
Noname manuscript No.
(will be inserted by the editor)

AutoPOI: Automated Points Of Interest Selection for
Side-channel Analysis

Mick G.D. Remmerswaal · Lichao Wu · Sébastien Tiran · Nele Mentens

Received: date / Accepted: date

Abstract Template attacks (TAs) are one of the most

powerful Side-Channel Analysis (SCA) attacks. The suc-

cess of such attacks relies on the effectiveness of the

profiling model in modeling the leakage information. A

crucial step for TA is to select relevant features from the

measured traces, often called Points Of Interest (POIs),

to extract the leakage information. Previous research

indicates that properly selecting the input leaking fea-

tures could significantly increase the attack performance.

However, due to the presence of SCA countermeasures

and advancements in technology nodes, such features

become increasingly difficult to extract with conven-

tional approaches such as Principle Component Analy-

sis (PCA) and the Sum Of Squared pairwise T-differences

based method (SOST).

This work proposes a framework, AutoPOI, based

on proximal policy optimization to automatically find,

select, and scale down features. The input raw features

are first grouped into small regions. The best candi-

dates selected by the framework are further scaled down

with an online-optimized dimensionality reduction neu-

ral network. Finally, the framework rewards the perfor-

mance of these features with the results of TA. Based on

the experimental results, the proposed framework can

Mick G.D. Remmerswaal
Leiden University, The Netherlands
E-mail: mickremmerswaal@gmail.com

Lichao Wu
Delft University of Technology, The Netherlands
E-mail: lichao.wu9@gmail.com

Sébastien Tiran
Delft, The Netherlands
E-mail: sebastien.tiran@gmail.com

Nele Mentens
KU Leuven, Belgium and Leiden University, The Netherlands
E-mail: nele.mentens@kuleuven.be

extract features automatically that lead to comparable

state-of-the-art performance on several commonly used

datasets.

Keywords Side-channel Analysis, Points Of Interest

Selection, Deep Reinforcement Learning, Proximal

Policy Optimization

1 Introduction

Since the pioneering work of Paul Kocher with differ-

ential power analysis (DPA) [14], many improvements

have been made in Side-Channel Analysis (SCA). Among

the newly developed attacks, the Template Attack (TA) [5]

is considered one of the most potent candidates. TA

contains two phases: a profiling phase and an attack

phase. In the profiling phase, the attacker creates tem-

plates of the leakage information based on a similar

or identical device under the attacker’s control. Then,

an attacker uses these templates to retrieve the hidden

assets from leakages acquired from the device under at-

tack. The most classical approach to building templates

is forming a multivariate normal distribution for each

cluster with a mean vector and a covariance matrix [19].

More advanced techniques, such as Machine Learning

(ML) and Deep Learning (DL), have been recently ap-

plied in profiling SCA [22,3,10,11,18], which proves

their competitiveness/superiority in breaking various

devices compared with the conventional statistic-based

approaches. One of the main advantages of DL-based

approaches is their limited (or no) requirement for leak-

age preprocessing. However, such methods are criticized

due to the complexity of the model and the lack of in-

terpretability.

On the other hand, Template Attacks could be more

favorable since they are based on a statistical model

2 Mick G.D. Remmerswaal et al.

with limited tunable hyperparameters. Unfortunately,

the effectiveness of the TA heavily relies on the prepro-

cessing of the leakage measurements [22], more specif-

ically, Points Of Interest (POI) selection, which tries

to capture the most relevant features from within the

measurements and uses these to mount an attack. In-

deed, POI selection is an essential step in the SCA life

cycle and can dictate the performance of, arguably, one

of the strongest attacks [16,37]. However, a proper POI

selection can be challenging due to environmental noise

and countermeasures. Even worse, most SCA research is

benchmarked on preprocessed datasets with pre-defined

(and unrealistic) narrow time windows, which may lead

to a reduced drive to research proper POI selection

methods. From an attacker’s perspective, “how to find

the optimal strategy for POI selection for a given

dataset?” is still an unanswered question [19].

Fortunately, finding an optimal strategy to reach a

goal is one of the strengths of reinforcement learning

(RL). RL has already been employed in the field of

SCA and produced state-of-the-art performance when

optimizing network architectures for Deep Learning at-

tacks [26]. This work introduces a deep reinforcement

learning-driven framework called AutoPOI for automatic

points of interest selection. The framework generally

provides a fire-and-forget method, devised as an alter-

native to manually selecting POIs. AutoPOI automati-

cally selects several Points Of Interest (POIs) and sub-

sequently scales down the dimensions further by deliv-

ering an optimized dimensionality reduction network

based on the triplet network [37]. Since this frame-

work automatically combines the conventional POI se-

lection method and the DL-based method, it reduces

the amount of work and domain knowledge needed for

the proper points of interest selection.

The contributions of this work are the following:

- This work is the first to propose the use of Deep

Reinforcement Learning for POI selection through

the AutoPOI framework.

- The results show that state-of-the-art attack perfor-

mance can be achieved with AutoPOI, alleviating

the need for predefined narrow time windows.

- With the extracted features from the AutoPOI frame-

work, the Template Attack reaches outstanding at-

tack performance compared to the state-of-art.

This paper is divided into several sections. Section 2

gives background information into policy-based rein-

forcement learning and proximal policy optimization.

Then, Section 3 provides insight into the related work

in SCA, emphasizing points of interest selection. Sec-

tion 4 introduces the proposed framework and explains

how proximal policy optimization is used for points of

interest selection. Section 5 describes the experimen-

tal setup and the datasets used for benchmarking. Sec-

tion 7 gives the results and discussion for each dataset.

Finally, a conclusion and future work are outlined in

Section 8.

2 Background

2.1 Notation

For the mathematical equations in this paper, numeri-

cal vectors are denoted with a bar; matrices are denoted

in bold capitals, and sets are denoted with calligraphic

letters. For SCA, a set of leakage traces T consists of

traces ti. Each trace is associated with either a plain-

text di or a ciphertext ci. The key space is defined as

the set of all keys, K consisting of individual keys ki and

the correct key k∗. For reinforcement learning, we de-

note the learnable parameters associated with a neural

network, at a certain timestep t, as θt.

2.2 Profiling Side-channel Analysis

Profiling Side-Channel Analysis assumes an attacker

has a clone device identical (or at least similar) to the

device to be attacked. During the profiling phase, an

attacker first measures leakage traces from the cloned

device, then creates profiles based on these leakages.

Finally, these profiles are applied to the device under

attack; the secret information is predicted based on the

profiles’ output.

Using Template Attack as an example, given a key
kj and a trace t̄i, the conditional probability p(kj |t̄i)
can be calculated using Bayes Theorem, as shown in

Eq. (1). An extension to multiple traces is shown in

Eq. (2).

p(kj |t̄i) =
p(ti|kj)p(kj)∑K

l=1(p(ti|kl)p(kl))
(1)

p(kj |T) =
(
∏T

i=1 p(ti|kj))p(kj)∑K
l=1((

∏T
i=1 p(ti|kl))p(kl))

(2)

In practice, the intermediate data, instead of the

key, is used to build the template. An attacker con-

trols the parameters used for the template, namely the

plaintext di or ciphertext ci and the key ki. The tem-

plate of each intermediate data hdi,ki
is defined ac-

cording to a multivariate normal distribution with a

mean vector and a covariance matrix (m̄,C) [19], such

that hdi,ki = (m̄,C)di,ki . Therefore, the probability

p(ti|kl) can be transformed to p(ti|hdl,kl
). Furthermore,

Automated Points Of Interest Selection for Side-channel Analysis 3

the probability is then calculated using a maximum

likelihood equation as depicted in Eq. (3).

p(t|(m̄,C)di,ki) =
exp(− 1

2 (t− m̄)TC−1(t− m̄))√
(2π)T det(C)

(3)

The maximum likelihood for each template is cal-

culated for each trace, which is then mapped to key

guesses based on their relationship with the targeted

intermediate data. The key guess with the highest max-

imum likelihood is k∗.

2.2.1 Points of Interest Selection

Points Of Interest (POI) selection is the method of

distinguishing between relevant (to the secret informa-

tion) and irrelevant or redundant features within the

traces [22]. In general, there are three approaches for

POI selection:

– Feature selection methods.

– Dimensionality reduction methods.

– Deep learning-based methods.

Feature selection methods create a subset of the in-

put features and use these as the attack features. One

of the most used Feature Selection methods is Signal-

to-Noise Ratio (SNR) [28][19] and is a measurement to

compare the amount of the desired signal against the

unwanted amount of noise. Another technique is the

Sum Of Squared T-Differences (SOST) introduced in

work by Gierlichs et al. [9]. Both methods select POIs

based on a top-n approach.

Dimensionality reduction methods transform the orig-

inal features, using statistical analysis or mathematical

operations, to a new subspace of features and use the

subspace for the attack. Two methods for Dimensional-

ity Reduction used for POI selection are Principal Com-

ponent Analysis (PCA) [12] and Linear Discriminant

Analysis (LDA) [8]. PCA and LDA find a linear combi-

nation of the variables to separate the data according to

the variance. The main difference is that LDA considers

the class label, whereas PCA ignores these.

Deep learning-based methods transform raw features

into a new set of features. With the recent shift from

statistical analysis for POI selection to Machine Learn-

ing techniques, Wu et al. [37] introduced the triplet

network for feature extraction. The triplet network uses

similarity learning to distinguish greater similarities be-

tween leakages of the same label while simultaneously

increasing the distance of leakages with differing labels.

This work introduces a new approach to POI selec-

tion based on Deep Reinforcement Learning, the Au-

toPOI framework. The framework is based on the Prox-

imal Policy Optimization algorithm and provides an

automated method of finding and combining relevant

POIs tailored to a dataset.

2.2.2 Hypothetical Leakage Models

Side-channel analysis usually consists of adopting a divide-

and-conquer approach and attacking a key in chunks

to recover it fully. When targeting the AES, a typical

choice of length for these chunks is a byte, which cor-

responds to the amount of data that goes through the

AES S-Boxes.

Different leakage models can be adopted in practice;

their results may vary depending on the target device.

The Hamming Weight (HW) leakage model classifies a

byte according to its HW, while the Identify (ID) model

classifies a byte according to each of its 256 possible

values. A typical approach for AES is to target the S-

box output of the first round or the S-box input of

the last round when considering the HW or ID models.

Another type of leakage model is the result of the XOR

between two values. Often the Hamming Weight of this

XOR is calculated and is referred to as the Hamming

Distance. A typical approach for AES is to compute the

XOR (or HW of the XOR, i.e., HD) between the final

output and the S-box input of the last round. In this

paper, all leakage models are considered benchmarks

for each dataset.

2.2.3 Metrics

Guessing Entropy (GE) [33] is commonly used to eval-

uate the effectiveness of SCA. The Guessing Entropy is

based on a guessing vector g = [g1, ..., g|K|]. Here, |K|
denotes the search space of the key, in the case of AES

|K| = 256 for a byte. g contains the key candidates in

decreasing order of probability: g1 is the most likely,

and g|K| is the least likely key candidate.

GE is the average ranking of the correct key k∗

among the other key guesses, where the averaging is

done over multiple attacks. The GE is calculated for

each new test trace processed, resulting in a vector de-

scribing the evolution of the GE with the number of

test traces processed. This is called the ranking vector.

An attack is successful if it achieves a GE of 0 (the

correct key is assigned with the highest rank among all

key candidates). If the target of the attack is not the

full key but only one byte, it is commonly referred to as

Partial Guessing Entropy. This work uses these terms

interchangeably.

4 Mick G.D. Remmerswaal et al.

2.3 Reinforcement Learning

Reinforcement learning (RL) [34] is the act of learning

through taking actions from observations made within

an environment while being given an increasing reward

for correct actions taken. A graphical representation

can be found in Figure 1. An agent makes observations

from the environment called states. In time step t, the

agent receives state St from the environment and acts

by following a specific policy π or transition probability

T by taking action At. The environment takes action

into account, gives a reward Rt based on a reward func-

tion f(St, At), and returns a new state St+1. When the

agent reaches a predetermined terminal state, the envi-

ronment sends a done signal to the agent. From there

on out, a new sequence of states, actions, and rewards

begin.

Fig. 1: A graphical representation of a generic RL en-

vironment [34].

2.4 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is the class of RL

algorithms that use Artificial Neural Networks.

2.4.1 Q-Networks

The work by Mnih et al. [20] describes the development

of the Deep Q-Network (DQN) algorithm in their efforts

to create a single algorithm capable of solving a wide

range of challenging tasks. Instead of a Q-table that

stores the values that map states to actions, the value

is predicted by a neural network using states as inputs.

Then according to the ϵ-greedy strategy, as shown in

Eq. (4), DQN samples an action.

as =

{
argmax

a∈A
Q(s, a) 1− ϵ

random a ϵ
(4)

The method defines ϵ as the probability of taking a

random action from the action space. ϵ = 1.0 is akin

to pure arbitrary action sampling, and ϵ = 0.0 is akin

to deterministically taking action with the highest Q-

value.

To stabilize the network’s learning and emulate the

learning of past experiences in humans, we employ Ex-

perience Replay [17]. The idea behind Experience Re-

play is for an agent to build an action model of exe-

cutable actions and their consequences. This way, the

agent can learn from the model what actions produce

favorable outcomes without actually executing them. It

is implemented by initializing a dataset D of past ex-

periences. Then, at each timestep t, the algorithm adds

experience containing the state st, the action at, the re-

ward rt, and the followup state st+1, to the experience

dataset D. At each learning iteration, the algorithm

gathers a random batch from D and uses it to update

the network’s weights.

Each timestep t, the network is trained by minimiz-

ing the loss function Lt of the neural network concern-

ing the weights θ, with the following equation:

Lt(θt) = Es,a∼p(·)[(yt −Qθt(s, a))
2] (5)

with

yt =

{
rt terminal st+1

rt + γmaxa′ Qθt−1
(st+1, a

′) non-terminal st+1

(6)

Here, the expectation to be minimized is the squared

difference in future discounted rewards yt, which are

calculated with the previous parameters θt−1, and the

current rewards Qθt(s, a). Note that the expectation is

calculated given a known state s and action a according

to a probability over all actions.

2.4.2 Actor-Critic Architecture

In contrast with value-based RL algorithms, such as

the previously mentioned DQN algorithm, policy-based

methods directly approximate the optimal policy π∗.

Commonly, this is achieved by using stochastic gradi-

ent ascent algorithms. Unfortunately, two issues arise

when calculating policy gradients: noisy and high vari-

ance [35]. To solve these issues, Williams [36] introduced

a baseline bt(st) to be subtracted from the policy gra-

dient.

∇θJ(θ) =

T−1∑
t=0

∇θ log πθ(at|st)(Gt − bt(st)). (7)

One common method is choosing the estimate of the

value function V (st) as the baseline. Since the baseline

only depends on the state, it will not impact the gradi-

ent of the policy. The idea behind this is that the algo-

rithm constantly checks if a specific action at is better

Automated Points Of Interest Selection for Side-channel Analysis 5

or worse than the average action, given the state st.

This is more commonly known as the advantage func-

tion:

A(at, st) = Q(at, st)− V (st). (8)

This approach forms the basis of the actor-critic ar-

chitecture, where the policy π is seen as the actor and

the baseline bt is seen as the critic [34]. Using the ad-

vantage function as the baseline, the gradient for the

actor-critic architecture becomes

∇θJ(θ) ∼
T−1∑
t=0

∇θ log πθ(at|st)A(st, at). (9)

2.4.3 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) by Schul-

man et al. [30] introduces an algorithm for smoother

policy learning. It does so by applying a Kullback-Leibler

(KL) Divergence [15] on parameter updates in the pol-

icy.

Instead of directly applying the policy gradient, TRPO

uses a surrogate loss function to update its parameters.

The surrogate loss has its roots in Importance Sam-

pling [32], which is used to estimate the expected value

of a function f(x), where x follows a distribution p(x).

Then, instead of sampling x from p, it is sampled from

another distribution q that is used to approximate p:

Ep[f(x)] = Eq[
f(x)p(x)

q(x)
]. (10)

If q(x) is sufficiently close to p(x), then the estimation

is sufficiently accurate.

The surrogate loss used by TRPO is constrained by

a KL Divergence such that the new policy does not drift

far apart from the old policy.

max
π

L(π) = Eπold
[
π(a|s)

πold(a|s)
Aπold(s, a)] (11)

subject to

E[KL(π, πold) ≤ ϵ]. (12)

Note that Aπold(s, a) is the advantage function as

depicted in Eq. (8).

2.4.4 Proximal Policy Optimization

In 2017, Schulman et al. introduced proximal policy op-

timization [31], which builds upon their earlier work in

TRPO and results in an algorithm that is simpler to im-

plement, more general, and with better computational

complexity. Instead of using a constraint on the KL Di-

vergence between the new and old policy, a clipping of

the ratio was proposed:

LCLIP (θ) =Êt[min(rt(θ)Ât,

clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)], (13)

where ϵ denotes a hyperparameter to be set. The

loss function is used to clip the probability ratio when

it improves the objective while unrestricting it when

it worsens the objective. In other words, proximal pol-

icy optimization restricts policy updates that are too

large, leading to smoother learning and a more negligi-

ble probability of policy collapse.

3 Related Work

After the introduction of Side-Channel Analysis (SCA)

by Kocher et al. [14], the seminal work by Chari et

al. [5] introduced Template Attacks (TAs), which would

drive the research in the SCA community for many

years. Although being the most potent attack from an

information-theory standpoint, its assumptions can be

somewhat daunting and sometimes impossible (unlim-

ited traces). Years later, more advanced methods were

devised, such as the Stochastic Models presented in the

work of Schindler et al. [29], which aims to reduce the

amount of traces needed for profiling significantly. Fur-

ther work was done by Choudhary and Kuhn [6], where

the authors introduced pooling the covariance matri-

ces used in the profiling phase and attaining a signifi-

cant speed-up of the attack. These methods represented

the state-of-the-art for several years, mainly due to the

strength of performance and the fact that no hyperpa-

rameter tuning was needed.

The performance of profiled SCA (more specifically,

TA) heavily relies on the points of interest (POI) selec-

tion. In 2015 Lerman et al. [16] even concluded that,

with proper POI selection, TA outperforms Machine

Learning attacks. Over the years, several techniques

have been researched to reduce the complexity of TA.

One of the first works was in 2006, where Archambeau

et al. [2] introduced Principal Component Analysis to

create a principal subspace. The principal subspace re-

duced the dimension of the traces by 99.99% and re-

sulted in being able to classify 93.3% of the traces cor-

rectly.

Picek et al. [22] explored many different POI selec-

tion methods used frequently in Side-Channel Analysis.

The authors concluded that feature selection is a very

important step in attacks where the data is noisy and

contains various countermeasures. Next, in Perin et al.’s

work [21], the authors explored different setups of POIs

6 Mick G.D. Remmerswaal et al.

for the preprocessing of DL attacks. The authors con-

cluded that a proper POI selection method could boost

the attack performance dramatically.

More recently, Wu et al. [37] used a Machine Learn-

ing technique called Similarity Learning to show that

with proper feature engineering, Template Attacks re-

main feasible and are even able to outperform current

state-of-the-art Deep Learning techniques. The main

drawback of the triplet network is that for each dataset,

the hyperparameters have to be tuned. Rioja et al. [27]

introduced an automated DL tuner based on the Esti-

mation of Distribution Algorithms (EDAs), which could

automatically choose good-performing POIs and there-

fore reduce the need for human intervention.

The first instance of reinforcement learning applied

in Side-Channel Analysis concerning POI selection, to

the best of our knowledge, is Side-channel Analysis with

Reinforcement Learning (SCARL). In this paper,

Ramezanpour et al. [25] introduce an algorithm that

preprocesses the data with an autoencoder and, with

the help of a self-supervised Actor-Critic model, can

cluster features based on the inter-cluster difference on

the mean. However, their method is only tested on one

specific cipher, the Ascon [7] cipher, and needs 24 000

traces to find the correct partial key.

4 AutoPOI Framework

A graphical overview of the framework is shown in Fig-

ure 2. An algorithmic overview is shown in Algorithm 1.

In each episode, the framework executes two inner loops

that run until terminal conditions are met. The first in-

ner loop is the region selection phase, explained in Sec-

tion 4.2. The second inner loop is the dimensionality

reduction phase, explained in Section 4.3. The output

of the dimensionality reduction network produces em-

beddings (features). These embeddings are then used

for the Template Attack, which is used to determine

the performance of the chosen regions and network.

Algorithm 1 AutoPOI framework.

region ppo← build PPO net()
dim red ppo← build PPO net()
for ep ∈ episodes do

selected regions← select regions(region ppo)
dim red net← create network(dim red ppo)
POIs← extract POIs(traces, selected regions)
features← extract features(dim red net, POIs)
ranks← perform attack(features)
reward← calculate reward(ranks)
train PPO nets(region ppo, dim red ppo)

Fig. 2: Graphical overview of AutoPOI framework

Knowing that the leakages could span multiple raw

features (e.g., masked data), the framework aggregates

the features to ensure that leakages spanning various

points are selected in one go, thereby spanning a greater

range of possible leakage points. Specifically, the fea-

tures are aggregated in regions of length n. This value

n is determined by the trace length and the number of

regions available as n = length/regions. The number

of regions available is a hyperparameter that needs to

be set beforehand. At each episode, the environment

reduces the maximum number of regions rcur with Ex-

ponential Decay to explicitly induce an exploration-vs-

exploitation dichotomy. The algorithm is set up first

such that it has enough room to explore various op-

tions. Eventually selecting a smaller number of the best-

performing regions. Furthermore, since the search space

of features can be rather large, reducing the number of

the to-be-selected regions provides a speed up of the

framework.

To kick-start the learning process of distinguishing

between well-performing (sensitive data-related) and bad-

performing (others) regions, the maximum and the min-

imum number of to-be-selected regions rmax and rmin

are defined based on a percentage of the total number of

regions. Eq. (14) gives the Exponential Decay function.

rcur = max(⌊r0e−λep⌋, rmin), , (14)

where λ denotes the decay factor and ep denotes the

current episode of the framework. An example of the

decay function with λ = 0.002, rmax = 1000 and rmin =

100 is shown in Figure 3.

Automated Points Of Interest Selection for Side-channel Analysis 7

Fig. 3: An example of the Exponential Decay function

in Eq. (14). λ = 0.002, rmax = 1000 and rmin = 100.

4.1 Reward Function

The framework follows the general reinforcement learn-

ing loop depicted in Figure 1. For the framework to

learn, a reward function is needed. This reward func-

tion is an adaptation of the function found in [26]. Two

adaptions were made. The first was to remove the no-

tion of the accuracy metric. In [26], the goal was to

classify key guesses with a CNN correctly. However, no

classification metric is available since no labels are asso-

ciated with Points Of Interest. Second, since this work

focuses solely on generating high-quality POIs, the re-

ward for the size of the networks is removed. The reward

function used in this work is shown in Eq. (15).

r =
t′ +GE′

10 + 0.5GE′
50

2.5
(15)

t′ =
tmax −min(tmax, GEk∗)

tmax
(16)

GE′
10 =

128−min(GE10, 128)

128
(17)

GE′
50 =

128−min(GE50, 128)

128
. (18)

Here, r denotes the final reward calculated with

three separate reward functions. The first reward func-

tion, depicted in Eq. (16), calculates t′, which uses the

first time the GE of the correct key k∗ reaches < 1 and

calculates a score between 0 and 1. tmax denotes the

number of attack traces used for the attack. Eq. (17)

calculates a score between 0 and 1 using GE10, which

resembles the GE when 10% of the maximum number

of traces are used. Finally, Eq. (18) calculates a score

between 0 and 1 using GE50, which resembles the GE

when 50% of the traces are used.

The last two metrics are added to ensure that, al-

though a complete GE convergence was not achieved

given a certain number of attack traces, the actions

taken are not disregarded as entirely wrong. These met-

rics were chosen to incentivize the learning to focus on

reducing the number of traces needed to converge to the

correct key guess, ultimately leading to better features.

4.2 Phase 1: Feature Selection

This phase of the framework is responsible for the selec-

tion of multiple regions from the traces. It is based on

the Proximal Policy Optimization algorithm, explained

in Section 2.4.4. The architecture of the PPO network

is a neural network with five layers. The architecture of

the network is found in Table 1. The average pooling

layer is added to reduce the number of inputs the net-

work has to take into account, thereby speeding up the

process. Very early in the experimentation, it became

apparent that a Multilayer Perceptron performed bet-

ter than a Convolutional Neural Network. Therefore,

it was decided to do all experiments with MLPs, and

CNNs were not further experimented with.

Table 1: Network Architecture for the Region Selection

PPO network.

Region PPO Network

Avg Pool layer: Kernel=3, Stride=2
FC layer: Neurons=256
Activation Layer ReLU
FC layer: Neurons=256
Activation Layer ReLU
FC layer: Neurons=128
Activation Layer ReLU
FC layer: Neurons=64
Activation Layer ReLU
FC layer: Neurons=action space size

The algorithm’s layout is shown in Algorithm 2. At

each iteration, the environment provides the network

with a subset of the profiling traces. The subset size is

dictated by the batch size provided in the environment.

In each iteration, one region of all possible regions

is selected until it has reached the number of regions to

select.

Each trace in the network is run through the net-

work and outputs raw network outputs, often called

logits. Since the network is set up to take only one ac-

tion for multiple inputs, the logits are summed. Then,

new logits are used to create a categorical distribution.

From the categorical distribution, one action is sam-

pled. This action represents the selected region for that

iteration.

The PPO algorithm has the Actor-Critic architec-

ture, as explained in Section 2.4.2. This means that a

8 Mick G.D. Remmerswaal et al.

Algorithm 2 Region Selection Algorithm

Require: env, region model

phase← region
obs← reset(env, phase)
while not done do

logits, val← region model(obs)
logits←

∑
logits

val← mean(val)
mask ← 0̄ ▷ Length of mask is determined by logits
regions← get selected regions(env)
for each r ∈ regions do

mask[r]← 1

logits← apply mask(logits,mask)
dist← create categorical ditribution(logits)
a← sample(dist)
log prob← get log prob(dist, a)
next obs, done← step(env, a)
train data← setup train data(obs, a, val, log prob,mask)
obs← next obs

if done then
break while

critic value is calculated with the same network but

outputs only one value. This value can be interpreted

as a score for the performance of the network. Since

the network takes in a batch of traces, there is also a

batch of critic values. In this phase, the critic value is

averaged, representing the average state of the network.

Invalid Action Masking To ensure that regions are not

duplicated, Invalid Action Masking (IAM) [13] is ap-

plied. IAM is the method of replacing certain logits

with a large negative number, such that it defaults

to a probability of practically 0 when creating a cat-

egorical distribution. For example, assume an environ-

ment is defined by two states [s0, s1] and four actions,

[a0, a1, a2, a3], are available in s0. Assume that s1 is the

terminal state and that the default reward is 1. Further-

more, a policy πθ is defined with θ = [1.0, 1.0, 1.0, 1.0],

assuming that it directly returns θ as the output logits.

Then in s0, the policy produces

πθ(·|s0) = [πθ(a0|s0), πθ(a1|s0),
πθ(a2|s0), πθ(a3|s0)], (19)

=> softmax([l0, l1, l2, l3]), (20)

= [0.25, 0.25, 0.25, 0.25]. (21)

Now, IAM is applied by replacing the invalid ac-

tion’s logit by a large negative number M , e.g., M =

−108, assume action a2 is invalid, then:

π′
θ(·|s0) = mask([πθ(a0|s0), πθ(a1|s0),

πθ(a2|s0), πθ(a3|s0)]), (22)

=> softmax([l0, l1,M, l3]), (23)

= softmax([1.0, 1.0,−108, 1.0]), (24)

= [0.33, 0.33, 0.0, 0.33]. (25)

Since the mask is only dependent on the state and

has no bearing on the parameters of the policy, it pro-

duces a valid policy gradient. A complete proof can be

found in [13].

4.3 Phase 2: Dimensionality Reduction

In the second phase of the framework, the algorithm

iteratively builds up a triplet network [37]. The triplet

network is named after the inputs it is provided with,

triplets. A triplet consists of an anchor a, a positive p,

and a negative n. The anchor and the positive share

the same label, while the negative has another label.

All three are run through the same network, and the

loss is calculated as shown in Eq. (26).

loss = max(dist(a, p)− dist(a, n) +margin, 0), (26)

where dist denotes the Euclidean distance.

As with the previous phase, this phase uses a proxi-

mal policy optimization algorithm to find the best triplet

network for selected regions. The architecture of the

PPO network can be found in Table 2.

Table 2: Network Architecture for the Dimensionality

Reduction PPO network.

Dimensionality Reduction PPO Network

FC layer Neurons=32
Activation layer ReLU
FC layer Neurons=32
Activation layer ReLU
FC layer Neurons=32
Activation layer ReLU
FC layer Neurons=action space size

The architecture of the PPO network is chosen to

reflect the significant difference in state size from the

Region Network shown in Table 1. The states built by

the environment constitute the current number of lay-

ers present in the network, the type of layer selected

in the previous step, the output shape of the layer se-

lected in the previous step, and if the algorithm has

achieved a terminal state. A general layout of the algo-

rithm is shown in Algorithm 3. At each iteration of the

Automated Points Of Interest Selection for Side-channel Analysis 9

algorithm, a state is processed by the network, return-

ing logits and a value. The action space of Algorithm 3

has also been masked with IAM. In addition, several

restrictions have been implemented to guide the algo-

rithm in building valid networks. An overview of these

restrictions is found in Table 3; a graphical overview of

the state transitions is shown in Figure 4. Several hy-

perparameters are made available to be chosen by the

algorithm. An overview of each layer and the respective

hyperparameters are shown in Table 4.

It is important to note that not only are state tran-

sitions restricted, but the hyperparameters that belong

to those states as well. Since the network’s purpose is

to reduce the dimensions, the outputs of the follow-

ing state cannot exceed the inputs to that state. For

instance, if the output of the current state is of dimen-

sion 64, every action that leads to a new layer with an

output dimension larger than 64 is determined invalid

and is masked as such.

Fig. 4: Graphical overview of the state transitions. Note

that for ease of viewing, activation layers are removed.

Algorithm 3 Dimensionality Reduction Algorithm

Require: env, network model
phase← network

obs← reset(env, phase)
while not done do

logits, val← network model(obs)
mask ← determine mask(obs)
logits← apply mask(logits,mask)
dist← create categorical ditribution(logits)
action← sample(dist)
log prob← get log probability(dist, action)
next obs, done← step(env, action)
train data← setup train data(obs, action, val, log prob,mask)
obs← next obs

if done then

break while

After the selection of the optimizer, the network

is built with the selected layers and hyperparameters.

Training is done for 1 epoch with a batch size of 512

and a margin of 0.4 following [37].

5 Datasets

5.1 ASCAD

The ASCAD dataset [3] is created by acquiring EM

traces from an ATMega8515 controller running an AES-

128 implementation. The chip card itself has no hard-

ware security implementation. The authors implemented

masking to counter first-order side-channel attacks [24].

ASCAD F: This dataset version has a fixed key and

consists of 50 000 profiling traces for profiling and 10 000

attack traces. Note that traces with 700 features (re-

quires knowledge of r mask share) are commonly used

in related works. To make our work closer to realistic

settings, we select a time window with 5 000 features,

corresponding to the Sbox output when using key byte

3, the first masked key byte. A total of 45 000 traces are

used as the profiling set, this set is used to train the pro-

posed framework. For the calculation of the rewards, a

separate set of attack traces is used consisting of 5 000

traces. For testing purposes another 5 000 traces are

used.

ASCAD R: This dataset version has random keys,

with 200 000 traces for profiling and 100 000 for the at-

tack. The keys are randomized for 33% of the attack

traces. Similarly, we extend the pre-selected window to

5 000 features corresponding to the processing of the

third masked key byte based on SNR of the Sbox out-

put. As with the fixed key dataset, a total of 45 000

traces are used as the profiling set. Again, this set is

used to train the proposed framework. For the calcu-

lation of the rewards, a separate set of attack traces

is used consisting of 5 000 traces. For testing purposes

another 5 000 traces are used. Note that for reward and

testing purposes, the keys are fixed and not random-

ized.

For both ASCAD F and ASCAD R, the Hamming

Weight (HW) and Identity (ID) leakage models are used

to benchmark the proposed framework.

5.2 AES HD Dataset

The AES HD dataset [4] is a dataset created by mea-

suring EM emission from an unprotected Xilinx Virtex-

5 FPGA. This work uses the input and output of the

last round SBox (Sbox−1(c7 ⊕ k7) ⊕ c11) as explained

by Picek et al. [23]. As with previous datasets and to

create a more equal experimental environment, again

10 Mick G.D. Remmerswaal et al.

Table 3: On overview of each state and the transition restrictions

State Restrictions

Null State Can only transition to Pooling, Convolutional or Terminal layers
Pooling layer Cannot transition to other Pooling layers
Convolutional layer No restrictions
Activation layer Cannot transition to other Activation layers
Fully Connected layer No restrictions
Terminal layer Can only transition to optimizers

Table 4: Hyperparameter overview of the possible combinations of layers.

Layer Hyperparameters

Fully Connected layer Neurons : [256, 128, 64, 32, 16, 8]
Convolutional layer Kernel : [256, 128, 64, 32, 16, 8] Stride : [16, 8, 4, 2, 1]
Pooling Layer Kernel : [256, 128, 64, 32, 16, 8] Stride : [16, 8, 4, 2, 1]
Activation Layer Type : ReLU, Tanh, SeLU
Embeddings Layer Neurons : [64, 32, 16, 8]
Optimizer Type : Adam, AdaGrad, RMSProp, SGD LR: [1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2]

45 000 traces are selected for the training of the pro-

posed framework. Both the reward and final testing

sets contain 5 000 traces. The traces selected contain

a total of 1 250 features. For the AES HD dataset, the

HD leakage model is used to benchmark the proposed

framework.

5.3 CHES CTF Dataset

The CHES CTF dataset is a data set created for the an-

nual Capture-The-Flag event organized by the Confer-

ence on Cryptographic Hardware and Embedded Sys-

tems (CHES). The traces are taken from a 32-bit STM

Controller running a masked AES-128 encryption al-

gorithm. This dataset originates from the year 2018

and is publicly available [1]. Similarly as with previ-

ous datasets, a total of 45 000 traces are used to com-

pose the training set. For the reward and test set, 5 000

traces are used. The traces have a dimension of 2 200

features For the CHES CTF dataset, the HW leakage

model is used to benchmark the proposed framework.

6 Experimental Environment

The proposed framework is trained for a total of 1 000

episodes. During training, the framework chooses a set

of regions based on a batch size of 512 traces. Sub-

sequently, the framework chooses a network architec-

ture. As described in Algorithm 3, the selected network

is trained for 1 epoch with a batch size of 512 and a

margin of 0.4. Training of the PPO algorithms of the

proposed framework is done with the hyperparameters

given in Table 5.

Table 5: Hyperparameters for the training of the PPO

networks.

Hyperparameter Value
Policy learning rate 0.0003
Value learning rate 0.0001
Training epochs ‘ 20

7 Results and Discussion

The proposed framework was run on each dataset for

a total of 1 000 episodes, in which, during training, the

network found, selected, and scaled-down various num-

bers of Points Of Interest. The best-performing set of

POIs and the best-performing NN were then used for

the guessing entropy calculation (averaged over 100 at-

tacks). Training on the AES HD dataset took 8 hours,

and training on CHES CTF took 9 hours. For both AS-

CAD datasets, training took 12 hours.

To gain insight into the learning of the proposed

framework, Figure 5f shows the max reward through

time (episode). One can observe that the reward con-

stantly increases with more episodes, meaning that the

framework is learning from the environment and grad-

ually producing better attack results. Specifically, the

results show that the proposed framework found a well-

performing set of POIs and a network architecture within

244 episodes for the ASCAD F dataset with HW and

178 episodes for the Identity model. For the ASCAD R

datasets, the proposed framework reaches the highest

reward within 681 episodes for the Hamming Weight

leakage model and 228 episodes for the Identity leakage

model. For the AES HD datasets, the highest reward

is reached within 862 episodes, and for the CHES CTF

dataset, the good POIs and network architecture were

found within 577 episodes.

Automated Points Of Interest Selection for Side-channel Analysis 11

Among all tested settings, except ASCAD R with

the ID leakage model, all tested settings reach a reward

above 0.8, indicating the framework manages to find

both promising input regions and triplet network ar-

chitectures via interactions. The results show the pro-

posed framework’s effectiveness in finding good POIs

and network architectures.

Next, we benchmark our framework with different

POI selecting methods. Specifically, both conventional

methods and Deep Learning methods are taken into

consideration. As can be seen from Tables 6 and 7,

which provide GE to reach < 1 for each dataset, the

proposed framework is the only method able to pro-

vide consistent results. Especially when using the Ham-

ming Weight leakage model, the proposed framework is

the only method that can break all four datasets. Not

only is the proposed framework consistent with finding

POIs, but it can also find optimized POIs such that

it attains state-of-the-art performance for three out of

four datasets for the Hamming Weight. Although our

framework fails to break ASCAD R with the ID leak-

age model in the current setting, increasing the number

of episodes could be a possible solution. On the other

hand, the conventional feature selection methods and

triplet networks are only functional with specific set-

tings. Therefore, it can be considered that our approach

is more general in terms of point of interest selection.

8 Conclusions and Future work

This paper introduces a novel reinforcement learning-

driven framework, AutoPOI, based on Proximal Policy

Optimization, which can find, select, and scale down

POIs. The framework analyzes leakage traces and des-

ignates regions of features. The proposed framework se-

lects several of these regions as POIs. After that, the

framework constructs a neural network to provide a

scaled-down version of the selected regions. Template

attacks are mounted with these scaled-down features,

and rewards are given based on the attack performance

obtained using a specific reward trace set. The frame-

work automatically adapts to the rewards given, thereby

finding the best-performing regions and networks tai-

lored to each dataset.

The attack performance, represented by guessing

entropy, is extensively tested for each dataset. The re-

sults show that the framework can break almost all

datasets where the current state-of-the-art methods can-

not. Furthermore, the proposed framework is efficient

in finding promising POIs and network architectures,

achieving state-of-the-art performance for most attack

settings. Not only is the running time of the algorithm

short compared to other currently used methods, but

the results also show that early on during training, the

proposed framework can find well-performing POIs and

network architectures. For future work, it would be in-

teresting to test the framework on more datasets and

several common countermeasures, such as desynchro-

nization and noisy (Gaussian noise) data. Furthermore,

implementing an early-stopping mechanism would be

helpful in reducing the time consumption of the frame-

work.

References

1. Ches ctf - dataset (2022). URL https://chesctf.riscure.

com/2018/content?show=training

2. Archambeau, C., Peeters, E., Standaert, F.X.,
Quisquater, J.J.: Template attacks in principal sub-
spaces. In: International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 1–14. Springer
(2006)

3. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas,
C.: Deep learning for side-channel analysis and introduc-
tion to ascad database. Journal of Cryptographic Engi-
neering 10(2), 163–188 (2020)

4. Bhasin, S., Jap, D., Picek, S.: AES HD dataset - 50 000
traces. AISyLab repository (2020). https://github.com/

AISyLab/AES_HD

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In:
International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 13–28. Springer (2002)

6. Choudary, O., Kuhn, M.G.: Efficient template attacks.
In: International Conference on Smart Card Research and
Advanced Applications, pp. 253–270. Springer (2013)

7. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer,
M.: Ascon. Submission to the CAESAR competition:
http://ascon. iaik. tugraz. at (2014)

8. Fisher, R.A.: The use of multiple measurements in taxo-
nomic problems. Annals of eugenics 7(2), 179–188 (1936)

9. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs.
stochastic methods. In: International Workshop on Cryp-
tographic Hardware and Embedded Systems, pp. 15–29.
Springer (2006)

10. Gilmore, R., Hanley, N., O’Neill, M.: Neural network
based attack on a masked implementation of aes. In:
2015 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pp. 106–111. IEEE
(2015)

11. Hospodar, G., Gierlichs, B., De Mulder, E., Ver-
bauwhede, I., Vandewalle, J.: Machine learning in side-
channel analysis: a first study. Journal of Cryptographic
Engineering 1(4), 293–302 (2011)

12. Hotelling, H.: Analysis of a complex of statistical vari-
ables into principal components. Journal of educational
psychology 24(6), 417 (1933)

13. Huang, S., Ontañón, S.: A closer look at invalid action
masking in policy gradient algorithms. arXiv preprint
arXiv:2006.14171 (2020)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis.
In: Annual international cryptology conference, pp. 388–
397. Springer (1999)

15. Kullback, S., Leibler, R.A.: On information and suffi-
ciency. The annals of mathematical statistics 22(1), 79–
86 (1951)

https://chesctf.riscure.com/2018/content?show=training
https://chesctf.riscure.com/2018/content?show=training
https://github.com/AISyLab/AES_HD
https://github.com/AISyLab/AES_HD

12 Mick G.D. Remmerswaal et al.

(a) ASCAD F HW. (b) ASCAD R HW. (c) CHES CTF HW.

(d) ASCAD F ID. (e) ASCAD R ID. (f) AES HD HD.

Fig. 5: Rewards during training on different datasets and leakage models.

Table 6: A summary of the results of each method on each of the four datasets (HW/HD).

Dataset SOST SNR PCA LDA Triplet AutoPOI

AES HD > 5000 1094 2513 1104 1664 990

CHES CTF 4510 > 5000 > 5000 > 5000 > 5000 1830
ASCAD F 4522 1184 203 > 5000 194 193

ASCAD R > 5000 > 5000 452 > 5000 164 1499

Table 7: A summary of the results of each method on each of the two datasets (ID).

Dataset SOST SNR PCA LDA Triplet AutoPOI

ASCAD F > 5000 > 5000 436 > 5000 158 180
ASCAD R > 5000 > 5000 > 5000 > 5000 > 5000 > 5000

16. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O.,
Standaert, F.X.: Template attacks vs. machine learning
revisited (and the curse of dimensionality in side-channel
analysis). In: International Workshop on Constructive
Side-Channel Analysis and Secure Design, pp. 20–33.
Springer (2015)

17. Lin, L.J.: Reinforcement learning for robots using neural
networks. Carnegie Mellon University (1992)

18. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryp-
tographic implementations using deep learning tech-
niques. In: International Conference on Security, Pri-
vacy, and Applied Cryptography Engineering, pp. 3–26.
Springer (2016)

19. Mangard, S., Oswald, E., Popp, T.: Power analysis at-
tacks: Revealing the secrets of smart cards, vol. 31.
Springer Science & Business Media (2008)

20. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A.,
Veness, J., Bellemare, M.G., Graves, A., Riedmiller,

M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature
518(7540), 529–533 (2015)

21. Perin, G., Wu, L., Picek, S.: Exploring feature selection
scenarios for deep learning-based side-channel analysis.
Cryptology ePrint Archive (2021)

22. Picek, S., Heuser, A., Jovic, A., Batina, L.: A system-
atic evaluation of profiling through focused feature selec-
tion. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27(12), 2802–2815 (2019)

23. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni,
F.: The curse of class imbalance and conflicting metrics
with machine learning for side-channel evaluations. IACR
Transactions on Cryptographic Hardware and Embedded
Systems 2019(1), 1–29 (2019)

24. Prouff, E., Rivain, M.: A generic method for secure sbox
implementation. In: International Workshop on Informa-
tion Security Applications, pp. 227–244. Springer (2007)

Automated Points Of Interest Selection for Side-channel Analysis 13

25. Ramezanpour, K., Ampadu, P., Diehl, W.: Scarl: side-
channel analysis with reinforcement learning on the ascon
authenticated cipher. arXiv preprint arXiv:2006.03995
(2020)

26. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement
learning for hyperparameter tuning in deep learning-
based side-channel analysis. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems pp. 677–707
(2021)

27. Rioja, U., Batina, L., Flores, J.L., Armendariz, I.: Auto-
tune pois: Estimation of distribution algorithms for ef-
ficient side-channel analysis. Computer Networks 198,
108405 (2021)

28. Roy, D.B., Bhasin, S., Guilley, S., Heuser, A., Patran-
abis, S., Mukhopadhyay, D.: Cc meets fips: A hybrid test
methodology for first order side channel analysis. IEEE
Transactions on Computers 68(3), 347–361 (2018)

29. Schindler, W., Lemke, K., Paar, C.: A stochastic model
for differential side channel cryptanalysis. In: Interna-
tional Workshop on Cryptographic Hardware and Em-
bedded Systems, pp. 30–46. Springer (2005)

30. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz,
P.: Trust region policy optimization. In: International
conference on machine learning, pp. 1889–1897. PMLR
(2015)

31. Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
Klimov, O.: Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 (2017)

32. Shelton, C.R.: Importance sampling for reinforcement
learning with multiple objectives (2001)

33. Standaert, F.X., Malkin, T.G., Yung, M.: A unified
framework for the analysis of side-channel key recov-
ery attacks. In: Annual international conference on the
theory and applications of cryptographic techniques, pp.
443–461. Springer (2009)

34. Sutton, R.S., Barto, A.G.: Reinforcement learning: An
introduction. MIT press (2018)

35. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.:
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems 12 (1999)

36. Williams, R.J.: Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning 8(3), 229–256 (1992)

37. Wu, L., Perin, G., Picek, S.: The best of two worlds: Deep
learning-assisted template attack. Cryptology ePrint
Archive (2021)

	Introduction
	Background
	Related Work
	AutoPOI Framework
	Datasets
	Experimental Environment
	Results and Discussion
	Conclusions and Future work

