hiding (O2H) [1, 6] and measure-and-reprogram [12]
are used.
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Remark 1. Our construction TRH is essentially the construction U�⊥ in [17], ex-
cept that the secret seed s in decapsulation is replaced by a public value ? (?
can be any fixed message). In fact, our proof can work for both secret seed and
public value thanks to the newly introduced decapsulation simulation technique,
while the current IND-CCA proofs for implicit FO-KEMs (e.g., see [17, 22]) can
only work for secret seed. We choose to replace secret seed by public value s-
ince it reduces the secret key size and makes the construction more concise.
Morerover, from a high-assurance implementation (i.e., side-channel protected)
point of view, public value is also preferable to secure seed, see comments by
Schneider at NIST pqc-forum [36].

Table 1: Reduction tightness in the ROM/QROM.

Transformation
Reduction
tightness

Ciphertext
expansion

Re-encryption
ROM or
QROM

FO [17] εR ≈ εA N Y ROM
TCH [21] εR ≈ O(1/q)εA Y N ROM
TH [21] εR ≈ O(1/q3)εA N N ROM

Our TRH and TH εR ≈ O(1/q)εA N N ROM

FO [24, 6] εR ≈ O(1/q)ε2A N Y QROM
TCH [21] εR ≈ O(1/q3)ε2A Y N QROM

Our TRH and TH εR ≈ O(1/q2)ε2A N N QROM

IND-1-CCA ROM

IND-CCA ROM

IND-1-CCA QROM

IND-CCA QROM

6.1

6.1

6.1

6.2

6.2
6.2

Fig. 1: The relations among notions of security for KEM. An arrow is an implication,
and there is a path from A to B if and and only A⇒ B. The hatched arrows represent
separations actually we prove. The number on an hatched arrow refers to the theorem
in this paper which establishes this relationship.
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1.2 Practical Impact

An IND-1-CCA KEM is sufficient to replace Diffie-Hellman in the post-quantum
migration of the widely-deployed protocols, such as TLS 1.3, Signal and Noise.
Our results show that IND-1-CCA-secure KEMs can be constructed in the ROM
and QROM without re-encryption and cipher-expansion. Compared with IND-
CCA-secure KEMs based on FO transform, such as CRYSTALS-Kyber, the IND-
1-CCA-secure KEMs based on TH and TRH do not require the re-encryption in
decapsulation. The re-encryption is highly vulnerable to attacks and its side-
channel protection will significantly increase deployment costs. Thus, from a
practical point of view, removing the re-encryption of FO-like KEMs will improve
the performance of embedded side-channel secure implementations. Therefore,
according to our results, one can easily transform CRYSTALSCKyber.PKE into
an IND-1-CCA-secure KEM without re-encryption and cipher-expansion, and
then establish post-quantum-secure variants of TLS 1.3, Signal and Noise with
better performance in the embedded implementation.

1.3 Open Problem

We prove a O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM (QROM, re-
sp.) for the IND-1-CCA KEMs in this paper and [21]. Our ROM proof essentially
matches this loss. However, our QROM tightness does not match O(1/q2). Thus,
a natural question is can our QROM reduction tightness be further improved,
or can one find a new attack that matches the QROM proof in this paper.

1.4 Technique Overview

Construction and reduction. Re-encryption is the core feature of FO-like
CCA-KEMs, which guarantees that only specific valid ciphertexts can be correct-
ly decapsulated, and thus makes the decapsulation simulation in the ROM/QROM
proof easy (see [16, 17, 35, 22–24, 6, 19, 14, 18]). However, on the other hand, as
mentioned earlier, removing the re-encryption will bring a significant speed boost
in decapsulation [37, 21] and reduce the risk of side-channel attacks [39, 3].

However, removing re-encryption makes the current decapsulation simulation
for FO-like CCA-KEMs incompatible with the KEMs in this paper and [21].
So the key in the proof is the decapsulation simulation. We note that for a
valid ciphertext c̄ such that (Dec(sk, c̄) = m̄ 6= ⊥)5, the decapsulation returns
H(m̄, c̄). Thus, if we reprogram H(m̄, c̄) to a random k̄, we can simulate the
decapsulation of c̄ using k̄ without knowledge of sk. To guarantee the consistency
between the outputs ofH and the simulated decapsulation, one needs to correctly
guess when the adversary makes a query (m̄, c̄) to H, and perform a reprogram
at that time. In the ROM, a randomly guess is correct with probability 1/q.

5 In the full proof of TRH , the invalid case Dec(sk, c̄) = ⊥ is integrated into the valid
case Dec(sk, c̄) 6= ⊥. while, the security of TH is directly reduced to the security of
TRH .
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In the QROM, due to adversary’s superposition RO-query, it is hard to define
when the adversary makes a query (m̄, c̄). Therefore, in the QROM, we argue in a
different way. We find that the consistency between H and the simulated decap-
sulation can be guaranteed if the predicate Decap(sk, c̄) = H(m̄, c̄) is satisfied.
Don, Fehr, Majenz, and Schaffner [13, 12] showed that a random measure-and-
reprogram can keep the predicate satisfied with a high probability. However,
the measure-and-reprogram in [13, 12] cannot be directly applied to our case.
This is due to the fact that the random measure in [13, 12] is performed for all
the H-queries while in our case there is an implicit (classical) H-query used in
the real decapsulation that will be removed in the simulated decapsulation and
thus can not be measured. In this paper, extending the measure-and-reprogram
technique in [13, 12], we derive a variant of measure-and-reprogram (see Lemma
3.1), which is suitable for our case. With this new measure-and-reprogram, the
QROM adversary can accept the simulation of both H and the decapsulation
oracle with probability at least O(1/q2).

When embedding the instance of the underlying security experiment into
the IND-1-CCA instance, we successfully embed an IND-CPA instance without
reduction loss in the ROM. While in [21] a OW-CPA instance is embedded with
a O(1/q) loss in the ROM. In the QROM, the instance embedding is very tricky.
We extend the double-sided O2H technique (see Lemma 2.3) to argue the QROM
instance embedding, more details please refer to the proof of Theorem 4.2.

We also remark that one can easily extend the results in this paper to the
IND-q-CCA KEM case for any arbitrary constant q. But, as aforementioned,
IND-1-CCA KEM is sufficient in practical protocols, e.g., TLS 1.3, KEM-TLS.

Attack and tightness. Re-encryption in the FO-like KEMs will guarantee that
only the ciphertexts generated by derandomization are identified as valid. That
is, any ciphertext obtained by transforming another valid ciphertext can be
identified as invalid by re-encryption check. However, for the IND-1-CCA KEMs
in this paper and [21], the re-encryption check is removed. Thus, given a challenge
ciphertext c∗ ← Enc(pk,m∗) to distinguish K0 = H(m∗, c∗) from a random
K1, if an adversary B can efficiently transform c∗ into another ciphertext c′

such that Dec(sk, c′) = f(m∗) for some specific function f (this property is
defined as malleability), then B can derive a hash value tag = Decap(sk, c′) =
H(f(m∗), c∗). Thus, B can search for m∗ such that tag = H(f(m∗), c∗) from
the message M by querying the random oracle H, and finally use H(m∗, c∗) to
distinguish K0 from K1. By detailed analysis, we show B can achieve advantage
at least O(q/2λ) in the ROM (O(q2/2λ) in the QROM). For a λ-bit secure
PKE, any PPT adversary breaks the security of PKE with advantage at most
O(1/2λ). Thus, we can claim that a O(1/q) (O(1/q2), resp.) loss is unavoidable
in the ROM (QROM, resp.) for the IND-1-CCA KEMs in this paper and [21].

Implication and separation. By introducing a proof of quantum access to
random oracle given in [40], we construct a KEM that is provably IND-CCA-
secure (hence also IND-1-CCA secure) in the ROM, but cannot achieve IND-
1-CCA security (hence also IND-CCA security) in the QROM. In addition, we
show that applying our HRU to lattice-based PKE, e.g., FrodoPKE [28], can
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derive an IND-1-CCA ROM (and also QROM) secure KEM. However, such a
KEM cannot achieve IND-CCA security in the ROM (hence QROM). The other
implication relations can be trivially obtained.

1.5 Related Work

The tranformations in [21] and our paper are similar to U-transformation which
is originally proposed in [11] and converts a OW-PCA-secure/deterministic P-
KE into an IND-CCA-secure KEM. The U-transformation has various variants,

including U⊥m, U�⊥m, HU⊥m, HU⊥,QU⊥m, QU�⊥m, U⊥, U�⊥6. For QU⊥m and QU�⊥m,
Hofheinz, Hövelmanns and Kiltz [17] showed that the IND-CCA security of KEM
can be reduced to the OW-PCA security of PKE with tightness εR ≈ O(1/q2)ε2A.
The OW-PCA security is the same as the OW-CPA security except that the ad-
versary can additionally access a plaintext-checking oracle that judges whether
decryption of a given ciphertext is equal to a given plaintext. For implicit trans-
formations U�⊥m and U�⊥, Jiang, Zhang, Chen, Wang and Ma [22] showed that the
IND-CCA security of KEM can be reduced to the quantum variant of OW-PCA
security of PKE or OW-CPA security of deterministic PKE (DPKE) with tight-
ness εR ≈ O(1/q2)ε2A, which is further improved to εR ≈ O(1/q)ε2A by Jiang,
Zhang and Ma [24], improved to εR ≈ ε2A by Bindel, Hamburg, Hövelmanns,
Hülsing and Persichetti [6], and improved to εR ≈ O(1/q)εA by Kuchta, Sakzad,
Stehlé, Steinfeld and Sun [26]. In particular, Saito, Xagawa, and Yamakawa [35]

gave a tight reduction for U�⊥m from a newly introduced security (called disjoint
simulatability) of DPKE to the IND-CCA security of KEM. This tight result
was subsequently extended for the explicit HU⊥m by Jiang, Zhang and Ma [23].
For HU⊥m and HU⊥, Bindel, Hamburg, Hövelmanns, Hülsing and Persichetti [6]
showed that the same QROM results can be achieved as the implicit variants.
Recently, Don, Fehr, Majenz and Schaffner [14] first proved the QROM security
of U⊥m

7. Note that all the U-transformations require re-encryption in decapsula-

tion except U⊥ and U�⊥ (see [17, 22]). However, the proofs for U⊥ and U�⊥ in [17,
22] require the underlying PKE satisfies OW-PCA security, which is usually ob-
tained by using de-randomization and re-encryption.

2 Preliminaries

Symbol description. A security parameter is denoted by λ. The set {0, · · · , q}
is denoted by [q]. The abbreviation PPT stands for probabilistic polynomial time.
K, M, C and R are denoted as key space, message space, ciphertext space and

6 The symbol ⊥ (�⊥) means explicit (implicit) rejection, m (without m) means
K = H(m) (K = H(m, c)), H (Q) means an additional (length-preserving) hash

value is appended into the ciphertext. In this paper, U⊥m and U�⊥m are referred to
transformations with re-encryption in decapsulation.

7 Strictly speaking, they proved the security of FO⊥m in the QROM. But, their proof
can be translated into a proof for U⊥m.
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randomness space, respectively. Given a finite set X, we denote the sampling
of a uniformly random element x by x←$X. Denote the sampling from some
distribution D by x←D. x =?y is denoted as an integer that is 1 if x = y,
and otherwise 0. Pr[P : G] is the probability that the predicate P holds true
where free variables in P are assigned according to the program in G. Denote
deterministic (probabilistic, resp.) computation of an algorithm A on input x by
y = A(x) (y ← A(x), resp.). Let |X| be the cardinality of set X. AH (A|H〉, resp.)
means that algorithm A gets classical (quantum, resp.) access to the oracle H.
We present the cryptographic primitives in Supporting Material A.

2.1 Quantum Random Oracle Model

We refer the reader to [29] for basic of quantum computation. Random oracle
model (ROM) [5] is an idealized model, where a hash function is modeled as
a publicly accessible random oracle. Quantum adversary can off-line evaluate
the hash function on an arbitrary superposition of inputs. As a result, quantum
adversary should be allowed to query the random orale with quantum state. We
call this quantum random oracle model (QROM) [7].

2.2 One-way to Hiding and its Double-sided Variant

Lemma 2.1 (One-way to hiding (O2H)[1, Theorem 3]). Let S ⊆ X be
random. Let G, H be oracles such that ∀x /∈ S. G(x) = H(x). Let z be a random
bitstring. (S,G,H, z may have arbitrary joint distribution.) Let A be quantum
oracle algorithm that makes at most q queries (not necessarily unitary). Let B|H〉

be an oracle algorithm that on input z does the following: pick i ∈ [q − 1], run
A|H〉(z) until (just before) the (i+ 1)-th query, measure all query input registers
in the computational basis, output the set T of measurement outcomes. Then∣∣∣Pr[1← A|H〉(Z)]− Pr[1← A|G〉(Z)]

∣∣∣ ≤ 2q
√

Pr[S ∩ T 6= Ø : T ← B|H〉(z)].

Lemma 2.2 ((Adapted) Double-sided O2H [6, Lemma 5]). Let G, H :
X → Y be oracles such that ∀x 6= x∗. G(x) = H(x). Let z be a random bitstring.
(x∗, G,H, z may have arbitrary joint distribution.) Let A be quantum oracle al-
gorithm that makes at most q queries (not necessarily unitary). Then, there is
an another double-sided oracle algorithm B|G〉,|H〉(z) such that B runs in about
the same amount of time as A, and∣∣∣Pr[1← A|H〉(z)]− Pr[1← A|G〉(z)]

∣∣∣ ≤ 2
√

Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)].

In particular, the double-sided oracle algorithm B|G〉,|H〉(z) runs A|H〉(z) and
A|G〉(z) in superposition, and the probability Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] is

exactly ‖|ψqH〉 − |ψ
q
G〉‖

2
/4, where |ψqH〉 (|ψqG〉, resp.) is the final state of A|H〉(z)

(A|G〉(z), resp.).

8



2.3 Search in Double-sided Oracle

In the proof of our main theorem 4.2, we need to bound the advantage of search-
ing a reprogramming point in a double-sided oracle. Thus, we develop the fol-
lowing lemma.

Lemma 2.3 (Search in Double-sided Oracle). Let G, H : X → Y be o-
racles such that ∀x 6= x∗ G(x) = H(x). Let z be a random bitstring. Let A
be quantum oracle algorithm that makes at most q queries (not necessarily uni-
tary). Let B|G〉,|H〉(z) be a double-sided oracle algorithm such that Pr[x∗ = x′ :

x′ ← B|G〉,|H〉(z)] = ‖|ψqH〉 − |ψ
q
G〉‖

2
/4, where |ψqH〉 (|ψqG〉, resp.) be the final

state of A|H〉(z) (A|G〉(z), resp.). Let C |H〉(z) be an oracle algorithm that picks
i←$ {1, 2, . . . , q}, runs A|H〉(z) until (just before) the i-th query, measures the
query input registers in the computational basis, and outputs the measurement
outcome. Thus, we have

Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2 Pr[x∗ = x′ : x′ ← C |H〉(z)].

In particular, if X = X1 × X2, x∗ = (x∗1, x
∗
2), x∗1 is uniform and independent of

H and z, then we further have Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2/ |X1| .

Proof. Let |ψ0〉 be an initial state that depends on z (but not on G, H or x∗),
OH : |x, y〉 → |x, y⊕H(x)〉, and Ui is A’s state transition operation after the i-th
query. (And analogously for A|G〉.) We define |ψiH〉 as UiOH · · ·U1OH |ψ0〉, and
similarly |ψiG〉. Thus, |ψqH〉 (|ψqG〉, resp.) be the final states of A|H〉(z) (A|G〉(z),
resp.). Let Px∗ = |x∗〉〈x∗|, Di =

∥∥|ψiH〉 − |ψiG〉∥∥. Then, for i ≥ 1, we have

Di =
∥∥UiOH |ψi−1

H 〉 − UiOG|ψi−1
G 〉

∥∥
=
∥∥OH |ψi−1

H 〉 −OG|ψi−1
H 〉+OG|ψi−1

H 〉 −OG|ψi−1
G 〉

∥∥
∗
≤
∥∥(OH −OG)|ψi−1

H 〉
∥∥+

∥∥OG(|ψi−1
H 〉 − ψi−1

G 〉)
∥∥

∗∗
= Di−1 +

∥∥(OH −OG)Px∗ |ψi−1
H 〉

∥∥
∗∗∗
= Di−1 + 2

∥∥Px∗ |ψi−1
H 〉

∥∥ (1)

Here, the inequation (∗) uses the triangle inequality. The equation (∗∗) uses that
(OH − OG)Px∗ = OH − OG since G(x) = H(x) for ∀x 6= x∗. The inequation
(∗ ∗ ∗) uses the fact that (OH − OG) has operator norm ≤ 2. Note that D0 =
‖|ψ0〉 − |ψ0〉‖ = 0. From (1), we get Di ≤ Di−1 + 2

∥∥Px∗ |ψi−1
H 〉

∥∥. This implies

Dq ≤ 2
∑q−1
i=0

∥∥Px∗ |ψiH〉∥∥ . Using Jensen’s inequality, we get
∑q−1
i=0

∥∥Px∗ |ψiH〉∥∥ ≤
q

√∑q−1
i=0 1/q

∥∥Px∗ |ψiH〉∥∥2
.

Note that Pr[x∗ = x′ : x′ ← C |H〉(z)] is
∑q−1
i=0 1/q

∥∥Px∗ |ψiH〉∥∥2
. Thus, we

have Dq ≤ 2q
√

Pr[x∗ = x′ : x′ ← C |H〉(z)]. Since Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)]

is exactly ‖|ψqH〉 − |ψ
q
G〉‖

2
/4 = D2

q/4, we have Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤
q2 Pr[x∗ = x′ : x′ ← C |H〉(z)]. In particular, if X = X1 ×X2, x∗ = (x∗1, x

∗
2), x∗1 is

uniform and independent of H and z, then Pr[x∗ = x′ : x′ ← C |H〉(z)] ≤ 1/ |X1| .
Thus, we have Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2/ |X1| . ut
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3 Extended Measure-and-reprogram Technique

Measure-and-reprogram introduced by [13, 12] shows how to reprogram the quan-
tum random oracle adaptively at one input. In detail, for any oracle algorithm
A|H〉 that makes at most q queries to H and outputs a pair (x, z) such that some
predicate V (x,H(x), z) is satisfied, the measure-and-reprogram technique shows
that there exists an another algorithm SA that simulates H, extracts x from AH

by randomly measuring one of A’s queries to H, and then reprograms H(x) to a
given value Θ so that z output by AH satisfies V (x,Θ, z) with a multiplicative
O(q2) loss in probability.

As we discussed in Sec. 1.4, the standard measure-and-reprogram technique
in [13, 12] cannot be directly applied to our case. In the proof of our main the-
orem 4.2, an implicit classical H-query (this is exactly x) cannot be measured,
while the random measure in [13, 12] is required to be performed for all the H-
queries. Thus, we extend the standard measure-and-reprogram technique and
give the following lemma.

Lemma 3.1 ((Single-classical-query) Measure-and-reprogram). Let A|H〉

be an arbitrary oracle quantum algorithm that makes q queries to a uniformly
random H : X → Y, and outputs some classical x ∈ X and a (possibly quan-
tum) output z. In particular, A’s i∗-th query input state is exactly |x〉 (this is a
classical state and identical with the x output by A|H〉).

Let SA(Θ) be an oracle algorithm that randomly picks a pair (i, b0) ∈ ([q −
1] \ {i∗ − 1}× {0, 1})∪ {(q, 0)}, runs A|H

i∗
i 〉 to output z, where Hi∗

i is an oracle
that returns Θ for A’s i∗-th H-query, measures A’s (i+ 1)-th H-query input to
obtain x, returns A’s l-th H-query using H for l < (i+ 1 + b0) and l 6= i∗, and
returns A’s l-th H-query using HxΘ (HxΘ(x) = Θ and HxΘ(x′) = H(x′) for all
x′ 6= x) for l ≥ (i+ 1 + b0) and l 6= i∗.

Let SA1 (Θ) be an oracle algorithm that randomly picks a pair (j, b1) ∈ ({i∗, · · · ,
q− 1}× {0, 1})∪{(q, 0)} ∪{(i∗ − 1, 1)}, runs A|Hj〉 to output z, where Hj is an
oracle that measures A’s (j + 1)-th H-query input to obtain x, returns A’s l-th
H-query using H for l < (j + 1 + b1), and returns A’s l-th H-query using HxΘ

for l ≥ (j + 1 + b1).

Thus, for any x0 ∈ X, i∗ ∈ {1, · · · , q} and any predicate V :

Pr
H

[x = x0 ∧ V (x,H(x), z) = 1 : (x, z)← A|H〉] ≤ 2(2q − 1)2 Pr
H,Θ

[x = x0 ∧ V (x,

Θ, z) = 1 : (x, z)← SA] + 8q2 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA1 ],

where the subscript {H,Θ} in PrH and PrH,Θ denotes that the probability is
averaged over a random choice of H and Θ. Moreover, if V = V1 ∧ V2 such
that V1(x, y, z) = 1 iff y is returned for A’s i∗-th query, then

∑
x0 PrH,Θ[x =

x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA1 ] ≤ 1
|Y| .
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Proof. Let |φ0〉 be an initial state that is independent of H and Θ8. OH : |x, y〉 →
|x, y ⊕ H(x)〉. Let Ai be A’s state transition operation after the i-th H-query
(i ∈ {1, · · · , q}).

We set AHi→j = AjOH · · ·Ai+1OH for 0 ≤ i < j ≤ q and AHi→j = I for i ≥ j.

Let |φHi 〉 = AH0→i|φ0〉 be the state of A right before the (i + 1)-th query. The
final state |φHq 〉 is considered to be a state over registers X, Z and E.

Let quantum predicate V be a family of projections {Πx,Θ}x,Θ with x ∈ X
and Θ ∈ Y. Set GΘx = |x〉〈x| ⊗Πx,Θ, where X = |x〉〈x| acts on register X, and
Πx,Θ acts on register Z.

Then, we have

Pr[x = x0 ∧ V (x,H(x), z) = 1 : (x, z)← A|H〉] =
∥∥∥GH(x0)

x0
|φHq 〉

∥∥∥2

.

Since HxΘ(x′) = H(x′) for all x′ 6= x, we have (AHxΘi+1→q)(A
H
i→i+1)(I −

X)|φHi 〉 = (AHxΘi→q )(I−X)|φHi 〉. Thus, (AHxΘi+1→q)|φHi+1〉

= (AHxΘi+1→q)(A
H
i→i+1)(I−X)|φHi 〉+ (AHxΘi+1→q)(A

H
i→i+1)X|φHi 〉

= (AHxΘi→q )(I−X)|φHi 〉+ (AHxΘi+1→q)(A
H
i→i+1)X|φHi 〉

= (AHxΘi→q )|φHi 〉 − (AHxΘi→q )X|φHi 〉+ (AHxΘi+1→q)(A
H
i→i+1)X|φHi 〉.

Applying GΘx and using the triangle equality, we have
∥∥∥GΘx (AHxΘi→q )|φHi 〉

∥∥∥ ≤∥∥∥GΘx (AHxΘi+1→q)|φ
H
i+1〉

∥∥∥+
∥∥∥GΘx (AHxΘi→q )X|φHi 〉

∥∥∥+
∥∥∥GΘx (AHxΘi+1→q)(A

H
i→i+1)X|φHi 〉

∥∥∥ .
Summing up the above inequality over i = 0, · · · , q − 1, we get∥∥GΘx |φHxΘq 〉

∥∥ ≤ ∥∥GΘx |φHq 〉∥∥+
∑

0≤i<q,b∈{0,1}

∥∥∥GΘx (AHxΘi+b→q)(A
H
i→i+b)X|φHi 〉

∥∥∥ (2)

Note that A’s i∗-th query is classical and the query input is |x〉. Then,
X|φH(i∗−1)〉 = |φH(i∗−1)〉. Thus, there is a specific term∥∥∥GΘx (AHxΘ(i∗−1)→q)X|φ

H
(i∗−1)〉

∥∥∥ =
∥∥∥GΘx (AHxΘ(i∗−1)→q)|φ

H
(i∗−1)〉

∥∥∥ (3)

on the right hand side of inequality (2).
Set BHj→k = Ai∗+kOH · · ·Ai∗+j+1OH for k ≥ (j + 1) (BHj→k = I for k ≤ j.),

|ψ0〉 = (AHxΘ(i∗−1)→i∗) |φ
H
(i∗−1)〉, and |ψHj 〉 = BH0→j |ψ0〉. Then,∥∥∥GΘx (AHxΘ(i∗−1)→q)|φ

H
(i∗−1)〉

∥∥∥ =
∥∥∥GΘx |ψHxΘq−i∗〉

∥∥∥ =
∥∥∥GΘxBHxΘ0→(q−i∗)|ψ0〉

∥∥∥ .
8 This initial state can be seen as an additional input to A. In [12, Theorem 2], it is

also implicitly required that the initial state is independent of H and Θ.
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Since HxΘ(x′) = H(x′) for all x′ 6= x, we have

(BHj→(j+1))(I−X)|ψHj 〉 = (BHxΘj→(j+1))(I−X)|ψHj 〉.

Thus, we can write (BHxΘj+1→(q−i∗))|ψ
H
j+1〉

= (BHxΘj+1→(q−i∗))(B
H
j→j+1)(I−X)|ψHj 〉+ (BHxΘj+1→(q−i∗))(B

H
j→j+1)X|ψHj 〉

= (BHxΘj→(q−i∗))(I−X)|ψHj 〉+ (BHxΘj+1→(q−i∗))(B
H
j→j+1)X|ψHj 〉

= (BHxΘj→(q−i∗))|ψ
H
j 〉 − (BHxΘj→(q−i∗))X|ψ

H
j 〉+ (BHxΘj+1→(q−i∗))(B

H
j→j+1)X|ψHj 〉.

Rearranging terms, applying GΘx and using the triangle equality, we have∥∥∥GΘx (BHxΘj→(q−i∗))|ψ
H
j 〉
∥∥∥ ≤ ∥∥∥GΘx (BHxΘj+1→(q−i∗))|ψ

H
j+1〉

∥∥∥+∥∥∥GΘx (BHxΘj→(q−i∗))X|ψ
H
j 〉
∥∥∥+

∥∥∥GΘx (BHxΘj+1→(q−i∗))(B
H
j→j+1)X|ψHj 〉

∥∥∥ .
Summing up the inequality over j = 0, · · · , q − i∗ − 1, we get∥∥∥GΘx (AHxΘ(i∗−1)→q)|φ

H
(i∗−1)〉

∥∥∥ =
∥∥∥GΘxBHxΘ0→(q−i∗)|ψ0〉

∥∥∥ ≤ ∥∥GΘx |ψHq−i∗〉∥∥+∑
0≤j<(q−i∗),b∈{0,1}

∥∥∥GΘx (BHxΘj+b→(q−i∗))(B
H
j→j+b)X|ψHj 〉

∥∥∥ (4)

According to equalities (2), (3) and (4), we get∥∥GΘx |φHxΘq 〉
∥∥ ≤ Term0 + Term1, (5)

Term0 =
∑

0≤i<(i∗−1)
b0∈{0,1}

∥∥∥GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉

∥∥∥+
∥∥∥GΘx (AHxΘ(i∗−1)→q)X|φ

H
(i∗−1)〉

∥∥∥
=

∑
0≤i<(i∗−1),b0∈{0,1}

∥∥∥GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉

∥∥∥
+
∥∥GΘx |ψHq−i∗〉∥∥+

∑
0≤j<(q−i∗),b0∈{0,1}

∥∥∥GΘx (BHxΘj+b0→(q−i∗))(B
H
j→j+b0)X|ψHj 〉

∥∥∥
=

∑
0≤i<(i∗−1),b0∈{0,1}

∥∥∥GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉

∥∥∥
+
∥∥∥GΘx (AHi∗→q)(A

HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉

∥∥∥
+

∑
i∗≤i<q
b0∈{0,1}

∥∥∥GΘx (AHxΘ(i+b0)→q)(A
H
i→(i+b0))X(AHi∗→i)(A

HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉

∥∥∥
Term1 =

∥∥GΘx |φHq 〉∥∥+
∑

i∗≤i<q
b1∈{0,1}

∥∥∥GΘx (AHxΘi+b1→q)(A
H
i→i+b1)X|φHi 〉

∥∥∥
+
∥∥∥GΘx (AHxΘi∗→q)(A

H
(i∗−1)→i∗)X|φ

H
(i∗−1)〉

∥∥∥ .
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According to inequality (5), we have

∥∥GΘx |φHxΘq 〉
∥∥2 ≤ 2Term02 + 2Term12.

Since GΘx = GΘxX, we get GΘx (AHi∗→q)(A
HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉 = GΘx (AHxΘ(i+b0)→q)

(AHi→(i+b0))X(AHi∗→i)(A
HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉 with i = q and b0 = 0 and GΘx |φHq 〉 =

GΘxX|φHq 〉 = GΘx (AHxΘi+b1→q)(A
H
i→i+b1)X|φHi 〉 with i = q and b1 = 0. Then, using

Jensen’s inequality, we have

Term02 ≤ (2q − 1)(
∑

0≤i<(i∗−1),b0∈{0,1}

∥∥∥GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉

∥∥∥2

+
∥∥∥GΘx (AHi∗→q)(A

HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉

∥∥∥2

+
∑

i∗≤i<q
b0∈{0,1}

∥∥∥GΘx (AHxΘ(i+b0)→q)(A
H
i→(i+b0))X(AHi∗→i)(A

HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉

∥∥∥2

)

= (2q − 1)2 Ei,b0
[∥∥δi<(i∗−1)T0

∥∥2
+ ‖δi≥i∗T1‖2

]
,

where T0 = (GΘx (AHxΘi+b0→q)(A
H
i→i+b0)X|φHi 〉), T1 = GΘx (AHxΘ(i+b0)→q)(A

H
i→(i+b0))

X(AHi∗→i)(A
HxΘ
(i∗−1)→i∗)|φ

H
(i∗−1)〉, δi<(i∗−1) = 1 if i < (i∗ − 1) otherwise 0, δi≥i∗ =

1 if i ≥ i∗ otherwise 0, the expectation in Term02 is over uniform (i, b0) ∈
([q − 1] \{i∗ − 1} × {0, 1}) ∪{(q, 0)}.

Thus, the probability of S outputting (x, z) such that V (x,Θ, z) = 1 is

exactly Ei,b0
[∥∥δi<(i∗−1)T0

∥∥2
+ ‖δi≥i∗T1‖2

]
.

Likewise, using Jensen’s inequality, we get

Term12 ≤ (2q − 2i∗ + 2)(
∥∥GΘx |φHq 〉∥∥2

+
∑

i∗≤i<q
b1∈{0,1}

∥∥∥GΘx (AHxΘi+b1→q)(A
H
i→i+b1)X|φHi 〉

∥∥∥2

+
∥∥∥GΘx (AHxΘi∗→q)(A

H
(i∗−1)→i∗)X|φ

H
(i∗−1)〉

∥∥∥2

)

= (2q − 2i∗ + 2)2 Ej,b1
[∥∥∥GΘx (AHxΘj+b1→q)(A

H
j→j+b1)X|φHj 〉

∥∥∥2
]

where the expectation in Term12 is over uniform (j, b1) ∈ ({i∗, · · · , q − 1} ×
{0, 1}) ∪{(q, 0)} ∪{(i∗ − 1, 1)}.

Thus, the probability of S1 outputting (x, z) such that V (x,Θ, z) = 1 is

exactly Ej,b1
[∥∥∥GΘx (AHxΘj+b1→q)(A

H
j→j+b1)X|φHj 〉

∥∥∥2
]
.
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Since the initial state is independent ofH andΘ, we have PrH,Θ[
∥∥GΘx |φHxΘq 〉

∥∥2
]

= PrH,Θ[
∥∥∥GH(x)

x |φHq 〉
∥∥∥2

]. Thus, for any x0 ∈ X and predicate V , we have

Pr
H

[x = x0 ∧ V (x,H(x), z) = 1 : (x, z)← A|H〉] ≤ 2(2q − 1)2 Pr
H,Θ

[x = x0 ∧ V (x,

Θ, z) = 1 : (x, z)← SA] + 8q2 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA1 ],

as desired. Set V1(x, y, z) = 1 iff y is returned for A’s i∗-th query. When V =
V1 ∧ V2, we get∑

x0 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SA1 ] ≤ Pr[H(x) = Θ] =
1

|Y|
.

4 IND-1-CCA-secure KEM without Re-encryption and
Ciphertext Expansion

To a public-key encryption PKE′=(Gen′, Enc′, Dec′) and a random oracle
H (H : M× C → K), we associate KEMH = TH [PKE′, H] and KEMRH =
TRH [PKE′, H] as in Fig. 2. The only difference between KEMH and KEMRH is
the return value for invalid ciphertexts. In detail, when a ciphertext decrypts to
⊥, such a ciphertext will decapsulate to ⊥ in KEMH , and to H(?, c) in KEMRH .
Here, ? can be any fixed public value. In the following, Theorems 4.1 and 4.2
show the IND-1-CCA security of KEMRH in the (Q)ROM. In particular, The-
orems 4.1 and 4.2 works for both ? ∈ M and ? /∈ M. Then, we will show that
the IND-1-CCA security of KEMH can be reduced to the IND-1-CCA security
of KEMRH by Theorem 4.3.

Gen

1 : (pk, sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m←$M
2 : c← Enc′(pk,m)

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk, c)

1 : m′ := Dec′(sk, c)

2 : if m′ =⊥
3 : return ⊥ //TH

4 : return K := H(?, c) //TRH

5 : else return K := H(m′, c)

Fig. 2: KEMH = TH [PKE′, H] and KEMRH = TRH [PKE′, H]

Theorem 4.1 (ROM security of TRH). If PKE′ is δ-correct, for any adver-
sary B against the IND-1-CCA security of KEMRH = TRH [PKE′, H] in Fig. 2,
issuing at most a single (classical) query to the decapsulation oracle Decaps and
at most qH queries to the random oracle H, there exists a OW-CPA adversary A
and an IND-CPA adversary D against PKE′ such that Time(A) ≈ Time(D) ≈
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Time(B) +O(q2
H) and

AdvIND-1-CCA
KEMRH

(B) ≤ qH(qH + 1)AdvOW−CPA
PKE′ (A) (6)

AdvIND-1-CCA
KEMRH

(B) ≤ 2(qH + 1)AdvIND−CPA
PKE′ (D) + 2qH(qH + 1)/ |M| .

If the PKE is deterministic, the bound (6) can be improved as

AdvIND-1-CCA
KEMRH

(B) ≤ (qH + 1)AdvOW−CPA
PKE′ (A) + δ,

where Time(A) ≈ Time(B) +O(q2
H) +O(qH · Time(Enc′)).

Proof. Let B be an adversary against the IND-CCA security of KEMRH , issu-
ing (exactly) one classical query to Decaps (by introducing a dummy query if
necessary), and at most qH queries (excluding the queries implicitly made in
Decaps) to H. Let ΩH be the sets of all functions H : M× C → K. Consider
the games in Fig. 3.

Game G0. This is exactly the IND-1-CCA game, thus
∣∣Pr[GB0 ⇒ 1]− 1/2

∣∣ =
AdvIND-1-CCA

KEMRH
(B).

Game G1. In game G1, k∗0 := H(m∗, c∗) is replaced by k∗0 ←$K. Thus, in G1,
the bit b is independent of B’s view, thus Pr[GB1 ⇒ 1] = 1/2. Define Query as
the event that (m∗, c∗) is queried to H. Then, G1 is identical with G0 in B’s
view unless the event Query happens. Thus, we have

AdvIND-1-CCA
KEMRH

(B) =
∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ Pr[Query : G1].

Game G2. In game G2, we make two changes. First, we modify the Decaps
oracle, and replace K := H(m̄, c̄) by K := k̄. Second, we reprogram the random
oracle H conditional a uniform i over [qH ]. In particular, reprogram H to Hi

1

(given by Fig. 3) when B makes the (i + 1)-th H-query (0 ≤ i ≤ (qH − 1)),
and then answer B with Hi

1 for B’s j-th query (j ≥ (i+ 1)). Let (mi, ci) be B’s
i-th H-query input. Hi

1(m, c) returns k̄ when (m, c) = (mi+1, ci+1) and H1(m, c)
otherwise. Let (i∗ + 1) be the number of B’s first query to H with (m̄, c̄), where
i∗ ∈ [qH − 1]. We also denote i∗ = qH as the event that B makes no query to H
with (m̄, c̄). Note that G2 has the same distribution as G1 in B’s view when the
event i∗ = i happens. Thus, we have

Pr[Query : G1] ≤ (qH + 1) Pr[Query : G2].

Let (pk, sk) ← Gen′, m∗←$M, c∗ ← Enc(pk,m∗). Then, we construct an
adversary A′(pk, c∗) that simulates B’s view as in game G2 and returns B’s
H-query list H-List, see Fig. 4. Note that a qH -wise independent function is
perfectly indistinguishable from a true random function for any distinguisher
that makes at most qH queries [41]. Thus, the probability of the H-List returned
by A′ contains (m∗, c∗) is exactly Pr[Query : G2].

Now, we construct an adversary A against the OW-CPA security of the un-
derlying PKE. If the underlying PKE is probabilistic, A runs A′, and randomly
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selects one message in H-List as a return. Then, we have AdvOW−CPA
PKE′ (A) ≥

1/qH Pr[Query : G2]. Therefore, for probabilistic PKE, we have

AdvIND-1-CCA
KEMRH

(B) ≤ qH(qH + 1)AdvOW−CPA
PKE′ (A).

Next, we consider the case of the deterministic PKE.

GAMES G0 −G2 and GA
1 −GA

2

1 : (pk, sk)← Gen′, j = 0, i←$ [qH ]

2 : Query = false , H1 ←$ΩH

3 : k̄, k∗1 ←$K, b←$ {0, 1}
4 : m∗ ←$M, c∗ ← Enc(pk,m∗)

5 : if COLL return ⊥//GA
1 −GA

2

6 : k∗0 = H(m∗, c∗) //G0

7 : k∗0 ←$K//G1 −G2, G
A
1 −GA

2

8 : b′ ← BH,Decaps(pk, c∗, k∗b )

9 : return b′ =?b

Hi
1(m, c)

1 : if (m, c) = (mi+1, ci+1)

2 : return k̄

3 : else return H1(m, c)

H(m, c)

1 : if (m, c) = (m∗, c∗)

2 : Query = true

3 : if j ≥ i return Hi
1(m, c) //G2, G

A
2

4 : j = j + 1 //G2, G
A
2

5 : return H1(m, c)

Decaps (sk, c̄ 6= c∗)

1 : if more than 1 query return ⊥

2 : return K := k̄ //G2, G
A
2

3 : m′ := Dec′(sk, c̄)

4 : if m′ =⊥ do m̄ = ?

5 : else do m̄ = m′

6 : return K := H(m̄, c̄)

Fig. 3: Games for the proof of Theorem 4.1

A′(pk, c∗)

1 : k∗, k̄←$K, j = 0, i←$ [qH ]

2 : Pick a qH -wise functions H1

3 : b′ ← BH,Decaps(pk, c∗, k∗)

4 : return H-List

Hi
1(m, c)

1 : if (m, c) = (mi+1, ci+1) return k̄

2 : else return H1(m, c)

H(m, c)

1 : if i = qH return H1(m, c)

2 : if j ≥ i return Hi
1(m, c)

3 : j = j + 1

4 : return H1(m, c)

Decaps (c̄ 6= c∗)

1 : return k̄

Fig. 4: Adversary A′ for the proof of Theorem 4.1

Game GA1 . Define COLL as the event that there is a messages m 6= m∗ such
that Enc′(pk,m) = c∗ = Enc′(pk,m∗). GA1 is the same as G1 except that ⊥ is
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returned if COLL happens. Note that G1 and GA1 have the same distribution
when COLL doe not happen (implied by the δ-correctness). Thus, we have

Pr[Query : G1] ≤ Pr[Query : GA1 ] + δ.

Game GA2 . GA2 is the same as GA1 except that oracles Decaps and H are
modified as in G2. Then, arguing in the same way as in G2, we have

Pr[Query : GA1 ] ≤ (qH + 1) Pr[Query : GA2 ].

Now, we construct an adversary A against deterministic PKE. A runs A′,
selects a (m′, c′) from H-List such that c′ = c∗ and Enc(pk,m′) = c∗, and
returns m′. Note that if COLL does not happen, A returns m∗ with probability
Pr[Query : GA2 ]. Thus, AdvOW−CPA

PKE′ (A) ≥ Pr[Query : GA2 ]. Therefore, putting
the inequalities together, we have

AdvIND-1-CCA
KEMRH

(B) ≤ (qH + 1)AdvOW−CPA
PKE′ (A) + δ.

When the underlying PKE satisfies IND-CPA security, we can construct an
IND-CPA adversary D, and derive a tighter bound. In particular, D(pk) samples
two uniform messages m∗0 and m∗1 from M, i.e., m∗0,m

∗
1←$M. The IND-CPA

challenger chooses a bit b, generates the challenge ciphertext c∗ ← Enc(pk,m∗b)
and sends c∗ to D. Then, D runs A′(pk, c∗), get B’s H-List. If (m∗b′ , ∗) is in
H-List and (m∗1−b′ , ∗) is not in H-List, D returns b′. For other cases, D re-
turns a uniform b′, i.e., b′←$ {0, 1}. Let BAD be the event that B queries
(m∗1−b, ∗) (that is, (m∗1−b, ∗) is in H-List). Note that m∗1−b is uniformly dis-
tributed and independent from B’s view. Thus, the events BAD and Query
are independent, and Pr[BAD] ≤ qH/ |M|. Note that if BAD does not hap-
pen, then D makes a correct guess of b with probability 1 when Query hap-
pens, and with probability 1/2 when Query does not happen. Thus, we have
AdvIND−CPA

PKE′ (D) = |Pr[b′ = b]− 1/2|

= |Pr[b′ = b ∧BAD] + Pr[b′ = b ∧ ¬BAD]− 1/2(Pr[BAD] + Pr[¬BAD])|
≥ |Pr[b′ = b ∧ ¬BAD]− 1/2 Pr[¬BAD]| − Pr[BAD] |Pr[b′ = b|BAD]− 1/2|
≥ |Pr[b′ = b ∧ ¬BAD]− 1/2 Pr[¬BAD]| − 1/2 Pr[BAD]

= |Pr[b′ = b ∧ ¬BAD ∧Query]− 1/2 Pr[¬BAD ∧Query]| − 1/2 Pr[BAD]

= 1/2 Pr[¬BAD ∧Query]− 1/2 Pr[BAD]

≥ 1/2 Pr[Query]− Pr[BAD]

≥ 1/2 Pr[Query]− qH/ |M| = 1/2 Pr[Query : G2]− qH/ |M| .

Putting the bounds together, we have

AdvIND-1-CCA
KEMRH

(B) ≤ 2(qH + 1)AdvIND−CPA
PKE′ (D) + 2qH(qH + 1)/ |M| .

ut
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Theorem 4.2 (QROM security of TRH). If PKE′ is δ-correct, for any ad-
versary B against the IND-1-CCA security of KEMRH = TRH [PKE′, H] in
Fig. 2, issuing at most one single (classical) query to the decapsulation oracle
Decaps and at most qH queries to the quantum random oracle H, there exists
a OW-CPA adversary A and an IND-CPA adversary D against PKE′ such that
Time(A) ≈ Time(D) ≈ Time(B) +O(q2

H) and

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)2
√
AdvOW−CPA

PKE′ (A) + 1/ |K|.

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)
√

4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|.

If the PKE is deterministic, the bound can be improved as

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)
√
AdvOW-CPA

PKE′ (A) + 1/ |K|+ δ,

where Time(A) ≈ Time(B) +O(q2
H) +O(qH · Time(Enc′)).

Proof sketch: Our proof mainly consists of two steps. One is the underlying
security game embedding via replacing the real key H(m∗, c∗) with a random
key (i.e., reprogramming H). We argue the impact of such a reprogramming
by different O2H variants. When the underlying PKE is OW-CPA-secure, we
follow previous proofs for U�⊥ in [22, 6], and use general O2H (Lemma 2.1) for
probabilistic PKE and double-sided O2H (Lemma 2.2) for deterministic PKE.
When the underlying PKE is IND-CPA-secure, we also adopt double-sided O2H
(Lemma 2.2) to argue the reprogramming impact. Since the embedded IND-CPA
game is decisional, an additional game that searches a reprogramming point in
double-sided oracle is introduced and we use Lemma 2.3 to argue this advantage.
The other is simulation of the Decaps oracle. As discussed in Sec. 1.4, we adopt a
new Decaps simulation that directly replaces the output H(m̄, c̄) with a random
key k̄. Intuitionally, this simulation is perfect if H(m̄, c̄) is reprogrammed to
be k̄ when the adversary first makes a query (m̄, c̄). However, in the QROM,
it is hard to define the first time to query (m̄, c̄). Thus, in the QROM, we
argue this in a different way. We find the simulation is perfect if the predicate
Decaps(sk, c̄) = H(m̄, c̄) is satisfied. Since in the simulation of Decaps, an
implicit (classical) H-query (m̄, c̄) made in the real implementation is removed
and thus this specific query can not be measured. Therefore, we use a refined
optional-query measure-and-reprogram technique in Lemma 3.1 to argue the
simulation impact.

Proof. Let ΩH be the sets of all functions H : M× C → K. Let B be an IND-
CCA adversary against KEMRH , issuing a single classical query to Decaps (if
none, introduce a dummy one), and at most qH quantum queries (excluding the
queries implicitly made in Decaps) to H. Consider the games in Fig. 5.
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GAMES G0 −G2

1 : (pk, sk)← Gen′, H ←$ΩH

2 : k, k∗1 ←$K, b←$ {0, 1}
3 : m∗ ←$M, c∗ ← Enc(pk,m∗)

4 : k∗0 = H(m∗, c∗) //G0 −G1

5 : k∗0 ←$K //G2

6 : b′ ← B|H〉,Decaps(pk, c∗, k∗b ) //G0, G2

7 : b′ ← B|H
′〉,Decaps(pk, c∗, k∗b ) //G1

8 : return b′ =?b

Decaps (sk, c̄ 6= c∗) //G0 −G2

1 : m′ := Dec′(sk, c̄)

2 : if more than 1 query return ⊥
3 : if m′ =⊥ do m̄ = ?

4 : else do m̄ = m′

5 : return K := H(m̄, c̄)

H ′(m, c)

1 : if (m, c) = (m∗, c∗) return k

2 : return H(m, c)

Fig. 5: Games G0-G2 for the proof of Theorem 4.2

Game G0. Since gameG0 is exactly the IND-1-CCA game,
∣∣Pr[GB0 ⇒ 1]− 1/2

∣∣ =
AdvIND-1-CCA

KEMRH
(B).

Game G1. In game G1, the random oracle H accessed by B is replaced by an
oracle H ′ given by Fig. 5. It is easy to see that G1 can be rewritten as game G2.

Game G2. The game G2 is the same as game G0 except that k∗0 := H(m∗, c∗)
is replaced by k∗0 ←$K. Thus, in G2, the bit b is independent of B’s view, thus
Pr[GB2 ⇒ 1] = 1/2. Note that games G1 and G2 have the same distribution.
Thus, Pr[GB1 ⇒ 1] = Pr[GB2 ⇒ 1] = 1/2. Therefore, we have

AdvIND-1-CCA
KEMRH

(B) =
∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ . (7)

Lemma 4.1. There exists an adversary A against the OW-CPA of probabilistic
PKE′ such that Time(A) ≈ Time(B) + O(q2

H)and AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH +

1)2
√
AdvOW−CPA

PKE′ (A) + 1/ |K|.

The proof of Lemma 4.1. Define games G3A and G4A as in Fig. 6.
Let z1 = (pk, sk, c∗, k∗b , b). Let AO (O ∈ H,H ′) be an oracle algorithm

that runs B|O〉,Decaps(pk, c∗, k∗b ) to obtain b′, and returns b′ =?b. Thus, we have

Pr[GB0 ⇒ 1] = Pr[1 ← A|H〉(z1)] and Pr[GB1 ⇒ 1] = Pr[1 ← A|H
′〉(z1)]. Let

B(z1) be an algorithm that randomly samples j ∈ [qH − 1], runs A|H
′〉 un-

til (just before) the (j + 1)-th query (In game G3A, H ′ is rewritten to be H),
measures the query input registers in the computational basis, and outputs mea-
surement outcomes. Thus, we have Pr[GB3A ⇒ 1] = Pr[(m∗, ∗) ← B|H〉(z1)] ≥
Pr[(m∗, c∗)← B|H〉(z1)]. Therefore, according to Lemma 2.1, we have∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ 2(qH + 1)
√

Pr[GB3A ⇒ 1].

Let C |H〉 be an oracle algorithm that samples pk, sk, k∗, j,m∗, c∗, and runs
B|H〉,Decaps as in game G3A. Let c̄ be B’s query to the Decaps oracle. Let m̄ = ?

19



if m̄′ = ⊥, and m̄ = m̄′ if m̄′ 6= ⊥, where m̄′ = Dec′(sk, c̄). Let x = (m̄, c̄),
y = H(x), and z = (z1, z2, z3) = (Decaps(sk, c̄),m∗,m′). C outputs (x, z). Let
V1(x, y, z) = (y =?z1) and V2 = (z2 =?z3). Instantiating the predicate V in
Lemma 3.1 by V = V1 ∧ V2. Note that in G3A the return of the Decaps oracle
is exactly H(x). That is, V1 = 1 is always satisfied. Thus, we have Pr[GB3A ⇒
1] =

∑
x0PrH [x = x0 ∧ V (x,H(x), z) = 1 : (x, z)← C |H〉].

GAMES G3A −G4A

1 : (pk, sk)← Gen′, H ←$ΩH , k
∗, k̄←$K,m∗ ←$M, c∗ ← Enc(pk,m∗)

2 : l = 0, j ←$ [qH − 1], (i, b)←$ ([qH − 1]× {0, 1}) ∪ {(qH , 0)}
3 : Run B|H〉,Decaps(pk, c∗, k∗) until the (j+1)-th query |ψ〉 //G3A

4 : Run B|H
i
1〉,Decaps(pk, c∗, k∗) until the (j+1)-th query state|ψ〉 //G4A

5 : (m′, c′)←M |ψ〉
// Make a standard measure M on B’s (j + 1)-th query input register

6 : return m∗ =?m′

Decaps (sk, c̄ 6= c∗) //G3A −G4A

1 : if more than 1 query return ⊥
2 : return k̄ //G4A

3 : m̄′ := Dec′(sk, c̄)

4 : if m̄′ =⊥ do m̄ = ?

5 : else do m̄ = m̄′

6 : return K := H(m̄, c̄)

Hi
1(m, c)

1 : if l ≥ (i+ b) ∧ (m, c) = (mi+1, ci+1)

// (mi+1, ci+1) is the measurement outcome

// on B’s (i+ 1)-th query input register

2 : return k̄

3 : else return H(m, c)

4 : l = l + 1

Fig. 6: Games G3A-G4A for the proof of Lemma 4.1

Note that C needs to implicitly query H(m̄, c̄) to simulate the Decaps o-
racle. That is, C makes qH + 1 H-queries in total. In the following, unless
otherwise specified, the H-queries we mentioned does not include this implic-
it H-query. Let SC(Θ) be an oracle algorithm that always returns Θ for C’s
implicit classical H-query H(m̄, c̄). S samples a uniform (i, b)←$ ([qH − 1] ×
{0, 1}) ∪ {(qH , 0)}, runs C |H〉 until the C’s (i + 1)-th query (excluding the im-
plicit H-query), measures the query input registers to obtain x, continues to run
C |H〉 until the (i + b + 1)-th H-query, reprogram H to HxΘ (HxΘ(x) = Θ and
HxΘ(x′) = H(x′) for all x′ 6= x), and runs A|HxΘ〉 until the end to output z. Let
x = (m̄, c̄), y = Θ, and z = (z1, z2, z3) = (Decaps(sk, c̄),m∗,m′). SC outputs
(x, z). Note that V1(x, y, z) = (y =?z1) = 1 for SC . Sample Θ = k̄←$K and
H ←$ΩH . Then, SC(Θ) perfectly simulates game G4A and we have Pr[GB4A ⇒
1] =

∑
x0PrH,Θ[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SC ].

According to Lemma 3.1,
∑
x0 PrH [x = x0 ∧ V (x,H(x), z) = 1 : (x, z) ←

C |H〉] ≤ 2(2qH + 1)2
∑
x0PrH,Θ[x = x0 ∧ V (x,Θ, z) = 1 : (x, z)← SC ] + 8(qH +
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1)2 1
|K| . Therefore, we get

Pr[GB3A ⇒ 1] ≤ 8(qH + 1)2(Pr[GB4A ⇒ 1] + 1/|K|).

Now, we can construct a OW-CPA adversary A(pk, c∗) against PKE′, where
(pk, sk)← Gen′,m∗←$M, c∗ ← Enc(pk,m∗). A samples k∗, k̄, j, i, b as in game
G4A, picks a 2qH -wise independent function H (undistinguishable from a ran-
dom function for a qH -query adversary according to [41, Theorem 6.1]), runs

B|Hi1〉,Decaps(pk, c∗, k∗) (the simulations of Hi
1,Decaps are the same as the ones

in game G4A) until the (j +1)-th query, measures B’s query input register to
obtain (m′, c′), finally outputs m′ as a return. It is obvious that the advantage
of A against the OW-CPA security of PKE′ is exactly Pr[GB4A ⇒ 1]. Putting
everything together, we have

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)2
√
AdvOW−CPA

PKE′ (A) + 1/ |K|.

Lemma 4.2. There exists an adversary A against the OW-CPA security of de-
terministic PKE′ such that Time(A) ≈ Time(B) +O(q2

H) +O(qH ·Time(Enc′))

and AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)
√
AdvOW-CPA

PKE′ (A) + 1/ |K|+ δ.

The proof of Lemma 4.2. Define games G3B , G4B and G5B as in Fig. 7.
Let z1 = (pk, sk, c∗, k∗0), where (pk, sk) ← Gen′, k∗0 ←$K, m∗←$M, and c∗ ←
Enc(pk,m∗). Sample G←$ΩH . Let G′ be an oracle such that G′(m∗, c∗) = k∗0 ,
and G′(x) = G(x) for x 6= (m∗, c∗). Let A|O〉(z1) (O ∈ G,G′) be an oracle
algorithm that first samples k∗1 ←$K, b←$ {0, 1}, then runs B|O〉,Decaps(pk, c∗, k∗b )
to obtain b′ (simulating Decaps as in games G0 and G1), finally returns b′ =?b.
Thus, we have Pr[GB0 ⇒ 1] = Pr[1 ← A|G

′〉(z1)] and Pr[GB1 ⇒ 1] = Pr[1 ←
A|G〉(z1)].

Lemma 2.2 states that there exists an oracle algorithm B̄|G〉,|G
′〉(z1) such

that |Pr[1 ← A|G〉(z1)] − Pr[1 ← A|G
′〉(z1)| ≤ 2

√
Pr[(m∗, c∗)← B̄|G〉,|G′〉(z1)].

Define game G3B as in Fig. 7, where B̂ is the same as B̄ except that B̂ simulates
B’s Decaps query using a given Decaps oracle (implemented as in G0 and G1).

Thus, it is obvious that Pr[(m∗, c∗) ← B̄|G〉,|G
′〉(z1)] ≤ Pr[GB̂3B ⇒ 1]. Thus, we

have

AdvIND-1-CCA
KEMRH

(B) ≤ 2

√
Pr[GB̂3B ⇒ 1].

GameG4B is identical to gameG3B except the simulation ofG′. In gameG4B ,
the judgement condition (m, c) = (m∗, c∗) is replaced by c = c∗ ∧Enc′(pk,m) =
c∗ without knowledge of m∗. Define COLL as an event that there is a message
m 6= m∗ such that Enc′(pk,m) = c∗ = Enc′(pk,m∗). Note that if COLL does
not happen (implied by the injectivity of DPKE), then G4B and G3B have the
same distribution. Thus, we have∣∣∣Pr[GB̂3B ⇒ 1]− Pr[GB̂4B ⇒ 1]

∣∣∣ ≤ δ.
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G3B −G5B

1 : (pk, sk)← Gen′, G←$ΩH , k
∗
0 , k̄←$K,m∗ ←$M, c∗ ← Enc(pk,m∗)

2 : l = 0, (i, b)←$ ([qH − 1]× {0, 1}) ∪ {(qH , 0)}

3 : (m′, c′)← B̂|G〉,|G
′〉,Decaps(pk, c∗, k∗0) //G3B , G4B

4 : (m′, c′)← B̂|G
i
1〉,|G

′〉,Decaps(pk, c∗, k∗0) //G5B

5 : return m∗ =?m′

Decaps (sk, c̄ 6= c∗)

1 : if more than 1 query return ⊥
2 : return k̄ //G5B

3 : m̄′ := Dec′(sk, c̄)

4 : if m̄′ =⊥ do m̄ = ?

5 : else do m̄ = m̄′

6 : return K := G(m̄, c̄)

Gi
1(m, c)

1 : if l ≥ (i+ b) ∧ (m, c) = (mi+1, ci+1)

// (mi+1, ci+1) is the measurement outcome

// on B̂’s (i+ 1)-th query input register

2 : return k̄

3 : else return G(m, c)

4 : l = l + 1

G′(m, c)

1 : if (m, c) = (m∗, c∗) //G3B

2 : if c = c∗ ∧ Enc′(pk,m) = c∗ //G4B −G5B

3 : return k∗0//G3B −G5B

4 : return G(m, c)//G3B −G4B

5 : return Gi
1(m, c)//G5B

Fig. 7: Games G3B −G5B for the proof of Lemma 4.2

In game G5B , Decaps is modified to output a random Θ = k̄ for the single
query c̄, and the random oracle G is correspondingly reprogrammed conditioned
on (i, b), where (i, b)←$ ([qH − 1]× {0, 1}) ∪ {(qH , 0)}. Using Lemma 3.1 in the
same way as in Lemma 4.1, we have

Pr[GB̂4B ⇒ 1] ≤ 8(qH + 1)2(Pr[GB̂5B ⇒ 1] + 1/ |K|).

Now, we can construct a OW-CPA adversary A(pk, c∗) against deterministic
PKE′, where (pk, sk)← Gen′,m∗←$M, c∗ ← Enc(pk,m∗). A samples k∗0 , k̄, i, b

as in game G5B , picks a 2qH -wise function G, runs B̂|G
i
1〉,|G

′〉,Decaps(pk, c∗, k∗)
(the simulations of Gi1, G

′,Decaps are the same as in game G5B) to obtain
(m′, c′), finally outputs m′ as a return. It is obvious that the advantage of A
against the OW-CPA security of deterministic PKE′ is exactly Pr[GB̂5B ⇒ 1].
Thus, we have

AdvIND-1-CCA
KEMRH

(B) ≤ 2
√

8(qH + 1)2(AdvOW-CPA
PKE′ (A) + 1/ |K|) + δ

≤ 6(qH + 1)
√
AdvOW-CPA

PKE′ (A) + 1/ |K|+ δ.
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Lemma 4.3. There exists an adversary D against the IND-CPA security of
probabilistic PKE′ such that Time(D) ≈ Time(B)+O(q2

H) and AdvIND-1-CCA
KEMRH

(B) ≤

6(qH + 1)
√

4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|.

The proof of Lemma 4.3. Define games G3C −G6C as in Fig. 8.

Let z1 = (pk, sk, c∗, k∗0), where (pk, sk) ← Gen′, k∗0 ←$K, m∗0,m
∗
1←$M,

b̄←$ {0, 1} and c∗ ← Enc(pk,m∗
b̄
). Sample G←$ΩH . Let G′ be an oracle such

that G′(m∗
b̄
, c∗) = k∗0 , and G′(x) = G(x) for x 6= (m∗

b̄
, c∗). Let A|O〉(z1) (O ∈

G,G′) be an oracle algorithm that first samples k∗1 ←$K, b̃←$ {0, 1}, then runs
B|O〉,Decaps(pk, c∗, k∗

b̃
) to obtain b̃′ (simulating Decaps as in games G0 and G1),

finally returns b̃′ =?b̃. Thus, we have Pr[GB0 ⇒ 1] = Pr[1 ← A|G
′〉(z1)] and

Pr[GB1 ⇒ 1] = Pr[1← A|G〉(z1)].

GAMES G3C −G6C

1 : (pk, sk)← Gen′, G←$ΩH , l = 0, (i, b)←$ ([qH − 1]× {0, 1}) ∪ {(qH , 0)}
2 : k∗0 , k̄←$K, b̄←$ {0, 1},m∗0,m∗1 ←$M, c∗ ← Enc(pk,m∗b̄)

3 : (m′, c′)← B̂|G〉,|G
′〉,Decaps(pk, c∗, k∗0) //G3C

4 : (m′, c′)← B̂|G
i
1〉,|G

′〉,Decaps(pk, c∗, k∗0) //G4C −G6C

5 : return (m∗b̄ , c
∗) =?(m′, c′)//G3C −G4C

6 : return (m∗1−b̄, c
∗) =?(m′, c′)//G5C

7 : if (m∗0, c
∗) = (m′, c′) then b̃′ = 0 else then b̃′ = 1//G6C

8 : return b̃′ =?b̄//G6C

Decaps (sk, c̄ 6= c∗) //G3C −G6C

1 : if more than 1 query return ⊥
2 : return k̄ //G4C −G6C

3 : m̄′ := Dec′(sk, c̄)

4 : if m̄′ =⊥ do m̄ = ?

5 : else do m̄ = m̄′

6 : return K := G(m̄, c̄)

Gi
1(m, c)

1 : if l ≥ (i+ b) ∧ (m, c) = (mi+1, ci+1)

// (mi+1, ci+1) is the measurement outcome

// on B’s (i+ 1)-th query input register

2 : return k̄

3 : else return G(m, c)

4 : l = l + 1

G′(m, c)

1 : if (m, c) = (m∗b̄ , c
∗) //G3C −G4C

2 : if (m, c) = (m∗1−b̄, c
∗) //G5C

3 : if (m, c) = (m∗0, c
∗) //G6C

4 : return k∗0//G3C −G6C

5 : return G(m, c)//G3C

6 : return Gi
1(m, c)//G4C −G6C

Fig. 8: Games G3C-G6C for the proof of Lemma 4.3
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Lemma 2.1 states that there exists an oracle algorithm B̄|G〉,|G
′〉(z1) such

that |Pr[1 ← A|G〉(z1)] − Pr[1 ← A|G
′〉(z1)| ≤ 2

√
Pr[(m∗

b̄
, c∗)← B̄|G〉,|G′〉(z1)].

Define game G3C as in Fig. 8, where B̂ is the same as B̄ except that B̂ simulates
B’s Decaps query using a given Decaps oracle (implemented as in G0 and G1).

Thus, it is obvious that Pr[(m∗
b̄
, c∗) ← B̄|G〉,|G

′〉(z1)] ≤ Pr[GB̂3C ⇒ 1]. Thus, we
have

AdvIND-1-CCA
KEMRH

(B) ≤ 2

√
Pr[GB̂3C ⇒ 1].

In game G4C , Decaps is modified to output a random Θ = k̄ for the single
query c̄, and the random oracle H is correspondingly reprogrammed conditioned
on (i, b), where (i, b)←$ ([qH − 1] × {0, 1}) ∪ {(qH , 0)}. Then, using Lemma 3.1
in the same way as in Lemma 4.1, we have

Pr[GB̂3C ⇒ 1] ≤ 8(qH + 1)2(Pr[GB̂4C ⇒ 1] + 1/ |K|).

Game G5C is identical to game G4C except that G′(m∗
b̄
, c∗) = k∗0 is replaced

by G′(m∗
1−b̄, c

∗) = k∗0 , and correspondingly (m∗
1−b̄, c

∗) =?(m′, c′) is returned

instead of (m∗
b̄
, c∗) =?(m′, c′).

Note that game G4C conditioned on b̄ = 1 has the same output distribution

as game G4C conditioned on b̄ = 0. Thus, we have Pr[GB̂4C ⇒ 1 : b̄ = 0] =

Pr[GB̂4C ⇒ 1 : b̄ = 1] = Pr[GB̂4C ⇒ 1]/2. Analogously, we have Pr[GB̂5C ⇒ 1 : b̄ =

1] = Pr[GB̂5C ⇒ 1]/2. Note that m∗
1−b̄ is independent of pk, c∗, k∗0 and G. Thus,

according to Lemma 2.3, we have

Pr[GB̂5C ⇒ 1 : b̄ = 1] ≤ (qH + 1)2/ |M| .

Define game G6C as in Fig. 8. Thus, Pr[GB̂6C ⇒ 1]

= 1/2 Pr[(m∗0, c
∗) = (m′, c′) : b̄ = 0] + 1/2 Pr[(m∗0, c

∗) 6= (m′, c′) : b̄ = 1]

= 1/2 Pr[(m∗0, c
∗) = (m′, c′) : b̄ = 0] + 1/2− 1/2 Pr[(m∗0, c

∗) = (m′, c′) : b̄ = 1]

= 1/2 + 1/2 Pr[GB̂4C ⇒ 1 : b̄ = 0]− 1/2 Pr[GB̂5C ⇒ 1 : b̄ = 1]

= 1/2 + 1/4(Pr[GB̂4C ⇒ 1]− Pr[GB̂5C ⇒ 1])

Now, we can construct an IND-CPA adversary D(pk) against PKE′, where
(pk, sk) ← Gen′. D samples m∗0,m

∗
1←$M, receives challenge ciphertext c∗ ←

Enc(pk,m∗
b̄
) (b̄←$ {0, 1}), samples k∗0 , k̄, i, b as in game G6C , picks a 2qH -wise

independent function H, runs B̂|G
i
1〉,|G

′〉,Decaps(pk, c∗, k∗0) (the simulations of
Gi1, G

′,Decaps are the same as in game G6C) to obtain (m′, c′), finally out-
puts 0 if (m∗0, c

∗) = (m′, c′), and returns 1 otherwise. Thus, apparently,∣∣∣Pr[GB̂6C ⇒ 1]− 1/2
∣∣∣ = AdvIND−CPA

PKE′ (D)

Putting everything together, we have

AdvIND-1-CCA
KEMRH

(B) ≤ 2
√

8(qH + 1)2(4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|)

≤ 6(qH + 1)
√

4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M|+ 1/ |K|.
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ut

Theorem 4.3 (TH → TRH). For any adversary B′ against the IND-1-CCA
security of KEMH = TH [PKE′, H], issuing qH queries to the random oracle H,
there exists an IND-1-CCA adversary B against KEMRH = TRH [PKE′, H]9 that
makes qH + 1 queries to H such that Time(B′) ≈ Time(B) and

AdvIND-1-CCA
KEMH

(B′) ≤ AdvIND-1-CCA
KEMRH

(B) + εcoll,

where εcoll is an advantage bound of an algorithm searching a collision of the
random oracle H with qH queries. In particular, εcoll = q2

H/ |K| in the ROM,
and εcoll = q3

H/ |K| in the QROM [42, Corollary 2].

Proof. Let B′H,DecapsTH (pk, c∗, k∗b ) be an adversary against the IND-1-CCA secu-
rity of TH [PKE′, H]. Construct an adversary BH,DecapsTRH (pk, c∗, k∗b ) that runs

B′H,Decaps′ (pk, c∗, k∗b ), and returns B′’s return. The oracle Decaps′ is simulated
by querying DecapsTRH . In detail, Decaps′(c̄) returns ⊥ if DecapsTRH (c̄) =
H(?, c̄). For other cases, Decaps′(c̄) just returns DecapsRH(c̄). Note that when
DecapsTH (c̄) = ⊥, Decaps′(c̄) returns⊥ with probability 1. When DecapsTH (c̄)
6= ⊥, Pr[DecapsRH(c̄) = H(?, c̄)] ≤ εcoll since ? /∈ M. Thus Decaps′(c̄)
returns DecapsH(c̄) with probability at least (1 − εcoll). That is, for any c̄,
DecapsTH (c̄) = Decaps′(c̄) with probability at least 1 − εcoll. Thus, we have
AdvIND-1-CCA

KEM (B′) ≤ AdvIND-1-CCA
KEM (B) + εcoll.

Remark 2. The proof of Theorem 4.3 requires ? /∈ M. Theorems 4.1 and 4.2
for KEMRH works for both ? ∈ M and ? /∈ M. Thus, combing Theorem-
s 4.1, 4.2, 4.3, we can directly obtain the (Q)ROM security proofs of KEMH =
TH [PKE′, H] with the same tightness as KEMRH = TRH [PKE′, H].

5 Tightness of the Reductions

In this section, we will show that for KEM = TRH [PKE′, H], a O(q)-ROM-loss
(and q2-loss) is unavoidable in general.

Theorem 5.1. Let PKE′ = (Gen′, Enc′, Dec′) be a PKE with malleability prop-
erty. Let M = {0, 1}n be the message space of PKE′. Then, there exists a
ROM (QROM, resp.) adversary B against the IND-1-CCA security of KEM =
TRH [PKE′, H] such that the advantage AdvIND-1-CCA

KEM (B) is about (1/e) q
|M| ((q+

1)2/|M|, resp.), where q is the number of queries to H such that 1/
√
|M| ≤

sin( π
6q+3 ) and q ≤ |K| (K is the key space).

Proof. Let (pk, sk) ← Gen′, m∗←$M, c∗ ← Enc(pk,m∗), k∗0 = H(m∗, c∗),
k∗1 ←$K, and b←$ {0, 1}. Since PKE′ satisfies the malleability property, there

9 In Theorem 4.3, the return value ? for invalid ciphertext in decapsulation of KEMRH

is required not in message space (i.e., ? /∈M).
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exists an algorithm B̄ that on input (pk, c∗) outputs (f, c′) such that (1) f(m∗) =
Dec(sk, c′) 6= ⊥; (2)f(m̃) 6= Dec(sk, c′) for any m̃ ∈M and m̃ 6= m.

Define the function gHc,k :M→ {0, 1} as

gHc,k(m) =

{
1 H(f(m), c) = k
0 Otherwise

First, we consider the ROM case. Let BH,Decaps(pk, c∗, k∗b ) be a ROM adver-
sary as follows.

1. Run B̄ to obtain (f, c′);
2. Query the Decaps oracle with c′ and obtain k′;
3. Randomly pick m1, . . . ,mq from M, and compute gHc′,k′(mi) for each i ∈
{1, . . . , q} by querying H;

4. If there exists an mi such that gHc′,k′(mi) = 1, return 1− (H(mi, c
∗) =?k∗b ),

else return ⊥.

Note that gHc′,k′(m
∗) = 1 with probability 1, and gHc′,k′(m̃) = 1 with negligible

probability 1/ |K| for m̃ 6= m∗. We also note that Pr[m∗ ∈ {m1, . . . ,mq}] = q
M .

Thus, the ROM advantage of B is at least q
M (1 − 1/ |K|)q−1 ' (1/e) q

M since
q ≤ |K|.

Next, we consider the QROM case. Let B|H〉,Decaps(pk, c∗, k∗b ) be a QROM
adversary as follows.

1. Run B̄ to obtain (f, c′);
2. Query the Decaps oracle with c′ and obtain k′;
3. Use Grover’s algorithm for q steps to try to find m∗. In details, apply

Grover iteration q time on initial state HGate⊗n|0n〉 and make a stan-
dard measurement to derive m̄, where Grover iteration is composed of o-

racle query Og that turns |m〉 into (−1)g
H
c′,k′ (m)|m〉, and diffusion operator

U = HGate⊗n(2|0n〉〈0n| − In)HGate⊗n;
4. Return 1−(H(m̄, c∗) =?k∗b ), where m̄ is the outcome obtained using Grover’s

algorithm in step 3.

Note that gHc′,k′(m
∗) = 1 with probability 1, and gHc′,k′(m̃) = 1 with negligible

probability 1/ |K| for m̃ 6= m∗. Let p0 = Pr[gHc′,k′(m) = 1 : m ∈ M] ≥ 1/ |M|.
By q Grover iterations (requiring q quantum queries to H), the probability p1

of finding m∗ is sin2((2q + 1)θ), where sin2(θ) = p0.
When 1/

√
|M| ≤ sin( π

6q+3 ), we have (2q + 1)θ ≤ π/3. Thus, we have

sin((2q + 1)θ) ≥ sin(θ) +
2q · θ

2
≥ (q + 1) sin(θ).

Therefore, we have p1 = sin2((2q + 1)θ) ≥ (q+1)2

|M| . Note that when m∗ is

obtained, one can derive b∗ with probability 1 by querying H(m̄, c∗). Thus, the

QROM advantage of B is at least (q+1)2

|M| . ut
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Remark 3. Most IND-CPA-secure PKEs has malleability property, e.g., ElGa-
mal, FrodoKEM.PKE [28], Kyber.PKE [8], etc. Moreover, malleability property
is inherent for a homomorphic PKE. Let PKE = (Gen,Enc,Dec) be homo-
morphic in addition. That is, Enc(pk,m1 +m2) = Enc(pk,m1) +Enc(pk,m2).
Then, we can construct algorithm B̄(pk, c∗) (c∗ ← Enc(pk,m∗)) that randomly
picks m ∈ M, computes c′ = c∗ + Enc(pk,m), and defines f(x) = x+m. Note
that f(m∗) = Dec(sk, c′) and f(m̃) 6= Dec(sk, c′) for m̃ 6= m(We assume the
PKE has perfect correctness for simplicity). Thus, the homomorphic property of
a PKE implies the malleability property in this paper.

Remark 4. For a λ-bit IND-CPA-secure malleable public-key encryption PKE′

with message space M = 2λ we require that any PPT adversary breaks the
security of PKE′ with advantage at most 1

2λ
. For example, such a PKE′ can be

constructed based on the LWE assumption by a suitable parameter selection [34].
Theorem 5.1 shows that a ROM (QROM, resp.) adversary against the IND-1-
CCA security of KEM = TRH [PKE′, H] can achieve advantage at least (1/e) q

2λ

( (q+1)2

2λ
, resp.), where q is the number of adversary’s queries to H. That is, a

O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM (QROM, resp.) for TRH .

Remark 5. We remark that the output of decapsulation for an invalid ciphertext
c is irrelevant to the attack given in Theorem 5.1. Thus, the aforementioned
tightness results can also be applied to TH . We also remark that such a tightness
result can also be extended to the IND-1-CCA KEM construction TCH given
in [21], where there is tag tag = H ′(m∗, c∗0) in the ciphertext (c∗0 ← Enc(pk,m∗)),
and the key is computed by K = H(m∗). The idea is that the adversary against
KEM can first search m∗ such that tag = H ′(m∗, c∗0) by querying H ′, and then
query H with m∗, thus break the key indistinguishability. Following the same
analysis in Theorem 5.1, one can easily derive the same tightness result for TCH .

6 Relations among Notions of CCA Security for KEM

In this section, we will compare the relative strengths of notions of IND-1-CCA
security and IND-CCA security in ROM and QROM. In detail, we works out
the relations among four notions. For each pair of notions A,B ∈ { IND-1-CCA
ROM, IND-1-CCA QROM, IND-CCA ROM, IND-CCA QROM }, we show one
of the following:

– A ⇒ B: A proof that if a KEM meets the notion of security A then it also
meets the notion of security B.

– A ; B: There is a KEM construction that provably meets the notion of
security A but does not meet the notion of security B.

First, according to the security definitions, one can trivially derive the re-
lations IND-CCA QROM ⇒ IND-1-CCA QROM ⇒ IND-1-CCA ROM, and
IND-CCA QROM ⇒ IND-CCA ROM ⇒ IND-1-CCA ROM. Next, we show the
other nontrivial relations.
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Theorem 6.1. If the LWE assumption (Definition B.1) holds, then we have
IND-1-CCA ROM; IND-1-CCA QROM, IND-CCA ROM;IND-1-CCA QROM
and IND-CCA ROM ;IND-CCA QROM.

Proof. First, if the LWE assumption holds, we can have a KEM=(Gen,Encaps,
Decaps) that satisfies the IND-CCA ROM security. For example, FrodoKEM [28]
is such a KEM whose IND-CCA ROM security can be reduced to the LWE
assumption. Let PoQRO=(Setup, Prove, V erify) (Definition C.1) be a proof
of quantum access to random oracle H, whose existence is based on the LWE
assumption, see Lemma C.1. Here, H is independent of the KEM.

Construct a new KEM′=(Gen′, Encaps′, Decaps′) as in Fig. 9. Note that any
efficient ROM adversary cannot find a c2 such that V erifyH(sk2, c2) = 1 (oth-
erwise the soundness of the PoQRO is broken). Thus, for an efficient ROM ad-
versary, querying oracle Decaps′ is equivalent to querying oracle Decaps. Thus,
KEM′ also meets the IND-CCA ROM security.

Gen′

1 : (pk1, sk1)← Gen

2 : (pk2, sk2)← Setup

3 : pk = (pk1, pk2)

4 : sk = (sk1, sk2)

5 : return (pk, sk)

Encaps′(pk)

1 : parse pk = (pk1, pk2)

2 : (K, c1)←$Encaps(pk1)

3 : c = (c1,⊥)

4 : return (K, c)

Decaps′(sk, c)

1 : parse sk = (sk1, sk2)

2 : parse c = (c1, c2)

3 : if V erifyH(sk2, c2) = 1

4 : return sk1

5 : return Decaps(sk1, c1)

Fig. 9: Separation instance KEM′ for Theorem 6.1.

Meanwhile, a QROM adversary can find a c2 such that V erifyH(sk2, c2) = 1.
Thus, by querying oracleDecaps′ (only one time), a QROM adversary can obtain
sk1, hence break the IND-CCA security of KEM′. Therefore, KEM′ does not
meet the IND-1-CCA QROM security (and also IND-CCA QROM security).
Since KEM meets the IND-CCA ROM security, KEM is also IND-1-CCA-secure
in the ROM. Hence, we have IND-1-CCA ROM;IND-1-CCA QROM, IND-
CCA ROM;IND-1-CCA QROM and IND-CCA ROM;IND-CCA QROM. ut

Theorem 6.2. If the LWE assumption holds, then we have IND-1-CCA ROM
;IND-CCA ROM, IND-1-CCA QROM;IND-CCA QROM, and IND-1-CCA
QROM;IND-CCA ROM.

Proof. Let (Gen,Enc,Dec) be the key-generation, encryption and decryption al-
gorithms of FrodoPKE [28], whose IND-CPA security can be reduced to the LWE
assumption. Then, according to Theorems 4.1 and 4.2, KEM=TRH [FrodoPKE, H]
is IND-1-CCA secure in both ROM and QROM. Note that such a KEM is essen-
tially a FO-KEM without re-encryption. Qin et al. [33] had shown such a KEM
is vulnerable to key-mismatch attacks that can recover the secret key with only
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polynomial queries to the decapsulation oracle. That is, KEM=TRH [FrodoPKE, H]
is not IND-CCA-secure in ROM (and QROM). Hence, we have IND-1-CCA
ROM;IND-CCA ROM, IND-1-CCA QROM; IND-CCA QROM, and IND-1-
CCA QROM ;IND-CCA ROM. ut
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A Supporting Material: Cryptographic Primitives

Definition A.1 (Public-key encryption). A public-key encryption (PKE)
scheme PKE consists of a triple of polynomial time (in the security parameter
λ) algorithms and a finite message space M. (1) Gen(1λ) → (pk, sk): the key
generation algorithm, is a probabilistic algorithm which on input 1λ outputs a
public/secret key-pair (pk, sk). Usually, for brevity, we will omit the input of
Gen. (2) Enc(pk,m) → c: the encryption algorithm Enc, on input pk and a
message m ∈M, outputs a ciphertext c← Enc(pk,m). (3) Dec(sk, c)→ m: the
decryption algorithm Dec, is a deterministic algorithm which on input sk and a
ciphertext c outputs a message m := Dec(sk, c) or a rejection symbol ⊥/∈M.

Definition A.2 (Correctness [17]). A PKE is δ-correct if E[ max
m∈M

Pr[Dec(sk, c)

6= m : c← Enc(pk,m)]] ≤ δ, where the expectation is taken over (pk, sk)← Gen.
We say a PKE is perfectly correct if δ = 0.

Note that this definition works for a deterministic or randomized PKE, but for
a deterministic PKE10 the term max

m∈M
Pr[Dec(sk, c) 6= m : c = Enc(pk,m)] is

either 0 or 1 for each keypair (pk, sk).

Definition A.3 (Injectivity of DPKE [6]). A deterministic PKE (DPKE)
is ε-injective if Pr[Enc(pk, ∗) is not injective : (pk, sk)← Gen] ≤ ε.

Remark 6. we observe that if DPKE is δ-correct, then DPKE is injective with
probability ≥ 1− δ. That is, for DPKE, δ-correctness implies δ-injectivity.

Definition A.4 (OW-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define OW − CPA game
of PKE as in Fig. 10. Define the OW − CPA advantage function of an adversary
A against PKE as AdvOW-CPA

PKE (A) := Pr[OW-CPAAPKE = 1].

10 A PKE is determinstic if Enc is deterministic
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Game OW-CPA

1 : (pk, sk)← Gen,m∗
$←M

2 : c∗ ← Enc(pk,m∗),m′ ← A(pk, c∗)

3 : return m′ =?m∗

Game IND-CPA

1 : (pk, sk)← Gen, b←$ {0, 1}
2 : (m0,m1)←A(pk)

3 : c∗ ← Enc(pk,mb), b
′ ← A(pk, c∗)

4 : return b′ =?b

Fig. 10: Game OW-CPA and game IND-CPA for PKE.

Definition A.5 (IND-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
PKE scheme. Define IND− CPA game of PKE as in Fig. 10, where m0 and m1

have the same length. Define the IND− CPA advantage function of an adversary
A against PKE as AdvIND-CPA

PKE (A) := |Pr[IND-CPAAPKE = 1]− 1/2|.

Malleability. In this paper, we say a PKE = (Gen,Enc,Dec) has a malleability
property if for any (pk, sk) generated by Gen, any m ∈M, and c← Enc(pk,m),
there exists an algorithm B that on input (pk, c) outputs (f, c′) such that (1)
f(m) = Dec(sk, c′) (Dec(sk, c′) 6= ⊥) (2) f(m̃) 6= Dec(sk, c′) for any m̃ ∈ M
and m̃ 6= m.

Definition A.6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms. (1) Gen(1λ) → (pk, sk): the key generation algo-
rithm Gen outputs a key pair (pk, sk). Usually, for brevity, we will omit the
input of Gen. (2) Encaps(pk) → (K, c): the encapsulation algorithm Encaps,
on input pk, outputs a tuple (K, c), where K ∈ K and ciphertext c is said to be
an encapsulation of the key K. (3) Decaps(sk, c)→ K: the deterministic decap-
sulation algorithm Decaps, on input sk and an encapsulation c, outputs either
a key K := Decaps(sk, c) ∈ K or a rejection symbol ⊥/∈ K.

Definition A.7 (IND-CCA-secure KEM). We define the IND− CCA game
as in Fig. 11 and the advantage function of an adversary A against KEM as
AdvIND-CCA

KEM (A) :=
∣∣Pr[IND-CCAAKEM = 1]− 1/2

∣∣ .
Game IND-CCA

1 : (pk, sk)← Gen, b
$← {0, 1}

2 : (K∗0 , c
∗)← Encaps(pk),K∗1

$← K

3 : b′ ← ADecaps(pk, c∗,K∗b )

4 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗return ⊥
2 : else return

3 : K := Decaps(sk, c)

Fig. 11: IND-CCA game for KEM.

B Supporting Material: Learning with Error (LWE)

Definition B.1. Let n,m, q be positive integers, and let χ be a distribution
over Z. The (decision) LWE problem is to distinguish between the distributions
(A,As + e(modq)) and (A,u), where A←$Zn×mq , s←$Znq , e← χm, u←$Zmq .
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In this paper, we refer the LWE assumption to that no quantum polynomial-time
algorithm can solve the LWE problem with more than a negligible advantage.

C Supporting Material: Proof of Quantum access to
Random Oracle (PoQRO)

Definition C.1 ([40]). A (non-interactive) proof of quantum access to a ran-
dom oracle (PoQRO) consists of the following three algorithms. (1) Setup(1λ):
This is a classical algorithm that takes the security parameter 1λ as input and
outputs a public key pk and a secret key sk. (2) Prove|H〉(pk): This is a quantum
algorithm that takes a public key pk as input and given quantum access to a ran-
dom oracle H, and outputs a proof π11. (3) V erifyH(sk, π): This is a classical
algorithm that takes a secret key sk and a proof π as input and given classical
access to a random oracle H, and outputs 1 indicating acceptance or 0 indicating
rejection. PoQRO is required to satisfy the following properties.
Correctness. We have Pr[V erifyH(sk, π) = 0 : (pk, sk) ← Setep(1λ), π ←
Prove|H〉(pk)] ≤ negl(λ) .
Soundness. For any quantum polynomial-time adversary A that is given a
classical oracle access to H, we have Pr[V erifyH(sk, π) = 1 : Setep(1λ), π ←
AH(pk)] ≤ negl(λ) .

Lemma C.1 ([40, Theorem 3.3]). If the LWE assumption holds, then there
exists a PoQRO.
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26. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.: Measure-rewind-measure:
Tighter quantum random oracle model proofs for one-way to hiding and CCA
security. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT
2020. LNCS, vol. 12107, pp. 703–728. Springer (2020), https://doi.org/10.1007/
978-3-030-45727-3\_24

27. Melissa Azouaoui, Joppe W. Bos, B.F.M.G.Y.K.J.R.T.S.C.v.V.O.B.C.H.F.X.S.:
Surviving the fo-calypse: Securing pqc implementations in practice. RWC
2022 (2022), https://iacr.org/submit/files/slides/2022/rwc/rwc2022/48/

slides.pdf

28. Naehrig, M. and Alkim, E. and Bos, J. and Ducas, L. and Easterbrook, K. and
LaMacchia, B. and Longa, P. and Mironov, I. and Nikolaenko, V. and Peikert, C.
and Raghunathan, A. and Stebila, D.: FrodoKEM Learning With Errors Key En-
capsulatio. https://frodokem.org/files/FrodoKEM-specification-20210604.

pdf

29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
No. 2, Cambridge University Press (2000)

30. NIST: National institute for standards and technology. Post quan-
tum crypto project (2017), https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions

33



31. OQS: Open-quantum-safe OpenSSL (2021), https://github.com/

open-quantum-safe/openssl

32. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange.
In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO
2018. LNCS, vol. 10991, pp. 3–32. Springer (2018), https://doi.org/10.1007/

978-3-319-96884-1\_1

33. Qin, Y., Cheng, C., Zhang, X., Pan, Y., Hu, L., Ding, J.: A systematic ap-
proach and analysis of key mismatch attacks on lattice-based NIST candidate
kems. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT
2021. LNCS, vol. 13093, pp. 92–121. Springer (2021), https://doi.org/10.1007/
978-3-030-92068-5\_4

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual
ACM Symposium on Theory of Computing. pp. 84–93. ACM (2005), https:

//doi.org/10.1145/1060590.1060603

35. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) Advances
in Cryptology – EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551 (2018)

36. Schneider, T.: Implicit rejection in kyber. NIST pqc-forum (2022),
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/

3e210b6f-08d3-48f3-9689-1d048f9b3c58n\%40list.nist.gov

37. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp.
1461–1480. ACM (2020), https://doi.org/10.1145/3372297.3423350

38. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS with
pre-distributed public keys. In: Bertino, E., Shulman, H., Waidner, M. (eds.) Com-
puter Security - ESORICS 2021. LNCS, vol. 12972, pp. 3–22. Springer (2021),
https://doi.org/10.1007/978-3-030-88418-5\_1

39. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of
re-encryption: A generic power/em analysis on post-quantum kems. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2022(1), 296C322 (Nov
2021), https://tches.iacr.org/index.php/TCHES/article/view/9298, artifact
available at https://artifacts.iacr.org/tches/2022/a7,

40. Yamakawa, T., Zhandry, M.: Classical vs quantum random oracles. In: Can-
teaut, A., Standaert, F. (eds.) Advances in Cryptology - EUROCRYPT 2021.
LNCS, vol. 12697, pp. 568–597. Springer (2021), https://doi.org/10.1007/

978-3-030-77886-6\_20

41. Zhandry, M.: Secure identity-based encryption in the quantum random oracle mod-
el. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO 2012.
LNCS

42. Zhandry, M.: How to record quantum queries, and applications to quantum in-
differentiability. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptol-
ogy - CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer (2019), https:

//doi.org/10.1007/978-3-030-26951-7\_9

34


